AN 775: Generating Initial I/O Timing Data

for Intel FPGAs

Updated for Intel® Quartus® Prime Design Suite: 19.3
1. AN 775: Generating Initial I/O Timing Data for Intel FPGAs........................................... 3
   1.1. Step 1: Synthesize a Flip-flop for the Target Intel FPGA Device.................................... 4
   1.2. Step 2: Define I/O Standard and Pin Locations ......................................................... 5
   1.3. Step 3: Specify Device Operating Conditions............................................................. 6
   1.4. Step 4: View I/O Timing in Datasheet Report............................................................ 6
   1.5. Scripted I/O Timing Data Generation........................................................................8
   1.6. AN 775: Generating Initial I/O Timing Data Document Revision History.........................9
1. AN 775: Generating Initial I/O Timing Data for Intel FPGAs

You can generate initial I/O timing data for Intel FPGA devices using the Intel® Quartus® Prime software GUI or Tcl commands. Initial I/O timing data is useful for early pin planning and PCB design. You can generate initial timing data for the following relevant timing parameters to adjust the design timing budget when considering I/O standards and pin placement.

<table>
<thead>
<tr>
<th>Timing Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input setup time ($t_{SU}$)</td>
<td>t_{SU} = input pin to input register data delay + input register micro setup time - input pin to input register clock delay</td>
</tr>
<tr>
<td>Input hold time ($t_{H}$)</td>
<td>t_{H} = - input pin to input register data delay + input register micro hold time + input pin to input register clock delay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timing Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock to output delay ($t_{CO}$)</td>
<td>$t_{CO} = $ clock pad to output register delay + output register clock-to-output delay + output register to output pin delay</td>
</tr>
</tbody>
</table>

Table 1. I/O Timing Parameters
Generating initial I/O timing information includes the following steps:

- **Step 1: Synthesize a Flip-flop for the Target Intel FPGA Device** on page 4
- **Step 2: Define I/O Standard and Pin Locations** on page 5
- **Step 3: Specify Device Operating Conditions** on page 6
- **Step 4: View I/O Timing in Datasheet Report** on page 6

### 1.1. Step 1: Synthesize a Flip-flop for the Target Intel FPGA Device

Follow these steps to define and synthesize the minimum flip-flop logic to generate initial I/O timing data:

2. Click `Assignments ➤ Device`, specify your target device **Family** and a **Target device**. For example, select the **AGFA014R24** Intel Agilex™ FPGA.
3. Click **File ➤ New** and create a **Block Diagram/Schematic File**.
4. To add components to the schematic, click the **Symbol Tool** button.

### Insert Symbols

- Insert Symbols
- Insert Wires, Buses, Conduits
5. Under **Name**, type DFF, and then click **OK**. Click in the Block Editor to insert the DFF symbol.

6. Repeat 4 on page 4 through 5 on page 5 to add an Input_data input pin, Clock input pin, and Output_data output pin.

7. To connect the pins to the DFF, click the **Orthogonal Node Tool** button, and then draw wire lines between the pin and DFF symbol.

**Figure 5. DFF with Pin Connections**

8. To synthesize the DFF, click **Processing ➤ Start ➤ Start Analysis & Synthesis**. Synthesis generates the minimum design netlist required to obtain I/O timing Data.

**1.2. Step 2: Define I/O Standard and Pin Locations**

The specific pin locations and I/O standard you assign to the device pins impacts the timing parameter values. Follow these steps to assign the pin I/O standard and location constraints:

1. Click **Assignments ➤ Pin Planner**.

2. Assign pin location and I/O standard constraints according to your design specifications. Enter the **Node Name**, **Direction**, **Location**, and **I/O Standard** values for the pins in the design in the **All Pins** spreadsheet. Alternatively, drag node names into the Pin Planner package view.

**Figure 6. Pin Locations and I/O Standards Assignments in Pin Planner**

3. To compile the design, click **Processing ➤ Start Compilation**. The Compiler generates I/O timing information during full compilation.
1.3. Step 3: Specify Device Operating Conditions

Follow these steps to update the timing netlist and set operating conditions for timing analysis following full compilation:

1. Click **Tools ➤ Timing Analyzer**.
2. In the **Task** pane, double-click **Update Timing Netlist**. The timing netlist updates with full compilation timing information that accounts for the pin constraints you make.

![Task Pane in the Timing Analyzer](image)

3. Under **Set Operating Conditions**, select one of the available timing models, such as **Slow vid3 100C Model** or **Fast vid3 100C Model**.

![Set Operating Conditions in the Timing Analyzer](image)

1.4. Step 4: View I/O Timing in Datasheet Report

Generate the Datasheet Report in the Timing Analyzer to view the timing parameter values.

1. In the Timing Analyzer, click **Reports ➤ Datasheet ➤ Report Datasheet**.
2. Click **OK**.
Figure 9. Datasheet Report in Timing Analyzer


3. Click each report to view the Rise and Fall parameter values.
4. For a conservative timing approach, specify the maximum absolute value.

Example 1. Determining I/O Timing Parameters from the Datasheet Report

In the following example Setup Times report, the fall time is greater than the rise time, therefore $t_{SU} = t_{fall}$.

Figure 10. Setup Times Report

In the following example Hold Times report, the absolute value of the fall time is greater than the absolute value of the rise time, therefore $t_H = t_{fall}$.

Figure 11. Hold Times Report

In the following example Clock to Output Times report, the absolute value of the fall time is greater than the absolute value of the rise time, therefore $t_{CO} = t_{fall}$.

Figure 12. Clock to Output Times Report

Related Information
- Timing Analyzer Quick-Start Tutorial
1.5. Scripted I/O Timing Data Generation

You can use a Tcl script to generate I/O timing information with or without using the Intel Quartus Prime software user interface. The scripted approach generates text-based I/O timing parameter data for supported I/O standards.

Note: The scripted method is available only for Linux* platforms.

Follow these steps to generate I/O timing information reflecting multiple I/O standards for Intel Agilex, Intel Stratix® 10, and Intel Arria® 10 devices:

1. Download the appropriate Intel Quartus Prime project archive file for your target device family:

2. To restore the .qar project archive, launch the Intel Quartus Prime Pro Edition software and click **Project ▶ Restore Archived Project**. Alternatively, run the following command line equivalent without launching the GUI:

   quartus_sh --restore <archive file>

   The `io_timing_<device>_restored` directory now contains the qdb subfolder and various files.

3. To run the script with the Intel Quartus Prime Timing Analyzer, run the following command:

   quartus_sta -t <device>.tcl

   Wait for completion. The script execution may require 8 hours or more because each change on I/O standard or pin location requires design recompilation.

4. To view the timing parameter values, open the generated text files in `timing_files`, with names such as `timing_tsouthco_<device>_<speed>_<I0_standard>.txt`.

Related Information

- Command Line Scripting
- ::QUARTUS::STA Tcl Package
### 1.6. AN 775: Generating Initial I/O Timing Data Document Revision History

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.12.08</td>
<td>19.3</td>
<td>• Revised title to reflect content.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added support for Intel Stratix 10 and Intel Agilex FPGAs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added step numbers to flow.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added timing parameter diagrams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated screenshots to reflect latest version.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated links to related documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Applied latest product naming and style conventions.</td>
</tr>
<tr>
<td>2016.10.31</td>
<td>16.1</td>
<td>• First public release.</td>
</tr>
</tbody>
</table>