The ability to change the behavior and characteristic of a transceiver in real time provides enormous benefits to the overall operation of any digital system. The benefits of reconfiguration include the ability to adapt to changing electrical parameters, data rate requirements, and protocol requirements. The Stratix® V Reconfiguration Controller provides an easy-to-use interface that allows you to dynamically modify specific functionality of a Stratix V transceiver.

This application note describes the steps required to perform a transceiver reconfiguration using the Reconfiguration Controller. The following examples of reconfiguration are shown in this document:

- Changing the transmitter PMA settings
- Changing the transceiver data rate by selecting between two instantiated transmitter PLLs
- Changing the transceiver data rate by streaming a Memory Initialization File (.mif)

This application note is accompanied by a sample design that demonstrates the easy and efficient method by which the Reconfiguration Controller can dynamically change the functionality of a Stratix V PHY IP. Using either the built-in System Console tool or any other embedded controller, you can issue simple commands to the Reconfiguration Controller that allow any system to dynamically adapt to changing system requirements.

The sample design is created with the Quartus® II software version 12.0.

Design Overview

A sample design is used to demonstrate the functionality of the Reconfiguration Controller. It consists of the following modules:

- Data generators and verifiers
- Qsys system
- Stratix V Low Latency Transceiver
- Stratix V Reconfiguration Controller
- ROM containing the .mif for reconfiguration
Figure 1 shows a system level diagram of the reconfiguration sample design and how the different parts interface with each other.

Figure 1. System Diagram

Creating the Data Generators and Verifiers

The sample design contains data generators and verifiers. The data generator is capable of generating PRBS7, PRBS15, counter, and fixed value (40'hF0F0F0F0F0) data patterns. The data verifiers are used to verify the PRBS7 and PRBS15 data received by the design.

The data generators and verifiers are defined in the data_generator_verifier.v file located in the original_design/source/ directory.

Creating the Qsys System

The reconfiguration sample design uses a simple Qsys system that consists of three components: the JTAG to Avalon Master Bridge, the External Slave Interface, and the PIO core. The Qsys system connects the three slave components together: the data generator and verifier, the Low Latency PHY IP core, and the Reconfiguration Controller.

To examine the Qsys system, perform the following steps:

1. Launch the Quartus II software
2. On the File menu, click Open
3. Browse and select the console_interface.qsys file located in the original_design/source/ directory
4. Click Open

All design files mentioned in this application note are located in the appropriate source directory in the sv_reconfiguration_design_example.zip file.
After clicking Open, the Qsys tool launches and shows all the components used in the design. The following components make up the Qsys system:

- The JTAG to Avalon Master Bridge component acts as the master in the design. It is the main communication channel between the System Console tool and the slaves in the design. The System Console tool issues Avalon® reads and writes to the Reconfiguration Controller to carry out reconfiguration of the PHY IP.

- The External Slave Interface component exports all required Avalon signals to the top-level design. With the Avalon signals exported, the Qsys system can interface with any Avalon-compliant component that resides outside the Qsys component library.

- The sample design uses two Avalon compliant components: the Low Latency PHY IP core and the Reconfiguration Controller. Two External Slave Interface components are therefore required. The two External Slave Interface components connect to the JTAG to Avalon Master Bridge.

- The PIO component monitors and drives individual status and control bits in the system. The PIO connects to the JTAG to Avalon Master Bridge.

The Stratix V PHY IP components are not supported in the Qsys tool in the Quartus II software version 12.0. To interface with a Stratix PHY IP in a Qsys system, you must use an external slave interface.

Figure 2 shows the component map of the Qsys system.

Table 1 lists the memory map for the Qsys system.

