
•

I,.

>C

,.+ ..

C
eft

®

-
-

,.

z ..a

MAX+PLUS ® II AHDL

MAX+PLUS® II

Programmable Logic Development System

AHDL

Altera Corporation

101 Innovation Drive

San Jose, CA 95134

(408) 544-7000

MAX+PLUS II AHDL
Version 6.0
November 1995 P25-04802-02

Altera, MAX, MAX+PLUS, FLEX, and FLEX Ability are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: Classic, MAX 5000, MAX 5000A, FLEXlogic, FLASHlogic, MAX 7000, MAX 7000E,
MAX 70005, FLEX 8000, FLEX 8000A, FLEX 8000M, MAX 9000, FLEX 10K, MAX+PLUS II, PLDshell Plus, FastTrack, AHDL,
MPLD, Turbo Bit, BitBlaster, PLS-ES, PLSM-VHDL, PLSM-VHDLWS, EP220, EP330, EP61O, EP61OI, EP9lO, EP910I, EP181O,
EP181OT, EP61OT, EP910T, EPM5016, EPM5032, EPM5032A, EPM5064, EPM5064A, EPM5128, EPM5128A, EPM5130, EPM5130A,
EPM5192, EPM5192A, EPX740, EPX780, EPX880, EPX8160, EPM7032, EPM7032V, EPM7064, EPM7096, EPM7182E, EPM7160E,
EPM7192E, EPM7256E, EPM7032S, EPM7064S, EPM7096S, EPM7128S, EPM7160S, EPM7192S, EPM7256S, EPCl, EPC1064,
EPClO64V, EPC1213, EPF8282, EPF8282V, EPF8282A, EPF8282AV, EPF8452, EPF8452A, EPF8636A, EPF8820, EPF8820A,
EPF81188, EPF81188A, EPF81500, EPF81500A, EPF8050M, EPM9320, EPM9400, EPM9480, EPM9560, EPFlOK10, EPF10K20,
EPF10K30, EPFlOK40, EPF10K50, EPF10K70, EPFlOK100. Product design elements and mnemonics are Altera Corporation
copyright. Altera Corporation acknowledges the trademarks of other organizations for their respective products or services
mentioned in this document, specifically: UNIX is a trademark of AT&T Bell Laboratories. Verilog is a registered trademark of
Cadence Design Systems, Incorporated. Data I/O is a registered trademark of Data I/ O Corporation. FLEXlm is a registered
trademark of Globetrotter Software, Inc. HP is a registered trademark of Hewlett-Packard Company. IBM is a registered
trademark and IBM PC and IBM RISC System/6000 are trademarks of International Business Machines Corporation. Intel is a
registered trademark, and Pentium is a trademark of Intel Corporation. Mentor Graphics is a registered trademark of Mentor
GraphiCS Corporation. Microsoft, MS-DOS, and Windows are registered trademarks and Win32s and Windows NT are
trademarks of Microsoft Corporation. OrCAD is a trademark of OrCAD Systems Corporation. SPARCstation is a trademark of
SPARC International, Inc. and is licensed exclusively to Sun Microsystems, Inc. Sun Workstation and Solaris are registered
trademarks, and Sun, SunOS, and OpenWindows are trademarks of Sun Microsystems, Incorporated. Synopsys is a registered
trademark of Synopsys, Inc. View logic is a registered trademark of View logic Systems, Incorporated. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document.
Altera advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera's standard warranty. Testing and other quality control techniques are used to the extent
Altera deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed. In the absence of written agreement to the contrary, Altera assumes
no liability for Altera applications assistance, customer's product design, or infringement of patents or copyrights of third parties
by or arising from use of semiconductor devices described herein. Nor does Altera warrant or represent any patent right,
copyright, or other intellectual property right of Altera covering or relating to any combination, machine, or process in which such
semiconductor devices might be or are used .

Altera's products are not authorized for use as critical components in life support devices or systems without the express written
approval of the president of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling,
can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected
to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following u.s. patents: 4,020,469; 4,609,986; 4,617,479;
4,677,318; 4,713,792; 4,774,421; 4,785,423; 4,831,573; 4,864,161; 4,871,930; 4,899,067; 4,899,070; 4,903,223; 4,912,342; 4,930,097;
4,930,098; 4,930,107; 4,969,121; 5,045,772; 5,066,873; 5,091,661; 5,097,208; 5,111,423; 5,121,006; 5,128,565; 5,138,576; 5,144,167;
5,162,680; 5,166,604; 5,187,392; 5,200,920; 5,220,214; 5,220,533; 5,237,219; 5,241,224; 5,243,233; 5,247,477; 5,247,478; 5,258,668;
5,260,610; 5,260,611; 5,268,598; 5,272,368; 5,274,581; 5,280,203; 5,285,153; 5,294,975; 5,301,416; 5,309,046; 5,315,172; 5,317,210;
5,317,212; 5,329,487; 5,341,044; 5,341,048; 5,341,308; 5,349,255; 5,350,954; 5,352,940; 5,353,248; 5,359,242; 5,359,243; 5,369,314;
5,371,422; 5,375,086; 5,376,844; 5,384,499; 5,399,922; 5,414,312; 5,432,467; 5,434,514; 5,436,574; 5,436,575; 5,438,295; 5,444,394 and
certain foreign patents.

U.s. and European patents pending
Copyright © 1995 Altera Corporation. All rights reserved.

I.S. EN ISO 9001 #It
~., Printed on Recycled Paper

Contents

Preface

MAX+PLUS II Documentation........ xii

MAX+PLUS II Documents xii

MAX+PLUS II Help xiii

How to Use MAX+PLUS II Documentation ... xiii

Documentation Conventions xiv

Terminology xiv

Typographic Conventions xv

Key Combinations xii

Backus-Naur Form xii

MAX+PLUS II Help Updates xiii

Sample Files xix

About MAX + PLUS II AHDL xx

Section 1 Introduction

AHDL Design Entry 2

How Does AHDL Work? 2

Text Design File Structure 4

Text Design File Sections 4

Files in a Project Hierarchy 7

Include Files 7

MAX+PLUS II Text Editor 9

AHDL Templates & Examples 9

AHDL Context-Sensitive Help........................ 10

Syntax Coloring 10

Resource & Device Assignments :.11

iii

MAX+PLUS /I AHDL

Error Location 12

Compiling AHDL Text Design Files13

Golden Rules 14

General Design Entry Golden Rules 15

General MAX+PLUS II Golden Rules16

Section 2 How to Use AHDL

Introduction 18

Using Numbers 18

Using Constants & Evaluated Functions 19

Inserting an AHDL Template 22

AHDL Examples 24

Combinatorial Logic 25

Implementing Boolean Expressions & Equations 25

Declaring Nodes 27

Defining Groups 28

Implementing Conditional Logic 31

If Then Statement Logic31

Case Statement Logic 32

If Then Statement vs. Case Statement 34

Creating Decoders 35

Using Default Values for Variables 39

Implementing Active-Low Logic: 41

Implementing Bidirectional Pins 43

Implementing Tri-State Buses 45

Sequential Logic 47

Declaring Registers 47

Declaring Registered Outputs50

Creating Counters 51

State Machines 54

Implementing State Machines 55

Setting Clock, Reset & Enable Signals 57

Assigning State Machine Bits & Values 58

State Machines with Synchronous Outputs 60

State Machines with Asynchronous Outputs 64

Recovering From Illegal States 66

Implementing a Hierarchical Project 69

Using Altera-Provided Unparameterized Functions 69

Using Altera-Provided Parameterized Functions73

Using Custom Megafunctions & Macrofunctions 76

Importing & Exporting State Machines77

Implementing LCELL & SOFT Primitives81

Implementing RAM & ROM 83

Naming a Boolean Operator or Comparator 84

iv

Contents

Using Iteratively Generated Logic 86

Using Conditionally Generated Logic 87

Using the Assert Statement 89

Section 3 Elements

Reserved Keywords & Identifiers 92

Reserved Keywords 92

Reserved Identifiers 93

Symbols 94

Quoted & Unquoted Names 97

Groups 99

Group Notations 99

Group Ranges & Sub ranges 100

Numbers in AHDL 102

Arithmetic Expressions 103

Boolean Expressions 106

Logical Operators... 107

Boolean Expressions Using NOT 108

Boolean Expressions Using AND, NAND, OR, NOR, XOR, & XNOR 108

Arithmetic Operators in Boolean Expressions 109

Comparators 111

Boolean Operator & Comparator Priorities 112

Primitives 113

Buffer Primitives 114

CARRY Primitive 114

CASCADE Primitive 116

EXP Primitive 117

GLOBAL Primitive 118

LCELL Primitive 120

OPNDRN Primitive 122

SOFT Primitive........................ 123

TRI Primitive 125

Flipflop & Latch Primitives 125

Primitive/Port Interconnections................. 127

Megafunctions.. 129

Old-Style Macrofunctions 131

Ports 132

Ports of the Current File 132

Ports of Instances 133

Parameters 136

v

MAX+PLUS /I AHDL

Section 4 Design Structure

Overview140

Title Statement 141

Parameters Statement 142

Include Statement 145

Constant Statement.. 147

Define Statement 149

Function Prototype Statement 151

Options Statement 154

Assert Statement155

Subdesign Section 157

Variable Section159

Instance Declaration 160

Node Declaration 162

Register Declaration 163

State Machine Declaration 165

Machine Alias Declaration 166

Logic Section 168

Boolean Equations 168

Boolean Control Equations 171

Case Statement 172

Defaults Statement 173

If Then Statement 176

If Generate Statement 178

For Generate Statement 179

In-Line Logic Function Reference 180

Truth Table Statement 183

Section 5 Style Guide

General Style Guidelines 188

White Space 190

Comments & Documentation 191

Naming Conventions 192

Indentation Guidelines 193

Glossary 197

Index 223

vi

Contents

Illustrations

Figure Page

1-1 MAX+PLUS II & AHDL Design Entry ... 3

1-2 AHDL Text Design File Structure ... 6

2-1 decodel.tdf 18

2-2 decodel.gdf.......... 19

2-3 decode2.tdf20

2-4 strcmp.tdf 21

2-5 minport.tdf22

2-6 AHDL Template Dialog Box.. 23

2-7 Defaults Statement Template 23

2-8 boolel.tdf 26

2-9 boolel.gdf 26

2-10 boole2.tdf 27

2-11 boole2.gdf 28

2-12 groupl.tdf 29

2-13 priority.tdf 31

2-14 priority.gdf................... 32

2-15 decoder.tdf 33

2-16 decoder.gdf 33

2-17 7segment.tdf 36

2-18 7segment.gdf 37

2-19 decode3.tdf 37

2-20 decode4.tdf 38

2-21 defaultl.tdf 39

2-22 default2.tdf 40

2-23 default2.gdf 41

vii

MAX+PLUS /I AHDL

Figure Page

2-24 daisy.td£ 42

2-25 daisy.gd£ 43

2-26 bus_reg2.td£ 43

2-27 bus_reg2.gd£ 44

2-28 bidirl.tdf 44

2-29 tri_bus.tdf 45

2-30 bur_reg.td£ 48

2-31 lpm_reg.td£ 49

2-32 reg.gd£ 49

2-33 re~out.td£ 50

2-34 ahdlcnt.td£ 51

2-35 lpm_cnt.td£ 52

2-36 count.gdf 53

2-37 simple.td£ 55

2-38 simple.gd£ 56

2-39 simplel.td£ .. 57

2-40 stepper.td£ ... 59

2-41 Moore State Machine Diagram.. 60

2-42 moorel.td£ ... 61

2-43 moorel.gd£ 62

2-44 moore2.td£ 63

2-45 Mealy State Machine Diagram .. 64

2-46 mealy.td£ 65

2-47 mealy.gd£... ... 66

2-48 recover.td£ 68

2-49 macrol.td£ 70

2-50 macro2.td£ 71

2-51 macro.gd£.. 72

2-52 lpm_addl.td£ 74

2-53 Ipm_add2.td£ 75

2-54 ss_de£.td£ ... 78

2-55 ss_use.td£ ... 78

2-56 topl.tdf 79

2-57 topl.gd£... 79

2-58 top2.td£ ... 80

2-59 NODE Variables & SOFT Primitives .. 82

2-60 boole3.td£ .. 84

2-61 boole3.rpt & boolel.rpt Excerpts 85

2-62 iter_add.td£ 86

2-63 condlogl.td£ 87

2-64 condlog2.td£ 90

viii

http:condlog2.td
http:condlogl.td
http:iter_add.td
http:boole3.td
http:ss_use.td
http:ss_de�.td
http:Ipm_add2.td
http:lpm_addl.td
http:macro.gd
http:macro2.td
http:macrol.td
http:recover.td
http:mealy.gd
http:mealy.td
http:moore2.td
http:moorel.gd
http:moorel.td
http:stepper.td
http:simplel.td
http:simple.gd
http:simple.td
http:lpm_cnt.td
http:ahdlcnt.td
http:re~out.td
http:lpm_reg.td
http:bur_reg.td
http:bus_reg2.gd
http:bus_reg2.td
http:daisy.gd
http:daisy.td

Contents

Tables

Table Page

3-1 AHDL Symbols 94

3-2 Quoted & Unquoted Names.............................. 98

3-3 Arithmetic Operators and Comparators Used in Arithmetic

Expressions 103

3-4 Logical Operators Used in Boolean Expressions 107

3-5 Arithmetic Operators Used in Boolean Expressions 109

3-6 Comparators Used in Boolean Expressions 111

3-7 Boolean Operator & Comparator Priorities 112

3-8 Global Signal Availability 118

3-9 MAX+PLUS II Flipflops & Latches 126

3-10 Primitive/Port Interconnections 127

3-11 Primitive/Port to Register Connections 128

3-12 MAX+PLUS II Megafunctions 129

3-13 Commonly Used Ports 135

ix

MAX+PLUS /I AHDL

x

Preface

-

MAX+PLUS II

Fundamentals

This section describes the MAX+PLUS II manual and on-line help
documentation and conventions. You should be familiar with this
information before using MAX+PLUS II documentation.

• MAX+PLUS II Documentation xii

• Documentation Conventions xiv

• MAX+PLUS II Help Updates xviii

• Sample Files xix

• About MAX+PLUS IIAHDL xx

xi

MAX+PLUS /I AHDL

MAX+PlUS II Documentation

MAX+PLUS II documentation is designed for the novice as well as for the
experienced user. It includes manuals and extensive, illustrated Help.

MAX+PlUS II Documents

MAX+PLUS II printed documents contain the following information:

MAX+PLUSII 	 Contains step-by-step instructions on how to
Getting Started 	 install MAX+PLUS II hardware, software, and

licenses on PCs and workstations. It also provides
an overview of the entire MAX+PLUS II system,
and a tutorial that takes you from design entry to
device programming. In addition, it contains
information about MAX+PLUS II command-line
operation and Altera's support services.

MAX+PLUSII 	 Contains complete information on the Altera
AHDL 	 Hardware Description Language (AHDL),

including a detailed How to Use AHDL section
with many examples.

MAX+PLUSII 	 Provides information on how to use the Very High
VHDL 	 Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL) with
MAX+PLUS II, including a How to Use
MAX+PLUS II VHDL section with many
examples. (Available if you purchase PLSM­
VHDL or PLSM-VHDLWS.)

MAX+PLUS II Provides handy and colorful descriptions of how
Help Poster to use on-line help in MAX+PLUS II.

MAX+PLUS II for workstations also includes the following Software
Interface Guides:

• Cadence & MAX+PLUS II Software Interface Guide
• Mentor Graphics & MAX+PLUS II Software Interface Guide
• Synopsys & MAX+PLUS II Software Interface Guide
• View logic Powerview & MAX+PLUS II Software Interface Guide

xii

Preface: MAX+PLUS /I Fundamentals

MAX+PLUS II Help

Your primary source of information on MAX+PLUS II is the complete on­
line help. All of the information necessary to enter, compile, and verify a
design and to program an Altera device is available in MAX+PLUS II Help.

Help also provides introductions to all MAX+PLUS II applications,
guidelines for designing circuits with MAX+PLUS II, pin and logic cell
numbers for each Altera device package, and summaries of other Altera
documents, such as application notes, that can assist you with logic design.

How to Use MAX+PLUS II Documentation

How you use MAX+PLUS II documentation depends on your level of
expertise and your approach to learning how to use a new tool.

If you are a novice user, you should take time to read the MAX+PLUS II
Getting Started manual and complete the MAX+PLUS II Tutorial. Once you
begin using MAX+PLUS II applications, you will find that the easy-to-use,
extensive on-line help can quickly tum you into an expert MAX+PLUS II
user. For basic information on using on-line help, refer to the MAX+PLUS II
Help Poster. More detailed information on using Help is available in
MAX+PLUS II - A Perspective in MAX+PLUS II Getting Started.

If you are an experienced circuit designer or one who prefers to learn by
experimenting, you will find the on-line help invaluable. Context-sensitive
and menu-driven help give instant access to all MAX+PLUS II information.

Regardless of your level of expertise, you must follow the installation
instructions provided inMAX+PLUS II Getting Started. Before you install
the MAX + PLUS II hardware and software, you should also read the read.me
file provided on the first Install diskette or on the CD-ROM. If you are using
the CD-ROM on a PC, the read.me file is located in the \pc\maxplus2
directory; on a workstation, it is located in the Icdrom directory. Once you
have installed MAX+PLUS II, you can open the read.me file through the
Help menu in MAX+PLUS II.

Altera Applications Engineers are also available to answer your questions.
For more information about Altera's technical support services, see
A ppendix B: Altera Support Services in MAX+PLUS II Getting Started.

xiii

MAX+PLUS /I AHDL

Documentation Conventions

MAX+PLUS II manuals and MAX+PLUS II Help use the following
conventions to make it easy for you to find and interpret information.

Terminology

The following terminology is used throughout MAX+PLUS II Help and
manuals:

Term: Meaning:

Button 1 Left mouse button.

Button 2 Right button on a two-button mouse, or middle
and right buttons on a three-button mouse.

"point to" Indicates that you should move the mouse so that
the pointer is over the specified item.

"press" Indicates that you must hold down a mouse
button or key.

"click" Indicates a quick press and release of a mouse
button.

"double-click" Indicates two clicks in rapid succession.

"choose" Indicates that you need to use a mouse or key
combination to start an action. For example, when
you use the mouse to choose a button, you point
to the button and click Button 1. When you use the
keyboard to choose a command, you press Alt and
then type letters that are underlined in the menu
bar and menu.

"select" Indicates that you need to highlight text and/or
objects or an option in a dialog box with a key
combination or the mouse. A selection does not
start an action. For example: Select the AND2

primitive, then choose Delete from the Edit menu.

"tum on" /"tum off" Indicates that you must click Button 1 on a
checkbox or choose a menu command to tum a
function on or off.

xiv

Preface: MAX+PLUS /I Fundamentals

Typographic Conventions

MAX+PLUS II documentation uses the following typographic conventions:

Visual Cue:

Bold Initial Capitals

bold

Initial Capitals

"Subheading Title"

Italic Initial Capitals

italics

Bold Italics

Meaning:

Command names, dialog box titles, button
names, and diskette names are shown in bold,
with initial capital letters. For example: Find
Text command, Save As dialog box, Start
button, and Install diskette.

Directory names, project names, disk drive
names, filenames, filename extensions, and
software utility names are shown in bold.
Examples: \maxplus2 directory, d: drive,
chiptrip.gd£ file. These items are not case­
sensitive in the Windows environment;
however, they are case-sensitive in the
workstation environment. MAX+PLUS II Help
shows these items in the case appropriate to the
workstation environment.

Keyboard keys, user-editable application
window fields, and menu names are shown with
initial capital letters. For example: Delete key,
the Start Time field, the Options menu.

Subheadings within a manual section are
enclosed in quotation marks. In manuals, titles of
help topics are also shown in quotation marks.

Help categories, section titles in manuals,
application note and brief names, checkbox
options, and options in dialog boxes are shown
in italics with initial capital letters. For example:
Text Editor Procedures, the Check Outputs option,
the Directories box in the Open dialog box.

Variables are enclosed in angle brackets « »
and shown in italics. For example: <filename>,
<project name>.aC£ file.

Manual titles are shown in bold italics with
initial capital letters. For example:
MAX+PLUS II Getting Started.

xv

http:name>.aC
http:chiptrip.gd

••

MAX+PLUS /I AHDL

Visual Cue:

Courier font

Bold Courier font

1.,2.,3., .. . , a., b., c., . . . ,
and i., ii., iii., ...

•

. ,.

Special symbols

Meaning:

Anything that must be typed exactly as it
appears is shown in Courier. For example:
c: \ max2work \ tutorial \ chiptrip.gdf.
Also, sections of an actual file, such as a Report
File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), and primitive and
macrofunctionnames (e.g., DFF and 16CUDSLR)

are shown in Courier.

In syntax descriptions, bold Courier may be used
to help distinguish literal text from variables.

Numbered steps are used in a list of items when
the sequence of the items is important, such as
the steps listed in a procedure.

Bullets are used in a list of items when the
sequence of the items is not important.

The checkmark indicates a procedure that
consists of one step only.

The hand points to information that requires
special attention .

In MAX+PLUS II manuals, the feet show you
where to go for more information on a particular
topic.

In MAX+PLUS II Help, the upward-pointing
hand indicates that you can click Button 1 (the
left mouse button) on any portion of the
illustration that follows it to get help on that
item. The mouse pointer changes to an upward­
pointing hand when it is over a picture or word
for which help is available.

Special symbols are used for these items:

.... Enter key (manuals only)
I Low-to-high transition
1. High-to-Iow transition

xvi

Preface: MAX+PLUS /I Fundamentals

Key Combinations

Key combinations and sequences appear in the following format:

Fonnat Cue:

Keyl+Key2

Keyl,Key2

Backus-Naur Form

Meaning:

A plus (+) symbol indicates that you must hold
down the first key when you press the second
key. For example: Ctrl+L means that you must
hold down Ctrl while pressing L, then release
both keys.

A comma (,) indicates that you must press the
keys sequentially. For example: Alt,Fl means
that you must press the Alt key and release it,
then press the Fl key and release it.

The Backus-Naur Form (BNF) defines the syntax of the text file formats and
message variables. BNF uses the following notation:

Characters:

<...>

[.. .]

{ ... }

••• 1 •••

:n:n

italics

Courier font

Meaning:

"is defined as"

Identifiers (i.e., variables)

Optional items

Repeated items (zero or more times)

Indicates a choice between items

Suffix indicates a range (e.g., <name char>:1:8

means "from 1 to 8 name characters")

Variables in syntax descriptions

Literal text in syntax descriptions. Bold Courier

font is sometimes used to help distinguish literal
text from italic variables in syntax descriptions.

xvii

MAX+PLUS /I AHDL

MAX+PLUS II Help Updates

MAX+PLUS II Help is updated whenever the MAX+PLUS II software is
updated; therefore, the on-line information is always current.

Ill? 	 If you find a discrepancy between a MAX+PLUS II manual and
the MAX+PLUS II on-line Help, you should rely on the
MAX+PLUS II Help information.

You can get information on changes to MAX+PLUS II software and Help by
choosing New Features in this Release (Help Menu) in MAX+PLUS II. Late­
breaking news on Help and software is also available with the READ.ME
command (Help menu).

xviii

•• ••

Preface: MAX+PLUS /I Fundamentals

Sample Files

A number of sample design files are copied to your hard disk when you
install MAX+PLUS II. The installation procedure automatically creates
subdirectories for these files .

nff 	 The pathnames below are shown using the PC pathname
convention of backslash (\) characters, but UNIX pathnames use
forward slash (/) characters. On a UNIX workstation, the
Imax2work directory is a subdirectory of the lusr directory.
Otherwise, the file and directory organization is identical.

• 	 The \max2work\chiptrip directory contains all files for the chiptrip
tutorial project that is described in MAX+PLUS II Getting Started.

• 	 The \max2work\ahdl directory contains all sample files used to
illustrate AHDL features in MAX+PLUS II Help and in the
MAX+PLUS II AHDL manual.

• 	 The \max2work\vhdl directory contains all sample files used to
illustrate VHDL features in MAX+PLUS II Help and in the
MAX+PLUS II VHDL manual.

• 	 The \max2work\edif directory contains all sample files used to
illustrate EDIF features in MAX+PLUS II Help .

Go to "MAX+PLUS II File Organization" in the MAX+PLUS II Installation
section of the MAX+PLUS II Getting Started manual for more information
about MAX+PLUS II directory structure.

Go to the Altera-provided Software Interface Guide for your third-party
environment for information on the directory structure and sample files
installed for third-party interfaces to MAX+PLUS II.

xix

MAX+PLUS /I AHDL

About MAX+PLUS II AHOL

MAX+PLUS IIAHDL contains the following sections:

Section 1: Introduction discusses basic AHDL features and the order in which
AHDL statements appear in a Text Design File (.td£). This section also
summarizes essential rules and guidelines that will help you use AHDL
effectively.

Section 2: How to Use AHDL describes how to develop a successful AHDL
design. Altera recommends that you read the topics in this section
sequentially.

Section 3: Elements describes the basic elements of a TDF. These elements are
used in the behavioral statements described in Section 4: Design Structure.

Section 4: Design Structure describes all behavioral statements and sections
used in AHDL.

Section 5: Style Guide provides guidelines for formatting TDFs to improve
readability and avoid errors.

Glossary

Index

xx

Section

1

Introduction

This section provides an overview of the Altera Hardware Description
Language (AHDL). Some of the characteristics that distinguish AHDL as a
hardware description language are discussed, and AHDL file structure is
briefly described. This section also describes how to enter and process an
AHDL file, and provides essential rules and guidelines for using AHDL
effectively.

• AHDL Design Entry 2

• Text Design File Structure4

• MAX+PLUS II Text Editor 9

• Compiling AHDL Text Design Files 13

• Golden Rules 14

.,.
•• Go to MAX+PLUS II Help for complete and up-to-date information on

AHDL.

MAX+PLUS /I AHDL

AHDl Design Entry

The Altera Hardware Description Language (AHDL) is a high-level,
modular language that is completely integrated into the MAX+PLUS II
system. It is especially well suited for designing complex combinatorial
logic, group operations, state machines, truth tables, and parameterized
logic. You can use the MAX+PLUS II Text Editor or another text editor to
create AHDL Text Design Files (.tdf). You can then compile TDFs to create
output files for simulation, timing analysis, and device programming. In
addition, the MAX+PLUS II Compiler can generate AHDL Text Design
Export File (.tdx) and Text Design Output File (.tdo) that can be saved as
TDFs and re-used as design files.

How Does AHDl Work?

AHDL statements and elements are powerful, versatile, and easy to use. You
can create entire hierarchical projects with AHDL, or mix AHDL TDFs with
other types of design files in a hierarchical design (called a "project" in
MAX+PLUS II). In addition, AHDL TDFs can be parameterized.

Although you can use any ASCII text editor to create AHDL designs, the
MAX+ PLUS II Text Editor allows you to take advantage of features available
only in MAX+PLUS II while you enter, compile, and debug an AHDL
design.

AHDL designs are easily incorporated into a design hierarchy. In the Text
Editor, you can automatically create a symbol that represents a TDF and
incorporate it into a Graphic Design File (.gd£). Similarly, you can
incorporate custom functions, and over 300 Altera-provided megafunctions
and macrofunctions-including Library of Parameterized Modules (LPM)
functions-into any TDF by automatically creating an Include File (.inc) in
the Text Editor. Altera provides Include Files for all mega- and
macrofunctions shipped with MAX+PLUS II.

You can use Assign menu commands or an Assignment & Configuration
File (.ad) to make resource and device assignments to allocate device
resources for AHDL TDFs. You can also check AHDL syntax or perform a
full compilation to debug and process your project. Any errors can be
automatically located by the Message Processor and highlighted in the Text
Editor window.

2

Section 1: Introduction

Figure 1-1 shows how TDFs can be integrated into the MAX+PLUS II
system. A hierarchical project can contain TDFs, GDFs, EDIF Input Files
(.edf), OreAD Schematic Files (.sch), and VHDL Design Files (.vhd) at any
level of the project hierarchy. In contrast, Waveform Design Files (.wdf),
Altera Design Files (.adf), State Machine Files (.smf), and Xilinx Netlist
Format Files (.xnf) can be used only at the lowest level of a project hierarchy,
unless the entire project consists of a single WDF, ADF, SMF, or XNF File.

Figure 1-1. MAX+PLUS 1/ &AHDL Design Entry

One or more CNFs
created per design file

/
.cn!

to the Compiler's
Database Builder
module

Symbol File with symbol that
---- represents the logic in a

.sch .xn! .wd! .sym ---­ design file

Text Design File

MAX+PLUS II
Compiler

.ad!
or

.sm!

3

MAX+PLUS /I AHDL

Text Design File Structure

A Text Design File (.tdf) is an ASCII text file, written in AHDL, that can be
entered with the MAX+PLUS II Text Editor or any standard text editor.

Text 	Design File Sections

The following AHDL sections and statements are listed in the order in which
they appear in a TDF. Figure 1-2 also shows a TDF and the AHDL sections
and statements that it can contain, and how Include Files and files in a
project hierarchy can be used with AHDL.

• 	 (Optional) Title Statement - provides comments for the Report
File (.rpt) generated by the MAX+PLUS II Compiler.

• 	 (Optional) Include Statement - specifies an Include File that replaces
the Include Statement in the TDF.

• 	 (Optional) Constant Statement - specifies a symbolic name that can
be substituted for a constant.

• 	 (Optional) Define Statement - defines an evaluated function, which
is a mathematical function that returns a value that is based on
optional arguments.

• 	 (Optional) Parameters Statement - declares one or more parameters
that control the implementation of a parameterized megafunction or
macrofunction. A default value can be specified for each parameter.

• 	 (Optional) Function Prototype Statement - declares the ports of a
logic function and the order in which those ports must be declared in
an in-line reference. In parameterized functions, it also declares the
parameters used by the function.

• 	 (Optional) Options Statement - sets the default bit-ordering for the
file, or for the project if the file is a top-level TDF.

• 	 (Optional) Assert Statement - allows you to test the validity of an
arbitrary expression and report the results.

• 	 (Required) Subdesign Section - declares the input, output, and
bidirectional ports of an AHDL TDF.

4

Section 1: Introduction

• 	 (Optional) Variable Section - declares variables that represent and
hold internal information. Variables can be declared for ordinary or
tri-state nodes, primitives, megafunctions, macrofunctions, and state
machines. Variables can also be generated conditionally with an If
Generate Statement. The Variable Section can include any of the
following constructs:

Instance Declaration

Node Declaration

Register Declaration

State Machine Declaration

Machine Alias Declaration

If Generate Statement

• 	 (Required) Logic Section - defines the logical operations of the file.
The Logic Section can define logic with Boolean equations, conditional
logic, and truth tables. It also supports conditional and iterative logic
generation, and the capability to test the validity of an arbitrary
expression and report the results. The Logic Section can include any of
the following constructs:

Defaults Statement

Assert Statement

Boolean Equations

Boolean Control Equations

Case Statement

For Generate Statement

If Generate Statement

If Then Statement

In-Line Logic Function Reference

Truth Table Statement

5

MAX+PLUS /I AHDL

Figure 1-2. AHDL Text Design File Structure

,.- -...

Constant
TDFs can contain Title,

'­ Include, Constant, Define,
Define Parameters, Options, and

Function Prototype
I'-­ Statements, and Variable

Parameters Sections.

I'-­

Function --­
Prototype

Include Files (.inc)
contain Constant,
Define, Parameters, or
Function Prototype
Statements.

TDFsmust
contain a
Subdesign
Section and
Logic Section.

Lower·level TDFs, GDFs, WDFs, ADFs,Logic Section

Define Statement

Parameters Statement

Variable Section

SMFs, EDIF Input Files, Xilinx Netlist

.sch .xnf
.adf
or

.smf
.wdf

Files, and VHDL Design Files are
connected to higher·level TDFs through
references in Logic Sections.

6

•• ••

Section 1: Introduction

AHDL is a concurrent language. All behavior specified in the Logic Section
of a TDF is evaluated at the same time rather than sequentially. Equations
that assign multiple values to the same AHDL node or variable are logically
connected (ORed if the node or variable is active high, ANDed if it is active
low). See "Defaults Statement" on page 173 in Design Structure and "Using
Default Values for Variables" on page 39 in How to Use AHDL for more
information.

A TDF must contain a Subdesign Section and a Logic Section. It can
optionally contain a single Variable Section, Options Statement, Title
Statement, and Defaults Statement, and one or more Include, Constant,
Define, and Function Prototype Statements.

The last entries in a TDF are the Subdesign Section, Variable Section
(optional), and Logic Section, which together contain the behavioral
description of the TDF .

See Design Structure on page 139 for more information about AHDL
statements. Go to the Backus-Naur Form (BNF) syntax descriptions of each
AHDL section in MAX+PLUS II Help using Search for Help on (Help
menu).

Files in a Project Hierarchy

Files in a project hierarchy can be TDFs, GDFs, WDFs, ADFs, SMFs, EDIF
Input Files, OrCAD Schematic Files, AHDL Design Files, or Xilinx Netlist
Format Files. Each logic function is connected through its input and output
ports to the design file at the next higher level. For more information, see
"Implementing a Hierarchical Project" on page 69 in How to Use AHDL.

Include Files

An Include File is an ASCII text file (with the extension .inc) that can be
imported into a TDF with an AHDL Include Statement. The contents of the
Include File replace the Include Statement that calls the file . Include Files can
contain Function Prototype, Constant, Define, and Parameters Statements.

7

••

MAX+PLUS /I AHDL

Each Altera-provided megafunction and macrofunction has an Include File
that contains its Function Prototype:

• 	 The Include Files for megafunctions, including LPM functions, are
located in the maxplus2\max2lib\mega_lpm directory created
during installation.

• 	 The Include Files for macrofunctions are located in the
\maxplus2\max2inc directory created during installation.

[Iff 	 On UNIX workstations, the maxplus2 directory is a
subdirectory of the lusr directory.

When you have a design file open in a Graphic, Text, or Waveform Editor
window, you can choose Create Default Include File (File menu) to
automatically generate an Include File that contains a default Function
Prototype for the design file. You can also manually create an Include File
with the MAX+PLUS II Text Editor or another standard text editor. ...
Go to "Creating a Default Include File" in MAX+PLUS II Help for more
information.

8

•• ••

Section 1: Introduction

MAX+PlUS II Text Editor

.,.
••

AHDL Text Design Files (with the extension .tdf) can be entered with the
MAX+PLUS II Text Editor or any other text editor that follows standard
ASCII character conventions. If your text editor has both document and non­
document modes, you must use non-document mode, i.e., save the file as
text only.

The MAX+PLUS II Text Editor allows you to take advantage of the
following unique MAX+PLUS II features while you enter, compile, and
debug an AHDL TDF:

• 	 AHDL templates and examples
• 	 AHDL context-sensitive help
• 	 Syntax coloring
• 	 Resource and device assignments
• 	 Error location

Go to MAX+PLUS II Text Editor Help for more information on using the
MAX+PLUS II Text Editor.

AHDL Templates &Examples

MAX+PLUS II provides both AHDL templates and AHDL examples to
make design entry easier for you.

• 	 AHDL Templates- You can insert AHDL templates into your TDF,
then replace placeholder variables in the templates with your own
identifiers and expressions.

• 	 AHDL Examples- MAX+PLUS II provides a number of AHDL
examples that are used to illustrate AHDL features in the How to Use
AHDL section of this manual. These examples are available in the
\max2work\ahdl directory (a subdirectory of the lusr directory on a
UNIX workstation), and in MAX+PLUS II AHDL Help. You can
customize these examples to fit your needs .

Go to "Inserting an AHDL Template" on page 22 and "AHDL Examples" on
page 24 in How to Use AHDL for more information on using AHDL
templates and examples.

9

•• ••

MAX+PLUS /I AHDL

AHDl Context-Sensitive Help

If the current file has the extension .tdf, the MAX+PLUS II Text Editor
provides context-sensitive help on all AHDL keywords, operators,
comparators, and punctuation, as well as on all MAX+PLUS II-provided
primitives, megafunctions, and macrofunctions.

When you choose the context-sensitive Help button (~) from the toolbar
or press Shift+Fl, the pointer turns into a question mark pointer. You can
then click Button 1 on a word or character in an AHDL. If context-sensitive
help is available for that item, the relevant information is displayed.
Otherwise, Help shows a list of all items for which context-sensitive help is
available.

Syntax Coloring

The MAX + PLUS II Text Editor allows you to view various elements of a TDF
in different colors. Syntax coloring can help you improve file readability and
accuracy. For instance, it can help you identify misspelled keywords and
sections of files that have been commented out by mistake.

To turn the syntax coloring feature on or off:

./ Choose Syntax Coloring from the Options menu.

You can also use the Color Palette command (Options menu) to customize
the assigned colors for comments, illegal characters, megafunctions and
macrofunctions, reserved identifiers and keywords, strings, and text.

Go to "Using Syntax Coloring in Text Files" and "Changing Colors in
MAX+PLUS II" in MAX+PLUS II Help for more information.

10

•• ••

Section 1.' Introduction

Resource &Device Assignments

You can specify resource assignments- i.e., pin, logic cell, I/O cell,
embedded cell, Logic Array Block (LAB), Embedded Array Block (EAB),
row, column, chip, clique, logic option, connected pin, and timing
assignments- as well as device assignments for a TDF to guide logic
synthesis and fitting for your project. You can choose to have the Compiler
automatically fit your project into the best combination of devices from a
target device family and assign the resources within them. You can also
select a node or pin name in the Text Editor and enter a specific assignment
for it with the PinlLocationlChip, Clique, Logic Options, Timing
Requirements, Connected Pins, and other commands on the Assign menu.
(Assign menu commands are also available in all other MAX+PLUS II
applications.) You can also enter assignments with the Floorplan Editor or
by editing the Assignment & Configuration File (.ad) in the Text Editor.

For example, you can assign a logic synthesis style that tailors logic synthesis
to your needs, and specify precisely how to divide a large project into
multiple devices, and make timing assignments to achieve speed
performance on individual logic functions.

[Iff MAX+PLUS II provides the Use LPMfor AHDL Operators logic
option, which allows the Compiler to substitute lpm_add_ sub
and lpm_ compare functions automatically for the following
operators and comparators:

Operator/ Description:
Comparator:

+ 	 addition

subtraction
numeric equality

! = not equal to
> greater than
> = greater than or equal to
< less than
< = less than or equal to

Go to MAX+PLUS II Help for more information on making resource and
device assignments.

11

MAX+PLUS /I AHDL

Error Location

MAX+PLUS II interactively reports and locates errors that occur as you
process your project. As you compile a project, a Message Processor window
opens and lists error, information, and warning messages for the project.
You can locate the source(s) of a message by double-clicking Button 1 on the
message text. MAX+PLUS II then automatically opens the design file that
contains the source of the message, regardless of its location in the project
hierarchy or the type of application that created it. If the error occurs in a
TDF, MAX + PLUS II opens a Text Editor window and highlights the text that
caused the error. You can also locate errors in the assignment floorplan for
the project in the MAX+PLUS II Floorplan Editor .

•••• 	 Go to "Locating the Source of a Message" using Search for Help on (Help
menu) for more information on error location.

12

•• ••

Section 1: Introduction

Compiling AHDl Text Design Files

MAX+PLUS II automatically compiles AHOL TOFs. When you have
finished entering a TOF, you can check its syntax with the Project Save &
Check command (File menu), or compile all files in a project with the Project
Save & Compile command (File menu). If you wish to generate an AHOL
Text Design Output File (.tdo) for a compiled project, you can turn on the
Compiler's Generate AHDL TDO File command (Processing menu) before
compiling the project. After the project has compiled successfully, you can
perform optional simulation and timing analysis, and then program one or
more devices .

For complete on-line information on the MAX+PLUS II Text Editor, go to
MAX+PLUS II Help. For detailed instructions and suggestions on how to
use AHDL sections and statements to develop a project, go to How to Use
AHDL on page 17. For a step-by-step tutorial on how to enter, compile,
simulate, and program a project that includes AHDL TDFs with
MAX+PLUS II, go to MAX+PLUS II Tutorial in the MAX+PLUS II Getting
Started manual.

13

MAX+PLUS /I AHDL

Golden Rules

The following golden rules will help you use AHDL effectively:

• 	 Use the Text Editor's Syntax Coloring command (Options menu) to
help you identify typographical errors and different sections of AHDL
code.

• 	 Follow the formatting and naming guidelines described in the Style
Guide on page 187 to improve readability and avoid errors.

• 	 Although AHDL is not case-sensitive, Altera recommends that you
follow the capitalization rules in the Style Guide to improve
readability.

• 	 Use constants and evaluated functions, which are created in Constant
and Define Statements, to improve readability and to avoid errors.

• 	 You do not need to create AHDL Function Prototypes for primitives.
However, you can redefine primitives with a Function Prototype
Statement to change the calling order of inputs in your TDF.

• 	 Do not use nested If Then Statements when a Case Statement can be
used instead.

• 	 When you use the MAX+PLUS II Text Editor to create a TDF, each line
can be up to 255 characters long. However, the ideal line length is the
number of characters your screen can accommodate. Press Enter to
end a line.

• 	 You can start new lines wherever white space (i.e., blank lines, tabs,
and spaces) is allowed, without any effect on meaning. White space is
allowed between major AHDL constructs.

• 	 Keywords, names, and numbers must be separated by the appropriate
symbols or operators, and one or more spaces.

• 	 Comments must be enclosed in percent symbols (%) . A comment can
include any character except %, since the MAX+PLUS II Compiler
ignores everything between the percent symbols. Comments enclosed
in percent symbols cannot be nested.

14

Section 1: Introduction

VHDL-style comments (- -) can be nested within %-style comments. If
you use VHDL-style comments for documentation-type comments,
you can use the %-style comments to exclude sections of code from
compilation (i.e., "comment out" sections of code).

• 	 When connecting a primitive to another primitive, you must use only
"legal" interconnections; not all primitives may connect to all other
primitives. For a list of legal interconnections for primitives, see
"Primitive/Port Interconnections" on page 127 in Elements.

• 	 Do not create your own cross-coupled structures; use only the
expdff, explatch, inpltch, nandltch, and norltch
macrofunctions provided with MAX+PLUS II. (These macro functions
are not optimized for FLEX 8000 and FLEX 10K architectures.) Avoid
tying multiple instances of expdff, explatch, inpltch,
nandl tch, and norl tch macrofunctions together. Multiple
instances of these macrofunctions should always be separated by
LCELL primitives.

General Design Entry Golden Rules

• 	 You should use Altera-provided primitives and AHDL logical
operators rather than the equivalent LPM functions in most cases:
they are much more convenient to instantiate. For example, if you
wish to load a register on a specific rising edge of the global Clock,
Altera recommends that you use the Clock Enable input of one of the
DFFE, TFFE, JKFFE, or SRFFE Enable-type flipflops to control when
the register is loaded.

• 	 Use LPM megafunctions rather than equivalent old-style
macrofunctions in most cases: the former are more convenient to
instantiate and easier to modify if your design changes.

• 	 Use the Design Doctor to check the reliability of your project logic
during compilation. Go to "Project Reliability Guidelines" in
MAX+PLUS II Help for information on how to create reliable projects.

• 	 Do not attempt to create your own logic functions to implement RAM
or ROM: use Altera-provided megafunctions instead.

• 	 When you start a new design file, specify the target device family with
Device (Assign menu) right away, so that you can take advantage of

15

MAX+PLUS II AHDL

family-specific macrofunctions. If you do not specify a device family,
the family for the current project is assumed.

