
1
Intel Proprietary

White Paper
Distributed Computing

Sentient Agent Bundle Resource
Architecture
A system of systems solution for operating in hostile edge-to-cloud environments utilizing
artificial intelligence to process, analyze and provide decision support on large volumes of
data at the edge in the data center and the cloud

Authors
Darren W Pulsipher
Chief Solution Architect

Dr. Anna Scott
Chief Edge Architect

David Richard
Lead Solution Architect

Table of Contents
Introduction 1

Problem Statement 1

Design Pattern Concepts 2

Data Stream Pattern 2

Container Bundling in

DevSecOps 2

Container Sidecar Pattern ... 3

Strategy Pattern (Policy

Management) 5

Zero Trust Security 5

Reinforced Collective

Learning 6

Solution .. 7

SABR Logical Architecture . 7

Benefits .. 7

Conclusion 7

Introduction

As edge devices become more capable of processing data at the edge–including
AI inference, data normalizations, encryption, and compression—organizations are
looking at new operating models to drive decision-making closer to where data is
generated and collected. This white paper aims to articulate the architecture and
design of a distributed data stream framework utilized to process large volumes of
data across a heterogeneous semi-connected ecosystem of edge devices named
sentient agent bundle resources (SABR).

Problem Statement

Edge Computing brings new challenges that solutions in the data center or the
cloud only do not have. Many organizations face edge ecosystems operating in a
denied, degraded, intermittent, or limited (DDIL) network environment requiring
systems that can work autonomously when network connectivity is in question.
Problems with heterogeneous hardware and software platforms, large data
generation and movement volume, and physical and cyber security make managing
applications and devices at the edge complex. So complex that the industry is
behind the projected adoption of edge computing.

Artificial intelligence (AI) is another technology that promises to open up new use
cases and unlock data power to accelerate decision-making is artificial intelligence
(AI). Moving AI to the edge accelerates decision-making by decreasing data
movement volume and moving decision-making close to data generation. Because
of the heterogeneity of edge computing, AI models are just as diverse as the types
of edge devices. Organizations require a mechanism to manage heterogeneous AI
models, data sources, and approaches in a unified manner across a distributed
ecosystem.

Organizations need a solution that provides the following:

• Security – Provides a hardware root of trust to match AI models with attested
hardware to prevent AI models from working outside the attested ecosystem. It
also prevents unverified and unattested models from running in the ecosystem.

• Manageability – AI models and algorithms are managed from a federated control
plane that contains deployment, updates, and decommissioning.

• Auditability – Changes in their AI models and algorithms are tracked from a
single management framework that can be audited.

• Visibility – Enabled operator awareness of node health, AI model deployments,
and operational efficiency.

• Reliability – Because the AI models are distributed across the ecosystem, there
is no single point of failure; operational availability is sustained.

• Resiliency – The system must run in a DDIL environment.

• Consistency – AI model consistency is essential in a mission-critical distributed
ecosystem. The approach must manage AI model divergence by keeping track

2
Intel Proprietary

of AI model changes.

• Simplification – The framework provides resiliency,
consistency, reliability, and security that all AI algorithms
require under DDIL conditions during distributed
operations. This simplification enables AI developers to
focus on the AI application, not the complex
environment.

• Scalability – System nodes can be added or removed
easily without shutting down or reconfiguring the system.
Streams and algorithms can also be easily scaled.

Design Pattern Concepts

The Sentient Agent Bundle Resource (SABR) provides an
architecture that utilizes well-known concepts and design
patterns to enable a resilient, easy-to-use architecture.
These design patterns are the data stream pattern,
container bundling in DevSecOps, container sidecar
pattern, strategy pattern (policy management), zero trust
architecture patterns, and reinforced collective learning
pattern.

Data Stream Pattern

The data stream is a mature concept that allows data to be
passed between a producer and a set of consumers without
direct coupling between the entities. This concept provides
the ability to deploy large numbers of producers and
consumers in the same ecosystem without the fragility of a
static coupled network. See Figure 1.

Figure 1: Data Stream Concept

A data stream is created when a producer (a service on a
server) publishes data on a topic. One or more consumers
subscribe to an issue and are notified when information is
published on the topic. The producer, the topic, and the
consumers create a data stream. Streams also contain a
stream function mechanism to transform data before
publication to the topic. These functions can also be utilized
to identify event conditions and enable controls on stream
management to subscribers for capabilities such as access,

routing, event-driven alerts, and data prioritization.

