
Intel® Arria 10 SoC Secure Boot User
Guide

Subscribe
Send Feedback

AN-759 | 2017.11.06
Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=cru1452898171006
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Arria%2010%20SoC%20Secure%20Boot%20User%20Guide%20(AN-759%202017.11.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/an/an-759.pdf
https://www.altera.com/documentation/cru1452898171006.html

Contents

Intel® Arria® 10 SoC Secure Boot User Guide..4
Prerequisites... 4
References..5
Secure Boot Stages..6

Root of Trust.. 6
First-Stage Boot Loader (ROM)... 7
Second-Stage Boot Loader... 7
Third and Fourth Stages...7

Intel Arria 10 SoC Secure Boot Architecture...8
Software Image Authentication.. 8

Digital Signing..8
Root of Trust and Root Key...9
Authentication of the Second-Stage Boot Loader... 9
Security Level Staging... 10
Signed Image...11
Root Key Types... 12
Root Public Key Authentication..12
Test Secure Boot Authentication..12
Programming the Secure Signing Key.. 13
Generating the Signing Key Pair with OpenSSL..14

Overview of the Secure Boot Flow...15
Creating a Secure Boot System...15

Software Image Encryption..17
AES Encryption and Decryption... 17
Encrypting the Boot Image and Configuration File..18
Boot Image Encryption Flow... 19
Programming the AES Encryption Key.. 19

Software Image Authentication and Encryption...20
SoC EDS Tools for Secure Boot ..20

Boot Loader Generator...20
Secure Boot Image Tool... 22
Boot Image Format Tool...22

Secure Boot Examples.. 24
Creating a Signed Second-Stage Boot Loader Image..24
Creating an Encrypted Second-Stage Boot Loader Image..27

Appendix A: SoC EDS Secure Boot Image Tool: alt-secure-boot.. 30
Appendix B: Frequently Asked Questions .. 31

What are the secure configurations for HPS JTAG debug and access? How are
these affected during warm or cold reset?... 32

Can the HPS perform decryption of the boot image instead of the FPGA CSS?............32
What happens if the first stage boot ROM is unsuccessful in authenticating the

second-stage boot loader?.. 32
Can you use the first-stage root key as the subsequent stage root key?....................32
When the second-stage image is authenticated, is the image header only copied

to on-chip RAM for authentication?...33
Can the AES encryption key be updated by the HPS using JTAG hosting?.................. 33
How does U-Boot (SSBL) authenticate next stage boot images?.............................. 33

Contents

Intel® Arria 10 SoC Secure Boot User Guide
2

Which elliptical cryptography is used for boot image signing and authentication?....... 33
How do I generate a signing key pair?..33
Where can I store the signing keys for second-stage boot loader authentication?.......33
What type of cryptography is used for boot image encryption and decryption?...........34
What FPGA locations are available for AES key storage?... 34
How do I generate an AES key to encrypt a boot image?.. 34
How is secure boot defined within the Intel Arria 10 SoC product family?..................35
What security choices are available for the second-stage boot image or user

software?..35
Where is the authentication of the boot image performed?......................................35
Where is decryption of the boot image performed?.. 35
How can I configure the Arria 10 SoC device so that it always performs

authentication or authentication and decryption?..35
How can I program the key authentication key (KAK) into the Arria 10 SoC device?... 36
How can I configure the second stage boot loader image for the correct

authentication signing key type?.. 36
How do I configure the second-stage boot loader image for encryption using the

pre-generated AES key?..36
Is the ECDSA private and public key pair that is used for signing the boot image

also used for authentication of the FPGA image?.. 36
Revision History... 37

Contents

Intel® Arria 10 SoC Secure Boot User Guide
3

Intel® Arria® 10 SoC Secure Boot User Guide
The Intel® Arria® 10 SoC device family and supported tools provide features and
resources to create a secure boot system. Secure booting is essential to protect the
design's intellectual property (through encryption) and prevent malicious software
from running on the system (through authentication). A secure boot system
establishes a chain of trust. Each piece of firmware or software is validated before
running, and also validates the security signature on the next piece of software before
loading it for execution.

This document provides methods and design examples for implementing an Arria 10
SoC secure boot system using tools from the Intel SoC FPGA Embedded Design Suite
(EDS)SoC Embedded Design Suite (SoC EDS) to secure the second-stage boot loader
image. It shows how to generate a secure boot loader, creating and programming
secure keys for image authentication and image encryption and decryption.

Note: Securing boot stages after the second-stage boot loader is outside the scope of this
document and is dependent on your choice of OS and application. If the boot loader
must secure subsequent boot stages (such as the operating system), you must
implement a secure boot flow at the second-stage boot loader. The SoC EDS does not
provide any specific support for boot security beyond the second-stage boot loader.

Note: This user guide reflects information available at the time of publication. To ensure that
you have the most recent information about enhancements to the tools and tool flow,
refer to the Intel FPGA website, especially the Intel FPGA SoC Embedded Design Suite
Release Notes.

Related Links

• Intel SoC FPGA Embedded Design Suite Release Notes

• www.altera.com
The most recent information about enhancements to Arria 10 secure boot tools
and tool flow

Prerequisites

• Supported development platforms:

— Red Hat Linux version 6 or higher

— Windows versions as supported by the Quartus Prime software

• Quartus Prime Standard or Pro Design Suite, version 16.0 or later

• SoC EDS version 16.0 or later

Throughout this document, <SoC EDS installation directory> denotes the location
where SoC EDS is installed. The default installation folder for the SoC EDS v16.0 is:

AN-759 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/lro1430797237133.html#lro1461600279777
https://www.altera.com/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• c:\altera\16.0\embedded on Windows

• ~/altera/16.0/embedded on Linux

References

To make the best use of this guide, you should be familiar with the Intel Arria 10 SoC
Boot User Guide, the Intel Arria 10 Hard Processor System Technical Reference
Manual, and the Intel FPGA SoC Embedded Design Suite User Guide.

Related Links

• Intel Arria 10 SoC Boot User Guide

• Intel Arria 10 Hard Processor System Technical Reference Manual

• Intel SoC FPGA Embedded Design Suite User Guide

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
5

https://www.altera.com/documentation/suc1427117768942.html#suc1427117837950
https://www.altera.com/documentation/sfo1410070178831.html#sfo1410067598309
https://www.altera.com/documentation/lro1402536290550.html#lro1402428237110

Secure Boot Stages

The main purpose of a secure boot system is to ensure that software running on the
Arria 10 SoC hard processor system (HPS) is trusted. To ensure this trust, after
power-on reset, the HPS executes the trusted first stage boot ROM firmware stored in
the device. Each subsequent stage is only loaded and executed if it is authenticated by
the current boot stage.

The Intel Arria 10 secure boot stages are shown in the following figure.

Figure 1. Secure Boot Stages

Note: You can configure the Intel Arria 10 SoC device and the second-stage boot loader so that first and second
stages boot securely. If required, you can generate additional signing keys and encryption keys for images in
subsequent stages including the OS and application stage. If a subsequent image requires encryption and the
encryption key is embedded in the boot loader, then the boot loader image must also be encrypted using the
root AES key.

First Stage Second Stage Third Stage Fourth Stage

Boot ROM

Device

Signed image

Boot Loader

Application

Application 1Operating
System

Application 2

Typical boot ROM flow
Boot software executed on device
Optional flow

Public Key

Private Key

For more information on the Intel Arria 10 boot stages and second-stage boot loader
refer to the Intel Arria 10 SoC Boot User Guide.

