This application note describes the decision feedback equalization (DFE) feature found in the Stratix® IV device equalizer. Use the DFE feature to improve the high frequency signal-to-noise ratio by compensating for inter-symbol interference (ISI). The DFE feature boosts the high frequency components of a signal without noise amplification.

Use the associated reference design at AN612_RefDesign.zip to evaluate and implement the decision feedback equalization feature. The Stratix IV DFE Reference Design User Guide, in the zip folder, describes the step-by-step procedure to use the reference design.

Signals transmitted across a backplane or transmission medium are subjected to filtering and attenuation effects. These effects are a potential source of error for the receiver, primarily in the form of reduced signal-to-noise ratio and ISI. To compensate, Stratix IV transceivers have a programmable equalizer block that you can use to negate or reduce these error sources, ensuring that the receiver can function without error.

The dynamic reconfiguration controller (ALTGX_RECONFIG) provides an Avalon® memory mapped user interface to step through the DFE tap settings. You are responsible for determining the optimal settings by monitoring the BER of the received data at each setting. For any given data rate and data pattern, there may be multiple DFE settings which yield a BER of 0. You can use the EyeQ feature to find the width of the eye for all DFE settings with a BER equal to 0. Then choose the DFE setting which yields the widest eye.

Implementing the DFE Feature

The DFE feature includes three partitions:

- **DFE hardware**—this is the hardened IP that provides the DFE functionality. An instance of the DFE hardware exists on each receive channel, not including the clock multiplier unit (CMU) channels.

- **DFE soft IP**—this block is part of the ALTGX_RECONFIG megafunction which acts as a bridge between you and the DFE hardware. The IP provides an Avalon memory mapped interface that allows you to access a set of indirect registers. These registers allow you to access the DFE hardware (refer to “Enabling the DFE Soft IP” on page 2).

- **DFE user design**—this is the soft IP that provides an interface to the user design to control the DFE hardware. For minimal functionality, a user design would consist of a state machine to control DFE settings and some method of generating and checking an input pattern for the BER.
Full details of the DFE user design is beyond the scope of this application note.

Figure 1 shows a high-level diagram of a full DFE implementation in a Stratix IV device.

Figure 1. Using the DFE Feature in a Stratix IV Device

Enabling the DFE Soft IP

The DFE soft IP is implemented inside the ALTGX_RECONFIG megafunction. Figure 2 shows a block diagram of the ALTGX_RECONFIG hierarchy.

Figure 2. DFE Soft IP Inside the ALTGX_RECONFIG Megafunction
In order to use the DFE soft IP, you must use the MegaWizard™ Plug-In Manager to generate the ALTGX_RECONFIG megafunction. In the MegaWizard Plug-In Manager, select the Decision Feedback Equalization control option (Figure 3). This enables the Avalon interface and the reconfig_mode_sel[3:0] port. When accessing the DFE feature, set the reconfig_mode_sel bits to 4’b1100.

The user design accesses the DFE soft IP within the ALT_RECONFIG block by the control signals provided.

Table 1 lists the input port control signals.

<table>
<thead>
<tr>
<th>Input Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrl_writedata[15:0]</td>
<td>Write data bus as part of the Avalon memory map interface for the DFE feature or eye monitor IP.</td>
</tr>
<tr>
<td>ctrl_read</td>
<td>Start of a read transaction as part of the Avalon memory map interface for the DFE feature or eye monitor IP.</td>
</tr>
<tr>
<td>ctrl_write</td>
<td>Start of a write transaction as part of the Avalon memory map interface for the DFE feature or eye monitor IP.</td>
</tr>
</tbody>
</table>
Table 2 lists the output port control signals.

<table>
<thead>
<tr>
<th>Output Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrl_readdata[15:0]</td>
<td>Read data bus as part of the Avalon memory map interface for the DFE feature or eye monitor IP.</td>
</tr>
<tr>
<td>ctrl_waitrequest</td>
<td>Backpressure signal as part of the Avalon memory map interface for the DFE feature or eye monitor IP. When this signal is asserted, the values on the read, write, readdata, and writedata buses must remain constant.</td>
</tr>
<tr>
<td>Busy</td>
<td>Indicates that the function is completing a control operation. All asserted control signals are ignored when busy is high.</td>
</tr>
</tbody>
</table>

Describing the DFE Soft IP Interface

The user logic accesses the DFE soft IP by setting the `reconfig_mode_sel[3:0]` control bits to `4'b1100`. The `ctrl_*` and `busy` signals are used to access the registers within the DFE soft IP using the Avalon memory mapped interface protocol. Figure 4 shows a read and write transaction with the `ctrl_*` and `busy` signal.

For more information about the Avalon memory mapped interface, refer to the *Avalon Interface Specification*.