Table 1. Qsys Memory Map (Part 1 of 2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Component Name</th>
<th>Base Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phy0</td>
<td>External Slave Interface</td>
<td>0x000</td>
<td>Exports Avalon signals to interface with the Low Latency PHY IP core</td>
</tr>
<tr>
<td>reconfig</td>
<td>External Slave Interface</td>
<td>0x800</td>
<td>Exports Avalon signals to interface with the Reconfiguration Controller</td>
</tr>
</tbody>
</table>
Creating the Low Latency PHY IP Core

The sample design uses the Low Latency PHY IP core as a single duplex transceiver channel. The Low Latency PHY IP core uses two transmit PLLs. The first transmit PLL, TX PLL 0, is configured to run at a data rate of 1250 Mbps and the second transmit PLL, TX PLL 1, is configured to run at a data rate of 2457.6 Mbps. With the Reconfiguration Controller connected, you can selectively determine which transmit PLL or data rate is used.

For more information about the Low Latency PHY IP core, refer to the *Low Latency PHY IP Core* chapter in the *Altera Transceiver PHY IP Core User Guide*.

To set the parameters required by the Low Latency PHY IP core to switch between the two PLLs, perform the following steps:

1. Launch the Quartus II software
2. On the Tools menu, click MegaWizard Plug-In Manager
3. Click Edit an existing custom megafunction variation
4. Click Next
5. Select the `my_low_latency_phy.v` file located in the *original_design/source* directory

For more information about the Qsys and Qsys components, refer to the Qsys System Integration Tool Support web page.
6. Click **Next**

When the Low Latency PHY IP core opens in the MegaWizard™ Plug-In Manager, the **General** tab appears first. This tab contains the general settings for the Low Latency PHY IP core.

The initial data rate set for the design is 1250 Mbps and uses an input reference clock frequency of 625 MHz. **Figure 3** shows the **General** tab of the Low Latency PHY IP core.

Figure 3. Low Latency PHY IP Core Generate Tab

Table 2 lists the parameters in the **General** tab for the Low Latency PHY IP core and their settings.

Table 2. Low Latency PHY IP Core General Tab Parameters (Part 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data path type</td>
<td>Standard</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Duplex</td>
</tr>
<tr>
<td>Number of lanes</td>
<td>1</td>
</tr>
<tr>
<td>Enable lane bonding</td>
<td>Disabled</td>
</tr>
<tr>
<td>FPGA fabric transceiver interface width</td>
<td>40</td>
</tr>
<tr>
<td>PCS-PMA interface width</td>
<td>20</td>
</tr>
<tr>
<td>PLL type</td>
<td>CMU</td>
</tr>
</tbody>
</table>
7. Click the Additional Options tab in MegaWizard Plug-In Manager

The Additional Options tab contains optional ports and features that can be enabled. In this sample design, no options are set in the Additional Options tab. Figure 4 shows the Additional Options tab of the Low Latency PHY IP core.

Table 3 lists the parameters in the Additional Options tab and their settings for the Low Latency PHY IP core.

8. Click the Reconfiguration tab in the MegaWizard Plug-In Manager

The Reconfiguration tab contains all the reconfiguration features in the Low Latency PHY IP core. In order to change the data rate, this design needs to specify two transmit PLLs. The first transmit PLL is used for the initial data rate of 1250 Mbps. The second transmit PLL is used for the final data rate of 2457.6 Mbps. Also, each transmit PLL uses different reference clocks. Figure 5 shows the Reconfiguration tab of the Low Latency PHY IP core.
Table 4 lists the parameters in the PLL Reconfiguration section of the Reconfiguration tab and their settings.

Table 4. Low Latency PHY IP Core Reconfiguration Tab Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow PLL Reconfiguration</td>
<td>Enabled</td>
</tr>
<tr>
<td>Number of TX PLLs</td>
<td>2</td>
</tr>
<tr>
<td>Number of input clocks</td>
<td>2</td>
</tr>
<tr>
<td>Main TX PLL logical index</td>
<td>0</td>
</tr>
<tr>
<td>CDR PLL input clock source</td>
<td>0</td>
</tr>
</tbody>
</table>

The parameters in the TX PLL 0 section are not editable because the main TX PLL logical index is set to 0. The parameters for TX PLL 0 are derived from the General tab. In this case, the data rate is set to 1250 Mbps with a reference clock of 625 MHz. The only parameter that can be modified is **Selected input clock source**, which in the sample design is set to 0. Table 5 lists the parameters for the TX PLL 0 section and their settings.