Data streams benefit from loosely coupling the producer
and consumer through an abstraction contained in the Pub-
Sub framework. This enables the producer and consumer to
operate independently of each other. This is beneficial
during intermittent communication conditions since the
consumer can continue to work even when not receiving
data from the producer. Another benefit is that the
producer can cache data if required and send it later. For
example, if a device operates disconnected, the producer
will cache the data and, when re-connected, publish the
topic again.

Before a producer publishes the data, it uses a
transformation algorithm to simplify or aggregate it. These
transformation algorithms can perform functions including
normalization, temporal compression, AI object detection,
data aggregation, etc. These transformations are invaluable
to getting the most compelling insight information to the
right consumers (decision-makers) at the right time.

Managing these data streams, interactions, and
transformation algorithms can only be accessed with a
common framework. Open-source and commercial stream
managers can manage the data streams across multiple
locations, states of connectivity, and hardware platforms.

Benefits

This concept provides several critical benefits for the highly
distributed, semi-connected environment.

• Dynamic heterogeneous mesh configurations.

• One or more consumers can subscribe to a topic
fostering the reuse of familiar producers.

• A consumer can also choose only to consume data when
a specific event occurs in a Data Stream.

• Resiliency when the network is down because a producer
caches the data and, when re-connected, publishes data
on the topic again.

Container Bundling in DevSecOps

Traditional DevSecOps pipeline pushes artifacts through a
development, build, test, and deploy pipeline that produces
an executable deployed into production environments. The
container ecosystem has made the development of highly
portable executables a reality by building container images
that can contain several artifacts required to configure,
secure, and execute microservices in any environment. See
Figure 2 for an example CIDO pipeline using Data Streams.

Figure 2: Bundling in DevSecOps

3
Intel Proprietary

Traditionally Data Streams are configured in the production
environment before applications are deployed. This pre-
configuration requires coordination between application
developers, system administrators, and program managers.
They sometimes lead to longer deployment cycle times.

Leveraging the DevSecOps pipeline with container
bundling means the container bunder contains the
application, the AI Model or data transformation
configurations, and the input & output stream
configurations. In this scenario, data streams are configured
at the deployment time of the container bundle, decreasing
the potential problems with data stream configurations.
Additionally, this bundling of all aspects of the data stream
provides a mechanism to deploy producers and consumers
of data streams anywhere in the edge ecosystem where
containers can be deployed. The name of these data-
transformation-centric applications is sentient agent
bundles (SAB).

Benefits

This concept provides several vital benefits for deploying
data streams across a distributed environment.

• Standard development and deployment of capabilities
across a heterogeneous ecosystem.

• Portability of solutions from the data center into the edge
devices.

• Decreased bandwidth to deploy only changes to bundles.

• Speed to deploy capabilities into the ecosystem.

Sentient Agent Bundle (Container Bundle)

The Sentient Agent Bundle (SAB) implements the
container bundle pattern. It contains all the data required to
deploy all microservices, stream configurations, and
network configurations needed to run a data transformation
algorithm (transformation, ai, analytics) on any node in the
ecosystem and connect to the data streams for input and
output. The pattern allows a bundle to be securely deployed
on the edge, cloud, or data center. When a bundle has been
verified and attested, it is unpackaged and deployed to the
target node, launching all microservices and connecting
them to the underlying stream management system. See
Figure 3.

Figure 3: Sentient Agent Bundle

A SAB has the following characteristics:

• Sentient Agent Bundle (SAB), when deployed, manages
transformation algorithms, data stream definitions, and
interactions between systems.

• The container ecosystem (including Docker and
Kubernetes) and DevOps environments (Red Hat
OpenShift and Jenkins) build and distribute SABRs to
Docker swarm and K8s clusters.

• The combination of all executables (applications and
services), configuration files, stream definitions, data
schemas, and transformation algorithms is called a
Sentient Agent Bundle Definition (SABD).

• An SAB is represented as one container image in the
Docker and K8s ecosystem and is deployed to a
processor to bring it into the Learning Corpus mesh
architecture.

• A security hash is added to the security keys in the
Package and used to notarize the container image in a
deployment repository.

