
1

March 2016

Version 1.5

The Nios II Embedded “Hello World” Lab:

For The MAX 10 Development Kit

2

Revision History

1.0 5/1/2015 L. Landis Initial Release

1.1 6/2/2015 L. Landis Added BeMicro

1.2 11/30/2015 I. Rush Added CVE DevKit

1.3 12/2/2015 S Meer Consolidated Sections

1.4 12/4/2015 I.Rush Updated Pinout Table

1.5 3/17/2016 K. Kita Separated Lab by Board

3

Contents
Overview ... 3

Lab Notes .. 4

Quartus Installation .. 4

Design Flow ... 5

Objective of hardware design for the “Hello World” lab .. 6

HARDWARE DESIGN .. 7

Initial Setup ... 7

Get started with Quartus .. 9

Building your Qsys based processor system ... 12

Building the top level design ... 24

Adding the Nios II system into your design .. 30

Adjusting

SOFTWARE DESIGN ... 33

Creating the Software for the “Hello World” design .. 33

MAX10 FPGA Development Kit Cable Connections and Switch Settings .. 40

Lab Summary .. 45

Overview
This lab teaches you how to create an embedded system implemented in programmable logic
using Altera’s “soft” Nios II processor. A soft processor such as the Nios II, available in Altera’s
FPGA families, have built in programmable logic fabric and can be easily modified to suit an
application’s requirements. Altera’s “SoC FPGA” families are hard processor built from “hard”
standard cells that cannot be changed without redesigning the chip. The Nios II processor is
supported by a rich set of peripherals and “IP” blocks built that can be configured and connected
to the processor using Altera’s QSys tool within the Quartus II design tool set. Altera also
distributes the Nios II Software Build Tools (SBT) for Eclipse (for software development) within
the Quartus development suite.

The lab is organized to run on a number of Altera development kits. The links to the other kits
can be found in the Design Store as a Design Example and type in “hello” in the search bar.
This lab will show you how to install the Max 10 Development kit pin settings, design the
processor-based hardware system, download it to the MAX 10 Development Kit, and run a
simple “Hello World” software program which displays text on your terminal. The initial section of

https://cloud.altera.com/devstore/platform/

4

the lab is split into a Hardware Section and Software Section. You can skip the hardware
section and move directly to the software section should you choose.

Refer to Appendix A in the Design Example for development kit specific pinout names and
configuration of on-chip memory.

Lab Notes
The lab will require you to choose files, components, and other objects; they must be spelled
exactly as directed. This is necessary for consistency and to ensure that each step works
properly in the lab, when creating your own systems you can choose your own names as long
as you use them consistently in your project. The directory paths shown in the figures are for
Linux (forward slash directory delimiter). If you are using Windows, the paths will be shown with
backslash directory delimiters.

Quartus Installation
Quartus is Altera’s design tool suite. It serves a number of functions:

1. Design creation through the use of HDL languages or schematics

2. System creation through the Qsys graphical interface

3. Generation and editing of constraints: timing, pin locations, physical location on die, IO

voltage levels

4. Synthesis of high level language into an FPGA netlist (“mapping” in FPGA terminology)

5. FPGA place and route (“fitting” in FPGA terminology)

a. Generation of design image (used to program FPGA, “assembly” in FPGA

terminology)

6. Timing Analysis

7. Programming/download of design image into FPGA hardware

8. Debugging by insertion of debug logic (in-chip logic analyzer)

9. Interfaces to 3rd party tools such as simulators

10. Launching of Software Build Tools (Eclipse) for Nios II

To download Quartus, follow these instructions:
Visit this site: http://dl.altera.com/?edition=web to download version 15.1 of Quartus II.
Select version 15.1 and your PC’s operating system.

For the smallest installation, and quickest download time, enter only the technology families you
are using based on your development board.

http://dl.altera.com/?edition=web

5

Figure 1: Quartus download page

Follow the download instructions provided from the web page. No license is required to run the
Quartus Lite software.

Design Flow
Unlike system development with hard processors, development with soft processors enables
you to optimize the processor system to your application requirements and use the FPGA to

6

add the performance and interfaces required by your system. This means that you need to know
how to modify the processor system hardware; this may sound challenging but thanks to the
Qsys graphical system design tool this is actually a relatively easy thing to do as we will
demonstrate in this lab.

