te

Cyclone 10 LP Nios Il ‘Hello World’ Lab Manual

Date: 8/25/2017

Revision: 1.0

©2017 Intel Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, INTEL, MAX, MEGACORE, NIOS,
QUARTUS and STRATIX words and logos are trademarks of Intel Corporation and registered in the U.S. Patent and Trademark
Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Intel warrants performance of its semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

®
®

Table of Contents

Theory of OPeration ... 3
Hardware and software Requirements..............oouuiiiiiiiiiii e 3

Build the Qsys based processor Systemcccooviiiiieii i 4

Build the top level design ... 13
Add the Nios Il system into design ... e 15
Creating the software for the “Hello World” design........c..ccocoeveevieiiiccieccieee, 18
Downloading the Hardware Imageoeiiiiiiiiiiii e 23
Run the Nios [l SOftWarec.oeiiiiiii e 24
10 0] g F= T 2P UPPPRPRPIN 25
ReviSion and HIStOrYoeiiiiiiii e 26

Theory of Operation

This lab showcases how to create an embedded system in programmable logic using Intel’s
“soft” Nios Il processor.

In this design, the Nios Il processor load a program that prints “Hello World” to the screen. This
requires a working processor to execute the code, on-chip memory to store the software
executable, a JTAG UART peripheral to send the “Hello World” text to a terminal. To make the
lab a little bit more interesting and hardware-centric, we will utilize the push button switches and
LEDs to allow interaction with the development kit. The lab is split into Hardware Section and
Software Section

Hardware and Software Requirements
The reference design requires the following hardware and software to run the test:
o Quartus® Prime Software Version: 17.0

. Cyclone 10 LP FPGA Evaluation Kit

To directly use this reference design:

1) Download this design ‘C10LP_Niosll_hello_world.par’ from Design Store.

2) Open the .par in Quartus Prime 17.0.0 Standard Edition.

3) Close the project, then rename the design from ‘C10LP_Niosll_hello_world_project’ to
‘C10LP_Niosll_hello_world’.

4) Unzip the ‘software.zip’ folder, and copy the ‘software’ folder in this project main
directory.

5) Re-open the project in Quartus Prime, perform compilation, then download the .sof into
dev Kkit.

6) Next, follow the steps in section ‘SOFTWARE DESIGN’ on this document to build the
Nios Il and run the test.

HARDWARE DESIGN

Build the Qsys based processor system

Launch Qsys from Quartus:

Tools =>Qsys. The initial screen looks something like this:

2-Simulation
i @ Altera Nios IT Custom Instruction Master 57N
“ @ Altera Nios II Custom Instruction Slave BFM

M b Catalog 62 I A o e r: System Contents a Address Map i | Interconnect Requirements &% |
, Mios % -\J %« W system:unsaved
Project + Use Conn... Mame Description Export Clodk Base
-8 New Component... | B ck 0 |Clock Source
:'5\:"5‘:"5“3“1 X dk_in {Clock Input dk exported
Lib s =i = dk_in_reset Reset Input reset
ibrary
[Basic Functions = & e g
-Simulation; Debug and Verification i ok reset EseL Ot
v
¥

[=-Processors and Peripherals

Co-Processors

~Nios II Custom Instructions

! Bitswap

Custom Instruction Interconnect
Custom Instruction Master Translator
Custom Instruction Slave Translator
Floating Point Hardware

Floating Point Hardware 2

£+ Embedded Processors

Figure 1: Qsys main panel

Next, add the required components of the system and make the connections between
them. By default, Qsys inserts a clock module. We will connect to this later on in the lab.
Below the IP catalog tab, you can search for the various components you want to add to
your Qsys based system. Enter Nios in the search tab and select the Nios Il processor

from the library.

A configuration window will appear, in this select the Nios Il/e processor. This version of

the Nios Il processor is resource optimized and will work well for the Hello World Lab

implementation.

#n Mios || Processor - niosZ_gen2 0

R Nios II Processor

Mogotors® 3ITEra_nios2_gen2

[~ Block]
. Main vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settings JTAG Debug Advanced Features
[shaw signals
|* select an Implementation
nios2_gen2 O Nios 11 Corel @) fios 11je
Nios IT/f
Ik data_master o
O Fvalon fe— T T
eset e instruction_master Nios IUE Nios]Uf
j s deb et
. intermupt resetf—diebug resel fequesy Summary | Resource-optimized 32-hit RISC Performance-optimized 32-bit RISC
lebug_mem_slave . . . custom_instruction_master
plebug mem siave. s hios_custom_instruction st e DU 2 g Features || JTAG Debug ITAG Debug
AR e ECC RAM Protection Hardware Multiply/Divide
e P Instruction/Data Caches
Tightly-Coupled Masters
ECC RAM Protection
External Interrupt Controller
Shadow Register Sets
MPU
MHMU
RAM Usage |2 + Options 2 + Options