General MAX+PlUS II Golden Rules

• 	 When you start work on a new design file, name it as the current
project with Project Set Project to Current File or Project Name (File
menu) right away so that you can compile it easily. You can always
change the project name later.

• 	 Use the built-in hierarchy traversal features in MAX+PLUS II to move
between design files for the current hierarchy tree. To open a lower­
level file in a hierarchy, open the top-level file and then use the
Hierarchy Display window or Hierarchy Down (File menu) to open
the lower-level files. If you choose Open or Retrieve (File menu) to
open a lower-level file, that file is considered to be the top of a
different hierarchy tree, and resource, device, and probe assignments
that you enter are saved only for that hierarchy, not for the project.

• 	 When you create an editable ancillary file for a project, the icon for the
file will appear in the Hierarchy Display if you use the same filename
as the project.

• 	 Don't edit any MAX+PLUS II system files, including HIFs, TOK files,
maxplus2.idx files, or the maxplus2.ini file.

• 	 Use the Save As command (File menu) if you wish to rename a design
file or an ancillary file. Do not rename design files from outside of the
MAX+PLUS II system (e.g., from DOS or with the Windows File
Manager).

• 	 When you have completed a project, use Project Archive (File menu)
to save a complete backup copy of all project files that will not be
affected by future edits or deletions.

16

Section

2

How to Use
AHDL

This section describes how to develop a successful AHDL design. All sample
files shown in this section are also available in the \max2work\ahdl
directory created during MAX+PLUS II installation. (On a UNIX
workstation, the max2work directory is a subdirectory of the lusr directory.)

Design practices are discussed in the following order:

• Introduction 18

• Combinatorial Logic 25

• Sequential Logic 47

• State Machines 54

• Implementing a Hierarchical Project 69

• Implementing LCELL & SOFT Primitives .. 81

• Implementing RAM & ROM ... 83

• Naming a Boolean Operator or Comparator 84

• Using Iteratively Generated Logic 86

• Using Conditionally Generated Logic 87

• Using the Assert Statement 89

Go to MAX+PLUS II Help for up-to-date information on how to use AHDL.••...

17

MAX+PLUS /I AHDL

Introduction

AHDL is an easy-to-use text entry language for describing logic designs.
You can use the MAX+PLU5 II Text Editor or your own text editor to create
AHDL Text Design Files (.tdf), which can be incorporated into a project
hierarchy together with other design files . You can then compile the project,
simulate it, and program Altera devices.

AHDL consists of a variety of elements that are used in behavioral
statements to describe logic. This section includes information on how these
elements and statements are used; for detailed descriptions and rules, refer
to Elements and Design Structure.

The following topics are discussed:

• Using Numbers 18

• Using Constants & Evaluated Functions 19

• Inserting an AHDL Template 22

• AHDL Examples 24

Using Numbers

Numbers are used to specify constant values in Boolean expressions and
equations, arithmetic expressions, and parameter values. AHDL supports
all combinations of decimal, binary, octal, and hexadecimal numbers.

The decodel.td£ file shown in Figure 2-1 is an address decoder that
generates an active-high chip enable when the address is 370 Hex.

Figure 2-1. decode1.tdf

SUBDESIGN decodel

address[15 .. 0] : INPUT;
chip_enable : OUTPUT;

BEGIN
chip_enable = (address[15 .. 0] == H"0370");

END;

18

http:decodel.td

•• ••

Section 2: How to Use AHDL

In this sample file, the decimal numbers 15 and 0 are used to specify bits of
the address bus. The hexadecimal number H" 0 3 7 0" specifies the address
that is decoded.

Figure 2-2 shows a Graphic Design file (.gdf) that is equivalent to
decodel.tdf.

Figure 2-2. decode1.gdf

ADDRESSO

ADDRESS1

ADDRESS2

ADDRESS3

ADDRESS4

ADDRESS5

ADDRESS6

ADDRESS7

~

~
~

~

~

~

~

~

~
~

~
~

~

-
~

~

~
~ CHIP _ENABLE

ADDRESS8

ADDRESS9

ADDRESS10

ADDRESS11

ADDRESS12

ADDRESS13

ADDRESS14

ADDRESS15

Go to the following topics for more information:

"Numbers in AHDL" on page 102 in Elements
"Parameters Statement" on page 142 in Design Structure
"Using Constants & Evaluated Functions" on page 19 in this section

Using Constants & Evaluated Functions

You can use a constant in an AHDL file to give a descriptive name to a
number or text string. Similarly, you can use an evaluated function to give a
descriptive name to an arithmetic expression. This name, which can be used
throughout a file, can be more informative and readable than the number,
string, or arithmetic expression. For example, the numeric constant
UPPER_LIMIT is more informative than the number 130.

19

MAX+PLUS II AHDL

Constants and evaluated functions are especially useful if the same number,
text string, or arithmetic expression is repeated several times in a file: if it
changes, only one statement needs to be changed. In AHDL, constants are
implemented with Constant Statements, and evaluated functions are
implemented with Define Statements.

The decode2.tdf file shown in Figure 2-3 has the same functionality as
decodel.tdf (shown in Figure 2-1 on page 18), but uses the constant
IO_ ADDRESS instead of the number H" 0370".

Figure 2-3. decode2.tdf

CONSTANT 	 IO_ADDRESS H"0370";

SUBDESIGN decode2
{

a [15 . . 0] INPUT;
ce OUTPUT ;

BEGIN
ce (a[15 .. 0]

END;

You can define constants and evaluated functions with arithmetic
expressions. Constants and evaluated functions can also be defined with
previously defined constants, evaluated functions, or parameters.

In the following example, the constant faa is defined with an arithmetic
expression and the constant fooJ)lus_one is defined with the previously
defined constant faa:

CONSTANT foo = 1 + 2 DIV 3 + LOG2(256);
CONSTANT f oo-p1us_one = foo + 1;

In the following example, the evaluated function CEILING_ADD is defined
on the basis of the previously defined evaluated function MAX:

DEFINE MAX(a,b) = (a > b) ? a : b;
DEFINE CEILING_ADD(a,b) = MAX(a,b) + 1;

W 	 The Compiler evaluates arithmetic operators in arithmetic
expressions and reduces them to numerical values. No logic is
generated for these expressions.

20

Section 2: How to Use AHDL

The strcmp.tdf file shown in Figure 2-4 defines the constant FAMILY and
uses it in an Assert Statement to check whether the current device family is
FLEX 8000.

Figure 2-4. strcmp.tdf

PARAMETERS
(

DEVICE_FAMILY % DEVICE_FAMILY is a predefined Altera parameter %
) ;

CONSTANT FAMILY = "FLExaOOO";

SUBDESIGN strcmp
(

a INPUT;
b OUTPUT;

BEGIN
IF (DEVICE_FAMILY == FAMILY) GENERATE

ASSERT
REPORT "Detected compilation for FLEX8000 famil y"
SEVERITY INFO;

b = a;

ELSE GENERATE
ASSERT

REPORT "Detected compilation for % family"
DEVICE_FAMILY

SEVERITY ERROR;
b = a;

END GENERATE;
END;

The minport.tdf file shown in Figure 2-5 defines the evaluated function MAX,

which ensures a minimum port width in the Subdesign Section:

21

•• ••

MAX+PLUS /I AHDL

Figure 2-5. minport.tdf

PARAMETERS (WIDTH);

DEFINE MAX(a,b) = (a > b)

SUBDESIGN minport
(

dataA[MAX(WIDTH, 0) .. 0]
dataB[MAX(WIDTH, 0) .. 0]

BEGIN
dataB [] = dataA[];

END;

? a b;

INPUT ;

OUTPUT;

Go to the following topics for more information:

"Constant Statement" on page 147 in Design Structure
"Define Statement" on page 149 in Design Structure
"Quoted & Unquoted Names" on page 97 in Elements
"Using Default Values for Variables" on page 39 in this section

Inserting an AHDL Template

The fastest way to create AHDL designs in MAX+PLUS II is to use the
Altera-provided AHDL templates. With the AHDL Template command
(Templates menu), available in the MAX+PLUS II Text Editor, you can insert
AHDL templates into your TDF to speed design entry.

A single template is available for the overall AHDL file structure. This
template, called "Overall Structure," lists all AHDL constructs in separate
comment lines in the order in which they appear in a TDF. The syntax of
these sections and statements is not included; you must replace the comment
line with the correct AHDL syntax for each section you wish to use in your
file.

Use the following steps to insert an AHDL template at the current insertion
point in a MAX+PLUS II Text Editor file:

1. Save your file with the .td£ extension.

2. Choose AHDL Template (Templates menu). The AHDL Template
dialog box is displayed, as shown in Figure 2-6:

22

Section 2: How to Use AHDL

Figure 2-6. AHDL Template Dialog Box

=1 AHDL Template

lemplate Section:
I . . +
Auert Statement
Boolean Equation -
Case Statement
Constant Statement
Defaults Statement
For Generate Statement
Function Prototype Statement (non·parameterized)
Function Prototype Statement (parameterized)
If Generate Statement
If Then Statement
In-Line Reference (non-parameterized)
In-Line Reference (parameterized)
In-Line Reference (named port association)
Include Statement
Indance Declaration (non-par ameterizedl
Instance Declaration (parameterized)
Logic Section
hi achine Alias D eclar ation
Node Declaration

Inn.;, (a~.A~An.

+1 J 	 1+

hancel

3. 	 Select a name in the Template Section box.

4. 	 Choose OK.

1. 	 Shortcuts are available for this command. Go to " AHDL
Template command" in MAX+PLUS II Help for details.

2. 	 All AHDL templates are also available in the ASCII ahdLtpl
file, which is automatically installed in the \maxplus2
directory (a subdirectory of the lusr directory on a UNIX
workstation).

Once you have inserted a template into your TDF, you must replace all
variables in the template with your own logic. Figure 2-7 shows the Defaults
Statement template.

Figure 2-7. Defaults Statement Template

DEFAULTS
__n ode_ n ame __constant_v alue;

END DEFAULTS;

23

MAX+PLUS /I AHDL

Each AHDL keyword is capitalized and each variable name starts with two
underscores (_) to help you identify them. For example, you would replace
the _ node_name placeholder in Figure 2-7 with the name of a node. You
can also use Syntax Coloring (Options menu) to make keywords and
variables easy to see.

MAX+PLUS II provides templates for all AHDL constructs. These templates
are listed in alphabetical order, and can be used to replace the comment lines
in the "Overall Structure" template.

AHDL Examples

MAX+PLUS II provides AHDL examples to help you enter AHDL designs
quickly. The sample AHDL Text Design Files used in this section are
available in the \max2work\ahdl directory (a subdirectory of the lusr
directory on a UNIX workstation). You can open these sample files with the
MAX+PLUS II Text Editor or any standard text editor, save them with a
different filename, and edit them as necessary to fit your needs.

Ill? 	 MAX+PLUS II AHDL Help also contains examples that you can
copy and paste directly into your IDF.

.,.
•• Choose How to Use Help (Help menu) for information on how to copy a

help topic.

24

Section 2: How to Use AHDL

Combinatorial logic

Logic is combinatorial if outputs at a specified time are a function only of the
inputs at that time. Combinatorial logic is implemented in AHDL with
Boolean expressions and equations, truth tables, and a variety of
megafunctions and macrofunctions. Examples of combinatorial logic
functions include decoders, multiplexers, and adders.

Information on combinatorial logic is available in the following topics:

• Implementing Boolean Expressions & Equations 25

• Declaring Nodes 27

• Defining Groups 28

• 	 Implementing Conditional Logic 31

If Then Statement Logic 31

Case Statement Logic. 32

If Then Statement vs. Case Statement 34

• Creating Decoders 35

• Using Default Values for Variables 39

• Implementing Active-Low Logic.41

• Implementing Bidirectional Pins 43

• Implementing Tri-State Buses 45

.,.
•• Go to the following topics for more information:

"Using Iteratively Generated Logic" on page 86 in this section
"Using Conditionally Generated Logic" on page 87 in this section

Implementing Boolean Expressions &Equations

Boolean expressions are sets of nodes, numbers, constants, and other
Boolean expressions, separated by operators and/or comparators, and
optionally grouped with parentheses. A Boolean equation sets a node or
group equal to the value of a Boolean expression.

25

MAX+PLUS /I AHDL

.,.
••

The boolel.tdf file shown in Figure 2-8 shows two simple Boolean
expressions that represent two logic gates.

Figure 2-8. booJe1.tdf

SUBDESIGN boolel

aD, al,
outl, o

b
ut2

INPUT;
OUTPUT;

BEGIN
outl al & laO;
out2 outl # b;

END;

In this sample file, the outl output is driven by the logical AND of al and
the inverse of aO, and the out2 output is driven by the logical OR of outl
and b. Since these equations are evaluated concurrently, their order in the
file is not important.

Figure 2-9 shows a GDF that is equivalent to boolel.tdf.

Figure 2-9. booJe1.gdf

~ :~~~~:u_:_--_-~c
_- --- :::

Go to the following topics for more information:

"Boolean Equations" on page 168 in Design Structure
"Boolean Expressions" on page 106 in Elements

26

Section 2: How to Use AHDL

Declaring Nodes

A node, which is declared with a Node Declaration in the Variable Section,
can be used to hold the value of an intermediate expression.

Node Declarations are especially useful when a Boolean expression is used
repeatedly. The Boolean expression can be replaced with a descriptive node
name, which is easier to read.

The boole2.tdf file shown in Figure 2-10 contains the same logic as
boolel.tdf, but has only one output.

Figure 2-10. boo/e2.tdf

SUBDESIGN boo le2
(

aD , al, b INPUT ;

out OUTPUT;

VARIABLE

a_equals_ 2 : NODE;

BEGIN

a _ equals_ 2 al & !aD;

out = a_equals_2 # b ;

END;

This file declares the node a _ equals_ 2 and assigns the value of the
expression al & ! aO to it. Using nodes can save device resources when the
node is used in several expressions.

Both ordinary nodes (NODE keyword) and tri-state nodes
(TRI_ STATE_NODE keyword) can be used. NODE and TRI_ STATE_NODE
differ in that multiple assignments to them yield different results:

• 	 Multiple assignments to nodes of type NODE tie the signals together by
wired-AND or wired-OR functions. The default values for variables
declared in Defaults Statements determine the behavior: a vee default
produces a wired-AND function; a GND default produces a wired-OR
function.

• 	 Multiple assignments to a TRI_STATE_NODE tie the signals to the
same node.

• 	 If only one variable is assigned to a TRI_ STATE_NODE, it is treated as
NODE.

27

•• ••

MAX+PLUS /I AHDL

Figure 2-11 shows a GDF that is equivalent to boole2.tdf.

Figure 2-11. boole2.gdf

OUT

Go to the following topics for more information:

"Defaults Statement" on page 173 in Design Structure
"Implementing Tri-State Buses" on page 45 in this section
"Node Declaration" on page 162 in Design Structure

Defining Groups

A group, which can include up to 256 members (or "bits"), is treated as a
collection of nodes and acted upon as one unit. A group name can be
specified with a single-range group name, dual-range group name, or
sequential group name format.

In Boolean equations, a group can be set equal to a Boolean expression,
another group, a single node, VCC, GND, 1, or O. In each case, the value of the
group is different. The Options Statement can be used to specify whether the
lowest numbered bit of the group will be the MSB, the LSB, or either.

lG? 	 Once a group has been defined, [] is a shorthand way of
specifying an entire range. For example, a [4 .. 1] can also be
denoted by a [] ; similarly, b [5 .. 4] [3 .. 2] can be represented
byb[] [].

28

Section 2: How to Use AHDL

The groupl.tdf file shown in Figure 2-12 shows simple Boolean expressions
that define multiple groups.

Figure 2-12. group1.tdf

OPTIONS BITO = MSB;
CONSTANT MAX_WIDTH 1+2+3 -3-1 ; % MAX_WIDTH 2 %
SUBDESIGN group1
(

a[l .. 2], use_exp_in[l+2-2 .. MAX_WIDTH] INPUT;
d[1 .. 2] , use_exp_out[1+2*2-4 .. MAX_WIDTH] OUTPUT;
dual_range [5 .. 4] [3 .. 2] OUTPUT;

BEGIN
del = a ll + B"10";
use_exp_out[] = use_exp_in[] ;
dual_ranger] [] = VCC;

END;

In this example, the Options Statement is used to specify that the rightmost
bit of each group will be the MSB, and a 1 (decimal) is added to group a [].
If 00 is applied to input a [], then the result of this sample program will be
d [] == 1 (decimal). The groups use_exp_in [] and use_exp_out []
show how constants and arithmetic expressions can be used to delimit
group ranges.

The following examples illustrate group usage:

• 	 When a group is set equal to another group of the same size, each
member on the right is assigned to the member on the left that
corresponds in position.

In the following example, each bit in the first group is connected to the
corresponding bit in the second group. Bit d2 is connected to bit q8,
dl to q7, and dO to q6:

d[2 .. 0] = q[S .. 6]

In the following example, each bit in the first group is connected to the
corresponding bit in the second group. Bit dl_ l is connected to bit
qlO, bit dl_ O to q9, bit dO_ l to q8, and bit dO_ O to q7:

d[l..O][l..O] = q[10 .. 7]

29

•• ••

MAX+PLUS /I AHDL

• 	 When a group is set equal to a single node, all bits of the group are
connected to the node. In the following example, d2, d1, and dO are
all connected to n:

d[2 .. 0] = n

• 	 When a group is set equal to vee or GND, all bits of the group are
connected to that value. In the following example, d2, d1, and dO are
all connected to vee:

d[2 .. 0] = vee

• 	 When a group is set equal to 1 (decimal), only the LSB of the group is
connected to the value vee. All other bits in the group are connected
to GND. In the following example, only dO is connected to vee; the
value 1 (decimal) is sign-extended to B" 0 0 1 " .

d[2 .. 0] = 1

• 	 When a group is set equal to another group of a different size, the
number of bits in the group on the left side of the equation must be
evenly divisible by the number of bits in the group on the right side of
the equation. The bits on the left side of the equation are mapped to
the right side of the equation, in order. The following equation is legal:

a[4 .. 1] = b[2 .. 1]

In this equation, the bits are mapped as follows:

a4 	 b2
a3 b1

a2 b2

a1 b1

Go to the following topics for more information:

"Arithmetic Expressions" on page 103 in Elements
"Boolean Equations" on page 168 in Design Structure
"Groups" on page 99 in Elements
"Using Default Values for Variables" on page 39 in this section

30

Section 2: How to Use AHDL

Implementing Conditional logic

Conditional logic chooses among different behaviors depending on the
values of the logic inputs. If Then and Case Statements are ideal for
implementing conditional logic:

• If Then Statements evaluate one or more Boolean expressions, then
describe the behavior for different values of the expressions.

• Case Statements list alternatives that are available for each value of an
expression. They evaluate the expression, then select a course of action
on the basis of the value of the expression.

W Conditional logic implemented with If Then and Case Statements
should not be confused with logic that is generated conditionally
in an If Generate Statement. Logic that is generated conditionally
is not necessarily conditional logic.

If Then Statement Logic

The priority.tdf file shown in Figure 2-13 shows a priority encoder that
converts the level of the highest-priority active input into a value. It
generates a 2-bit code that indicates the highest-priority input driven
byvcc.

Figure 2-13. priority.tdf

SUBDESIGN priority
(

low, middle, high INPUT;
highest_ level[1 . . 0] OUTPUT;

BEGIN
IF high THEN

highest_ level[] 3;
ELSIF middle THEN

highest_ level[] 2;
ELSIF low THEN

highest_ level[] 1;
ELSE

highest_ level[] 0;
END IF;

END;

31

•• ••

MAX+PLUS /I AHDL

In this example, the inputs high, middle, and low are evaluated to
determine whether they are driven by vee. The If Then Statement activates
the equations that follow the active IF or ELSE clause, e.g., if high is driven
by vee, highest_ level [J is 3.

If more than one input is driven by vee, the If Then Statement evaluates the
priority of the inputs, which is determined by the order of the IF and ELSIF

clauses (the first clause has the highest priority). In priority.tdf, high has the
highest priority, middle has the next highest priority, and low has the
lowest priority. The IfThen Statement activates the equations that follow the
highest-priority IF or ELSE clause that is true.

If none of the inputs are driven by vee, the equations following the ELSE
keyword are activated.

Figure 2-14 shows a GDF that is equivalent to priority.tdf.

Figure 2-14. priority.gdt

HIGHEST_LEVEL 1

HIGHEST _LEVELO

Go to the following topics for more information:

"If Then Statement" on page 176 in Design Structure
"If Then Statement vs. Case Statement" on page 34 in this section

Case Statement logic

The decoder.tdf file in Figure 2-15 shows a 2-bit-to-4-bit decoder. It converts
two binary code inputs into a "one-hot" code.

HIGH

MIDDLE

LOW

32

•• ••

Section 2: How to Use AHDL

Figure 2-15. decoder.tdt

SUBDESIGN decoder
(

code [1 .. 0)
out [3 . . 0)

INPUT;
OUTPUT;

BEGIN
CASE coder) IS

WHEN 0
WHEN 1
WHEN 2
WHEN 3

END CASE;
END;

=> out [1 B"OOOl" ;
=> out[) B"OOlO" ;
=> out[) B"OlOO" ;
=> out[) B"lOOO" ;

In this example, the input group code [1 .. 0 1 has the value 0, 1, 2, or 3. The
equation following the appropriate = > symbol in the Case Statement is
activated. For example, if code [1 is 1, ou t 1 is set to B" 0 0 1 0 " . Since the
values of the expression are all different, only one WHEN clause can be active
at one time.

Figure 2-16 shows a GDF that is equivalent to decoder.tdf.

Figure 2-16. decoder.gdt

~CODEO ~
] .J OUTO
CODE1

J OUT1.J

OUT21 .J

. r---. OUT3l .J

Go to the following topics for more information:

"Case Statement" on page 172 in Design Structure
"Creating Decoders" on page 35 in this section
"If Then Statement vs. Case Statement," next

33

MAX+PLUS /I AHDL

If Then Statement vs. Case Statement

If Then and Case Statements are similar. In some cases, you can use either
statement to achieve the same results. The following example shows the
same operation expressed in both If Then and Case Statement formats:

If Then Statement: 	 Case Statement:

CASE all IS
IF all -- 0 THEN WHEN 0 =>

y = c & d; Y c & d;
ELSIF all -- 1 THEN WHEN 1 =>

Y Y= e & f· e & f·

ELSIF all -- 2 THEN WHEN 2 =>
Y = g & h; Y = g & h·

ELSIF all -- 3 THEN WHEN 3 =>
Y i· y i;

ELSE WHEN OTHERS =>
Y = GND; Y GND;

END IF; END CASE;

Important differences exist between If Then and Case Statements:

• 	 Any kind of Boolean expression can be used in an IfThen Statement. Each
expression following an IF or ELSIF clause may be unrelated to the
other expressions in the statement. In a Case Statement, however, a single
Boolean expression is compared to a constant in each WHEN clause.

• 	 Using the ELSIF clause can result in logic that is too complex for the
MAX+PLUS II Compiler, because each successive ELSIF clause must
still test that the preceding IF / ELSIF clauses are false. The following
example shows how the Compiler interprets an If Then Statement. If
a and b are complex expressions, then the inversion of each
expression is likely to be even more complex.

If Then Statement: Compiler Interpretation:

IF a THEN IF a THEN

c = d; c = d;

END IF;

ELSIF b THEN IF !a & b THEN

c = e; c = e;

END IF;

ELSE IF !a & !b THEN

c = f ; c = f;

END IF; END IF;

34

•• ••

Section 2: How to Use AHDL

Go to the following topics for more information:

"If Then Statement" on page 176 and "Case Statement" on page 172 in
Design Structure

Creating Decoders

A decoder contains combinatorial logic that interprets input patterns and
converts them to output values. In AHDL, you can use a Truth Table
Statement or the lpm_ compare or l pm_ decode function to create a
decoder.

The 7segment.tdf file shown in Figure 2-17 is a decoder that specifies logic
for patterns of light-emitting diodes (LEDs). The LEDs are illuminated in a
seven-segment display to show the hexadecimal numbers 0 to 9 and the
letters A to F.

35

MAX+PLUS /I AHDL

Figure 2-17. 7segment.tdf

% -a- %

% f l Ib %
% -g- %
% el Ie %
% -d- %
% %

2 3 4 5 6 7 8 9 A b C d E F %% ° 1
% %

SUBDESIGN 7segrnent
(

i [3 .. 0] INPUT;

a, b, c, d, e, f, g OUTPUT;

BEGIN
TABLE

i [3 .. 0] => a, b, e, d, e, f, g;

H"O" => 1, 1, 1, 1, 1, 1, °;
H"l" => 0, 1, 1, , 0, 0, 0;°

H"2" => 1, 1, 0, 1, 1, 0, 1;

H"3" => 1, 1, 1, 1, 0, 0, 1;

H1I4" => 0, 1, 1, 0, 0, 1, 1;

H"S" => 1, 0, 1, 1, 0, 1, 1;

H"6" => 1, , 1, 1, 1, 1, 1 ;
°
H"7" => 1, 1, 1, 0, 0, 0, 0;

H"8" => 1, 1, 1, 1, 1, 1, 1;

H"9" => 1, 1, 1, 1, 0, 1, 1;

H"A" => 1, 1, 1, 0, 1, 1, 1;

H"B" => 0, , 1, 1, 1, 1, 1;
°
H"C" => 1, , 0, 1, 1, 1, 0;°
H"D" => , 1, 1, 1, 1, 0, 1;°
H"E" => 1, 0, 0, 1, 1, 1, 1 ;

H"F" => 1, 0, 0, , 1, 1, 1;
°

END TABLE;

END;

In this example, the output pattern for all 16 possible input patterns of
i [3 .. 01 is described in the Truth Table Statement.

Figure 2-18 shows a GDF that is equivalent to 7segment.tdf.

36

Section 2: How to Use AHDL

Figure 2-18. lsegment.gdt

13 12 11 10

~

J

.-­

~

1 I I I I

A B c D E F G

The decode3.tdf file shown in Figure 2-19 is an address decoder for a
generalized 16-bit microprocessor system.

Figure 2-19. decode3.tdt

SUBDESIGN decode3
(

addr[15 .. 0], m/ io
rom, ram, print, sp[2 . . 1]

INPUT;
OUTPUT;

BEGIN
TABLE

m/io,
1 ,
1,
0,
0,
0,

END TABLE ;
END;

addr[15 .. 0]
B" 0 OXXXXXXXXXXXXXX"
B" 10 OXXXXXXXXXXXXX"
B"000000101010 1110"
B"0000001011011110"
B"0000001101110000"

=>
=>

= >

= >

= >

=>

rom,
1,
0,
0,
0,
0,

ram,
0,
1 ,
0,
0,
0,

print,
0,
0,
1,
0,
0,

sp[] ;
B"OO" ;

B"OO";
B"OO" ;
B"Ol" ;
B"10" ;

37

MAX+PLUS /I AHDL

In this example, thousands of possible input patterns exist, so it is
impractical to specify all of them in the Truth Table Statement. Instead, you
can use an X (don't care) logic level to indicate that the output does not
depend on the input corresponding to the position of the X characters. For
example, in the first line of the TABLE statement, rom would be high for all
16,384 input patterns of addr [15 .. 0 1 that start with 00. Therefore, you
only need to specify the common portion of the input pattern (i.e., 00), then
use X characters for the rest of the input pattern. With don't care inputs, your
project may require fewer device resources.

~ 	 When you use X (don't care) characters to specify a bit pattern,
you must ensure that the pattern cannot assume the value of
another bit pattern in the truth table. AHDL assumes that only one
condition in a truth table is true at a time; therefore, overlapping
bit patterns may cause unpredictable results.

The decode4.td£ file shown in Figure 2-20 uses the lpm_decode function to
achieve the same functionality as decodel.td£ (described in "Using
Numbers" on page 18).

Figure 2-20. decode4.tdf

INCLUDE "lpm_decode.inc";

SUBDESIGN 	decode4
(

address[15 .. 0] INPUT;

chip_enable OUTPUT;

BEGIN
chip_enable = lpm_decode(.data[]=address[])

WITH (LPM_WIDTH=16, LPM_DECODES=2 A 10)
RETURNS (.eq[H"0370"]);

END;

.,.
•• Go to the following topics for more information:

"Implementing Conditional Logic" on page 31 in this section
"Truth Table Statement" on page 183 in Design Structure

38

http:decodel.td
http:decode4.td

Section 2: How to Use AHDL

Using Default Values for Variables

You can define a default value for a node or group that is used when the
value of the node or group is not specified elsewhere in the file. AHDL also
allows you to assign the value of a node or group more than once in a single
file. If these multiple assignments conflict, the default value is used to
resolve the conflict. When no defaults are specified, the default value is GND.

You can use the AHDL Defaults Statement to specify default values for
variables used in Truth Table, If Then, and Case Statements. For example,
since the Logic Synthesizer automatically connects all AHDL truth table
outputs to GND when no truth table input conditions are satisfied, you can
use one or more Defaults Statements to drive truth table outputs to vee
instead.

[UP 	 You should not confuse default values for variables with default
values for ports that are assigned in the Subdesign Section.

The defaultl.tdf file shown in Figure 2-21 evaluates inputs and chooses one
of five ASCII codes based on the inputs.

Figure 2-21. default1.ldf

SUBDESIGN defaultl
(

i [3 .. 0] I NPUT;
ascii_ code [7 . . 0] OUTPUT;

BEGIN
DEFAULTS

ascii_ code [l B"OOllllll"; % ASCII question mark "?" %
END DEFAULTS;

TABLE
i [3 . . 0] = > ascii_ c ode [] ;

B" 1000" = > B " 01100001" ; % "all %
B" 01 00 " = > B" 01100010" ; % "b" %
B" 00 1 0" => B" 01100011" ; % "e" %
B" OOO l" = > B" 01100 100 " ; % "d " %

END TABLE ;
END ;

39

MAX+PLUS /I AHDL

When an input pattern matches one of the patterns shown on the left side of
the Truth Table Statement, the table's outputs are set to the corresponding
pattern on the right. If the input pattern does not match any pattern on the
left side, the outputs default to B" 0 0 111111 " , i.e., nodes
ascii_code [5 .. 0] are driven to vee while nodes ascii_ code [7 .. 6]
are connected to GND.

The default2.tdf file in Figure 2-22 illustrates how conflicts arise when a
single node is assigned more than one value, and how these conflicts are
resolved by AHDL.

Figure 2-22. default2.tdf

SUBDESIGN default2
(

a, b, c
select_a, select_ b, selec
wire_ or, wire_and

t_c
INPUT;
INPUT ;
OUTPUT;

BEGIN
DEFAULTS

wire_ or = GND;
wire_and = VCC;

END DEFAULTS;

IF 	select_ a THEN
wire_ or = a;
wire_and = a;

END IF;

IF 	select_b THEN
wire_or = b;
wire_and = b;

END IF;

IF 	select_c THEN
wire_ or = Ci

wire_and = c;
END IF;

END;

In this example, wi re_or is set to the values of a, b, or c, depending on the
values of the select_ a, select_ b, and select_ c signals. Ifnone of these
signals is vee, then wire_or defaults to GND.

40

Section 2: How to Use AHDL

.,.
••

If more than one of the select_a, select_b, or select_c signals are
vee, wire_or is set to the logical OR of the corresponding input values. For
example, if select_a and select_b are vee, wire_or is set to the logical
OR of a andb.

The wire_and signal works in the same way, except that it defaults to vee
when none of the "select" signals is vee, and is set to the logical AND of
the corresponding input values when more than one of the signals is vee.

Figure 2-23 shows a GDF that is equivalent to de£ault2.td£.

Figure 2-23. default2.gdf

SELECT_A c:::::::>----......-r______}--_--,

A c:::::::>---~~-L~

SELECT_B c:::::::>----...H--r------}--__-l

B c:::::::>--~~Hr-L~

SELECT_ C c:::::::>---.t+Hr-r---.,)-_---'

C ~>--~~H--L-J

Go to the following topics for more information:

"Case Statement" on page 172 in Design Structure
"Defaults Statement" on page 173 in Design Structure
"If Then Statement" on page 176 in Design Structure
"Truth Table Statement" on page 183 in Design Structure

Implementing Active-Low Logic

An active-low signal becomes active when its value is GND. Active-low
signals can be useful for controlling memory, peripheral, and
microprocessor chips.

41

http:de�ault2.td

MAX+PLUS /I AHDL

The daisy.tdf file shown in Figure 2-24 is a module of a daisy-chain
arbitration circuit. This module makes requests for bus access to the
preceding module in the daisy chain. It receives requests for bus access from
itself and from the next module in the chain. Bus access is granted to the
highest-priority module that requests it.

Figure 2-24. daisy.tdf

SUBDESIGN daisy
(

/ local_ request INPUT;
/ l ocal_grant OUTPUT;
/ request_in INPUT; % from lower priority %
/ request_out OUTPUT; % to higher priority %
/ grant_in INPUT; % from higher priority %
/ grant_ out OUTPUT; % to lower priority %

BEGIN
DEFAULTS

/ local_grant vee; % activ e-low output %
/ request_ out vee ; % signals s hould defaul t %
/ grant_out vee ; % to vee %

END DEFAULTS;

GND # / local_ request GND THEN
/ request_out GND;

END IF;

IF / grant_ in == GND THEN
IF / local_ request == GND THEN

/ local_grant = GND;
ELSIF / request_ in == GND THEN

/ grant_out = GND;
END IF;

END IF;
END;

All signals in this file are active low. Altera recommends that you choose a
node-naming scheme that clearly indicates active-low signal names---e.g.,
an initial "n" or a slash (I)- and use it consistently. A slash is not an
operator, but is simply part of the signal name.

If Then Statements are used to determine whether modules are active, i.e.,
whether the signal equals GND. If a signal is active, the equations following
the appropriate If Then Statement are activated. The Defaults Statement
specifies that a signal is assigned to vee when it is not active.

Figure 2-25 shows a GDF that is equivalent to daisy.tdf.

42

•• ••

Section 2: How to Use AHDL

Figure 2-25. daisy.gdt

Go to the following topics for more information:

"Naming a Boolean Operator or Comparator" on page 84 in this section
"Using Default Values for Variables" on page 39 in this section

Implementing Bidirectional Pins

MAX+PLU5 II allows I/O pins in Altera devices to be configured as
bidirectional pins. Bidirectional pins can be specified with a BIDIR port that
is connected to the output of a TRI primitive. The signal between the pin and
the TRI primitive is a bidirectional signal that can be used to drive other
logic in the project.

The bus_reg2.tdf file shown in Figure 2-26 implements a register that
samples the value found on a tri-state bus. It can also drive the stored value
back to the bus.

Figure 2-26. busJeg2. tdt

SUBDESIGN bus_reg2
(

elk INPUT;

oe INPUT;

io BIDIR;

BEGIN

dff_out = DFF(io, elk, ,);

io = TRI(dff_out, oe) ;

END ;

Bus request
and grant for
higher-priority
module

Local bus
request

{REQUEST_IN }

{GRANT_OUT

Bus request
and grant for
lower-priority
module

Local bus grant

43

MAX+PLUS /I AHDL

The bidirectional io signal, driven by TRI, is used as the d input to a
o flipflop (DFF). Commas are used as placeholders for the clrn and prn
flipflop ports, which default to the inactive state.

Figure 2-27 shows a GOF that is equivalent to bus_reg2.tdf.

Figure 2-27. busJeg2.gdf

DE ~~--------------------,

elK

PRN
D Q 1-----1 >---4>----+C,..>i

CLRN

10

You can also connect a bidirectional pin from a lower-level TOF to a top­
level pin. The bidirectional output port of the subdesign should be
connected to a bidirectional pin at the top level of the hierarchy. The
Function Prototype for the lower-level TOF should include the bidirectional
pin in the RETURNS clause. The bidirl.tdf file shown in Figure 2-28 includes
four instances of the bus_reg2 function shown in Figure 2-27.

Figure 2-28. bidir1.tdf

FUNCTION bus_reg2 (elk, oe) RETURNS (io);

SUBDESIGN bidirl
(

elk, oe INPUT;
io [3 .. 0] BIDIR;

BEGIN
ioO bus_ reg2(elk, oe);
iol bus_reg2(elk, oe);
io2 bus_reg2(elk, oe);
io3 bus_reg2(elk, oe);

END;

44

•• ••

Section 2: How to Use AHDL

Go to the following topics for more information:

"Ports" on page 132 in Elements
"Declaring Registers" on page 47 and "Using Default Values for Variables"

on page 39 in this section

Implementing Tri-State Buses

TRI primitives that drive OUTPUT or BIDIR ports have an Output Enable
input for placing the pin output in a high-impedance state in which it
behaves as if it is not connected to the circuit.

You can create a tri-state bus by connecting TRI primitives and BIDIR or
OUTPUT ports together with a node of type TRI_ STATE_NODE. The control
circuitry must ensure that at most one output is enabled (i.e., not in a high­
impedance state) at any given time. This enabled output can transmit low (0)
and high (1) logic levels onto the bus.

The trCbus.tdf file shown in Figure 2-29 implements a tri-state bus using a
TRI_ STATE_NODE-type node created in a Node Declaration:

Figure 2-29. trCbus.tdf

SUBDESIGN tri_bus
(

in[3 .. 1] , oe[3 .. 1] INPUT;
outl OUTPUT;

VARIABLE
tnode : TRI_STATE_NODE;

BEGIN
tnode = TRI(inl, oel);
tnode = TRI(in2, oe2);
tnode = TRI(in3, oe3);
outl = tnode;

END;

45

•• ••

MAX+PLUS /I AHDL

In tri_bus.tdf, multiple assignments to tnode tie the signals together. The
TRI_ STATE_NODE node type, rather than the ordinary NODE node type, is
required to implement a tri-state bus: multiple assignments to nodes of type
NODE tie the signals together by wired-AND or wired-OR functions; whereas
multiple assignments to a TRI_ STATE_NODE tie the signals to the same
node. However, if only one variable is assigned to a TRI_ STATE_NoDE-type
node, it is treated as an ordinary NODE instead.

Go to the following topics for more information:

"Implementing Boolean Expressions & Equations" on page 25 in this section
"Declaring Nodes" on page 27 in this section
"Implementing Bidirectional Pins" on page 43 in this section
"Node Declaration" on page 162 in Design Structure

46

•• ••

Section 2: How to Use AHDL

Sequential logic

Logic is sequential if outputs at a specified time are a function of the inputs
at that time and at some or all preceding times. All sequential circuits must
include one or more flipflops. Sequential logic can be implemented in AHDL
with state machines, registers, or latches; LPM functions are also available.
State machines are especially useful for implementing sequential logic.
Other examples of sequential logic include counters and controllers.

Information on sequential logic is available in the following topics:

• Declaring Registers 47

• Declaring Registered Outputs........... 50

• Creating Counters 51

Go to the following topics for more information:

"State Machines" on page 54 in this section
"Megafunctions" on page 129 in Elements
"Using Iteratively Generated Logic" on page 86 in this section
"Using Conditionally Generated Logic" on page 87 in this section

Declaring Registers

Registers store data values and synchronize data with a Clock signal. You
can declare, i.e., implement, an instance of a register with a Register
Declaration in the Variable Section. (You can also implement registers with
in-line references in the Logic Section.) AHDL offers several register
primitives and also supports registered LPM functions.

Once you have declared a register, you can connect it to other logic in the
TDF by using its ports. A port of an instance is used in the following format:

<instance name> . <port name>

The bucreg.tdf file shown in Figure 2-30 uses a Register Declaration to
create a byte register that latches values of the d inputs onto the q outputs
on the rising edge of the Clock when the load input is high.

47

MAX+PLUS /I AHDL

Figure 2-30. bucreg.tdf

SUBDESIGN bur_reg
(

elk , load, d[7 .. 0]
q[7 .. 0]

INPUT;
OUTPUT;

VARIABLE
ff [7 .. 0]

BEGIN
DFFE;

ff[] .elk = elk;
ff[] .ena = load;
ff[].d = d[];

q[] = ff[].q;

END;

The registers are declared as Enable D flipflops (DFFE) in the Variable
Section. The first Boolean equation in the Logic Section connects the
bucreg.tdf file's Clock input, elk, to the Clock ports of the ff [7 .. 0 1
flipflops. The second equation connects the load input to the Clock Enable
ports. The third equation connects the file's data inputs, d [7 .. 0 l, to the
data input ports of the f f [7 .. 0 1 flipflops. The fourth equation connects the
file's outputs to the flipflop outputs. All four statements are evaluated
concurrently.

You can also declare T, JK, and SR flipflops in the Variable Section, then use
them in the Logic Section. For example, for T flip flops (TFF), you would
change the Register Declaration to f f [7 .. 0 1 : TFF; and change f f [l . d
to ff [l . t in the third equation. Similarly, for Enable JK flipflops (JKFFE),
you would change the Register Declaration to f f [7 .. 0 1 : JKFFE; and
replace the third equation with two equations that connect the f f [l . j and
f f [l . k ports to other signals.

W 	 If you wish to load a register on a specific rising edge of the global
Clock, Altera recommends that you use the Clock Enable input of
one of the DFFE, TFFE, JKFFE, or SRFFE Enable-type flip flops to
control when the register is loaded.

The lpm_reg.tdf file shown in Figure 2-31 uses an in-line reference to
implement an instance of the lpm_ df f function that has the same
functionality as the bur_reg.tdf file.

48

••

• • •
• • •

• • •

Section 2: How to Use AHDL

Figure 2-31. JpmJeg.tdf

I NCLUDE "lpffi_dff.ine";
SUBDESIGN lpffi_reg
(

elk, l oa d, d[7 .. 0] I NPUT ;

q[7 .. 0] OUTPUT;

BEGI N
q[] = lpffi_dff (.eloek=elk, . enable=load, . data[]=d[])

WITH (LPM_WIDTH=8)
RETURNS (. q [1) ;

END ;

Figure 2-32 shows a GDF that is equivalent to the TDFs in Figures 2-30
and 4-31.

Figure 2-32. reg.gdf

PRN

00
 00D Q

ENA
CLRN

PRN

01
 D Q 01

ENA
CLRN

• •

•

PRN
D Q 07

ENA
CLRN

07
elK

lOAD

~

~

...
Go to the following topics for more information:

"Declaring Registered Outputs," next
"Ports" on page 132 in Elements
"Register Declaration" on page 163 in Design Structure

49

MAX+PLUS /I AHDL

Declaring Registered Outputs

You can declare registered outputs of a subdesign by declaring the output
ports as flipflops in a Register Declaration in the Variable Section. The
reg....ouUdf file shown in Figure 2-33 has the same functionality as the
bucreg.tdf file shown in Figure 2-30 on page 48, but has registered outputs.

Figure 2-33. reg_Dut.td!

SUBDESIGN reg_out
(

clk , load , d [7 .. 0)
q[7 .. 0)

INPUT;
OUTPUT;

VARIABLE
q[7 . . 0)

BEGIN
q[) .clk = clk;
q [) . ena = load;
q[) = d[);

END;

DFFE; % also declared as outputs %

When you assign a value to a registered output in the Logic Section, that
value drives the d inputs to the registers. The register's output does not
change until the rising edge of the Clock. To define the Clock input to the
register, use <register name>. elk for the Clock input to the register in the
Logic Section. You can implement a global Clock with the GLOBAL primitive
or with the Automatic Global Clock option in the Global Project Logic
Synthesis dialog box (Assign menu).

In the sample file shown in Figure 2-33, each Enable 0 flipflop (DFFE)

declared in the Variable Section feeds an output with the same name, so you
can refer to the q outputs of the declared flipflops without using the q port
of the flipflops.