The Qsys design flow diagram below illustrates how an overall system is integrated using the
combination of the Qsys system integration tool, Quartus for mapping (FPGA terminology for
synthesis), fitting (FPGA terminology for place and route), and the NIOS Software Build Tool
(SBT) for software development.

Figure 2: Qsys Development Flow

The above diagram depicts the typical flow for Nios II system design. Hardware System
definition is performed using Qsys; the resultant HDL files from the Qsys system are used by
the Quartus II FPGA design software to map, fit and download the hardware image into the
FPGA device. Quartus II also generates information that describes the configuration of the
system designed in Qsys so that the Nios II SBT can be configured to create a software library
that matches the hardware system and contains all the correct peripheral drivers.

Objective of hardware design for the “Hello World” lab
For the simplest example, ‘a hello world lab’, the processor will load a program that prints “Hello
World” to the screen. This requires a working processor to execute the code, on-chip memory to

7

store the software executable, and a JTAG UART peripheral to send the “Hello World” text to a
terminal. To make the lab a little bit more interesting and hardware-centric, we will utilize the
push button switches and LEDs to allow interaction with the development kit. We will show two
different ways to connect the push button to the LED, one through a direct connection in the
Verilog code using an assign statement, and one using connections to memory that the
processor can access. Note that in the appendix section, there are a number of more advanced
modules including how to connect to off-chip memory, utilizing interrupts and displaying hello
world on an LCD character display.

The lab hardware is constructed with the components shown below. Altera utilizes the Qsys
network on chip interconnect to connect the master and slave devices together. To get a clear
understanding of how quickly one can build an Embedded System using Qsys and the Quartus
Design Software you will build the Nios II system entirely from scratch.

Figure 3: Nios II based system used in this lab

HARDWARE DESIGN

Initial Setup
Should you want to skip the hardware design section, continue in the section called
SOFTWARE DESIGN. The screenshots in the hardware design section are based on the Max
10 FPGA Development Kit.

Altera provides a starting point design to get the FPGA device pinouts associated with the
development kits layout and your design via what is called the Baseline design. Navigate to
Altera’s design store for the kit that you are using: https://cloud.altera.com/devstore

Click on Design Examples.

https://cloud.altera.com/devstore

8

Figure 4: Design Store

Once in Design Examples, filter by respective development kit and Quartus version number.

Figure 5: Design Examples under Design Store (note that this list changes over time and might not look the same as this
picture)

Select the MAX10 FPGA Development Kit Baseline Design or other supported development kit
you are using for this lab.

9

Figure 6: MAX 10 Development Baseline Design Example

Select the Download button and save the baseline.par design locally to your lab working
directory (call the directory devkit_hello_world).

Get started with Quartus
Now you are ready to get started designing hardware! Launch Quartus by double clicking the
Quartus icon.
Next you will launch the New Project Wizard from Quartus from the main panel or alternatively
File  New Project Wizard.

10

Figure 7: Quartus Main Panel

 Fill in the New Project Wizard first panel with your devkit_hello_world directory and project

which we will also call hello_world_lab.

Figure 8: New Project Wizard first panel

Click next and select project template and click next.

11

Figure 9: New project wizard second panel

Figure 10: Design Template Install (note the name of the “.par” file will change based on the name of the development kit
you are using.

12

Once you hit ok, Quartus loads this starting point design that contains the pinout for the specific

hardware device based on the Development Kit. Note that only a handful of pins are needed for

the lab, but you can rely on the settings utilized in the Baseline project to make sure the right pin

locations and voltage settings are correct for your project.

Building your Qsys based processor system
The Figure 11 diagram illustrates what you are designing in the Qsys environment. This system
has a single master, the Nios II processor, and 4 slave devices. Building the Qsys system is a
highly efficient way of designing systems with or without a processor.
Launch Qsys from Quartus: Tools  Qsys. The initial screen looks something like this:

Figure 11: Qsys main panel

Next, we will add the various components of the system and make the connections between
them. By default Qsys inserts a clock module. We will connect to this later on in the lab.

Below the IP catalog tab, you can search for the various components you want to add to your
Qsys based system. Enter Nios in the search tab and select the Nios II processor from the
library.