Table 5. TX PLL 0 Parameters (Part 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL type</td>
<td>CMU</td>
</tr>
<tr>
<td>Base data rate</td>
<td>1250 Mbps</td>
</tr>
</tbody>
</table>

Figure 5. Low Latency PHY IP Core Reconfiguration Tab
The parameters in the TX PLL 1 section specify the values for the second transmit PLL. For this design, the transmit PLL generates a data rate of 2457.6 Mbps with a reference clock frequency of 614.4 MHz. The reference clock used is different from the one used for transmit PLL 0. To specify a different reference clock, the Selected input clock source parameter is set to 1. Table 6 lists the parameters for the TX PLL 1 section and their settings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL type</td>
<td>CMU</td>
</tr>
<tr>
<td>Base data rate</td>
<td>2457.6 Mbps</td>
</tr>
<tr>
<td>Input clock frequency</td>
<td>614.4 MHz</td>
</tr>
<tr>
<td>Selected input clock source</td>
<td>1</td>
</tr>
</tbody>
</table>

After all parameters have been specified, you can generate the Low Latency PHY IP core.

9. Click Finish in the MegaWizard Plug-In Manager

Creating the Reconfiguration Controller

The Reconfiguration Controller is used to control the dynamic reconfiguration of all Stratix V PHY IPs.

To set up the Reconfiguration Controller to dynamically control the PMA settings, change the PLL section, and stream a .mif, perform the following steps:

1. Launch the Quartus II software
2. On the Tools menu, click MegaWizard Plug-In Manager
3. Click Edit an existing custom Megafuction variation
4. Click Next
5. Browse and select the my_reconfig.v file located in the original_design/source directory
The Low Latency PHY IP core created in “Creating the Low Latency PHY IP Core” on page 4 requires three reconfiguration interfaces. Because the Low Latency PHY IP core uses a single channel, you do not need to specify a value in the optional grouping field. Figure 6 shows the Reconfiguration Controller.

Figure 6. Reconfiguration Controller

Table 7 lists the parameters in the Interface Bundles section of the Transceiver Reconfiguration Controller.

Table 7. Interface Bundles Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reconfiguration interfaces</td>
<td>3</td>
</tr>
<tr>
<td>Optional interface grouping</td>
<td>—</td>
</tr>
</tbody>
</table>
The Transceiver Calibration functions section specifies the blocks that can be enabled to improve the signal quality of the transceiver. The design does not require any of the calibration functions; therefore, they are all disabled. Table 8 lists the parameters in the Transceiver Calibration functions section.

Table 8. Transceiver Calibration Functions Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable duty cycle calibration</td>
<td>Disabled</td>
</tr>
<tr>
<td>Enable auxiliary transmit (ATX) PLL calibration</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

The Analog Features section specifies the features that can be enabled to tune and monitor the analog blocks of the transceiver. To change the analog settings of the PMA, turn on the transceiver Enable Analog controls feature. The other analog features are not used and can be disabled. Table 9 lists the parameters in the Analog Features section.

Table 9. Analog Features Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Analog controls</td>
<td>Enabled</td>
</tr>
<tr>
<td>Enable EyeQ block</td>
<td>Disabled</td>
</tr>
<tr>
<td>Enable decision feedback equalizer (DFE) block</td>
<td>Disabled</td>
</tr>
<tr>
<td>Enable adaptive equalization (AEQ) block</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

The design changes the PLL that drives the transceiver so the Channel/PLL reconfiguration feature must be enabled. Table 10 lists the parameters in the Reconfiguration Features section.

Table 10. Reconfiguration Features Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable channel/PLL reconfiguration</td>
<td>Enabled</td>
</tr>
<tr>
<td>Enable PLL reconfiguration support block</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

When all parameters have been specified, you can generate the Reconfiguration Controller.

6. Click Finish in the MegaWizard Plug-In Manager

Creating a ROM that Contains the .mif for Reconfiguration

There are two methods for performing dynamic reconfiguration of the Low Latency PHY IP core:

- A register-based reconfiguration is carried out by writing to a specific set of memory-mapped registers in the Reconfiguration Controller. For example, to modify the transmitter’s VOD setting, you must write to a specific set of memory-mapped registers in the Reconfiguration Controller.