6 Error: nios2_gen2_0: Reset slave is not specified. Please select the reset slave
9 Error: nies2_gen2_0: Exception slave is not specified, Please select the exception slave

Figure 2: Nios Il Configuration panel

Click finish and you will see the Nios Il/e processor in your connection diagram (The
Qsys system errors reported will be addressed them soon.)

t: System Contents o0 | Address Map 23| Interconnect Requirements 23| =

= | | ﬂ System: unsaved Path: nios2_gen2 0

4 Use Connections Mame Description Export Clock Base

L | B dk 0 Clock Source

X CH dk_in Clock Input clk exported

3 o~ ck_in_reset Reset Input reset
dk Clock Output ck_0

- dk_rezet Reset Cutput

= =12 nios2_gen2 0

v dk Clock Input UACOMm:

b 4 reset Reset Input [iclk]
data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memary Mapped Master [iclk]
irg Interrupt Receiver [clk]
debug_reset request |Reset Cutput [icli]
debug_mem_slave Avalon Memory Mapped Slave [iclk] 00800
custom_instruction_m... [Custom Instruction Master

Figure 3: Qsys System Contents panel

Qsys has an efficient way of making connections by clicking on the nodes on ‘wires’ in
the connections panel on the 2nd column from the left. You can add the connections as
you add components, but it's often easier to make all the connections once you have
finished adding the various blocks. With the Nios Il processor added, you still need to
add the On-Chip Memory, JTAG UART, SWITCHES and LED into the system.

Locate the On-Chip Memory (RAM or ROM) component and click add. Use all the
default settings except change the memory size from 4096 to 16384. This will ensure
that you have a plenty of space for your software program. Uncheck initialize memory

5

content. This feature includes the software executable in the hardware image. For this

lab, you will initialize the software executable from Eclipse.

Z On-Chip Memery (RAM or ROM) - onchip_memory2_0

m On-Chip Memory (RAM or ROM)

Mepatony: altera_avalon_onchip_memory2

Block Diagram
[Show signals

onchip_memary2 0

[* Memory type

T oo Q)

[Dual-port access
Single clock operation

Read During Write Mode:

Minimize memory block usage (may impact fimax)

olock [ponT_care
avalon Block type: AUTO
esetl
altera_awalon_snohip_memory2 t S
Enable different width for Dual-port access
Slave 51 Data width: E|
Total memory size: 0% bytes

[* Read Iatency S
Slave s1latency: E+
Slave s2 Latency: |

[~ ROM/RAM Memory Protection -~ !
Reset Request: |Enabled |

[~ ECC Parameter

Extend the data width to support ECC bits: |pisapled . |

TR

Initialize memory content

[] Enable non-default initialization file

Type the flename (e.q: my_ram hex) or select the hex file using the file browser button.

User created initialization file:

[onchip_ mem.hex

Figure 4: On-chip Memory configuration panel

Click finish and you will now see a total 3 components in your Qsys system: clock, Nios
Il processor and on-chip memory.

Address Map 22 | Interconnect Requirements &2 | i |
= |- ! System: unsaved Path: onchip_memory2 0
* |Use connections MName Description Export Clodk Base
L] B ck_0 Clack Source
X CH dk_in Clock Tnput clk exported
e ck_in_reset [Reset Input reset
dk Clock Qutput dk_0
- ck_reset Reset Output
£) B0 nios2_gen2_0 Mios II Processor
v 3 dk Clock Input wAconnected
b 4 reset Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memory Mapped Master [clk]
irg Interrupt Receiver [cik]
debug_reset_request |Reset Qutput [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0800
custorn_instruction_m... [Custom Instruction Master
On-Chip Memory (RAM or ROM)
ck1 Clock Input unconnected
sl Avalon Memory Mapped Slave [dlk1]
resetl Reset Input k1]

Figure 5: System contents with NIOSII and On-chip Memory

The next component need to add is the JTAG UART. Search for JTAG in the IP catalog,
locate the JTAG UART and double click or add that component. Keep the default
settings and click finish.

sa JTAG UART - jtag_uart_0

“ JTAG UART

Megators’ altera_avalon_jtag_uart

~ Block Diagram
I : | o [wWrite FIFD (Data from Avalon to JTAG)
Show signals
Ll g Buffer depth (bytes): |g4 -
- ~ IRQ threshold: ia
jtag_uart 0
[] Construct using registers instead of memory blocks
Ik : i
fBER: AR = [~ Read FIFO (Data from JTAG to Avalon)
et reset Buffer depth (bytes): [sa ..
valon_ftag_slave Sals IRQ threshold: :8
altera_avalon_jtag_uar [] Construct using registers instead of memory blocks

o, Warning: jtag_uart_0: JTAG UART IP input clock need to be at least double {2x) the operating frequency of JTAG TCK on board

Figure 6: JTAG UART configuration panel

The next two components SWITCH and LED are instances of general purpose parallel
IO components in the IP catalog. Search for parallel 10 (PIO) and select this block. For
the switch block, you will set this up as a 2-bit input interface using the settings shown

below.