W 	 In a top-level TDF, output ports are synonymous with output
pins. When you declare the same name for an output port and a
register, any logic option assignments on that name are applied to
the pin rather than the register. These identical names can prevent
you from assigning a register-specific logic option such as I/O Cell
Register. Therefore, if you wish to use a register-specific logic
option, you must name the registers and ports differently.
(However, you may be able to implement the desired
functionality in a different way. For example, you can use the
Automatic I/O Cell Registers option in the Global Project Logic

50

•• ••

Section 2: How to Use AHDL

Synthesis dialog box to automatically implement registers in I/O
cells, regardless of whether you have declared the same name for
output ports and registers.)

Go to the following topics for more information:

"Register Declaration" on page 163 in Design Structure
"Implementing a Hierarchical Project" on page 69 in this section

Creating Counters

Counters use sequential logic to count Clock pulses. Some counters can
count forward and backward, and can be loaded with data and cleared to
zero. Counters can be defined with D flipflops (DFF and DFFE) and If Then
Statements or with the lpffi_counter function.

The ahdlcnt.tdf file shown in Figure 2-34 implements a 16-bit loadable up
counter that can be cleared to zero. _

Figure 2-34. ahd/cnt.tdf

SUBDESIGN ahdlent
(

elk, load, ena,
q[15 .. 0]

elr, d[15 .. 0] INPUT;
OUTPUT;

VARIABLE
eount[15 .. 0]

BEGIN
eount[] . elk = elk;
eount[] .elrn = !elr;

DFF;

IF load THEN
eount[] . d = d[];

ELSIF ena THEN
eount[] .d = eount[].q + 1;

ELSE
eount[].d = eount[] .q;

END IF;

q[] = eount[];
END;

51

MAX+PLUS 1/ AHDL

In this file, 16 D flipflops are declared in the Variable Section and assigned
the names counto through count15 . The IfThen Statement determines the
value that is loaded into the flipflops on the rising Clock edge (e.g., if load
is driven by vcc, the flip flops are assigned the value of d [l).

The lpm_cnt.td£ file shown in Figure 2-35 uses the lpffi_counter function
to implement the same functionality as ahd1cnt.td£:

Figure 2-35. /pm_enl.ld!

INCLUDE "lpm_ counter.inc";
SUBDESIGN lpm_cnt
(

clk, load, ena, clr, d[15 .. 0] INPUT;
q[15 .. 0] OUTPUT;

VARIABLE
my_ cntr : lpm_counter WITH (LPM_WIDTH=16);

BEGIN
my_cntr.clock clk ;
my_cntr.aload load;
my_cntr.cnt_en ena;
my_cntr.aclr clr;
my_cntr.data[] d[];
q[] = my_cntr.q[];

END;

Figure 2-36 shows a GDF that is equivalent to ahdlcnt.tdf and lpm_cnt.tdf.

52

http:pm_enl.ld
http:ahd1cnt.td
http:lpm_cnt.td

Section 2: How to Use AHDL

Figure 2-36. count.gdf

LOAD c::::::;:>----_------,
ENAC::::::;:~-...,

DOc::::::;:>----+-~,~

f--.....-l=> 00

CLRN

CLRN

f--.....-[=> 015

CLKc::::::;:>---------------~

CLR~~------~>~----~

CLRN

.,.
•• Go to the following topics for more information:

"If Then Statement" on page 176 in Design Structure
"Implementing Conditional Logic" on page 31 in this section

53

MAX+PLUS /I AHDL

State Machines

State machines,like truth tables and Boolean equations, are easily
implemented in AHDL. The language is structured so that you can either
assign state bits and state values yourself, or allow the MAX+PLUS II
Compiler to do the work for you.

The Compiler uses advanced proprietary heuristic algorithms to make
automatic state assignments that minimize the logic resources required to
implement the state machine.

You simply need to draw a state diagram and construct a next-state table.
The Compiler then performs the following functions automatically:

• 	 Assigns bits, selecting either a T or 0 flipflop (TFF or DFF) for each bit
• 	 Assigns state values
• 	 Applies sophisticated logic synthesis techniques to derive the

excitation equations

To specify a state machine in AHDL, you must include the following items
in the TDF:

• 	 State Machine Declaration (Variable Section)
• 	 Boolean control equations (Logic Section)
• 	 State transitions in Truth Table Statements or Case Statements (Logic

Section)

You can also import and export AHDL state machines between TDFs and
other design files by specifying an input or output signal as a machine port
in the Subdesign Section.

The following topics provide information on creating state machines:

• 	 Implementing State Machines 55

• 	 Setting Clock, Reset & Enable Signals 57

• 	 Assigning State Machine Bits & Values ... 58

• 	 State Machines with Synchronous Outputs 60

• 	 State Machines with Asynchronous Outputs 64

• 	 Recovering From Illegal States 66

54

•• ••

Section 2: How to Use AHDL

Go to the following topics for more information:

"Importing & Exporting State Machines" on page 77 in this section
"Ports" on page 132 in Elements

Implementing State Machines

You can create a state machine by declaring the name of the state machine,
its states, and, optionally, the state machine bits in a State Machine
Declaration in the Variable Section.

The simple.tdf file shown in Figure 2-37 has the same functionality as a
D flipflop (DFF).

Figure 2-37. simple.tdf

SUBDESIGN simple
(

elk, reset, d INPUT;
q OUTPUT;

VARIABLE
55: MACHINE WITH STATES (sO, 51);

BEGIN
ss.elk = elk;
sS . reset reset;

CASE 55 IS
WHEN sO =>

q = GND;

IF d THEN
55 = 51;

END IF;
WHEN 51 =>

q = VCC;

IF !d THEN
55 = sO;

END IF;
END CASE;

END;

55

•• ••

PRN
D C - --­----!D

elK L:::)---­--i.>

CLRN

MAX+PLUS /I AHDL

In simple.tdf, a state machine with the name ss is declared in a State
Machine Declaration in the Variable Section. The states of the machine are
defined as sO and sl, and no state bits are declared.

State machine transitions define the conditions under which the state
machine changes to a new state. You must conditionally assign the states
within a single behavioral construct to specify state machine transitions.
Case or Truth Table Statements are recommended for this purpose. For
example, in simple.tdf, the transitions out of each state are defined in the
WHEN clauses of the Case Statement.

You can also define an output value for a state with an If Then or Case
Statement. In Case Statements, these assignments are made in WHEN clauses.
For example, in simple.tdf, output q is assigned to GND when state machine
ss is in state sO, and to vee when the machine is in state s1.

Output values can also be defined in truth tables, as described in " Assigning
State Machine Bits & Values" on page 58.

Figure 2-38 shows a GDF that is equivalent to simple.tdf.

Go to the following topics for more information:

"Implementing Conditional Logic" on page 31 in this section
"Importing & Exporting State Machines" on page 77 in this section
"State Machine Declaration" on page 165 in Design Structure
"State Machines with Asynchronous Outputs" on page 64 in this section
"State Machines with Synchronous Outputs" on page 60 in this section

Figure 2-38. simp/e.gdl

VCC

RESET

Q f-------l==> Q

56

•• ••

Section 2: How to Use AHDL

Setting Clock, Reset &Enable Signals

Clock, Reset, and Clock Enable signals control the flipflops of the state
register in the state machine. These signals are specified with Boolean
control equations in the Logic Section.

In the file simplel.tdf shown in Figure 2-39, the state machine Clock is
driven by the input elk. The state machine's asynchronous Reset signal is
driven by reset, which is active high. In this design file, the declaration of
the ena input in the Subdesign Section and the Boolean equation
ss. ena = ena in the Logic Section connect the Clock Enable signal.

Figure 2-39. simp/e1.tdf

SUBDESIGN simple
(

elk, reset, d, ena INPUT;

q OUTPUT;

VARIABLE

ss: MACHINE WITH STATES (s O, sl) ;

BEGIN

sS.elk = elk;

sS . reset = reset;

sS . ena = ena;

CASE ss IS

WHEN s O =>

q = GND;

IF d THEN

ss = sl;

END IF ;

WHEN sl =>

q = VCC ;

IF !d THEN

ss = sO;

END IF;

END CASE;

END;

Go to the following topics for more information:

"Boolean Control Equations" on page 171 in Design Structure
"Ports" on page 132 in Elements

57

MAX+PLUS " AHDL

Assigning State Machine Bits &Values

A state bit is an output of a flipflop used by a state machine to store one bit
of the value of the state machine. In most cases, you should allow the
MAX+PLUS II Compiler to assign state bits and values to minimize the logic
resources required: the Logic Synthesizer automatically minimizes the
number of state bits needed, optimizing both device utilization and
performance.

However, some state machines may operate faster with state values that use
more than the minimum number of state bits. In addition, you may want
explicit state bits to be the outputs of a state machine. To control these cases,
you can declare state machine bits and values in the State Machine
Declaration.

W 	 The Global Project Logic Synthesis dialog box (Assign menu)
includes a One-Hot State Machine Encoding option that
automatically implements one-hot encoding for a project. In
addition, the MAX+PLUS II Compiler automatically implements
one-hot state machine encoding for FLEX 8000 and FLEX 10K
devices, regardless of whether the One-Hot State Machine Encoding
option is turned on or off. If you explicitly assign state bits in
addition to using automatic one-hot encoding, your project's logic
may be implemented inefficiently.

The stepper.tdf file shown in Figure 2-40 implements a stepper motor
controller.

58

•• ••

Section 2: How to Use AHDL

Figure 2-40. stepper. tdf

sO B"OOOl",
sl B"OOlO" ,
s2 B"0100" ,
s3 B"1000");

BEGIN

ss.elk elk;

ss.reset reset;

TABLE

ss, eew, ew => 55;

sO , 1, x => s3;
sO, x, 1 => sl;
sl, 1, x = > sO;
sl, x, 1 = > s2;
s2, 1, x = > sl;
s2, x, 1 => s3;
s3, 1, x = > s2;
s3, x, 1 = > sO;

END TABLE;

END;

In this example, the phase [3 .. 01 outputs declared in the Subdesign
Section are also declared as bits of the state machine ss in the State Machine
Declaration. Note that ccw and cw must never both be equal to 1 in the same
table. AHDL assumes that only one condition in a truth table is true at a time;
therefore, overlapping bit patterns may cause unpredictable results .

Go to "Truth Table Statement" on page 183 in Design Structure for more
information.

SUBDESIGN stepper
(

elk, reset
ccw, c w
phase [3 .. 0]

VARIABLE
ss: MACHINE OF

WITH STATES

INPUT;
INPUT;
OUTPUT;

BITS (phase[3 .. 0])
(

59

MAX+PLUS /I AHDL

State Machines with Synchronous Outputs

If the outputs of a state machine depend only on the machine's state, you can
specify the state machine outputs in the WITH STATES clause of the State
Machine Declaration. These state value assignments make state machine
entry less prone to error, and in some cases, the logic may use fewer logic
cells.

Figure 2-41 shows a four-state Moore state machine diagram. In Moore state
machines, the present state of the state machine depends only on its
previous input and previous state, and the present output depends only on
the present state.

Figure 2-41. Moore State Machine Diagram

!y y

!y

y

!y

y y

The moorel.tdf file shown in Figure 2-42 implements a four-state Moore
state machine.

60

Section 2: How to Use AHDL

Figure 2-42. moore1.tdf

SUBDESIGN moore1

clk INPUT;
reset INPUT;
y INPUT;
z OUTPUT;

VARIABLE
%
%

ss: MACHINE OF BITS
WITH STATES

BEGIN
ss . clk clk;
ss.reset reset;

TABLE
% current current
% state input

ss, y

s O, 0

sO, 1
sl, 0

sl, 1
s2, 0
s2, 1
s3, 0

s3, 1
END TABLE;

END;

current current %
state output %
(z)

(sO 0,
sl 1,
s2 1,
s3 0) ;

next %
state %

= > ss;

= > s O;
=> s2;
=> sO;
=> s2;
= > s 2 ;
= > s3;
=> s3;
= > sl;

This example defines the states of the state machine with a State Machine
Declaration. The state transitions are defined in a next-state table, which is
implemented with a Truth Table Statement. In this example, machine ss has
four states but only one state bit (z). The MAX+PLUS II Compiler
automatically adds another bit and makes appropriate assignments to this
synthetic variable to produce a four-state machine. This state machine
requires at least two bits.

Figure 2-43 shows a GDF that is equivalent to moorel.tdf.

61

MAX+PLUS /I AHDL

Figure 2-43. moore1.gdf

y

elK

RESET

~
~

,.----.,

]

~

J

))

./

\
)

PRN

" D 0 -e::::> z

':5fN

PRN
D o ­

~

When state values are used as outputs, as in moorel.tdf, the project may use
fewer logic cells, but the logic cells may also require more logic to drive their
flipflop inputs. The Compiler's Logic Synthesizer module may not be able to
fully minimize the state machine in these cases.

Another way to design state machines with synchronous outputs is to omit
state value assignments and to explicitly declare output flipflops. The file
moore2.tdf, shown in Figure 2-44, illustrates this alternative method.

62

••

Section 2: How to Use AHDL

Figure 2-44. moore2. tdf

SUBDESIGN moore2

elk INPUT;

reset INPUT;

y INPUT;

z OUTPUT;

VARIABLE
ss: MACHINE WITH STATES (sO, sl, s2, s3);

zd: NODE;
BEGIN

ss.elk elk;

ss.reset reset;

z = DFF(zd, elk, VCC, VCC);

TABLE

% current current next next %

% state input state output %

ss, y => ss, zd;

sO, 0 => sO, 0;
sO, 1 => s2, 1;

sl, 0 = > sO, 0;
sl, 1 => s2, 1;
s2, 0 => s2, 1;
s2, 1 => s3, 0;
s3 , 0 => s3, 0;
s3, 1 => sl , 1;

END TABLE;

END;

Instead of specifying the output with state value assignments in the State
Machine Declaration, this example includes a "next output" column after
the "next state" column in the Truth Table Statement. This method uses a D
flipflop (DFF)--called with an in-line reference-to synchronize the outputs
with the Clock. ...
Go to "Truth Table Statement" on page 183 in Design Structure for more
information.

63

MAX+PLUS /I AHDL

State Machines with Asynchronous Outputs

AHDL supports the implementation of state machines with asynchronous
outputs. The outputs of these types of state machines can change whenever
the inputs change, regardless of Clock transitions.

Figure 2-45 shows a four-state Mealy state machine diagram. In Mealy state
machines, the outputs are a function of the inputs and the current state.

Figure 2-45. Mealy State Machine Diagram

y.
1

~ o

~ o

y,o

The mealy.ldf file shown in Figure 2-46 implements a four-state Mealy state
machine with asynchronous outputs.

64

Section 2: How to Use AHDL

Figure 2-46. mealy. tdf

SUBDESIGN mealy
(

clk INPUT;
reset INPUT;
y INPUT;
z OUTPUT;

VARIABLE
55: MACHINE WITH STATES (sO, 51, 52, 53);

BEGIN
ss . clk = clk;
sS . reset = reset;

TABLE
% current current current
% state input output

55, Y = > z,

sO, a = > 0,
sO, 1 = > 1,
51 , a = > 1,
51, 1 = > 0,
52, a = > 0,
52, 1 = > 1,
53, a = > 0,
53, 1 = > 1,

END TABLE;
END;

next %
state %
S5;

sO;
51;
51;
52;
52;
53;
53;
sO;

Figure 2-47 shows a GDF that is equivalent to mealy.tdf.

65

••

MAX+PLUS /I AHDL

Figure 2-47. mea/y.gd!

Y c >--+-----r____

e lK

RESET

PRN
r---~ D or--.-,-,

CLRN

PRN
~~r-~ D o ~~~

CLRN

...
Go to "Truth Table Statement" on page 183 in Design Structure for more
information.

Recovering From Illegal States

Logic generated for a state machine by the MAX+PLUS II Compiler will
behave as you specified in the TDF. However, state machine designs that
explicitly declare state bits and which also do not use one-hot encoding often
allow state bit values that are not assigned to valid states. These unassigned
state bit values are called illegal states. A design that enters an illegal state­
for example, as a result of setup or hold time violations-can cause
erroneous outputs. Although Altera recommends that state machine inputs
meet all setup and hold time requirements, you can make a state machine
recover from an illegal state by forcing the illegal state to a known state with
a Case Statement.

66

http:mea/y.gd

Section 2: How to Use AHDL

The Global Project Logic Synthesis dialog box (Assign menu)
includes a One-Hot State Machine Encoding option that
automatically implements one-hot encoding- which
automatically assigns all state bits to valid states- for a project. In
addition, the MAX+PLUS II Compiler automatically implements
one-hot state machine encoding for FLEX 8000 and FLEX 10K
devices, regardless of whether the One-Hot State Machine Encoding
option is turned on or off. If you explicitly assign state bits in
addition to using automatic one-hot encoding, your project's logic
may be implemented inefficiently.

To recover from illegal states, you must name all illegal states in a state
machine. The WHEN OTHERS clause in the Case Statement, which forces each
transition from an illegal state to a known state, applies only to states that
have been declared but are not mentioned in a WHEN clause. The
WHEN OTHERS clause can force the required transitions only if all illegal
states are defined in the State Machine Declaration.

For an n-bit state machine, 2/\n possible states exist. If you declare n bits in a
state machine, you should continue to add dummy state names until the
number of states reaches a power of 2. The recover.td£ file shown in
Figure 2-48 contains a state machine that can recover from illegal states.

67

http:recover.td

MAX+PLUS /I AHDL

Figure 2-48. recover.tdf

SUBDESIGN recover

clk INPUT;
go INPUT;
ok OUTPUT;

VARIABLE
sequence : MACHINE

OF BITS (q[2 .. 0))
WITH STATES (

idle,

one ,

two,

three,

four,

illegall,

illega12,

illega13) ;

BEGIN
sequence.clk = clk;

CASE sequence IS
WHEN idle =>

IF go THEN
sequence one;

END IF;
WHEN one =>

sequence two;
WHEN two =>

sequence three;
WHEN three =>

END

sequence
WHEN OTHERS

sequence
CASE;

=>

=

four;

idle;

ok
END;

= (sequence four) ;

This example contains 3 bits: q2, ql, and qO. Therefore, 2/\3 states, i.e., 8
states, exist. Since only 5 of the states are declared, 3 dummy state names
were added, creating a total of 8 states.

68

Section 2: How to Use AHDL

Implementing a Hierarchical Project

AHDL TDFs can be mixed with other design files in a project hierarchy.
Lower-level files in a project hierarchy can either be Altera-provided mega­
or macrofunctions or user-defined functions.

Information on implementing a hierarchical project is available in the
following topics:

• 	 Using Altera-Provided Unparameterized Functions 69

• 	 Using Altera-Provided Parameterized Functions 73

• 	 Using Custom Megafunctions & Macrofunctions 76

• 	 Importing & Exporting State Machines 77

Go tothe following sources for more information:••...
"Renaming a Megafunction or Macrofunction in the Current Project" in

MAX+PLUS II Help
"Megafunctions" on page 129 and "Old-Style Macrofunctions" on page 131

in Elements

Using Altera-Provided Unparameterized Functions

MAX+PLUS II includes libraries of primitives and old-style macrofunctions
that are not inherently parameterized; in addition, some megafunctions are
not inherently parameterized. All MAX+PLUS II logic functions can be used
to create hierarchical logic designs. Mega- and macrofunctions are
automatically installed in subdirectories of the \maxplus2\max2lib
directory created during installation; primitive logic is built into AHDL. (On
a UNIX workstation, the maxplus2 directory is a subdirectory of the lusr
directory.)

There are two ways to use (i.e., insert an instance of) an unparameterized
function in AHDL:

• 	 Declare a variable for the function, i.e., an instance name, in an
Instance Declaration in the Variable Section, and use ports of the
instance of the function in the Logic Section.

• 	 Use an in-line logic function reference in the Logic Section of the TDF.

69

MAX+PLUS /I AHDL

The inputs and outputs of mega- and macrofunctions must be declared with
a Function Prototype Statement. (Function Prototypes are not required for
primitives.) MAX+PLUS II provides Include Files (.inc) that contain
Function Prototypes for all MAX+PLUS II mega- and macrofunctions in the
\maxplus2\max2lib \mega_Ipm and \maxplus2\max2inc directories,
respectively. With an Include Statement, you can import the contents of an
Include File into a TDF to declare the Function Prototype of a MAX+PLUS II
mega- or macrofunction.

The macrol.tdf file shown in Figure 2-49 shows a 4-bit counter connected to
a 4-bit-binary-to-16-line decoder. These macrofunctions are called with
Instance Declarations in the Variable Section.

Figure 2-49. macrol.tdf

INCLUDE "4count";
INCLUDE "16dmux";

SUBDESIGN macrol
(

clk INPUT;
out [15 .. 0] OUTPUT;

VARIABLE
counter 4count;
decoder l6dmux;

BEGIN
counter.clk = clk;
counter . dnup = GND;
decoder. (d,c,b,a) = counter. (qd,qc,qb,qa);
out[lS .. O] = decoder.q[lS .. O];

END;

This file uses Include Statements to import Function Prototypes for two
Altera-provided macrofunctions: 4count and 16dmux. In the Variable
Section, the variable counter is declared as an instance of the 4count
function, and the variable decoder is declared as an instance of the 16dmux
function. The input ports of both functions, which are in the format
<instance name>. <port name>, are defined on the left side of the Boolean
equations in the Logic Section; the output ports are defined on the right.

70

Section 2: How to Use AHDL

The macro2.tdf file shown in Figure 2-50 has the same functionality as
macrol.tdf, but creates instances of the two functions with in-line references
and the nodes q [3 .. 01 :

Figure 2-50. macro2.tdf

INCLUDE "4count";
INCLUDE "16dmux";

SUBDESIGN macro2
(

c1k
out [15 .. 0]

INPUT;
OUTPUT;

VARIABLE
q[3 .. 0]

BEGIN
(q[3 .. 0],

NODE;

4count (clk, , , , , GND, , , ,);

% equivalent
% (q[3 .. 0J.)

in-line ref. with named port association
= 4count (.clk=clk, .dnup=GND);

%
%

% equivalent in-line ref. with named port association %
% and RETURNS clause specifying which outputs are used %
% q[3 .. 0] = 4count (.clk=clk, .dnup=GND) %
% RETURNS (qd, qc, qb, qa); %

out[15 .. 0] 16dmux (. (d, c, b, a)=q[3 .. 0]);
% equivalent in-line ref. with positional port association %
% out[15 .. 0] = 16dmux (q[3 .. 0]); %

END;

The Function Prototypes for the two macrofunctions, which are stored in the
Include Files 4count.inc and 16dmux.inc, are shown below:

FUNCTION 4count (clk, clrn, setn, ldn, cin, dnup, d, c, b, a)
RETURNS (qd, qc, qb, qa, cout);

FUNCTION 16dmux (d, c, b, a)
RETURNS (q[15 .. 0]);

The in-line references for 4count and 16drnux appear in the first and
second Boolean equations in the Logic Section, respectively. The in-line
reference for 4count uses positional port association, whereas the in-line
reference for 16drnux uses named port association. The input ports of both
macrofunctions are defined on the right side of the in-line references; the
output ports are defined on the left.

71

MAX+PLUS "AHDL

Comments show the equivalent in-line references for different styles of port
association. In an in-line reference, ports on the right-hand side of the equals
symbol (=) can be listed with either positional or named port association;
ports on the left-hand side of the equals symbol always use positional port
association. When positional port association is used, the order of ports is
important because there is a one-to-one correspondence between the order
of the ports in the Function Prototype and the ports defined in the Logic
Section. In the in-line reference for 4count, commas are used as
placeholders for ports that are not explicitly connected.

A RETURNS clause, which is based on the RETURNS clause in the Function
Prototype, is optional in an in-line reference. The RETURNS clause can be
used to list the subset of the function's outputs that is used in the instance.
In macro2.tdf, the second comment that shows an alternative in-line
reference for 4count omits the cout output of 4count from the RETURNS
clause; therefore, only the q [3 .. 0 1 outputs are listed in the in-line reference
and a comma placeholder is not required for couto

IV? 	 Primitives and old-style macrofunctions always have default
values for unconnected inputs. In contrast, megafunctions do not
necessarily have default values for unconnected inputs.

Figure 2-51 shows a GDF that is equivalent to macrol.tdf and macro2.tdf.

Figure 2-51. macro.gdt

16DMUX

015

014

013

4COUNT 012

OUT15
OUT14
OUT13

--'"""' OUT12
lDN

-A
--<

-
-
-

--cGt
­

--c
~elK

B OA
C OB
D OC
CIN OD
DNUP COU l-
SETN T
ClRN
ClK

011

010

A 09

B 08

C 07

D 06

06

04

03

02

01

00

OUT11
OUT10

-.r­ OUT9
-.r­ OUT8
-.r- OUT?

OUT6
OUT6

,.--..- OUT4
--C> OUT3
s---­ OUT2
s---­ OUT1
s---­ OUTO

72

•• ••

Section 2: How to Use AHDL

Go to the following topics for more information:

"Function Prototype Statement" on page 151 in Design Structure
"In-Line Logic Function Reference" on page 180 in Design Structure
"Include Statement" on page 145 in Design Structure
"Instance Declaration" on page 160 in Design Structure
"Logic Section" on page 168 in Design Structure
"Ports" on page 132 in Elements

Using Altera-Provided Parameterized Functions

MAX + PLUS II includes inherently parameterized megafunctions, including
LPM functions. For example, parameters are used to specify the width of a
port or whether a block of RAM should be implemented as synchronous or
asynchronous memory. Parameterized functions can contain other
subdesigns, which may be parameterized or unparameterized. Parameters
can also be used on some old-style macrofunctions that are not inherently
parameterized. (Primitives cannot be parameterized.) All MAX+PLUS II
logic functions can be used to create hierarchical logic designs. Mega- and
macrofunctions are automatically installed in subdirectories of the
\maxplus2\max2lib directory created during installation; primitive logic is
built into AHDL.

Parameterized functions are instantiated with an in-line logic function
reference or an Instance Declaration in the same way as unparameterized
functions, as described in "Using Altera-Provided Unparameterized
Functions," with a few additional steps:

• 	 The logic function instance must include a WITH clause, which is
based on the WITH clause in the Function Prototype, that lists the
parameters used by the instance. You can use the WI TH clause to
optionally assign parameter values on an instance; however, for all
required parameters in a function, a parameter value must be
supplied somewhere within the project. If the instance itself does not
include some or all of the values for required parameters, the
Compiler searches for them in the parameter value search order
described on page 136 in Elements.

• 	 Since parameterized megafunctions do not necessarily have default
values for unconnected inputs, you must ensure that all required ports
are connected. In contrast, primitives and old-style macrofunctions
always have default values for unconnected inputs.

73

MAX+PLUS 1/ AHDL

The inputs, outputs, and parameters of the function are declared with a
Function Prototype Statement. MAX+PLUS II provides Include Files that
contain Function Prototypes for all MAX+PLUS II mega- and
macrofunctions in the \maxplus2\max2lib \mega_Ipm and
\maxplus2\max2inc directories, respectively. With an Include Statement,
you can import the contents of an Include File into a TDF to declare the
Function Prototype of a MAX+PLUS II mega- or macrofunction.

The lpm_addl.td£ file shown in Figure 2-52 implements an 8-bit adder with
an in-line logic function reference to the parameterized lpm_ add_sub
megafunction:

Figure 2-52. /pm_add1.tdf

INCLUDE "lpffi_ add_ sub. in_c_"..;..;_______~____~___~___.....1

SUBDESIGN lpffi_ add1
(

a[8 .. 1), b[8 . . 1) INPUT;

c [8 .. 1) OUTPUT;

carry_ out OUTPUT;

BEGIN
% Megafunction instance with positional port association %

(c[), carry_out,) = lpffi_ add_sub(GND, a[), b[), GND)
WITH (LPM_WIDTH=8,

LPM_ REPRESENTATION="unsigned");

% Equivalent instance with named port association %
(c[l, carry_ out,) = 1pffi_ add_ sub(.dataa[)=a[), .datab[)=b[) ,

.cin=GND, .add_sub=GND)
WITH (LPM_WIDTH=8,

LPM_REPRESENTATION= "unsigned") ;
END;

The Function Prototype for lpm_ add_ sub, which is stored in the Include
File lpm_add_sub.inc, is shown below:

FUNCTION 1pffi_ add_ sub (cin, dataa[LPM_WIDTH- l .. O), datab[LPM_WIDTH­

1 .. 0), add_sub)

WITH (LPM_WIDTH, LPM_REPRESENTATION, LPM_ DIRECTION, ADDERTYPE,

ONE_INPUT_ IS_CONSTANT)

RETURNS (result [LPM_ WIDTH- 1 . . 0), cout, overflow);

Only the LPM_ WIDTH parameter is required, and the instance of the
lpm_ add_sub function in lpm_addl.tdf specifies parameter values only for
the LPM_WIDTH and LPM_REPRESENTATION parameters.

74

http:lpm_addl.td

••

Section 2: How to Use AHDL

The Ipm_add2.tdf file shown in Figure 2-53 is identical to lpm_addl.tdf, but
implements the 8-bit adder with an Instance Declaration:

Figure 2-53. /pm_add2.tdf

INCLUDE "lpm_add_ sub. inc" ;

SUBDESIGN lpm_ add2
(

alB .. 1], b[B .. 1] INPUT;

c [B .. 1] OUTPUT;

carry_ out OUTPUT;

VARIABLE
Bbitadder lpm_add_sub WITH (LPM_WIDTH=B,

LPM_ REPRESENTATION="unsigned");
BEGIN

Bbitadder.cin = GND

Bbi tadder. dataa [] a []

Bbitadder . datab [] = b []

Bbitadder.add_ sub = GND

c[] = Bbitadder.result[]

carry_out = Bbitadder.cout

END;

...
Go to the following topics for more information:

"Function Prototype Statement" on page 151 in Design Structure
"In-Line Logic Function Reference" on page 180 in Design Structure
"Include Statement" on page 145 in Design Structure
"Instance Declaration" on page 160 in Design Structure
"Logic Section" on page 168 in Design Structure
"Parameters" on page 136 in Elements
"Ports" on page 132 in Elements

75

MAX+PLUS /I AHDL

Using Custom Megafunctions & Macrofunctions

You can easily create and use custom megafunctions or macrofunctions in
AHDLTDFs.

Once you have defined the logic for a custom function in a design file, a few
steps are required to use the function in other TDFs or other types of design
files.

To prepare a custom AHDL-based mega- or macrofunction for use in other
design files:

1. 	 Compile and optionally simulate the design file to ensure that it
functions correctly.

2. 	 If you plan to use the function in multiple projects, you should
designate the directory that contains the design file as a user library
with User Libraries (Options menu) or save a copy of the file to an
existing user library directory. Otherwise, save a copy of the file to the
directory containing the project that will use the custom function.

3. 	 With the file open in a Text Editor window, create an Include File and
a symbol that represent the current file:

a. 	 Choose Create Default Include File (File menu) to create an
Include File that can be used in a higher-level TDF. With an
Include Statement, you can import the contents of an Include
File into a TDF to declare the Function Prototype of a custom
mega- or macro function.

b. 	 Choose Create Default Symbol (File menu) to create a symbol
that can be used in a GDF.

Once you have prepared a function for use in other design files, you can
create a new TDF and insert an instance of the function with an Instance
Declaration or an in-line reference. You can use custom functions in exactly
the same way as Altera-provided functions. See "Using Altera-Provided
Unparameterized Functions" on page 69 and "Using Altera-Provided
Parameterized Functions" on page 73 for more information.

76

Section 2: How to Use AHDL

Importing &Exporting State Machines

You can import and export state machines between TDFs and other design
files by specifying an input or output port as MACHINE INPUT or MACHINE

OUTPUT in the Subdesign Section. The Function Prototype that represents
the file containing the state machine must indicate which inputs and outputs
are state machines by prefixing the signal names with the keyword
MACHINE.

II:1? 	 MACHINE INPUT and MACHINE OUTPUT port types cannot be
used in a top-level design file. Although top-level files with these
port types do not compile fully, you can use Project Save & Check
(File menu) to check their syntax and Create Default Include File
(File menu) to create an Include File that represents the current
file.

You can rename a state machine with a temporary name by entering a
Machine Alias Declaration in the Variable Section. You can use a machine
alias in the file where the state machine is created or in a file that uses a
MACHINE INPUT port to import a state machine. You can then use this name
instead of the original state machine name.

The ss_def.tdf file shown in Figure 2-54 defines and exports the state
machine ss with the MACHINE OUTPUT port ss_ out.

77

MAX+PLUS /I AHDL

Figure 2-54. ss_def.tdf

SUBDESIGN ss_def
(

elk, reset, count INPUT;
ss_out MACHINE OUTPUT;

VARIABLE
ss: MACHINE WITH STATES (sl, s2, s3, s4, s5);

BEGIN
ss_out = ss;

CASE ss IS

WHEN sl=>

IF count THEN ss s2; ELSE ss sl; END IF;

WHEN s2 =>

IF count THEN ss s3; ELSE ss s2; END IF;

WHEN s3=>

IF count THEN ss s4; ELSE ss s3; END IF;

WHEN s4=>

IF count THEN ss s5; ELSE ss s4; END IF;

WHEN s5= >

IF count THEN ss sl; ELSE ss s5; END IF;

END CASE;

ss. (e lk , reset) (elk, reset) ;
END;

The sS_llse.td£ file shown in Figure 2-55 imports a state machine with the
MACHINE INPUT port ss_ in.

Figure 2-55. ss_use.tdf

SUBDESIGN ss_use
(

ss_ in MACHINE INPUT;

out OUTPUT;

BEGIN

out s 4) ;

END;

78

http:sS_llse.td

Section 2: How to Use AHDL

The topl.tdf file shown in Figure 2-56 uses in-line references to insert
instances of the functions ss_def and ss_use. The Function Prototypes for
ss_def and ss_use include MACHINE keywords that indicate which inputs
and outputs are state machines.

Figure 2-56. top1.tdt

FUNCTION ss_def (clk, reset, count) RETURNS (MACHINE ss_out) ;
FUNCTION ss_use (MACHINE ss_ in) RETURNS (out);

SUBDESIGN topl
(

sys_ clk, / reset, hold INPUT;
sync_ out OUTPUT;

VARIABLE
ss_ ref: MACHINE; % Machine Alias Declaration %

BEGIN
ss_ref = ss_def(sys_clk, !/reset, !hold);
sync_ out = ss_use(ss_ref);

END;

Figure 2-57 shows a GDF that is equivalent to topl.tdf.

Figure 2-57. top1.gdt

SS DEF SS USE
SYS_CLK c>--------[(c;ULK<=sSSS=<iioUJilT~ ss IN OUT

IRESET c::::::>----I >0-­-­-1 RESET

HOLD ~C::::::>----l)<J----~C~OU~N~T__-.J

An external state machine can also be implemented in a top-level TDF with
an Instance Declaration in the Variable Section. The top2.tdf file shown in
Figure 2-58 has the same functionality as topl.tdf, but uses Instance
Declarations instead of in-line references to instantiate the functions.

79

•• ••

MAX+PLUS /I AHDL

Figure 2-58. top2.tdf

FUNCTION ss_ def (clk, reset, count) RETURNS (MACHINE ss_out) ;
FUNCTION ss_use (MACHINE ss_in) RETURNS (out);

SUBDESIGN top2
(

sys_ clk, / reset, hold INPUT;
sync_out OUTPUT;

VARIABLE

sm_macro ss_def;

sync ss_use;

BEGIN
sm_macro. (clk, reset , count) = (sys_clk, ! / reset , !hold);
sync.ss_in = sm_macro.ss_ out;
sync_out = sync.out;

END;

Go to the following topics for more information:

"Implementing a Hierarchical Project" on page 69 in this section
"Machine Alias Declaration" on page 166 in Design Structure
"State Machines" on page 54 in this section
"Using Altera-Provided Parameterized Functions" on page 73 in this section
"Using Altera-Provided Unparameterized Functions" on page 69 in this

section
"Using Custom Megafunctions & Macrofunctions" on page 76 in this section

80

Section 2: How to Use AHOL

Implementing lCEll &SOFT Primitives

You can limit the extent of logic synthesis by changing NODE variables into
SOFT and LCELL primitives. NODE variables and LCELL primitives provide
the greatest control over logic synthesis. SOFT primitives provide less
control over logic synthesis.

NODE variables, which are declared with a Node Declaration in the Variable
Section, place very few restrictions on logic synthesis. During synthesis, the
Logic Synthesizer replaces each instance of a NODE variable with the logic
that the variable represents. It then minimizes the logic to fit into a single
logic cell. This method usually yields the greatest speed, but may result in
logic that is too complex or hard to fit.

SOFT buffers provide more control over resource usage than NODE variables.
The Logic Synthesizer chooses when to replace instances of SOFT primitives
with LCELL primitives. SOFT buffers may help eliminate logic that is too
complex and make the project easier to fit, but may increase logic cell
utilization and reduce speed performance. r.
LCELL primitives provide the most control. The Logic Synthesizer
minimizes all logic that drives an LCELL primitive so that the logic fits into
a single logic cell. LCELL primitives are always implemented in a logic cell,
and they are never removed from the project even if they are fed by a single
input. If the project is minimized so that an LCELL primitive is fed by a
single input, you can use a SOFT primitive instead of an LCELL primitive so
that the SOFT primitive is removed during logic synthesis.

MAX+PLUS II provides several logic options that automatically insert or
remove SOFT and LCELL buffers at appropriate locations in the project. See
"Assigning a Logic Option" in MAX+PLUS II Help for more information.

Figure 2-59 shows two versions of a TDF: one is implemented with NODE

variables and one with SOFT primitives. In nodevar, the variable
oddJ)ari ty is declared as a NODE, then assigned the value of the Boolean

81

•• ••

MAX+PLUS /I AHDL

expression dO $ dl $... $ d8. In softbuf, the Compiler will replace
some of the SOFT primitives with LCELL primitives during processing to
improve device utilization.

Figure 2·59. NOOE Variables &SOFT Primitives

TDF with NODE Variables: TDF with SOFT Primitives:

SUBDESIGN nodevar 	 SUBDESIGN softbuf
((

VARIABLE VARIABLE
odd-parity : NODE; odd-parity : NODE;

BEGIN BEGIN
odd-parity 	= dO $ dl $ d2 odd-parity = SOFT(dO $ dl $ d2)

$ d3 $ d4 $ d5 $ SOFT(d3 $ d4 $ d5)
$ d6 $ d7 $ d8; $ SOFT(d6 $ d7 $ d8);

END; 	 END;

Go to the following sources for more information:

"Declaring Nodes" on page 27 in this section
"Guiding the Partitioner" in MAX+PLUS II Help
"LCELL Primitive" on page 120 and "SOFT Primitive" on page 123 in

Elements

82

••

Section 2: How to Use AHDL

Implementing RAM &ROM

MAX+PLUS II (and AHDL) provide several LPM functions and other
megafunctions that allow you to implement RAM and ROM in
MAX+PLUS II devices. The generic, scalable nature of each of these
functions ensures that you can use them to implement any supported type
of RAM or ROM in MAX+PLUS II.

W 	 Altera does not recommend creating custom logic functions to
implement memory. You should use Altera-provided functions in
all cases where you wish to implement RAM or ROM.

The following megafunctions can be used to implement RAM and ROM in
MAX+PLUS II:

Name:

1pm_ram_ dq

1pm_ ram_ i0

lpm_rom

csdpram

csfifo

Description:

Synchronous or asynchronous memory with separate
input and output ports

Synchronous or asynchronous memory with a single
I/O port
Synchronous or asynchronous read-only memory
Cycle-shared dual port-memory
Cycle-shared first-in first-out (FIFO) buffer

In these LPM functions, parameters are used to determine the input and
output data widths; the number of data words stored in memory; whether
data inputs, address/control inputs, and outputs are registered or
unregistered; whether an initial memory content file is to be included for a
RAM block; and so on. .,.
Choose Megafunctions/LPM (Help menu) for detailed information on
memory megafunctions.

83

MAX+PLUS /I AHDL

Naming a Boolean Operator or Comparator

You can name Boolean operators and comparators in AHDL files to make it
easy to enter resource assignments and to interpret the Equations Section of
the project's Report File (.rpt).

The boole3.tdf file shown in Figure 2-60 is identical to the boolel.tdf file
(shown inFigure 2-8), but uses named operators. The operator name is
separated from the operator by a colon (:); the name can contain up to
32 name chararacters.

Figure 2-60. boo/e3.tdf

SUBDESIGN boole3
(

aO,
outl,

al,
o

b
ut2

INPUT;
OUTPUT;

BEGIN
outl al tiger:& !aO;
out2 outl panther:# b;

END;

The following Report File excerpts show the difference between boole3.rpt
and boolel.rpt for the first of the two equations:

84

•• ••

Section 2: How to Use AHDL

Figure 2-61. boo/e3.rpt &boo/e1.rpt Excerpts

boole3 . rpt equations:
Node name is 'outl' from file "boole3.tdf" line 7, column 2
Equation name is 'outl', _A1, type is output

outl = tiger-O;
location is LC3

-- Node name is 'tiger-O' from file "boole3.tdf" line 7, column 18
- - Equation name is 'tiger-O', location is LC2_A1, type is buried
tiger-O = LCELL(_EQ002);

_EQ002 = laO & al;

boolel.rpt equations:
Node name is 'outl' from file "boolel.tdf" line 7, column 2
Equation name is 'out1', location is LC3_A1, type is output

outl = _LC2_Al;

-- Node name is ' : 33' from file "boolel.tdf" line 7, column 12
-- Equation name is '_LC2_Al', type is buried
LC2_Al = LCELL(_EQOOl);

_EQOOl = laO & al;

Depending on the logic of the equation, a named operator can produce
multiple node names; however, all names are based on the operator name
and are thus easily recognizable in the Report File. In boole3.rpt, a single
node, tiger-O, is generated for the first equation. In boolel.tdf, the
Compiler assigns the net ID : 33 to the same node.

After you have compiled a project, you can use the named operator-based
node names shown in the Report File to enter resource assignments for
future compilations, even if the project logic changes. The names of logic
cells created from named operators remain constant if you change unrelated
logic (e.g., other equations) in the file. For example, you can enter an
assignment on the node tiger-D. In contrast, if operators are unnamed,
only net ID numbers are available, and these numbers are randomly
reassigned with each compilation .

Go to the following topics for more information:

"Implementing Boolean Expressions & Equations" on page 25 in this section
"Logical Operators" on page 107 in Elements
"Quoted & Unquoted Names" on page 97 in Elements

85

•• ••

MAX+PLUS /I AHDL

Using Iteratively Generated Logic

When you wish to use multiple blocks of logic that are very similar, you can
use the For Generate Statement to iteratively generate logic based on a
numeric range delimited by arithmetic expressions.

The itecadd.tdf file shown in Figure 2-62 shows an example of iterative
logic generation:

Figure 2-62. itecadd.tdf

SUBDESIGN iter_add

VARIABLE
sum[NUM_ OF_ ADDERS .. 1], carryout[(NUM_ OF_ ADDERS+1) .. 1]

BEGIN

carryout[l] cin;

FOR i IN 1 TO NUM_OF_ADDERS GENERATE

sum [i] = ali] $ b[i] $ carryout[i]; % Full Adder %
carryout[i+1] = ali] & b[i] # carryout[i] & (a[i] $ b[i]l;

END GENERATE;
cout = carryout [NUM_OF_ADDERS+l];
c [] = sum [] ;

END;

In itecadd.tdf, the For Generate Statement is used to instantiate full adders
that each perform one bit of the NUM_ OF_ADDERS-bit (i.e., 8-bit) addition.
The carryout of each bit is generated along with each full adder.