- A streamer-based reconfiguration is carried out by streaming a .mif, which contains the reconfiguration data, to the Reconfiguration Controller.
Altera recommends that you have two separate designs when generating a .mif for reconfiguration:

- The first design or the original design is the functional design that generates the programming file for the Stratix V device.
- The second design or .mif design contains the PHY IP settings for reconfiguration. The .mif design is used only to generate the .mif for the original design. The following steps describe how to generate the .mif design used in the sample design.

Use two different directories to compile the original design and the .mif design. This precaution prevents inadvertently deleting or modifying a design file.

The .mif design is the original design with different settings specified for the Low Latency PHY IP core. In the original design, the initial data rate is set to 1250 Mbps. After .mif reconfiguration, the data rate is 2457.6 Mbps. This change is accomplished by changing the Low Latency PHY IP core settings. Only the settings contained in the General and Reconfiguration tabs must be changed. Perform the following steps to change the Reconfiguration Controller:

1. Launch the Quartus II software
2. On the Tools menu, click MegaWizard Plug-In Manager
3. Click Edit an existing custom Megafunction variation
4. Click Next
5. Browse and select the my_low_latency_phy.v file located in the mif_design/source directory

The initial data rate for the .mif design must be set to 2457.6 Mbps with an input reference clock frequency of 614.4 MHz. For this design, the original design and the .mif design use different reference clock frequencies. Table 11 lists the .mif design parameter values set in the General tab of the Low Latency PHY IP core.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original Design Value</th>
<th>.mif Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data path type</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Duplex</td>
<td>Duplex</td>
</tr>
<tr>
<td>Number of lanes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Enable lane bonding</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>FPGA fabric transceiver interface width</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>PCS-PMA interface width</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>PLL type</td>
<td>CMU</td>
<td>CMU</td>
</tr>
<tr>
<td>Data rate</td>
<td>1250 Mbps</td>
<td>2457.6 Mbps</td>
</tr>
<tr>
<td>Base date rate</td>
<td>1250 Mbps</td>
<td>2457.6 Mbps</td>
</tr>
<tr>
<td>Input clock frequency</td>
<td>625.0 MHz</td>
<td>614.4 MHz</td>
</tr>
</tbody>
</table>
6. Click the **Reconfiguration** tab in the MegaWizard Plug-In Manager

Parameters under the **Reconfiguration** tab must be changed to specify the new initial data rate of 2457.6 Mbps. Table 12 lists the parameters set in the PLL Reconfiguration section of **Reconfiguration** tab.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original Design Value</th>
<th>.mif Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow PLL reconfiguration</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Number of TX PLLs</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of input clocks</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Main TX PLL logical index</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CDR PLL input clock source</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Setting the **Main TX PLL logical index** parameter to 1 keeps the same PLL settings as the original design.

The parameters in the TX PLL 0 section are changed to match the TX PLL 0 from the original design. Table 13 lists the parameters for the TX PLL 0 section.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original Design Value</th>
<th>.mif Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL type</td>
<td>CMU</td>
<td>CMU</td>
</tr>
<tr>
<td>Base date rate</td>
<td>1250 Mbps</td>
<td>1250 Mbps</td>
</tr>
<tr>
<td>Input clock frequency</td>
<td>625.0 MHz</td>
<td>625.0 MHz</td>
</tr>
<tr>
<td>Selected input clock source</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

You cannot edit the parameters in the TX PLL 1 section because the **Main TX PLL logical index** is set to 1, so the parameter values set under the **General** tab are used. Table 14 lists the parameters for the TX PLL 1 section.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original Design Value</th>
<th>.mif Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL type</td>
<td>CMU</td>
<td>CMU</td>
</tr>
<tr>
<td>Base date rate</td>
<td>2457.6 Mbps</td>
<td>2457.6 Mbps</td>
</tr>
<tr>
<td>Input clock frequency</td>
<td>614.4 MHz</td>
<td>614.4 MHz</td>
</tr>
<tr>
<td>Selected input clock source</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

7. After all parameters have been specified, you can generate the Low Latency PHY IP core for the .mif design
Compiling the Design

This section describes the compilation process to generate a programming file, such as a SOF, for the Stratix V device. Two designs currently exist: the original design and the .mif design.