“ PIO (Parallel I/O)

Megators’ altera_avalon_pio

[[] show signals
pio_0
S
eset

1

E)ﬁernal connection <
conduit

attera_avalon_pio

Width {1-32 bits): |z

Direction: o Bidir
() InCut
() Output

Output Port Reset Value: [ox0000000000000000

[~ Output Register

Enable individual bit setting/dearing

[Edge capture regis

[] synchronously capture
Edge Type: [rismc 19

Enable bit-dearing for edge capture register

I~ tnterrup

[[] Generate IRQ
RQ Type: e]
Level: Interrupt CPU when any unmasked If0 pin i= logic true

Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

[+ Test bench wiring

[[] Hardwire PIO inputs in test bench

Drive inputs to field.: [oy000o0oooaooooong

@ Info: pio_0: PIO inputs are not hardwired in test bench, Undefined values wil be read from PIO inputs during simulation,

Figure 7: Parallel 10 configuration panel for Push Button input

Next, add a second PIO block. Double click on the PIO component as you did for the
SWITCH. This time you will configure this component as the LED which is a 2 bit output.

%k PIO (Parallel 1/0)

agacerst Gltera_avalon_pio | Doaumentaton |
[+ Block i | Y e |
[show signals Width (1-32 bits); l2]
— Direction: () Bidir
— () Input
- —— () nout
eset.
e — Y @ Output
7 P
Output Port Reset Value: |0xnn00000000000000 |
Extema\ connection conduit _
[Output Register I
ol i S [Enable individual bit setting/dearing
| Edge capture register 1

Synchronously capture
Edge Type:]‘eixs'i'N-G- =

Enable bit-clearing for edge capture register

[+ Interrupt

Generate RQ
RQType: LEVEL

Level: Interrupt CPU when any unmasked IO pin is logic true
[Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

- Test bench wiring

Hardwire PIO inputs in test bench

Drive inputs fo field.: [0xnoooooaooocoonon |

Figure 8: Parallel 10 configuration panel for LED outputs

8

You have completed adding the 6 components that make up your Qsys system. Next
you will rename the components in the design with names that are easy to remember.
In the system contents tab, right click on the nios2_gen_2 0, select rename and type in

nios2e, similarly rename the rest of the components: onchip_memory, uart, switch and
led. This will make these components names easy to remember and reference in future
steps.

1= system Contents S@‘ AddressMap &2 | Interconnect Requirements 54 = ot

« WV system:unsaved Path: nios2s.data_master

* e Connections Name Description Export Clock Base End IRQ Tags
| B dik_o Clock Source
X e dk_in Clock Input clk exported
5] o dk_in_reset Reset Input reset
dk Clock Qutput dk 0
& dk_reset Reset Output
i B11 nios2e Nios TT Processar
b, ¢ dk Clock Input uncom:
b 4 reset Reset Input [dk]
-. Iz i Avalon Memary Mapped Master
instruction_master Avalon Memory Mapped Master [k
irg Interrupt Receiver [} IRO O IRO 31
debug_reset request |[Reset Output [k
debug_mem_slave ‘Avalon Memory Mapped Slave [dk] 0x0800 0xDEEE
custom_instruction_m... Custom Instruction Master
Bl onchip_memory2 On-Chip Memory (RAM or ROM)
dk1 Clock Input unce
sl ‘Avalon Memory Mapped Slave [dk1]
resetl Reset Input [ck 1]
B jtag_uart JTAG UART
dk Clock Input uncom
reset Reset Input [dk]
avalon_jtag_slave Avalon Memary Mapped Slave [clk]
T irg Interrupt Sender [clk}
B pb PIO (Parallel 1/0)
dk Clock Input urcom
reset Reset Input [cl]
s1 Avalon Memory Mapped Slave [ck]
external_connection Conduit
B led PIO (Parallel 1/0)
ck Clack Tnput unce
reset Reset Input [did
s1 Avalon Memory Mapped Slave [clk]
external_connection |Conduit
<

Figure 9: System Content connections starting panel

The next step consists of making the appropriate connections between the components
within Qsys.

Click the clk net coming out of clk_0. When first selected, it will be gray color. Make
connections by clicking on the small open circles on the lines that intersecting with the 5
other components.

1Z SystemContents 53 | AddressMap & | IntercommectRequirements 33

© W system:unsaved Path: led.ck

Use Connections Name Description Export Clock Base End IRQ
B dko Clock Source
din (Clock Input clic exported
dk_in_reset Reset Input reset
ck Clock Output dk 0

4P M EIxXE@+

cll_o
[k
[clk]
[cl]
[k
[k
[0x0800 oxozes

i
o
=
—
clk_o
ory [cki]
reset1 Reset Input. [ck1]
B jtag_uart TG UART
ck (Clock Input clk_o
reset Reset Input [
avalonjteg_slave |Avalon Memory Mapped Slave [
irq iInterrupt Sender [k
B pb PIO (Parallel 0)
dk Clock Input clk_o
reset Reset Input [dk]
s1 \avalon Memory Mapped Slave [

ok o
‘ eset ik

1 \awalon Memory Mapped Slave [ei]

| external_connection [Conduit |

Figure 10: System contents after clock connection

Perform the same operation to connect the clk_reset to the resets on the other
components.