Container Sidecar Pattern

A sidecar container is a helper container that helps manage
administrative, logging, audit, or security tasks. The sidecar
is typically a small container that does specific activities to
support the main container. Many organizations use sidecar
containers to add consistent behavior across
heterogeneous containers like logging, audit, network
encryption, and security.

Benefits

The primary benefits of the sidecar design pattern are:

• Management of multiple micro-services, data, and
streams in a straightforward interface.

• Consistent configuration and support for strategy policy
pattern.

• Consistent security, logging, and audit capabilities across
all applications and micro-services.

• Elastic scalability of micro-services and resources based
on telemetry from the service stack.

• Centralized control point for the application and data
transformation.

Sentient Agent Bundle Resource Details (SABR)

While a Sentient Agent Bundle (SAB) contains the
definition of a sentient agent, a Sentient Agent Bundle
Resource (SABR) is a running instance of the sentient
agent. It includes all the resources that enable the sentient
agent to perform all the work designated for the agent. This
includes evaluating the bundle against system policies for
stream and channel definitions, establishing security
domains, and managing learning-in and learning-out
streams for each bundle.

When a SABR is deployed, a micro-service named the
stream manager is created to manage the input and output
streams of the application and services that transform
information and publish on appropriate data streams. To
connect to the correct streams, the stream manager
evaluates stream creation policies deployed to the SABR
platform or ecosystem. See Figure 4: Sentient Agent
Bundle Resource

4
Intel Proprietary

Figure 4: Sentient Agent Bundle Resource

To support a DDIL environment, each stream creates
several channels that map to Data Stream Topics. Each
channel is made based on the channel creation policies in
the ecosystem, platform, or SABR definition. Channels can
be turned on or off based on activation and prioritization
policies for entities in the ecosystem. All communications in
and out of the SABRs are through channels, not streams. A
stream is an aggregation of channels based on channel
creation policies. The following are the characteristics of
stream management and channel creation.

• The Stream Manager creates the channels for each
stream and monitors the streams based on stream
creation policies

• A Learning Stream is created to connect to the learning
corpus. Input and Output.

• For each stream definition, channels are created for each
mode of operation based on the SABR, platform, or
ecosystem creation policies. Example: Historical,
Summary, Realtime

• Modes of operation are defined for all the applications,
and the stream manager handles which channels to use
during different modes of operation based on operational
modes.

• Streams are encrypted and decrypted using security
keys from the encrypted secret vault.

SABR Deployment (Sidecar Container Design)

A SABR container contains stream definitions, security
keys, application definitions, AI models, and transformation
algorithms. When a SABR is deployed, it explodes the
configuration and deploys as many containers as needed to
run the SABR. It configures the data stream manager to
handle the streams and channels based on the system’s
policies. All communication to and from the application
happens through the channels established in the stream
manager.

Using the typical sidecar design pattern, the sidecar
container unpacks all the elements for the sentient agent,
including one or more data transformation microservices,
data volumes that include AI Models, a stream manager
micro-service, and any input and output channel adaptors
required to convert stream data to be ingested by the
intelligent agent services. Before deploying the
microservices, the sidecar container validates the security
certifications to run and decrypt data streams. See Figure 5.

Figure 5: SABR Deployment

5
Intel Proprietary

Strategy Pattern (Policy Management)

One of the critical requirements of the system is the ability
to handle communications disruptions based on different
detail environments. The ability to dynamically decrease the
amount of data moving across the network requires using a
pattern that allows for creating multiple streams based on
environmental factors. The ability to dynamically recreate,
activate, and prioritize communications flowing over the
data streams is critical. For this reason, a strategy design
pattern was selected.

A strategy design pattern allows applications to switch
quickly between algorithms based on the runtime
environment. The design pattern allows multiple behaviors
to be defined without complex conditional if-then
statements. The pattern extends behavior beyond the
original architecture, providing more runtime decision-
making. Modern architectures implement policy engines
based on the strategy design pattern.

Benefits

The benefits of a strategy design pattern to implement a
policy-driven architecture are:

• Dynamic definition of behavior at runtime.

• Centralized behavior management

• Simplified implementation of complex behavior

• Extendable such that it allows for new behaviors to be
added to running application.