A configuration window will appear, in this select the Nios II/e processor. This version of the
Nios II processor is resource optimized and will work well for the Hello World Lab
implementation.

13

Figure 12: Nios II Gen 2 Configuration panel

Click finish and you will see the Nios IIe processor in your connection diagram. For now don’t
worry about the system errors reported, we will address them soon.

Figure 13: Qsys System Contents panel

Qsys has a very elegant and efficient way of making connections by clicking on the nodes on
‘wires’ in the connections panel on the 2nd column from the left. You can add the connections as

14

you add components, but it’s often easier to make all the connections once you have finished
adding the various blocks. With the Nios II processor added, you still need to add the On Chip
Memory, JTAG UART, SWITCHES and LED to your system defined in Figure 3: Nios II based
system.

Search for memory in the IP catalog. You will see many options for memory. It might be easiest
to detach the IP Catalog from the main panel by clicking on the detach window icon.

Figure 14: Detach window icon

Figure 15: IP catalog search for on chip memory

Locate the On-Chip Memory (RAM or ROM) component and click Add. You can use all of the
default settings except that you need to change the memory size from 4096 to 16384. This will
ensure that you have a plenty of space for your software program. Uncheck initialize memory
content. This feature includes the software executable in the hardware image. For this lab, you
will initialize the software executable from Eclipse.

15

Figure 16: On chip memory configuration panel

Click finish and you will now see a total 3 components in your Qsys system: clock, Nios II
processor and on-chip memory.

16

Figure 17: System contents with NIOSII and on chip memory

The next component you will add is the JTAG UART. Search for JTAG in the IP catalog, locate
the JTAG UART and double click or add that component. Keep the default settings and click
finish.

Figure 18: JTAG UART configuration panel

17

The next two components SWITCH and LED are actually configured instances of general
purpose parallel IO components in the IP catalog. Search for parallel IO (PIO) and select this
block. By using the PIO block for the switch and LED, you will be able to map the values of the
SWITCH and LED to address space and your C code will read and write these components. For
the switch block, you will set this up as a 1 bit input interface using the settings shown below.

Figure 19: Parallel IO configuration panel

Next, you will add a second PIO block. Double click on the PIO component as you did for the
SWITCH. This time you will configure this component as the LED which is a 1 bit output.

18

Figure 20: Parallel IO configuration panel for LED outputs

Click finish. You have completed adding the 6 components that make up your Qsys system.
Next you will rename the components in the design with names that are easy to remember.

In the system contents tab, right click on the nios2_gen_2_0 component, select rename and
type in nios2e, similarly rename the rest of the components: onchip_memory, uart, switch and
led. This will make these components names easy to remember and reference in future steps.

19

Figure 21: System Content connections starting panel

The next step consists of making the appropriate connections between the components within
Qsys.

Click on the clk net coming out of clk_0. When first selected, it will be gray color. Make
connections by clicking on on the small open circles on the lines that intersecting with the 5
other components.

You should see something similar to Figure 22.

Figure 22: System contents after clock connection

20

Perform the same operation to connect the clk_reset to the resets on the other components.

Next, connect the nios2e data master to the slaves.

Make the connections between the Nios2e data master and the s1 connection of the onchip
memory, avalon_jtag_slave on the uart, s1 port on the switch and s1 port of the led component
as shown below. Instruction master -> debug_mem_slave

Figure 23: System contents after data master/slave connection

The instruction master signal from the nios2e component does not need to be connected to
each slave component as it only needs access to memory that contains the software
executable. Make the connection between the nios2e instruction master and the
onchip_memory s1.

21

Figure 24: System contents after instruction master/slave connections

The next connections to make are the processor interrupt request (IRQ) signals. The UART can
drive interrupts and hence needs to be wired to the nios2e processor interrupt lines. Make this
connection as shown in Figure 25. We will use the default setting for the IRQ number.

Figure 25: System contents after interrupt connections

You have now completed the internal connections for this Nios II processor based system. The
next step is to make the external connections that connect the Qsys based system to the next
higher level in the hierarchy of your FPGA design, or to FPGA device pins that connect to the

22

PCB. Double click on the switch and led conduit items under the export column circled in Figure
26. This will bring these ports out of the Qsys component to connect to the top level design.