The .mif design is compiled first because the .mif generated is used by the original design to configure from one data rate to another. Perform the following steps to compile the design:

1. Open the .mif project in the Quartus II software
2. On the Processing menu, click Start Compilation

After a successful compilation, a reconfig_mif directory is created in the .mif design’s project directory. The my_low_latency_phy_inst_channel.mif file is used in the original design compilation.

For more information about the various .mif files contained in the reconfig_mif directory, refer to the Altera Transceiver PHY IP Core User Guide.

The original design is compiled after the .mif design. However, before the original design is compiled, you must specify the .mif created by the .mif design. The module mif_rom is used to store the .mif. To specify the .mif, perform the following steps:

1. Open the original project in the Quartus II software.
2. On the Tools menu, click MegaWizard Plug-In Manager.
3. From the MegaWizard Plug-In Manager, browse to the original_design/source directory and select mif_rom.v.
4. All parameters are the same except that you must specify the .mif. Specify the mif_design/reconfig_mif/my_low_latency_phy_inst_channel.mif file by browsing to the .mif.
5. Click Finish to generate the new mif_rom module.

After the .mif has been specified, the original design is ready for compilation. To compile the design, perform the following steps:

1. Open the original project in the Quartus II software
2. On the Processing menu, click Start Compilation

After a successful compilation, a top.sof file exists in the original design directory. This SOF is used to program the Stratix V device.
Performing Reconfiguration

With the Avalon to JTAG Master Bridge, reconfiguration commands are directly streamed to the Reconfiguration Controller through the JTAG port. Use the System Console tool to issue commands that initiate a dynamic reconfiguration of the Low Latency PHY IP core. This section describes how to use the System Console tool to perform reconfiguration.

For more information about the System Console tool, refer to the *Analyzing and Debugging Designs with the System Console* chapter in volume 3 of the *Quartus II Handbook*.

Program the Stratix V device with the SOF generated in the “Compiling the Design” section before launching the System Console.

Before any reconfiguration can take place, you must first launch the System Console tool. To launch the System Console, perform the following steps:

1. Program the Stratix V Device with the SOF generated from the original design
2. Launch the Quartus II software
3. From the Quartus II software, on the Tools menu, click *Qsys*
4. From the Qsys tool, on the Tools menu, click *System Console*

From the System Console tool, type the following commands in the Tcl console:

```tcl
set master_path [ lindex [ get_service_paths master ] 0 ]
open_service master $master_path
```

These commands allow the System Console tool to claim a service master. The service master allows the System Console to communicate directly with the Avalon to JTAG Bridge Master, which in turn communicates with the Reconfiguration Controller.

After the service has been claimed, reconfiguration commands can be issued with the System Console. The following sections describe the steps necessary to carry out a reconfiguration.

For more information about the specific address map associated with the Reconfiguration Controller, refer to the *Transceiver Reconfiguration Controller* chapter in the *Altera Transceiver PHY IP Core User Guide*.

Changing the Transceiver PMA Settings

This section describes the necessary steps to modify the analog settings within the transceiver’s PMA block.

To change the PMA settings for the Low Latency PHY IP core, write to the PMA Analog Controls memory-mapped registers in the Reconfiguration Controller.

For a description of all available addresses, refer to the “PMA Analog Controls” section of the *Transceiver Reconfiguration Controller* chapter in the *Altera Transceiver PHY IP Core User Guide*.
To set the VOD setting to 40 on channel 0, perform the following steps:

1. Set the reconfiguration controller base address as specified in the Qsys system:

   ```
   set base 0x800
   ```

2. Add a delay between writes:

   ```
   after 100
   ```

3. Set the logical channel to 0:

   ```
   master_write_32 $master_path [expr $base + 0x8*4] 0x0
   ```

4. Add a delay between writes:

   ```
   after 100
   ```

5. Set the offset value to VOD:

   ```
   master_write_32 $master_path [expr $base + 0xB*4] 0x0
   ```

6. Add a delay between writes:

   ```
   after 100
   ```

7. Set the data register to 40:

   ```
   master_write_32 $master_path [expr $base + 0xC*4] 0x28
   ```

8. Add a delay between writes:

   ```
   after 100
   ```

9. Write all the data:

   ```
   master_write_32 $master_path [expr $base + 0xA*4] 0x1
   ```

After the `reconfig_busy` signal goes low, the VOD on channel 0 is set to a value of 40.