Related Links

Intel Arria 10 SoC Boot User Guide

Root of Trust

The most crucial part of creating a secure boot system is establishing the root of trust.
The root of trust ensures that the security levels are configured properly and the
security keys are protected.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
6

https://www.altera.com/documentation/suc1427117768942.html#suc1427117837950

Related Links

Software Image Authentication on page 8
For more information on root of trust

First-Stage Boot Loader (ROM)

After hardware system initialization is complete, the Intel Arria 10 SoC boot ROM
firmware decrypts, authenticates, and executes the next boot stage. The boot ROM
firmware is the root of trust: the trusted, inherently secure starting point for booting
the Intel Arria 10 SoC.

To decrypt and authenticate the next boot stage, the boot ROM firmware performs
these tasks:

1. Determine which boot device contains the next boot stage image, the second-
stage boot loader

2. Discover the final code signing key (CSK) through a key chain service

3. Use the CSK to authenticate the boot loader image

4. If the boot loader image is encrypted, the boot ROM sends the image to the CSS
for decryption.

5. If boot loader authentication and decryption is successful, load the boot loader
into on-chip RAM and execute it

For details about secure system initialization, refer to "Secure Initialization Overview"
in the SoC Security chapter of the Intel Arria 10 Hard Processor System Technical
Reference Manual.

Related Links

Secure Initialization Overview

Second-Stage Boot Loader

The second-stage boot loader performs essential tasks to allow an operating system to
start.

The boot loader can perform a number of required and optional tasks, such as:

• Configuring I/Os to enable the memory controller prior to FPGA configuration

• Configuring the FPGA portion of the device

• Accessing a file system in flash memory

• Initializing peripherals

In a secure boot implementation, the second-stage boot loader software executes
from HPS on-chip RAM.

Third and Fourth Stages

If the stages following the second-stage boot loader need to be trusted, then you
must implement features to support authentication in the third and fourth stage.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
7

https://www.altera.com/documentation/sfo1410070178831.html#sfo1410068031005

During the third boot stage, an operating system (OS) or stand alone application, such
as Bare Metal, typically loads from flash storage into memory. During the fourth boot
stage, the OS commonly launches secure user level applications.

Intel Arria 10 SoC Secure Boot Architecture

You can implement secure boot using the following modules and features provided by
the Arria 10 SoC:

• Security Manager

• Boot ROM

• ECDSA Authentication

• Security Fuses

• AES Decryption Engine

• Security Key Storage

A dedicated Security Manager resides in the HPS. It supervises a secure initialization
and boot of the system. The Security Manager determines the level of system security
in the device by reading the HPS fuse settings after power-on reset (POR).

After the security level is determined, secure boot resources attempt to load software
into HPS flash. The boot ROM supervises this bootstrapping process.

Software Image Authentication

Authentication of the second-stage boot loader software by the Intel Arria 10 SoC
device provides confidence that it originates from a trusted source. Digital certificates
and public key cryptography offer advanced authentication and privacy that less
advanced security resources, such as passwords, cannot provide.

Authentication begins when the boot image is digitally signed. The Intel Arria 10 SoC
device requires the image to be signed using an elliptical curve digital signature
algorithm (ECDSA) that is based on elliptical curve (EC) cryptography.

Digital Signing

The signing process requires a security key pair and a signing tool to sign the image.
The private and public key pair are generated based on a 256-bit ECDSA asymmetric
digital signature. The private key has full entropy and is used to derive the public key.

The signing process creates a digital certificate with signatures based on elliptic curve
cryptography. The signed image’s credentials during authentication are the digital
signature and the public key.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
8

Figure 2. Signing with a Secure Key Pair

Public Key

Private Key
ECDSA Key
Generator

Image Signing
Tool

Signed
Images

Root of Trust and Root Key

The Root of Trust and the root key pair are the origin where the secure keys are
generated. In this secured environment, you can also sign the boot image. A secure
environment such as a device manufacturing site, retains the private key to protect it.

The manufacturer generates the root key pair. The root key is programmed into the
SoC device and authenticates the software images. The image signing tool is run
multiple times for each runtime software on the device. When security is
compromised, you must generate a new public key.

Figure 3. Root of Trust

Key
Generation

Image Signing
Tool

Software

FPGA HPS

Device

Secure Environment

Private Key

Public Key

Authentication of the Second-Stage Boot Loader

The security features of the Intel Arria 10 SoC provide you with resources to enforce
that only a trusted second-stage boot loader is executed from the HPS. The boot ROM
executes the first stage and enforces user security settings. During authentication, the
Boot ROM verifies the HPS security fuse settings through the HPS_fusesec shadow
registers.

The entire authentication process starts after power-on or cold reset of the device.
The process follows a particular order to ensure a secure boot is attempted:

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
9

1. On FPGA power-up, the Configuration Subsystem (CSS) powers, initializes and
loads the fuse bits. The CSS sends the FPGA its fuse configuration information. If
the HPS is powered, the CSS sends the HPS fuse information to the Security
Manager. This information is held in the HPS_fusesec shadow register in the
Security Manager.

2. When the Security Manager is released from reset, it requests configuration
information from the CSS and performs security checks. At this point, the rest of
the HPS is still in reset. The security checks validate whether the state of each
security option is valid. The Security Manager decodes the fuse bits and brings the
rest of the HPS out of reset.

3. When the HPS is released from reset, the Security Manager sends signals to
initialize the system blocks, such as the Clock Manager, FPGA Manager, and
System Manager. The clock control fuse information is automatically sent to the
Clock Manager, the memory control fuse information is automatically sent to the
Reset Manager and all other fuse functions (authentication, encryption, and public
key source and length) are stored in a memory-mapped location for the boot ROM
code to read. After these tasks are successfully completed, CPU0 comes out of
reset in a secure state.

4. After CPU0 is released from reset, the boot ROM begins executing. At this time,
the HPS is in a trusted state and the boot ROM code is guaranteed to execute as
expected. For both secure and non-secure boot, all slave peripherals are brought
out of reset in a secure state.

5. The boot ROM determines the boot flash partition and verifies the security header
settings of the second-stage boot loader image. The second-stage boot loader
requires a signed certificate to be authenticated.

6. The Boot ROM determines the source of the root key by reading the security
header.

7. The boot ROM attempts to authenticate the boot image. If authentication is
successful, the boot ROM then continues with the process of loading and executing
the image.

Security Level Staging

After power-on-reset, the Security Manager determines the initial security level by
verifying and reading the fuse data. The Security Manager stores the fuse data in the
fuse shadow register, HPS_fusesec. From this point, the boot ROM reads the fuse
data from the shadow register and also verifies the security header, if present, in the
boot image stored on boot flash partition. The second-stage boot loader is the boot
image.

The security header may also contain information to raise the security level for a
particular feature implemented in the fuses. The boot ROM merges the fuse values in
the shadow registers with the security header values to establish the final security
level of the system.

Note: Software may program option registers in the Security Manager to raise the security of
the system. The higher level of security takes effect immediately and remains at that
level until the next cold reset or for some security features, the next warm or cold
reset. After reset occurs, the security level returns to the value programmed by the
fuse registers and written in the HPS_fusesec registers.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
10

Signed Image

The signing of an image includes prepending an authentication header, including a
security header.