Figure 26: System contents after exporting PIO switch and LED

Next you will need to generate the base Addresses for your Qsys system. This is achieved by
using the command System  Assign Base Addresses.

Save your Qsys system by using File  Save As and pick a name for the Qsys system that you
will remember. Note that the lab figures call it nios_setup_v2 so to avoid confusion you should
name your .qsys file the same. The information is saved in what is called a .qsys file. Although
you are not entirely finished, it’s good practice to save edits along the way.

You should see 2 error messages in the Message Console of Qsys. They are shown in Figure
27.

Figure 27: Error message prior to assign memory location to execute from

These error messages have to do with the fact that nios2e processor doesn’t know where the
software code that handles resets and exceptions is located. This is fairly straightforward to fix.

Double click on the nios2e component and set the reset vector memory and exception vector
memory both to onchip_memory.s1. This will set the system to execute from onchip memory at
these respective locations upon reset or interrupt. The 2 errors that were shown in Figure 27
should now be resolved.

23

Figure 28: Assign vectors in the NIOS2E panel

Save your design once again. Note that by saving, you still have not generated the files that you
need for Quartus II compilation or with the Eclipse SBT. The step to complete this is to click on
the button on the lower right of Qsys.

Click on the button ‘Generate HDL’.
Click Generate on the panel that appears.

Congratulations, this completes the Qsys section of the lab.

24

Figure 29: Generating the Qsys system HDL files

Building the top level design
The next step will take a little bit of knowledge in Verilog. Should you want to use a schematic
capture graphical editor, jump to the Error! Reference source not found.. If you are familiar
with VHDL, you can make the same connections in VHDL, but you will have to change the
design to VHDL on your own. For ease of following along the lab document, we recommend
continuing the lab in Verilog. During the early steps using the project wizard, you loaded the
baseline design, and have a baseline.v preloaded in the Quartus project. We will take a look at
this starting point baseline.v file and strip out the unnecessary signals, while only leaving the
signals that are needed to run the Hello World design. It is important to note that each
development kit used has its own names for clocks, switches, pins and so you will need to use
the right names according to the development kit naming convention.

Quartus should be open, bring that to the front of your screen. Make sure the hierarchy tab is
highlighted and double click the baseline design. Note that for this design there is a clock, reset,
push button inputs, LED outputs, and a JTAG UART. The JTAG UART pins are hard wired into
the FPGA so you don’t need to add them in your Verilog source file. The 4 pins: TCLK, TDI,
TMS and TDO that constitute a 4 wire JTAG interface are at a fixed location in your FPGA and
they don’t need to be added to your Verilog source file. Only pins that are synthesized from your
RTL source code need to be specified. The baseline design includes all non hard-wired device
pins and you will need to delete extra pins and include the following pins in the port list:

25

CLK_50_MAX10, CPU_RESETn, USER_PB, USER_LED. Delete all other pins from the port
list. The original baseline.v is shown in Figure 31. Make the changes including changing the
module from baseline to hello_world and save the file as hello_world.v.

Figure 30: Block diagram of hello_world design for the MAX 10 FPGA Development Kit.

Important Note: The pin names throughout this section reflect the names for the MAX 10
FPGA Development Kit. Refer to the table below for the naming convention for the other
kits supported by this lab.

MAX 10 FPGA
Development Kit

BeMicro MAX 10 Cyclone V E FPGA
Development Kit

DECA MAX 10
Development Kit

CLK50_50_MAX10 CLK50_50_MAX10 CLKIN_50_FPGA_TOP MAX10_CLK1_50

CPU_RESETn CPU_RESETn RESET_EXPN RESET_EXPn

USER_PB USER_PB USER_PB KEY

USER_LED USER_LED USER_LED LED

Hello_World

CLK_50_MAX10

CPU_RESETn

USER_PB[1:0]

TCK

TMS

TDI

TDO

USER_LED[1:0]

JTAG

26

Figure 31: Original baseline.v design with MAX 10 FPGA Development Kit signal names

Figure 32: Edited baseline MAX 10 Development Kit design with pins removed. Note save as: hello_world.v

27

Next we need to check that the hello_world.v file is included in your project. Note that it should
be the only file in your project so far. Go to Project  Add/Remove Files in Project. Confirm that
hello_world.v is listed.

