Introduction

The Serial Digital Interface (SDI) reference design shows how you can transmit and receive video data using the Altera® SDI MegaCore® function, with the Stratix® V GX FPGA development kit or the Arria® V GX starter kit. This reference design uses two instances of the SDI MegaCore function. The triple standard SDI MegaCore function comprises of a standard definition (SD-SDI), a high definition (HD-SDI), and a 3 gigabits per second (3G-SDI) standard.

This application note describes how to use the serial digital interface with the Stratix V GX FPGA development kit and the Arria V GX starter kit for different variants.

For more information about the Stratix V GX FPGA development kit, refer to the Stratix V GX FPGA Development Board Reference Manual. For more information about the Arria V GX starter kit, refer to the Arria V GX Starter Board Reference Manual. For more information about the SDI HSMC, refer to the SDI HSMC Reference Manual. For more information about the SDI MegaCore function, refer to the SDI MegaCore Function User Guide or contact your Altera representative.
Functional Description

The reference design provides a general platform to control, test, and monitor different speeds of the SDI operations. Figure 1 shows a high-level block diagram of the SDI reference design.

Figure 1. Block Diagram

The following sections describe the various elements in Figure 1.

Triple-Standard Transmitter

The triple-standard SDI transmitter MegaCore function outputs a 2.970-Gbps 1080p, 1.485-Gbps 1080i, or 270-Mbps data stream. The transmitter takes its input from the pattern generator.

Triple-Standard Loopback

The triple-standard SDI MegaCore function provides HD-SDI, and SD-SDI, and demonstrates receiver-to-transmitter loopback. The transceiver decodes, buffers, recodes, and transmits the received data.

The interface supports 2.970-Gbps, 1.485-Gbps, or 270-Mbps loopback FIFO buffer. The FIFO buffer connects the decoded receiver data to the transmitter input.
The SDI MegaCore function writes the receiver data to the FIFO buffer when the receiver is in the lock position. When the FIFO buffer is half full, the transmitter starts to read, encode, and transmit the data.

Pattern Generator

The pattern generator IP core outputs a 2.970-Gbps 1080p, 1.485-Gbps 1080i or 270-Mbps test pattern. This test pattern can be a 100% color bar, a 75% amplitude color bar, or an SDI pathological checkfield frame.

Transceiver Reconfiguration Control Logic

The transceiver reconfiguration control logic reconfigures the receiver part of the design’s duplex core, and the separate receiver in the design. The reconfiguration control logic contains a state machine to change the transceiver setting using MIF-based reconfiguration method.

For more information about the transceivers, refer to the Transceiver Reconfiguration Controller section in the *Altera Transceiver PHY IP Core User Guide*.

Transceiver Reconfiguration Controller

The dynamic partial reconfigurable I/O (DPRIO) requires the transceiver reconfiguration controller IP instance block. You can also use this block to reprogram the custom PHY transceivers.

Clock Input Differential SMA Connectors

The 148.5-MHz clock source from the HSMC feeds to `rx_serial_refclk` and `tx_serial_refclk` signals through external SMA cables because of hardware limitation in the development board. The SMA cables connect the SDI clock output from the HSMC to the clock input differential. Apply an external clock source from the clock input differential SMA connectors to the receiver instance in this design.

*Alt*era recommends you to use the dedicated clock pin to feed the reference clock.

User Control Logic

The user control logic receives the CDR receiver clock, `rx_clk`, from the SDI receiver only and the SDI duplex instances, and then sends the receiver clock with the control bits to the VCXO device.

Voltage Controlled Crystal Oscillator (VCXO)

The VCXO device is a phase-locked loop (PLL) based synchronous clock generator (ICS810001) that is located on the SDI HSMC daughter card. This device contains two internal frequency multiplication stages that are cascaded in series.
The first stage is a VCXO PLL that is optimized to provide reference clock jitter attenuation and to support the complex PLL multiplication ratios needed for video rate conversion. The second stage is a FemtoClock™ frequency multiplier that provides the low jitter, high frequency video output clock. The 148.5-MHz VCXO output clock is connected to the `rx_serial_ref_clk` and `tx_serial_ref_clk` clocks of the two SDI instances.