Next, connect the nios2e data master to the slaves.
Make the connections between the Nios2e data master and the s1 connection of the

onchip memory, avalon_jtag_slave on the uart, s1 port on the switch and s1 port of the
led component as shown below.

The instruction master signal from the nios2e component does not need to be
connected to each slave component as it only needs access to memory that contains
the software executable. Make the connection between the nios2e instruction master
and the onchip_memory s1.

The next connections to make are the processor interrupt request (IRQ) signals. The
UART can drive interrupts and hence needs to be wired to the nios2e processor
interrupt lines. Use the default setting for the IRQ number.

You have now completed the internal connections for this Nios Il processor based
system. The next step is to make the external connections that connect the Qsys based
system to the next higher level in the hierarchy of your FPGA design, or to FPGA device
pins that connect to the PCB. Double click on the switch and led conduit items under the
export column circled in Figure 28. This will bring these ports out of the Qsys
component to connect to the top level design.

10

E_,-Sysmcmte‘ms ﬁ Address Map 83| Interconnect Requirements 23|

~ W System:rios_setup Path: ck_0

+ Use Connections Mame Description Export Clodk Base End IRQ Tags
% = clk 0 Clock Source
X CH dk_in (Clock Input clk exported
=] o di in_reset Reset Input reset
s ———— dk (Clock Output dk_0
- _— dk_reset Reset Outnut
- B 1 nios2e INios IT Processar
h 4 dk (Clock Tnput cllc_0
¥ reset Reset Input [clk]
—_— data_master \Avalon Memory Mapped Master [clk]
— instruction_master \Avalon Memary Mapped Master [iclk]
— irg Interrupt Receiver [clk] 130 0 IRQ 31—,
debug_reset_request [Reset Output [clk]
debug_mem_slave \Avalon Memory Mapped Slave [clk] Dx8800 OnBEEE
custom_instruction_m... [Custom Instruction Master
El onchip_memory On-Chip Memary (RAM or ROM)
k1 (Clock Input cllc_D
s1 \Bvalon Memary Mapped Slave [ck1] Dx4000 OXTEEE
resetl Reset Input [chk1]
B jtag_uart ITAG LART
dk (Clock Input clk_0
reset Reset Input [l
avalon_jtag_slave \Avalon Memary Mapped Slave [clk] 03020 0x8027
— irg Tnterrupt Sender [clk] —p
= pb PIO (Parallel 1/0)
dk (Clock Tnput cllc_0
reset Reset Input [clk]
sl \Avalon Memory Mapped Slave [iclk] 0x3010 0xS0LE
fos external_connection (Conduit I switch_external_connection I
%3] B led PIO (Parallel 1/0)
dk (Clock Tnput clk_0
reset Reset Input [iclk]
sl \Avalon Memory Mapped Slave [icli] 0x3000 0xS00fF
O external_connection (Conduit I led_external_connection I
<

4t W W current filter:

Figure 11: System contents after exporting PIO switch and LED

Next you will need to generate the base Addresses for your Qsys system. This is
achieved by using the command System [1Assign Base Addresses.

Save your Qsys system by using File [1Save As and pick a name for the Qsys system
that you will remember. Note that the lab figures call it nios_setup_v2 so to avoid
confusion you should name your .gsys file the same. The information is saved in what is
called a .gsys file. Although you are not entirely finished, it's good practice to save edits
along the way.

You should see 2 error messages in the Message Console of Qsys.

oz Messages

Tyje Fack Massage
N~] .: Errors
] [mims. selup_v2.nios e {Rasat siave 15 not specifiad. Plaase selact the rasel shve
- .ﬁ“ EI:IIIF!.!.EI.IIi'I_V:‘!.ni"S.!! EE!—': ppfiop siaseis not sperifisct Fleasa selact the exception sl
¥ 'l;ﬁ 1 Infn Messaga
:J} .|||'|l_\r[np_u_"'.\w|[|’.h 'r.-* inpurs are nol hardwired in e bench Ladefined values will be read fram PIO npos during simulation.

Figure 12: Error message prior to assign memory location to execute from

These error messages have to do with the fact that nios2e processor doesn’t know
where the software code that handles resets and exceptions is located. This is fairly
straight forward to fix.

11

Double click on the nios2e component and set the reset vector memory and exception
vector memory both to onchip_memory.s1. This will set the system to execute from on-
chip memory at these respective locations upon reset or interrupt. The 2 errors now

resolved.