Figure 33: Add/Remove Files pane

Next you need to make the top level entity hello_world since its currently set at baseline. In the
same window upper left corner, click on General. Change baseline to hello_world. You can also
change by right clicking on the hello_world.v and set as top level entity.

28

Figure 34: Settings pane

Click OK when complete. Now it is a good idea to make sure your Verilog is syntactically
correct. Return to the main Quartus window and select the Tasks pane. Double-Click on the
Play (right triangle) for analysis/synthesis. You will get warnings but you should get no errors. If
you do get an error, it’s likely syntax (eg missing semicolon). Make changes, save, and continue
to run analysis/synthesis until the Verilog runs error/free (ignore dangling pin warning for now).

29

Figure 35: Task pane

The baseline design that you uploaded in the prior steps contain all of the pin settings needed
so that the pin locations are consistent with how the MAX 10 device is connected for the PCB
on the MAX 10 Development Kit. You can inspect the pin setting locations to understand where
they come from. Launch Assignments  Assignment Editor. You will see a list of pins in
spreadsheet form that contain pin (package ball to be specific) locations, IO standard and
current strength settings. Note that you are not using all the pins in the design, but this is ok –
Quartus will ignore pin assignments that are not referenced in your design.

30

Figure 36: Assignment Editor

Note: Some of the pin names in the list above might differ from the names assigned when you loaded

the baseline design. In a future section, you will be instructed to change some of the pin names to match

what is being used in this specific design.

Adding the Nios II system into your design

Now that you have the hello_world entity completed and syntactically correct, you will need to
add the Nios II Qsys system into your design. Qsys makes this task quite convenient. Go to File
 Open and navigate to the name of the Qsys project you created (the one shown in the lab is
called nios_setup_v2). You should see a file called nios_setup_v2_inst.v . Open this file and
you see how to instantiate (fancy word meaning placing this component in your design) the
Qsys system. The contents of this file are shown below:

31

You will need to connect the IO ports to the nios_setup_v2. Copy the entire contents of the
nios_setup_v2 file by highlighting and copy (ctrl-c), followed by inserting into the Verilog file
hello_world.v and pasting (ctrl-v). Next we will connect the push button switches to the LEDs in
two different ways to demonstrate how the connection can be made through the FPGA fabric,
and in the software that we use that the Nios II executes. To simplify knowing which push button
is connected through hardware and which one through software, we will invert the hardware
connection so that activating push buttons 0 turn off LEDs through a hardware connection, while
activating push buttons 1 turn on the respective LEDs. Take one push buttons ([0]) and connect
to LEDs[0] with an inverted assignment (see line 11 in Figure 37). The LEDs [1] will be
connected non-inverted in software by connection to the Qsys system. Note that the
USER_LED for the MAX 10 Development Kit (note that the number varies by kit) is defined as 5
bits wide, [4:0], but you have only used 2 LEDs in total: bit 0 is connected through the FPGA
fabric, and bit 1 is connected through application software. USER_LED [4:2] are unconnected
and will give a dangling wire warning message when you compile, this is ok. Click the save icon
or File  Save.

Figure 37: hello_world.v after making connections to nios system and adding led to push button assignment

32

You now have completed the creation of the Nios II system using Qsys, instantiating this
component into the top level design, and making connections from led to push buttons for
testing in your Verilog file called hello_world.v. You now add the Nios II system into your project
using the Project  Add/Remove Files in Project command. Instead of adding individual Qsys
generated Verilog files and settings into the project, you add the NIOS qip file which is located
under: nios_setup_v2/synthesis/nios_setup_v2.qip . The qip file contains pointers to the location
of all the generated source files generated from Qsys and necessary settings required to

compile. You can open this file in a text editor to see its content. Navigate using the button
and select the file. Hit Add followed by OK.

Figure 38: Add/Remove Files from Project - .qip file

Now you can compile your design which will run analysis & synthesis, fitter (place and route in
FPGA terminology), Assembler (generate programming image) and TimeQuest (the static timing
analyzer). This can be achieved by clicking on the play button as shown in Figure 39.

