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Introduction 

As edge devices become more capable of processing data at the edge–including 
AI inference, data normalizations, encryption, and compression—organizations are 
looking at new operating models to drive decision-making closer to where data is 
generated and collected. This white paper aims to articulate the architecture and 
design of a distributed data stream framework utilized to process large volumes of 
data across a heterogeneous semi-connected ecosystem of edge devices named 
sentient agent bundle resources (SABR). 

Problem Statement 

Edge Computing brings new challenges that solutions in the data center or the 
cloud only do not have. Many organizations face edge ecosystems operating in a 
denied, degraded, intermittent, or limited (DDIL) network environment requiring 
systems that can work autonomously when network connectivity is in question. 
Problems with heterogeneous hardware and software platforms, large data 
generation and movement volume, and physical and cyber security make managing 
applications and devices at the edge complex. So complex that the industry is 
behind the projected adoption of edge computing. 

Artificial intelligence (AI) is another technology that promises to open up new use 
cases and unlock data power to accelerate decision-making is artificial intelligence 
(AI). Moving AI to the edge accelerates decision-making by decreasing data 
movement volume and moving decision-making close to data generation. Because 
of the heterogeneity of edge computing, AI models are just as diverse as the types 
of edge devices. Organizations require a mechanism to manage heterogeneous AI 
models, data sources, and approaches in a unified manner across a distributed 
ecosystem. 

Organizations need a solution that provides the following: 

• Security – Provides a hardware root of trust to match AI models with attested 
hardware to prevent AI models from working outside the attested ecosystem. It 
also prevents unverified and unattested models from running in the ecosystem. 

• Manageability – AI models and algorithms are managed from a federated control 
plane that contains deployment, updates, and decommissioning. 

• Auditability – Changes in their AI models and algorithms are tracked from a 
single management framework that can be audited. 

• Visibility – Enabled operator awareness of node health, AI model deployments, 
and operational efficiency. 

• Reliability – Because the AI models are distributed across the ecosystem, there 
is no single point of failure; operational availability is sustained. 

• Resiliency – The system must run in a DDIL environment. 

• Consistency – AI model consistency is essential in a mission-critical distributed 
ecosystem. The approach must manage AI model divergence by keeping track 
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of AI model changes. 

• Simplification – The framework provides resiliency, 
consistency, reliability, and security that all AI algorithms 
require under DDIL conditions during distributed 
operations. This simplification enables AI developers to 
focus on the AI application, not the complex 
environment. 

• Scalability – System nodes can be added or removed 
easily without shutting down or reconfiguring the system. 
Streams and algorithms can also be easily scaled. 

Design Pattern Concepts 

The Sentient Agent Bundle Resource (SABR) provides an 
architecture that utilizes well-known concepts and design 
patterns to enable a resilient, easy-to-use architecture. 
These design patterns are the data stream pattern, 
container bundling in DevSecOps, container sidecar 
pattern, strategy pattern (policy management), zero trust 
architecture patterns, and reinforced collective learning 
pattern. 

Data Stream Pattern 

The data stream is a mature concept that allows data to be 
passed between a producer and a set of consumers without 
direct coupling between the entities. This concept provides 
the ability to deploy large numbers of producers and 
consumers in the same ecosystem without the fragility of a 
static coupled network. See Figure 1. 

 
Figure 1:  Data Stream Concept 

A data stream is created when a producer (a service on a 
server) publishes data on a topic. One or more consumers 
subscribe to an issue and are notified when information is 
published on the topic. The producer, the topic, and the 
consumers create a data stream. Streams also contain a 
stream function mechanism to transform data before 
publication to the topic. These functions can also be utilized 
to identify event conditions and enable controls on stream 
management to subscribers for capabilities such as access, 

routing, event-driven alerts, and data prioritization.  

Data streams benefit from loosely coupling the producer 
and consumer through an abstraction contained in the Pub-
Sub framework. This enables the producer and consumer to 
operate independently of each other. This is beneficial 
during intermittent communication conditions since the 
consumer can continue to work even when not receiving 
data from the producer. Another benefit is that the 
producer can cache data if required and send it later. For 
example, if a device operates disconnected, the producer 
will cache the data and, when re-connected, publish the 
topic again. 