Figure 4. Avalon Memory Mapped Read and Write Transaction
DFE Register Memory Map

The Avalon memory map interface allows you access to a set of 16-bit wide registers to access the DFE hardware bits. The DFE soft IP translates the Avalon memory map requests into alt_dprio requests. Table 3 lists the memory map of the DFE registers.

Bits not listed in Table 3 are reserved and considered read-only.

Table 3. DFE Register Map on the Avalon Memory Map Interface

<table>
<thead>
<tr>
<th>Avalon Memory Map Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0×0</td>
<td>Control and status register.</td>
</tr>
<tr>
<td></td>
<td>■ Bit 0: “start” command issues the programmed command to alt_dprio. Writing this bit automatically clears any error bits.</td>
</tr>
<tr>
<td></td>
<td>■ Bit 1: “read/~write” selects whether the command is to be a read or a write operation.</td>
</tr>
<tr>
<td></td>
<td>■ Bit 13: error status. This bit is set to 1'b1 if the programmed channel address is invalid. Writing a 1'b1 to this bit clears the error.</td>
</tr>
<tr>
<td></td>
<td>■ Bit 14: error status. This bit is set to 1'b1 if the programmed word address is invalid. Writing a 1'b1 to this bit clears the error.</td>
</tr>
<tr>
<td></td>
<td>■ Bit 15: busy status. This value can be polled to determine if the dprio request has completed. Note that when this active-high bit is asserted, all registers become read only until this bit is de-asserted.</td>
</tr>
<tr>
<td>0×1</td>
<td>Channel address [15:0]. This specifies the channel to be written to. This must match the logical_channel_address input port.</td>
</tr>
<tr>
<td>0×2</td>
<td>DFE settings register address [15:0]. This specifies the DFE control register to be read or written. For more information about this memory map, refer to “DFE Settings Register Mapping”.</td>
</tr>
<tr>
<td>0×3</td>
<td>Data [15:0]. For writes, you must write this data. For reads, the data contained in the register is only valid when the busy status is low. An indirect register read operation overwrites the current contents of this register.</td>
</tr>
</tbody>
</table>

DFE Settings Register Mapping

Table 4 lists the DFE settings register map. You can indirectly access these registers using the Avalon memory map interface by accessing the DFE register 0×2.

Bits not listed in Table 4 are reserved and considered read only. These bits must be written to 0 on a write.

Table 4. DFE Setting Registers

<table>
<thead>
<tr>
<th>DFE Setting Register Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0×0</td>
<td>■ Bit [0]: DFE second tap polarity (1'b0 = positive; 1'b1 = negative)</td>
</tr>
<tr>
<td></td>
<td>■ Bit [1]: DFE third tap polarity</td>
</tr>
<tr>
<td>0×1</td>
<td>■ Bit [0]: DFE Enable</td>
</tr>
<tr>
<td></td>
<td>■ Bit [3:1]: DFE third tap setting</td>
</tr>
<tr>
<td>0×2</td>
<td>■ Bit [2:0]: DFE first tap setting</td>
</tr>
<tr>
<td></td>
<td>■ Bit [5:3]: DFE second tap setting</td>
</tr>
</tbody>
</table>
Accessing the DFE Setting Register Bits

To access the DFE settings register bits through indirect register mapping, complete the following:

1. Issue an Avalon memory map read to the DFE register 0×0 (control and status register) to check the busy status. A clear status bit indicates an idle status.
2. Issue an Avalon memory map write to the DFE register 0×1 (channel address register) to select the desired channel.
3. Issue an Avalon memory map write to the DFE register 0×2 (DFE settings register address) to select the desired DFE settings register.
4. Issue an Avalon memory map write to the DFE register 0×3 (data register) to provide the data to be written to the target DFE settings register.
5. Issue an Avalon memory map write to the DFE register 0×0 (control and status register) to specify read/write and to issue the start command.
6. Poll the DFE register 0×0 (control and status register) and wait for the busy status to be de-asserted. After the status is no longer busy:
 - For writes, the data is considered to be successfully written.
 - For reads, the contents of the data register have been updated and can be read out.

 All writes which occur when the busy status is asserted are ignored; all registers become read only.

If the next operation is to the same register and same channel, you do not need to repeat steps 2 and 3.

Choosing the DFE Settings

When you are using the DFE feature, the minimum peak-to-peak voltage envelope value at the receiver (after the back plane) must be greater than 500 mV. The pattern you use for calibration must be similar to the actual data expected on the link. You can find the optimal DFE results by trying out the DFE settings according to the DFE setting search algorithm shown in Figure 5. Altera recommends engaging the RX equalization along with the DFE feature. You must use the minimum possible RX equalization setting.
Figure 5. Flow Diagram for Choosing the DFE Setting

1. **Start (with RX equalization = 0)**
 - Set RX equalization
 - Increment RX equalization by 1

2. **Set 1st tap setting**
 - Increment 1st tap setting and note BER
 - Yes
 - BER = 0
 - Completed 1st tap settings
 - No
 - Set 1st tap to setting with the lowest BER
 - Set the 2nd tap setting

