
© March 2010 Altera Corporation

© March 2010
Nios II MPU Usage
AN-540-1.0
Introduction
This application note covers the basic features of the Nios® II processor’s optional
memory protection unit (MPU), describing how to use it without the support of an
operating system (OS). When the Nios II MPU is enabled and properly configured, it
monitors all processor data and instruction accesses and triggers exceptions when
illegal accesses are attempted.

This application note includes two design examples, with notes about how the
examples work. These examples walk you through making use of the Nios II
processor's MPU in an environment based on the Altera® hardware abstraction layer
(HAL), without an OS. One of the examples uses the MPU to detect the following
three issues commonly seen when debugging embedded systems:

■ Stack overflow

■ Null pointer

■ Wild pointer

1 Do not confuse the MPU with the Nios II memory management unit (MMU). The
MPU does not provide memory mapping or management.

Requirements
To use this application note effectively, you need to be familiar with the following
topics:

■ The basic purpose and architecture of the Nios II MPU

f For a detailed description of the Nios II MPU, refer to “Memory Protection
Unit” in the Programming Model chapter of the Nios II Processor Reference
Handbook.

■ Creating and configuring Nios II systems with SOPC Builder.

f For information about creating and configuring Nios II systems, refer to
the Nios II Hardware Development Tutorial and to Volume 4: SOPC Builder in
the Quartus II Handbook.

To work with this application note’s design examples and software examples, you
need the following items:

■ The Nios II Embedded Evaluation Kit (NEEK), Cyclone® III Edition

1 The design examples use only on-chip hardware resources. Therefore, it is
easy to port the designs to a different hardware platform if necessary.

■ Quartus® II software version 9.1 or higher.
Nios II MPU Usage

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

Page 2 General Usage
■ Nios II Embedded Design Suite (EDS) version 9.1 or higher.

■ The design example file: an540_91.zip.
Click here to download this .zip file.
Unzip an540_91.zip to a working directory on your computer. We refer to this
directory throughout this application note as <design examples>. Be sure to
preserve the directory structure of the extracted software archive. Extraction
creates a directory structure tree under <design examples> with the following
subdirectories:

■ MPU_Design_limit/software_examples/app/mpu_basic

■ MPU_Design_limit/software_examples/app/mpu_exc_detection

■ MPU_Design_limit/software_examples/bsp/mpu_example_bsp

■ MPU_Design_msk/software_examples/app/mpu_basic

■ MPU_Design_msk/software_examples/app/mpu_exc_detection

■ MPU_Design_msk/software_examples/bsp/mpu_example_bsp

1 The working directory name you choose must not contain any spaces.

1 After extracting an540_91.zip, refer to <design examples>/ReadMe.txt for a list of any
required software patches or other updated information. If a patch is required, install
it according to the instructions in ReadMe.txt.

General Usage
This section describes the process of configuring the Nios II MPU hardware and
writing software to support it.

Adding the MPU Hardware
To add an MPU to your system, you must use a Nios II/f core. In SOPC Builder,
enable the MPU by turning on Include MPU in the Core Nios II tab of the Nios II
MegaWizard™ interface, as shown in Figure 1.
Nios II MPU Usage © March 2010 Altera Corporation

https://www.altera.com/content/dam/altera-www/global/en_US/others/literature/an/an540_91.zip

General Usage Page 3
Use the MMU and MPU Settings tab, as shown in Figure 2, to configure the MPU.

Figure 1. Enabling the MPU in the Nios II/f Processor Core
© March 2010 Altera Corporation Nios II MPU Usage

Page 4 General Usage
Table 1 summarizes the MPU options.