Figure 2 shows the block diagram for duplex loopback FIFO and the VXCO connection.

Figure 2. Duplex Loopback FIFO and VXCO Connection

Getting Started

This section discusses the requirements and how to run the reference design.

Hardware and Software Requirements

The demonstration requires the following hardware and software:

- Stratix V GX FPGA development kit or Arria V GX starter kit
- SDI HSMC
- Quartus® II software, version 12.0 SP1
- Two SMA cables

To obtain a Stratix V GX FPGA development kit or an Arria V GX starter kit, contact your local Altera representative.
Hardware Setup

Figure 3 and Figure 4 show how the Stratix V GX FPGA development board and the Arria V GX starter kit are connected to the SDI HSMC.

Figure 3. Stratix V GX FPGA Development Board with SDI HSMC
Table 1 describes the LED functions on the Stratix V GX development and Arria V GX starter kits.

Table 1. Functions of User LEDs (Part 1 of 2)

<table>
<thead>
<tr>
<th>LED</th>
<th>Stratix V GX</th>
<th>Arria V GX</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>Internal pattern generator signal standard</td>
<td>SW3.4 = “OFF”</td>
</tr>
<tr>
<td>D8</td>
<td>[D7, D8]: 00=SD, 01=HD, 11=3G</td>
<td>—</td>
</tr>
<tr>
<td>D9</td>
<td>Clock out from transmitter (SDI TX)</td>
<td>—</td>
</tr>
<tr>
<td>D10</td>
<td>Clock out from receiver (SDI duplex)</td>
<td>—</td>
</tr>
<tr>
<td>D18</td>
<td>SDI IN 1 received signal standard</td>
<td>—</td>
</tr>
<tr>
<td>D19</td>
<td>[D18, D19]: 00=SD, 01=HD, 11=3G</td>
<td>—</td>
</tr>
<tr>
<td>D20</td>
<td>SDI IN 1 TRS Lock</td>
<td>Internal pattern generator signal standard</td>
</tr>
<tr>
<td>D21</td>
<td>SDI IN 1 Frame Lock</td>
<td>[D7, D8]: 00=SD, 01=HD, 11=3G</td>
</tr>
</tbody>
</table>

Figure 4. Arria V GX FPGA Starter Kit with SDI HSMC
Table 2 describes the function of each board specific bi-color LED on the SDI HSMC.

Table 2. Board Specific Bi-Color LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
</table>
| D1 | SDI IN 2 receiving SDI signal in the following standards:
 - Green = 3G
 - Orange = HD
 - Red = SD |
| D3 | SDI OUT 2 transmitting SDI signal in the following standards:
 - Green = 3G
 - Orange = HD
 - Red = SD |
| D5 | SDI OUT 1 transmitting SDI signal in the following standards:
 - Green = 3G
 - Orange = HD
 - Red = SD |
| D6 | SDI IN 1 receiving SDI signal in the following standards:
 - Green = 3G
 - Orange = HD
 - Red = SD |

Table 3 describes the function of each user-defined DIP switch control.

Table 3. User DIP Switch Description (Part 1 of 2)

<table>
<thead>
<tr>
<th>USER_DIP</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | 1 = Select pathological SDI checkfield pattern
 0 = Color bar |
| 2 | — |
| 1 | — |
| 4 | — |
| 5 | — |
| 6 | — |
| 7 | — |

Refer to Table 1.
Table 4 describes the function of each push button.