3. **Set 1st tap to setting with the lowest BER**
 - Increment 2nd tap setting and note BER
 - No
 - BER = 0
 - Completed 2nd tap settings
 - Yes
 - Completed 2nd tap settings

4. **Set 1st and 2nd tap to setting with the lowest BER**
 - Increment 3rd tap setting and note BER
 - No
 - BER = 0
 - Completed 3rd tap settings
 - Yes
 - Completed 3rd tap settings
 - Increment RX equalization by 1

5. **DFE Done**
 - Increment RX equalization by 1
 - No
 - BER = 0
 - Completed 3rd tap settings
 - Increment RX equalization by 1
 - Yes
 - Increment RX equalization by 1
 - No
 - BER = 0
 - Completed 3rd tap settings
 - Increment RX equalization by 1
 - Yes
 - Increment RX equalization by 1
DFE Tap Settings Time Estimates

If you automate the DFE tap settings search, the time estimated to complete one iteration of the DFE tap settings is shown below. The worst case is assumed where all three tap settings have to be traversed. The data rate used in this calculation is 6.5 Gbps. The BER is checked for 3×10^{12} bits to achieve a BER of 1×10^{-12} with 95% confidence level.

- Time to program one DFE tap setting = 32 μs
- Time to program all DFE tap settings:
 - 1st tap = $32 \times 8 = 256$ μs
 - 2nd tap = $32 \times 16 = 512$ μs (eight settings with polarity inversion = 16)
 - 3rd tap = $32 \times 16 = 512$ μs (eight settings with polarity inversion = 16)
- Time to check BER for one tap setting = 153 ps $\times 3 \times 10^{12}$ = 7.7 minutes
- Time to check BER for 8 + 16 + 16 tap settings = 5.1 hours
- Time to go through one iteration of DFE settings and check BER is approximately 5.1 hours.

This cycle is repeated for each of the RX equalization settings. In the worst case, where all 16 of the RX equalization settings must be tried, it will take approximately 82 hours.

Implementing DFE Block Access

In order to access the DFE block in a Stratix IV GX device, complete the following:

1. Enable the Analog controls option under the Reconfiguration Settings tab of the altgxb instance file. DFE soft IP requires Analog PMA reconfiguration to be enabled in ALTGXB.
2. Generate an alt_reconfig instance with the EyeQ option selected.
3. In the ALT_RECONFIG module, enable the Decision Feedback Equalization control option to add DFE soft IP.
4. Design a BERT in the FPGA core to test the DFE feature.
5. Design the user IP to access the DFE registers.

Appendix A

The following sections further describe the DFE feature.

DFE Principles

The purpose of the linear equalizer is to compensate for the backplane attenuation due to insufficient bandwidth. The DFE feature works by actively shifting the incoming signal based on the history of the received data.
The purpose of the DFE feature is to cancel out the post-cursor caused by ISI. The advantage of the DFE feature is to boost the power of the highest frequency component of the receive data without increasing noise power. You can use the DFE feature in conjunction with the receiver’s linear equalization.

Figure 6 shows the theoretical DFE scheme.

Figure 6. Theoretical DFE Scheme

The following describes the information shown in Figure 6.

- Each Z-1 unit represents 1 UI of delay.
- The signal presented to the sampler at time point T0 is:
 \[V(T_0) = V_{in}(T_0) - C_1 \times D(T-1) - C_2 \times D(T-2) - C_3 \times D(T-3) \]

Where “V_{in}(T_0)” is the output of the equalizer at time point T0 and “D(Tn)” is the quantified signal (data) at time point Tn.

The component “C_1 \times D(T-1)” compensates for the post-cursor of the signal at time point T-1 leaking to the signal at time point T0; the component “C_2 \times D(T-2)” compensates for the post-cursor of signal at time point T-2; and the component “C_3 \times D(T-3)” compensates for the post-cursor of signal at time point T-3.

Theoretically, you would need an infinite number of taps to compensate for all the post-cursor because post-cursor amplitude approaches zero only when n goes to infinity. However, due to the exponential decay nature of post cursor, the first three components contribute 95% of the effect. In this design, 3-tap architecture was chosen. C1, C2, and C3 are the three tap settings.
DFE Gain for the Tap Settings

Each tap has seven settings that are independently controlled. The gain values are accurate for a voltage envelope greater than 500 mV. The inverse polarity for the second and third tap generates a negative gain.

Document Revision History

Table 5 lists the revision history for this application note.

Table 5. Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2015</td>
<td>1.2</td>
<td>Clarified steps 1 and 3 in the “Implementing DFE Block Access” section.</td>
</tr>
<tr>
<td>January 2011</td>
<td>1.1</td>
<td>Added a link to the reference design on page 1.</td>
</tr>
<tr>
<td>December 2010</td>
<td>1.0</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>