Figure 2. MMU and MPU Settings Tab

Table 1. MPU Configuration Options

Option Allowed Values Default Value

Use Limit for Region Range Off or On Off

Number of Data Regions 2—32 8

Number of Instruction Regions 2—32 8

Minimum Data Region Size 64 bytes—1 MB 4 KB

Minimum Instruction Region Size 64 bytes—1 MB 4 KB
Nios II MPU Usage © March 2010 Altera Corporation

General Usage Page 5
You can configure the MPU to define the size of its memory regions in either of the
following ways:

■ Define region size by specifying an address mask

■ Define region size by specifying the end address

By default, the MPU defines region sizes with an address mask. To define region sizes
with an end address, turn on Use Limit for Region Range. For detailed information
about the two methods of specifying region size, refer to “MPU Register Details” on
page 6.

The minimum region size is crucial to understanding MPU run-time configuration.
The minimum region size, <min_region>, specifies the granularity of the MPU
memory map. The size of any particular memory region must be an integer multiple
of <min_region>.

Most of the MPU parameters controlled by software are based on the minimum
region size. You can specify separate values of <min_region> for data and instruction
regions.

1 For simplicity, this application note’s design examples have <min_region> = 64 for
both data and instruction regions.

Writing Software for the MPU
This section describes the process of writing software to configure and manage the
Nios II MPU.

MPU Programming Guidelines
Software is responsible for enabling and configuring the MPU as well as maintaining
MPU region information. In a single-threaded operating environment (such as the
Altera HAL), use a global data structure to store the MPU region information.

The Nios II MPU must be disabled before software attempts to configure it.

Software normally initializes the MPU after reset. If it is necessary to change MPU
regions or region permissions after reset, software also reinitializes the MPU.

Every region supported by the MPU must be either configured or disabled before
allowing application code to execute. Leaving a region enabled and unconfigured
results in undefined behavior. For details about how to disable an MPU region, refer
to “Defining Regions with mpubase and mpuacc” on page 10.

Depending on the complexity of your software, you might need to define several
MPU configurations, each with a different set of regions or region permissions. This
technique is typically used by an operating system. For details, refer to “Operating
Systems and the MPU”.

Operating Systems and the MPU
Even if you are not using an operating system, it is helpful to understand the
techniques that an OS uses to manage an MPU.
© March 2010 Altera Corporation Nios II MPU Usage

Page 6 General Usage
When an operating system uses an MPU, it typically defines two or more MPU
configurations. One configuration defines the permissions that the MPU applies to
operating system or kernel level accesses. One or more configurations define the
permissions available to user or application processes. The OS might also define
additional configurations for non-user purposes. For example, there might be a
special factory task that can modify system-critical information like product serial
numbers or media access control (MAC) addresses in flash or other nonvolatile
memory. Such a task is likely to need a special set of memory and device permissions.

The operating system disables the MPU, reconfigures it, and then re-enables it
whenever the processor needs to run in a different MPU configuration. For example,
the OS might need to change MPU configurations upon the following types of events:

■ Exception

■ Return from exception

■ Operating system call

■ Return from operating system call

The exact circumstances under which MPU reconfiguration is required depends on
the OS implementation and settings.

MPU Register Details
This section describes the register maps, the meanings of the register fields, and how
the register fields are used.

When you initialize the MPU you use two registers: mpubase and mpuacc.

Register mpubase Usage

Table 2 shows the layout of the mpubase register.

Table 3 gives details of the fields defined in the mpubase register.
.

You specify an MPU region by writing a value representing the region's base address
to the BASE field, a unique index to the INDEX field, and the region type (data or
instruction) to field D.

Table 2. mpubase Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BASE (1) INDEX (2) D

Notes to Table 2:

(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.
(2) This field size is variable. Unused upper bits must be written as zero.

Table 3. mpubase Control Register Field Descriptions

Field Description Access Reset

BASE BASE represents the base memory address of the region identified by the INDEX
and D fields.

Read/Write 0

INDEX INDEX is the region index number. Read/Write 0

D D is the region access bit. When D = 1, INDEX refers to a data region. When D = 0,
INDEX refers to an instruction region.

