

Nios II Simple Socket Server on A10 SoC Development Kit

Date: April 2018

Revision: 1.0

©2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Contents

Overview	3
Tool Requirements	3
Hardware Design Specifications	3
Instruction for running the software	3
Hardware regeneration	6
Software regeneration	6
Revision History	8

Overview

This design example shows a socket server using the NicheStack TCP/IP stack-Nios® II Edition on MicroC/OS-II on a Arria 10 SoC development board. The server implements simple commands to control board LEDs through a separate MicroC/OS-II task.

Tool Requirements

- Altera Arria 10 SoC Development Kit
- Quartus II software version 17.1
- Nios II Embedded Design Suite (EDS) 17.1
- Mini USB cable for programming the device

Hardware Design Specifications

Major component for hardware design:

- Nios II/f
- Onchip memory
- System timer
- System ID
- JTAG UART
- PIO
- Modular Scatter Gather DMA
- Triple-Speed Ethernet
- Transceiver PLL

Instruction for running the software

Before running the software, connect the USB blaster cable from PC to the on board mini-USB connector(J22) which is shown in Figure 1.

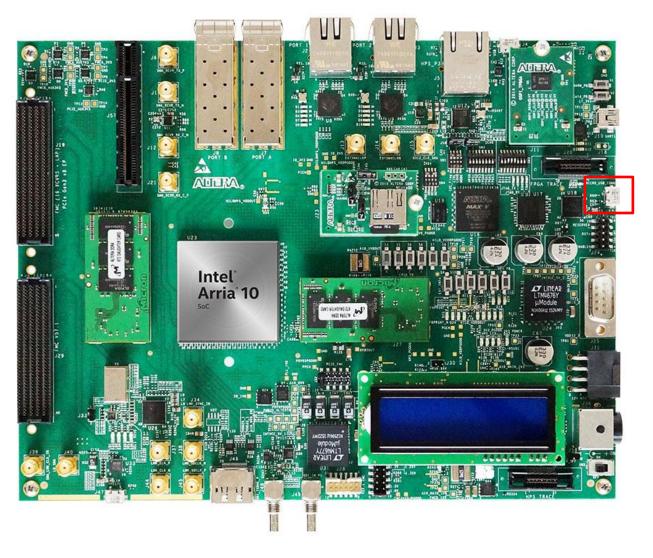
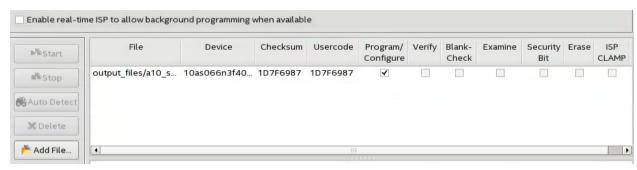



Figure 1: USB Blaster II connection location

1. Open the Quartus Programmer to program the generated .sof file to the FPGA . Master image folder provided in the project directory contain the .sof and .elf file which is ready to be downloaded to the board

Figure 2: Quartus Prime Programmer

2. In this example, static IP is used. Hence, please make sure that you have configured your PC to have a static IP address before connected to the development kit.

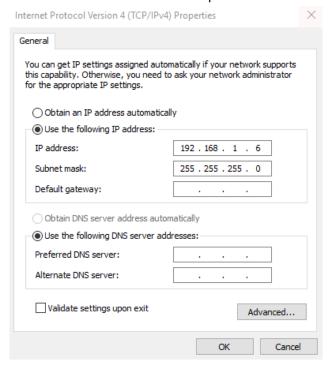


Figure 3: Setting static IP address on PC

3. Open Nios II command shell to download the .elf file and invoke the terminal by typing nios2-download -g a10_sss_171.elf && nios2-terminal

```
InterNiche Portable TCP/IP, v3.1

Copyright 1996-2008 by InterNiche Technologies. All rights reserved. prep_tse_mac 0

Can't read the MAC address from your board. We will assign you a MAC address.

Please enter your 9-digit serial number. This is printed on a label under your Nios dev. board. The first 3 digits of the label are ASJ and the serial number follows this.

-->Created "Inet main" task (Prio: 2)

Created "clock tick" task (Prio: 3)
```

Figure 4: Start up messages

4. You will be asked for the MAC address. You can simply key in any 9 digit numbers. For example: 123456789.

5. Once the simple socket server is started up successfully. You can open command prompt on your window PC and connect to the simple socket server.

telnet 192.168.1.234 30

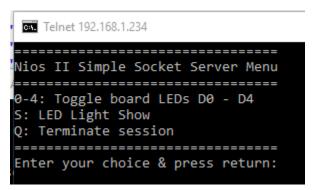


Figure 5: Messages displayed once successfully connected from command prompt

6. You can control the LED with by enter the choice from 0-4 for controlling 4 LED on the board

Hardware regeneration

You can open the Qsys system with platform designer and add/remove and modify the individual IP components within the design. After you have finished modifying the Qsys system, you can regenerate the system by clicking on "Generate HDL..."

Software regeneration

The software used in this design is based on the existing Simple Socket Server template available in Nios II Software Build Tools.

Software modification

The default Simple Socket Server Template is required to be modified to fit into different development kit hardware profile. Minor modification is done on below source and header files:

File	Modification
led.c	Update led driver to map to A10 SoC Development Kit hardware
simple_socket_server.c	Update text printing on terminal
simple_socket_server.h	Enable Static IP address

The figure below shows how to change the IP address assignment in the file "simple_socket_server.h"

```
104 * Default IP addresses are set to all zeros so that DHCP server packets will
   105 * penetrate secure routers. They are NOT intended to be valid static IPs,
  106 * these values are only a valid default on networks with DHCP server.
  107 *
   108
                   * If DHCP will not be used, select valid static IP addresses here, for example:
  109 *
                                                           IP: 192.168.1.234 (default 0.0.0.0)
  110 *
                                            Gateway: 192.168.1.1 (default 0.0.0.0)
  Sabeway: 192.168.1.1 (classified to the state of the stat
  113 #define IPADDRO 192
  114 #define IPADDR1 168
  115 #define IPADDR2
  116 #define IPADDR3 234
  117
  118 #define GWADDR0 192
   119 #define GWADDR1
                                                                                168
  120 #define GWADDR2 1
  121 #define GWADDR3 1
  122
  123 #define MSKADDR0 255
  124 #define MSKADDR1 255
  125 #define MSKADDR2 255
  126 #define MSKADDR3
```

Figure 6: Setting Static IP address

Selection of Static IP or DHCP client

Static IP address is used in this design. Hence, take note that you will need to disable the dhcp client in BSP editor if you rebuild the software as shown below.

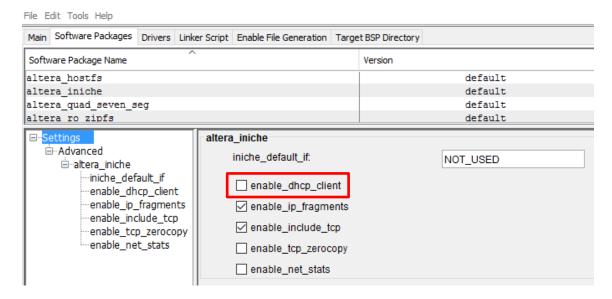


Figure 7: Disable DHCP client

Revision History

Revision	Description
1.0	Simple Socket Server design for A10