Figure 4. Authentication Header

Final Signature

Image

Checksum

Signatures

Spare 448 (0x1C0) bytes

Image Data

Root Key

Spare 192 (0xC0) bytes

Option Data

Security Header

0x0400

0x0240

0x0220

0x0200

0x0140

0x0100

0x0000

Offset to Checksum

Figure 5. Security Header

Spare 212 (0xD4) bytes

Dummy Clocks to Write

Date

Size after Decryption

Flags

Offset to Checksum

Number of Signatures

Load Length

Header Length

Version (0x00)

Validation Word (0x74944592)

0x002C

0x0028

0x0020

0x001C

0x0018

0x0014

0x0010

0x000C

0x0008

0x0004

0x0000

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
11

Root Key Types

The boot ROM requires the root public key programmed in eFuse and its associated
public key to authenticate the second-stage boot loader if the key contained within
eFuse, the FPGA or header file (test only) mandates an authenticated flow. Several
root key types are available that you can store on the device or second-stage boot
loader image.

Note: Using the image itself for storage of the root key is not considered a secure method. It
is recommended that this method be used for testing purposes only.

Table 1. Root Key Types

Root Key Is it stored on the
device?

Description

Secure User Key Yes User generates secure key pair for boot ROM to attempt authentication.
The SHA256 hash of the public key is stored in the User Access Fuses
(UAF) of the device. This configuration provides a secure boot.

FPGA Key Yes The public key originates from the user bitstream. The key is stored in
FPGA on-chip RAM and accessed by the first stage boot ROM for image
authentication.

Unsecured User Key No User generates a secure key pair but it is not stored on the device. This
configuration is considered unsecure. The user includes the root key
result in the image header and the boot ROM uses it for authentication.

Root Public Key Authentication

Before boot ROM can use the root public key for authentication, it must authenticate
the root public key against the root public key hash stored in eFuse.

Note: Some key types are unsecure. You can use unsecure keys for testing scenarios where
permanent key storage on the device is avoided.

The available key type options are detailed in the Programming the Secure Signing
Key section.

Related Links

Programming the Secure Signing Key on page 13

Test Secure Boot Authentication

You can perform a secure boot test by using an unsecured key for authentication of
the signed boot image. Refer to the Security Level Staging section for details of how to
increase security on the device.

If you choose to implement the unsecure user key type, then the public key in the
signed image is accepted and no check is performed against the SHA256 value stored
in the device fuses. You can use this method for testing purposes before you burn the
fuses.

Related Links

Security Level Staging on page 10

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
12

Programming the Secure Signing Key

After the boot image is signed, the private key is retained in secure storage at the
original equipment manufacturer (OEM) to protect it. The public key is programmed
into the device. For some signing key types, a hash of the public key is programmed.

The signing key type determines the location of the public key. The available signing
key types and corresponding locations are described in the following table.

Table 2. Root Key Types

Root Key Key Type Description

Secure User Key Fuse User generates secure key pair for boot ROM to attempt authentication.
The SHA256 hash of the public key is stored in the User Access Fuses
(UAF) of the device. This configuration provides a secure boot.
For information about secure fuses, refer to the Secure Fuses section in
the SoC Security chapter of the Intel Arria 10 Hard Processor System
Technical Reference Manual.

FPGA Key FPGA The public key originates from the user bitstream. The key is stored in
FPGA on-chip RAM and accessed by the first stage boot ROM for image
authentication.

Unsecured User Key User User generates a secure key pair but it is not stored on the device. This
configuration is unsecure and is for testing only. The user includes the
root key result in the image header and the boot ROM uses it for
authentication.

Related Links

• Secure Boot Stages on page 6

• Generating the Signing Key Pair with OpenSSL on page 14

• Secure Fuses
For basic information about security fuses, refer to "Secure Fuses" in the SoC
Security chapter of the Intel Arria 10 SoC FPGA Hard Processor System
Technical Reference Manual.

Boot Image Signing Flow

After you have generated the signing key pair, you can build and sign the boot image
with the secure boot image tool.

Figure 6. Boot Image Signing Tool Flow
This diagram illustrates an example tool flow for signing the boot image for authentication.

Bootloader Image
(Non-Signed)

Secure Boot Image
Tool (alt-secure-boot)

Bootloader Image
(Signed)

EC Key Pair Generator
(OpenSSL)

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
13

https://www.altera.com/documentation/sfo1410070178831.html#suc1410359169055

Boot Image Authentication

During a secure boot, the first-stage boot loader (in the boot ROM) uses the root
public key and associated key chain to authenticate the second-stage boot loader
image as follows:

1. Determine the device’s security configuration settings (by reading the fuse values)

2. Attempt to authenticate the boot image, using the root public key type from the
configuration settings

Figure 7. Secure Authentication Using Key Types

Device
Fuses PPK

FPGA
Memory PPK

Boot ROM Boot Image
(loaded only

if valid)

Authenticate*

Secured Device Boot Partition

*Uses stored primary public key (PPK)

Related Links

Secure Boot Flow
In the Booting and Configuration appendix of the Intel Arria 10 SoC Hard Processor
System Technical Reference Manual, refer to the following figures: "Verified
(Authenticated) Boot Flow", "Second Stage Boot Loader Authentication Process",
and "Second Stage Boot Loader Authentication and Decryption Process".

Generating the Signing Key Pair with OpenSSL

You may generate the signing key pair using OpenSSL, an open-source toolkit that
supports the Secure Socket Layer (SSL). OpenSSL is available in the SoC EDS
embedded command shell, and is provided by common Linux distributions.

You invoke OpenSSL from the boot loader generator. OpenSSL applies the security
settings that you select in the boot loader generator, and creates an EC key pair. The
boot loader generator invokes OpenSSL as follows to generate the key pair:

$ openssl ecparam -genkey -name prime256v1 -out root_key.pem

In the example above, the generated key pair is stored in the root_key.pem file. You
can use this file with the Intel secure boot image tool to sign the image.

Related Links

www.openssl.org
Detailed help and information for the OpenSSL toolkit is available on the OpenSSL
website.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
14

https://www.altera.com/documentation/sfo1410070178831.html#suc1428602779612
https://www.openssl.org/

Overview of the Secure Boot Flow

To create a secure boot system, you can use one of the following secure boot
configurations:

• Encrypted only

• Authenticated only

• Encrypted and authenticated

Creating a Secure Boot System

Creating a secure boot loader image entails the following high-level steps:

1. Determine the required security level of the second-stage boot loader: signed for
authentication, encrypted, or both.

2. Generate the appropriate secure keys for authentication, encryption, or both.

3. Generate and build the secure boot loader image.

4. Program the secure keys in the Intel Arria 10 SoC device.

5. Configure the security fuses for the desired device security settings.

6. Program the secure boot image to the boot device.

Figure 8. Second-Stage Boot Loader Image Creation Flow
Flow for creating a secured boot loader image for authentication, encryption, or both

Generate ECDSA Secure
Signing Key Pair

Generate AES Secure
Encryption Key

Generate Bootloader
Source (SoC EDS)

Build Bootloader Image
(SoC EDS)

Format with Boot
Image Format Tool

(SoC EDS)

Image
Encrypted?

yes

no

Root Public Key
(Device)

Store Signed Boot Image

Boot Secured System

Program Encryption Key
(Device)

Create Secure Boot
Image for?

Authentication EncryptionAuthentication
and Encryption

Note: The figure above represents SoC EDS secure boot support at the time of publication.
Refer to the Intel FPGA SoC Embedded Design Suite Release Notes for updates and
additions to supported features.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
15

Note: To obtain the steps for programming the secure fuses, please contact Intel Support
(NDA required).

Related Links

• Second-Stage Boot Loader Support Package Generator Tool
In the Intel Arria 10 SoC Boot User Guide

• Secure Fuses
For basic information about security fuses, refer to "Secure Fuses" in the SoC
Security chapter of the Intel Arria 10 SoC FPGA Hard Processor System
Technical Reference Manual.