Read/Write 0
Nios II MPU Usage © March 2010 Altera Corporation

General Usage Page 7
The BASE field represents the region's base address, in the form described by
Equation 1. The BASE field can only represent addresses aligned to an integer
multiple of <min_region>. For example, if the minimum region size is 16 kilobytes
(KB), regions can be located at addresses such as 0x0, 0x4000, 0x8000,

For example, if the region starts at 0x1000 and the minimum region size is 64 bytes, set
the BASE field to 0x40, which is 0x1000/64.

The INDEX field provides a unique identifier for the region. INDEX also specifies the
priority of the region. The lower the index value, the higher the region’s priority.

Use the D field to specify the region type: data or instruction.

Register mpuacc Usage

mpuacc has two possible layouts, depending on the SOPC Builder generation-time
option Use limit for region range, as described in “Adding the MPU Hardware” on
page 2. This option controls whether the mpuacc register contains a MASK or LIMIT
field. Table 4 shows the layout of the mpuacc register with the MASK field.

Table 5 shows the layout of the mpuacc register with the LIMIT field.

Equation 1. Base Address Computation

BASE = <base address> / <min_region>

Table 4. mpuacc Control Register Fields for MASK Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MASK (1) C PERM

R
D

W
R

Note to Table 4:

(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

Table 5. mpuacc Control Register Fields for LIMIT Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LIMIT (1) C PERM

R
D

W
R

Note to Table 5:

(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.
© March 2010 Altera Corporation Nios II MPU Usage

Page 8 General Usage
Table 6 provides details of the fields defined in the mpuacc register.

If the mpuacc register is configured with the MASK field, the MASK field represents the
size of your region. The value of MASK is defined in Equation 2.

Table 7 lists every possible MASK value for an MPU configured with a 64-byte
minimum region size.

Table 6. mpuacc Control Register Field Descriptions

Field Description Access Reset

MASK (1) MASK specifies the size of the region. Read/Write 0

LIMIT (1) LIMIT specifies the upper address limit of the region. Read/Write 0

C C is the data cacheable flag. C only applies to MPU data regions and determines the
default cacheability of a data region. When C = 0, the data region is uncacheable.
When C = 1, the data region is cacheable.

Read/Write 0

PERM PERM specifies the access permissions for the region. Read/Write 0

RD RD is the read region flag. When RD = 1, wrctl instructions to the mpuacc
register perform a read operation.

Write 0

WE WR is the write region flag. When WR = 1, wrctl instructions to the mpuacc
register perform a write operation.

Write 0

Note to Table 6:

(1) The MASK and LIMIT fields are mutually exclusive. Refer to Table 4 and Table 5.

Equation 2. Computing Region Mask

MASK = 0x1FFFFFF << log2 (<region_size> >> 6)

Table 7. MASK Encodings for 64-byte Minimum Region (Part 1 of 2)

MASK Encoding Region Size

0x1FFFFFF 64 bytes

0x1FFFFFE 128 bytes

0x1FFFFFC 256 bytes

0x1FFFFF8 512 bytes

0x1FFFFF0 1 KByte

0x1FFFFE0 2 KB

0x1FFFFC0 4 KB

0x1FFFF80 8 KB

0x1FFFF00 16 KB

0x1FFFE00 32 KB

0x1FFFC00 64 KB

0x1FFF800 128 KB

0x1FFF000 256 KB

0x1FFE000 512 KB

0x1FFC000 1 MB

0x1FF8000 2 MB
Nios II MPU Usage © March 2010 Altera Corporation

General Usage Page 9
If the mpuacc register is configured with the LIMIT field, LIMIT represents the
address immediately following the upper end of your region. For example, suppose
the MPU’s minimum region size is 64 bytes, and you need to set up the following
region:

■ The region starts at 0x1000

■ The region ends at 0x1FFF

To set up the desired region, configure mpubase.BASE and mpuacc.LIMIT as
shown in the following list:

■ Set mpubase.BASE to 0x40, which is 0x1000/64

■ Set mpuacc.LIMIT to 0x80, which is 0x2000/64

Use the C field to specify whether a data region is to be cached. Usually, you set C for
memory regions and clear it for regions representing registers or general-purpose
memory-mapped I/O.