Before a producer publishes the data, it uses a 
transformation algorithm to simplify or aggregate it. These 
transformation algorithms can perform functions including 
normalization, temporal compression, AI object detection, 
data aggregation, etc. These transformations are invaluable 
to getting the most compelling insight information to the 
right consumers (decision-makers) at the right time. 

Managing these data streams, interactions, and 
transformation algorithms can only be accessed with a 
common framework. Open-source and commercial stream 
managers can manage the data streams across multiple 
locations, states of connectivity, and hardware platforms. 

Benefits 

This concept provides several critical benefits for the highly 
distributed, semi-connected environment. 

• Dynamic heterogeneous mesh configurations. 

• One or more consumers can subscribe to a topic 
fostering the reuse of familiar producers. 

• A consumer can also choose only to consume data when 
a specific event occurs in a Data Stream. 

• Resiliency when the network is down because a producer 
caches the data and, when re-connected, publishes data 
on the topic again. 

Container Bundling in DevSecOps 

Traditional DevSecOps pipeline pushes artifacts through a 
development, build, test, and deploy pipeline that produces 
an executable deployed into production environments. The 
container ecosystem has made the development of highly 
portable executables a reality by building container images 
that can contain several artifacts required to configure, 
secure, and execute microservices in any environment. See 
Figure 2 for an example CIDO pipeline using Data Streams.

 
Figure 2: Bundling in DevSecOps
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Traditionally Data Streams are configured in the production 
environment before applications are deployed. This pre-
configuration requires coordination between application 
developers, system administrators, and program managers. 
They sometimes lead to longer deployment cycle times. 

Leveraging the DevSecOps pipeline with container 
bundling means the container bunder contains the 
application, the AI Model or data transformation 
configurations, and the input & output stream 
configurations. In this scenario, data streams are configured 
at the deployment time of the container bundle, decreasing 
the potential problems with data stream configurations. 
Additionally, this bundling of all aspects of the data stream 
provides a mechanism to deploy producers and consumers 
of data streams anywhere in the edge ecosystem where 
containers can be deployed. The name of these data-
transformation-centric applications is sentient agent 
bundles (SAB).  

Benefits 

This concept provides several vital benefits for deploying 
data streams across a distributed environment. 

• Standard development and deployment of capabilities 
across a heterogeneous ecosystem. 

• Portability of solutions from the data center into the edge 
devices. 

• Decreased bandwidth to deploy only changes to bundles. 

• Speed to deploy capabilities into the ecosystem. 

Sentient Agent Bundle (Container Bundle) 

The Sentient Agent Bundle (SAB) implements the 
container bundle pattern. It contains all the data required to 
deploy all microservices, stream configurations, and 
network configurations needed to run a data transformation 
algorithm (transformation, ai, analytics) on any node in the 
ecosystem and connect to the data streams for input and 
output. The pattern allows a bundle to be securely deployed 
on the edge, cloud, or data center. When a bundle has been 
verified and attested, it is unpackaged and deployed to the 
target node, launching all microservices and connecting 
them to the underlying stream management system. See 
Figure 3. 

 

Figure 3: Sentient Agent Bundle 

A SAB has the following characteristics: 

• Sentient Agent Bundle (SAB), when deployed, manages 
transformation algorithms, data stream definitions, and 
interactions between systems. 

• The container ecosystem (including Docker and 
Kubernetes) and DevOps environments (Red Hat 
OpenShift and Jenkins) build and distribute SABRs to 
Docker swarm and K8s clusters. 

• The combination of all executables (applications and 
services), configuration files, stream definitions, data 
schemas, and transformation algorithms is called a 
Sentient Agent Bundle Definition (SABD). 

• An SAB is represented as one container image in the 
Docker and K8s ecosystem and is deployed to a 
processor to bring it into the Learning Corpus mesh 
architecture. 

• A security hash is added to the security keys in the 
Package and used to notarize the container image in a 
deployment repository. 

Container Sidecar Pattern 

A sidecar container is a helper container that helps manage 
administrative, logging, audit, or security tasks. The sidecar 
is typically a small container that does specific activities to 
support the main container. Many organizations use sidecar 
containers to add consistent behavior across 
heterogeneous containers like logging, audit, network 
encryption, and security. 