R Pararieners

= -g0
_ﬁ'item: nins_s e?up_‘.& Path=ninz2e
e Lo et

“Main | Mertars | Carnes and Memany Inieraces Arithimetic Instructions | WL and MPL S=ttings | 'JTA-G Crebug Arkancer F2atures

= Reset Veclor

Reser ver1or memon ohchia . mEmory 51 IY
Reset vector offs=t: D00 nT |

Feset vecior HOO0aa4080

T Exception Veder

Exception vecinr memaon: |Ell‘ﬂ-'.hfn-rfsEmElﬂﬁ'51' |v
Exceniion yecior offser: [mpoannazn |
Ex Cepiion yecior (EO0A040 21

= Fast TLE ﬂl_'ll;i Em:epf.ln_n _'h"el:lnl
Fast TLE Mizs Exception vecior memons |

Fast TLR M55 EXreption vecior offs et
Fast TLE Miss Exceptnn wecior Oz OONaa00

Figure 13: Assign vectors in the NIOS2E panel

Save the design once again. Note that by saving, you still have not generated the files
that you need for Quartus compilation or with the Eclipse SBT. The step to complete
this is to click on the button on the lower right of Qsys.

Click on the button ‘Generate HDL'.

Click Generate on the panel that appears.

This completes the Qsys section of the lab.

12

Building the top level design

Create a file and save the file as hello_world.v
hello world.v* %]

BT EE mrth 0w % OE -

Bmodule hello_world (

S/ Reset and Clocks

input SYS_CLKS50M,
input RESET_EXPN,
// LED and Push Button

output [3:0] USER_LED,
input [3:0] FE

J;

Figure 14: Top level file hello_world.v

Include the hello_world.v file in the project. Go to Project [1Add/Remove Files in Project.
Confirm that hello_world.v is listed.

Catagory: | Davice |
Libraries Sclact tha dasign fles yau want 1o Inciusa n tha praject Click Add &llto add 2l casign flas n the praject
= IF Satings directory to the project
IP Cataleq Search Locatans
Diesign Templates Efle nama: | ; Siiel |
le Cxparatng Sattinge and Canddin
n:'ruta-;!e 0 Fils Haime |T~r|:-|-_- JLII:-ulI.I J Diesign EvtryfSyrnthesls Taal |H|‘_‘.||_ Vaiskan LS
Temperaiure hedia_worn.yw Yeriag HOL File =horn= Dataun

= Compdatan Process Settngs
Incremental Compilation
EDA Tool Setlings
Design Entry Syntheais
Sirmudatian
Farmal Werification
Board-Leveal
=-Camplar 5amngs
WHOL Input
Werilog HOL Input
Dalault Paramatars
Tirmeuest Taring Lnalyzer
AESEDlar
Diesign Assiskant
SigalTap Il Logic Analyzer
Lagic analyzer Inerface
PowerPlay Fower Analyrar Sethi
55H Anatyzear

4| |_'|

W | ﬂ (a4 Canceal | Apply | Halp

Figure 15: Add/Remove Files pane

13

Next, click on General, select the hello_world.v and set as top level entity.

Category

Files
Libranes
IF Settings
1P T ataing Searri il aratinng
Design Templates
Cperating Setings and Cordition
Voltags
Temperatre
Complation Process Setings
Incremantal Compiatian
~ EDA Tred Sattings
Design Entry/Synthesia
Sirmukation
Farmal verification
Board-Lewel
Compier 5amngs
WHOIL Ingait
Warilog HDL input
Datault Faramelers
TimegQuest Timing Analy2er
- Assamblar
Design AssIStant
SlgnalTap Il Logie Anatyzer
Logic Amalyzer Intarfaca
PoweiPlay Power Analyzer Settii
SEN Analyzer

“ | =+l

Yau can change the top-level entity for the desin: however, £15 recoimmended that you create a new
revision far @ach ety In oroar 0 maintain setings mformatian

Tap-level enlity

Cescrpbion:

[resa_wono

Racenty selected top-devel amtes. (RN - |

|

Figure 16: Settings pane

Ok Cancel

Help:

Launch Assignments [1Pin Planner. Assign the pin locations, 10 standard and current
strength settings, as below:

Named: * ~ el Edit 2 |

Node Mame Direction Location
B PB[3] Input PIN_D3
B PB[2] Input PIN_C11
& PB[1] Input PIN F14
& PE[0] Input PIN_E15
- RESET EXPN Input PIN_115
B 5Y5_CLKS0M Input PIN_E1
‘e USER LED[3] Output PIN_113
%8 USER LED[2] Output PIN_J14
‘S USER _LED[1] Output PIN_K15
‘@ USER_LED[0] Output PIN_L14
g altera_reserved fck Input
[y altera_reserved_tdi Input
‘@ altera_reserved tdo Output
iﬁ_ altera_reserved_tms Input
<<new node>>