The PERM field defines the permissions for the region, as shown in Table 8 and Table 9.

0x1FF0000 4 MB

0x1FE0000 8 MB

0x1FC0000 16 MB

0x1F80000 32 MB

0x1F00000 64 MB

0x1E00000 128 MB

0x1C00000 256 MB

0x1800000 512 MB

0x1000000 1 GB

0x0000000 2 GB

Table 8. Instruction Region Permission Encodings

PERM Encoding (1) Supervisor Permissions User Permissions

000 None None

001 Execute None

010 Execute Execute

Note to Table 8:

(1) PERM values represented in binary

Table 7. MASK Encodings for 64-byte Minimum Region (Part 2 of 2)

MASK Encoding Region Size
© March 2010 Altera Corporation Nios II MPU Usage

Page 10 General Usage
Defining Regions with mpubase and mpuacc

The mpubase register works in conjunction with the mpuacc register to set and
retrieve MPU region information. Use the RD and WR fields of mpuacc to instruct the
MPU to perform an MPU region read or write, as shown in the following list:

■ Set mpuacc.RD = 1 to perform an MPU region read operation.

■ Set mpuacc.WR = 1 to perform an MPU region write operation.

1 Simultaneously setting both the RD and WR fields to 1 results in undefined behavior.

An MPU region must be disabled if it is not in use. To disable a region, software sets
up the following conditions:

■ mpubase.BASE is any nonzero value.

■ If the MPU is configured to define region size by mask, mpuacc.MASK represents
0x80000000, which is 231 (the size of the Nios II address space). For example, if the
minimum region size is 64, or 0x40 bytes, mpuacc.MASK is 0x80000000 / 0x40, or
0x20000000.

■ If the MPU is configured to define region size by limit, mpuacc.LIMIT = 0.

Region Layout Considerations
This section describes how to select MPU region locations and sizes to make the most
effective use of the MPU. For information about the mechanics of setting up MPU
regions, refer to “MPU Register Details” on page 6.

Each region size must be an integer power of two. You must ensure that each region is
aligned to an address that is an integer multiple of its size.

Figure 3 and Figure 4 illustrate the regions configured by the software examples
accompanying this application note. Refer to the example code and comments for
details about how and why these regions are configured as they are.

Table 9. Data Region Permission Encodings

PERM Encoding (1) Supervisor Permissions User Permissions

000 None None

001 Read None

010 Read Read

100 Read/Write None

101 Read/Write Read

110 Read/Write Read/Write

Note to Table 9:

(1) PERM values represented in binary
Nios II MPU Usage © March 2010 Altera Corporation

General Usage Page 11
Regions can overlap. For example, you can place a higher-priority region inside a
lower-priority region. region[3] in mpu_utils.c illustrates this technique, creating a
small exclusion region from 0x21000 to 0x21040, as shown in Figure 3. Any access to
addresses in the 0x21000 to 0x21040 range is controlled by the exclusion region rather
than the stack_ram region (region[4]), because the exclusion region has the higher
priority.

Figure 3. MPU Data Region Example (Addresses not to scale) (1)

Note to Figure 3:

(1) A low-priority exclusion region spans the entire 2 GB address space from 0x0 to 0x80000000.

missions
0x100

0x140

0x1000

0x1800

0x80000000

0x10000

0x14000

0x20000

0x22000

0x21000
0x21040

small exclusion region

0x0

jtag_uart Region
(read & write per ;
uncached)

jtag_debug_module Region
(read & write permissions;
cached)

instr_ram Region
(read & write permissions;
cached)

stack_ram Region
(read & write permissions;
cached)
© March 2010 Altera Corporation Nios II MPU Usage

Page 12 General Usage
Flow Summary
In a Nios II system with an MPU, whenever MPU initialization or reinitialization is
required, the software is responsible for the following tasks:

1. Ensure that the MPU is disabled.

1 At system reset, the MPU is disabled by default. At other times, software
must disable the MPU before reconfiguring regions.