• Intel SoC FPGA Embedded Design Suite Release Notes

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
16

https://www.altera.com/documentation/suc1427117768942.html#suc1427121095744
https://www.altera.com/documentation/sfo1410070178831.html#suc1410359169055
https://www.altera.com/documentation/lro1430797237133.html#lro1461600279777

Software Image Encryption

To encrypt a boot image, you generate and apply encryption keys.

Refer to the "Secure Boot Stages" figure for an overview of key usage.

Related Links

Secure Boot Stages on page 6

AES Encryption and Decryption

The Arria 10 SoC device family supports secure boot with Advanced Encryption
Standard (AES) encryption with a 256-bit key length. AES is a symmetric-key
algorithm. AES decryption support is provided by the configuration subsystem (CSS)
in the FPGA portion of the device. AES decryption is enabled through user fuse
settings and software programming.

For information about the CSS, refer to the SoC Security chapter in the Arria 10 Hard
Processor System Technical Reference Manual.

Figure 9. AES Encryption and Decryption

Apply AES Key
Boot Image

(Non-Encrypted)

0xBE 0xAD 0xFE
0xED 0x01... 0x2D0003A7BFA2...

Boot Image
(Encrypted)

0xDE 0xDA 0x1F
0xEE 0xB0...

AES Encryption

Apply AES Key
Boot Image
(Decrypted)

0xBE 0xAD 0xFE
0xED 0x01...0x2D0003A7BFA2...

Boot Image
(Encrypted)

0xDE 0xDA 0x1F
0xEE 0xB0...

AES Decryption

Lorem ipsum

The FPGA portion of the secured device has a dedicated decryption block that uses the
AES algorithm to decrypt the boot loader image with a user-defined 256-bit AES key.
Before receiving the encrypted data, you must write the user-defined 128-bit key into
the device.

The AES algorithm is a symmetrical block cipher that encrypts and decrypts data in
blocks of 256 bits. The decryption block uses the AES algorithm to decrypt the boot
loader image and configuration data before configuring the FPGA portion of the device.
If encryption is not used, the AES decryptor is bypassed.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
17

Figure 10. Encrypted Second-Stage Boot Loader and the AES Decryptor

Boot Partition

0x22 0xB1 0x01

Secured Device

OCRAM

0x3A 0x2F 0x30

AES
Decryptor

Boot ROM

Volatile and
Non-Volatile
Key Storage

HPS FPGA

* Bootloader Image, AES Encrypted
** Bootloader Image, Decrypted

Related Links

• SoC Security
Chapter in the Intel Arria 10 SoC FPGA Hard Processor System Technical
Reference Manual

• Security Encryption Algorithm
Refer to "Security Encryption Algorithm" in AN-556: Using the Design Security
Features in Altera FPGAs

Encrypting the Boot Image and Configuration File

The Quartus Prime Design Suite includes the Quartus Prime Convert Programming File
tool, quartus_cpf, which you use to generate the AES 256 encryption file.(1) You
invoke the Quartus Prime Convert Programming File tool as follows:

quartus_cpf -e -k <keyfile>:<key_id>[:<key_id>] <input_sof_file>
<output_ekp_file>

If you configure the boot loader generator to encrypt the boot image, quartus_cpf
requires the encryption key file as specified in the configuration tool’s security
settings. For an overview of the tool flow, see the figure in "Software Image
Authentication and Encryption".

For details of Quartus Prime Convert Programming File tool usage, refer to "How to
Generate the Single-Device .ekp File and Encrypt Configuration File Using Quartus
Prime Software with the Command-Line Interface" in AN-556: Using the Design
Security Features in the Altera FPGAs.

Related Links

• Software Image Authentication and Encryption on page 20

• How to Generate the Single-Device .ekp File and Encrypt Configuration File Using
Quartus Prime Software with the Command-Line Interface

In AN-556: Using the Design Security Features in Altera FPGAs

(1) quartus_cpf can also encrypt the configuration bit stream in the SRAM object file (.sof).

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
18

https://www.altera.com/documentation/sfo1410070178831.html#sfo1410068027616
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500736290
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500758537
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500758537

Boot Image Encryption Flow

Figure 11. Boot Image Encryption Flow
The tool flow for generating an encrypted boot image

Bootloader Image
(Clear Text)

Secure Boot Image
Tool (alt-secure-boot)

Bootloader Image
(Cipher Text)

AES Key
(from key file)

Programming the AES Encryption Key

The FPGA device provides both volatile and non-volatile key storage. After the
encryption key is generated, you store the key, as described in "Creating an Encrypted
Second-State Boot Loader Image". The key is later referenced by the AES-based
algorithms that decrypt the boot image. See the "AES Decryption" figure in "AES
Encryption and Decryption".

Related Links

• AES Encryption and Decryption on page 17

• Creating an Encrypted Second-Stage Boot Loader Image on page 27

• Secure Boot Flow
Refer to the "Second-Stage Boot Loader Decryption Process" figure in "Secure
Boot Flow" in the Booting and Configuration appendix to the Intel Arria 10 SoC
FPGA Hard Processor System Technical Reference Manual.

• Authentication and Decryption
In the SoC Security chapter of the Intel Arria 10 SoC FPGA Hard Processor
System Technical Reference Manual

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
19

https://www.altera.com/documentation/sfo1410070178831.html#suc1428602779612
https://www.altera.com/documentation/sfo1410070178831.html#sfo1410068041757

Software Image Authentication and Encryption

To provide the highest level of security during boot, you can apply both signing and
encryption to a newly generated second-stage boot loader image. The image must be
encrypted first, and then signed, so that the signature is available prior to decryption.
During the boot process, the boot ROM firmware first attempts to authenticate the
boot loader image. If authentication is successful, the device decrypts and loads the
boot loader image.

You can use security settings in the boot loader generator to sign and encrypt a boot
loader image.

Figure 12. Boot Image Signing and Encryption Flow

Bootloader Image
(Unsigned)

Secure Boot Image
Tool (alt-secure-boot)

Bootloader Image
(Encrypted)

AES Key
(from key file)

Bootloader Image
(Encrypted and

Signed)

Secure Boot Image
Tool (alt-secure-boot)

EC Key Pair Generator
(OpenSSL)

SoC EDS Tools for Secure Boot

The SoC EDS includes tools for creating a secured second-stage boot loader image.

Table 3. Secure Boot Tools

Tool Name Description

Boot loader generator bsp-editor Graphical second-stage boot loader generator

Secure boot image tool alt-secure-boot Command line tool for image signing or encrypting

Boot image format tool alt-image-cat Command line tool to format second-stage boot loader
image

Related Links

• Intel SoC FPGA Embedded Design Suite User Guide

• Intel SoC FPGA Embedded Design Suite Release Notes

Boot Loader Generator

The boot loader generator, bsp-editor, is a graphical tool that performs the following
functions:

• Create a new second-stage boot loader board support package (BSP)

• Edit an existing boot loader BSP

• Apply user-specified boot security settings to the boot loader

• Generate source files for the boot loader

For detailed usage of the boot loader generator, refer to "Boot Loader Generator Tool:
BSP Editor" in the Arria 10 SoC Boot User Guide and to "Building the Arria 10
Bootloader" in the Intel FPGA SoC Embedded Design Suite User Guide.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
20

https://www.altera.com/documentation/lro1402536290550.html#lro1402428237110
https://www.altera.com/documentation/lro1430797237133.html#lro1461600279777

Related Links

• Boot Loader Generator Tool: BSP Editor
in the Intel Arria 10 SoC Boot User Guide

• Intel SoC FPGA Embedded Design Suite User Guide

• Building the Arria 10 Bootloader
In the Intel SoC FPGA Embedded Design Suite User Guide

Security Settings in the Boot Loader Generator

Figure 13. Security Settings
Boot loader generator security settings in the boot loader generator GUI

Boot loader generator authentication settings:

• Enable Boot Loader Signing—When this option is turned on, generate a signed
second-stage boot loader

• Signing Key Type—Specifies where the boot ROM firmware should retrieve the
signing keys from. Signing keys can be stored in one of the following locations:

— User—Public key is stored boot loader image header

Note: This is a non-secure configuration for testing only.