~ 	The If Generate Statement is especially useful with For Generate
Statements that handle special cases differently, for example, the
first and last stages of a multi-stage multiplier. See "Using
Conditionally Generated Logic," next, for more information.

Go to "For Generate Statement" on page 179 in Design Structure for more
information.

86

Section 2: How to Use AHDL

Using Conditionally Generated Logic

You can generate logic conditionally with If Generate Statements, if, for
example, you wish to implement different behavior based on the value of an
arithmetic expression. An If Generate Statement lists a series of behavioral
statements that are activated after the positive evaluation of one or more
arithmetic expressions.

The condlogl.td£ file shown in Figure 2-63 uses an If Generate Statement to
implement different behavior for the output_b output on the basis of the
current device family:

Figure 2-63. condlog1.tdf

PARAMETERS (DEVICE_FAMILY);

SUBDESIGN condlogl
(

input_a : INPUT;
output_b : OUTPUT;

BEGIN

IF DEVICE_ FAMILY == "FLEXBK " GENERATE

output_b = input_a;

ELSE GENERATE

output_ b = LCELL(input_a);

END GENERATE;

END;

The If Generate Statement is especially useful with For Generate Statements
that handle special cases differently, for example, the first and last stages of
a multi-stage multiplier. See "Using Iteratively Generated Logic" on page 86
for more information on For Generate Statements.

MAX+PLUS II includes the predefined parameter DEVI CE_ FAMILY, as
shown in the example above, and the predefined evaluated function USED,
which can be used in arithmetic expressions. The DEVI CE_ FAMILY

parameter can be used to test the current device family for the project, which
is specified with Device (Assign menu). The USED evaluated function can be
used to test whether an optional port has been used in the current instance.
USED takes the port name as input and returns a value of FALSE if the port
is not used.

87

http:condlogl.td

MAX+PLUS /I AHDL

You can find numerous additional examples of IfGenerate Statements in the
TDFs that implement LPM functions in MAX+PLUS II. These TDFs are
located in the mega_lpm subdirectory of the \maxplus2\max2lib directory.
(On a UNIX workstation, the maxplus2 directory is a subdirectory of the
lusr directory.)

••.- Go to "If Generate Statement" on page 178 in Design Structure for more
information.

88

Section 2: How to Use AHDL

Using the Assert Statement

You can use the Assert Statement to test the validity of any arbitrary
expression that uses parameters, numbers, evaluated functions, or the used
or unused status of a port. You might, for example, use the Assert Statement
to determine whether the value of an optional parameter falls within a range
determined by the value of a second parameter.

When you use an Assert Statement with conditions, you list the acceptable
values for the assertion conditions. If a value is unacceptable, the assertion
is activated and a message is issued. If you use an Assert Statement without
conditions, the assertion is always activated.

The Compiler evaluates each assertion condition only once, after the
Compiler Netlist Extractor module has resolved all parameter values. An
assertion cannot depend on the value of a signal that is implemented in the
device. For example, if an Assert Statement is placed after an If Then
Statement of the form IF a = vee THEN c = d, the assertion condition
cannot depend on the value of a.

The condlog2.tdf file shown in Figure 2-64 has the same functionality as
condlogl.tdf (shown in Figure 2-63 on page 87), but uses Assert Statements
in the Logic Section to report which logic was generated by the If Generate
Statement:

89

MAX+PLUS /I AHDL

Figure 2-64. cond/og2. tdf

PARAMETERS (DEVICE_FAMILY) ;

SUBDESIGN c ondl og2
(

input_a : INPUT;

output_b : OUTPUT;

BEGIN
IF DEVICE_ FAMILY == "FLEX8000" GENERATE

output_b = input_ a ;
-- Assertion is always activ ated if there is no condition
ASSERT

REPORT "Compiling for FLEX8000 family"

SEVERITY INFO;

ELSE GENERATE
output_b = LCELL (input_ a) ;
-- Assertion is activated if current family is not FLEX1 0K
-- or FLEX 8000. Severity defaults to ERROR
ASSERT (DEVICE_ FAMILY == "FLEX10K")

REPORT "Compiling for % family", DEVICE_ FAMILY ;
END GENERATE;

END;

You can find numerous additional examples of Assert Statements in the
TDFs that implement LPM functions in MAX+PLUS II. These TDFs are
located in the mega_Ipm subdirectory of the \maxplus2\max2lib directory.
(On a UNIX workstation, the maxplus2 directory is a subdirectory of the
lusr directory.)

90

••

Section

3

Elements

This section describes the basic format of an AHDL Text Design File (.tdf)
and its elements. These elements are used in the behavioral statements
described in Design Structure on page 139.

• Reserved Keywords & Identifiers 92

• Symbols 94

• Quoted & Unquoted Names 97

• Groups 99

• Numbers in AHDL102

• Arithmetic Expressions 103

• Boolean Expressions 106

• Primitives113

• Megafunctions 129

• Old-Style Macrofunctions 131

• Ports 132

• Par"ameters 136
...
Go to MAX+PLUS II Help for complete and up-to-date information on

AHDL elements. For information on element syntax, refer to MAX+PLUS II

Help.

91

MAX+PLUS /I AHDL

Reserved Keywords &Identifiers

Reserved keywords are used for beginnings, endings, and transitions of
AHDL statements and for the predefined constant values GND and vcc.

Reserved keywords differ from reserved identifiers in that keywords can be
used as symbolic names when they are enclosed in single quotation marks
(,), whereas reserved identifiers cannot. Both reserved keywords and
reserved identifiers can be used freely in comments.

~ 	 Altera recommends that you enter all keywords and reserved
identifiers in capital letters for easy readability. See Style Guide on
page 187 for more information.

Reserved Keywords

The following list shows all AHDL reserved keywords:

AND FUNCTION OUTPUT
ASSERT GENERATE PARAMETERS
BEGIN GND REPORT
BIDIR HELP_ ID RETURNS
BITS IF SEGMENTS
BURIED INCLUDE SEVERITY
CASE INPUT STATES
CLIQUE IS SUBDESIGN
CONNECTED_ PINS LOG2 TABLE
CONSTANT MACHINE THEN

DEFAULTS MOD TITLE
DEFINE NAND TO
DESIGN NODE TRI_STATE_NODE

DEVICE NOR VARIABLE
DIV NOT VCC
ELSE OF WHEN
ELSIF OPTIONS WITH
END OR XNOR
FOR OTHERS XOR

92

Section 3: Elements

Reserved Identifiers

The following list shows all AHDL reserved identifiers:

CARRY JKFFE SRFFE
CASCADE JKFF SRFF

CEIL LATCH TFFE
DFFE LCELL TFF
DFF MCELL TRI
EXP MEMORY WIRE
FLOOR OPNDRN X

GLOBAL SOFT

93

MAX+PLUS /I AHDL

Symbols

Table 3-1 lists the symbols that have predefined meanings in AHDL. This
table includes symbols that are used as operators and comparators in
Boolean expressions and as operators in arithmetic expressions.

Table 3-1. AHDL Symbols (Part 1of 3)

Symbol Function

-
-
I

(underscore)
(dash)
(forward slash)

User-defined identifiers used as legal characters in
symbolic names.

-­ (two dashes) Starts a VHDL-style comment, which extends to the end
of the line. (Go to "Comments & Documentation" on
page 191 in Style Guide for more information.)

% (percent) Encloses AHDL-style comments. (Go to "Comments &
Documentation" on page 191 in Style Guide for more
information.)

() (left & right parentheses) Enclose and define sequential group names.

Enclose pin names in Subdesign Sections and Function
Prototype Statements.

Optionally enclose inputs and outputs of truth tables in
Truth Table Statements.

Enclose bits and states of State Machine Declarations.

Enclose highest priority operations in Boolean and
arithmetic expressions.

Enclose parameter definitions in Parameters Statements
and parameter names in Function Prototype Statements,
Instance Declarations, and in-line references.

Optionally enclose the condition in an Assert Statement.

Enclose the arguments of evaluated functions in Define
Statements.

[1 (left & right brackets) Enclose the range of a single- or dual-range group name.
, .. . , (single quotation marks) Enclose quoted symbolic names.

94

Section 3: Elements

Table 3-1. AHOL Symbols (Part 2 of 3)

Symbol Function

" ".. . (double quotation marks) Enclose strings in Title Statements, Parameters
Statements, and Assert Statements.

Enclose a filename in Include Statements.

Enclose digits in non-decimal numbers.

(period) Separates symbolic names of logic function variables from
port names.

Separates extensions from filenames.

.. (ellipsis) Separates most Significant bit from least significant bit in
ranges.

; (semicolon) Ends AHDL statements and sections.

, (comma) Separates members of sequential groups and lists.

: (colon) Separates symbolic names from types in declarations.

= (equals) Assigns default GND and vee values to inputs in a
Subdesign Section.

Assigns settings to options in an Options Statement.

Assigns a default value to a parameter in a Parameters
Statement or an in-line reference.

Assigns values to state machine states.

Assigns values in Boolean equations.

Connects a signal to a port in an in-line reference that uses
named port association.

=> (arrow) Separates inputs from outputs in Truth Table Statements.

Separates WHEN clauses from Boolean expressions in Case
Statements.

+ (plus) Addition operator

- (minus) Subtraction operator

-­ (two equal signs) Numeric or string equality operator

! (exclamation point) NOT operator

! = (exclamation equals) Not equal to operator

> (greater than) Greater than comparator

> = (greater than equals) Greater than or equal to comparator

95

MAX+PLUS /I AHDL

Table 3-1. AHOL Symbols (Part 3 of 3)

Symbol Function

< (less than) Less than comparator

<= (less than equals) Less than or equal to comparator

& (ampersand) l AND operator

!& (exclamation ampersand) NAND operator

$ (dollar sign) XOR operator

!$ (exclamation dollar) XNOR operator

(pound sign OR operator

! # (exclamation pound) NOR operator

? (question mark) Ternary operator

.,.
•• Go to the following topics for more information:

" Arithmetic Expressions" on page 103 in this section
"Arithmetic Operators in Boolean Expressions" on page 109 in this section
"Boolean Equations" on page 168 in Design Structure
"Comparators" on page 111 in this section
"Logical Operators" on page 107 in this section

96

Section 3: Elements

Quoted &Unquoted Names

Three types of names exist in AHDL:

• 	 Symbolic names are user-defined identifiers in AHDL. They are used
to name the following parts of a TDF:

Internal and external nodes and groups
Constants
State machine variables, state bits, and state names
Instances
Parameters
Memory segments
Evaluated functions
Named operators

• 	 Subdesign names are user-defined names for lower-level design files.
The subdesign name must be the same as the TDF filename.

• 	 Port names are symbolic names that identify the input or output of a
logic function.

IJ:ff 	 Compiler-generated pin names that contain the tilde (-) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project's Assignment & Configuration File (.ad). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

Two notations are available for subdesign, symbolic, and port names:
quoted and unquoted. Quoted names are enclosed in single quotation marks
('); unquoted names are not.

IJ:ff 	 When you create a default symbol for a TDF that includes quoted
port names, the quotes are not included in the pinstub names
shown in the symbol.

97

••

MAX+PLUS /I AHDL

Table 3-2 summarizes the characteristics of subdesign, symbolic, and port
names:

Table 3-2. Quoted & Unquoted Names

Legal Name
Characters

Note (1)

Un quoted
Subdesign

Name

Quoted
Sub design

Name

Unquoted
Symbolic

Name

Quoted
Symbolic

Name

Un quoted
Port

Name

Quoted
Port

Name

A-Z ./ ./ ./ ./ ./ ./

a - z ./ ./ ./ ./ ./ ./

0-9 ./ ./ ./ ./ ./ ./

Underscore CJ ./ ./ ./ ./ ./ ./

Slash (I) No No ./ ./ ./ ./

Dash (-) No ./ No ./ No ./

Digits only (0-9) ./ ./ No ./ ./ ./

Keyword No ./ No ./ No ./

Identifier No ./ No No No ./

Max. Characters 32 32 32 32 32 32

Note:
(1) The delimiters of ranges in Single-range and dual-range group names can also include the operators

described in "Arithmetic Expressions" on page 103.

For example, legal unquoted and quoted symbolic names include:

a f a1 ' - bar' 'table' '1221'

Illegal unquoted and quoted symbolic names include:

- foo node 55 'bowling4$,

'has a space' ...
Go to "Reserved Keywords & Identifiers" on page 92 for more information.

98

Section 3: Elements

Groups

Symbolic names and ports of the same type may be declared and used as
groups in Boolean expressions and equations.

A group, which can include up to 256 members (or "bits"), is treated as a
collection of nodes and acted upon as a single unit.

Groups in the Logic Section or Variable Section of a TDF can consist of
nodes. Single nodes and the constants GND and vee may be duplicated to
form groups in Boolean expressions and equations.

Group Notations

Groups can be declared with the following three notations:

1. 	 A single-range group name consists of a symbolic name or port name
followed by a single range of numbers enclosed in brackets, e.g.,
a [4 .. 1] . The symbolic or port name, together with the longest
number in the range, can contain up to 32 name characters.

Once a group has been defined, [] is a shorthand way of specifying
the entire range. For example, a [4 . . 1] can also be denoted by a [] .

A single number can be used in place of a range, e.g., a [5] . However,
this notation signifies a single symbolic name, not a group, and is
equivalent to the name as.

2. 	 A dual-range group name consists of a symbolic name or port name
followed by two ranges enclosed in brackets, e.g., d [6 . . 0] [2 .. 0] .
The symbolic or port name, together with the longest number in each
range, can contain up to 32 name characters.

The dual-range group notation is useful for specifying groups of buses
and for designs with two-dimensional topologies. Once a group has
been defined, [] [] is a shorthand way of specifying both ranges. For
example, b [6 .. 0] [3 . . 2] can also be denoted by b [] [].

An individual node within the group can be referenced as
name [y] [2] or namey_2, where y and 2 are numbers in the group
ranges.

99

MAX+PLUS /I AHDL

3. A sequential group name consists of a list of symbolic names, ports, or
numbers, separated by commas and enclosed in parentheses, e.g.,
(a, b, e). Single- and dual-range group names can be listed within
the parentheses. For example, (a , b, e [S .. 1]) is a legal group.

This notation is useful for specifying port names. For example, the
input ports of variable reg of type DFF can be written as
reg. (d, elk, elrn, prn).

The following two sets of examples show two groups specified with
different notations:

b[S .. 0]

(bS, b4, b3, b2, bl, bO)

b[]

b[log2(2S6) .. 1+2-1]
b[2"B .. 3 mod 1]
b[2*B .. B div 2]

n:F 	 Compiler-generated pin names that contain the tilde (-) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project's Assignment & Configuration File (.ad). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

Group Ranges &Subranges

Ranges of single- or dual-range group names can consist of numbers or
arithmetic expressions that are separated by two periods (..) and enclosed
in brackets []. For example:

a[4 .. 1] 	 is a group with members a4, a3, a2, and aI.

d[B"10" .. B"OO"] 	 is a group with members d2, dl, and dO.

b[2*2 .. 2-1] 	 is a group with members b4, b3, b2, and bI. The
group range delimiters are defined with arithmetic
expressions.

toO

•• ••

Section 3: Elements

q[MAX .. 0] 	 is a legal group if the constant MAX has been
previously defined in a Constant Statement.

c[MIN(a,b) .. 0] 	 is a legal group if the evaluated function MIN has
been previously defined in a Define Statement.

Regardless of whether a range delimiter is a number or an arithmetic
expression, the Compiler resolves and interprets the delimiters as decimal
values (integers).

Subranges include a subset of the nodes specified in a declared group, and
can be specified in a number of ways. Commas can be used as placeholders
only in groups on the left side of a Boolean equation or in an in-line
reference.

For example, if you declare the group c [5 .. 1] , you can use the following
subranges of this group:

c [3 .. 11
c [4 .. 2]

c4
c [5]

(c2, , c4)

In the subrange (c2, , c4), a comma is used to hold the place of an
unassigned group member.

Ranges are normally listed in descending order. To list ranges in ascending
order or in both ascending and descending order, you must specify the BITO
option with the Options Statement to prevent the Compiler from issuing
warning messages. In dual-range group names, the BITO option affects both
of the ranges .

Go to the following topics for more information:

"Arithmetic Expressions" on page 103 in this section
"Defining Groups" on page 28 in How to Use AHDL
"Numbers in AHDL" on page 102 in this section
"Quoted & Unquoted Names" on page 97 in this section
"Using Constants & Evaluated Functions" on page 19 in How to Use AHDL

101

•• ••

MAX+PLUS /I AHDL

Numbers in AHDL

You can use decimal, binary, octal, and hexadecimal numbers in any
combination in AHDL. The syntax for each radix (numbering system) is
shown below.

Radix:

Decimal
Binary
Octal

Hexadecimal

Values:

<series of digits a to 9>
B"<series of a's, l's, x's> "(where x =

0" <series of digits a to 7>" or
Q" <series of digits 0 to 7>"

X" <series from 0 to 9, A to F>" or
H" <series from a to 9, A to F>"

The following examples show valid AHDL numbers:

B"OllOX1X10"
Q"4671223"
H"123AECF"

The following rules apply to AHDL numbers:

"don't care")

• 	 The MAX+PLUS II Compiler always interprets numbers in Boolean
expressions as groups of binary digits; numbers in group ranges are
interpreted as decimal values.

• 	 Numbers cannot be assigned to single nodes in Boolean equations.
Use vee and GND instead .

Go to the following topics for more information:

"Arithmetic Expressions" on page 103 in this section
"Boolean Equations" on page 168 in Design Structure
"Boolean Expressions" on page 106 in this section
"Using Numbers" on page 18 in How to Use AHDL

102

Section 3: Elements

Arithmetic Expressions

Arithmetic expressions can be used to define evaluated functions in Define
Statements, constants in Constant Statements, and as the delimiters of group
ranges.

In the following example, a range is defined with an arithmetic expression:

SUBDESIGN foo

a[4 .. 2+1 - 3+8] INPUT;

In the following examples, a constant and an evaulated function are defined
with arithmetic expressions:

CONSTANT foo = 1 + 2 DIV 3 + LOG2 (256);

DEFINE MIN(a,b) = ((a < b) ? a : b);

The arithmetic operators and comparators used in these expressions
perform basic arithmetic and comparison operations on the numbers used
in the expression. Table 3-3 shows the arithmetic operators and comparators
used in AHDL arithmetic expressions:

Table 3-3. Arithmetic Operators and Comparators Used in Arithmetic Expressions
(Part 1 of 2)

Operator/
Comparator

Example Description Priority

+ (unary) +1 positive 1

- (unary) -1 negative 1

! !a NOT 1

A a A 2 exponent 1

MOD 4 MOD 2 modulus 2

DIV 4 DIV 2 division 2

* a * 2 multiplication 2

LOG2 LOG2(4 - 3) logarithm base2 2

+ 1+1 addition 3

103

MAX+PLUS /I AHDL

Table 3-3. Arithmetic Operators and Comparators Used in Arithmetic Expressions
(Part 2 of 2)

Operator/
Comparator

Example Description Priority

- 1-1 subtraction 3

== (numeric) 5 == 5 numeric equality 4

== (string) II a" = "b" string equality 4

!= 5 ! = 4 not equal to 4

> 5 > 4 greater than 4

>= 5 >= 5 greater than or equal to 4

< a < b+2 less than 4

<= a <= b+2 less than or equal to 4

&

AND
a & b
a AND b

AND 5

!&
NAND

1 !& 0

1 NAND 0

NAND (AND inverter) 5

$
XOR

1 $ 1
1 XOR 1

XOR (exclusive OR) 6

!$
XNOR

1 !$ 1
1 XNOR 1

XNOR (exclusive NOR) 6

OR

a # b

a OR b

OR 7

!#
NOR

a !# b
a NOR b

NOR (OR inverter) 7

? (5<4) ? 3:4 ternary 8

The unary plus (+) and minus (-) are prefix operators. The + operator does
not affect its operand, but you may use it for documentation purposes (i.e.,
to indicate a positive number).

104

••

Section 3: Elements

The predefined evaluated functions CEIL and FLOOR can also be
used in arithmetic expressions. The ceiling (CEIL) of a real
number is the smallest integer that is at least that real number; the
floor (FLOOR) is the largest integer that is at most that real number.
Although these operation apply to all arithmetic expressions, they
are meaningful only for LOG2 and DIV operations in which the
result can be a real number. The ceiling or floor is obtained by
enclosing the expression in parentheses and prepending CEIL or
FLOOR to it.

The following examples show the ceiling and floor of a real
number:

CEIL(LOG2(255)) = 8
FLOOR(LOG2(255)) = 7

The following rules apply to all arithmetic expressions:

• 	 Arithmetic expressions must resolve to non-negative numbers.

• 	 When the result of LOG2 is not an integer, the result is automatically
rounded up to the next integer. For example, LOG2 (257) = 9.

lU? 	 The arithmetic operators that are supported in arithmetic
expressions are a superset of the arithmetic operators supported
in Boolean expressions, which are described in "Arithmetic
Operators in Boolean Expressions" on page 109

Go to "Numbers in AHDL" on page 102 for more information .

105

MAX+PLUS /I AHDL

Boolean Expressions

••...

Boolean expressions consist of operands that are separated by logical and
arithmetic operators and comparators, and are optionally grouped within
parentheses. Expressions are used in Boolean equations as well as in other
statements such as Case and If Then Statements.

A Boolean expression may be one of the following:

• 	 An operand
For example: a, b [5 .. 1], 7, vee

• 	 An in-line logic function reference
For example: out [15 . . 0] = 16drnux (q [3 . . 0]) ;

• 	 A prefix operator (! or -) applied to a Boolean expression
For example: ! c

• 	 Two Boolean expressions separated by a binary (non-prefix) operator
For example: d1 $ d3

• 	 A Boolean expression enclosed in parentheses
For example: (! foo & bar)

The result of every Boolean expression has the same width as its operands.

You can name Boolean operators and comparators in AHDL files to make it
easy to enter resource assignments and to interpret the Equations Section of
the Report File (.rpt). For more information, go to "Naming a Boolean
Operator or Comparator" on page 84 in How to Use AHDL.

Go to the following topics for more information:

"Arithmetic Operators in Boolean Expressions" on page 109 in this section
"Boolean Operator & Comparator Priorities" on page 112 in this section
"Boolean Equations" on page 168 in Design Structure
"Comparators" on page 111
"Implementing Boolean Expressions & Equations" on page 25 in How to Use

AHDL
"In-Line Logic Function Reference" on page 180 in Design Structure
"Logical Operators" on page 107 in this section
"Numbers in AHDL" on page 102 in this section

106

Section 3: Elements

logical 	Operators

Table 3-4 shows logical operators that can be used in Boolean expressions:

Table 3-4. Logical Operators Used in Boolean Expressions

Operator Example Description

!
NOT

!tob
NOT tob

one's complement (prefix inverter)

&
AND

bread & butter
bread AND butter

AND

!&
NAND

a[3 . . 1] !& b[5 .. 3]
a[3 .. 1] NAND b[5 .. 3]

AND inverter

OR

trick # treat
trick OR treat

OR

!#
NOR

c [8 .. 5] !# d[7 .. 4]
c [8 .. 5] NOR d[7 .. 4]

OR inverter

$
XOR

foo $ bar
foo XOR bar

exclusive OR

!$
XNOR

x2 !$ x4
x2 XNOR x4

exclusive NOR

Each operator represents a two-input logic gate, except the NOT (!) operator,
which is a prefix inverter on a single node. You can use either the name or
the symbol to represent a logical operator.

Expressions that use these operators are interpreted differently, depending
on whether the operands are single nodes, groups, or numbers. Also,
expressions with the NOT operator are interpreted differently from those
with other logical operators.

You can name Boolean operators and comparators in AHDL files to make it
easy to enter resource assignments and to interpret the Equations Section of
the Report File (.rpt). For more information, go to "Naming a Boolean
Operator or Comparator" on page 84 in How to Use AHDL.

lU? 	 You can allow the Compiler to replace AND operators in Boolean
expressions with the lprn_add_sub function if you use the Use
LPM for AHDL Operators logic option, or a logic synthesis style
that includes this logic option. Go to "Assigning an Individual

107

MAX+PLUS /I AHDL

Logic Option or Synthesis Style" in MAX+PLUS II Help for more
information.

Boolean Expressions Using NOT

The NOT operator (!) is a prefix inverter. The behavior of the NOT operator
depends on the operand that it affects.

Three operand types can be used with the NOT operator:

• 	 If the operand is a single node, GND, or vee, a single inversion
operation is performed. For example, ! a means that the signal a
passes through an inverter.

• 	 If the operand is a group of nodes, every member of the group passes
through an inverter. For example, the group ! a [4 .. 1] is interpreted
as (! a4 , ! a3 , ! a2 , ! a1) .

• 	 If the operand is a number, it is treated as a binary number with as
many bits as the group context in which it is used, and every bit is
inverted. For example, ! 9 in a four-member group context is
interpreted as ! B" 1001", which is the same as B" 0110 " .

Boolean Expressions Using AND, NAND, OR, NOR, XOR, &XNOR

Four operand combinations exist with the binary (non-prefix) operators, and
each of these combinations is interpreted differently.

• 	 If both operands are single nodes or the constants GND or vee, the
operator performs the logical operation on the two elements, e.g.,
(a & 	 b).

• 	 If both operands are groups of nodes, the operator acts upon the
corresponding nodes of each group, producing a bitwise set of
operations between the groups. The groups must be the same size. For
example, (a, b, c) # (d, e , f) is interpreted as
(a # 	 d, b # e, c # f) .

• 	 If one operand is a single node, GND, or vee, and the other operand is
a group of nodes, the single node or constant is duplicated to form a
group of the same size as the other operand. The expression is then

108

Section 3: Elements

treated as a group operation. For example, a & b [4 .. 1] is
interpreted as (a & b4, a & b3, a & b2, a & b1).

• 	 If both operands are numbers, the shorter number is sign-extended to
match the size of the other number. The expression is then treated as
a group operation. For example, in the expression (3 # 8), the 3 and
8 are converted to the binary numbers B" 0 0 11 " and B" 1 0 0 0 " ,
respectively. The expression then becomes B" 1 011 " .

• 	 If one operand is a number and the other is a node or group of nodes,
the number is truncated or sign-extended to match the size of the
group. If any significant bits are truncated, an error message is
generated. The expression is then treated as a group operation. For
example, in the expression (a, b, c) & 1 , the 1 is converted to
B" 0 0 1 " and the expression becomes (a, b , c) & (0, 0, 1) . The
expression is then interpreted as (a & 0, b & 0, C & 1).

W 	 An expression that uses vee as an operand is interpreted
differently from an expression that uses 1 as an operand. In the
first equation shown below, the number 1 is sign-extended to
match the size of the group. In the second equation, the node vee
is duplicated to form a group of the same size. Each equation is
then treated as a group operation.

(a, b, c) & 1 (0, 0, c)

(a, b, c) & vee (a, b, c)

Arithmetic Operators in Boolean Expressions

Arithmetic operators are used to perform arithmetic addition and
subtraction operations on groups and numbers in Boolean expressions.
Table 3-4 shows the available operators.

Table 3-5. Arithmetic Operators Used in Boolean Expressions

Operator Example Description

+ (unary)
- (unary)
+
-

+1
- a[4 . . 1]
count [7 .. 0] + delta [7 . . 0]
rightrnost_ x [] - leftrnost_ x []

positive
negative
addition
subtraction

109

MAX+PLUS /I AHDL

The unary plus (+) and minus (-) are prefix operators. The + operator does
not affect its operand, but you may use it for documentation purposes (i.e.,
to indicate a positive number). The - operator interprets its operand as a
binary representation of a number if it is not already a number. It then
performs a two's complement unary-minus operation on the operand.

The following rules apply to the other arithmetic operators:

• 	 Operations are performed between two operands, which must be
groups of nodes or numbers.

• 	 If both operands are groups of nodes, the groups must be the same
size.

• 	 If both operands are numbers, the shorter number is sign-extended to
match the size of the other operand.

• 	 If one operand is a number and the other is a group of nodes, the
number is truncated or sign-extended to match the size of the group.
If any significant bits are truncated, the MAX+PLUS II Compiler
generates an error message.

1. 	 When you add two groups together on the right side of a
Boolean equation with the + operator, you can place a 0 on
the left of each group to sign-extend the width of the group.
This method provides an extra bit of information to the
group on the left side of the equation that can be used as a
carry-out signal.

In the following example, the groups count [7 .. 0 land
del ta [7 .. 0 1 are sign-extended with zeros to provide
information to the cout carry-out signal:

(cout, answer[7 .. 0]) = (0, count[7 .. 0]) + (0,
delta[7 .. 0])

2. 	 You can name Boolean operators and comparators in
AHDL files to make it easy to enter resource assignments
and to interpret the Equations Section of the Report
File (.rpt) . For more information, go to "Naming a Boolean
Operator or Comparator" on page 84 in How to Use AHDL.

3. 	 The arithmetic operators that are supported in Boolean
expressions are a subset of the arithmetic operators
supported in arithmetic expressions.

110

Section 3: Elements

Comparators

Two types of comparators are used to compare single nodes or groups:
logical and arithmetic. Table 3-6 shows the comparators that can be used in
Boolean expressions:

Table 3-6. Comparators Used in Boolean Expressions

Comparator: Example Description

- ­ (logical) addr[19 .. 4] == B"B800" equal to

!= (logical) bl ! = b3 not equal to

< (arithmetic) fame[] < power[] less than

<= (arithmetic) money[] <= power[] less than or equal to

> (arithmetic) lovell > money[] greater than

>= (arithmetic) delta[] >= 0 greater than or equal to

Logical comparators can compare single nodes, groups of nodes, and
numbers without "don't care" (x) values. If groups of nodes or numbers are
compared, the groups must be the same size. The MAX+PLUS II Compiler
performs a bitwise comparison on the groups, returning vee when the
comparison is true and GND when the comparison is false.

Arithmetic comparators may only compare groups of nodes and numbers,
and the groups must be the same size. The Compiler performs an unsigned
magnitude comparison on the groups; that is, each group is interpreted as a
positive binary number and compared to the other group.

W 	 You can allow the Compiler to replace comparators in Boolean
expressions with the lpm_ compare function if you use the Use
LPM for AHDL Operators logic option, or a logic synthesis style
that includes this logic option. Go to "Assigning an Individual
Logic Option or Synthesis Style" in MAX+PLUS II Help for more
information.

111

MAX+PLUS /I AHDL

Boolean Operator &Comparator Priorities

Operands separated by logical and arithmetic operators and comparators
are evaluated according to the priority rules listed in Table 3-7 (priority 1 is
the highest priority). Operations of equal priority are evaluated from left to
right. Parentheses () may change the order of evaluation.

Table 3-7. Boolean Operator &Comparator Priorities

Priority Operator/Comparator

1 (negative)

1 (NOT)

2 + (addition)

2 (subtraction)

3 (equal to)

3 ! = (not equal to)

3 < (less than)

3 < = (less than or equal to)

3 > (greater than)

3 >= (greater than or equal to)

4 & (AND)

4 !& (NAND)

5 $ (XOR)

5 !$ (XNOR)

6 # (OR)

6 !# (NOR)

W 	 The arithmetic operators that are supported in Boolean
expressions are a subset of the arithmetic operators supported in
arithmetic expressions.

112

Section 3: Elements

Primitives

••...

MAX+PLUS II provides a variety of primitive functions for designing
circuits for Altera devices.

AHDL TDFs use statements, operators, and keywords in place of certain
Graphic Design File (.gdf) primitives:

• 	 The INPUT, OUTPUT, and BIDIR ports in AHDL replace the INPUT,
OUTPUT, and BIDIR primitives used in GDFs.

• 	 TheAND,NAND,BAND,BNAND,OR,NOR,BOR,BNOR,XNOR,XOR,and
NOT logic primitives in GDFs are replaced by logical operators in
AHDL.

• 	 The vee and GND primitives in GDFs are replaced by vee and GND
keywords in AHDL.

• 	 The GDF Title Block primitive is replaced by an AHDL Title
Statement.

• 	 The GDF PARAM and CONSTANT primitives are replaced by AHDL
Parameters and Constant Statements.

This section provides information about the available primitives, possible
interconnections between primitives and ports, descriptions of each
primitive, and their AHDL Function Prototypes. The Function Prototypes
are not required in TDFs. However, you may redefine the calling order of the
primitive inputs with a Function Prototype Statement.

This section discusses the following topics:

• 	 Buffer Primitives 114

• 	 Flipflop & Latch Primitives 125

• 	 Primitive/Port Interconnections 127

Go to the following topics for more information:

"Constant Statement" on page 147 in Design Structure
"Function Prototype Statement" on page 151 in Design Structure
"Logical Operators" on page 107 in this section
"Parameters Statement" on page 142 in Design Structure
"Ports" on page 132 in this section
"Subdesign Section" on page 157 in Design Structure
"Title Statement" on page 141 in Design Structure

113

•• ••

MAX+PLUS /I AHDL

Buffer Primitives

The following buffer primitives are provided:

CARRY Carry Buffer
CASCADE Cascade Buffer
EXP Expander Buffer
GLOBAL Global Buffer (SCLK is also available for backward

compatibility)
LCELL Logic Cell Buffer (MCELL is also available for backward

compatibility)

OPNDRN = Open Drain Buffer

SOFT Soft Buffer

TRI Tri-State Buffer

All buffer primitives except TRI and OPNDRN allow you to control the logic
synthesis process. In most circumstances, you do not need to use these
buffers; however, if the Compiler indicates that your project is too complex
and cannot be processed, you can insert them in parts of the project that
cause logic expansion, thus guiding the Logic Synthesizer to produce special
results .

For help with using these primitives in your projects, contact Altera
Applications. Go to "Contacting Altera" in MAX+PLUS II Help for
information on contacting Altera.

CARRY Primitive

CARRY Function Prototype: FUNCTION CARRY (in)

RETURNS (out) ;
-{>­

The CARRY primitive designates the carry-out logic for a function, and acts
as the carry-in to another function. The carry function implements fast carry­
chain logic for functions such as adders and counters.

[(&=' 	 The CARRY primitive is supported only for the FLEX 8000 and
FLEX 10K device families; it is ignored for other devices.

When you use a CARRY primitive, you must observe the following rules:

• 	 A CARRY primitive can feed one or two cones of logic. If the CARRY

primitive feeds two cones of logic, then one and only one of the cones

114

•• ••

Section 3: Elements

of logic must be buffered by another CARRY primitive. In this case,
both cones of logic are implemented in the same logic cell. You must
follow this rule to tie down the sum and carry-out functions for the
first stage of an adder or counter.

• 	 A cone of logic fed by a CARRY primitive can have up to two inputs. A
third input is allowed only if it is a CARRY input.

• 	 A cone of logic that feeds a CARRY primitive can have up to two
inputs. A third input is allowed only if it is a CARRY input.

• 	 The CARRY primitive cannot feed an OUTPUT or OUTPUTC pin.
• 	 The CARRY primitive cannot be fed by an INPUT or INPUTC pin or a

register.
• 	 Two CARRY primitives cannot feed the same gate.

If you use the CARRY primitive incorrectly, it is ignored and the Compiler
issues a warning.

You can allow the Compiler to automatically insert or remove CARRY

primitives during logic synthesis with the Carry Chain logic option or a logic
synthesis style that includes the Carry Chain option.

W 	 Multi-level synthesis may implement a FLEX 8000 or FLEX 10K
register in the counter mode even if it is not fed by a CARRY buffer.
To prevent a register that is not explicitly fed by a CARRY buffer
from using the counter mode, set the Carry Chain logic option to
IGNORE for that register. If the register is explicitly fed by a CARRY

buffer, you must also set the Carry Chain logic option to IGNORE

on the CARRY buffer.

The following example shows a register implemented in counter
mode without a carry chain input:

q = dff ((eqn & load # data & !load) & clear,
);

eqn 	= q & !ena # !q & ena;

Go to "Assigning an Individual Logic Option or Synthesis Style" in
MAX+PLUS II Help using Search for Help on for more information.

115

•• ••

MAX+PLUS 1/ AHDL

CASCADE

-1>­

CASCADE Primitive

Function Prototype: FUNCTION CASCADE (in)
RETURNS (out) ;

The CASCADE buffer designates the cascade-out function from an AND or OR

gate, and acts as a cascade-in to another AND or OR gate. The cascade-in
function allows a cascade, which is a fast output located on each
combinatorial logic cell, to be ORed or ANDed with the output of an
adjacent combinatorial logic cell in the device. With the CASCADE primitive,
the AND or OR gate that feeds the CASCADE primitive and the AND or OR gate
that is fed by the CASCADE primitive are placed in the device, with the first
symbol logically ORed or ANDed into the second.

ltF 	 The CASCADE primitive is supported only for the FLEX 8000 and
FLEX 10K device families; it is ignored for other devices.

When you use a CASCADE primitive, you must observe the following rules:

• 	 A CASCADE primitive can only feed or be fed by a single gate, which
must be an AND or an OR gate.

An inverted OR gate is treated as an AND gate and vice-versa. Logical
equivalents of AND gates are BAND, BNAND, and NOR. Logical
equivalents of OR gates are BOR, BNOR, and NAND.

• 	 Two CASCADE primitives cannot feed the same gate.
• 	 A CASCADE primitive cannot feed an XOR gate.
• 	 A CASCADE primitive cannot feed an OUTPUT or OUTPUTC pin

primitive or a register.
• 	 The De Morgan's inversion theorem implementation of cascaded AND

and OR gates requires all primitives in a cascaded chain to be of the
same type. A cascaded AND gate cannot feed a cascaded OR gate, and
vice-versa.

If you use the CASCADE primitive incorrectly, it is ignored and the Compiler
issues a warning.

You can allow the Compiler to automatically insert or remove CASCADE

primitives during logic synthesis with the Cascade Chain logic option or a
logic synthesis style that includes the Cascade Chain logic option.

Go to "Assigning an Individual Logic Option or Synthesis Style" in
MAX+PLUS II Help using Search for Help on for more information.

116

Section 3: Elements

EXP Primitive

EXP Function Prototype: FUNCTION EXP (in)

RETURNS (aut) i
-{>o-

The EXP expander buffer specifies that an expander product term is desired
in the project. The expander product is inverted in the device.

W 	 The EXP primitive is supported only for the MAX 5000,
MAX 7000, and MAX 9000 device families; it is treated as a NOT

gate in other device families. Refer to individual device data
sheets for information on how specific devices use logic cells and
expander product terms.

Whether or not an expander product term is used depends on the logic
polarity required by the destination functions. For example, if an EXP buffer
feeds two AND gates (i.e., product terms) and the second AND gate has a
inverted input, the EXP feeding the inverted input is removed during logic
synthesis, thereby creating positive logic. The EXP feeding the non-inverted
input is not removed and the expander product term is used to implement
logic, as shown in the illustration below. (Normally, the Logic Synthesizer
determines where to insert or remove EXP buffers. Altera recommends that
only experienced MAX+PLUS II designers should use the EXP primitive in
their projects.)

= +

In devices that contain multiple Logic Array Blocks (LABs), the EXP buffer
output can only feed logic within a single LAB. The EXP is duplicated for
each LAB that requires it. If a project contains a large number of expanders,
the Logic Synthesizer may convert them into LCELL buffers to balance
expander product term and logic cell usage.

W 	 Do not use EXP primitives to create an intentional delay or
asynchronous pulse. The delay of these elements varies with
temperature, power supply voltage, and device fabrication
process, so race conditions can occur and create an unreliable
circuit.

117

MAX+PLUS /I AHDL

GLOBAL Primitive

GLOBAL Function Prototype: FUNCTION GLOBAL (in)
RETURNS (au t) ;---t>­

The GLOBAL buffer indicates that a signal must use a global (synchronous)
Clock, Clear, Preset, or Output Enable signal, instead of signals generated
with internal logic or driven by ordinary I/O pins. Table 3-8 shows how
global signals are used in different device families.

1. 	 The SCLK buffer is available for backward compatibility
and can be used in place of a GLOBAL primitive only to
specify a global Clock in Classic and MAX 5000 devices.
SCLK may be used to request global clocking of a register
when the Clock is driven by a pin. A direct connection must
exist from the input pin to SCLK to the register.

2. 	 The GLOBAL primitive is ignored for devices that do not
support it. In addition, global and array clocking are not
allowed within the same Logic Array Block (LAB) in
MAX 5000 devices.

Table 3-8. Global Signal Availability

Device Family
Global
Clock

Global
Clear

Global
Preset

Global Output
Enable

Classic ../

MAX 5000 ../ ../ (1) ../ (1) ../ (1)

MAX 7000 ../ ../ ../
FLEX 8000 ../ ../ ../ ../

MAX 9000 ../ ../ ../
FLEX 10K ../ ../ ../ ../
Note:
(1) Available for EPS464 devices only.

118

Section 3: Elements

If an input pin feeds directly to the input of GLOBAL, the output of GLOBAL

can be used to feed a Clock, Clear, Preset, or Output Enable input to a
primitive. A direct connection must exist from the output of GLOBAL to the
input of the register or the TRI buffer. A NOT gate may be required between
the input pin and GLOBAL when the GLOBAL buffer feeds the Output Enable
input of a TRI buffer.

A single input may pass through GLOBAL before feeding the Clock, Clear, or
Preset input of a register, or the Output Enable input of a TRI buffer.

Global signals propagate more quickly than array Signals and may free up
device resources for other logic. GLOBAL should be used to implement
global clocking in a portion or all of the project. To verify that registers are
globally clocked, you can refer to the Report File for the processed project.

If your MAX 5000 device project contains global and array (asynchronous)
clocking and the Fitter module of the Compiler cannot find a fit, removing
the GLOBAL buffer may make a fit possible. If you encounter a similar
problem with a MAX 7000 project, replace array clocking with global
clocking.

As an alternative to using the GLOBAL primitive, you can direct the
Compiler to automatically select an existing signal in a project to be a global
Clock, Clear, Preset, or Output Enable signal with the Global Project Logic
Synthesis command (Assign menu).

The following illustration shows some legal uses of the GLOBAL buffer:

119

MAX+PLUS /I AHDL

OFF

PRN

o Q

CLRN

OFF

PRN

o QGLOBAL

CLRN

GLOBAL

The following illustration shows an illegal use of the GLOBAL buffer:

GLOBAL

:~r--------i[)-
.,.

•• Go to "Clock Configuration Guidelines," "Preset & Clear Configuration
Guidelines," and "Master Reset Guidelines" using Search for Help on
(Help menu).

LCELL Primitive

LCELL Function Prototype: FUNCTION LCELL (in)

RETURNS (aut);
-{>­

The LCELL buffer allocates a logic cell for the project. The LCELL buffer
produces the true and the complement of a logic function and makes both
available to all logic in the device. (The output of the LCELL buffer must feed
through a NOT gate to use the complement of the logic function.)

120

Section 3: Elements

The MC ELL buffer, which has the same functionality as the LCELL

buffer, is available for backward compatibility with earlier
versions of MAX+PLUS II. New projects should use LCELL

exclusively.

An LCELL buffer always consumes one logic cell. It is not removed from a
project during logic synthesis.

[ff 	 Do not use LCELL primitives to create an intentional delay or
asynchronous pulse. The delay of these elements varies with
temperature, power supply voltage, and device fabrication
process, so race conditions can occur and create an unreliable
circuit.