Figure 17: Pin Planner

mom omom = momm - =

1/0 Bank

VREF Group
B7_NO
B7_NO
B6 NO
BE_NO
B5_MNO
B1_NO
BS_NO
B5_NO
B5_NO
B5_NO

14

Fitter Location
PIN_D3
PIM_CT1
PIM_F14
PIN_E15
PIN_115
PIN_E1
PIN_113
PIN_J14
PIN_K15
PIM_L14
PIN_H3
PIN_H4
PIN_14
PIN_15S

1O Standard
3.3-VINVTTIL
3.3-V LVTTL
3.3-V LVTTL
3.3-VLVTTL
3.3-V LVTTL
3.3-V LVTTL
3.3-VILVTTL
33-VINTIL
3 3-VINTTL
3.3-VLVTTL
2.5V (default)
2.5V (default)
2.5V (default)
2.5V (default)

Reserved

Current Strength

amaA (default)
amaA (default)
ama (default)
8mA (default)
BmA (default)
8mA (default)
SmaA (default)
BmA [default)
amaA (default)
amaA (default)
3maA (default)
8miA (default)
8mA (default)
8mA (default)

Add the Nios Il system into design

Now that you have the hello_world entity completed and syntactically correct, you will
need to add the Nios Il Qsys system into your design. Qsys makes this task quite
convenient. Go to File [JOpen and navigate to the name of the Qsys project you created
(the one shown in the lab is called nios2_setup). You should see a file called
nios_setup_inst.v . Open this file and you see how to instantiate (fancy word meaning
placing this component in your design) the Qsys system. The contents of this file is
shown below:

nios_setup ul (
.clk clk (<connected-to-clk_clk>),
.led external connection export (<connected-to-led external connection exports),
.&witch external connection export (<connected-to-switch external connection export>),
.reset_reset n (<connected-to-reset_reset n>)

Figure 18: nios_setup

Connect the 10 ports to the nios_setup_v2 by inserting into the Verilog file
hello_world.v. Next, connect the push button switches to the LEDs in two different ways
to demonstrate how the connection can be made through the FPGA fabric, and in the
software that we use the Nios Il executes. To simplify knowing which push button is
connected through hardware and which one through software, we will invert the
hardware connection so that activating push buttons 0 and 1 turn off LEDs through a
hardware connection, while activating push buttons 3 and 2 turn on the respective
LEDs. Take two push buttons ([1:0]) and connect to the LEDs[1:0] with an inverted
assignment. The other two LEDs [3:2] will be connected non-inverted in software by
connection to the Qsys system.

15

¢ hello_world.v (|

Er EErnrfh 0w %8

1 Bmodule hello_world (

2

3 '/ Reset and cClocks

4 input SYS_CLK50M,

5 input RESET_EXPN,

i

7 // LED and Push Button

8 output [3:0] USER_LED,

9 input [3:0] PE

10

11)i

12 L

13 assign USER_LED[1:0] = ~PB[1:0];

14

i3 O n'ius_Setu? ud (

16 .clk_clk (SYS_CLKSOM),

i7 .switch_external_connection_export (pB[3:2]), //push button
18 .reset_reset_n (RESET_EXPN), .
19 . led_external_connection_export (USER_LED[3:2]) //led
20 b=

21 =

22 endmodule

23

Figure 19: hello_world.v after making connections to Nios Il system and adding
led to push button assignment

You now have completed the creation of the Nios Il system using Qsys, instantiating
this component into the top level design, and making connections from led to push
buttons for testing in your Verilog file called hello_world.v. You now add the Nios Il
system into your project using the Project [1Add/Remove Files in Project command.
Instead of adding individual Qsys generated Verilog files and settings into the project,
you add the NIOS qip file which is located under: nios_setup/synthesis/nios_setup.qip .
The qip file contains pointers to the location of all the generated source files generated
from Qsys and necessary settings required to compile.

16

* Sattings - hello world lab <@sj-swof5690-011>

et
s Selact tha dasign flles you Want o InCude N the progct, Click Sdd A% 1o 3dd a1l design fies inthe praject
- IP Setings directory ta the project
P Cataleg Searcn Lecations
Disign Tamplatos Fife name: [nios_setup_vZisynthesisinios_sefup w2 qip A
- Qperaing Settings and Condifal
Sl File Name [Type |ibeary |Design Entrysynmess Toot oL Version i
Temperature hedia_warld ¥ Verliag HDOL Fig =Hone= Dol ailt
- Coampilabon Process Setbngs Remave
Incramental Compilatian
- EDA Tood Setings Up
Dasign Entrydiynthess
Sirnulatien Down
Forrrmal Verdeabion
Baard-Lawel FTORRITES
- Campier Setfings
WHOL Input

werlaog HOL input

Carault Faramaters
TimeQuast Timing dnshyzer
Assemiler
Design Assistant
SignalTap Il Lagic Analyzer
Logic Analyzer Intaiface
Powerflay Power Analyzer Settir
55N Analyzar

Figure 20: Add/Remove Files from Project .qip file

Now you can compile the design which will run analysis & synthesis, fitter (place and
route in FPGA terminology), Assembler (generate programming image) and TimeQuest
(the static timing analyzer). This can be achieved by clicking on the ‘Start Compilation’
button.