Stream Policy Management

The architecture leverages the strategy design pattern to
build a stream and channel management policy engine.
When a data stream is created, multiple channels handle the
movement of data across the ecosystem. Each channel
maps to a topic in the data stream design pattern. Channels
are made based on policies defined for the ecosystem. The
activation and prioritization of channels are also managed
through policy. In the example in Figure 6, Stream A has
three channels created that produce data at different
frequencies and sizes. These other channels can be
activated and deactivated based on the operating
environment.

Figure 6: Stream to Channel Mapping

Two types of policies are leveraged in the architecture:
creation policies and activation & prioritization policies.

Channel Creation Policies

One of the policies used in data stream management is the
channel creation policy. When a data stream is deployed or
a new creation policy is activated, a channel is created in the
data stream ecosystem. A channel maps to a topic in a
traditional PubSub system. Channel creation happens
across the whole ecosystem, even if the channel creation
policies apply to an individual SABR.

Figure 7: Channel Creation Policy

Channel Activation & Prioritization

The other type of channel policy is the activation &
prioritization policy. This policy turns on or off channels
based on policy and prioritizes the order of data
transmission on the tracks when communications have
been limited or operating at a lower bandwidth. The policies
are dynamically deployed, and channels are activated and
deactivated based on the policies. Figure 8 shows how
activation policies are applied across all streams in the
ecosystem.

Figure 8 Activation & Prioritization Policies

Policy Scope

Policies can be applied at different levels in the architecture.
The policies are applied across the complete ecosystem, a
platform, a group of SABRs, individual SABRs, or a
particular device. A hierarchy of policies is evaluated from
the tighter scope to the broader scope (Device -> Fleet).
Figure 9 shows where policy can be applied in the
ecosystem.

Figure 9 Policy Scope

Zero Trust Security

The “never trust, verify always” is the guiding principle of
Zero Trust architectures (ZTA). One of the critical
elements of verifying the elements in the ecosystem is to
establish attestation, authentication, and authorization for
all elements and their interactions in the ecosystem. ZTA
requires temporal authentication that requires periodic re-
authentication to ensure elements continue to be
authorized to access resources in the ecosystem.

SABR Secrets Vault

To secure the graph of data streams, a security vault

6
Intel Proprietary

containing all keys and hashes is included in the SAB to
establish the root of trust between the SABR and the
hardware it is running, the consumers of data streams, and
the producers of data streams. See Figure 10.

Four areas must be protected to establish a zero-trust
architecture of data streams.

• Prevent SABRs from running on untrusted edge devices.
This prevents a bad actor from acquiring and running a
SABR container on their hardware.

• Prevent untrusted/spoofed SABRs from running on
trusted hardware. This prevents bad actors from
deploying SABRs into a protected ecosystem, causing
havoc, or stealing information.

• Prevent publishing of untrusted data onto a data stream.
All data stream data is encrypted with appropriate shared
encryption keys and hashes.

• Prevent receiving untrusted data from a data stream.
Shared and private decryption keys and hashes are
available to decrypt input data streams.

• Authorization and access to the data streams are time
base and must be re-attested after the timeout.

Figure 10: Encrypted Secret Vault

The security keys contain a secret encryption vault and an
unencrypted security-critical section. When a SABR is
deployed to edge hardware, the security keys in the

unencrypted area are used to validate and decrypt the
bundle, including the encrypted secret vault, which should
be stored in protected memory, not persistently on the
device. The keys and hashes stored in the encrypted secret
vault decrypt and encrypt the input and output data
streams.

Reinforced Collective Learning

In highly dynamic environments, AI models need to change.
As AI nodes interact with the real world and are guided by
human feedback, the AI models vary and adapt to produce
better outcomes. As this new information becomes
available, the ability to update AI models at the edge is
critical. Sharing learnings through the propagation of model
changes is essential to building a collective intelligent
corpus that all edge nodes can leverage to perform their
work. Propagating changes to AI models across both static
and dynamic training of AI models is essential to
heterogeneous platforms that include multiple edge and
data center nodes.

Managing AI models in these environments is non-trivial
and requires forethought and a robust system approach
that includes DevSecOps. This is exacerbated by the
working environment of edge deployments, where
thousands of devices need to be updated with several
dozen AI model updates in a continuous stream of updates.

Continuous Learning Stream

A systematic approach is required to manage the
complexity of accepting, validating, and deploying dynamic
and static AI model updates across the vast ecosystem. The
SABR architecture provides the foundational elements to
effectively manage AI algorithms at the edge.