The following illustrations show the effect of logic synthesis on a project
when LCELL or SOFT buffers are used. The first project (1) requires four
logic cells after synthesis (in dotted boxes) and three input pins. If the LCELL

buffers are replaced with SOFT buffers, as shown in (2), the SOFT buffers are
removed by logic synthesis and the project requires one logic cell and three
inputs.

(1)

Before Logic Synthesis 	 After Logic Synthesis
f'~~~~~"------'---'- - ' -- ' - "- ' -:

LCELL 	 LCELL LCELL :

~--'-----i

:...._-- ---_.__ .__ :

LCELLforces a buffer

(2)

Before Logic Synthesis 	 After Logic Synthesis

SOFT SOFT

.. _--------_....... .

>----~===8: [)---c:> ~
SOFT 	 L............................ j
~~:

If the Delay Chains option is turned on in the Design Doctor Settings dialog
box (Processing menu), the Compiler issues a warning message for any
series of LCELL or EXP primitives used to create an intentional delay or
asynchronous pulse.

12 1

MAX+PLUS /I AHDL

In standard logic synthesis, combinatorial feedback from a logic cell to itself
is illegal unless an LCELL buffer is used. The Logic Synthesizer detects
illegal combinatorial feedback and issues an error message when a project is
compiled with standard synthesis. If you use multi-level synthesis, the Logic
Synthesizer automatically inserts an LCELL buffer.

Illegal 	 Legal

MAX+PLUS II includes several logic options that automatically insert
LCELL and SOFT buffers during project compilation. In addition, you can
use the Compiler's Fitter Settings command (Processing menu) to direct the
Compiler to automatically insert LCELL buffers into a project if they are
needed to achieve a fit when user-defined resource and device assignments
would otherwise prevent a project from fitting . .,.... Go to "Assigning an Individual Logic Option or Synthesis Style" and "Delay
Chain Guidelines" using Search for Help on (Help menu).

OPNDRN Primitive

OPNDRN Function Prototype: FUNCTION OPNDRN (in)
RETURNS (out) ;-d>­

The OPNDRN primitive is similar to a TRI primitive, with a single input and
a single output. The OPNDRN primitive is equivalent to a TRI primitive
whose Output Enable input is fed by any signal, but whose primary input is
fed by a GND primitive.

If the input to the OPNDRN primitive is low, the output will be low. If the
input is high, the output will be a high-impedance logic level.

lG? 	 The OPNDRN primitive is supported only for the FLEX 10K device
family; it is converted to a TRI primitive for other devices.

122

Section 3: Elements

If you turn on the Automatic Open-Drain Pins option in the Global Project
Logic Synthesis dialog box (Assign menu) for a FLEX 10K-based project, the
Compiler converts the following structures to the OPNDRN primitive:

• 	 A TRI primitive whose Output Enable input is fed by any signal, but
whose primary input is fed by a GND primitive

• 	 A TRI primitive whose Output Enable input is fed by the complement
of its primary input.

When you use an OPNDRN buffer, you must observe the following rules:

• 	 An OPNDRN buffer may drive only one BIDIR or BIDIRC pin.

• 	 If an OPNDRN buffer feeds logic, it must also feed a BIDIR or BIDIRC

pin. If it feeds a BIDIR or BIDIRC pin, it may not feed any other
outputs.

SOFT Primitive

SOFT Function Prototype: FUNCTION SOFT (in)

-{>-- RETURNS (au t) ;

The SOFT buffer specifies that a logic cell may be needed in the project.
During project processing, the Logic Synthesizer examines the logic feeding
the primitive and determines whether a logic cell is needed. If it is needed,
the SOFT buffer is converted into an LCELL; if not, the SOFT buffer is
removed.

The following illustrations show the effect of logic synthesis on a project that
uses SOFT buffers. In the first project (1), the Logic Synthesizer removes the
SOFT buffers, and the project uses one logic cell. In the second project (2), it
removes one SOFT buffer and converts the other into an LCELL buffer. This
LCELL buffer reduces the complexity of the project, i.e., the number of
product terms. The second project also uses one logic cell.

Before Logic Synthesis 	 After Logic Synthesis

SOFT SOFT

;------;~l----------l,~>----------'~

123

•• ••

MAX+PLUS /I AHDL

(2)

Before Logic Synthesis After Logic Synthesis

SOFT

If the Compiler indicates that the project is too complex, you can edit the
project by inserting SOFT buffers to prevent logic expansion. For example,
you can add a SOFT buffer at the combinatorial output of a logic function to
decouple two combinatorial circuits:

ASOFT buffer inserted between two combinatorial circuits

prevents logic expansion (although it may consume one

additional logic cell).

-
-
-
-
-
-

- r­
- r-

r-
r-
r-

r-
r-
r-

MAX+PLUS II includes logic options that automatically insert or ignore
SOFT and LCELL buffers during project compilation .

Go to "Assigning an Individual Logic Option or Synthesis Style" and "Delay
Chain Guidelines" using Search for Help on (Help menu) in MAX+PLUS II
Help.

124

Section 3: Elements

TRI Primitive

Function Prototype: FUNCTION TRI (in, oe)
RETURNS (out).;

The TRI primitive is a tri-state buffer with an input, output, and Output
Enable signal. If the Output Enable signal is high, the output will be driven
by the input.

The Output Enable defaults to VCC.

If the Output Enable of a TRI buffer is connected to vcc or a logic function
that will minimize to true, a TRI buffer may be converted into a SOFT buffer
during logic synthesis.

When you use a TRI buffer, you must observe the following rules:

• A TRI buffer may drive only one BIDIR or BIDI RC pin. You must use
a BIDIR or BIDI RC pin if feedback is included after the TRI buffer.

• If a TRI buffer feeds logic, it must also feed a BI DIR or BIDIRC pin.
If it feeds a BIDIR or BIDIRC pin, it may not feed any other outputs.

Flipflop 	& Latch Primitives

Table 3-9 lists the MAX+PLUS II flipflop and latch primitives and their
Function Prototypes. All flipflops are positive-edge-triggered; latches are
level-sensitive.

W 	 When the Latch or Clock Enable (ena) input is high, the flipflop
or latch passes the signal from the data input(s) to q. When the
ena input is low, the state of q is maintained, regardless of the
data input(s).

125

MAX+PLUS /I AHDL

For devices that do not support Latch and/or Clock Enable, logic synthesis
generates logic equations containing flipflops with Clock Enables and
latches with Latch Enables. These logic equations correctly emulate the logic
specified in your project.

Table 3-9. MAX+PLUS 1/ Flipf/ops &Latches

Primitive AHDL Function Prototype

LATCH FUNCTION LATCH (d, ena)
RETURNS (q) ;

DFF FUNCTION DFF (d, elk, elm, pm)
RETURNS (q) ;

DFFE FUNCTION DFFE (d, elk, elm, pm, ena)
RETURNS (q) ;

JKFF FUNCTION JKFF (j, k, elk, elm, pm)
RETURNS (q) ;

JKFFE FUNCTION JKFFE (j, k, elk, elm, pm, ena)
RETURNS (q) ;

SRFF FUNCTION SRFF (s, r, elk, elm, pm)
RETURNS (q) ;

SRFFE FUNCTION SRFFE (s, r, elk, elm, pm, ena)
RETURNS (q) ;

TFF FUNCTION TFF (t, elk, elm, pm)
RETURNS (q) ;

TFFE FUNCTION TFFE (t, elk, elm, pm, ena)
RETURNS (q) ;

Notes:
elk
elm
d, j, k, r, s,
ena
pm
q

= Register Clock Input
= Clear Input

t = Data input from Logic Array
= Latch Enable or Clock Enable Input
= Preset Input
= Output

126

Section 3: Elements

Primitive/Port Interconnections

Not all primitives and ports may connect to all other primitives and ports in
a design file. Table 3-10 shows the possible interconnections for all AHDL
primitives and ports.

Table 3-10. Primitive/Port Interconnections

Source

Destination

E-<
:::>
>I<
E-<
:::>
0

p::
H
0
H
>0

~

~

H
p::
E-<

...:I

..;
>0
0
...:I
c.?

...:I

...:I
W
U
...:I

>I<
~
W

E-<
rx.
0
Ul

u
'So
0

...l

~

~

E-<
:::>
>I< z
H

:><
p::
p::
..;
U

w
0..;
u
Ul
..;
U

~
0
Z
>I<
0

INPUT Y N Y Y na na na Y Y na na Y

OUTPUT (3) N N N N N N N N N na na N

BIDIR N N Y N na na na Y Y na na Y

TRI Y Y N (4) na N (4) N (4) N (4) N (4) N (4) na na N (4)

GLOBAL (5) na N (6) Y na na na na na Y na

LCELL (7) Y N Y na na na na Y na na na Y

EXP na N na N na na na Y na na na na

SOFT y N na N na na na Y na na na na

VCC y N Y N na na na Y Y na na Y

GND Y N Y N na na na Y Y na na Y

Logic Y N Y N Y Y Y Y Y Y Y Y

Register Output Y N Y N na na Y Y Y na na Y

CARRY na na na na Y na na Y na na na na

CASCADE na na na na na na na Y na na na na

OPNDRN y Y N (4) na N (4) N (4) N (4) N (4) N (4) na na N (4)

Notes:
(1) Includes both data and Output Enable inputs to TRI.
(2) The INPUT (or IN) port can only be fed by device pins or higher levels in the hierarchy.
(3) The OUTPUT (or OUT), OUTPUTC, BIDIR (or INOUT), and BI DIRC primitives/ports can only drive out to

device pins or higher levels in the hierarchy.
(4) These connections change to legal (Y) or not advisable (na) only if the output of the TRIor OPNDRN is also

connected to a BIDIR (or INOUT) or BIDIRC primitive/port.
(5) SCLK in MAX+PLUS (DOS) designs is interpreted as GLOBAL. New projects should only use GLOBAL.
(6) Connecting a GLOBAL output to the TRI Output Enable input is legal in FLEX 8000 and FLEX 10K

devices. Connections to Output Enable in other devices are ignored.
(7) MCELL in pre-version 3.0 MAX+PLUS II design files is interpreted as LCELL. New projects should only

use LCELL.
Y Interconnection is legal.
N Interconnection is illegal.
na Interconnection is legal but not advisable or may implement logic inefficiently.

127

MAX+PLUS /I AHDL

Table 3-11 shows the possible connections to registers for primitives and
ports.

Table 3-11. Primitive/Port to Register Connections

Source
Register

INPUT (1) CLK PRN CLRN

INPUT Y Y Y Y

OUTPUT (2) N N N N

BIDIR (2) Y Y Y Y

TRI N (3) N (3) N (3) N (3)

GLOBAL (4) na Y Y Y

LCELL (5) na Y Y Y

EXP na na na na

SOFT na Y Y Y

vcc Y N Y Y

GND Y N Y Y

Logic Y Y Y Y

Register Output Y Y Y Y

CARRY na na na na

CASCADE na na na na

OPNDRN N (3) N (3) N (3) N (3)

Notes:
(1) The INPUT (or IN) port can only be fed by device pins or higher levels in the hierarchy.
(2) The OUTPUT (or OUT), OUTPUTC, BIDIR (or INOUT), and BIDIRC primitives/ports can

only drive out to device pins or higher levels in the hierarchy.
(3) These connections change to legal (Y) or not advisable (na) only if the output of the TRI

or OPNDRN is also connected to a BIDIR (or INOUT) or BIDIRC primitive/port.
(4) SCLK in MAX+ PLUS (DOS) designs is interpreted as GLOBAL. New projects should only

use GLOBAL.
(5) MCELL in pre-version 3.0 MAX+PLUS II design files is interpreted as LCELL. New

projects should only use LCELL.

Y Interconnection is legal.
N Interconnection is illegal.
na Interconnection is legal but not advisable or may implement logic inefficiently.

128

Section 3: Elements

Megafunctions

MAX+PLUS II megafunctions are a collection of complex logic functions,
including Library of Parameterized Modules (LPM) functions, that can be
used in logic designs. These megafunctions are particularly efficient in
optimizing logic functions for Altera devices. The MAX + PLUS II installation
procedure automatically installs these megafunctions in the \maxplus2\
max2lib \mega_lpm directory. This directory also contains an Include File
(.inc) with a Function Prototype for each megafunction. (On a UNIX
workstation, the maxplus2 directory is a subdirectory of the lusr directory.)

You may use these megafunctions freely in all MAX + PLUS II logic designs.
When the MAX+PLUS II Compiler analyzes a logic circuit, it automatically
removes all unused gates and flipflops, thereby ensuring that design
efficiency is not reduced.

Table 3-12 describes all MAX+PLUS II megafunctions. Names of LPM
functions that are currently included in the LPM 2.0.1/2.1.0 standard start
with /I lpm_./I Detailed information on these mega functions is available in
MAX+PLUS II Help.

Table 3-12. MAX+PLUS /I Megafunctions (Part 1 of 2)

Type Name Description

Gates lpm_and Parameterized AND Gate

lpm_bustri Parameterized Tri-State Buffer

lpm_clshift Parameterized Combinatorial Shifter Module

lpm_constant Parameterized Constant Generator Module

lpm_decode Parameterized Decoder Module

lpm_inv Parameterized Inverter Module

lpITLmux Parameterized Multiplexer Module

lpm_or Parameterized OR Gate

lpm_xor Parameterized XOR Gate

129

MAX+PLUS /I AHDL

Table 3-12. MAX+PLUS /I Megafunctions (Part 2 of 2)

Type Name Description

Arithmetic
Components

Ipm_abs Parameterized Absolute Value

Ipm_add_sub Parameterized Adder/Subtractor Module

Ipm_decode Parameterized Comparator Module

Ipm_counter Parameterized Counter Module

Ipm_mul t Parameterized Multiplier Module

Storage
Components

Ipm_dff Parameterized D-Type Flipflop and Shift Register Module

Ipm_ latch Parameterized Latch Module

Ipm_ram_dq Random Access Memory with Separate Input and Output
Ports

Ipm_ram_io Random Access Memory with a Single I/O Port

Ipm_rom Read-Only Memory

Ipm_t ff Parameterized T-Type Flipflop Module

csdpram Cycle-Shared Dual-Port Random Access Memory

csfifo Cycle-Shared FIFO

Other Functions a6502 6502 Microprocessor

ntsc NTSC Video Control Signal Generator

pll Rising- and Falling-Edge Detector

Choose Megafunctions/LPM (Help menu) in MAX+PLUS II for detailed
information about megafunctions. Go to "Implementing a Hierarchical
Project" on page 69 in How to Use AHDL for information on using
megafunctions.

••...

130

•• ••

Section 3: Elements

Old-Style Macrofunctions

MAX+PLUS II old-style macrofunctions are a collection of high-level
building blocks that can be used in logic designs. The MAX+PLUS II
installation procedure automatically installs these macrofunctions in the
\maxplus2\max2lib directory and its subdirectories. The \maxplus2\
max2inc directory, which is also installed automatically, contains an Include
File (.inc) with a Function Prototype for each macrofunction. (On a UNIX
workstation, the maxplus2 directory is a subdirectory of the lusr directory.)

You may use these macrofunctions freely in all MAX + PLUS II logic designs.
When the MAX+PLUS II Compiler analyzes a logic circuit, it automatically
removes all unused gates and flipflops, thereby ensuring that design
efficiency is not reduced. All input ports also have default signal values, so
that unused inputs can simply be left unconnected .

Choose Old-Style Macrofunctions (Help menu) in MAX+PLUS II for
detailed information about old-style macrofunctions. Go to "Implementing
a Hierarchical Project" on page 69 in How to Use AHDL for information on
using old-style macrofunctions.

• 131

MAX+PLUS /I AHDL

Ports

A port is an input or output of a logic function. A port can appear in two
locations:

• A port that is an input or output of the current file is declared in the
Subdesign Section.

• A port that is an input or output of an instance of a primitive or lower­
level design file is used in the Logic Section.

Ports of the Current File

A port that is an input or output of the current file is declared in the
following format within the Subdesign Section:

<port name>: <port type> [=<default port value>]

The following port types are available:

INPUT MACHINE INPUT
OUTPUT MACHINE OUTPUT
BIDIR

When a TDF is the top-level file in a hierarchy, the port name is synonymous
with a pin name. The optional default port value, which is either vee or GND,

can be specified for INPUT and BIDIR port types. This default value is used
only if the port is left unconnected when an instance of the TDF is used in a
higher-level design file.

In the following example, the input, output, and bidirectional ports of the
file are declared in the Subdesign Section:

SUBDESIGN top
(

foo , bar, elkl, elk2, e[4 .. 0] [6 .. 0] INPUT = VCC;
% VCC is default port value %
aO, al, a2, a3, a4 OUTPUT;
b[7 .. 0] BIDIR;

132

Section 3: Elements

You can import and export state machines between TDFs and other design
files by specifying an input or output port as MACHINE INPUT or MACHINE

OUTPUT in the Subdesign Section. The Function Prototype that represents
the file must indicate which ports are state machines. MACHINE INPUT and
MACHINE OUTPUT ports can only be used in lower-level files in a project
hierarchy.

Ports of Instances

A port that is an input or output of an instance of a logic function is
connected in the Logic Section. To connect a logic function to other portions
of a TDF, you insert an instance of the function with an in-line reference or
Instance Declaration or declare a state machine with a State Machine
Declaration, and then use ports of the function in the Logic Section.

If you use an in-line reference with positional port association to create an
instance of a logic function, the order of the ports, not the names, is
important. The order of ports is defined in the Function Prototype for the
function.

If you use an Instance Declaration or an in-line reference with named port
association to create an instance of a logic function, the names of the ports,
not their order, are important.

In the following example, an instance of a D flipflop is declared as the
variable reg in the Variable Section, then used in the Logic Section:

VARIABLE

reg: DFF;

BEGIN

reg.clk clock

reg.d data_input

output reg.q

END;

Port names can thus be connected to other nodes in the Logic Section in the
following format:

<instance name> . <port name> = <node name>

133

MAX+PLUS /I AHDL

The <instance name> is a user-defined name for a function. The <port name>
is identical to the port name that is declared as an input or output of the file
in the Subdesign Section of a lower-level TDF, or to a pin name in another
type of design file. This <port name> is synonymous with the pinstub name
for the symbol that represents an instance of the design file in a Graphic
Design File (.gdf).

As illustrated by the example above, if you use an Instance Declaration to
create an instance of a logic function, the names of the ports in the design file
that defines the logic function is important. The same is true of the right­
hand sides of in-line logic function references that use named port
association. (The left-hand side of all in-line references use positional port
association.) The following example shows the Function Prototype for the
21mux macrofunction and an in-line reference that uses named port
association:

FUNCTION 21MUX (s, a, b)
RETURNS (y);

BEGIN
output 21MUX (. s select,.b dataB,.a dataA);

END;

The nodes output, select, dataA, and dataB are connected to the y, s,
a, and b ports of the 21mux macrofunction. Thus, within an in-line reference
that uses named port association, the ports on the right-hand side of the
equals symbol (=) are listed in the following format:

. <port name> =<node name>

In contrast, if you use an in-line reference with positional port association to
create an instance of a logic function, the order of the nodes listed in the in­
line reference, not the port names of the instantiated logic function, is
important. The order of ports is defined in the Function Prototype for the
function. The following example shows an in-line reference for the same
21mux macrofunction that uses positional port association:

BEGIN
output 21MUX (select, dataA, dataB) ;

END;

134

•• ••

Section 3: Elements

All Altera-provided logic functions have predefined port (pinstub) names,
which are shown in the Function Prototype. Commonly used primitive port
names are shown in Figure 3-13.

Table 3-13. Commonly Used Ports

Port Name: Definition:

.q Output of a flipflop or latch

.d Data input to a D flipflop or latch

.t Toggle input to a T flipflop

. j J input to a JK flipflop

.k K input to a JK flipflop

.s Set input to an SR flipflop

.r Reset input to an SR flipflop

. elk Clock input to a flipflop

. ena Clock Enable input to a flipflop, Latch Enable
input to a latch, or Enable input to a state machine

.pm Active-low Preset input to a flipflop

.elm Active-low Clear input to a flipflop

. reset Active-high Reset input to a state machine

.oe Output Enable input to a TRI primitive

.in Primary input to CARRY, CASCADE, EXP, TRI,

OPNDRN, SOFT, GLOBAL, and LCELL primitives

. out Output of CARRY, CASCADE, EXP, TRI,

OPNDRN, SOFT, GLOBAL, and LCELL primitives

Go to the following topics for more information:

"Machine Alias Declaration" on page 166 in Design Structure
"Port Syntax" in MAX+PLUS II Help
"Quoted & Unquoted Names" on page 97 in this section
"Subdesign Section" on page 157 in Design Structure

135

MAX+PLUS /I AHDL

Parameters

Attributes of a megafunction or macrofunction that determine the logic
created or used to implement the function, i.e., characteristics that determine
the size, behavior, or silicon implementation of a function. For example,
parameters are often used to define the width of a bus.

A parameterized function is a function whose behavior is controlled by one
or more parameters. Some logic functions, such as the megafunctions in the
Library of Parameterized Modules (LPM), are inherently parameterized and
require parameter values to be assigned. Parameters can also optionally be
assigned to some functions that are not inherently parameterized, such as
old-style macrofunctions, to determine their style of implementation.

When you use an existing parameterized function, such as an LPM function,
you can customize the parameters used and assign parameter values on an
instance-by-instance basis. In a GDF, you can customize an instance (i.e.,
symbol) with the Graphic Editor's Edit Ports/Parameters command (Symbol
menu). In an AHDL TDF, you can declare parameters and assign values
when you create an instance with an Instance Declaration or an in-line
reference.

Parameter values are not necessarily specified on an instance-by-instance
basis. Because parameter values can be inherited from higher hierarchical
levels a hierarchical project, the Compiler searches for parameter values in
the following parameter value search order:

1. 	 As part of the instance of the logic function. For example, in a TDF, in
an instance that is created in an Instance Declaration or an in-line
reference, you can declare which parameters are used and optionally
assign their values. In a GDF, you can select a symbol and use the Edit
Ports/Parameters dialog box (Symbol menu) to assign parameter
values for that instance.

2. 	 As part of the instance of the logic function at the next higher
hierarchy level. The parameter values for an instance of a logic
function apply to the subdesigns of that logic function if the subdesign
instances do not have assigned parameter values.

3. 	 In the global project default parameter values specified with the
Global Project Parameters dialog box (Assign menu). These values
are stored in the Assignment & Configuration file (.acf) for the project.

136

Section 3: Elements

4. 	 In the optional default value listed in the Parameters Statement(s) of
the TOF or the PARAM primitives of the GOF that defines the logic
function. These default values apply only to the file in which they are
listed, they are not applied the file's subdesigns.

When you create a parameterized design file, you can specify the parameters
used within that file and optional default parameter values (which are used
only if no parameter values are specified elsewhere). In a GOF, you specify
the parameters used within the current file with PARAM primitives; in a TOF,
the parameters used within the current file are specified in a Parameters
Statement. Once you create a parameterized design file, you can use the
Create Default Include File and Create Default Symbol commands (File
menu) to create default AHOL Function Prototypes (in Include Files) and
symbols (in Symbol Files), respectively, that include the names (but not the
values) of parameters used within the file. You can edit the parameters and
parameter values for a Symbol File with the Symbol Editor's Enter
Parameters command (Element menu). These parameter names and values
then appear as the defaults for each instance of the symbol when it is first
entered in a GOF. Once you enter the symbol in a GOF, these default
parameters and values can be customized with Edit Ports/Parameters on an
instance-by-instance basis.

MAX+PLUS II allows you to assign global, project-wide default values for
parameters with the Global Project Parameters command (Assign menu).
As an alternative to using Global Project Parameters, you can specify
default parameter settings in the Global Project Parameters Section of the
ACF.

The following guidelines apply to parameters:

• 	 All logic options can be assigned as parameters for individual
instances of mega- or macrofunctions. A logic option that is assigned
to a logic function instance as a parameter overrides the global project
default synthesis style-which is specified with Global Project Logic
Synthesis (Assign menu)-for that instance. However, if an instance
has the same logic option assigned both as a parameter and as an
individual logic option, the logic option setting overrides the
parameter setting. In addition, logic options cannot be assigned as
global, project-wide default parameter values with Global Project
Parameters.

• 	 You cannot assign a value to the predefined Altera parameter
DEVICE_FAMILY, which represents the device family assigned for the
project. However, you can use the parameter value in comparisons.

137

•• ••

MAX+PLUS /I AHDL

The legal values are FLEX10K, FLEX8000, MAX9000, MAX7000E,
MAX7000, MAX5000, CLASSIC, and EP330 / EP320.

• 	 The predefined Altera LATENCY parameter can be assigned to an
instance of a mega- or macrofunction. However, the parameter
applies only to that instance, and is not inherited by the subdesigns of
that instance.

• 	 Parameters appear on the top right corner of a symbol in the Graphic
or Symbol Editor if Show Parameters (Options menu) is turned on.
(Show All also displays or hides all parameters in the current GDF.)

Double-clicking Button 1 on a parameter opens the Edit Ports/Parameters or
Enter Parameters dialog box in the Graphic and Symbol Editors,
respectively. Show Parameters or Show All displays or hides all parameters
in the current GDF. You can print a Graphic or Symbol Editor file that shows
parameters by turning on Show Parameters (or Show All) before printing
the file .

Go to the following sources for more information:

"Customizing a Mega- or Macrofunction's Ports & Parameters" in
MAX+PLUS II Help

"Entering a Parameter" in MAX+PLUS II Help
"Parameters Statement" on page 142 in Design Structure
"Showing Parameters and Probe & Resource Assignments" in

MAX+PLUS II Help
"Specifying Global Project Parameters" in MAX+PLUS II Help

138

•• ••

Section

4

Design
Structure

This section describes basic AHDL design structure. AHDL sections and
statements are described in the order in which they appear in a Text Design
File (.tdf).

• Overview................ 140

• Title Statement. 141

• Parameters Statement.. 142

• Include Statement 145

• Constant Statement 147

• Define Statement 149

• Function Prototype Statement 151

• Options Statement 154

• Assert Statement 155

• Subdesign Section 157

• Variable Section 159

• Logic Section 168

Go to MAX+PLUS II Help for complete and up-to-date information on
AHDL design structure.

139

MAX+PLUS /I AHDL

Overview

An AHDL TDF must contain, at a minimum, a Subdesign Section and a
Logic Section. All other sections and statements are optional. In this section,
information is provided in the order in which the statements and sections
appear in the TDF.

.,.
•• For information on how to create an AHDL design, go to How to Use AHDL

on page 17.

For information on recommended file structure, go to "Text Design File
Structure" on page 4 in Introduction.

For information on the syntax of AHDL sections and statements, choose
AHDL (Help menu), then click Button Ion "Syntax."

For information on AHDL syntax that is no longer supported, go to
"Obsolete AHDL Statements" in MAX+PLUS II Help using Search for
Help on.

140

••

Section 4: Design Structure

Title Statement

The Title Statement allows you to provide documentary comments for the
Report File (.rpt) generated by the Compiler. The following example shows
a Title Statement:

TITLE "Display Controller";

The Title Statement has the following characteristics:

• 	 A Title Statement begins with the keyword TITLE, followed by a text
string enclosed in double quotation marks ("). The statement ends
with a semicolon (;).

• 	 If a Title Statement is included in a TDF, the title appears at the top of
the Report File. In the example shown above, the title Display
Controller appears in the Report File.

Title Statements must conform to the following rules:

• 	 The string can contain a maximum of 255 characters and may not
contain end-of-line or end-of-file characters. To include quotation
marks in the title, use two quotation marks. For example:
TITLE "" "EPM5130"" Display Controller";

• 	 The Title Statement can only be used once in a TDF.

• 	 The Title Statement must be placed outside of all other AHDL
sections

Go to "Title Statement Syntax" in MAX+PLUS II Help for more information .

141

MAX+PLUS /I AHDL

Parameters Statement

The Parameters Statement allows you to declare one or more parameters
that control the implementation of a parameterized megafunction or
macrofunction. The following example shows a Parameters Statement:

PARAMETERS
(

FILENAME "myfile.mif", -- optional default va lue foll ows sign

WIDTH ,

AD_WIDTH 8 ,

NUMWORDS 2AAD_WI DTH

) ;

The Parameters Statement has the following characteristics:

• 	 A Parameters Statement begins with the keyword PARAMETERS,

followed by a list of one or more parameters and optional default
values, enclosed in parentheses () .

• 	 Parameters in the parameter list are separated by commas (,);
parameter names are separated from optional default values by an
equals symbol (=). In the example shown above, only the WIDTH

parameter does not have a default value.

• 	 Parameter names can be user-defined symbolic names or predefined
Altera parameters.

• 	 Parameter values can consist of text strings enclosed in double
quotation marks (,,), which are evaluated as strings. When parameter
values are unquoted, the Compiler attempts to treat them as
arithmetic expressions; failing that, they are treated as strings.

• 	 The statement ends with a semicolon (;).

• 	 Once a parameter has been defined, you can use it throughout the
TDF.

142

Section 4: Design Structure

Parameter Statements must conform to the following rules:

• 	 A parameter can only be used after it is declared.

• 	 Each parameter name must be unique.

• 	 The parameter name cannot contain spaces. Use underscores to
separate words and improve readability.

• 	 The Parameters Statement can be used any number of times in a TDF.

• 	 The Parameters Statement must be placed outside of all other AHDL
sections.

• 	 Parameters used in the definition of other parameters must already be
defined.

• 	 Circular references are not allowed. The following example shows a
circular reference:

PARAMETERS
(

FOO = BAR;

BAR = FOO;

) ;

When a project is compiled, the Compiler searches for parameter values in
the the following order:

1. 	 As part of the instance of the logic function. For example, in a TDF, in
an instance that is created in an Instance Declaration or an in-line
reference, you can declare which parameters are used and optionally
assign their values. In a GDF, you can select a symbol and use the Edit
Ports/Parameters command (Symbol menu) to assign parameter
values for that instance.

2. 	 As part of the instance of the logic function at the next higher
hierarchy level. The parameter values for an instance of a logic
function apply to the subdesigns of that logic function if the subdesign
instances do not have assigned parameter values.

3. 	 In the global project default parameter values specified with the
Global Project Parameters command (Assign menu). These values
are stored in the Assignment & Configuration file (.acf) for the project.

143

•• ••

MAX+PLUS /I AHDL

4. 	 In the optional default value listed in the Parameters Statement(s) of
the TDF or the PARAM primitives of the GDF that defines the logic
function. These default values apply only to the file in which they are
listed, they are not applied the file's subdesigns .

Go to the following sources for more information:

"Parameters Statement Syntax" in MAX+PLUS II Help
"Using Altera-Provided Parameterized Functions" on page 73 in How to Use

AHDL

144

Section 4: Design Structure

Include Statement

The Include Statement allows you to import text from an Include File (.inc)
into the current file . The following example shows an Include Statement:

INCLUDE "const.inc";

The Include Statement has the following characteristics:

• 	 The Include Statement begins with the keyword INCLUDE, followed
by the name of the file to be included, enclosed in double quotation
marks (,,) .

• 	 If you do not specify a filename extension, the Compiler assumes the
extension .inc.

• 	 The statement ends with a semicolon (;).

• 	 When the Compiler processes the project, the text from the Include
File is substituted for the Include Statement. In the example shown
above, the file const.inc is substituted for the text INCLUDE

"cons t . inc" ; .

Include Statements are often used to include Function Prototypes for a
lower-level design file in a TDF. To use a megafunction or macrofunction,
you must first define its logic in a design file. You must then use a Function
Prototype Statement to specify the ports of the function. Alternatively, you
can use Include Statements to include Function Prototypes that are saved in
Include Files. You can then insert an instance of the logic function with an
Instance Declaration or an in-line reference.

You can automatically generate an Include File that contains a Function
Prototype for a design file with Create Default Include File (File menu).

When you compile a file, the Compiler searches your computer's directories
for Include Files in the following order:

1. 	 The project directory.
2. 	 Any user libraries specified with User Libraries (Options menu).
3. 	 The \maxplus2\max2lib\mega_Ipm and \maxplus2\max2inc

directories created during installation.

145

•• ••

MAX+PLUS /I AHDL

If you change a TDF that includes an Include File, you can use Project Save
& Check (File menu) or fully recompile the project to update the view of the
project's hierarchy tree that is displayed in the Hierarchy Display window.

Include Statements must conform to the following rules:

• 	 The filename specified in the Include Statement cannot contain a path
name.

• 	 In the workstation environment, filenames are case-sensitive. In
MAX+PLUS II documentation, filenames may be listed in upper- or
lowercase letters. However, the case of the filename in an Include
Statement must match the case of the Include File name. Altera­
provided macrofunction and megafunction design files all have
lowercase filenames; therefore, their corresponding Include Files list
function names with lowercase letters.

• 	 An Include Statement must be placed outside of all other AHDL
sections.

• An Include Statement can appear any number of times in a TDF.

Include Files must conform to the following rules:

• 	 Names of Include Files must have the extension .inc.

• 	 Include Files should contain only Function Prototype, Define,
Parameters, or Constant Statements.

• 	 Include Files cannot contain Subdesign Sections.

• 	 Include Files cannot be nested.

Go to the following sources for more information:

"Creating a Default Include File" in MAX+PLUS II Help
"Implementing a Hierarchical Project" on page 69 in How to Use AHDL
"Include Statement Syntax" in MAX+PLUS II Help

146

Section 4: Design Structure

Constant Statement

The Constant Statement allows you to substitute a meaningful symbolic
name for a number or an arithmetic expression. The symbolic name simply
represents that number. The following examples show Constant Statements:

CONSTANT UPPER_LIMIT = 130;

CONSTANT BAR = 1 + 2 DIV 3 + LOG2(256);

CONSTANT FOO = 1 ;

CONSTANT FOO_ PLUS_ONE = FOO + 1;

The Constant Statement has the following characteristics:

• 	 The Constant Statement begins with the keyword CONSTANT,

followed by a symbolic name, an equals symbol (=), and a number
(including a radix, if necessary) or an arithmetic expression.

• 	 The statement ends with a semicolon (;).

• 	 Once a constant is declared, you can use it to represent the number
throughout the TDF. In the example shown above, you can use
UPPER_LIMIT in the Logic Section to represent the decimal number
130.

• 	 Constants can be declared as arithmetic expressions. These arithmetic
expressions can include previously defined constants.

W 	 The Compiler evaluates arithmetic expressions in Constant
Statements and reduces them to numerical values. No logic
is generated for these expressions.

Constant Statements must conform to the following rules:

• 	 A constant can only be used after it is declared.

• 	 Each constant name must be unique.

• 	 The constant name cannot contain spaces. Use underscores to separate
words and improve readability.

• 	 The Constant Statement can be used any number of times in a TDF.

147

MAX+PLUS /I AHDL

• 	 The Constant Statement must be placed outside of all other AHDL
sections.

• 	 Constants used in the definition of other constants must already be
defined.

• 	 Circular references are not allowed. The following example shows a
circular reference:

CONSTANT Faa = BAR;

CONSTANT BAR = FOO;

.,.
•• Go to the following sources for more information:

"Constant Statement Syntax" in MAX+PLUS II Help
"Define Statement" on page 149 in this section
"Numbers in AHDL" on page 102 in Elements
"Using Constants & Evaluated Functions" on page 19 in How to Use AHDL

148

Section 4: Design Structure

Define Statement

The Define Statement allows you to define an evaluated function, which is a
mathematical function that returns a value that is based on optional
arguments.

The following example defines the evaluated function MAX, which ensures
that the Subdesign Section declares at least one port.

DEFINE MAX (a,b) = (a > b) ? a : b;
SUBDESIGN
(

dataa[MAX(WIDTH, 0) .. 0]: INPUT;

datab[MAX (WIDTH, O) .. 0]: OUTPUT;

BEGIN
datab[] dataa[] ;

END;

The Define Statement has the following characteristics:

• 	 The Define Statement begins with the keyword DEFINE, followed by
a symbolic name and a list of one or more arguments enclosed in
parentheses () .

• 	 Arguments in the argument list are separated by commas (,). An
equals symbol (=) separates the argument list from an arithmetic
expression.

1. 	 If no arguments are listed, an evaluated function
behaves as a constant.

2. 	 The Compiler evaluates arithmetic expressions in
Define Statements and reduces them to numerical
values. No logic is generated for these expressions.

• 	 The statement ends with a semicolon (;).

• 	 Once an evaluated function has been defined, you can use it
throughout the TDF.

149

•• ••

MAX+PLUS /I AHDL

• 	 Evaluated functions can be defined in terms of previously defined
evaluated functions. For example, the following MIN_ARRAY_BOUND

function is based on the MAX function defined above:

DEFINE MIN_ARRAY_BOUND(x) = MAX(O,x) + 1;

Define StateITlents ITlust conforITl to the following rules:

• 	 An evaluated function can only be used after it has been defined.

• 	 Each evaluated function must be unique.

• 	 The evaluated function name cannot contain spaces. Use underscores
to separate "words" and improve readability.

• 	 The Define Statement can be used any number of times in a TDF.

• 	 The Define Statement must be placed outside of all other AHDL
sections .

Go to the following sources for more information:

"Constant Statement" on page 147 in this section
"Define Statement Syntax" in MAX+PLUS II Help
"Using Constants & Evaluated Functions" on page 19 in How to Use AHDL
"Using Numbers" on page 18 in How to Use AHDL

150

Section 4: Design Structure

Function Prototype Statement

Function Prototype Statements have the same function as symbols in
schematic design files. Both provide a shorthand description of a logic
function, listing its name and its input, output, and bidirectional ports.
Machine ports can also be used for functions that import or export state
machines.

However, megafunction and macrofunction input port default values are
not automatically assigned as they are in MAX+PLUS II Graphic Editor files;
you must assign them explicitly in the Subdesign Section of a TDF. You can
also assign a default value for bidirectional ports in the Subdesign Section.
However, output ports cannot be assigned a default value.

When you wish to implement an instance of a mega- or macrofunction, you
must ensure that its logic is defined in its own design file. You then use a
Function Prototype Statement to specify the ports of the function, and
implement an instance of the function with an in-line reference or an
Instance Declaration.

The following examples show Function Prototype Statements. The first is for
a parameterized function; the second is for an unparameterized function:

FUNCTION lpm_add_sub (cin, dataa[LPM_WIDTH-1 .. 0), datab[LPM_WIDTH­
1. . 0) , add_ sub)

WITH (LPM_WIDTH, LPM_REPRESENTATION, LPM_DIRECTION, ADDERTYPE,

ONE_INPUT_IS_CONSTANT)
RETURNS (resu1t[LPM_WIDTH- 1 .. 0), cout, overflow};

FUNCTION compare (a[3 . . 0), b[3 .. 0))

RETURNS (less, equal, greater);

The Function Prototype Statement has the following characteristics:

• 	 The keyword FUNCTION is followed by the name of the function. In
the examples shown above, the function names are Ipm_add_sub
and compare. _

• 	 A list of input ports to the function follows the name. In the first
example shown above, the input ports are cin, dataa [LPM_ WIDTH­

1 .. 0) , and datab [LPM_ WIDTH-1 .. °) ; in the second, they are a3,
a 2, a1, aO, b3, b2, bI, and bOo

15 1

MAX+PLUS /I AHDL

• In a parameterized function, the keyword WITH and a parameter
name list follow the input port list. The list is enclosed in parentheses
() ; the individual parameter names are separated by commas (,).

• The keyword RETURNS is followed by a list of output and
bidirectional ports of the function. In the first example shown above,
the output ports are res u l t, [LPM_ WIDTH-l .. 0 l, cout, and
overflow; in the second, they are less, equal, and greater.

• 	 Both the input and output lists are enclosed in parentheses; the
individual port names are separated by commas.

• 	 When you import or export a state machine, the Function Prototype
for the file must use a machine port (identified by the MACHINE

keyword) to indicate which inputs and outputs are state machines.
For example:

FUNCTION ss_def (clock, reset, count)
RETURNS (MACHI NE ss_out);

• 	 The Function Prototype Statement ends with a semicolon (;).

• 	 A Function Prototype Statement must be placed outside of the
Subdesign Section in a TDF, and it must be placed before the logic
function is instantiated in an in-line reference or Instance Declaration.

To implement an instance of a primitive, you also use an in-line reference or
an Instance Declaration. However, in contrast to mega- and macrofunctions,
primitive logic is predefined, so you do not need to define the primitive logic
in a separate design file. In addition, you do not need to use a Function
Prototype Statement unless you wish to change the order of the primitive
inputs.

The following example shows the default Function Prototype for a JKFF

primitive:

FUNCTION JKFF (j, k, clk, clm, pm)
RETURNS (q);

The following example shows a modified Function Prototype for a JKFF

primitive:

FUNCTION JKFF (k, j, clk, clm, pm)
RETURNS (q);

152

Section 4: Design Structure

As an alternative to using a Function Prototype Statement in a file, you can
use an Include Statement to call an Include File (.inc) that contains a
Function Prototype Statement. MAX+PLUS II also provides the Create
Default Include File command (File menu), which automatically creates an
Include File containing a Function Prototype for any design file .

Function Prototypes for all MAX+PLUS II mega functions and
macro functions are stored in Include Files in the
\maxplus2\max2lib \mega_lpm and \maxplus2\max2inc directories,
respectively. On-line help for all megafunctions, macro functions, and
primitives shows the Function Prototype for each Altera-provided function.
(On a UNIX workstation, the maxplus2 directory is a subdirectory of the
lusr directory.)

.,.
•• Go to the following sources for more information:

"Creating a Default Include File" in MAX+PLUS II Help
"Function Prototype Statement Syntax" in MAX+PLUS II Help
"Implementing a Hierarchical Project" on page 69 in How to Use AHDL
"Ports" on page 132 in Elements

153

•• ••

MAX+PLUS /I AHDL

Options Statement

The Options Statement sets the BITO option to specify whether the lowest
numbered bit of a group will be the most significant bit (MSB), the least
significant bit (LSB) or either, depending on its location.

The Options Statement begins with the keyword OPTIONS, followed by the
BITO option and setting. The Options Statement ends with a semicolon (;).

The following example shows an Options Statement:

OPTIONS BITO = MSB;

In this example, the lowest numbered bit of a group is specified as the MSB.
The other settings available are LSB and ANY.

An Options Statement at the beginning of a TDF sets the default bit-ordering
for the entire file. If the file is a top-level TDF, the Options Statement applies
to the entire project. If the file is lower in the project hierarchy, the Options
Statement specifies the bit-ordering only for that file .

Go to the following sources for more information:

"Defining Groups" on page 28 in How to Use AHDL
"Options Statement Syntax" in MAX+PLUS II Help

154

Section 4: Design Structure

Assert Statement

The Assert Statement allows you to test the validity of any arbitrary
expression that uses parameters, numbers, evaluated functions, or the used
or unused status of a port.

The following example shows an Assert Statement:

ASSERT (WIDTH > 0)
REPORT Width (%) must be a positive integer" WIDTH

SEVERITY ERROR

INTVALUE; -- for internal Altera use only

The Assert Statement has the following characteristics:

• -The keyword ASSERT is followed by an arithmetic expression that is
optionally enclosed in parentheses () . When the expression is false,
the assertion is activated and the message string following the
REPORT keyword is displayed in the Message Processor. If you do not
specify a condition, the assertion is always activated.

• 	 The REPORT keyword is followed by a message string and optional
message variables. The message string is enclosed in double quotation
marks (,,), and can include %characters that are substituted with the
values of optional message variables. If no REPORT keyword is used,
an assertion that is activated displays a generic message of the
following format in the Message Processor:

<severity>: Line <line number>, File <filename>: Assertion failed

• Optional message variables consist of one or more parameters,
evaluated functions, or arithmetic expressions. Multiple message
variables are separated by commas (,). The values of the message
variables are substituted, in order, for the %characters in the quoted
message string. In the example shown above, the value of WIDTH is
substituted for the %in the quoted message string.