17

SOFTWARE DESIGN

Creating the Software for the “Hello World” design

The NIOS Software Build Tools for Eclipse are included as part of Quartus. These tools
will help manage creation of the application software and Board Support Package
(BSP). Launch the SBT Tools ->NIOS |l Software Build Tools for Eclipse. You can use
the default location that Eclipse picks for you.

Click OK in the Workspace launcher.
Next, the Eclipse SBT will launch. Right click in the area called Project Explorer and

select New—>Nios Il Application and BSP from Template. The BSP is the “Board
Support Package” that contains the drivers for things like translating printf C commands
to the appropriate instructions to write to the terminal.

= Mios || - Eclipse

File Edit Mavigate Search Project Miosll Run Window Help

e R B E @i O QIS A e e
[f Project Explorer 532 b
E&|® ¥
Mew 3 [Project..
gxg Import... c.t| Mios |l Application

iy Export. Mios Il Application and BSP from Template

ﬂ}. 1Ef E5 5 I od U'FIFIG t Fack age
Gt | NLCIS”Lll:}a !'l

% Other. Ctrl+ N

Figure 21: Creating the initial project in the Eclipse SBT

18

Next you will see a panel that requests information to setup your design. First, you need
to navigate to your working directory and click on the .sopcinfo file. The .sopcinfo file
trains Eclipse on what your Qsys system contains. Click OK.

= Nios |l Application and BSP from Template O >

Nios Il Software Examples

Project name is empty

Target hardware information

SOPC Information File name: | Chskbeh\CT0LPYVCI0LP_Miosll_hello_world\nios_setup.sopcinfo

CPU name: ity e

Application project

Project name:

Lse default location

Project location:

Figure 22: Navigating to correct .sopcinfo file

19

Fill in the Project name. Call it hello_world. Next you will be asked to pick a template
design. The Hello World Small is a software application to write “Hello from Nios II” to
the screen. Click Finish. Note: make sure to pick Hello World Small and not Hello World
or you will not have enough memory in your FPGA design to store the program
executable.

Target hardware informaticn

SOPC Information File name: | Chskbeh CIOLPYVCI0LP_Micsl_hello_worldinios_setup.sopcinfo

CPU name; i L

Application project

Project name: §| hello_world

Use default location

Project locatior: | C:\skbeh\C10LPYCT0LP_MNiosll_hello_world\softwarethello_world

Project template

Templates Template description
EBlank Project # | | Helle World Small prints 'Hello from Mios |I' to STDOUT, ”
Board Diagnostics The project occupies the smallest memory footprint
Count Binary possible for a hello world application.
Floatd Functionality
Float? GCC Thiz exarnple runs with or without the MicroC/05-11 RTOS
Float2 Performance and requires an 5TDOUT device in your system's hardware,
Hello Freestanding
Hello MicroC/05-11 For details, click Finish to create the project and refer to the
Hello Waorld readme.tut file in the project directory.
Helle Warld Small .
' o The BSP for this ternplate is based on the Altera HAL
Mermnory Test Small ¥ | | operating system with reduced code footprint.
< b W

@ < Back Mext > Finish Cancel

Figure 23: completing the Nios Il Software Examples setup screen with project
name and project template.

20

Now, make some modifications to the code to connect the LEDs to the push button
switches through software. Click the right arrow next to hello_world. It will show the
contents of your project. Double-click hello_world_small.c . Note the command
alt_putstr to write text to the terminal. This is part of the Altera HAL (Hardware
Abstraction Layer) set of software functions. A complete list of these functions can be
found in the Nios Il Software Developer's Handbook
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf

Add a library declaration, define integer switch_datain, and a few HAL functions to
connect the LEDs to the Push Buttons:

#include <sys/alt_stdio.h>

#include <stdio.h>

#include "altera_avalon_pio_regs.h"
#include "system.h"

#include <time.h>

int main()

{
int switch_datain;
alt_putstr("Hello from Nios 11'\n");

[* Event loop never exits. Read the PB, display on the LED */
while (1) {

switch_datain = IORD_ALTERA_AVALON_PIO_DATA(PB_BASE);
printf("%d \n",switch_datain);
IOWR_ALTERA_AVALON_PIO_DATA(LED_BASE,switch_datain);
}

return O;

21

[£] hello_word_small.c &2

@ #* "Smal1]l Hello World"™ example. []

#include <sys/alt stdio.h>

#inclode <stdio.h>

#include "altera avalon pic regs.h"
#include "aystem.h"”

#inclode <time.h>

=int main()
i
int switch datain;
alt putstr ("Hello from ggg;_II!\n"];

Il -

J ¥
while (1) {

switch datain = TORD ALTERA AVALON PIO DATA (FE BASE):
printf ("3id \n",switch_datain};

IOWR ALTERR AVALON FIO DATA (LED BASE,switch datain);
}

retorn O:

% Fvent loop never exits. Head the PB, di=splay on the LED %/f

Figure 24: Nios Il Software hello_world_small.c coding after modification.