— Fuse—Hash of public key is stored in user fuses

— FPGA—Public key stored in FPGA memory.

For more information about signing keys, refer to the "Signing Key Types" table in
"Programming the Secure Signing Key".

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
21

https://www.altera.com/documentation/suc1427117768942.html#suc1427121205159
https://www.altera.com/documentation/lro1402536290550.html#lro1402428237110
https://www.altera.com/documentation/lro1402536290550.html#lro1436891724278

• Signing Key Pair File—File name of signing key pair (generated by OpenSSL)

• Signing Key FPGA Offset—Location of public signing key, if stored in FPGA
memory.

Boot loader generator encryption settings:

• Enable Boot Loader Encryption—When this option is turned on, generate an
encrypted second-stage boot loader.

• Encryption Key File—Name of AES encryption key file.

• Encryption Key Name—AES encryption key name (specified in the key file)

Related Links

Programming the Secure Signing Key on page 13

Secure Boot Image Tool

The secure boot image tool, alt-secure-boot, applies the security settings to the
second-stage boot loader image.

If the boot loader is to be authenticated, the secure boot image tool signs the boot
loader image with the private key from the previously-generated key pair file. The
boot loader generator invokes the tool with the sign option and associated
parameters from the security settings, as follows:

$ alt-secure-boot sign [<param1> <param2> ...]

If the boot loader is to be encrypted, the secure boot image tool encrypts the boot
loader image with the key from the previously-generated AES key file. The boot loader
generator invokes the tool with the encrypt option and associated parameters from
the security settings, as follows:

$ alt-secure-boot encrypt [<param1> <param2> ...]

Related Links

• Generating the Signing Key Pair with OpenSSL on page 14

• Encrypting the Boot Image and Configuration File on page 18

• Appendix A: SoC EDS Secure Boot Image Tool: alt-secure-boot on page 30
Descriptions of all tools used in the secure boot system examples

• Intel SoC FPGA Embedded Design Suite User Guide

Boot Image Format Tool

When you are developing a secure boot loader, you use the boot image format tool to
combine up to four boot images to be stored in flash or FPGA memory.

The Arria 10 SoC boot ROM firmware supports up to four boot loader images in flash
or FPGA memory, as described in the Arria 10 SoC Boot User Guide. When you create
a secure boot loader, you must perform an extra step to combine multiple boot loader
image files into a single image file.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
22

https://www.altera.com/documentation/lro1402536290550.html#lro1402428237110

The SoC EDS includes the boot image format tool, alt-image-cat, to combine up to
four boot loader images and concatenate them into a single image file. Because the
resulting image might span multiple flash memory partitions, the boot image format
tool ensures that the images are aligned properly to partition boundaries.

The boot image format tool formats the boot loader image after it is built. You invoke
this tool from the SoC EDS embedded command shell as follows:

$ alt-image-cat <input_image> <input_image2> –o <output_image> –A <alignment
size>

The input files are .bin or .abin files that are typically generated by the boot loader
generator. The output file is also a .bin or .abin file.

Related Links

• Creating a Secure Boot System on page 15

• Intel SoC FPGA Embedded Design Suite User Guide

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
23

https://www.altera.com/documentation/lro1402536290550.html#lro1402428237110

Secure Boot Examples

You can create a secure boot loader image for authentication, encryption, or both.
"Creating a Signed Second-Stage Boot Loader Image" and "Creating an Encrypted
Second-Stage Boot Loader Image" show examples of these processes.

Creating a Signed Second-Stage Boot Loader Image

The following example shows how to perform the following tasks:

1. Create a secure signing key for boot loader image authentication, with the user
signing key type.

2. Generate and build a signed boot loader image with the secure signing key, using
the SoC EDS.

3. Demonstrate secure boot using the signed boot loader image.

User signing key types are described in "Programming the Secure Signing Key".

1. Launch the boot loader generator from the embedded command shell with the
following command

$ bsp-editor &

For general information about the boot loader generator, refer to "Second Stage
Bootloader Support Package Generator" in the Intel FPGA SoC Embedded Design
Suite User Guide.

2. Create a new boot loader BSP for the Intel Arria 10 HPS.

For instructions to create a boot loader, refer to "BSP Generator Graphical User
Interface" in the Intel FPGA SoC Embedded Design Suite User Guide.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
24

Figure 14. Creating a New Second-Stage Boot Loader in the Boot Loader Generator
The boot loader generator dialog box

3. In the embedded command shell, change directories to the newly created boot
loader folder (BSP target directory), for example:

$ cd <SoC EDS installation directory>/examples/hardware/ \
 a10_soc_devkit_ghrd_sb_auth/software/uboot_bsp

4. Type the following make command to generate a signing key pair stored in a key
pair file.

$ make generate-signing-key-pair-file

5. Type the following OpenSSL command to show the contents of the key pair file
and verify that it has been correctly created:

$ openssl ec –in root_key.pem –noout –text

Note: The Generating the Signing Key Pair with OpenSSL on page 14 section
describes this step in detail.

The key file contents should be similar to the following:

read EC key
Private-Key: (256 bit)
priv:
00:85:fa:a0:18:e8:97:72:fd:d4:19:07:c0:d8:09:
ae:e1:73:e8:80:fa:cf:35:bb:12:24:19:ec:7f:51:
56:34:f4
pub:
04:c1:a7:ba:ed:40:d6:0e:cc:08:97:c4:10:16:ac:
81:8b:33:73:ce:e2:d7:af:d6:78:ac:ea:48:f7:10:
b2:80:c4:c4:ef:de:d5:c5:03:76:c5:1c:62:04:72:
e7:1f:f7:32:aa:4c:a6:83:70:ae:b5:39:25:b1:e6:
51:0a:3a:74:ba
ASN1 OID: prime256v1
$

6. Apply security settings for authentication as shown in the following figure.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
25

Figure 15. Security Settings in the Boot Loader Generator

• Turn on enable_bootloader_signing in the main boot loader generation
settings.

• Set signing_key_type to user.

• Set signing_key_pair_file to the name of the file you created in the
previous steps.

7. Click Generate to generate the secure boot loader source.

8. Exit the boot loader generator.

9. On the command line, navigate to the boot loader source folder.

10. Build the boot loader image with the make command:

$ make

11. Verify that the signed boot loader image was built by verifying that the following
file exists:

u-boot_w_dtb-mkpimage-encrypted-x4.abin

12. Store the signed boot loader image from 11 on page 26 in the appropriate flash
boot device partition and reset the device.