• The optional SEVERITY keyword is followed by a severity level of
ERROR, WARNING, or INFO_ If no severity is specified, it defaults to ­
ERROR.

• 	 The HELP_ID keyword and help string are used in some Altera­
provided logic functions and are reserved for internal Altera use.

155

MAX+PLUS /I AHDL

• 	 The statement ends with a semicolon (;).

• 	 The Assert Statement can be used within the Logic Section or outside
of any other AHDL section .

•••• Go to the following sources for more information:

"Assert Statement Syntax" in MAX+PLUS II Help
"Naming a Boolean Operator or Comparator" on page 84 in How to Use

AHDL

156

Section 4: Design Structure

Subdesign Section

The Subdesign Section declares the input, output, and bidirectional ports of
theTDF.

The following example shows a Subdesign Section:

SUBDESIGN top
(

foo, bar, clkl, clk2 INPUT = vee;

aO , al, a2, a3, a4 OUTPUT;

b[7 .. 0] BIDIR;

The Subdesign Section has the following characteristics:

• 	 The keyword SUBDES I GN is followed by the subdesign name. The
subdesign name must be the same as the TDF filename. In this
example, the subdesign name is top.

• 	 The list of signals is enclosed in parentheses ().

• 	 Signal names are represented by symbolic names such as faa, and are
assigned a port type such as INPUT.

• 	 Signal names are separated by commas (,), are followed by a colon (:)
and a port type, and end with a semicolon (;).

• 	 The port type may be INPUT, OUTPUT, BIDIR, MACHINE INPUT, or
MACHINE OUTPUT. In the example shown above, the faa, bar, clkl,
and clk2 signals are inputs and aD, al, a2, a3, and a4 are outputs.
The bus b [7 . . D 1 is bidirectional.

• 	 The MACHINE INPUT and MACHINE OUTPUT keywords are used to
import and export state machines between TDFs and other design
files. However, MACHINE INPUT and MACHINE OUTPUT port types
cannot be used in a top-level TDF.

• 	 You can optionally assign a default value of GND or vee after the port
type (otherwise, no default value is assumed). In the example shown
above, VCC is the default value for the input signals unless they are
assigned in a higher-level file (assignments in a higher-level file take
precedence).

157

••

MAX+PLUS /I AHDL

In a top-level design file, INPUT, OUTPUT, and BIDIR port types represent
actual device pins. In a lower-level design file, all port types are the inputs
and outputs of the file, but not of the project itself . .,.
Go to the following sources for more information:

"Importing & Exporting State Machines" on page 77 in How to Use AHDL
"Ports" on page 132 in Elements
"Subdesign Section Syntax" in MAX+PLUS II Help

158

Section 4: Design Structure

Variable Section

The optional Variable Section is used to declare and/or generate any
variables used in the Logic Section. AHDL variables are similar to variables
in a high-level programming language; they are used to define buried
(internal) logic.

The following example shows a Variable Section:

VARIABLE
a, b, c NODE;
temp halfadd;
tsnode TRI_ STATE_NODE;
IF DEVICE_ FAMI LY == "FLEXBOOO" GENERATE

Bkadder flex_adder;

d,e NODE;

ELSE GENERATE

7kadder ptenn_adder;

f,g NODE ;

END GENERATE;

The Variable Section can include one or more of the following statements or
constructs:

• 	 Instance Declaration 160

• 	 Node Declaration 162

• 	 Register Declaration 163

• 	 State Machine Declaration 165

• 	 Machine Alias Declaration 166

II:? 	 The Variable Section can also contain If Generate Statements,
which can be used to generate Instance, Node, Register, State
Machine, and Machine Alias Declarations.

The Variable Section has the following characteristics:

• 	 The keyword VARIABLE begins the Variable Section.

• 	 User-defined, symbolic variable names are separated from each other
by commas (,) and from the variable type by a colon (:). The variable
type can be NODE, TRI_STATE_ NODE, <primitive>, <megafunction>,
<macrofunction>, or <state machine declaration>. In the example shown
above, the internal variables are a, b, and c of type NODE; temp, an
instance of the macrofunction halfadd; and tsnode, an instance of
type TRI_ STATE_ NODE.

159

•• ••

MAX+PLUS /I AHDL

• Each entry in the list of variables ends with a semicolon (;).

lG? 	 Compiler-generated names that contain the tilde (-) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project's Assignment & Configuration File (.ad). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

Go to the following sources for more information:

"If Generate Statement" on page 178 in this section
"Variable Section Syntax" in MAX+PLUS II Help

Instance Declaration

Each individual usage, or instance, of a particular logic function can be
declared as a variable with an Instance Declaration in the Variable Section.
After it is declared, you can use the input and output ports of each logic
function as ports in the Logic Section.

When you wish to implement an instance of a megafunction or
macrofunction, you must ensure that its logic is defined in its own design
file. You then use a Function Prototype Statement to specify the ports and
parameters of the function, and implement an instance of the function with
an in-line reference or an Instance Declaration.

To implement an instance of a primitive, you also use an in-line reference or
an Instance Declaration. However, in contrast to mega- and macrofunctions,
primitive logic is predefined, so you do not need to define the primitive logic
in a separate design file. In most cases, a Function Prototype Statement is not
needed. See "Function Prototype Statement" on page 151 for more
information.

To use an Instance Declaration, you declare a variable of type <primitive>,
<megafunction>, or <macrofunction> in the Variable Section. For a
parameterized mega- or macrofunction, the declaration includes a list of the
parameters used by the instance and optional parameter values. Once you
declare the variable, you can use ports of the instance of the function in the
following format:

<instance name> . <port name>

160

••
.,.

Section 4: Design Structure

For example, if you wish to incorporate the compare and adder functions
(taken from the example in "Function Prototype Statement" on page 151)
into your current TDF, make the following Instance Declarations in the
Variable Section:

VARIABLE
comp compare;
adder lpID_add_sub WITH (LPM_WIDTH = 8)

The variables comp and adder are instances of the functions compare and
lpm_add_ sub, which have the following inputs and outputs:

a[3 .. 0], b[3 .. 0] INPUT; inputs to compare
less, equal, greater OUTPUT; outputs of compare

a[8 .. 1], b[8 .. 1] INPUT; inputs of adder
sum[8 .. 1] OUTPUT; outputs of adder

You can therefore use the following ports of comp and adder in the current
Logic Section:

comp.a[] , comp .b[],comp.less, comp.equal,comp.greater

adder.dataa[],adder.datab[],adder.result[]

These ports can be used in any behavioral statement in the same way as
nodes.

Since all primitives have only one output, you can use the name of a
primitive without a port name (e.g., without. q or . ou t) on the right side of
an equation if you want to use its output. Similarly, for all primitives that
have a single primary input (i.e., all primitives except JKFF, JKFFE, SRFF,
and SRFFE), you can use the name of a primitive without a port name (e.g.,
without . d, . t, or . in) on the left side of an equation to connect the
primitive to its primary input. See "Register Declaration" on page 163 for
more information.

When MAX+PLUS II compiles a project, the Compiler searches for
parameter values for each instance of a mega- or macrofunction in the
parameter value search order described on page 142 .

Go to the following sources for more information:

"Creating a Default Include File" in MAX+PLUS II Help
"If Generate Statement" on page 178 in this section
"Implementing a Hierarchical Project" on page 69 in How to Use AHDL

161

MAX+PLUS /I AHDL

"Primitives," "Megafunctions," "Old-Style Macrofunctions," and "Ports"
beginning on page 113 in Elements

"Variable Section Syntax" in MAX+PLUS II Help

Node Declaration

AHDL supports two types of nodes: NODE and TRI_STATE_ NODE.

Both types are all-purpose variable types used to store signals that have not
been declared in the Subdesign Section or elsewhere in the Variable Section.
Therefore, a variable of either type can be used on the left or right side of an
equation.

Both NODE and TRI_STATE_ NODE are similar to the INPUT, OUTPUT, and
BIDIR port types of the Subdesign Section, in that they represent a single
wire that propagates signals.

W 	 Compiler-generated names that contain the tilde (-) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project's Assignment & Configuration File (.ad). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

The following example shows a Node Declaration:

SUBDESIGN node_ex
(

a, oe INPUT;

b OUTPUT;

C BIDIR;

VARIABLE

b NODE;

t

BEGIN
b = a;

out = b % therefore out = a %
t = TRI (a, oe);
t = C; % t is bus of c and tri_stated a %

END;

162

••

Section 4: Design Structure

NODE and TRI_STATE_NODE differ in that multiple assignments to them
yield different results:

• 	 Multiple assignments to nodes of type NODE tie the signals together by
wired-AND or wired-OR functions . The default values for variables
declared in Defaults Statements determine the behavior: a VCC default
produces a wired-AND function; a GND default produces a wired-OR
function.

• 	 Multiple assignments to a TRI_ STATE_NODE tie the signals to the
same node.

• 	 If only one variable is assigned to a TRI_ STATE_NODE, it is treated as
NODE.

The following primitives and signals can feed TRI_STATE_NODE nodes:

• 	 TRI primitives
• 	 I NPUT ports from a design file at a higher hierarchical level
• 	 OUTPUT and BI DIR ports from a design file at a lower hierarchical

level
• 	 BIDIR ports of the current file
• 	 Other nodes declared as TRI_ STATE_NODE types in the current file ...
Go to the following sources for more information:

"Declaring Nodes" on page 27 in How to Use AHDL
"If Generate Statement" on page 178 in this section
"Implementing Tri-State Buses" in How to Use AHDL
"Variable Section Syntax" in MAX+PLUS II Help

Register Declaration

A Register Declaration is used to declare registers, including D, T, JK, and SR
flipflops (DFF, DFFE, TFF, TFFE, JKFF, JKFFE, SRFF, and SRFFE) and
latches (LATCH). The following example shows a Register Declaration:

VARIABLE

ff : TFF;

The name of this instance of a T flipflop is f f . After making this declaration,
you can use the input and output ports of the instance of f f in the format
<instance name> . <port name>:

163

•• ••

MAX+PLUS II AHDL

ff.t
ff.clk

ff.clrn

fLprn

fLq

Since all primitives have only one output, you can use the name of an
instance of a primitive without appending a port name (e.g., without. q or
. au t) on the right side of an equation if you want to use its output.
Similarly, for all primitives that have a single primary input, i.e., all
primitives except JKFF, JKFFE, SRFF, and SRFFE, you can use the name of
an instance of a primitive without a port name (e.g., without . d, . t, or . in)
on the left side of an equation to connect the primitive to its primary input.

For example, the DFF Function Prototype is FUNCTION DFF (d, elk ,

elrn, prn) RETURNS (q);. In the following TDF excerpt, a = b is
equivalent to a . d = b. q :

VARIABLE

a, b : DFF;

BEGIN

a = b;

END;

Go to the following sources for more information:

"Declaring Registered Outputs" on page 50 in How to Use AHDL
"Declaring Registers" on page 47 in How to Use AHDL
"If Generate Statement" on page 178 in this section
"Ports" on page 132 and "Primitives" on page 113 in Elements
"Variable Section Syntax" in MAX+PLUS II Help

164

Section 4: Design Structure

State Machine Declaration

You create a state machine by declaring the name of the state machine, its
states, and, optionally, its bits in the Variable Section.

The following example shows a State Machine Declaration:

VARIABLE
55: 	 MACHINE

OF BITS (q1, q2, q3)

WITH STATES (

51 = 	 B"OOO",
52 	 B"010",
53 = B"lll");

The state machine name is 55. The state bits q1, q2, and q3 are outputs of
registers for this machine. The states of this state machine are 81, 82, and 53,
each of which is assigned a numerical state value for the state bits ql, q2,
and q3.

A State Machine Declaration has the following characteristics:

• 	 The state machine name is a symbolic name. In the example shown
above, the state machine name is 88.

• 	 The state machine name is followed by a colon (:) and the keyword
MACHINE.

• 	 The State Machine Declaration must include a list of states, and can
include a list of state bit names.

• 	 Optional state bits are specified with the keywords OF BITS,

followed by a comma-separated list of symbolic names; the list must
be enclosed in parentheses () . The example shown above specifies the
state bits q1, q2, and q3.

• 	 States are specified by the keywords WITH STATES, followed by a ~
comma-separated list of symbolic names; the list must also be
enclosed in parentheses. The example shown above specifies the states
81,82, and 83.

• 	 The first state listed in the WITH STATES clause is the Reset state for
the state machine.

165

MAX+PLUS /I AHDL

.,.
••

• 	 The state names may be optionally assigned to a value with an equals
symbol (=) followed by a numerical value. In the example shown
above, 81 is assigned to B" 0 0 0",82 is assigned to B" 010", and 83 is
assigned to B " 111 " .

• 	 You can use a Machine Alias Declaration, as described below, to
assign an alternate name to a state machine that is declared in the
current file or imported from another file.

• 	 A semicolon (;) ends a State Machine Declaration.

IW 	 Each state of a state machine is represented by a unique pattern of
high and low flipflop output signals. The state bits are the
flipflops required by the machine to store the states. The number
of states has the following relationship to the number of state bits
in a state machine:

<number of states> <= 2/\<number of state bits>

Go to the following sources for more information:

"Assigning State Machine Bits & Values" on page 58 in How to Use AHDL
"If Generate Statement" on page 178 in this section
"Importing & Exporting State Machines" on page 77 in How to Use AHDL
"Numbers in AHDL" on page 102 in Elements
"Recovering From Illegal States" on page 66 in How to Use AHDL
"Instance Declaration Syntax" and "Variable Section Syntax" in

MAX+PLUS II Help
"State Machines" on page 54 in How to Use AHDL
"Variable Statement Syntax" in MAX+PLUS II Help

Machine Alias Declaration

You can rename a state machine with a temporary name using a Machine
Alias Declaration in the Variable Section. You can use a machine alias in the
file where the state machine is created, or in a file that uses a MACHINE

INPUT port to import a state machine. You can then use this name instead of
the original state machine name. For example:

166

•• ••

Section 4: Design Structure

FUNCTION ss_def (clock, reset, count)

RETURNS (MACHINE ss_out);

VARIABLE

ss : MACHINE;

BEGIN

ss = ss_def (sys_clk, reset, !hold);

IF ss 	== sO THEN

ELSIF 	ss s1 THEN

END;

A Machine Alias Declaration has the following characteristics:

• 	 The machine alias is a symbolic name. It is followed by a colon (:) and
the keyword MACHINE. In the example shown above, 55 is the
machine alias.

• 	 You can import and export state machines between TDFs and other
design files by specifying an input or output port as MACHINE INPUT

or MACHINE OUTPUT in the Subdesign Section.

• 	 When you import or export a state machine, the Function Prototype
that represents the file must indicate which inputs and outputs are
state machines. In the example shown above, 55_ out is the state
machine name.

• A semicolon (;) ends a Machine Alias Declaration.

[(? MACHINE INPUT and MACHINE OUTPUT port types cannot be
used in a top-level TDF.

Go to the following sources for more information:

"Importing & Exporting State Machines" on page 77 in How to Use AHDL
''Variable Section Syntax" in MAX+PLUS II Help

167

MAX+PLUS /I AHDL

logic Section

The Logic Section specifies the logical operations of the TDF and is the body
of a TDF. This section is required. One or more of the following statements
or constructs may be used in this section:

• Boolean Equations 168

• Boolean Control Equations .. 171

• Case Statement 172

• Defaults Statement 173

• If Then Statement 176

• If Generate Statement ... 178

• For Generate Statement 179

• Truth Table Statement 183

W 	 The Logic Section can also include Assert Statements. Go to
"Assert Statement" on page 155 for more information.

The BEGIN and END keywords enclose the Logic Section. A semicolon (i)
follows the END keyword and terminates this section. The Defaults
Statement must be the first statement in the section.

AHDL is a concurrent language. The Compiler evaluates all behavior
specified in the Logic Section of a TDF at the same time rather than
sequentially. Equations that assign multiple values to the same AHDL node
of type NODE or variable are logically ORed. See "Defaults Statement" on
page 173 for more information.

Boolean Equations

Boolean equations are used in the Logic Section of your AHDL TDF to
represent the connection of nodes, the flow of inputs into and the flow of
outputs from input and output pins, primitives, megafunctions,
macrofunctions, and state machines.

The following example shows a complex Boolean equation:

a[] = ((e[] & - B"OOllOl") + e[6 .. 1]) # (p, q, r, s, t, v) ;

168

Section 4: Design Structure

The left side of the equation can be a symbolic, port, or group name. You can
use the NOT (!) operator to invert any item on the left. The right side of the
equation consists of a Boolean expression, which is evaluated as described
in "Boolean Operator & Comparator Priorities" on page 112 in Elements.

The equals symbol (=) is used in Boolean equations to indicate that the result
of the Boolean expression on the right side is the source of the symbolic node
or group on the left side. The single equals symbol differs from the double
equals symbol (==), which is used as a comparator.

In the example shown above, the Boolean expression on the right is
evaluated according to the Boolean equation priority rules:

1. 	 The binary number B " 001101 " is negated and becomes B" 110011 " .
The unary minus (-) has first priority.

2. 	 B" 110011" is anded (&) with the group c [] . This expression has
second priority because it is enclosed in parentheses.

3. 	 The result of the group expression in step 2 is added to the group
e [6 .. 1].

4. 	 The result of the expression in step 3 is ORed (#) with the group (p,

q, r, S , t , v). This expression has last priority.

The final result is assigned to the group a [].

For the sample equation shown above to be legal, the number of bits in the
group on the left side of the equation must be evenly divisible by the number
of bits in the group on the right side of the equation. The bits on the left side
of the equation are mapped to the right side of the equation in order.

The following rules apply to Boolean equations:

• 	 Multiple assignments to a variable are logically ORed (#), except
when the default for the variable is vee.

• 	 If the number of nodes on the left side of the Boolean equation equals
the number of nodes on the right, a one-to-one correspondence exists.

• If a single node, GND, or vee on the right side of an equation is
assigned to a group, the node or constant is duplicated to match the
size of the group. For example: (a, b) = e; is the same as
a = e; b = e;

• 	 If both the left and right sides of the equation are groups of the same
size, each member on the right is assigned to the member on the left

169

MAX+PLUS /I AHDL

that corresponds in position. For example: (a, b) (c, d); is the
same as a = c; b = d;

W 	 When you add two groups together on the right side of a Boolean
equation with the + operator, you can place a 0 on the left of each
group to sign-extend the width of the group. This method
provides an extra bit of information to the group on the left side of
the equation that can be used as a carry-out signal. In the
following example, the groups count [7 .. 0 1 and del ta [7 .. 0 1
are sign-extended with zeros to provide information to the cout
carry-out signal:

cout, 	answer[7 . . 0]) = (0, count[7 .. 0]) + (0, delta[7 .. 0])

• 	 If the left and right sides of an equation have groups of different sizes,
the number of bits in the group on the left must be evenly divisible by
the number of bits in the group on the right. The bits on the left side of
the equation are mapped to the right side of the equation, in order. The
following equation is legal:

a[4 .. 1] = b[2 .. 1]

In this equation, the bits are mapped as follows:

a4 	 b2

a3 b1

a2 b2

a1 = b1

• 	 A group of nodes or numbers cannot be assigned to a single node.

• 	 If a number on the right side of an equation is assigned to a group, the
number is truncated or sign-extended to match the size of the group.
If any significant bits are truncated, the Compiler issues an error
message. Each member on the right is assigned to the member on the
left with the corresponding position. For example, (a, b) = 1; is
the same as a = 0; b = 1;

• 	 Commas can be used to hold the places of unassigned group members
in a Boolean equation. The following example shows commas that
hold the places of two members of the group (a, b, c, d) :

(a, , c,) = B"1011";

In this example, both a and c are assigned the value 1.

170

•• ••

Section 4: Design Structure

• A semicolon (;) ends each equation .

Go to the following sources for more information:

"Boolean Equation Syntax" in MAX+PLUS II Help
"Boolean Expressions" on page 106 in Elements
"Boolean Operator & Comparator Priorities" on page 112 in Elements
"Defaults Statement" on page 173 in this section
"Implementing Boolean Expressions & Equations" on page 25 in How to Use

AHDL

Boolean Control Equations

Control equations are Boolean equations used in the Logic Section to set up
the state machine Clock, Reset, and Clock Enable signals.

The following examples show Boolean control equations:

ss.elk = clkl;

sS.reset = a & b;

sS.ena = clklena;

Boolean control equations have the following characteristics:

• 	 You can define the Clock, Reset, and Clock Enable inputs of each state
machine in the format <state machine name>. <port name>. In the
example above, these inputs are defined for the state machine ss.

• 	 You can use the state machine name declared in the State Machine
Declaration as the state machine name in the control equations.

• 	 The Clock signal <state machine name>. elk must always be assigned
a value.

• 	 If the start state of the state machine has been assigned a non-zero
value, then the Reset signal <state machine name>. reset assignment
is required; otherwise, it is optional.

• 	 Assigning the Clock Enable signal <state machine name> . ena to a
value is always optional.

• 	 A semicolon (;) ends each equation.

171

MAX+PLUS /I AHDL

.,.
•• Go to the following sources for more information:

"Boolean Control Equation Syntax" in MAX+PLUS II Help
"Setting Clock, Reset & Enable Signals" on page 57 in How to Use AHDL
"State Machines" on page 54 in How to Use AHDL

Case Statement

The Case Statement lists the alternatives that may be activated depending on
the value of the variable, group, or expression following the CASE keyword.

The following example shows a Case Statement:

CASE 	 f[].q IS

WHEN H"OO" =>

addr[] = 0;

s = a & b;

WHEN H"Ol" =>

count[].d = count[].q + 1;

WHEN 	 H"02I1, H"03", H II 04" = >

f [3 .. 0] . d = addr [4 . . 1] ;

WHEN OTHERS =>

f[].d = f[].q;

END CASE;

The Case Statement has the following characteristics:

• 	 The keywords CAS E and IS enclose a Boolean expression, group, or
state machine (in the example shown above, f [l . q).

• 	 The Case Statement is terminated by the keywords END CASE and a
semicolon (;).

• 	 One or more unique alternatives are listed in the WHEN clauses in the
body of the Case Statement. Each WHEN clause begins with the
keyword WHEN.

• 	 In each alternative WHEN clause, one or more comma-separated
constant values are followed by an arrow symbol (=». In this
example, the H" 0 2 " , H" 0 3 " , and H" 0 4" constant values are listed in
a single WHEN clause; the H" 0 0" and H" 0 1 " constant values are listed
in separate WHEN clauses.

172

••

Section 4: Design Structure

• 	 If the Boolean expression following the CASE keyword evaluates to a
specific alternative, all the behavioral statements following the arrow
are activated. In the example shown above, if f [] . q evaluates to
H"Ol",theBooleanequationcQunt[].d = cQunt[].q + lis
activated.

• 	 When no other alternative is true, the optional keywords WHEN
OTHERS define the default alternative. In the example shown above, if
f [] . q does not equal H" 00" , H" 01", or H" CF ", the Boolean equation
f [] . d = f [] . q is activated.

• 	 The Defaults Statement defines the default behavior if the WHEN
OTHERS clause is not used.

• 	 If the Case Statement is used to define the transitions of a state
machine, the keywords WHEN OTHERS cannot be used to recover from
illegal states of an n-bit state machine unless the state machine
contains exactly 2"n states.

• 	 Each behavioral statement ends with a semicolon (;) . .,.
Go to the following sources for more information:

"Case Statement Syntax" in MAX+PLUS II Help
"Implementing Conditional Logic" on page 31 in How to Use AHDL
"Recovering From Illegal States" on page 66 in How to Use AHDL

The following topics in How to Use AHDLshow additional examples of Case
Statements:

"Implementing State Machines" on page 55
"Setting Clock, Reset & Enable Signals" on page 57
"Importing & Exporting State Machines" on page 77

Defaults Statement

The Defaults Statement allows you to specify default values for variables
used in Truth Table, If Then, and Case Statements. Since active-high signals
automatically default to GND, Defaults Statements are required only for
active-low signals.

~ 	 You should not confuse default values for variables with default
values for ports that are assigned in the Subdesign Section.

173

MAX+PLUS /I AHDL

The following example shows a Defaults Statement:

BEGIN
DEFAULTS

a = VCC;
END DEFAULTS;
IF y & z THEN

a = GND; % a is active low %
END IF;

END;

The Defaults Statement has the following characteristics:

• 	 It is enclosed by the keywords DEFAULTS and END DEFAULTS and
ends with a semicolon (i).

• 	 The body of the Defaults Statement consists of one or more Boolean
equations that assign constant values to variables. In the example
shown above, the Defaults Statement assigns the default value vee to
the variable a.

• 	 Each equation ends with a semicolon (i).

• 	 The Defaults Statement is activated if a variable that follows it is
undefined for certain conditions. In the example shown above, the
variable a is undefined when y or z is a logical low, so the equation
(a = vee) in the Defaults Statement is activated.

The following rules apply to Defaults Statements:

• 	 Only one Defaults Statement is allowed in the Logic Section, and it
must be the first statement after the BEGIN keyword.

• 	 If a single variable is assigned a value more than once in a Defaults
Statement, all assignments but the last are ignored.

• 	 A Defaults Statement cannot be used to set a default value of X (don't
care) to a variable.

174

Section 4: Design Structure

• 	 Multiple assignments to a node of the type NODE variable outside of a
Defaults Statement are logically ORed, except when the default for the
variable is vee. The following TDF excerpt illustrates the default
values for two variables: a with default value GND, and bn with
default value vee:

BEGIN
DEFAULTS

a = GND;

bn = vee;

END DEFAULTS;
IF 	e1 THEN

a = a1;

bn = b1n;

END IF;
IF 	e2 THEN

a = a2;

bn = b2n;

END IF;

END '

This example is equivalent to the following equations:

a = e1 & a1 # e2 & a2;

bn = (! e1 # b1n) & (! e2 # b2n);

• 	 Active-low variables that are assigned more than once should be
given a default value of vee. In the following example, reg [1 . clrn
is given a default value of vee:

SUBDESIGN Sbcount
(

drS . . 1] INPUT;

elk INPUT;

elr INPUT;

sys_reset INPUT;

enable INPUT;

load INPUT;

q[S .. 1] OUTPUT;

VARIABLE

reg[S . . 1] DFF;

BEGIN

DEFAULTS

reg[] .elm = vee;

END DEFAULTS;

175

MAX+PLUS /I AHDL

reg[] .clk = clk;
q[] = reg[];
IF sys_ reset # clr THEN

reg[] .clm = GND;
END IF;

!reg[] .pm (load & d[]) & !clr;
!reg[] .clm = load & !d[];

reg[] = reg[] + (0, enable);
END;

.,.
•• Go to the following sources for more information:

"Defaults Statement Syntax" in MAX+PLUS II Help
"Using Default Values for Variables" on page 39 in How to Use AHDL

If Then Statement

The If Then Statement lists a series of behavioral statements to be activated
after the positive evaluation of one or more Boolean expressions.

The following example shows an If Then Statement:

IF 	all == b[] THEN
c[8 .. 1] = H "77";
addr[3 .. 1] = f[3 .. 1].q;
f[].d = addr[] + 1;

ELSIF g3 $ g4 THEN
f [] . d = addr [] ;

ELSE
d = VCC;

END IF;

The If Then Statement has the following characteristics:

• 	 The keywords IF and THEN enclose the Boolean expression to be
evaluated and are followed by one or more behavioral statements,
each of which ends with a semicolon (i).

• 	 The keywords ELSIF and THEN enclose any additional Boolean
expressions to be evaluated, and are also followed by one or more
behavioral statements. These optional statements can be repeated.

176

Section 4: Design Structure

• 	 The behavioral statement(s) following the keyword THEN are
activated for the first expression that evaluates to true.

• 	 The keyword ELSE followed by one or more behavioral statements is
similar to the WHEN OTHERS default alternative of the Case Statement.
If none of the previously evaluated Boolean equations is true, then the
behavioral statement(s) following ELSE are activated. In the example
shown above, if neither expression evaluates to true, the equation d =
vee is activated. The ELSE clause is also optional.

• 	 Expressions following IF and ELSIF keywords (in the example
.shown above, a [l == b [l and g3 $ g4) are evaluated concurrently.

• 	 The keywords END IF and a semicolon (;) end the If Then Statement.

• 	 An If Then Statement may generate logic that is too complex for the
MAX+PLUS II Compiler. If an If Then Statement contains complex
expressions, then the inversion of each expression is likely to be even
more complex. In the following example, if a and b are complex
expressions, then the inversion of each expression is likely to be even
more complex.

If Then Statement: Compiler Interpretation:

IF a THEN IF a THEN

c = d; c = d;

END IF;

ELSIF b THEN IF !a & b THEN

c = ei c = e ;

END IF;

ELSE IF !a & !b THEN

c = f; c = f;

END IF; 	 END IF;

W 	 Unlike IfThen Statements, which can evaluate only Boolean
expressions, If Generate Statements can evaluate the
superset of arithmetic expressions. The essential difference
between an If Then Statement and an If Generate Statement
is that the former is evaluated in hardware (silicon),
whereas the latter is evaluated when the design is compiled.

177

MAX+PLUS /I AHDL

•••• Go to the following sources for more information:

"Boolean Equations" on page 168 in this section
"If Then Statement Syntax" in MAX+PLUS II Help
"If Then Statement vs. Case Statement" on page 34 in How to Use AHDL
"Implementing Conditional Logic" on page 31 in How to Use AHDL

The following topics in How to Use AHDL show additional examples of
If Then Statements:

"Implementing Active-Low Logic" on page 41

"Creating Counters" on page 51

If Generate Statement

The If Generate Statement lists a series of behavioral statements that are
activated after the positive evaluation of an arithmetic expression.

The following example shows an If Generate Statement:

IF DEVICE_ FAMILY == "FLEX8K" GENERATE

e[) = 8kadder(a[), b[), ein);

ELSE GENERATE

e[) = otheradder(a[), b[), ein) ;

END GENERATE;

The If Generate Statement has the following characteristics:

• 	 The keywords IF and GENERATE enclose the arithmetic expression to
be evaluated and are followed by one or more behavioral statements,
each of which ends with a semicolon (;). These statements are
activated if the expression is true.

• 	 The keywords ELSE GENERATE are followed by one or more
behavioral statements, each of which ends with a semicolon. These
statements are activated if the arithmetic expression is false .

• 	 The keywords END GENERATE and a semicolon (;) end the If
Generate Statement.

• 	 The If Generate Statement can be used in the Logic Section or in the
Variable Section.

178

••

Section 4: Design Structure

.,.

1. 	 Unlike IfThen Statements, which can evaluate only Boolean
expressions, If Generate Statements can evaluate the
superset of arithmetic expressions. The essential difference
between an If Then Statement and an If Generate Statement
is that the former is evaluated in hardware (silicon),
whereas the latter is evaluated when the design is compiled.

2. 	 The If Generate Statement is especially useful with For
Generate Statements that handle special cases differently,
for example, the least significant bit of a multi-stage
multiplier. It can also be used to test parameter values, as
shown in the example above.

Go to the following sources for more information:

"If Generate Statement Syntax" in MAX+PLUS II Help
"Using Conditionally Generated Logic" on page 87 in How to Use AHDL
"Naming a Boolean Operator or Comparator" on page 84 in How to Use

AHDL

For Generate Statement

The following example shows an iterative For Generate Statement:

CONSTANT NUM_OF_ADDERS = 8;
SUBDESIGN 4gentst
(

a[NUM_OF_ADDERS .. 1], b[NUM_OF_ADDERS .. 1], ein INPUT;
e[NUM_OF_ADDERS .. 1], eout OUTPUT;

VARIABLE
earryout[(NUM_OF_ADDERS+1) .. 1] NODE;

BEGIN
earryout[l] = ein;
FOR i IN 1 TO NUM_OF_ADDERS GENERATE

e[i] 	= ali] $ b[i] $ earryout[i] ; % Full Adder %
carryout[i+l] = a[i] & b[i] # carryout[i] & (a[i] $ brill;

END GENERATE;
cout = carryout[NUM_OF_ADDERS+l];

END;

179

MAX+PLUS /I AHDL

The For Generate Statement has the following characteristics:

• 	 The keywords FOR and GENERATE enclose the following items:

1. 	 A temporary variable name, which consists of a symbolic name
that is used only within the context of the For Generate
Statement, i.e., the variable ceases to exist after the Compiler
processes the statement. In the example shown above, the
variable is i. This variable name cannot be a constant,
parameter, or node name that is used elsewhere in the project.

2. 	 The word IN, which is followed by a range delimited by two
arithmetic expressions. The arithmetic expressions are
separated by the TO keyword. In the example shown above, the
arithmetic expressions are 1 and NUM_ OF_ADDERS. The range
endpoints can consist of expressions containing only constants
and parameters; variables are not required.

• 	 The GENERATE keyword is followed by one or more logic statements,
each of which ends with a semicolon (;).

• 	 The keywords END GENERATE and a semicolon (;) end the For
Generate Statement. ...

•• Go to the following sources for more infomation:

"Arithmetic Expressions" on page 103 in Elements
"For Generate Statement Syntax" in MAX+PLUS II Help
"Using Iteratively Generated Logic" on page 86 in How to Use AHDL

In-Line logic Function Reference

An in-line logic function reference is a Boolean equation that implements a
logic function. It is a shorthand method for implementing a logic function
that uses only one line of the Logic Section and does not require a Variable
Declaration.

When you wish to implement an instance of a megafunction or
macrofunction, you must ensure that its logic is defined in its own design
file. You then use a Function Prototype Statement of the function, and
implement an instance of the function with an in-line reference or an
Instance Declaration.

180

Section 4: Design Structure

To implement an instance of a primitive, you also use an in-line reference or
an Instance Declaration. However, in contrast to mega- and macrofunctions,
primitive logic is predefined, so you do not need to define the primitive logic
in a separate design file. In most cases, a Function Prototype Statement is not
needed. See "Function Prototype Statement" on page 151 for more
information.

The following examples show the Function Prototypes for the compare and
lpm_add_sub functions. The compare function has input ports a [3 .. 01
and b [3 .. 01 and output ports less, equal, and greater; the
lpm_add_ sub function has the input ports dataa [LPM_WIDTH-1 .. 01 ,
dataa [LPM_WIDTH- 1 .. 01, c in, and add_ sub, and output ports
result [LPM_WIDTH- l .. 01, cout, and overflow.

FUNCTION compare (a[3 . . 0], b[3 .. 0])
RETURNS (less, equal, greater);

FUNCTION lpffi_add_sub (cin, dataa[LPM_WIDTH- l .. O],
datab[LPM_WIDTH- l . . O], add_ sub)
WITH (LPM_WIDTH, LPM_REPRESENTATION)
RETURNS (result[LPM_WIDTH- l .. O], cout, overflow);

The in-line logic function references for the compare and lpm_ add_sub
functions appear on the right side of the equations below:

(clockwise, , counterclockwise) = compare (position[], target[]) ;
sum[] = lpffi_add_sub (.datab[] = b[], .dataa[] = a[])

WITH (LPM_WIDTH = 8)
RETURNS (.result[]);

The in-line reference for a logic function has the following characteristics:

• 	 The function name on the right side of the equals symbol (=) is
followed by a signal list enclosed in parentheses (), containing
symbolic names, decimal numbers, or groups, separated by commas
(,). These items correspond to the input ports of the function.

• 	 In the signal list, port names can be given through positional port
association or named port association:

In the compare example shown above, the a [3 .. 01 and
b [3 . . 01 inputs of compare are connected to the variables
named posi tion [1 and target [1, respectively, through
positional port association. When you use positional port
association, you can use commas as placeholders for outputs
that are not connected to a variable. In compare, the equal
output is not connected to any variable, so an extra comma is

181

MAX+PLUS " AHDL

needed to hold its place in the group on the left side of the
equation.

In the lpm_add_ sub example shown above, the . datab [1
and. dataa [1 inputs of lpm_add_sub are connected to the
variables b [1 and a [1 , respectively, through named port
association. Port names are connected to variables with an
equals symbol (=).

1. 	 Port names must have the format . <port name> on
both the left and right sides of in-line references that
use named port association.

2. 	 Named port association is supported only on the
right side of an in-line reference. The left side of an in­
line reference is always connected to variables by
positional port association.

• 	 In a parameterized function, the keyword WITH and parameter name
list follows the input port list. The list is enclosed in parentheses;
parameter names are separated by commas. Only the parameters used
by the instance are declared; optional parameter values are separated
from parameter names by an equals symbol. In the lpm_add_ sub
example shown above, the LPM_WIDTH parameter is assigned a value
of 8. If no parameter values are assigned in the in-line reference, the
Compiler searches for them in the parameter value search order
described on page 142.

• 	 On the left side of the in-line reference, the outputs of the function are
connected to variables. In the compare example shown above, the
function's less and greater outputs are connected to the variables
clockwise and counterclockwise, respectively, through
positional port association. Similarly, in the lpm_add_ sub example,
the function's sum [1 outputs are connected through positional port
association.

• 	 The values of the variables, which are determined elsewhere in the
Logic Section, feed the associated inputs and outputs. In the compare
example shown above, the values of posi tion [1 and target [1
feed the inputs of compare. The values of output ports less and
greater feed clockwise and counterclockwise, respectively.
These variables may be used in other operations in the Logic Section.

182

••

Section 4: Design Structure

·,.
Go to the following sources for more information:

"Boolean Equations" on page 168 in this section
"Function Prototype Statement" on page 151 in this section
"Implementing a Hierarchical Project" on page 69 in How to Use AHDL
"In-Line Logic Function Reference Syntax" in MAX+PLUS II Help

The following topics in How to Use AHDL show additional examples of in­
line references:

"Implementing Bidirectional Pins" on page 43
"Using Altera-Provided Unparameterized Functions" on page 69
"Using Altera-Provided Parameterized Functions" on page 73
"Implementing LCELL & SOFT Primitives" on page 81

Truth Table Statement

The Truth Table Statement is used to specify combinatorial logic or state
machine behavior. In an AHDL truth table, each entry in the table contains
a combination of input values that will produce specified output values.
These output values can be used as feedback to specify state transitions and
outputs of state machines.

The following example shows a Truth Table Statement:

TABLE
aO, f[4 . . 1J.q => f[4 .. 1J.d, control;

0, B"OOOO" => B"OOOl" , 1 ·
0, B"0100" => B"0010" , 0;
1 , B"OXXX" => B"0100" , 0 ;
X, B"llll" => B"0101", 1 · ,

END TABLE;

The Truth Table Statement has the following characteristics:

• 	 The truth table heading consists of the keyword TABLE, followed by a
comma-separated list of table inputs, an arrow symbol (=» , and a
comma-separated list of table outputs. The heading ends with a
semicolon (;).

183

MAX+PLUS /I AHDL

• 	 Truth table inputs are Boolean expressions; truth table outputs are
variables. In the example shown above, the input signals are aO and
f [4 .. 1] . q; the output signals are f [4 .. 1] . d and control.

• 	 The body of the table consists of one or more entries, each spanning
one or more lines and ending with a semicolon.

• 	 An entry consists of a comma-separated list of inputs and a comma­
separated list of numerical outputs. The inputs and outputs are
separated by = > .

• 	 Each signal has a one-to-one correspondence with the values in each
entry. Thus, the first entry in the example shown above signifies that
whenaO has the value 0 and f [4 .. 1] .qhasthevalueB"OOOO",
then f [4 .. 1] . d will have the value B" 0001", and control will
have the value 1.

• 	 Input and output values can be numbers, predefined constants vee or
GND, symbolic constants (i.e., symbolic names used as constants), or
groups of numbers or constants. Input values can also be X (don't
care).

• 	 Input and output values correspond to the inputs and outputs of the
table heading.

• 	 The keywords END TABLE, followed by a semicolon (;), end the truth
table.

The following rules apply to the Truth Table Statement:

• 	 The names in the table heading can be either single nodes or groups.

• 	 Every conceivable combination of input values need not be listed. You
can use an X (don't care) to indicate that the output does not depend
on the input corresponding to the position of the x. The following
example specifies that if aO is high and f4 is low, the value of the other
inputs is not important. Therefore, you can specify the common
portion of the input pattern (in this example, 0), then use X characters
for the rest of the input pattern (in this example, xxx).

184

••

Section 4: Design Structure

TABLE

aO, f[4 .. 1J.q => f[4 .. 1J.d, control;
0, B"OOOO" => B"OOOl", 1;
0, B"OlOO" => B"OOlO" , 0;
1, B"OXXX" => B"OlOO" , 0;
X, B"llll" => B"0101", 1;

END TABLE;

• 	 The number of comma-separated items in a truth table row must
equal the number of comma-separated items in the truth table
heading.

• 	 The Defaults Statement assigns output values in cases when the actual
inputs do not match the input values of the table.

[(&=' 	 When you use X (don't care) characters to specify a bit pattern,
you must ensure that the pattern cannot assume the value of
another bit pattern in the truth table. AHDL assumes that only one
condition in a truth table is true at a time; therefore, overlapping
bit patterns may cause unpredictable results

Go to the following sources for more information:

"Using Default Values for Variables" on page 39 in How to Use AHDL for
information on how to specify default values for truth table outputs.

"Truth Table Statement Syntax" in MAX+PLUS II Help

The following topics in How to Use AHDL show additional examples of
Truth Table Statements:

"Creating Decoders" on page 35
"Using Default Values for Variables" on page 39
"Assigning State Machine Bits & Values" on page 58
"State Machines with Synchronous Outputs" on page 60
"State Machines with Asynchronous Outputs" on page 64

185

MAX+PLUS /I AHDL

186

•• ••

Section

5

Style Guide

This style guide provides suggestions for formatting Text Design Files (.tdf)
to improve readability and thus avoid errors. These are recommendations
only and are not required for your TDFs to compile successfully. Examples
that illustrate guidelines are provided.

IIi? 	 You can use the Text Editor's Syntax Coloring command
(Options menu) to identify typographical errors and different
sections of AHDL code. Go to "Syntax Coloring" on page 10 in
Introduction for more information.

Style guidelines are discussed in the following order:

• General Style Guidelines 188

• White Space 190

• Comments & Documentation 191

• Naming Conventions 192

• Indentation Guidelines 193

Go to MAX+PLUS II Help for complete and up-to-date information on style
guidelines.

187

MAX+PLUS /I AHDL

General Style Guidelines

• 	 All keywords, device names, constants, and primitives should be
entered in capital letters; all other text should be lowercase, including
filenames, megafunctions, and macrofunctions.

Unformatted: 	 Formatted:

case tap is CASE tap IS
when test_logic_ reset => WHEN test_ l ogic_ reset =>

if !tms then IF !tms THEN
tap = run_ test / idle; tap = run_test / idle;

end if; END IF;

when run_ test / idle = > WHEN run_test / idle = >

if tms then IF tms THEN
tap = select_dr_ scan; tap = select_dr_scan ;

end if; END IF;

when select_dr_ scan => WHEN select_dr_scan = >

if tms then IF tms THEN
tap = select_ ir_scan ; tap select_ir_ scan ;

else ELSE
tap = capture_ dr; tap captu re_dr;

end if; END IF;

end case; 	 END CASE;

• 	 Either list all input and output ports on the same line, or enter
: I NPUT; after each line of inputs and: OUTPUT; after each line of
outputs. With this formatting style, all ports are clearly labeled.

• 	 Lines should not be longer than the width of the screen. If necessary,
move part of a line to the next line and indent it. The Text Editor
provides the Auto-Indent command (Options menu), and the
Increase Indent and Decrease Indent commands (Edit menu), to help
you indent text easily.