Table 4. Reset Buttons

<table>
<thead>
<tr>
<th>Push Button</th>
<th>Description</th>
<th>Stratix V GX</th>
<th>Arria V GX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB0</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB1</td>
<td></td>
<td>1 = 100% color bar</td>
<td>0 = 75% color bar</td>
</tr>
<tr>
<td>PB2</td>
<td></td>
<td>1 = 100% color bar</td>
<td>0 = 75% color bar</td>
</tr>
</tbody>
</table>

Running the Reference Design

To run the reference design follow these steps:

1. Set up the board connections.
 a. Connect the SDI HSMC to the FPGA development board.
 b. Specify the following board settings located on the back of the FPGA development board:
 - DIP switch bank
 - JTAG Chain Header Switch Controls
 c. Match the board settings to the settings in Table 5 and Table 6.
 d. Connect the FPGA development board to the power supply.
2. Download one of the following design examples, and save in your local:
 - s5gxsdii.qar (Stratix V GX)
 - a5gxsdii.qar (Arria V GX)
3. Launch the Quartus II software and click s5gxsdii.qar or a5gxsdii.qar.
Table 5. DIP Switch Control Settings

<table>
<thead>
<tr>
<th>Switch</th>
<th>Schematic Signal Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW3 for Stratix V GX FPGA Development Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | CLK_SEL | ON: SMA input clock select
| | | OFF: Programmable oscillator input clock select
| | | (default 100MHz) | ON |
| 2 | CLK_ENABLE | ON: On-Board oscillator enabled
| | | OFF: O-Board oscillator disabled | ON |
| 3 | FACTORY_LOAD | ON: Load user 1 design from flash at power up
| | | OFF: Load factory design from flash at power up | ON |
| 4 | SECURITY_MODE | ON: Do not send FACTORY command at power-up
| | | OFF: Send FACTORY command at power-up | ON |
| SW2 for Arria V GX Starter Kit |
| 1 | CLK_SEL | ON: Select SMA input clock
| | | OFF: Disable x1 presence detect | ON |
| 2 | CLK_ENABLE | ON: Disable On-board oscillator
| | | OFF: Enable On-board oscillator | OFF |
| 3 | FACTORY_LOAD | ON: Load the user design from flash at power up
| | | OFF: Load the factory design from flash for Arria V GX at power up | OFF |
| 4 | SECURITY_MODE | Reserve for future use | OFF |

Table 6. JTAG Control DIP Switch Settings (Part 1 of 2)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Schematic Signal Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW3 for Stratix V GX FPGA Development Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | 5M2210_JTAG_EN | ON: Bypass MAX V CPLD System Controller
| | | OFF: MAX V CPLD System Controller in-chain | OFF |
| 2 | HSMA_JTAG_EN | ON: Bypass HSMC port A
| | | OFF: HSMC port A in-chain | OFF |
| 3 | HSMB_JTAG_EN | ON: Bypass HSMC port B
| | | OFF: HSMC port B in-chain | ON |
| 4 | PCIE_JTAG_EN | ON: On-Board USB-Blaster II or external USB-Blaster is the chain master
| | | OFF: PCI Express edge connector is the chain master | ON |
| SW2 for Arria V GX Starter Kit |
| 1 | 5M2210_JTAG_EN | ON: Bypass MAX V CPLD 5M2210 System Controller
| | | OFF: MAX V CPLD 5M2210 System Controller in-chain | OFF |
4. Compile the reference design.
 a. On the File menu, click **Open Project**, navigate to `<directory>/s5gxsdi.qpf` or `<directory>/a5gxsdi.qpf`, and click **Open**.
 b. On the Processing menu, click **Start Compilation**.
5. Download the Quartus II-generated SRAM Object File (.sof), `<directory>/s5gxsdi.sof` or `<directory>/a5gxsdi.sof`.
 a. Connect the USB cable to the board’s USB connector.
 b. On the Tools menu, click **Programmer** to download `<directory>/s5gxsdi.sof` or `<directory>/a5gxsdi.sof` to the board. The software automatically detects the file during compilation and it appears on the pop-up window.
 c. Click **Start** to download the file to the board. If the file does not appear in the pop-up window, click **Add File**, navigate to `<directory>/s5gxsdi.sof` or `<directory>/a5gxsdi.sof`, and click **Open**.

 Reload each time after powering on the board because this design is volatile.