Related Links

• Programming the Secure Signing Key on page 13

• Creating an Encrypted Second-Stage Boot Loader Image on page 27

• Second Stage Bootloader Support Package Generator
Information about the boot loader generator in the Intel SoC FPGA Embedded
Design Suite User Guide

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
26

https://www.altera.com/documentation/lro1402536290550.html#lro1436891683532

• BSP Generator Graphical User Interface
In the Intel SoC FPGA Embedded Design Suite User Guide: detailed information
about creating a boot loader

Creating an Encrypted Second-Stage Boot Loader Image

The following example demonstrates how to perform the following tasks:

• Create an encryption key

• Generate and build an encrypted boot loader image using the SoC EDS

• Store the encryption key in the device's volatile key storage

• Demonstrate the secure boot using the encrypted boot image and encryption key

1. Launch the boot loader generator from the embedded command shell with the
following command.

$ bsp-editor &

For general information about the boot loader generator, refer to "Second Stage
Bootloader Support Package Generator" in the Intel SoC FPGA Embedded Design
Suite User Guide.

2. Create a new boot loader BSP for the Arria 10 HPS.

For instructions on how to create a boot loader, refer to "BSP Generator Graphical
User Interface" in the Intel SoC FPGA Embedded Design Suite User Guide. Also
refer to the "Creating a New Second-Stage Boot Loader in the Boot Loader
Generator" figure in "Creating a Signed Second-Stage Boot Loader Image".

3. Create an AES encryption key file using the Quartus Prime Convert Programming
File tool.

For details, refer to "How to Generate the Single-Device .ekp File and Encrypt
Configuration File Using Software with the Command-Line Interface" in AN-556:
Using the Design Security Features in Altera FPGAs.

4. Apply security settings for encryption as shown in the following figure.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
27

https://www.altera.com/documentation/lro1402536290550.html#lro1436891690403

Figure 16. Creating an Encrypted Second-Stage Boot Loader Image in the Boot Loader
Generator

• Turn on enable_bootloader_encryption in the main boot loader generation
settings.

• Specify the name of the encryption key file.

• Specify the encryption key name (as found in the encryption key file).

5. Click Generate to generate the secure boot loader source.

6. Exit the boot loader generator.

7. On the command line, navigate to the boot loader source folder.

8. Build the boot loader image with the make command:

$ make

9. Verify that the encrypted boot loader image was built by verifying that the
following file exists:

u-boot_w_dtb-mkpimage-encrypted-x4.abin

10. Store the AES encryption key in the device.

For details, refer to "Steps for Implementing a Secure Configuration Flow" in
AN-556: Using the Design Security Features in Altera FPGAs.

11. Save the encrypted boot loader image from 9 on page 28 in the appropriate flash
boot device partition using the SD card boot utility.

Note: Refer to the SD Card Boot Utility chapter of the Intel SoC Embedded FPGA
Design Suite User Guide.

12. Generate the encrypted key programming file using the encrypted key file
generated in 3 on page 27.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
28

Usage:

quartus_cpf --key <encryption key file: key name> <design.sof> \
 <encryption key programming file>

Example:

$ quartus_cpf --key encrypt_key.key:key1 ghrd_10as066n2.sof encrypt_key.ekp

This example generates encrypt_key.ekp.

13. Make sure the updated SD card (11 on page 28) is inserted into the kit.

Note: Do not power on the system in this step.

14. Connect the device to your development platform using the Intel FPGA Download
Cable cable on the USB JTAG port, and power on the system.

Note: The boot loader code will not execute at this time, because the encryption
key has not been stored.

15. From the SoC EDS embedded command shell, verify that the device is connected,
and obtain the JTAG interface IDs, by running one of the following commands:

• $ quartus_pgm -c USB-BlasterII –a

• $ jtagconfig -N

If the device is successfully connected, either of the commands above displays the
Intel FPGA Download Cable II device JTAG interface IDs and other information.

Note: Important! For the remaining steps DO NOT power off the system.

16. Program the encryption key using the encryption programming key file from 12 on
page 28.

quartus_pgm -c USB-BlasterII -m jtag -o "p;encrypt_key.ekp;10AS066H2ES" \
 -o "s;SOCVHPS"

Note: Refer to the device Intel FPGA Download Cable II interface IDs displayed in
15 on page 29.

Note: Do not power off system until the key has been programmed.

17. After the key has been successfully programmed, the system will automatically
reset and execute the encrypted boot image.

Note: You must repeat 14 on page 29 each time the system has been power
cycled.

Related Links

• Creating a Signed Second-Stage Boot Loader Image on page 24
Boot loader generator dialog box

• BSP Generator Graphical User Interface
In the Intel SoC FPGA Embedded Design Suite User Guide: detailed information
about creating a boot loader

• How to Generate the Single-Device .ekp File and Encrypt Configuration File Using
Quartus Prime Software with the Command-Line Interface

In AN-556: Using the Design Security Features in Altera FPGAs

• Steps for Implementing a Secure Configuration Flow
In AN-556: Using the Design Security Features in Altera FPGAs

• The SD Card Boot Utility chapter of the Intel SoC FPGA Embedded Design Suite
User Guide

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
29

https://www.altera.com/documentation/lro1402536290550.html#lro1436891690403
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500758537
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500758537
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500754403
https://www.altera.com/documentation/lro1402536290550.html#lro1404171917604
https://www.altera.com/documentation/lro1402536290550.html#lro1404171917604

Appendix A: SoC EDS Secure Boot Image Tool: alt-secure-boot

Example 1. Secure Boot Image Tool Usage for Boot Image Authentication (Signing)

alt-secure-boot sign --help
usage:
 alt-secure-boot sign [-h] \
 --inputfile INPUTFILE --outputfile OUTPUTFILE \
 [--fuseout FUSEOUT] [--pubkeyout PUBKEYOUT] \
 [--rootkey-type {fuse,fpga,user}] \
 [--keypair KEYPAIR] \
 [--fpga-key-offset FPGA_KEY_OFFSET]

Sign a bootloader image to allow BootROM verification

optional arguments:
 -h, --help show this help message and exit
 --inputfile INPUTFILE, -i INPUTFILE
 Bootloader image to sign
 --outputfile OUTPUTFILE, -o OUTPUTFILE
 Signed output image
 --fuseout FUSEOUT, -fo FUSEOUT
 Hash of root public key, to be burned into device
 fuses
 --pubkeyout PUBKEYOUT, -pko PUBKEYOUT
 Root public key in raw data form. This data may then
 be built into the FPGA image for usage with
 --rootkey-type=fpga
 --rootkey-type {fuse,fpga,user}, -t {fuse,fpga,user}
 The trusted root key's type. (default: fuse) 'fuse':
 embed root pubkey in image. BootROM verifies its hash
 against device fuses. 'fpga': fetch trusted root
 pubkey from location in FPGA memory. 'user': embed
 root pubkey in image. BootROM does not verify.
 --keypair KEYPAIR, -k KEYPAIR
 Signature keypairs specified in order from the
 trusted root key to final user key
 --fpga-key-offset FPGA_KEY_OFFSET
 Offset from H2F bridge base address (0xC0000000) to
 location of logic-embedded root public key. Used for
 '--rootkey-type fpga' authentication.