188

Section 5: Style Guide

• 	 Place opening and closing parentheses of the Subdesign Section and
of Parameters Statements on a separate line to easily distinguish
inputs and outputs. This formatting style also allows you to add and
edit signal and parameter names easily.

Unformatted: 	 Formatted:

SUBDESIGN s (il, i2, i3: INPUT ; SUBESIGN s
01, 02, 03: OUTPUT;) (

BEGIN il, i2, i3 INPUT;
01, 02, 03 OUTPUT;

END;
BEGIN

END;

• 	 Do not use quoted symbolic names if you can use unquoted names.

Unformatted: 	 Formatted:

VARIABLE 	 VARIABLE
tap: MACHINE WITH STATES (tap: MACHINE WITH STATES

'Test - Logic - Reset' , test_logic_reset,
'Run- Test / Idle ' , run_ test_idle,
'Select-DR-Scan' , select_dr_scan,
'Capture-DR' , capture_dr,
'Shift-DR' , shift_dr ,
, Exi tl - DR' , exitl_dr,
'Pause-DR' , pause_dr,
'Exit2-DR' , exit2_dr,
'Update-DR' , update_dr,
'Select-IR- Scan' , select_ir_scan,
'Capture- IR' , capture_ir,
'Shift-IR' , shift_ir,
'Exitl - IR' , exitl_ir ,
'Pause-IR' , pause_ir,
' Exit2-IR' , exit2_ir,
'Update-IR') ; update_ir) ;

• 	 Follow the indentation guidelines under "Indentation Guidelines" on
page 193.

189

MAX+PLUS /I AHDL

White Space

• 	 Use white space (blank lines, spaces, and tabs) around logical groups.

• 	 Do not place extra spaces before semicolons (;) commas (,), closing
double quotation marks (,,), or closing parentheses ()), or after
opening double quotation marks (,,) or opening parentheses (O.

Unformatted: 	 Formatted:

DFF (d , elk, elrn , pren); DFF(d, elk, elrn, prn)

• 	 Use tabs and spaces to align colons, truth table entries, etc.

Unformatted: 	 Formatted:

in1, elk: INPUT; in1, elk INPUT;
out1, out2, out3 : OUTPUT: out1, out2, out3 OUTPUT;
bus [8 .. 1] : BIDIR bus [8 .. 1] BIDIR

• 	 Leave a blank space before an opening parenthesis to separate it from
a keyword.

Unformatted: 	 Formatted:

OF BITS (q [3 .. 0]) 	 OF BITS (q[3 . . 0])

• 	 Place one blank space before and after operators and comparators
(unless you are aligning signal names).

Unformatted: 	 Formatted:

enable !a3&a2&a1&aO; enable !a3 & a2 & a 1 & aO;

enable (a[]==B"0111") ; enable (a[] == B"0111") ;

190

Section 5: Style Guide

Comments &Documentation

• Describe the design at the beginning of the TDF with a substantial
comment in natural language. Specifically, describe the ports and
function of the design.

• Use comments where appropriate to document the file. These
comments should provide relevant information about the
corresponding statement, and should be updated along with the file.

• Do not duplicate a statement as a comment.

With Duplication: Without Duplication:

IF clear THEN

% load q[] with 0
q[] = 0;

END IF;

%
IF clear THEN

q[] = 0;
END IF;

• Place a comment either directly above the section it describes at the
same indentation level, or aligned with other comments to the right of
the lines of code.

• Leave one blank space between documentation text and the percent
symbol (%) for AHDL-style comments or two dashes (- -) for VHDL­
style comments. Align the opening and closing symbols for easy
readability.

Unformatted: Formatted:

%Leave one blank space between%
%the percent symbol and the%
%documenting text. Line up%
%opening and closing percent%
%symbols for easy readability . %

% Leav e one blank space between %
% the percent symbol and the %
% documenting text . Line up %
% opening and closing percent %
% symbols fo r easy readabili ty. %

• VHDL-style comments can be nested within %-style comments. If you
use VHDL-style comments (- -) for documentation-type comments,
you can then use the %-style comments to exclude sections of code
from compilation (i.e., "comment out" sections of code).

191

MAX+PLUS /I AHDL

Naming Conventions

• All symbolic names and identifiers should be meaningful and
completely understandable, and should reflect the purpose or action
of the function.

Ambiguous Name: Unambiguous Name:

di rection
access_mode

up

access_memory

• Active-low signals should be specified with a clear and consistent
notation. The notations shown below are supported in MAX+PLUS II
design files . You should choose one notation and use it throughout a
project.

Iwri te
nchip_enabl e
resetn

• Use underscores to separate "words" in symbolic and simple names.

Unformatted: Formatted:

regload
idleio
goidle
CSYNCPREEQJ

reg_load
idle_ io
go_ idle
CSYNC_PRE_ECLJ

• Do not use abbreviations unless they are obvious.

Ambiguous Name: Unambiguous Name:

c
clrg
sb
sm
rdrm
f
r

elk
clear_reg
sync_bit
select_mem
refresh_dram
forward
reverse

• The Title Statement should include a short, descriptive name for the
design.

TITLE "NTSC Waveform Generator";

192

Section 5: Style Guide

• Replace numbers with constants to provide meaningful names and a
visual reference for all numbers. Only use 0 and 1 in the code.

CONSTANT 	 TERMINAL_COUNT = 103;

Indentation Guidelines

This section illustrates recommended indentation of AHDL sections and
statements.

lG? 	 You can use the Text Editor's Auto-Indent command (Options
menu), and Increase Indent and Decrease Indent commands
(Edit menu), to help you indent text easily.

Parameters Statement, Subdesign Section, and Logic Section Indentation:

PARAMETERS
(

% parameter %

% parameter %

) ;

SUBDESIGN
(

% inputs %

% outputs %

% bidirs %

BEGIN

% statement %

% statement %

END;

If Then Statement Indentation:

IF 	expression1 THEN

% statement %

% statement %

ELSIF expression2 THEN

% statement %

% statement %

ELSE

% statement %

% statement %

END IF;

193

MAX+PLUS /I AHDL

W Use a similar style for If Generate and For Generate statements.

Case Statement Indentation:

CASE expression IS

WHEN constantl =>

% statement %
% statement %

WHEN constant2 =>

% statement %

% statement %

WHEN constant3 =>

% statement %

% statement %

WHEN OTHERS =>

% statement %

% statement %

END CASE;

or:

CASE expression IS
WHEN constantl => % statement %
WHEN constant2 => % statement %
WHEN constant3 => % statement %

WHEN OTHERS => % statement %
END CASE;

Truth Table Statement Indentation:

TABLE

ss, inputs [1 => outputs [1, sS;

sO, B'I)QQQ{XO II => B"OOOOOl",sl;
sl, B"xxxx01" => B"000011",s2;
s2 , B"xxx011 " => B" 000111" ,s3;
s3, B"xxOlll" => B"001111",s4;
s4, B"x01111 " => B"011111",s5;
s5, B"011111 " => B"111111" ,sO;

END TABLE;

194

Section 5: Style Guide

Variable Section & State Machine Declaration Indentation:

VARIABLE
55: 	MACHINE WITH STATES (sO, 51, 52 , 53);

tt: 	MACHINE
OF BITS (q[3 .. 0])

WITH STATES (
to B"OOOl",

t1 B"0010",
t2 B"0100",
t3 B"1000");

Assert Statement Indentation:

ASSERT condition
REPORT "message"

% message variables %
SEVERITY ERROR;

195

MAX+PLUS /I AHDL

196

Glossary

This glossary defines selected terms used in MAX+PLUS II documentation.

I:C&" Choose Glossary (Help menu) to view the full MAX+PLUS II glossary on-line.

A

ACF see Assignment & Configuration
File.

active-high node A node that is activated
when it is assigned a value of one (1 in
AHDL or ' 1 ' in VHDL) or vee (e.g., ena,
elk).

active-low node A node that is activated
when it is assigned a value of zero (0 in
AHDL or ' 0 ' in VHDL) or GND (e.g., elrn,
prn, oen). In AHDL design files, an active­
low node should be assigned a default
value of vee with the Defaults Statement.

ADF see Altera Design File.

Altera Design File (.adf) An ASCII-format
file (with the extension .adf) for Boolean

equation entry, used with Altera's
A+PLUS software. ADFs use a netlist
format and Boolean equations to describe a
design. The MAX+PLUS II Compiler
automatically translates an ADF into a
Compiler Netlist File (.cnf) during project
compilation.

An ADF is also generated when a State
Machine File (.smf) is compiled.

ancillary file A file that is associated with
a MAX+PLUS II project, but is not a design
file in the project hierarchy tree. Most
ancillary files also do not contain design
logic. User-editable ancillary files with the
same filename as the project appear in the
Hierarchy Display window. See the
following list:

197

MAX+PLUS /I AHDL

Editable Ancillary Files:

Assignment & Configuration File (.acf)

Assignment & Configuration Output

File (.aco)

Command File (.cmd)

EDIF Command File (.edc)

Fit File (.fit)

Hexadecimal (Intel-format) File (.hex)

History File (.hst)

Include File (.inc)

JTAG Chain File (.jcf)

Library Mapping File (.lmf)

Log File (.log)

Memory Initialization File (.mif)

Memory Initialization Output File (.mio)

Message Text File (.mtf)

Programmer Log File (.plf)

Report File (.rpt)

Simulator Channel File (.scf)

Standard Delay Format (SDF) Output

File (.sdo)

Symbol File (.sym)

Table File (.tbI)

Tabular Text File (.ttf)

Text Design Export File (.tdx)

Text Design Output File (.tdo)

Timing Analyzer Output File (.tao)

Vector File (.vec)

VHDL Memory Model Output File (.vmo)

Non-Editable Ancillary Files:

Compiler Netlist File (.cnf)

Hierarchy Interconnect File (.hif)

JEDEC File (.jed)

Node Database File (.ndb)

Programmer Object File (.pof)

Raw Binary File (.rbf)

Serial Bitstream File (.sbf)

Simulator Initialization File (.sif)

Simulator Netlist File (.snf)

SRAM Object File (.sof)

ASCII American Standard Code for

Information Interchange. Text editing

software used for any MAX+PLUS II text

file, e.g., Text Design File (.tdf), Library
Mapping File (.lmf), or Vector File (.vec),
must conform to this textual data coding
system.

assignment In AHDL and VHDL,
assignment refers to the transfer of a value
to a symbolic name or group, usually
through a Boolean equation. The value on
the right side of the equation is assigned to
the symbolic name or group on the left.

assignment (resource) see resource
assignment.

Assignment & Configuration File (.acf) An
ASCII file (with the extension .acf) that
stores information about probe, pin,
location, chip, clique, logic option, timing,
connected pin and device assignments, as
well as configuration settings for the
Compiler, Simulator, and Timing Analyzer
for an entire project.

The ACF stores information entered with
menu commands in all MAX+PLUS II
applications, as well as pin, location, and
chip assignments entered in the Floorplan
Editor window. You can also edit an ACF
manually in a Text Editor window.

B

binary The base 2 number system (radix).
Binary digits are 0 and 1.

In AHDL, binary numbers are indicated
with the following notation:

B"<series of 0,1, and x characters> II

where x="don't care." Example:
Bn OllOX1X10 n

198

Glossary

BIIO option An option that prevents
certain warning messages if you use the
lowest-numbered bit of a group as
anything other than the least significant bit
(LSB).

When you declare a group with a range of
numbers, the first number listed is always
the most significant bit (MSB), the last is
always the LSB. If you specify a range in
ascending order, a warning message is
issued unless you have used the BITO

option to specify that the lowest numbered
bit is the MSB. If you set the BITO option to
MSB, a warning message is generated if
you specify a range in descending order. If
you set BITO to ANY, you may specify
ranges in either ascending or descending
order without receiving a warning.

Boolean logic Logic that obeys the
theorems of Boolean algebra (George
Boole, "The Laws of Thought," 1854). The
Boolean portion of a design is the portion
which can be implemented in the AND-OR

matrix of a device.

buried node A combinatorial or registered
signal that does not drive an output pin.

buried register A register in an Altera
device that does not drive its output to a
pin. A buried register can be located on an
I/O pin or on a logic cell that has no output
to a pin. A buried register can be used to
implement internal logic.

bus (or group) name The name of a bus (or
group) of up to 256 nodes.

A single-range or dual-range name consists
of up to 32 name characters, followed by
one or two ranges of numbers or arithmetic
expressions in brackets. (Dual-range
names are not supported in Waveform

Editor files .) The start and end of the
number range are separated by two
periods. Each number in the sequence
represents an individual node (or bit).

Example: bus a [4 .. 1] consists of the
nodes a4, a3, a2, and al.

Example: bus b [2 .. 1] [1 .. 0] consists of
the nodes b2_ 1, b2_ 0, bl_ l, and bl_ O.

A sequential name, consisting of a comma­
separated list of names, can be entered in
AHDL Text Design Files (.tdf) and Graphic
Design Files (.gdf). In TDFs and ACFs, this
list of names must be enclosed in
parentheses. Sequential bus names can
include single- and dual-range bus names.

Example: a [3 .. 0] , dou t [6 .. 4] , Z 3

The first name in the series of names in a
single-range, dual-range, or sequential
name is the most significant bit (MSB) of
the bus; the last name is the least significant
bit (LSB).

An arbitrary bus name, consisting of up to
32 name characters, can be entered in a
Waveform Design File (.wdf), Simulator
Channel File (.scf), or Vector File (.vee). An
arbitrary bus name does not indicate how
many members are included in the bus.

bus pinstub The location on the boundary
of a mega- or macrofunction symbol,
represented by an "x" in the Symbol File
(.sym), that represents multiple inputs or
outputs to the function. A bus (thick line)
drawn in a Graphic Editor file must
connect to a bus pinstub with the same
number of bits to be recognized as a
connection to the function.

199

c

MAX+PLUS /I AHDL

chip A group of logic functions defined as
a single, named unit. A chip is assigned to
an actual device by either the user or the
Compiler.

You can make chip assignments on logic
functions in design files. Items that are
assigned to the same chip are placed in the
same device during compilation. The term
device always refers to an actual
programmable logic device, whereas the
term chip always refers to a group of logic
functions.

When the Compiler processes a project,
each chip name is assigned to a
corresponding programming file for a
particular device.

Classic An Altera device family based on
Altera's original EPROM-based EPLD
architecture. MAX+PLUS II provides
support for the following Classic devices:
EP220, EP320I, EP330, EP600I, EP610,
EP610I, EP900I, EP910, EP910I, EP1800I,
and EP1810 devices.

Clear An input signal that
asynchronously resets a register,
regardless of the Clock signal.

clique A group of logic functions defined
as a single, named unit. The Compiler
attempts to keep clique members together
when it fits the project. A clique
assignment allows you to group all logic on
a speed-critical path, thus improving
performance.

If possible, all clique members are assigned
to the same LAB. If the clique members will
not fit into a single LAB, they are placed in
the same row (in FLEX 10K, FLEX 8000,

and MAX 9000 devices only) or the same
device.

Clock A signal that triggers registers.

In a flipflop or state machine, the Clock is
an edge-sensitive signal. The output of the
flipflop can change only on the Clock edge.
For example, in a D flipflop, the input
value is stored and placed on the output at
the Clock edge.

In some cases, MAX + PLUS II lists the Latch
Enable input to a latch as a Clock, e.g., in a
Delay Matrix timing analysis.

Clock Enable The level-sensitive signal on
an enabled flipflop, i.e., a flipflop with an
"E" suffix, including DFFE, TFFE, SRFFE,

and JKFFE. When the Clock Enable is low,
Clock transitions on the Clock input to the
flipflop are ignored.

combinatorial feedback Feedback from a
logic cell that goes back into the device's
logic array. It is the direct function of the
inputs to a logic cell, and does not retain
values from earlier inputs.

combinatorial output Output from a logic
cell that is a direct function of the inputs,
without regard to the Clock; i.e., it does not
retain values resulting from earlier inputs.

comment In the Graphic and Symbol
Editors, a comment is a free-floating block
of text used to document the design. It is
not associated with any object. A comment
stands alone anywhere within Graphic
Editor files . A comment also stands alone
within the symbol border of a Symbol
Editor file. Comments are ignored by the
Compiler, and can be used to document
various sections of a file.

200

Glossary

In the Waveform Editor, a comment is a
line of text used to annotate the waveforms
in the waveform drawing area. It is not
associated with any waveform. A comment
is anchored to the time on the time scale
where the first character is entered. A label
appears in the Name field to indicate a
comment line; when a comment is added
between two existing nodes, it appears in a
blank space, which is inserted between the
waveforms. Comments are ignored by the
Compiler.

In all MAX + PLUS II text files except VHDL
Design Files (.vhd) and Assignment &
Configuration Files (.acf), e.g., in Report
Files (.rpt), Vector Files (.vee), and Text
Design Files (.tdf), a comment is any string
of characters enclosed in percent symbols
(%). You can insert comments wherever
white space is allowed in text files.

In VHDL Design Files and ACFs,
comments begin with two dashes (- -) and
continue to the End-of-Line. AHDL TDFs
also support VHDL-style comments. Ifyou
use a VHDL-style comment in a TDF, you
must separate the two dashes from any
preceding symbolic name with at least one
space.

ACFs also support comments consisting of
any string of characters enclosed between
I * and * I characters. You can insert
comments at any location in the file.

comparator A comparator is an operator
used to compare nodes, groups, and
numbers. AHDL provides the following
comparators:

Comparator: Definition:

equal to

! = not equal to

> greater than

< less than

<= less than or equal to

>= greater than or equal to

Compiler Nellist File (.cnf) A binary file
(with the extension .cnf) that contains the
data from a design file . The CNF is created
by the Compiler Netlist Extractor module
of the MAX+PLUS II Compiler.

cone of logic A group of logic functions
whose outputs eventually feed into a single
gate.

Configuration EPROM Altera's family of
serial EPROMs, which are designed to
configure FLEX 8000 and FLEX 10K
devices. This device family includes the
EPCl, EPCI213, and EPCI064 devices.

construct A unit in a text design language
such as AHDL, VHDL, or EDIF.

D

database A flattened representation of all
design files in a MAX+PLUS II project
hierarchy. The database is used internally
by Compiler modules during compilation.

De Morgan's Inversion Theorem A
theorem developed by Augustus De
Morgan that is used in Boolean algebra.
This theorem states that the complement of
the product of the factors equals the sum of
the complements of the addends; or that
the complement of the sum of the addends
equals the products of the complement of
each factor.

201

MAX+PLUS /I AHDL

Example: ! (A & B) = ! A # ! B

decimal The base 10 number system
(radix). Decimal digits are °through 9.

In AHDL, no special notation is needed to
indicate decimal digits.

delimiter A text string, character, or
keyword used to define the beginning or
the end of a statement or construct in a text
file.

For example, [and] are delimiters of
AHDL group ranges and %is a comment
delimiter in many MAX+PLUS II text files.

design file A file that contains logic for a
MAX+PLUS II project and is compiled by
the Compiler. The following files are
design files:

• Altera Design File (.adf)
• EDIF Input File (.edf) *
• Graphic Design File (.gdf) *
• OrCAD Schematic File (.sch) *
• State Machine File (.smf)
• Text Design File (.tdf) *
• VHDL Design File (.vhd) *
• Waveform Design File (.wdf)
• Xilinx Netlist Format File (.xnf)

An asterisk (*) indicates the design files
that can exist as top-level files in
hierarchical projects. Other design files
must be the only design file in a project or
must exist at the bottom level of a
hierarchical project.

device A device refers to an Altera
programmable logic device, including
Classic, MAX 5000, MAX 7000, MAX 9000,
FLEX 8000, FLEX 10K, and FLASHlogic
devices.

Altera also offers Configuration EPROM
devices which are used to configure
FLEX 8000 and FLEX 10K devices.

device family A group of Altera
programmable logic devices with the same
fundamental architecture. Altera families
include the Classic, MAX 5000, MAX 7000,
MAX 9000, FLEX 8000, FLEX 10K, and
FLASHlogic device families.

dual I/O feedback A combination of pin
feedback and register or combinatorial
feedback on the same logic cell.

dual-range group (or bus) name The name
of a group (or bus) of up to 256 nodes,
consisting of up to 32 name characters,
followed by a two ranges of numbers or
arithmetic expressions in brackets. The
start and end of the ranges are separated by
two periods. Each set of numbers in the
two ranges represents an individual node
(or ''bus bit").

Example: group a [2 .. 1] [5 .. 3] consists
of the nodes a2_5, a2_ 4, a2_3, a1_ 5,
a1_ 4, and a1_3.

In a Graphic Editor files, a sequential bus
name can also include one or more single­
or dual-range bus names in a series. The
first node of the series or the first node in
the first range is the most significant bit of
the bus; the last node of the series or the last
node in the last range is the least significant
bit.

Example: a [8 .. 0] [2 .. 0], b1,
dout[6 .. 4]

E

EAB see Embedded Array Block.

202

EC see embedded cell.

EDIF Electronic Design Interchange
Format. An industry-standard format for
the transmission of design data.

You can generate an EDIF 2 0 0 or 3 0 0
netlist file from a schematic design or from
a VHDL or Verilog HDL design that has
been processed with an appropriate
industry-standard synthesis tool and then
import the file into MAX+PLUS II as an
EDIF Input File (.edf). MAX+PLUS II
supports EDIF Input Files that contain
functions from the Library of
Parameterized Modules (LPM). The
MAX+PLUS II Compiler can also generate
one or more EDIF Output Files (.edo) in
either EDIF 2 0 0 or 3 0 0 format that contain
functional or timing information for
simulation with a standard EDIF
simulator.

EDIF Input File (.edf) AnEDIFversion200
or 3 0 0 netlist file generated by any
standard EDIF netlist writer. EDIF Input
Files (with the extension .edf) can be
compiled by the MAX+PLUS II Compiler.
MAX+PLUS II supports EDIF Input Files
that contain functions from the Library of
Parameterized Modules (LPM).

EDIF Output File (.edo) An EDIF version
200 or 3 0 0 netlist file (with the
extension .edo) generated by the EDIF
Netlist Writer module of the Compiler.
This file can be exported to an industry­
standard workstation or PC environment
for simulation.

Embedded Array Block (EAB) A physically
grouped set of 8 embedded cells that
implement memory (RAM or ROM) or
combinatorial logic in a FLEX 10K device.
An EAB consists of an embedded cell array,

Glossary

with data, address, and control signal
inputs and data outputs that are optionally
registered.

A single EAB can implement a memory
block of 256 x 8, 512 X 4, 1,024 X 2, or 2,048
x 1 bits. Each embedded cell within the
EAB implements up to 256 bits of memory.
For memory blocks of these sizes, an EAB
has 8, 4, 2, or 1 outputs, respectively.
Multiple EABs can be combined to create
larger memory blocks.

The EAB is fed by row interconnect paths
and a dedicated input bus.

embedded cell (EC) A memory element
that exists in the embedded array of a
FLEX 10K device, and which can
implement memory (RAM or ROM) or
combinatorial logic. An Embedded Array
Block (EAB) consists of a group of 8
embedded cells that can implement a
memory block of 256 x 8, 512 X 4, 1,024 X 2,
or 2,048 x 1 bits. Each embedded cell within
an EAB implements up to 256 bits of
memory. Depending on the depth of the
memory, up to 8 of the embedded cells in
an EAB have outputs. For memory blocks
of 256 x 8, 512 X 4, 1,024 X 2, or 2,048 x 1 bits,
an EAB has 8, 4, 2, or 1 outputs,
respectively.

Embedded cells have "numbers" of the
format EC<number>_<row letter>, where
<number> ranges from 1 to 8 and <row
letter> consists of the row letter of the EAB.

EPLD Erasable Programmable Logic
Device, i.e., an Altera device that is a
member of the Classic, MAX 5000,
MAX 7000, or MAX 9000 device families.

evaluated function An mathematical
function that evaluates an arithmetic

203

MAX+PLUS /I AHDL

expte'ssion and returns a value based on
one or more arguments. The AHDL Define
Statement can be used to create evaluated
functions. The following example shows
the definition of the evaluated function
MAX:

DEFINE MAX(a,b) = (a > b) ? a : b;

excitation equation Combinatorial logic
that directs state transitions in a state
machine.

expander product term A single product
term with an inverted output that feeds
back into the Logic Array Block (LAB) of a
MAX 5000, MAX 7000, or MAX 9000
device.

An uncommitted expander product term
that can be shared with other logic cells in
the same LAB is called a shareable
expander; a product term that has been
shared in this manner is called a shared
expander.

In MAX 7000 and MAX 9000 devices only,
an expander product term that is
'borrowed" from an adjacent logic cell in
the same LAB is called a parallel expander.

extension see filename extension.

F

family-specific mega- or macrofunction An
Altera-provided mega- or macrofunction
that contains logic optimized for the
architecture of a specific device family.

The functionality of a family-specific mega­
or macrofunction is always the same,
regardless of the device family for which it
is designed. However, the actual
primitives and nodes used within the

mega- or macrofunction file can vary from
family to family to take advantage of
different device architectures, thus
providing higher performance and/or
more efficient implementation.

fan-in and fan-out Fan-in refers to input
signals that feed the input equations of a
logic cell.

Fan-out refers to output signals that are fed
by the output equations of a logic cell.

filename The name of a design file,
ancillary file, or other file, without the
extension.

A single filename can contain up to 32
name characters, plus a 3-character
filename extension. A full pathname plus
filename and extension can contain up to
128 characters.

Since Windows 3.1 and Windows for
Workgroups 3.11 support only 8-character
filenames, MAX+PLUS II maps longer
filenames on these operating systems to
8-character filenames. These filename
mappings are stored in the maxplus2.idx
file in each directory that contains long
filenames.

In the Hierarchy Display window, a
filename, along with the file icon and
filename extension, represents a file in the
current hierarchy tree.

filename extension The one, two, or three­
letter extension of a filename that follows a
period (.).

In the Hierarchy Display window, a
filename extension, along with the
filename and the file icon, represents a file

204

in the current hierarchy or the current
project.

Fit File (.fit) An ASCII file (with the
extension .fit) generated by the Compiler
that documents pin, logic cell, I/O cell,
chip, and device assignments made during
the last compilation. Assignments are
recorded in Assignment & Configuration
File (.acf) syntax.

The Fit File can be used for back-annotation
and for functional testing in the Simulator
and Programmer. To preserve assignments
permanently, Fit File assignments can be
back-annotated into a project's ACF with
the Back-Annotate Project command
(Assign menu).

You can also display a read-only version of
Fit File information from the most recent
project compilation in the Floorplan Editor.

FLASHlogic (formerly FLEXlogic) An Altera
device family consisting of SRAM-based
devices with shadow EPROM or shadow
FLASH memory. The high-performance
FLASHlogic device family includes the
EPX8160, EPX880, EPX780, and EPX740
devices.

MAX+PLUS II provides programming­
only support for FLASHlogic devices. Full
compilation, simulation, timing analysis,
and programming support for all
FLASHlogic devices will be available in a
future version of MAX+PLUS II.

FLEX 8000 An Altera device family based
on Flexible Logic Element MatriX
architecture. This SRAM-based family
offers high-performance, register­
intensive, high-gate-count devices. The
FLEX 8000 device family includes the
EPF8282, EPF8282V, EPF8282A, EPF8452,

Glossary

EPF8452A, EPF8636A, EPF8820,
EPF8820A, EPF81188, EPF81188A,
EPF81500, EPF81500A, and EPF8050M
devices.

FLEX 8000A devices provide the same
architectural features as equivalent
FLEX 8000 devices, but offer faster speeds
and smaller die sizes.

The EPF8050M device has a multi-chip
module architecture. When you compile a
project for the EPF8050M, the Report
File (.rpt) includes information for up to
four chips, each of which is labeled
EPF8050M/4.

FLEX 10K An Altera device family based
on Flexible Logic Element MatriX
architecture. This SRAM-based family
offers high-performance, register­
intensive, high-gate-count devices with
embedded arrays. The FLEX 10K device
family includes the EPF10K50 device.

flipflop or register An edge-triggered,
clocked storage unit that stores a single bit
of data. A low-to-high transition on the
Clock signal changes the output of the
flipflop, based on the value of the data
input(s). This value is maintained until the
next low-to-high transition of the Clock, or
until the flipflop is preset or cleared.

Depending on the architecture of the
device family, a register can be
programmed as a level-sensitive flow­
through latch or as an edge-triggered D,T,
JK, or SR flipflop.

G

GDF see Graphic Design File.

205

MAX+PLUS /I AHDL

global signal A signal from a dedicated
input pin that does not pass through the
logic array before performing its specified
function. Clock, Preset, Clear, and Output
Enable signals can be global signals.

A global signal can be designated during
design entry with a GLOBAL primitive in a
Graphic Design File (.gdf), Text Design File
(.tdf), or VHDL Design File (.vhd). Or,
when the appropriate Automatic Global
option in the Global Project Logic
Synthesis dialog box (Assign menu) is
turned on, the Compiler chooses the signal
that feeds the most flipflops as a global
Clock, Preset, or Clear, and the signal that
feeds the most TRI buffers is chosen as the
global Output Enable.

GND A low-level input voltage.

GND is the default inactive node value. In
an AHDL Text Design File (.tdf), GND is
used as a predefined constant and
keyword. In a VHDL Design File (.vhd),
GND is represented by 0 I In a Graphic I •

Editor file, GND is a primitive symbol. GND
is represented as a low (0) logic level in the
Simulator and Waveform Editor.

Graphic Design File (.gdf) A schematic
design file (with the extension .gdf) created
with the MAX+PLUS II Graphic Editor.

An OrCAD Schematic File (.sch) is
automatically translated into a GDF and
treated as a GDF in the MAX+PLUS II
Graphic Editor and Compiler.

Gray code A counting scheme in which
only one bit at a time changes value
between consecutive count values. In
contrast, a binary count sequence does not
preclude more than one bit changing at
consecutive count values. When only one

bit changes, noise susceptibility is reduced
in the circuit.

group In AHDL, a group is a collection of
up to 256 symbolic names that are treated
as a unit. A group name can be specified
with a single-range group name, dual­
range group name, or sequential group
name format.

In the Waveform Editor and Simulator, a
group is a collection of up to 256 nodes that
are treated as a unit. In these applications,
a group name can be specified with an
arbitrary group name or single-range
group name format.

group name see bus name.

H

hard logic function A logic function in a
design file that is not removed during
standard logic synthesis and therefore can
be assigned to a phYSical resource such as a
specific device, pin, logic cell, or 1/0 cell.

In Graphic Design Files (.gdf) and Text
Design Files (.tdf), hard logic primitives/
ports include INPUT, INPUTC, OUTPUT,

OUTPUTC, BIDIR, BIDIRC, LCELL,

MCELL,DFF,DFFE,TFF,TFFE,JKFF,

JKFFE, SRFF, SRFFE, and LATCH.

However, INPUT and INPUTC primitives
that do not affect project outputs are not
considered to be hard logic functions.
When SOFT, TRI, and OPNDRN primitives
are not removed during logic synthesis,
they are also hard logic primitives. A
macrofunction that contains a hard logic
primitive is considered to be a hard logic
function.

In Waveform Design Files (.wdf), hard
logic functions are input nodes and output

206

Glossary

and buried nodes with registered and
combinatorial node types.

hexadecimal The base 16 number system
(radix). Hexadecimal digits are 0 through 9
and A through F.

In AHDL, hexadecimal numbers are
indicated with the following notation:

X" <series of digits 0 to 9, A to F>" or
H"<series of digits 0 to 9, A to F>"

Example: H" 12 3AECF"

Hexadecimal (Intel-format) File (.hex) A
hexadecimal file (with the extension .hex)
in the Intel Hex format.

The MAX+PLUS II Compiler and
Simulator can use Hex Files as inputs to
specify the initial contents of a memory
(e.g., a ROM).

TheMAX+PLUS II Compiler automatically
creates output Hex Files containing
configuration data for the Active Parallel
Up (APU) configuration scheme for a
FLEX 8000 devices, and the Passive Serial
(PS) configuration scheme for FLEX 10K
devices.

After compilation, you can also create Hex
Files that support other configuration
schemes for FLEX 8000 and FLEX 10K
devices.

[(l? 	If your project uses memory and you
use a Hex File to specify its initial
contents, you should name the file
with a name that is not the same as
the project name or any chip name
within the project. Because the
Compiler automatically generates
Hex Files as outputs for FLEX 8000

and FLEX 10K devices, these output
files may overwrite your initial
memory content files.

hierarchical node or symbol name The
unique name for a node or symbol that is
based on its location in the hierarchy of
design files and the net ID number or the
AHDL or VHDL instance name of the logic
function to which it is connected.

Every node and symbol in a project has a
hierarchical name; you can also assign a
node name or a probe name to a node.

Hierarchy Interconnect File (.hif) An ASCII
file (with the extension .hif) created by the
Compiler's Netlist Extractor module. This
file specifies the hierarchical
interconnections between design files in a
project.

I/O cell An I/O cell is a register that exists
on the periphery of a FLEX 10K, FLEX 8000,
or MAX 9000 device (also known as an I/0
element) or a fast input-type logic cell that
is associated with an I/O pin in a
MAX 7000E device. I/O cells permit short
setup time.

lG? 	In pre-version 5.0 releases of
MAX+PLUS II, I/O cells were
known as peripheral registers.

I/O feedback Feedback from the output
pin on an Altera device. It allows an output
pin to be also used as an input pin.

Include File (.inc) An ASCII text file (with
the extension .inc) that can be imported
into a Text Design File (.tdf) by an AHDL
Include Statement. The Include File
replaces the Include Statement that calls it.

207

MAX+PLUS /I AHDL

Include Files can contain Function
Prototype, Define, Parameters, or Constant
Statements. Include Files that contain
Function Prototypes for Altera-provided
mega- and macrofunctions are located in
the \maxplus2\max2lib \mega_Ipm and
\maxplus2\max2ine directories created
during installation, respectively. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the lusr directory.)

insertion paint The location at which text
or graphics are inserted.

In a dialog box or in the Text Editor
window, the insertion point appears as a
flashing vertical bar. In the Graphic or
Symbol Editor, it appears as a flashing
square. In the Waveform Editor, an
insertion point in the waveform drawing
area appears as a short horizontal line that
extends to the right of the Time cursor. In
the node/group information area, a name
or blank space that is selected is interpreted
as an insertion point.

When you type text, it appears to the left of
the insertion point, which moves to the
right as you type. When you enter or paste
symbols or waveforms, the upper left
corner of the item(s) appears at the
insertion point.

instance The use of a logic function in a
design file. In the Graphic Editor, the
instance is represented by the symbol (net)
ID number in the lower left corner; in the
Waveform Editor, it is the name of the
node. In AHDL, instances are declared in
one of two forms: an Instance Declaration
that declares a variable of the type
<primitive>, <megafunction>, or
<macrofunction>, or an in-line logic
function reference.

In the Hierarchy Display, an instance of a
mega- or macrofunction is represented by
the function name, followed by a colon (:)
and a net ID number. In an AHDL Variable
Declaration, an instance is represented by
the instance name followed by a colon and
the function name.

K

keyword Words that are reserved for
implementing syntax in files used as inputs
to MAX+PLUS II, including AHDL Text
Design Files (.tdf), Assignment &
Configuration Files (.ad), Command Files
(.emd), EDIF Command Files (.ede),
Library Mapping Files (.lmf), VHDL
Design Files (.vhd), and Vector Files (.vee).
For example, the keyword OF cannot be
used as an unquoted symbolic name in an
AHDL file.

L

LAB see Logic Array Block.

latch A level-sensitive clocked storage
unit that stores a single bit of data. A high­
to-low transition on the Latch Enable signal
fixes the contents of the latch at the value of
the data input until the next low-to-high
transition of the Latch Enable.

Latch Enable A level-sensitive signal that
controls a latch. When it is high, the input
flows through the output; when it is low,
the output holds its last value.

LC see logic cell.

least significant bit (lSB) The bit of a
binary number that contributes the
smallest quantity to the value of that
number, i.e., the last member in a bus or
group name. For example, the LSB for a bus

208

Glossary

or group named a [31 .. 01 is a [0 1 (or
aO).

Library of Parameterized Modules (LPM) A
technology-independent library of logic
functions that are parameterized to achieve
scalability and adaptability. Altera has
implemented parameterized modules (also .
called "parameterized functions") from
LPM version 2.0.1/2.1.0 that offer
architecture-independent design entry for
all MAX+PLUS II-supported devices. The
MAX+PLUS II Compiler includes built-in
compilation support for LPM functions
used in schematic, AHOL, and EDIF input
files.

logic function or Design Entity A primitive,
mega function, macrofunction, or state
machine, which may be represented as
either a name or a symbol in a design file.

logic Array Block (LAB) A physically
grouped set of logic resources in an Altera
device. An LAB consists of a logic cell array
and, in some device families, an expander
product term array. Any signal that is
available to anyone logic cell in the LAB is
available to the entire LAB.

In Classic devices, the logic in the LAB
shares a global Clock signal. The LAB is fed
by a global bus and a dedicated input bus.
(In an EP1810 device, an LAB is
synonymous with a quadrant.) In
MAX 5000 and MAX 7000 devices, the LAB
is fed by a Programmable Interconnect
Array (PIA) and a dedicated input bus. In
FLEX 8000, MAX 9000, and FLEX 10K
devices, the LAB is fed by row interconnect
paths and a dedicated input bus.

logic cell (lC) The generic term for a basic
building block of an Altera device. In
Classic, MAX 5000, MAX 7000, and
MAX 9000 devices, a logic cell (also called a
macrocell) consists of two parts:
combinatorial logic and a configurable
register. The combinatorial logic allows a
wide variety of logic functions. In
FLEX 8000 and FLEX 10K devices, a logic
cell (also called a logic element) consists of
a look-up table (LUT), i.e., a function
generator that quickly computes any
function of four variables, and a -
programmable register to support
sequential functions.

The register can be programmed as a flow­
through latch; as a 0, T, JK, or SR flipflop;
or bypassed entirely for pure
combinatorial logic. The register can feed
other logic cells or feed back to the logic cell
itself. Some logic cells feed output or
bidirectional II0 pins on the device.

You can assign a logic function to a specific
logic cell. You can also assign a logic
function to a logic array block (LAB), a row,
or a column to ensure that the function is
implemented in a logic cell in a particular
LAB, row, or column.

In FLEX 10K, FLEX 8000, and MAX 9000
devices, logic cells have "numbers" of the
format LC<number>_<LAB name>, where
<number> ranges from 1 to 8 and <LAB
name> consists of the row letter and
column number of the LAB. In Classic,
MAX 5000, and MAX 7000 devices, logic
cells have numbers of the format
Lc<number>, where <number> may consist
of both digits and letters.

209

MAX+PLUS II AHDL

W 	 FLEX 10K, FLEX 8000, MAX 9000,
and MAX 7000E devices have
specialized logic cells, called I/O
cells, on the periphery of the device.

logic element see logic cell.

logic level The input and output logic
levels of nodes and groups are defined
with the following characters:

Character: Logic Level:

a Logic low (GND)

1 Logic high (vee)
x Undefined/Don't Care (not

permitted for initialization)
z High impedance (no input

to pin); e.g., used for the
"output" part of a
bidirectional pin when the
"input" part of the pin is
driving in.

a to 9, A to F Used for groups and
interpreted as binary,
decimal, hexadecimal, or
octal values according to
the current radix. The most
significant bit is first; the
least significant bit is last.

logic option An option that controls the
logic synthesis process on one or more
logic functions.

A variety of logic options are available.
Logic option assignments can be applied to
individual logic functions; a group of logic
option assignments, called a logic synthesis
style, can be applied to individual logic
functions. A default logic synthesis style is
also applied to the project as a whole. The
logic cell Turbo Bit logic option can also be

210

turned on or off on a device-by-device
basis.

Logic options can also be assigned as
parameters for a megafunction or
macrofunction.

W 	 Some logic options are not available
with standard synthesis; all logic
options are available with multi­
level synthesis.

logic synthesis style A combination of
logic synthesis option settings that are
saved under a single name.

A logic synthesis style can be individually
tailored for different device families, so
that the logic synthesis option settings vary
according to the architecture of the target
device family.

LPM see Library of Parameterized
Modules.

LSD 	 see least significant bit.

M

macrocell see logic cell.

macrofunction A high-level building block
that can be used together with gate and
flipflop primitives and/or megafunctions
in MAX+PLUS II design files.

W 	 In general, Altera recommends using
megafunctions in preference to
equivalent macrofunctions in all new
projects. Megafunctions are easier to
scale to different sizes and may offer
more efficient logic synthesis and
device implementation.

Altera provides a library of over 300 old­
style macrofunctions in the \maxplus2\
max2lib directory and its subdirectories
created during installation. AHDL Include
Files (.inc) for these macrofunctions are
located in the \maxplus2\max2inc
directory; VHDL Component Declarations
for macrofunctions supported by VHDL
are provided in the maxplus2 package in
the altera library, which is located in the
\maxplus2\max2vhdl directory. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the lusr directory.)

To view the file that contains the logic for a
macrofunction, select the macrofunction
symbol in the Graphic Editor or
macrofunction name in the Text Editor and
choose Hierarchy Down (File menu).

MAX 5000 An Altera device family based
on the first generation of Multiple Array
MatriX architecture. This EPROM-based
device family includes the EPM5016,
EPM5032, EPM5064, EPM5128,
EPM5128A, EPM5130, EPM5192, and
EPS464 devices.

MAX 7000 (and MAX 7000E) An Altera
device family based on the second
generation of Multiple Array MatriX
architecture that includes MAX 7000 and
MAX 7000E devices. These EPROM- and
EEPROM-based devices include EPM7032,
EPM7032V, EPM7064, EPM7096,
EPM7128E, EPM7128, EPM7160E,
EPM7160, EPM7192E, EPM7192, and
EPM7256E devices.

MAX 7000E devices are enhanced versions
of MAX 7000 devices and are function-,
pin-, and programming-file-compatible
with MAX 7000 devices. MAX 7000E
devices differ from MAX 7000 devices in
that they offer up to six pin- or logic-driven

Glossary

Output Enable signals, fast input setup
times to logic cells, and multiple global
Clocks with optional inversion.

W 	 Altera recommends using
MAX 7000E devices rather than
MAX 7000 devices for new designs.

MAX 9000 An Altera device family based
on the third generation of Multiple Array
MatriX architecture. These EEPROM-based
devices include the EPM9560, EPM9480,
EPM9400, and EPM9320 devices.

MAX+PLUS (DOS) Altera's DOS-based
Multiple Array MatriX Programmable
Logic User System. MAX+PLUS is a set of
computer programs and hardware support
products for designing and implementing
custom logic circuits with Altera Classic
and MAX 5000 devices. Graphic Design
Files (.gdf) created for MAX+PLUS are
automatically converted and processed
with the MAX+PLUS II Compiler; AHDL
Text Design Files (.tdf) are compiled
directly. The MAX+PLUS II Programmer
can program Classic and MAX 5000
devices with JEDEC Files (.jed) and
Programmer Object Files (.pof) created by
MAX+PLUS.

W 	 MAX+PLUS is no longer offered by
Altera. All new designs should be
created with MAX+PLUS II.

Mealy state machine A type of state
machine in which the outputs are a
function of the inputs and the current state.

Mealy, George H., A Method for
Synthesizing Sequential Circuits, in The
Bell System Technical Journal, Vol. 34,
American Telephone and Telegraph
Company (September 1955).