2. Initialize and configure the MPU with region information.

3. Enable the MPU prior to executing task-specific or single-threaded application
code.

Figure 4. MPU Instruction Region Example (Addresses not to scale) (1)

Note to Figure 4:

(1) A low-priority exclusion region spans the entire 2 GB address space from 0x0 to 0x80000000.

instr_ram Region
(execute permission)

0x1000

0x1800

0x10000

0x14000

0x0

0x80000000

jtag_debug_module Region
(execute permission)
Nios II MPU Usage © March 2010 Altera Corporation

Design Examples Page 13
Design Examples
The design examples accompanying this application note illustrate the use of the
Nios II MPU in a single-threaded environment, such as the Altera HAL.

Example Hardware
The simple hardware designs, emphasizing MPU usage, are easily portable to other
hardware platforms. There are two design examples, both targeting the NEEK. In one,
the MPU specifies region sizes by mask, and in the other the MPU specifies region
sizes by limit. Aside from this detail of MPU instantiation, the two designs are
identical.

The address map is designed to make MPU configuration very straightforward. For
instance, the instr_ram and stack_ram memories reside on valid region boundaries,
and the JTAG UART base address is unique and aligned to a valid region boundary, as
illustrated in Figure 3.

Figure 5 illustrates one of the design examples as it appears in SOPC Builder. The
hardware addresses fall on valid MPU region boundaries. While this constraint is not
required, it is more convenient for the software engineer.

Figure 5. MPU Example Hardware System
© March 2010 Altera Corporation Nios II MPU Usage

Page 14 Design Examples
Software
The design files accompanying this application note include the following example
software projects:

■ mpu_basic—Configures the MPU with several data and instruction regions, and
prints a simple message.

■ mpu_exc_detection—Configures the MPU with the same data instruction regions
as in mpu_basic, and sets up an exception handler to detect the following
conditions:

■ Null pointer

■ Wild pointer

■ Stack overflow

The software examples in each subdirectory are identical. The code is written to detect
the whether the MPU is configured for mask or limit region sizes, and to behave
appropriately.

The mpu_exc_detection example detects stack overflow by creating a small
high-priority exclusion data region in the middle of a larger data region where both
the stack and the heap reside. Whenever the stack grows downwards or the heap
grows upwards into this exclusion region, the MPU triggers an exception and the
software detects it.

The mpu_exc_detection example detects null pointer usage by making sure that no
regions include offset 0x0. The example system is designed such that no components
(memory or otherwise) are located at this offset. If software attempts to access address
0x0, the MPU triggers an exception, allowing the software to recover. If you ensure
that memories are preinitialized to zero, null pointer detection helps protects against
uninitialized data access.

The mpu_exc_detection example detects wild pointer usage by creating very large
low-priority exclusion regions covering the majority of the memory map. In this way,
if the Nios II processor attempts to access an address outside of valid memory and
peripheral I/O address space, the MPU triggers an exception and software can detect
it.

Both of these software examples use the MPU utility functions and macros in
mpu_utils.c and mpu_utils.h. In both examples, initialization and reinitialization are
handled by two functions: one for data regions, and one for instruction regions. In
most real-world systems, a single function is sufficient to handle initialization and
reinitialization for both types of regions.

MPU Utilities
You can find helpful MPU utility functions and macros in the mpu_utils.c and
mpu_utils.h files in each software example. The following functions are the most
important for you to understand:

■ nios2_mpu_data_init()—A system-specific function. In your own code, write
an equivalent function to specify the MPU data regions in your design.

■ nios2_mpu_inst_init()—A system-specific function. In your own code, write
an equivalent function to specify the MPU instruction regions in your design.
Nios II MPU Usage © March 2010 Altera Corporation

Design Examples Page 15
■ nios2_mpu_load_region()—Configures an MPU region with specific
parameters.