Example 2. Secure Boot Image Tool Usage for Boot Image Encryption

alt-secure-boot encrypt --help
usage:
 alt-secure-boot encrypt [-h] \
 --inputfile INPUTFILE --outputfile OUTPUTFILE \
 --key KEY [--non-volatile]

Convert a pimage into an encrypted boot image

optional arguments:
 -h, --help show this help message and exit
 --inputfile INPUTFILE, -i INPUTFILE
 Bootloader image to encrypt
 --outputfile OUTPUTFILE, -o OUTPUTFILE
 Encrypted output image
 --key KEY, -k KEY File containing symmetric key to use for encryption
 --non-volatile Decryption key stored in non-volatile fuses, instead
 of battery-backed storage

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
30

Appendix B: Frequently Asked Questions

Table 4. Frequently Asked Questions (FAQs) Summary Table

Topic

What are the secure configurations for HPS JTAG debug and access? How are these affected during warm or cold reset? on
page 32

Can the HPS perform decryption of the boot image instead of the FPGA CSS? on page 32

What happens if the first stage boot ROM is unsuccessful in authenticating the second-stage boot loader? on page 32

Can you use the first-stage root key as the subsequent stage root key? on page 32

When the second-stage image is authenticated, is the image header only copied to on-chip RAM for authentication? on
page 33

Can the AES encryption key be updated by the HPS using JTAG hosting? on page 33

How does U-Boot (SSBL) authenticate next stage boot images? on page 33

Which elliptical cryptography is used for boot image signing and authentication? on page 33

How do I generate a signing key pair? on page 33

Where can I store the signing keys for second-stage boot loader authentication? on page 33

What type of cryptography is used for boot image encryption and decryption? on page 34

What FPGA locations are available for AES key storage? on page 34

How do I generate an AES key to encrypt a boot image? on page 34

How is secure boot defined within the Intel Arria 10 SoC product family? on page 35

What security choices are available for the second-stage boot image or user software? on page 35

Where is the authentication of the boot image performed? on page 35

How can I configure the Arria 10 SoC device so that it always performs authentication or authentication and decryption? on
page 35

How can I program the key authentication key (KAK) into the Arria 10 SoC device? on page 36

How can I configure the second stage boot loader image for the correct authentication signing key type? on page 36

How do I configure the second-stage boot loader image for encryption using the pre-generated AES key? on page 36

Is the ECDSA private and public key pair that is used for signing the boot image also used for authentication of the FPGA
image? on page 36

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
31

What are the secure configurations for HPS JTAG debug and access? How
are these affected during warm or cold reset?

Two efuse bits, dbg_disable_access and dbg_lock_JTAG, control the secure JTAG
debug configurations. You can read the programmed efuse values for your device
through the HPS_fusesec register. A bit value of 1 in the HPS_fusesec register
represents a "blown" fuse state and a 0 represents an "unblown" fuse state.

The table below describes the possible HPS configurations with JTAG. The
dbg_access_f and dbg_lock_JTAG columns reflect the efuse value of these bits in the
HPS_fusesec register. If both efuse are unblown then after the device exits reset, full
JTAG access is possible. This configuration is the default configuration.

Table 5. JTAG Security Configuration Options

JTAG
Configuration

dbg_disable_a
ccess

dbg_lock_JTAG Description

HPS JTAG
include

0 1 • This configuration includes the HPS in the JTAG chain by
default.

• Your software application cannot remove the HPS from the
JTAG chain.

• This configuration allows HPS debug from power-on reset.

HPS JTAG
exclude

1 1 Permanently exclude the HPS from the JTAG chain.

Default 0 0 Enable JTAG with software debug programmability.

Can the HPS perform decryption of the boot image instead of the FPGA
CSS?

The HPS portion of the SoC does not support AES operations. It can only perform
public key-based authentication. The HPS can, however, push the boot image into the
FPGA CSS and perform the same decryption used in the FPGA configuration flow.

When decryption is complete, the CSS returns the image to the HPS and the HPS uses
that image as the boot image. The HPS and FPGA share the same AES root key which
is stored in efuse. The CSS uses a simple key derivation function, AES (efuse or
BBRAM key, #constant) for the HPS and FPGA configuration images.

What happens if the first stage boot ROM is unsuccessful in
authenticating the second-stage boot loader?

The first stage boot ROM attempts to authenticate all four second stage images that
are stored in the boot partitions of your flash device. If the device cannot authenticate
the images or identifies the images as corrupt, then the boot ROM attempts to execute
a fall back image located in the on-chip RAM of the FPGA.

Can you use the first-stage root key as the subsequent stage root key?

Intel recommends using a separate final signing key between different boot stages.
Intel does not recommend using a root key for the first-stage or subsequent stage
boot loader direct signing. Sharing the same root key between the first-stage and
subsequent stage boot loader is only successful if you use the same ECC algorithm for
each.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
32

When the second-stage image is authenticated, is the image header only
copied to on-chip RAM for authentication?

The entire boot loader image is always copied into the on-chip RAM and authenticated.

Can the AES encryption key be updated by the HPS using JTAG hosting?

You can only update the AES key in volatile memory through a connected JTAG
interface. The HPS does not support JTAG hosting.

How does U-Boot (SSBL) authenticate next stage boot images?

The current GSRD U-Boot does not feature image authentication beyond the second
stage bootloader (U-Boot). You can enable U-Boot to authenticate subsequent boot
images (Linux*) by configuring or adding authentication capability to U-Boot.
Reference the latest U-Boot releases for support on authentication. The user may also
want to add specific third-party or open source solutions.

Which elliptical cryptography is used for boot image signing and
authentication?

The Intel Arria 10 SoC device family uses the elliptical curve digital signing algorithm
with NIST-approved ECDSA on NIST P-256 curve for signing and authentication of
second-stage boot images.

How do I generate a signing key pair?

You may use the open source OpenSSL toolkit or your own tool to generate a key pair
file that contains a private and public key pair. The SoC EDS boot tool requires a key
pair file for signing an image. If you decide to use OpenSSL, you may refer to the
OpenSSL website for more information about how to use the tool.

Related Links

www.openssl.org
Detailed help and information for the OpenSSL toolkit is available on the OpenSSL
website.

Where can I store the signing keys for second-stage boot loader
authentication?

You can store the signing keys for second-stage boot loader authentication by the
Intel Arria 10 SoC device in:

Table 6. Root Key Types

Root Key Key Type Description

Secure User Key Fuse User generates secure key pair for boot ROM to attempt authentication.
The SHA256 hash of the public key is stored in the User Access Fuses
(UAF) of the device. This configuration provides a secure boot.

continued...

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
33

https://www.openssl.org/

Root Key Key Type Description

For information about secure fuses, refer to the Secure Fuses section in
the SoC Security chapter of the Intel Arria 10 Hard Processor System
Technical Reference Manual.

FPGA Key FPGA The public key originates from the user bitstream. The key is stored in
FPGA on-chip RAM and accessed by the first stage boot ROM for image
authentication.

Unsecured User Key User User generates a secure key pair but it is not stored on the device. This
configuration is unsecure and is for testing only. The user includes the
root key result in the image header and the boot ROM uses it for
authentication.

Related Links

Secure Fuses
For basic information about security fuses, refer to "Secure Fuses" in the SoC
Security chapter of the Intel Arria 10 SoC FPGA Hard Processor System Technical
Reference Manual.

What type of cryptography is used for boot image encryption and
decryption?

The Intel Arria 10 SoC device family supports secure boot using the Advanced
Encryption Standard (AES) encryption with a 256-bit key length. You can encrypt your
boot image using quartus_cpf tools. The Arria 10 SoC AES engine only supports
decryption.

What FPGA locations are available for AES key storage?

Within the FPGA, you can store the public (root) key in key registers located in:

• User fuses (non-volatile memory)

• Battery-backed RAM (volatile memory) within the FPGA

The contents of the volatile key registers are retained between power-cycles with
battery power. Non-volatile key registers are fuse-based and are one-time
programmable.

How do I generate an AES key to encrypt a boot image?

The AES key file (.key) is a text file that you generate using a true random number
generator (TRNG) or some other trusted tool. Refer to AN-556: Using the Design
Security Features in Altera FPGAs for the content format of this file.