After setting up the board, run the different variants in the following sections.

Table 6. JTAG Control DIP Switch Settings (Part 2 of 2)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Schematic Signal Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
</table>
| 2 | HSMA_JTAG_EN | ON: Bypass HSMA
OFF: HSMA in-chain | ON |
| 3 | PCIe_JTAG_EN | ON: Bypass PCI Express edge connector
OFF: PCI Express edge connector in-chain | ON |
| 4 | NC | Not used | ON |
Test Pattern Transmitter

To run the test pattern demonstration follow these steps:

1. Connect an SDI signal analyzer to the transmitter output of **SDI OUT2 (BNC J1)**. The LEDs indicate the following conditions:
 - LEDs D7, D8 (Stratix V GX) or D20, D21 (Arria V GX) indicate the internal pattern generator signal standard, which transmits through port 2 in the transmitter. Refer to Figure 5.
 - LED D5, on the SDI HSMC, illuminates to indicate the transmitter signal standard at port 1.

2. Check the result on the SDI signal analyzer.

Receiver

To run the receiver demonstration, follow these steps:

1. Connect an SDI signal generator to the receiver input of **SDI IN1 (BNC J9)** in Figure 6.

2. The receiver demonstration runs. The LEDs indicate the following conditions:
 - LEDs D18, D19 (Stratix V GX) or D20, D21 (Arria V GX) indicate the receiver signal standard.
 - LED D20 (Stratix V GX) or D22 (Arria V GX) illuminates when the received line format is stable at port 1.
 - LED D21 (Stratix V GX) or D23 (Arria V GX) illuminates when the receiver frame format is stable at port 1.
Additionally, LED D6 on the SDI HSMC illuminates when the receiver signal standard is detected at port 1.

Serial Loopback

To run the serial loopback demonstration, follow these steps:

1. Connect transmitter output SDI OUT2 (BNC J1) to receiver input SDI IN1 (BNC J9).
2. The serial loopback demonstration runs. The LEDs indicate the following conditions:
 - LEDs D7, D8 (Stratix V GX) or D20, D21 (Arria V GX) indicate the internal pattern generator signal standard, which transmits through port 2 in the transmitter.
 - LEDs D18, D19 (Stratix V GX) or D20, D21 (Arria V GX) indicate the receiver signal standard.
 - LED D20 (Stratix V GX) or D22 (Arria V GX) illuminates when the received line format is stable at port 1.
 - LED D21 (Stratix V GX) or D23 (Arria V GX) illuminates when the receiver frame format is stable at port 1.

Figure 7. Condition of LEDs for Serial Loopback Demonstration

Additionally, the LEDs on the SDI HSMC indicate the following conditions:
- LED D5 illuminates when the transmitter signal standard is at port 1.
- LED D6 illuminates when the receiver signal standard is at port 1.

Parallel Loopback

To run the parallel loopback demonstration, perform the following steps:

1. Connect an SDI signal generator to the receiver input of SDI IN1 (BNC J9).
2. Connect an SDI signal analyzer to the transmitter output of SDI OUT1 (BNC J8).
3. The parallel loopback demonstration runs. The LEDs indicate the following conditions:
 - LEDs D18, D19 (Stratix V GX) or D20, D21 (Arria V GX) indicate the receiver signal standard.
 - LED D20 (Stratix V GX) or D22 (Arria V GX) illuminates when the received line format is stable at port 1.
- LED D21 (Stratix V GX) or D23 (Arria V GX) illuminates when the receiver frame format is stable at port 1.

Figure 8. Condition of LEDs for Parallel Loopback Demonstration

Additionally, the LEDs on the SDI HSMC indicate the following conditions:
- LED D6 illuminates when the receiver signal standard is at port 1.
- LED D3 illuminates when the transmitter signal standard is at port 1.
Table 7 shows the revision history for this application note.

Table 7. Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Change Made</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2012</td>
<td>1.0</td>
<td>Initial release</td>
</tr>
</tbody>
</table>