Benefits 

The primary benefits of the sidecar design pattern are: 

• Management of multiple micro-services, data, and 
streams in a straightforward interface. 

• Consistent configuration and support for strategy policy 
pattern. 

• Consistent security, logging, and audit capabilities across 
all applications and micro-services. 

• Elastic scalability of micro-services and resources based 
on telemetry from the service stack. 

• Centralized control point for the application and data 
transformation. 

Sentient Agent Bundle Resource Details (SABR) 

While a Sentient Agent Bundle (SAB) contains the 
definition of a sentient agent, a Sentient Agent Bundle 
Resource (SABR) is a running instance of the sentient 
agent. It includes all the resources that enable the sentient 
agent to perform all the work designated for the agent. This 
includes evaluating the bundle against system policies for 
stream and channel definitions, establishing security 
domains, and managing learning-in and learning-out 
streams for each bundle. 

When a SABR is deployed, a micro-service named the 
stream manager is created to manage the input and output 
streams of the application and services that transform 
information and publish on appropriate data streams. To 
connect to the correct streams, the stream manager 
evaluates stream creation policies deployed to the SABR 
platform or ecosystem. See Figure 4: Sentient Agent 
Bundle Resource 
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Figure 4: Sentient Agent Bundle Resource 

To support a DDIL environment, each stream creates 
several channels that map to Data Stream Topics. Each 
channel is made based on the channel creation policies in 
the ecosystem, platform, or SABR definition. Channels can 
be turned on or off based on activation and prioritization 
policies for entities in the ecosystem. All communications in 
and out of the SABRs are through channels, not streams. A 
stream is an aggregation of channels based on channel 
creation policies. The following are the characteristics of 
stream management and channel creation. 

• The Stream Manager creates the channels for each 
stream and monitors the streams based on stream 
creation policies 

• A Learning Stream is created to connect to the learning 
corpus. Input and Output. 

• For each stream definition, channels are created for each 
mode of operation based on the SABR, platform, or 
ecosystem creation policies. Example: Historical, 
Summary, Realtime 

• Modes of operation are defined for all the applications, 
and the stream manager handles which channels to use 
during different modes of operation based on operational 
modes. 

• Streams are encrypted and decrypted using security 
keys from the encrypted secret vault. 

SABR Deployment (Sidecar Container Design) 

A SABR container contains stream definitions, security 
keys, application definitions, AI models, and transformation 
algorithms. When a SABR is deployed, it explodes the 
configuration and deploys as many containers as needed to 
run the SABR. It configures the data stream manager to 
handle the streams and channels based on the system’s 
policies. All communication to and from the application 
happens through the channels established in the stream 
manager.  

Using the typical sidecar design pattern, the sidecar 
container unpacks all the elements for the sentient agent, 
including one or more data transformation microservices, 
data volumes that include AI Models, a stream manager 
micro-service, and any input and output channel adaptors 
required to convert stream data to be ingested by the 
intelligent agent services. Before deploying the 
microservices, the sidecar container validates the security 
certifications to run and decrypt data streams. See Figure 5.  

 

Figure 5: SABR Deployment 
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Strategy Pattern (Policy Management) 

One of the critical requirements of the system is the ability 
to handle communications disruptions based on different 
detail environments. The ability to dynamically decrease the 
amount of data moving across the network requires using a 
pattern that allows for creating multiple streams based on 
environmental factors. The ability to dynamically recreate, 
activate, and prioritize communications flowing over the 
data streams is critical. For this reason, a strategy design 
pattern was selected. 

A strategy design pattern allows applications to switch 
quickly between algorithms based on the runtime 
environment. The design pattern allows multiple behaviors 
to be defined without complex conditional if-then 
statements. The pattern extends behavior beyond the 
original architecture, providing more runtime decision-
making. Modern architectures implement policy engines 
based on the strategy design pattern. 

Benefits 

The benefits of a strategy design pattern to implement a 
policy-driven architecture are: 

• Dynamic definition of behavior at runtime. 

• Centralized behavior management 

• Simplified implementation of complex behavior 

• Extendable such that it allows for new behaviors to be 
added to running application. 