The Learning Corpus is the intelligent, distributed
repository of AI models. The Learning Corpus manages the
AI models and their updates and tracks which SABRs are
utilizing which AI model. These model updates are
managed and validated in the Learning Corpus, then
distributed to the SABRs in the ecosystem. This feedback
loop is critical to controlling inconsistencies in AI models in
the distributed ecosystem.

Figure 11: Reinforces Collective Learning

7
Intel Proprietary

Solution

To enable a future-proof and expandable system, it is
essential to understand how different parts of the system
relate to each other and establish isolation layers (through
standard interfaces or abstractions). This isolation allows
the various subsystems in the solution to “grow” in parallel
with minimal effect on each other. The SABR architecture
should not be the only data management architecture
utilized in the system. Leveraging common architectural
elements is critical to developing a resilient and cost-
effective approach. With the end goal in mind and the
establishment of interfaces between the sub-systems, new

features for hardware or software can be added
progressively toward the utopian end state. This utopian
architecture is known as Edgemere.

SABR Logical Architecture

The SABR architecture is an instantiation of the Edgemere
Architecture and maps directly on top of the Edgemere
Architecture. Not all elements of Edgemere are required for
the SABR architecture. Assumptions are made that an SDI
and Physical layer are already established in the solution.
The following diagram, Figure 12, shows the subsystems
specific to the SABR architecture.

Figure 12 SABR Logical Architecture

• Application Manager – Responsible for the
management (development, testing, and deployment)
of applications in the solution.

• Capability Manager – Responsible for deploying and
managing capabilities in the ecosystem, including the
deployments of multiple SABRs.

• Data Stream Manager – Responsible for deploying,
monitoring, and provisioning data streams in the
ecosystem.

• Learning Corpus – Responsible for managing AI
learning algorithms, updates, and deployments.

• Security Aspect – Gives a standard security model
across the subsystems of the solution.

• Sentient Agent Bundle Manager – Gives the ability to
bundle data streams, ai algorithms, and operate in a
heterogeneous environment.

• Service Orchestrator – Responsible for deploying and
managing services in the ecosystem.

Details about the SABR architecture can be found here.

Benefits

One of the benefits of this architecture is that
applications can be developed in the data center and in a
similar environment as what runs on the edge. User
acceptance, unit level, and burn-in testing can all be
performed on systems in the data center and then

deployed in the field without variability in quality and
operation. Because the Physical Layer is abstracted from
the applications, the applications freely move between
the different hardware. This easily lends itself to the
portability of applications and capabilities and decreases
the time to develop, test, and deploy applications and
services. Putting a modern DevSecOps stack in the
Application Layer can dramatically increase the
deployment velocity. This also decreases the need for
Digital Twin infrastructure and operations. Because the
hardware is shared between the data centers and on-ship
servers, building a complete digital twin is no longer
needed. Only specialized hardware/application systems
must be “mimicked” for digital twins.

Conclusion

The holistic approach to the system design has
uncovered a complex problem space with a hostile
environment that requires a highly resilient solution to
handle heterogeneous devices, workloads, and services
in a DDIL environment. The SABR architecture uses
common design patterns in the security, DevOps, and
application development space to improve the solution's
scalability, reliability, and extendibility in this complex
operating environment. Further details can be obtained
by contacting Darren Pulsipher at
darren.w.pulsipher@intel.com.

https://madajaju.github.io/edgemere
https://madajaju.github.io/edgemere
https://madajaju.github.io/edgemere
https://madajaju.github.io/edgemere
https://madajaju.github.io/edgemere
https://madajaju.github.io/sabr/package--sabr-aml-am
https://madajaju.github.io/sabr/package--sabr-aml-cm
https://madajaju.github.io/sabr/package--sabr-diml-dsm
https://madajaju.github.io/sabr/package--sabr-aml-lc
https://madajaju.github.io/sabr/package--sabr-sa
https://madajaju.github.io/sabr/package--sabr-diml-sabm
https://madajaju.github.io/sabr/package--sabr-sml-so
https://madajaju.github.io/sabr/
mailto:darren.w.pulsipher@intel.com

8
Intel Proprietary

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel technology’s features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system

configuration. No computer system can be secure.

Copyright © 2022 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