33

Figure 39: Compilation button

Note that some warnings and information messages come up in the bottom window.

You can filter by message level. The errors are filtered with the button, critical

warnings with the button,warnings with the button and informational messages with

the button. You cannot proceed if you have errors. In this case there are only critical and
standard warnings, primarily because we did not add timing constraints to this project. Due to
the simplicity of this design and low frequency, it’s okay to start without timing constraints.
Consult other Altera online training courses for instructions on how to add timing constraints to
your design.

Figure 40: Filter for critical warnings

Congratulations, your FPGA hardware design is now complete.

Adjusting Pin Names
The pin naming convention for every development kit supported by this lab can be different. For
instance some kits name the push buttons USER_PB and others call it KEY. You will need to
check the Appendix A for which pin names you will need to change in the assignment editor to
make sure they are properly mapped when running the compilation step. To see if you need to
adjust the pinout names, do the following: (LL).

SOFTWARE DESIGN

Creating the Software for the “Hello World” design
Should you choose to start directly in the Software Design section and skip the Hardware
Design section, consult with your lab facilitator to get these two files: nios_setup_v2.sopcinfo
and hello_world_lab.sof as if you generated them from the Hardware Design lab. You will be
able to complete all subsequent steps with these two files.

The NIOS Software Build Tools for Eclipse are included as part of Quartus. These tools will help
manage creation of the application software and Board Support Package (BSP). Launch the

34

SBT Tools  NIOS II Software Build Tools for Eclipse (Tools -> Nios II Software build tools for
Eclipse). You can use the default location that Eclipse picks for you.

Figure 41: Initial Workspace setup

Click OK in the Workspace launcher.
Next, the Eclipse SBT will launch. Right click in the area called Project Explorer and select
NewNios II Application and BSP from Template. The BSP is the “Board Support Package”
that contains the drivers for things like translating printf C commands to the appropriate
instructions to write to the terminal.

35

Figure 42: Creating the initial project in the Eclipse SBT

Next you will see a panel that requests information to setup your design. First, you need to
navigate to your working directory and click on the .sopcinfo file. The .sopcinfo file informs
Eclipse on what your Qsys system contains. Click OK.

36

Figure 43: Navigating to correct .sopcinfo file

Fill in the Project name. Call it hello_world_sw. Next you will be asked to pick a template design.
The Hello World Small is a software application to write “Hello from Nios II” to the screen. Click
Finish. Note: make sure to pick Hello World Small and NOT “Hello World” or you will not have
enough memory in your FPGA design to store the program executable.

37

Figure 44: completing the Nios II Software Examples setup screen with project name and project template.

We will now make some modifications to the code to connect the LED[1] to the push button
switch through software. Click the right arrow next to hello_world_sw. It will show the contents of
your project. Double-click hello_world_small.c . Note the command alt_putstr to write text to the
terminal. This is part of the Altera HAL (Hardware Abstraction Layer) set of software functions.
Note that the alt_putstr command is used versus a standard C printf function because the code
space is more compact using the HAL commands. Code using HAL functions without an
operating system is referred to as “bare metal” programming. A complete list of these functions
can be found in the Nios II Software Developer’s Handbook
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf .

https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf

38

Next you need to add a library declaration, define integer switch_datain, and a few HAL
functions to connect the LEDs to the Push Buttons:

#include <sys/alt_stdio.h>

#include <stdio.h>

#include "altera_avalon_pio_regs.h"

#include "system.h"

int main()

{

 int switch_datain;

 alt_putstr("Hello from Nios II!\n");

 /* Event loop never exits. Read the PB, display on the LED */

 while (1){

 switch_datain = IORD_ALTERA_AVALON_PIO_DATA(SWITCH_BASE);

 IOWR_ALTERA_AVALON_PIO_DATA(LED_BASE,switch_datain);

 }

 return 0

}

39

Note the use of the variables SWITCH_BASE and LED_BASE. These variables are created by
importing the information from the .sopcinfo file. You can find defined variables in the system.h
file under the hello_world_sw_bsp project. Double click on system.h file and inspect the defined
variable names for SWITCH_BASE and LED_BASE. These must match your
hello_world_small.c code. Edit the hello_world_small.c source code so that it matches the code

shown above. Click the save icon.
Right click on the hello_world_sw project. Left click Build. This compiles the software
application and the BSP (drivers).