Stream Policy Management 

The architecture leverages the strategy design pattern to 
build a stream and channel management policy engine. 
When a data stream is created, multiple channels handle the 
movement of data across the ecosystem.  Each channel 
maps to a topic in the data stream design pattern. Channels 
are made based on policies defined for the ecosystem. The 
activation and prioritization of channels are also managed 
through policy.  In the example in Figure 6, Stream A has 
three channels created that produce data at different 
frequencies and sizes. These other channels can be 
activated and deactivated based on the operating 
environment. 

 
Figure 6: Stream to Channel Mapping 

Two types of policies are leveraged in the architecture: 
creation policies and activation & prioritization policies. 

Channel Creation Policies 

One of the policies used in data stream management is the 
channel creation policy. When a data stream is deployed or 
a new creation policy is activated, a channel is created in the 
data stream ecosystem. A channel maps to a topic in a 
traditional PubSub system. Channel creation happens 
across the whole ecosystem, even if the channel creation 
policies apply to an individual SABR.   

 
Figure 7: Channel Creation Policy 

Channel Activation & Prioritization 

The other type of channel policy is the activation & 
prioritization policy. This policy turns on or off channels 
based on policy and prioritizes the order of data 
transmission on the tracks when communications have 
been limited or operating at a lower bandwidth.  The policies 
are dynamically deployed, and channels are activated and 
deactivated based on the policies. Figure 8 shows how 
activation policies are applied across all streams in the 
ecosystem. 

 
Figure 8 Activation & Prioritization Policies 

Policy Scope 

Policies can be applied at different levels in the architecture. 
The policies are applied across the complete ecosystem, a 
platform, a group of SABRs, individual SABRs, or a 
particular device. A hierarchy of policies is evaluated from 
the tighter scope to the broader scope (Device -> Fleet).  
Figure 9 shows where policy can be applied in the 
ecosystem. 

 
Figure 9 Policy Scope 

Zero Trust Security 

The “never trust, verify always” is the guiding principle of 
Zero Trust architectures (ZTA). One of the critical 
elements of verifying the elements in the ecosystem is to 
establish attestation, authentication, and authorization for 
all elements and their interactions in the ecosystem.  ZTA 
requires temporal authentication that requires periodic re-
authentication to ensure elements continue to be 
authorized to access resources in the ecosystem.  

SABR Secrets Vault 

To secure the graph of data streams, a security vault 
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containing all keys and hashes is included in the SAB to 
establish the root of trust between the SABR and the 
hardware it is running, the consumers of data streams, and 
the producers of data streams.  See Figure 10. 

Four areas must be protected to establish a zero-trust 
architecture of data streams. 

• Prevent SABRs from running on untrusted edge devices. 
This prevents a bad actor from acquiring and running a 
SABR container on their hardware. 

• Prevent untrusted/spoofed SABRs from running on 
trusted hardware. This prevents bad actors from 
deploying SABRs into a protected ecosystem, causing 
havoc, or stealing information. 

• Prevent publishing of untrusted data onto a data stream. 
All data stream data is encrypted with appropriate shared 
encryption keys and hashes. 

• Prevent receiving untrusted data from a data stream. 
Shared and private decryption keys and hashes are 
available to decrypt input data streams. 

• Authorization and access to the data streams are time 
base and must be re-attested after the timeout. 

 

Figure 10: Encrypted Secret Vault 

The security keys contain a secret encryption vault and an 
unencrypted security-critical section. When a SABR is 
deployed to edge hardware, the security keys in the 

unencrypted area are used to validate and decrypt the 
bundle, including the encrypted secret vault, which should 
be stored in protected memory, not persistently on the 
device. The keys and hashes stored in the encrypted secret 
vault decrypt and encrypt the input and output data 
streams. 

Reinforced Collective Learning 

In highly dynamic environments, AI models need to change. 
As AI nodes interact with the real world and are guided by 
human feedback, the AI models vary and adapt to produce 
better outcomes. As this new information becomes 
available, the ability to update AI models at the edge is 
critical. Sharing learnings through the propagation of model 
changes is essential to building a collective intelligent 
corpus that all edge nodes can leverage to perform their 
work. Propagating changes to AI models across both static 
and dynamic training of AI models is essential to 
heterogeneous platforms that include multiple edge and 
data center nodes. 

