New or innovative technologies are not always the solution for diagnosing novel diseases. The automation of diagnostic features developed through collaboration between Samsung and Intel is a great example. Samsung is working to improve the efficiency of new diagnostic features, as well as healthcare services, and the Intel® Distribution of OpenVINO™ toolkit has been a great ally in reaching these goals.

—Won-Chul Bang, Corporate VP, Head of Product Strategy Team, Samsung Medison

Samsung Medison

“New or innovative technologies are not always the solution for diagnosing novel diseases. The automation of diagnostic features developed through collaboration between Samsung and Intel is a great example. Samsung is working to improve the efficiency of new diagnostic features, as well as healthcare services, and the Intel® Distribution of OpenVINO™ toolkit has been a great ally in reaching these goals.”

Obstetric ultrasound requires taking measurements with a high degree of accuracy to engage in data-driven decision-making for maternal and fetal patient safety. However, the process of obtaining those measurements has generally been a tedious clinical task, prone to intraobserver variation. Now, Samsung Medison has developed two automated ultrasound measurement technologies to inform clinical decisions during pregnancy and birth.

Samsung’s upgraded BiometryAssist™ feature automates and simplifies the process of taking fetal measurements during prenatal ultrasound scans with over 97 percent accuracy while its new LaborAssist™ technology automatically estimates the fetal angle of progression (AoP) during labor for a better understanding of fetal descent and progress without the need for invasive digital vaginal examinations.

Benefits of Samsung Medison BiometryAssist™ and LaborAssist™ automatic ultrasound measurement include:

• **Accurate, fast measurement**: Both the BiometryAssist and LaborAssist features offer accurate measurements quickly to verify measurements for high volumes of patients.

• **Streamlined clinical workflows**: Single-button measurement enables a less obtrusive and tedious clinical workflow during ultrasound examinations, as compared to typical caliper-style measurements.

• **Improved clinician/patient communication**: Visualization tools in LaborAssist make it easier for patients to understand what the AoP means for labor progress and fetal descent, helping clinicians communicate the need for selecting a birth method.

• **Fewer invasive clinical exams**: Using LaborAssist for transperineal ultrasound allows a reduction in manual examinations, which carry a risk of infection and are found uncomfortable and invasive by laboring mothers.

Challenges: Analyzing complex ultrasound images including fetal positioning and cartilage location

Clinicians are often expected to perform a large number of fetal ultrasounds per day, and many of these ultrasounds present significant challenges to accurate biometry. Because clinicians must repeat the same exams frequently, repetition and fatigue can lead to intraobserver variance in fetal biometry.

Obtaining head circumference (HC) and abdominal circumference (AC) measurements is necessary to assess proper fetal growth, but for images obstructed by the placenta or shadowing, accurate measurements were difficult to obtain with manual techniques or previous attempts at biometric automation. In addition, an overall increase in maternal age has resulted in a greater need for imaging to help
ensure good patient outcomes. But obtaining consistent measurements is difficult, with high variance in accuracy between experienced and new practitioners.

During labor, measuring fetal descent was originally performed with invasive digital examinations. However, automated analysis of the AoP—the angle measurement between the long axis of the pubic symphysis and the tangent line to the fetal skull—offered a more accurate understanding of the speed of labor progression. Accurately determining this angle can also assist in making a clinical determination that a caesarean delivery may be indicated due to lack of progress. Unlike the pelvic bones, the cartilage of the pubic symphysis is not always easily distinguishable from the surrounding tissue, creating a challenge for manual and automated measurement.

Solution: Accurate, automated measurement for faster, more-consistent ultrasound imaging

In a typical clinical setting, manual biometry of fetal ultrasounds is a time-consuming process, requiring the clinician to press a button to measure each end of the measurement, then validate the measurement by remeasuring. Due to fetal movement and positional changes, these measurements can be difficult to obtain. Using improved algorithm-based Samsung BiometryAssist™, optimized with the Intel® Distribution of OpenVINO™ toolkit, semiautomated fetal biometry can obtain a 97 to 99 percent accurate measurement for biparietal diameter (BPD), femur length (FL), head circumference (HC), and abdominal circumference (AC).1 These measurements can be performed with a single button press in as little as half a second, drastically reducing the amount of time spent on biometry during the prenatal exam while helping clinicians maintain consistency without fatigue. Particularly in high-volume clinical environments, this can represent significant time savings and enable more measurements of fetal growth to be taken.