Right click on the hello_world project. Left click Build. This compiles the software

application and the BSP (drivers).

display

on

the

7+ Project Explorer 53 = m [£] helio_word_small.c 3
MNew ¥ fHello World" example. []
Go Into
sys/alt stdio.h>
Open in New Window stdio.h>
altera avalon piag regs.h”
£= Copy Ctrl+C system.nn"
Paste Chrl+V time.h>
K Delete Delete
Remove from Context Ctrl+ Alt+Shift+Daown
Source *» tch datain;
Move... tr("Hello from Nigs II'\n™):
R £ F2
R loop never exits,. Read the PB,
f¥y Import.. b
jatrain = ICORD ALTERA AVALON PIC DATA(PB BASE):
£y Export.. . - i e < i
%d “\n",switch datain);
| Build Project I FERA AVALON PIO DATA (LED BASE,switch datain);
Clean Project

Figure 25: Launching the Build Project

22

Downloading the hardware into Cyclone 10 LP Development Kit

To work with the Cyclone 10 LP development kit in the context of this lab, you just need
to connect the USB blaster from PC to the dev kit. The development kit will be power-
up by the USB Blaster cable itself from PC (no extra power supply needed).

|

MAOI00IAA 148

-
-
-
-
-
-
-
=
-
-
s

Figure 26: Cyclone 10 LP Development Kit connect to USB Blaster cable from PC.

In Quartus, launch the Tools ->Programmer.
Click Auto Detect and make sure the USB Blaster is detected before download the “.sof”

file or SRAM object file.
This is the programming image file that gets downloaded in the FPGA. The default

location is <working_directory>/output_files.
Click Start. When programming is complete, the Progress meter should read 100%

(Successful).

23

Run the Nios Il Software

Download the .elf (software executable) into the Nios lle processor. Return to the
Eclipse SBT tools. Right click on hello_world_sw and select Run as ->Run Nios Il
Hardware. Click on the Target Connection tab. The connection should indicate that
Eclipse has connected to USB-blaster.

i [J=k] THn : 5 7
[ES # | e || Marme: | hello_woarld Mios || Hardware configuration

|_| Project HlLTargetCunnection iﬁ"rDebugger £ Comman T53,--'Sm.|n:e

C/C++ Application

C/C++ Remote Application Project name: hello_world s

Launch Group Project ELF file name: C:\skbeh\C10LPAC 10LPNiosII_hello_world\softwarethello_worldthello_world elf -
Migs Il Hardware

P hello_world Nios || Hardwar
Mies | Hardware v2 (beta)

Mios Il ModelSim File system ELF file name:
Mios [l ModelSim v2 (beta)

[C] Enable browse for file system ELF file

Advanced..,

Figure 27: Run (Nios Il) Configurations Window in Eclipse.

Now you have hardware and software downloaded into the Cyclone 10 LP Development
Kit. You should observe “Hello from Nios II” in the Nios |l Console tab.

You can also test the connections between push button and LEDs. Recall that 2 buttons
[1:0] are connected in hardware are inverted so by default the LEDs are on. Buttons
[3:2] are connected in the C code and illuminate LEDs [3:2] when pushed. Press the
push buttons to operate the LEDs based on the hello_world.v and hello_world_small.c
source files. Be careful not to hit the push buttons CONFIG or RESET or you can
disrupt the FPGA programmed status.

(Note: By default, Nios Il Console tab will continuously print out the value of
USER_LEDI[3:2]=0x3).

Press PBO: USER_LEDI[O] will Off

Press PB1: USER_LED[1] will Off

Press PB2: USER_LED[3:2] value is 0x2

Press PB3: USER_LED[3:2] value is 0x1

Press both PB2 and PB3 simultaneously: USER_LED[3:2] value is 0x0

24

Summary

The hardware and software sections of this lab includes:

1.

Using Qsys to build a Nios Il based system

2. Instantiating the Qsys component into your top level design

3. Add some connections between push buttons and LEDs

4. Compiling your hardware

5. Importing the Nios Il based system into the Eclipse Software Build Tools
6.
7
8
9
1

Building a software project

. Modifying a software template to perform some simple IO functions

. Downloading the hardware image into the Cyclone 10 LP Development Kit

. Downloading the software executable into the Cyclone 10 LP Development Kit
0. Testing the hardware

25

Revision and History

Date

Version

Changes

8/25/2017

1.0

Initial Release

26