Managing AI models in these environments is non-trivial 
and requires forethought and a robust system approach 
that includes DevSecOps. This is exacerbated by the 
working environment of edge deployments, where 
thousands of devices need to be updated with several 
dozen AI model updates in a continuous stream of updates.  

Continuous Learning Stream 

A systematic approach is required to manage the 
complexity of accepting, validating, and deploying dynamic 
and static AI model updates across the vast ecosystem. The 
SABR architecture provides the foundational elements to 
effectively manage AI algorithms at the edge. 

The Learning Corpus is the intelligent, distributed 
repository of AI models. The Learning Corpus manages the 
AI models and their updates and tracks which SABRs are 
utilizing which AI model. These model updates are 
managed and validated in the Learning Corpus, then 
distributed to the SABRs in the ecosystem. This feedback 
loop is critical to controlling inconsistencies in AI models in 
the distributed ecosystem. 

 

 

 

Figure 11: Reinforces Collective Learning
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Solution 

To enable a future-proof and expandable system, it is 
essential to understand how different parts of the system 
relate to each other and establish isolation layers (through 
standard interfaces or abstractions). This isolation allows 
the various subsystems in the solution to “grow” in parallel 
with minimal effect on each other. The SABR architecture 
should not be the only data management architecture 
utilized in the system. Leveraging common architectural 
elements is critical to developing a resilient and cost-
effective approach. With the end goal in mind and the 
establishment of interfaces between the sub-systems, new 

features for hardware or software can be added 
progressively toward the utopian end state. This utopian 
architecture is known as Edgemere. 

SABR Logical Architecture 

The SABR architecture is an instantiation of the Edgemere 
Architecture and maps directly on top of the Edgemere 
Architecture. Not all elements of Edgemere are required for 
the SABR architecture. Assumptions are made that an SDI 
and Physical layer are already established in the solution. 
The following diagram, Figure 12, shows the subsystems 
specific to the SABR architecture. 

 

Figure 12 SABR Logical Architecture

• Application Manager – Responsible for the 
management (development, testing, and deployment) 
of applications in the solution. 

• Capability Manager – Responsible for deploying and 
managing capabilities in the ecosystem, including the 
deployments of multiple SABRs. 

• Data Stream Manager – Responsible for deploying, 
monitoring, and provisioning data streams in the 
ecosystem. 

• Learning Corpus – Responsible for managing AI 
learning algorithms, updates, and deployments. 

• Security Aspect – Gives a standard security model 
across the subsystems of the solution. 

• Sentient Agent Bundle Manager – Gives the ability to 
bundle data streams, ai algorithms, and operate in a 
heterogeneous environment. 

• Service Orchestrator – Responsible for deploying and 
managing services in the ecosystem. 

Details about the SABR architecture can be found here. 

Benefits 

One of the benefits of this architecture is that 
applications can be developed in the data center and in a 
similar environment as what runs on the edge. User 
acceptance, unit level, and burn-in testing can all be 
performed on systems in the data center and then 

deployed in the field without variability in quality and 
operation. Because the Physical Layer is abstracted from 
the applications, the applications freely move between 
the different hardware. This easily lends itself to the 
portability of applications and capabilities and decreases 
the time to develop, test, and deploy applications and 
services. Putting a modern DevSecOps stack in the 
Application Layer can dramatically increase the 
deployment velocity. This also decreases the need for 
Digital Twin infrastructure and operations. Because the 
hardware is shared between the data centers and on-ship 
servers, building a complete digital twin is no longer 
needed. Only specialized hardware/application systems 
must be “mimicked” for digital twins. 

Conclusion 

The holistic approach to the system design has 
uncovered a complex problem space with a hostile 
environment that requires a highly resilient solution to 
handle heterogeneous devices, workloads, and services 
in a DDIL environment. The SABR architecture uses 
common design patterns in the security, DevOps, and 
application development space to improve the solution's 
scalability, reliability, and extendibility in this complex 
operating environment. Further details can be obtained 
by contacting Darren Pulsipher at 
darren.w.pulsipher@intel.com. 
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