LaborAssist™ works by automatically detecting the pubis outline and fetal head outline in cross section, segmenting the outlines for maximum accuracy from a single button touch. Measurements take an average of 1.5 seconds. Images are obtained through an intrapartum transperineal ultrasound scan, which will then be overlaid with the AoP and head direction based on fetal measurements. In a clinical assessment of LaborAssist accuracy, AoP could be determined within ± 8°, a narrower range than reported intraobserver (8°) and interobserver (14°) errors from manual measurements.1,2

In addition to measuring ultrasound images, LaborAssist offers several convenient visualization tools that can make it easier for clinicians and patients to understand labor progress. Users can review a full labor history, including the full series of labor images and measurement results in a 3-by-2 layout. Clinicians can also play a demo video animation for patients based on their measured AoP, for an intuitive visual representation of labor progress with more-comprehensible images than an ultrasound cross section.
Conclusion: Fast, accurate obstetric ultrasound measurement powered by Intel® technology

Clinicians today must perform a large number of ultrasound examinations, both before and during labor. Obtaining measurements manually based on ultrasound images is an error-prone process, with accuracy contingent on provider experience and fatigue levels. To streamline these measurement workflows, Samsung Medison created BiometryAssist for automated biometry during prenatal ultrasound exams and LaborAssist for automated measurement of the AoP and assessment of fetal descent during labor.

With Intel® processors and the Intel Distribution of OpenVINO toolkit, BiometryAssist and LaborAssist offer near-instantaneous measurements based on fetal and maternal imaging. Using a simple single-step workflow, these features offer consistent measurements, without the need for clinicians to repeat manual measurements many times throughout the day. BiometryAssist and LaborAssist help clinicians to better understand and assess patient needs faster, with fewer invasive exams and a high degree of clinical accuracy.

Learn more

Intel and Samsung Medison have agreed to collaborate on developing several new ultrasound technologies as well as a future ultrasound platform. To discover how BiometryAssist and LaborAssist can streamline clinician workflows and improve patient experience during pregnancy and birth, download the white paper or report.

About Samsung Medison

Samsung Medison, an affiliate of Samsung Electronics, is a global medical equipment company founded in 1985. With a mission to bring health and well-being to people’s lives, the company manufactures diagnostic ultrasound systems around the world across various medical fields.

samsunghealthcare.com

How it works in brief

To develop these innovative new features, Samsung selected the Intel Distribution of OpenVINO toolkit as a software solution that could run on their existing hardware platform, without requiring modifications or upgrades to existing hardware. The toolkit provided the speed and performance—as well as scalability and strong support—that Samsung’s developers needed to quickly create a solution accurate enough for use in clinical settings.

Using machine vision algorithms to analyze ultrasounds, LaborAssist is capable of measuring the AoP to within 8° with 95 percent confidence.¹ This is superior to human observation, where intraobserver variance has been measured at 14° at a 95 percent confidence interval.²

Powered by an Intel® Core™ i3 processor and accelerated using the Intel Distribution of OpenVINO toolkit, inference was sped up by 4.7x for BiometryAssist and LaborAssist, compared to inferencing without optimizations.¹ This result was achieved through close collaboration between Intel and Samsung Medison software engineers.

About Samsung Medison

Samsung Medison, an affiliate of Samsung Electronics, is a global medical equipment company founded in 1985. With a mission to bring health and well-being to people’s lives, the company manufactures diagnostic ultrasound systems around the world across various medical fields.

samsunghealthcare.com

1. Source: Internal Samsung testing.
 System configuration: Intel® Core™ i3-4100Q CPU @ 2.4 GHz, 8 GB memory; OS: 64-bit Windows 10.
 Inference time without OpenVINO enhancements was 480 milliseconds. Inference time with OpenVINO enhancements was 85 milliseconds.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel’s Global Human Rights Principles. Intel® products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right.

Performance varies by use, configuration and other factors. Learn more at intel.com/PerformanceIndex.

Intel® technologies may require enabled hardware, software, or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product user and reference guides for more information regarding the specific instruction sets covered by this notice.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

0421/DC/CMD/PDF