Related Links

• Encrypting the Boot Image and Configuration File on page 18
For more information about using quartus_cpf to store keys

• AN-556: Using the Design Security Features in Altera FPGAs
For content format of the AES key file

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
34

https://www.altera.com/documentation/sfo1410070178831.html#suc1410359169055
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500731946

How is secure boot defined within the Intel Arria 10 SoC product family?

Within the Intel Arria 10 SoC device family, a secure boot implies that before the
system loads any user (non-device modifiable) software, such as a second-stage boot
loader image, it:

• Checks the image for authenticity

• Decrypts any encrypted image before signing it as certified

What security choices are available for the second-stage boot image or
user software?

Authentication is provided for the second-stage boot loader code and both the HPS
and FPGA can utilize the AES algorithms in the Configuration Subsystem (CSS) to
decrypt boot images and POF files, respectively.

Three levels of boot are available to the device:

• Authentication only: The second-stage boot loader code is not encrypted, but
there are public key signatures attached to the image and the code only executes
if all of the signatures pass. ECDSA256 (SHA 256) is used for authenticated boot.

• Decryption only: The user boot code is encrypted and must be decrypted before
execution. AES-based algorithms in the FPGA are used for decryption.

• Authentication and Decryption: The user boot code is encrypted and signed.

If authentication and decryption are enabled, the data is first authenticated and then
decrypted using the AES algorithms. Authentication is performed using the public key
authorization key (KAK) held in the user fuses. The KAK can be 256 bits. The KAK
public key authentication fuses are lockable by the user in groups of 64 bits or less.

Where is the authentication of the boot image performed?

The HPS boot ROM authenticates the boot image in the SoC. The FPGA does not
perform this authentication.

Where is decryption of the boot image performed?

If the boot ROM detects that the boot image is encrypted, it sends the image to the
CSS for the AES to perform decryption.

How can I configure the Arria 10 SoC device so that it always performs
authentication or authentication and decryption?

You can ensure that the Intel Arria 10 SoC device always performs a signed
authentication check or an authentication check with runtime decryption by
programming the device fuses for these features and by using the required security
keys. Specifically, you must:

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
35

• Program the aes_en_f fuse so that an AES decryption of a flash image is always
performed.

• Program the kak_src_f fuse to indicate where the key authorization key (KAK)
resides

• Program the kak_len_f fuse to configure the length of the KAK

• Program the authen_en_f fuse so that HPS authentication is required for all flash
images prior to execution

• Program the security authorization key in the location you have selected

How can I program the key authentication key (KAK) into the Arria 10
SoC device?

You can program the KAK into the device fuses permanently using the Intel FPGA
Download Cable and the programmer tool installed with the Design Tool Suite.

How can I configure the second stage boot loader image for the correct
authentication signing key type?

You must select the appropriate security settings for authentication before generating
the second-stage boot loader in the SoC EDS bsp-editor. After the settings are applied,
you build the boot loader and the configurations are incorporated in the image. After
these steps, you must build and sign the boot loader.

If you use the SoC EDS bsp-editor tool to generate the boot loader source, then you
must build the image and then use alt-secure-boot tool to sign the final image.

How do I configure the second-stage boot loader image for encryption
using the pre-generated AES key?

If you require a signed and encrypted second-stage boot loader image for
authentication and decryption, then the image is encrypted prior to signing. Otherwise
the image is encrypted after the source is generated and the image is built. You
encrypt the final image using the SoC EDS secure boot tool, alt-secure-boot tool.
You must select the appropriate security settings for encryption before generating the
second-stage boot loader in the alt-secure-boot tool. After the settings are applied,
you must build the boot loader image to include the configuration.

Is the ECDSA private and public key pair that is used for signing the boot
image also used for authentication of the FPGA image?

The ECDSA signing key pair is only used for signing of the second-stage boot image.
The FPGA does not support public key-based authentication.

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
36

Revision History

Date Version Changes

November 2017 2017.11.06 • Updated "Secure Boot Stages" figure in Secure Boot Stages on page 6
to include more stage details

• Added Third and Fourth Stages on page 7 subsection to the Secure
Boot Stages topic.

• Clarified authentication process in Software Image Authentication
section and added the subsections:
— Digital Signing on page 8
— Root of Trust and Root Key on page 9
— Authentication of the Second-Stage Boot Loader on page 9
— Security Level Staging on page 10
— Signed Image on page 11
— Root Key Types on page 12
— Root Public Key Authentication on page 12

• Added Appendix B: Frequently Asked Questions on page 31

March 2016 2016.03.29 Initial release

Intel® Arria® 10 SoC Secure Boot User Guide

AN-759 | 2017.11.06

Intel® Arria 10 SoC Secure Boot User Guide
37

	Intel® Arria® 10 SoC Secure Boot User Guide
	Prerequisites
	References
	Secure Boot Stages
	Root of Trust
	First-Stage Boot Loader (ROM)
	Second-Stage Boot Loader
	Third and Fourth Stages

	Intel Arria 10 SoC Secure Boot Architecture
	Software Image Authentication
	Digital Signing
	Root of Trust and Root Key
	Authentication of the Second-Stage Boot Loader
	Security Level Staging
	Signed Image
	Root Key Types
	Root Public Key Authentication
	Test Secure Boot Authentication
	Programming the Secure Signing Key
	Boot Image Signing Flow
	Boot Image Authentication

	Generating the Signing Key Pair with OpenSSL

	Overview of the Secure Boot Flow
	Creating a Secure Boot System

	Software Image Encryption
	AES Encryption and Decryption
	Encrypting the Boot Image and Configuration File
	Boot Image Encryption Flow
	Programming the AES Encryption Key

	Software Image Authentication and Encryption
	SoC EDS Tools for Secure Boot
	Boot Loader Generator
	Security Settings in the Boot Loader Generator

	Secure Boot Image Tool
	Boot Image Format Tool

	Secure Boot Examples
	Creating a Signed Second-Stage Boot Loader Image
	Creating an Encrypted Second-Stage Boot Loader Image

	Appendix A: SoC EDS Secure Boot Image Tool: alt-secure-boot
	Appendix B: Frequently Asked Questions
	What are the secure configurations for HPS JTAG debug and access? How are these affected during warm or cold reset?
	Can the HPS perform decryption of the boot image instead of the FPGA CSS?
	What happens if the first stage boot ROM is unsuccessful in authenticating the second-stage boot loader?
	Can you use the first-stage root key as the subsequent stage root key?
	When the second-stage image is authenticated, is the image header only copied to on-chip RAM for authentication?
	Can the AES encryption key be updated by the HPS using JTAG hosting?
	How does U-Boot (SSBL) authenticate next stage boot images?
	Which elliptical cryptography is used for boot image signing and authentication?
	How do I generate a signing key pair?
	Where can I store the signing keys for second-stage boot loader authentication?
	What type of cryptography is used for boot image encryption and decryption?
	What FPGA locations are available for AES key storage?
	How do I generate an AES key to encrypt a boot image?
	How is secure boot defined within the Intel Arria 10 SoC product family?
	What security choices are available for the second-stage boot image or user software?
	Where is the authentication of the boot image performed?
	Where is decryption of the boot image performed?
	How can I configure the Arria 10 SoC device so that it always performs authentication or authentication and decryption?
	How can I program the key authentication key (KAK) into the Arria 10 SoC device?
	How can I configure the second stage boot loader image for the correct authentication signing key type?
	How do I configure the second-stage boot loader image for encryption using the pre-generated AES key?
	Is the ECDSA private and public key pair that is used for signing the boot image also used for authentication of the FPGA image?

	Revision History