Figure 45: Launching the build

Once the build completes, you should observe a “.elf” file (executable load file) under the
hello_world_sw project. If the .elf file does not exist, the project did not build properly. Inspect
the problems tab on the bottom of the Eclipse SBT and determine if there are syntax problems,
correct, and rerun Build Project. Typical problems can be missing semicolons, mismatched
brackets and such.

40

Figure 46: The presence of hello_world_sw.elf indicates the software build ran successfully

MAX10 FPGA Development Kit Cable Connections and Switch Settings
To work with the MAX 10 development kit in the context of this lab, you will need to connect the
power supply to the DC Input and a USB cable connecting the kit to a host PC. It is very
important to note that there are 2 USB connectors: USB Blaster and USB UART. You must
connect the USB cable to the USB Blaster (U12) connector. The USB blaster utilizes circuitry
that formats the image into a data stream that downloads from the PC to FPGA. If you connect
to the USB UART connector, your image will fail to download.

Make sure your development kit is powered up (blue button on kit) and LEDs are on.

41

Figure 47: Proper location to connect USB Blaster cable

If you are only performing the Software design lab, you must first launch Quartus. If you have
just performed the Hardware Design lab, then Quartus should already be open.
Launch the Programmer: Tools  Programmer.

Click Auto Detect and you should see something similar to Figure 48.
Make sure the device number selected matches with the device you are working with. Select the
device in the window (Assignments -> Device) as shown below.

42

Figure 48: Programmer after Auto Detect

Next, you need to download what is called a “.sof” file or SRAM object file. This is the
programming image file that gets downloaded in the FPGA. The default location is
<working_directory>/output_files. Right click on the first row <none> under File and click on
Change File. Navigate to the output_files directory and select hello_world_lab.sof. Click Open.
In the first row under Program/Configure click in the check box as shown in Figure 49.

43

Figure 49: Programmer after adding hello_world_lab.sof file

Click Start. When programming is complete, the Progress meter should read 100%
(Successful).

Figure 50: Programmer after completing .sof download

Now it is time to download the .elf (software executable) into the Nios IIe processor. Return to
the Eclipse SBT tools. Right click on hello_world_sw and select Run as  Run Nios II
Hardware. Click on the Target Connection tab. The connection should indicate that Eclipse has
connected to USB-blaster. If the connection is not identified, you can Click Refresh
Connections. Note that you might need to stretch the window wider to see the Refresh
Connections button. Once the connection is made to the USB-Blaster, you should observe
something similar to Figure 51. Click Run.

44

Figure 51: Run (Nios II) Configurations Window in Eclipse.

Now you have hardware and software downloaded into your MAX10 FPGA Development Kit.
You should observe “Hello from Nios II” in the Nios II Console tab.

Figure 52: “Hello from Nios II!” displayed on the Nios II Console

You can also test the connections between push button and LEDs. Recall that 2 buttons [1:0]
are connected in hardware are inverted so by default the LEDs are on. Buttons [3:2] are
connected in the C code and illuminate LEDs [3:2] when pushed. Refer to the diagram below
and confirm that the push buttons operate the LEDs based on the hello_world.v and

45

hello_world.c source files. Be careful not to hit the top and bottom push buttons
PULSE_NCONFIG or FPGA_RESETN or you can disrupt the FPGA programmed status.

Figure 53: Operating the hello_world lab push buttons

Lab Summary
You now have completed the hardware and software sections of this lab. This includes:

1. Loading the Device Kit pin settings into Quartus
2. Using Qsys to build a Nios II based system
3. Instantiating the Qsys component into your top level design
4. Add some connections between push buttons and LEDs
5. Compiling your hardware
6. Importing the Nios II based system into the Eclipse Software Build Tools
7. Building a software project
8. Modifying a software template to perform some simple IO functions
9. Compiling your software
10. Downloading the hardware image into the development kit.
11. Downloading the software executable into the development kit.
12. Testing the hardware

There is a wealth of resources from Altera and partners to take classes on Embedded
Hardware, Embedded Software and reference design starting points to advance your skills
using Altera’s powerful Nios II based hardware and software tools.