■ nios2_mpu_enable()—Enables the entire MPU.

■ nios2_mpu_disable()—Disables the entire MPU.

Each utility function makes use of the Nios2MPURegion data structure shown in
Example 1.

Example 2 shows nios2_mpu_inst_init() for the mpu_basic software example.
The constants NIOS2_MPU_NUM_INST_REGIONS and
NIOS2_MPU_REGION_USES_LIMIT are defined in system.h.

In Example 2, region[0] grants execution access to the instr_ram memory in both
user and supervisor modes, as shown in Figure 4 on page 12. region[1] grants
execution access to the break and trace memory (starting at 0x1000) in both modes.
The other two MPU instruction regions grant no execution permissions to the entire
Nios II address space. Because their priorities, 2 and 3, are lower than the first two
regions, the code stored in the instr_ram runs, and the break and trace features work
correctly. However, if code attempts to execute outside those regions, the MPU
triggers an exception.

The final statement in nios2_mpu_inst_init() calls
nios2_mpu_load_region() to configure the region with the information
contained in the structure.

Example 1. Nios2MPURegion Data Structure

typedef struct
{

unsigned int base;
unsigned int index;
unsigned int mask;
unsigned int c;
unsigned int perm;

} Nios2MPURegion;
© March 2010 Altera Corporation Nios II MPU Usage

Page 16 Design Examples
Example 3 shows the function prototype for nios2_mpu_load_region().

Example 2. nios2_mpu_inst_init() in the mpu_basic Software Example

void nios2_mpu_inst_init()
{

unsigned int mask;
Nios2MPURegion region[NIOS2_MPU_NUM_INST_REGIONS];

//Main instruction region.
region[0].index = 0;
region[0].base = 0x400; // Byte Address 0x10000

#ifdef NIOS2_MPU_REGION_USES_LIMIT
region[0].mask = 0x500; // Byte Address 0x14000

#else
region[0].mask = 0x1ffff00;

#endif
region[0].c = 1;
region[0].perm = MPU_INST_PERM_SUPER_EXEC_USER_EXEC;

//Instruction region for break address.
region[1].index = 1;
region[1].base = 0x40; // Byte Address 0x1000

#ifdef NIOS2_MPU_REGION_USES_LIMIT
region[1].mask = 0x60; // Byte Address 0x1800

#else
region[1].mask = 0x1ffffe0;

#endif
region[1].c = 1;
region[1].perm = MPU_INST_PERM_SUPER_EXEC_USER_EXEC;

//Rest of the regions are maximally sized and permissive.
#ifdef NIOS2_MPU_REGION_USES_LIMIT

mask = 0x2000000;
#else

mask = 0x0;
#endif

unsigned int num_of_region = NIOS2_MPU_NUM_INST_REGIONS;
unsigned int index;
for (index = 2; index < num_of_region; index++){

region[index].base = 0x0;
region[index].index = index;
region[index].mask = mask;
region[index].c = 0;
region[index].perm = MPU_INST_PERM_SUPER_NONE_USER_NONE;

}

nios2_mpu_load_region(region, num_of_region, 0);
}

Example 3. nios2_mpu_load_region()

void nios2_mpu_load_region (
Nios2MPURegion region[],
unsigned int num_of_region,
unsigned int d);
Nios II MPU Usage © March 2010 Altera Corporation

Design Examples Page 17
The following list shows the arguments to nios2_mpu_load_region():

■ Nios2MPURegion—An array of data structures, each representing an MPU
region

■ num_of_region—The number of regions

■ d—The region type (instruction or data)

nios2_mpu_load_region() configures the MPU according to the arguments
passed by the calling function.

The MPU is disabled by default at system restart. After the MPU is configured, the
example uses nios2_mpu_enable() and nios2_mpu_disable() to enable and
disable the MPU. Whenever you reconfigure the MPU, you must first disable it, and
re-enable it after configuring.