211

MAX+PLUS /I AHDL

megafunction A complex or high-level
building block that can be used together
with gate and flipflop primitives and/or
old-style macrofunctions in MAX+PLUS II
design files.

Altera provides a library of megafunctions,
including functions from the Library of
Parameterized Modules (LPM), in the
\maxplus2\max2lib \mega_Ipmdirectory
created during installation. AHDL Include
Files (.inc) for these megafunctions are also
located in the \maxplus2\max2lib \
mega_Ipm directory. (On a UNIX
workstation, the maxplus2 directory is a
subdirectory of the lusr directory.)

To view the file that contains the logic for a
megafunction, select the megafunction
symbol in the Graphic Editor or
megafunction name in the Text Editor and
choose Hierarchy Down (File menu).

memory bit and memory word A memory
bit is an individual memory address in a
memory (i.e., RAM or ROM) block.

A memory word is a group of memory bits
in a RAM or ROM block.

For example, the contentS_ [4 .. 0]

memory word defines a byte of memory in
which the individual memory bits are
content5_ 4,content5_ 3,
content5_ 2,content5_1,and
content5 O.

Memory Initialization File (.mif) An ASCII
file (with the extension .mif) that specifies
the initial content of a memory block (RAM
or ROM), i.e., the initial values for each
address. This file is used during project
compilation and/or simulation.

Moore state machine A state machine in
which the present state depends only on its
previous input and previous state, and the
present output depends only on the
present state.

Moore, Edward F., Gedanken-Experiments
on Sequential Machines, in Automata
Studies, Annals of Mathematics Studies
Number 34, ed. C. E. Shannon and J.
McCarthy, Princeton: Princeton University
Press (1956).

most significant bit (MSB) The bit of a
binary number that contributes the greatest
quantity to the value of that number, and
the first member in a bus or group name.
For example, the MSB for a bus named
a[31. .0] isa[31].

N

name characters The characters A to Z, a to
z,O to 9, slash (;), dash (-), and underscore
C) are legal for MAX+PLUS II breakpoint,
chip, clique, file, group (bus), node,
parameter, pin, pinstub, probe, logic
synthesis style, and quoted and unquoted
symbolic names, with the exceptions listed
below. Case is not significant.

Item: N arne Character
Exception:

filename No slash (;) is
permitted. Case is
significant on UNIX
workstations.

212

Glossary

Item: 	 Name Character
Exception:

VHDL names 	 No slash (j) or dash (-)
is permitted. The name
must start with a letter,
cannot end with an
underscore C), and
cannot contain two
underscores C _) in a
row. VHDL keywords
cannot be used.

ACFnames 	 Names that contain
slash (j), dash (-) ,
vertical bar (I), colon
(:), and/or period (.)
characters must be
enclosed in double
quotation marks (,,).

nesting The repetition of an element or
statement within an AHDL statement, e.g.,
an If Statement within an If Statement.

net 10 number 	 see symbol ID number.

node A node represents a wire carrying a
signal that travels between different logical
components of a design file.

In the Graphic Editor files, nodes are
represented as lines; in text files, they are
symbolic names; in Waveform Editor files,
they are waveforms.

node name The name given to a signal in a
design file. A node name can contain up to
32 of the following name characters: A to Z,
a to z, 0 to 9, slash (I), dash (-), and
underscore C). Hierarchical node names
can contain 128 characters, including
vertical bar (I), colon (:), and period O.
Case is not significant.

Item:

single-range
group (bus)
name

dual-range
group (bus)
name

sequential
group (bus)
name

unquoted
symbolic

Name Character
Exception:

No slash (j) is
permitted. The name is
followed by a range of
numbers or arithmetic
expressions in brackets.
The start and end of the
range are separated by
two periods. For
example, group
a [3 .. 1 J consists of the
nodes a3, a2, and al. In
Graphic Editor files
only, sequential bus
names can also include a
series of single-range
bus names. For example,
a[8 .. OJ ,d[6 .. 4J.

Same as single-range
group names, with two
ranges of numbers or
arithmetic expressions
in brackets. For
example,
a[6 .. 3] [4 .. 0].

The name consists of a
series of comma­
separated node names
enclosed in parentheses.
For example, group (a,

b, c) consists of the
nodes a, b, and c. In
Graphic Editor files,
parentheses are not
used.
No dash (-) is
permitted. Names

name (AHDL) cannot consist entirely
of digits. AHDL
keywords cannot be
used.

213

MAX+PLUS /I AHDL

Some restrictions apply to names in VHDL
Design Files (.vhd) and unquoted port and
symbolic names in AHDL Text Design
Files (.tdf).

o
octal The base 8 number system (radix).
Octal digits are 0 though 7.

In AHDL, octal numbers are indicated with
the following notation:

o II <series of digits a to 7> II or
QII <series of digits a to 7> II

Example: Q" 4671223"

one-hot encoding A type of binary coding
in which one and only one bit of a value is
set to 1. For example, the four legal values
0001,0010,0100, and 1000 together
comprise a "one-hot" code sample because
in each of these four values a single bit is set
to 1.

You can manually implement one-hot
encoding. In addition, the Global Project
Logic Synthesis dialog box (Assign menu)
includes a One-Hot State Machine Encoding
option to allow the Compiler to
automatically implement one-hot
encoding for the entire project. Altera
strongly recommends using the One-Hot
State Machine Encoding option rather than
manual one-hot encoding to implement
one-hot encoding.

one's complement A system of
representing binary numbers in which the
negative of a number is obtained by
inverting each bit individually.

operand A node, group, or number that is
acted upon in an operation.

operator A symbol that signifies the action
of an operation. AHDL and VHDL offer
both logical and arithmetic operators.

Output Enable A high logic level on the
Output Enable signal enables the output.

In MAX 7000 devices (not including
MAX 7000E devices), the signal from the
active-low global Output Enable pin must
be inverted and connected to the active­
high Output Enable input of the TRI

primitive. In all other device families,
either active-high or active-low polarity
can be used.

In MAX 9000 devices, the Fitter
automatically inserts additional LCELL

primitives to provide the correct polarity
for a non-global Output Enable pin or an
Output Enable signal driven by a logic cell.

p

parameter or parameterized A
parameter is an attribute of a logic function
that determines the logic created or used to
implement the function, i.e., a
characteristic that determines the size,
behavior, or silicon implementation of a
function. The parameter information can
be used to determine the actual primitives
and other subdesigns needed to implement
the logic of the function.

A parameterized function is a function
whose behavior is controlled by one or
more parameters. Some logic functions,
such as the functions in the Library of
Parameterized Modules (LPM), are
inherently parameterized and require
parameter values to be assigned.

Parameters can be assigned to any
individual instance of a megafunction in

214

Glossary

MAX+PLUS II to control its size or
implementation. Some parameters can also
be applied to old-style macrofunctions to
determine their style of implementation.
MAX+PLUS II also allows you to assign
global, project-wide default values for
parameters.

parameterized module A logic function
that uses parameters to achieve scalability,
adaptability, and efficient silicon
implementation. MAX+PLUS II supports a
variety of parameterized modules (also
called "parameterized functions"),
including functions belonging to the
Library of Parameterized Modules (LPM).

LPM functions provide architecture­
independent design entry for all
MAX+PLUS II-supported devices. The
MAX+PLUS II Compiler includes built-in
compilation support for LPM functions
used in schematic, AHDL, and EDIF input
files.

pin A pin is an actual input or I/O pin on
an Altera device.

In Graphic Editor files, a pin is represented
by an INPUT, INPUTC, OUTPUT, OUTPUTC,

BIDIR, or BIDIRC symbol. In a Text
Design File (.tdf), a pin is represented as an
INPUT, OUTPUT, or BIDIR port. In a VHDL
Design File (.vhd), a pin is represented as
an IN, OUT, or INOUT port. In a Waveform
Design File (.wdf), a pin is represented as a
node with an input, output, or
bidirectional I!0 type and a pin input,
registered, or combinatorial node type.

You can assign a logic function to a specific
pin number. You can also assign a logic
function to a row or a column to ensure that
the function is implemented in a pin on a
particular row or column.

pin number A number used to assign an
input or output signal in a design file,
which corresponds to the pin number on
an actual device.

Both letters and digits are used to specify
pin numbers for PGA-package devices.

pinstub In the Graphic and Symbol
Editors, a pinstub is the location on the
boundary of a symbol represented by an
"x" in a Symbol File (.sym) and a name that
represents an input or output of the
primitive or of the megafunction or
macro function design file that the symbol
represents. A line (node) drawn in a
schematic must connect to this pinstub to
be recognized by the Compiler as a
connection between the logic in the current
file and the logic in the primitive,
megafunction, or macrofunction.

You can specify whether or not to use an
optional pinstub when you edit a symbol
instance in a Graphic Editor file.

Pinstubs in Graphic Editor files are
synonymous with ports in AHDL Function
Prototypes and VHDL components. They
are also synonymous with ports listed in
the Subdesign Sections of lower-level Text
Design Files (.tdf), and in Entity
Declarations of lower-level VHDL Design
Files (.vhd).

pinstub name A symbolic name that
identifies an input or output of a logic
function.

In the Symbol Editor, the "visible" pinstub
name appears both inside and outside of
the symbol. This "visible" pinstub name
can be an abbreviation or an alias for the
"full" pins tub name, which represents the
full name of the original input, output, or

215

MAX+PLUS /I AHDL

bidirectional pin in a mega- or
macrofunction design file or primitive
Function Prototype.

You can specify whether or not to display
the "visible" pinstub name in a Graphic
Editor file when you create a pinstub in the
Symbol Editor. The use or non-use of a
particular pinstub (and hence its visibility)
can be customized when you edit a symbol
instance in the Graphic Editor with Edit
Ports/Parameters (Symbol menu).

Pinstubs in Graphic Editor files are
synonymous with ports in AHDL Function
Prototypes and signals listed in the
Subdesign Sections of lower-level Text
Design Files (.tdf).

port A symbolic name that represents an
input or output of a primitive or of a design
file.

In AHDL, a port name in the Subdesign
Section represents an input or output of the
current file. This port name also appears in
the Function Prototype for the function.
When an instance of a primitive or lower­
level design file is implemented with an
Instance Declaration or an in-line
reference, its ports are used to connect it to
other functions in the TDF. After an
instance is declared, its inputs and outputs
are expressed as names in the format
<instance name> . <port name> in the Logic
Section. When an in-line reference is used,
either named port association or positional
port association can be used to connect the
function's ports to other functions in the
TDF.

A port name in an AHDL Subdesign
Section or VHDL Entity Declaration is
synonymous with a pin name in a Graphic
Design File (.gdf) or Waveform Design

File (.wdf). A port name that is appended
to an instance name is synonymous with
the full pinstub name in an instance of a
symbol in a Graphic Editor file.

Preset An input signal that
asynchronously sets the output of a
register to a logic high (1), regardless of
other inputs.

primitive One of the basic functional
blocks used to design circuits with
MAX+PLUS II software. Primitives are
used in Graphic Design Files (.gdf), AHDL
Text Design Files (.tdf), and VHDL Design
Files (.vhd).

Graphic Editor primitives include buffers,
flipflops, a latch, input and output
primitives, and logic primitives. Primitive
symbols for Graphic Editor files are
provided in the \maxplus2\max2lib\
prim directory created during installation.

AHDL and VHDL primitives, which
include buffers, flipflops, and a latch, are a
subset of the primitive symbols used in
Graphic Editor files . Other functions are
represented by logical operators, ports,
and other constructs. Function Prototypes
for AHDL primitives are built into the
MAX+PLUS II software; Component
Declarations for VHDL primitives are
provided in the maxplus2 package in the
altera library, which is located in the
\maxplus2\max2vhdl directory. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the /usr directory.)

probe A unique name assigned to any
node, e.g., the input or output of a
primitive or macrofunction, which can be
used instead of the full hierarchical node
name throughout MAX+PLUS II. A probe

216

Glossary

name thus provides a short name to
identify a node.

product term Two or more factors in a
Boolean expression combined with an AND

operator constitute a product term, where
"product" means "logic product."

project A project consists of all files that
are associated with a particular design,
including all subdesign files and related
ancillary files created by the user or by
MAX+PLUS II software. The project name
is the same as the name of the top-level
design file in the project, without the
filename extension.

MAX+PLUS II performs compilation,
simulation, timing analysis, and
programming on only one project at a time.

R

radix A number base. Group logic level
and numerical values are entered and
displayed in binary, decimal, hexadecimal,
or octal radix in MAX+PLUS II.

range A sequence of numbers or
arithmetic expressions that define the
width of a group (bus) in a Graphic Editor
or AHDL file. A range is enclosed in
brackets; the most significant bit (MSB) of
the range is shown first; the least
significant bit (LSB) is shown last. The start
and end of the range are separated by two
periods.

Example: group a [2 .. 0 1 consists of the
nodes a2, al, and aO; the MSB is a2; and
the LSB is aO.

register see flipflop.

registered feedback Feedback that is the
output of a flipflop or latch.

registered output The output of a flipflop
or latch, which can feed an output pin on
the device.

Reset An active-high input signal that
asynchronously resets the output of a
register to a logic low (0) or a state machine
to its initial state, regardless of other
inputs.

resource A resource is a portion of an
Altera device that performs a specific, user­
defined task (e.g., pins, logic cells).

resource assignment An assignment of a
logic function in a project to a particular
pin, logic cell, II0 cell, embedded cell,
logic array block (LAB), embedded array
block (EAB), row, column, or chip. This
type of resource assignment assigns a logic
function to a physical resource in a device.

A resource assignment can also consist of a
clique, logic option, connected pin, or
timing requirement assignment to a
particular logic function in a project. This
type of resource assignment assigns a
compilation resource to a logic function.

s
SDF Output File see Standard Delay
Format Output File.

secondary input The Clock, Preset, and
Reset (Clear) inputs to a register or a state
machine in a design file.

sign-extend To extend a two's
complement binary number by padding to
the left with 0' s if the number is positive, or
with l's if the number is negative.

217

MAX+PLUS /I AHDL

single-range group (or bus) name The
name of a group (or bus) of up to 256
nodes, consisting of up to 32 name
characters, followed by a range of numbers
or arithmetic expressions in brackets. The
start and end of the range are separated by
two periods. Each number in the sequence
represents an individual node (or ''bus
bit").

Example: group a [4 .. 1] consists of the
nodes a4, a3, a2, and al.

In a Graphic Editor files, a sequential bus
name can also include one or more single­
range bus names in a series. The first node
of the series or the first node in the first
range is the most significant bit of the bus;
the last node of the series or the last node in
the last range is the least significant bit.

Example: a [8 .. 0], b1, dou t [6 .. 4]

SMF see State Machine File.

Standard Delay Format Output File (.sdo)
An optional output file (with the extension
.sdo) containing timing delay information
that allows you to perform back­
annotation for simulation with VHDL
simulators that use VITAL-compliant
simulation libraries; back-annotation for
simulation in Verilog simulators; and
timing analysis and resynthesis with EDIF
simulation and synthesis tools.The
Standard Delay Format (SDF) is an
industry-standard format.

The MAX+PLUS II Compiler's EDIF,
VHDL, and Verilog Netlist Writer modules
of the MAX+PLUS II Compiler can
generate SDF Output Files in SDF version
2.1 or 1.0 format.

state A state is implemented in a device
as a pattern of l's and O's (bits) that are the
outputs of multiple flipflops (collectively
called a state machine state register). States
can be defined in an AHDL Text Design
File (.tdf), a Waveform Design File (.wdf),
a Vector File (.vee), a VHDL Design File
(.vhd), or a State Machine File (.smf), and
are reported in the State Machine
Assignments Section of the Report
File (.rpt).

state bit An output of a flipflop used by a
state machine to store one bit of the value of
the state machine.

state control equation An AHDL equation
that assigns a value to the Clock, Clock
Enable, or Reset port(s) of the D or T .
flipflop(s) on which a state machine is
implemented.

state machine A sequential circuit that
advances through a number of states. A
state machine can be defined in a
Waveform Design File (.wdf), State
Machine File (.smf), Vector File (.vee),
VHDL Design File (.vhd), or in a State
Machine Declaration in an AHDL Text
Design File (.tdf).

State Machine File (.smf) An ASCII file
(with the extension .smf) that contains a
state machine design created for use with
Altera's A+PLUS or SAM+PLUS software.
This file contains a symbolic representation
of the data for a circuit in terms of inputs,
outputs, and transitions between states.
The MAX + PLUS II Compiler automatically
translates an SMF into an Altera Design
File (.adf) and a Compiler Netlist File (.enf)
during compilation.

state name A symbolic name that
represents the state of a state machine.

218

state transition A conditional assignment
of a state to the state machine variable.
State transitions are created by
conditionally assigning the state variables
with a single behavioral construct.

In AHDL, state transitions are created with
Case or Truth Table Statements. State
transitions occur on the rising edge of the
Clock.

In VHDL, state transitions are created with
Case Statements. You must also provide a
Wait Statement to cause each state
transition to occur on a Clock edge.

subdesign A lower-level design file in a
MAX+PLUS II project, i.e., an Altera­
provided or user-created megafunction or
macro function.

Altera provides libraries of mega- and
macrofunctions in the mega_Ipm and mf
subdirectories of the \maxplus2\max2lib
directory. AHDL Include Files (.inc) for
these functions are located in the
\maxplus2\max2lib \mega_Ipm and
\maxplus2\max2inc directories,
respectively. Component Declarations for
functions supported by VHDL are
provided in the maxplus2 package in the
altera library, which is located in the
\maxplus2\max2vhdl directory. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the lusr directory.)

subdesign name A name that represents
the name of a subdesign. In AHDL, the
subdesign name is a quoted or unquoted
symbolic name that must be the same as
the Text Design File (.tdf) filename.

Glossary

Unquoted subdesign name:

Maximum 32 characters
length:
Legal characters: a-z, A-Z, 0-9, and

underscore L)
An unquoted subdesign
name cannot be a
reserved AHDL
identifier or keyword.

Quoted subdesign name: -
Maximum 32 characters
length:

Legal characters: a - z, A-Z, 0 -9, dash (-),
and underscore C)

W 	 In the UNIX workstation
environment, filenames and hence
subdesign names are case-sensitive.

sum-ol-products A Boolean expression is
said to be in sum-of-products form if it
consists of product terms combined with
the OR operator.

symbollD number or net ID number A
number that uniquely identifies every
node and symbol in a design file.

In the Graphic Editor, this number appears
inside the bottom left corner of a symbol
and reflects the order in which symbols are
entered in a Graphic Editor file. In other
types of design files, the Compiler assigns
ID numbers to nodes when the project is
compiled. In the Hierarchy Display
window, the name of each lower-level
design file is appended with a colon (:)
plus the ID number or an AHDL or VHDL
mega- or macrofunction instance name.

219

MAX+PLUS 1/ AHDL

symbolic name A user-defined name in

AHDL.

Unquoted symbolic name:

Maximum 32 characters

length:

Legal characters: a-z, A-Z, 0-9, slash (/),

and underscore C)
An unquoted symbolic
name cannot consist
entirely of digits and
cannot be a reserved
identifier or keyword.

Quoted symbolic name:

Maximum 32 characters
length:

Legal characters: a-z, A-Z, 0-9, slash (/),
dash (-), and underscore
U
A quoted symbolic
name cannot be a
reserved identifier.

T

TDF see Text Design File.

ternary operator An operator that selects
between two expressions within an AHDL
arithmetic expression. The ternary
operator is used in the following format:

<expn 1> ? <expn 2> : <expn 3>

If the first expression is non-zero (true), the
second expression is evaluated and given
as the result of the ternary expression.
Otherwise, the third expression is
evaluated and given as the result of the
ternary expression.

Text Design Export File (.tdx) An ASCII
text file (with the extension .tdx) in AHDL
that is optionally generated when you
compile a Xilinx Netlist Format File (.xnf) .
It contains the same logic as the XNF File.

A Text Design Export File can be saved as a
Text Design File (.tdf) and used to replace
the corresponding XNF File in the
hierarchy of a project.

Text Design File (.tdf) An ASCII text file
(with the extension .tdf) written in AHDL.
Text Design Export Files (.tdx) and Text
Design Output Files (.tdo) can be saved as
TDFs and compiled with MAX+PLUS II.

Text Design Output File (.tdo) An ASCII
text file (with the extension .tdo), generated
by the MAX+PLUS II Compiler, that
contains the AHDL equivalent of the fully
optimized logic for a device in the project.

The Compiler generates a TDO File, as well
as an Assignment & Configuration Output
File (.aco) when you compile a project if
you turn on the Generate AHOL TOO File
command (Processing menu).

You can save a TDO File as a Text Design
File (.tdf) and recompile it. (You must also
save the Assignment & Configuration
Output File (.aco) as an Assignment &
Configuration File (.ad) if you wish to
preserve the assignments for the device.)
TDO Files facilitate back-annotation and
preserve the existing logic synthesis in the
project.

tri-state buffer A buffer with an input,
output, and controlling Output Enable
signal. If the Output Enable input is high,
the output signal equals the input. If the
Output Enable input is low, the output
signal is in a state of high impedance. The

220

Glossary

tri-state buffer is implemented with the
TRI primitive.

Tri-state buses can be implemented by
tying multiple nodes together in a Graphic
Editor file and with the TRI_ STATE_ NODE

variable in an AHDL file.

truncate In AHDL, to shorten a binary
number by subtracting digits from the left.

two's complement A system of
representing binary numbers in which the
negative of a number is equal to its inverse
plus 1. Arithmetic operators in AHDL
assume that groups they operate on are a
two's complement binary number.

u
unary An arithmetic operator that
operates only on one operand.

user libraries One or more directories that
contain your own megafunctions,
macrofunctions, Symbol Files (.sym),
AHDL Include Files (.inc), or precompiled,
user-defined VHDL packages.

The Compiler automatically searches for
these user-specified libraries when it
compiles a project. The Compiler's VHDL
Netlist Settings command (Interfaces
menu) specifies VHDL design libraries for
the current project. You can specify which
directories contain your other user libraries
with the User Libraries command
(Options menu) in any MAX+PLUS II
application.

variable A name that represents a node. In
AHDL, a variable can also represent a state
machine or an instance of a primitive,

megafunction, or macrofunction and is
declared in the Variable Section. In VHDL,
variables have a single current value, and
are declared and used only in processes
and subprograms. A VHDL variable is
declared with a Variable Declaration; the
value of a variable can be modified with a
Variable Assignment Statement.

vee A high-level input voltage
represented as a high (1) logic level in
binary group values.

In an AHDL Text Design File (.tdf), vee is
a predefined constant and keyword, and
the default active node value. In a VHDL
Design File (.vhd), vee is represented by
, 1 ' . In a Graphic Editor file, vee is a
primitive symbol. vee is represented as a
high (1) logic level in the Simulator and
Waveform Editor.

VHDl Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language.

You can create a VHDL Design File (.vhd)
with the MAX+PLUS II Text Editor or any
standard text editor and compile it directly
with MAX+PLUS II. You can also generate
an EDIF 2 0 0 or 3 0 0 netlist file from a
VHDL design that has been processed with
a VHDL synthesis tool, then import the file
into MAX+PLUS II as an EDIF Input File
(.edf). The MAX+PLUS II Compiler can
also generate a VHDL Output File (.vho)
that contains functional and timing
information for simulation with a standard
VHDL simulator.

VHDl Design File (.vhd) An ASCII text file
(with the extension .vhd) written in VHDL.
VHDL Design Files can be compiled by the
MAX+PLUS II Compiler.

v

221

x

MAX+PLUS /I AHDL

Xilinx Netlist Format (XNF) File (.xnf) A
netlist file (with the extension .xnf)
generated by Xilinx software. XNF Files
that are generated by running the Xilinx
LCA2XNF utility can be compiled directly
by the MAX+PLUS II Compiler. An XNF
File can define all logic in a project, or be
incorporated at the bottom level in a
hierarchical project.

222

Index

All index references are to theMAX+PLU5 IIAHDL manual. Definitions of technical terms
are given in Glossary.

Symbols

- character 11, 95, 103, 109, 112

-- characters 95, 191

! character 95, 103, 107, 108, 112

! # characters 96, 104, 107, 108, 112

! $ characters 96, 104, 107, 112

! & characters 96, 107, 108, 112

! = characters 11,95, 103, 111, 112

" character 94, 141, 145, 190

character 96, 104, 107, 108, 112

$ character 96, 104, 107, 108, 112

%character 94, 191

& character 96, 104, 107, 108

, character 94

() characters 94, 99, 112, 190

* character 103
+ character 11,95, 103, 109, 112

, character 43,94, 100, 169, 190

. character 94, 133, 134

.. characters 94, 100

I character 42, 94, 192

: character 94, 190

223

MAX+PLUS /I AHDL

; character 94, 190
< character 11,96, 104, 111, 112
< = characters 96, 104, 111, 112
= character 94
== characters 11, 95, 103, 111, 112
=> characters 33, 36, 94, 172, 183
> character 11,95, 104, 111, 112
>= characters 11,95, 104, 111, 112
? character 96, 104
@ character 94
[1 characters 28, 94, 99
\ character 94
A character 103
_ character 94, 192
- character 85, 100, 162

A

a 6502 megafunction 130
ACF 2, 11
active-low signals 41 , 173, 192
ADF3
AHDL

automatic LPM substitution for operators & comparators 11
comments 191
elements 91
examples 9, 24
file structure 4
formatting guidelines 188
general description 2
golden rules 14
syntax coloring 10
templates 9, 22
using 17

AHDL Template command 22
ahdl.tpl file 23
Altera Design Files (.adf) 3
AND operator 104, 107, 108
arithmetic comparators 111, 112
arithmetic expressions 100, 103
arithmetic functions 20
arithmetic operators 109, 112
ASSERT keyword 155

224

Index

Assert Statement
general description 155
implementing 21,89
position in a TOF 5
sample files 21, 90

Assign menu commands 2, 11
Assignment & Configuration File (.ad) 2, 11
assignments, resource & device 11
Auto-Indent command 188, 193

B

Backus-Naur Form xvii
BEGIN keyword 168
BIDIR keyword (see ports)
bidirectional pins 43
binary numbers 18, 102
BITO option (see Options Statement)
BNF xvii
Boolean equations

control equations 57, 171

general description 168

general rules 169

implementing 25

position in a TOF 5

priority rules 112

using groups 28

Boolean expressions 108, 112
arithmetic operators 109
comparators 111
general description 106
implementing 25
in Case Statements 34
in If Then Statements 31,34, 176
logical operators 107, 108
naming operators & comparators 84

buffer primitives 114-125

buses, tri-state (see groups and tri-state buses)

Carry Chain logic option 115

c

225

MAX+PLUS /I AHDL

CARRY primitive
general description 114
primitive/port interconnections 127
primitive/port to register connections 128

carry-out signal 110, 169
Cascade Chain logic option 116
CASCADE primitive

general description 116
primitive/port interco:;.mections 127
primitive/port to register connections 128

CASE keyword 172
case sensitivity 146
Case Statement

compared with If Then Statement 34
formatting guidelines 194
general description 172
implementing 31,32
position in a TDF 5
recovering from illegal states 67
sample files 33, 55, 57, 68, 78
specifying default values for variables 39, 173
specifying output values for states 56
state transitions 56

CEIL function 105
chip assignments 11
Clear signal 118
clique assignments 11
Clique command 11
CL I QUE keyword 92
Clock Enable signal 48, 57, 171
Clock signal 118

global 50
in state machines 57,60,64, 171
loading a register 52
synchronizing state machine outputs 63

Color Palette command 10
column assignments 11
combinatorial feedback 122
combinatorial logic 25-45, 124
comments 191
comparators 25,84, 103, 111, 112, 190

context-sensitive help 10

substituting LPM functions 11

syntax coloring 10

conditional logic 31- 35, 172, 176

226

Index

conditionally generated logic 87
Connected Pins command 11
CONNECTED_ PINS keyword 92
CONSTANT keyword 147
CONSTANT primitive 113
Constant Statement 101, 103

general description 147

implementing 19, 21

position in a TDF 4

sample files 20, 21

constants, in Boolean expressions & equations 25
control equations (see Boolean equations)
counters 51
Create Default Include File command 8, 70, 76, 77, 145, 153
Create Default Symbol command 76
creating evaluated functions 149
csdpram megafunction 83, 130
csfifo megafunction 83, 130

o
decimal numbers 18, 102
decoders 19, 32, 35, 36, 37, 70
Decrease Indent command 188, 193
default pin/port values 157
DEFAULTS keyword 173
Defaults Statement

general description 173, 185

implementing 39

position in a TDF 5

sample files 39, 40, 42

DEFINE keyword 149
Define Statement

general description 149
implementing 19, 21
position in a TDF 4
sample files 21

delay chains 121
Design Doctor Settings command 121
DESIGN keyword 92
device assignments 11
DEVICE keyword 92
DEVICE_FAMILY parameter 87
DFF primitive 50,51,63,93, 126, 127
DFFE primitive 48,50,51,93, 126, 127

227

MAX+PLUS /I AHDL

DIVoperator 103
documentation conventions xiv
dual-range group names 99

E

EDIF Input Files (.edf) 3
Edit Ports/Parameters command 137
ELSE GENERATE keywords 178
ELSE keyword 176
ELSIF keyword 176
embedded cell assignments 11
Enable signal 48, 171
END CASE keywords 172
END DEFAULTS keywords 173
END GENERATE keywords 178, 179
END IF keywords 176
END keyword 168
END TABLE keywords 183
Enter Parameters command 137
evaluated expression 103
evaluated functions

creating 149

implementing 19

testing 155

examples xix, 9
EXP primitive

conversion to LCELL buffer 117
general description 117
primitive/port connections 127
primitive/port to register connections 128

expander product terms 117
exponent operator 103

F

Fitter Settings command 122
flipflops 125
FLOOR function 105
Floorplan Editor II, 12

228

Index

For Generate Statement
formatting guidelines 194
general description 179
implementing 86
position in a TDF 5
sample files 86

FOR keyword 179
formatting guidelines 188- 197
FUNCTION keyword 151
Function Prototype Statement

general description 151
implementing megafunctions & macrofunctions 69
position in a TDF 4
sample files 44, 71, 79

G

GDF2
Generate AHDL TDO File command 13
GENERATE keyword 178, 179
GLOBAL primitive 50

general description 118

primitive/ port interconnections 127

primitive/port to register connections 128

Global Project Logic Synthesis command 50, 58, 67, 123, 137
Global Project Parameters command 137
global signals 50, 118
GND 30, 39, 40, 102, 127, 128, 157, 173
golden rules 14
Graphic Design File (.gdf) 2
Graphic Editor 137
groups

bit-ordering 154

default values 39

defining 28

general description 99

in Boolean equations 25, 28, 169

in Boolean expressions 108, 109, 111

in truth tables 184

names 99

ranges 100, 103

set equal to vcc & GND 30

sign-extending 30, 110

229

MAX+PLUS /I AHDL

H

Help
context-sensitive 10
examples 24
updates xviii

HELP_ID keyword 155
hexadecimal numbers 18, 102
hierarchical designs

general description 3, 7
implementing in AHDL 69- 80

Hierarchy Down command 16

identifiers, reserved 93
If Generate Statement

formatting guidelines 194
general description 178
implementing 87
position in a TDF 5
sample files 87, 90

IF keyword 176, 178
If Then Statement

compared with Case Statement 34
Compiler interpretation 34
creating counters 51
formatting guidelines 193
general description 176
implementing 31
position in a TDF 5
sample files 31, 42
specifying default values for variables 39, 173
specifying output values for states 56

Include File (.inc) 2, 7, 70, 74, 76, 145
INCLUDE keyword 145
Include Statement

general description 145

implementing 70

position in a TDF 4

Increase Indent command 188, 193

230

L

Index

in-line logic function reference
general description 180
implementing 69
named port association 71
position in a TDF 5
positional port association 71
RETURNS clause 72

INPUT keyword (see ports)
Instance Declaration 80

general description 160
implementing 69
position in a TDF 5

IS keyword 172
iteratively generated logic 86

J

JKFF primitive 48, 93, 126, 127, 128
JKFFE primitive 48, 93, 126, 127, 128

K

keywords
context-sensitive help 10
reserved AHDL keywords 92, 93
syntax coloring 10

LATCH primitive 93, 126, 127, 128
LATENCY parameter 138
LCELL primitive

converting EXP buffer 117
converting SOFT buffer 123
general description 120
implementing 81
primitive/port interconnections 127
primitive/port to register connections 128

Library of Parameterized Modules (LPM) 2, 11, 129
location assignments 11
LOG2 operator 103, 105

231

MAX+PLUS /I AHDL

logic
active-low 41
combinatorial 25-45
conditional 31- 35, 172, 176
sequential 47-53

Logic Array Block 117
logic cells

assignments 11
converting SOFT buffer 123

logic expansion 124
logic option assignments 11

Carry Chain logic option 115
Cascade Chain logic option 116
inserting LCELL buffers 122
inserting SOFT buffers 124
used as parameters 138

Logic Options command 11
Logic Section

Assert Statement 89, 155
Boolean control equations 57, 171
Boolean equations 168
Case Statement 31, 32, 34, 39, 56, 67, 172, 173, 194
Defaults Statement 39, 173
For Generate Statement 179
formatting guidelines 193
general description 168
If Generate Statement 178
If Then Statement 31,34, 39, 51, 56, 173, 176, 193
in-line logic function reference 69, 180
ports 132
position in a TDF 5
Truth Table Statement 35, 39, 56, 60, 61, 63, 173, 183

Logic Synthesizer 60,62, 117, 123
logic, reducing complexity 124
logical comparators 111, 112
logical operators 25, 84, 106, 107, 108, 112
LPM 2, 11, 111, 129
lpm_add_sub 11,74
lpm_ compare 11, 35, 111
lpm_ counter 51
lpm_ decode 35
lpm_ dff 48
lpm_ ram_dq 83
lpm_ ram_io 83

232

Index

lpm_rom 83

LSB keyword (see Options Statement)

M

Machine Alias Declaration
general description 166
implementing 77
position in a TDF 5
sample files 79

MACHINE INPUT keywords 77, 157, 166
MACHINE keyword 151, 165, 166
MACHINE OUTPUT keywords 77, 157, 166
macrofunctions

context-sensitive help 10
formatting guidelines 188
general description 131
implementing 69- 80, 159, 160, 180
in-line reference 69
Instance Declaration 69
instances 159, 160
ports 70, 72
prototypes 151
syntax coloring 10
unconnected inputs 72
user-defined 76

MAX+PLUS II Floorplan Editor 11, 12
MAX+PLUS II Graphic Editor 137
MAX+PLUS II manuals

documentation conventions xiv
help updates xviii
list of documents xii

MAX+PLUS II Symbol Editor 137
MAX+PLUS II Text Editor

AHDL templates & examples 9
context-sensitive help 10
error location 12
resource & device assignments 11

max2inc directory 8, 131, 145
max2lib directory 8, 131, 145
max2work\ahdl directory 9, 24
maxplus2.idx file 16
maxplus2.ini file 16
maxplus2\max2inc directory 8, 131, 145
maxplus2\max2lib directory 8, 131, 145

233

MAX+PLUS /I AHDL

MCELL primitive 93, 121
Mealy state machines 64
mega_Ipm directory 129, 145
megafunctions

context-sensitive help 10
formatting guidelines 188
general description 129
implementing 69- 80, 159, 160, 180
in-line reference 69
Instance Declaration 69
instances 159, 160
ports 70,72
prototypes 151
syntax coloring 10
unconnected inputs 73
user-defined 76

MEMORY identifier 93
message location 12
MOD operator 103
Moore state machines 60
MSB keyword (see Options Statement)
multiplication operator 103

N

named port association 71, 135
names

formatting guidelines 189
group 99
naming conventions 192
on logical operators & comparators 84
ports 97, 133
subdesign 97
symbolic 97, 132

NAND operator 104, 107, 108
net ID numbers 85
Node Declaration

general description 162

implementing 27, 81

position in a TDF 5

sample files 82

NODE keyword 159, 162

234

Index

nodes
active-low 41, 173
creating 162
declaring 27, 162
default values 39
grouping 28, 99
in Boolean equations 25, 168, 169
in Boolean expressions 108, 111
in truth tables 184
names 42

NOR operator 104, 107, 108
NOT operator 107, 108
ntsc megafunction 130
numbers 149, 169

general description 102
implementing 18, 19
in Boolean equations 112
in Boolean expressions 108, 109
replacing with constants 147
sign-extended 169
truncated 169

numeric equality operator 104

o
obsolete syntax 140
octal numbers 18, 102
OF BITS keywords 165
old-style macrofunctions (see macrofunctions)
one-hot code 32
one-hot encoding 67
One-Hot State Machine Encoding option 58,67
open-drain pins 122
operands 106
operator and comparator priorities 112
operators 25, 103, 106, 107, 108, 109, 112, 190

context-sensitive help 10
substituting LPM functions 11
syntax coloring 10

OPNDRN primitive
general description 122
primitive/port interconnections 127
primitive/port to register connections 128

OPTIONS keyword 154

235

MAX+PLUS /I AHDL

Options Statement
BITO option 100
general description 154
implementing 28
position in a TDF 4
sample files 29

OR operator 104, 107, 108
OrCAD Schematic Files (.sch) 3
Output Enable signal 118
OUTPUT keyword (see ports)

p

PARAM primitive 113
parameters 20

creating 142
general description 137
in Assert Statements 89
in Function Prototypes 151
in Instance Declarations & in-line references 73
testing 155

PARAMETERS keyword 142
Parameters Statement

Compiler parameter value search order 137
formatting guidelines 189
general description 142
position in a TDF 4

pin assignments 11
Pin/Location/Chip command 11
pins

bidirectional 43

default values 157

naming 132

placeholders 43, 100
pll megafunction 130
ports

bidirectional 43

commonly used ports 135

default values 157

formatting guidelines 188

general description 132

groups 99

named association 71

names 97

positional association 71

236

Index

primitive/port interconnections 127
primitives 163
replacing INPUT, OUTPUT & BIDIR primitives 113
specifying the port type 157
testing usage with USED 87, 155
using 47, 70, 72, 160

positional port association 71
Preset signal 118
primitives

context-sensitive help 10
flipflops and latch 125- 126
general description 113
implementing 50, 81, 159, 160, 163, 180
Instance Declaration 82
legal interconnections 127
ports 47, 163
prototypes 151
Register Declaration 47,50,51
syntax coloring 10
unconnected inputs 72

priority rules, in Boolean equations 112
product terms

expanders 117
reducing number 123

Project Archive command 16
Project Name command 16
Project Save & Check command 13, 77, 146
Project Save & Compile command 13
Project Set Project to Current File command 16
punctuation

context-sensitive help 10

syntax coloring 10

a
quoted names 97

R

radixes 102
RAM, implementing 83
ranges 99, 100, 103

group 154
read.me file xviii

237

MAX+PLUS /I AHDL

Register Declaration
creating counters 51
declaring registered outputs 50
general description 163
implementing 47
position in a TDF 5

REPORT keyword 155
reserved identifiers 93
reserved keywords 92
Reset signal 57, 171
resource assignments 11
RETURNS clause 72
RETURNS keyword 151
ROM, implementing 83
row assignments 11

s
Save As command 16
SCH file 3
SCLK primitive 118
SEGMENTS keyword 92
sequential group names 100
sequential logic 47- 53
SEVERITY keyword 155
Shift+Fl keys 10
signals, active-low 41, 192
sign-extended numbers 169
single-range group names 99
SMF3
SOFT primitive

comparison to LCELL primitive 121
general description 123
implementing 81
primitive/port interconnections 127
primitive/port to register connections 128

SRFF primitive 48, 93, 126, 127
SRFFE primitive 48, 93, 126, 127
State Machine Declaration

assigning state bits & values 58
formatting guidelines 195
general description 165
implementing 55
Mealy state machines 64
Moore state machine 60

238

MAX+PLUS II AHDL

T

TABLE keyword 183
TDO file 2
TDX file 2
templates, AHDL 9, 22
ternary operator 104
Text Design Export File (.tdx) 2
Text Design File (.tdf)

checking syntax 13
comments 191
compiling 13
formatting guidelines 188- 195
in hierarchical designs 7
structure 4

Text Design Output File (.tdo) 2, 13
Text Editor (see MAX+PLUS II Text Editor)
TFF primitive 48, 93, 126, 127
TFFE primitive 48, 93, 126, 127
THEN keyword 176
timing assignments 11
Timing Requirements command 11
Title Block 113
TITLE keyword 141
Title Statement

general description 141
naming conventions 192
position in a TDF 4

TO keyword 179
TOKfile 16
TRI primitive 43

conversion of OPNDRN buffer 122
general description 125
primitive/port interconnections 127
primitive/port to register connections 128

TRI_ STATE_ NODE keyword 27, 159, 162
tri-state buffer (see TRI primitive)
tri-state buses 27, 43, 45
tri-state nodes 162
truncated numbers 169

240

Index

position in a TDF 5
sample files 55, 57, 59, 61, 63, 65, 68, 78
specifying machine outputs 60

State Machine Files (.smf) 3
State Machines
state machines

assigning state bits & values 54, 55, 56, 58,60,61, 67, 165
Clock, Reset & Enable signals 57
control equations 171
dummy states 67
general description 54
implementing 55-68
importing & exporting 77
logic minimization 62
machine alias 77, 166
Mealy state machines 64
Moore state machines 60
naming 165
one-hot encoding 58
ports 47
processing 54
recovering from illegal states 66
Reset state 165
sample files 55, 57, 59, 61, 63, 65,68, 78
state transitions 56, 60
synchronizing outputs 60, 63
with asynchronous outputs 64
with synchronous outputs 60

string equality operator 104
Style Guide 187
SUBDESIGN keyword 157
subdesign names 97
Subdesign Section

formatting guidelines 189, 193
general description 157
ports 132
position in a TDF 4

subranges 100
Symbol Editor 137
Symbol File (.sym) 138
symbolic names 97, 132, 192
symbols 94
syntax checking 13
Syntax Coloring command 10, 14, 24, 187
syntax, obsolete 140

239

v

Index

Truth Table Statement
formatting guidelines 194
general description 183
implementing 35
position in a TDF 5
sample files 36, 37, 59, 61 , 63, 65
specifying default values for variables 39, 173
state transitions 56, 61, 63

u
unary + and - operators 110
undefined (x) logic levels 35, 93
unquoted names 97
Use LPM for AHDL Operators logic option 11, 111
USED evaluated function 87
User Libraries command 76
usr/maxplus2 directory (see maxplus2 directory)

VARIABLE keyword 159
Variable Section

formatting guidelines 195
general description 159
If Generate Statement 178
Instance Declaration 69, 160
Machine Alias Declaration 77, 166
Node Declaration 27,81, 162
position in a TDF 5
Register Declaration 47, 50, 51, 163
State Machine Declaration 55, 60, 165, 195

vee 30, 39, 40, 102, 127, 128, 157, 173
VHDL Design Files (.vhd) 3

w
Waveform Design Files (.wdf) 3
WHEN keyword 172
WHEN OTHERS keywords 172
white space 190
WITH clause 73
WITH keyword 151, 180
WITH STATES keywords 165

241

MAX+PLUS " AHDL

x

x character 38, 183

Xilinx Netlist Format Files (.xnf) 3

XNOR operator 108

XOR operator 104, 107, 108

242

ALTERA CORPORATION

101 INNOVATION DRIVE

SAN JOSE, CALIFORNIA

95134 USA

P2S-04802-02

	Contents

	Preface - MAX+PLUSII Fundamentals

	Section 1 - Introduction

	Section 2 - How to use AHDL

	Section 3 - Elements

	Section 4 - Design Structure

	Section 5 - Style Guide
	Glossary

	Index