Changing the Transmitter PLL Via Memory-Map Writes

This section describes the steps necessary to change the PLL selection.

To change the PLL selection for the Low Latency PHY IP core, you must write to a specific memory-mapped register in the Reconfiguration Controller.

For a description of all available addresses, refer to the “PLL Reconfiguration” section of the *Transceiver Reconfiguration Controller* chapter in the *Altera Transceiver PHY IP Core User Guide*.

To change the PLL selection with the memory-mapped interface, perform the following steps:

1. Set the reconfiguration controller base address as specified in the Qsys system:

   ```
   set base 0x800
   ```

2. Set the logical channel to 0:

   ```
   master_write_32 $master_path [expr $base + 0x40*4] 0x0
   ```

3. Add a delay between writes:

   ```
   after 100
   ```
4. Set the offset to PLL reference selection:
 `master_write_32 $master_path [expr $base + 0x43*4] 0x1`

5. Add a delay between writes:
 `after 100`

6. Set the data register to logical PLL reference 1:
 `master_write_32 $master_path [expr $base + 0x44*4] 0x1`

7. Add a delay between writes:
 `after 100`

8. Write all the data:
 `master_write_32 $master_path [expr $base + 0x42*4] 0x1`

After the `reconfig_busy` signal goes low, the PLL selection on channel 0 is set to a value of 1.

Streaming a .mif to Perform PLL Reconfiguration

This section describes the steps necessary to change the PLL selection. Unlike the procedure described in the “Changing the Transmitter PLL Via Memory-Map Writes” section, the PLL selection is carried out by streaming a .mif that contains the PLL selection.

For a description of the Streamer module, refer to the “Streamer Module” section of the Transceiver Reconfiguration Controller chapter in the Altera Transceiver PHY IP Core User Guide.

To change the PLL selection by streaming a .mif, perform the following steps:

1. Set the reconfiguration controller base address as specified in the Qsys system:
 `set base 0x800`

2. Set the logical channel to 0:
 `master_write_32 $master_path [expr $base + 0x38*4] 0x0`

3. Add a delay between writes:
 `after 100`

4. Set the Streamer mode to 0:
 `master_write_32 $master_path [expr $base + 0x3A*4] 0x0`

5. Add a delay between writes:
 `after 100`

6. Set the Streamer offset register to the .mif base address 0x0:
 `master_write_32 $master_path [expr $base + 0x3B*4] 0x0`

7. Add a delay between writes:
 `after 100`

8. Set the data register with the .mif base address:
 `master_write_32 $master_path [expr $base + 0x3C*4] 0x0`
9. Add a delay between writes:

 `after 100`

10. Write all the data to the Streamer:

 `master_write_32 $master_path [expr $base + 0x3A*4] 0x1`

11. Add a delay between writes:

 `after 100`

12. Set the Streamer offset for Start .mif stream:

 `master_write_32 $master_path [expr $base + 0x3B*4] 0x1`

13. Add a delay between writes:

 `after 100`

14. Set the data register with 0x1 to setup for streaming:

 `master_write_32 $master_path [expr $base + 0x3C*4] 0x3`

15. Add a delay between writes:

 `after 100`

16. Write all the data to the Streamer to start streaming the .mif:

 `master_write_32 $master_path [expr $base + 0x3A*4] 0x1`

After the `reconfig_busy` signal goes low, the Streamer module is complete and the PLL selection is set to 1 for channel 0.

Document Revision History

Table 15 lists the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2012</td>
<td>1.0</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>