The software examples accompanying this application note are commented to help
you understand how each example works. Most of the complexity of managing the
MPU and its regions is embodied in the MPU utility functions and macros in
mpu_utils.c and mpu_utils.h, allowing you to focus on the top-level software flow.

Building the Software
To create and build a software example, execute the following steps:

1. Identify the directory containing the software example that you want to run, based
on the hardware example that you want to use. For example, to run the mpu_basic
software example on the MPU_Design_limit hardware design example, the
directory is <design examples>/MPU_Design_limit/software_examples/app/
mpu_basic.

2. Use one of the following methods to open the Nios II Command Shell:

■ In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS <version>, and click Nios II <version> Command Shell.

■ In the Linux operating system, in a command shell, execute the following
commands:

cd $SOPC_KIT_NIOS2r

./sdk_shellr

3. Change directories to the software example directory identified in Step 1.

4. Type the following command:

./create-this-appr

5. After the projects are generated and built, configure your board with the hardware
image and run the software with the following commands:

nios2-configure-sof -C ../../../r

nios2-download -g <example>.elf && nios2-terminalr

Each software example displays information on the screen. The output from the
mpu_basic example resembles Example 4.
© March 2010 Altera Corporation Nios II MPU Usage

Page 18 Conclusion
The output from the mpu_exc_detection example resembles Example 5.

f For further details, refer to the source code and the <design examples>/ReadMe.txt file
accompanying the examples.

1 If the software example appears to hang, verify that you have configured your board
with the correct .sof.

Conclusion
After you have studied the code and understand the design examples described in
this application note, you have the skills to use the Nios II MPU successfully in your
HAL-based design. These examples illustrate the basics of how to use mpubase and
mpuacc to configure your MPU prior to enabling it.

Example 4. mpu_basic Console Output

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Initializing CPU cache (if present)
OK
Downloaded 3KB in 0.0s
Verified OK
Starting processor at address 0x00010020
nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "USB-Blaster [USB-0]", device 1, instance 0
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Hello from a simple MPU-Enabled Nios II System!.
val1 = 0xfeedface, val2 = 0xfeedface, val3 = 0x@.

Example 5. mpu_exc_detection Console Output

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Initializing CPU cache (if present)
OK
Downloaded 5KB in 0.0s
Verified OK
Starting processor at address 0x00010110
nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "USB-Blaster [USB-0]", device 1, instance 0
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Hello from a simple MPU-Enabled Nios II System!.
 Starting some exceptions tests.
=====
MPU NULL data pointer test.
MPU NULL data pointer test passed!
MPU wild pointer test.
MPU wild pointer test passed!
MPU stack overflow test.
MPU stack overflow test passed!
=====
 Exception Tests ended.
Now exiting program.
Nios II MPU Usage © March 2010 Altera Corporation

Referenced Documents Page 19
Referenced Documents
This application note refers to the following documents:

■ Nios II Hardware Development Tutorial

■ Programming Model chapter of the Nios II Processor Reference Handbook

■ Volume 4: SOPC Builder in the Quartus II Handbook

Document Revision History
Table 10 shows the revision history for this application note.

Table 10. Document Revision History

Date and Document
Version Changes Made Summary of Changes

March 2010

v1.0

Initial release. —
© March 2010 Altera Corporation Nios II MPU Usage

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Page 20 Document Revision History
Nios II MPU Usage © March 2010 Altera Corporation

	Nios II MPU Usage
	Introduction
	Requirements
	General Usage
	Adding the MPU Hardware
	Writing Software for the MPU
	MPU Programming Guidelines
	Operating Systems and the MPU
	MPU Register Details
	Register mpubase Usage
	Register mpuacc Usage
	Defining Regions with mpubase and mpuacc

	Region Layout Considerations
	Flow Summary

	Design Examples
	Example Hardware
	Software
	MPU Utilities
	Building the Software

	Conclusion
	Referenced Documents
	Document Revision History

