*[[[ﬂﬂﬂ
i g A
IR A
N

AAAAAAAAAAAAAAA

MAX+PLUS® Ii

ABIRERA

Altera Corporation
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000

Programmable Logic Development System

AHDL

MAX+PLUS Il AHDL
Version 6.0
November 1995 P25-04802-02

Altera, MAX, MAX+PLUS, FLEX, and FLEX Ability are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: Classic, MAX 5000, MAX 5000A, FLEXlogic, FLASHlogic, MAX 7000, MAX 7000E,
MAX 70005, FLEX 8000, FLEX 8000A, FLEX 8000M, MAX 9000, FLEX 10K, MAX+PLUS II, PLDshell Plus, FastTrack, AHDL,
MPLD, Turbo Bit, BitBlaster, PLS-ES, PLSM-VHDL, PLSM-VHDLWS, EP220, EP330, EP610, EP610I, EP910, EP910], EP1810,
EP1810T, EP610T, EP910T, EPM5016, EPM5032, EPM5032A, EPM5064, EPM5064A, EPM5128, EPM5128A, EPM5130, EPM5130A,
EPM5192, EPM5192A, EPX740, EPX780, EPX880, EPX8160, EPM7032, EPM7032V, EPM7064, EPM7096, EPM7182E, EPM7160E,
EPM7192E, EPM7256E, EPM7032S, EPM7064S, EPM70965, EPM7128S, EPM7160S, EPM7192S, EPM7256S, EPC1, EPC1064,
EPC1064V, EPC1213, EPF8282, EPF8282V, EPF8282A, EPF8282AV, EPF8452, EPF8452A, EPF8636A, EPF8820, EPF8820A,
EPF81188, EPF81188A, EPF81500, EPF81500A, EPF8050M, EPM9320, EPM9400, EPM9480, EPM9560, EPF10K10, EPF10K20,
EPF10K30, EPF10K40, EPF10KS0, EPF10K70, EPF10K100. Product design elements and mnemonics are Altera Corporation
copyright. Altera Corporation acknowledges the trademarks of other organizations for their respective products or services
mentioned in this document, specifically: UNIX is a trademark of AT&T Bell Laboratories. Verilog is a registered trademark of
Cadence Design Systems, Incorporated. Data I/O is a registered trademark of Data [/O Corporation. FLEXlm is a registered
trademark of Globetrotter Software, Inc. HP is a registered trademark of Hewlett-Packard Company. IBM is a registered
trademark and IBM PC and IBM RISC System/6000 are trademarks of International Business Machines Corporation. Intel is a
registered trademark, and Pentium is a trademark of Intel Corporation. Mentor Graphics is a registered trademark of Mentor
Graphics Corporation. Microsoft, MS-DOS, and Windows are registered trademarks and Win32s and Windows NT are
trademarks of Microsoft Corporation. OrCAD is a trademark of OrCAD Systems Corporation. SPARCstation is a trademark of
SPARC International, Inc. and is licensed exclusively to Sun Microsystems, Inc. Sun Workstation and Solaris are registered
trademarks, and Sun, SunOS, and OpenWindows are trademarks of Sun Microsystems, Incorporated. Synopsys is a registered
trademark of Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Incorporated. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document.
Altera advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty. Testing and other quality control techniques are used to the extent
Altera deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed. In the absence of written agreement to the contrary, Altera assumes
no liability for Altera applications assistance, customer’s product design, or infringement of patents or copyrights of third parties
by or arising from use of semiconductor devices described herein. Nor does Altera warrant or represent any patent right,
copyright, or other intellectual property right of Altera covering or relating to any combination, machine, or process in which such
semiconductor devices might be or are used.

Altera’s products are not authorized for use as critical components in life support devices or systems without the express written
approval of the president of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling,
can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected
to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following U.S. patents: 4,020,469; 4,609,986; 4,617 479;
4,677,318; 4,713,792; 4,774,421; 4,785,423, 4,831,573; 4,864,161; 4,871,930; 4,899,067; 4,899,070; 4,903,223; 4,912,342; 4,930,097;
4,930,098; 4,930,107; 4,969,121; 5,045,772; 5,066,873; 5,091,661; 5,097,208; 5,111,423; 5,121,006; 5,128,565; 5,138,576; 5,144,167;
5,162,680; 5,166,604, 5,187,392; 5,200,920; 5,220,214; 5,220,533; 5,237,219; 5,241,224; 5,243,233; 5,247,477; 5,247,478; 5,258,668;
5,260,610; 5,260,611; 5,268,598; 5,272,368; 5,274,581; 5,280,203; 5,285,153; 5,294,975; 5301,416; 5309,046; 5315,172; 5,317,210;
5317,212; 5,329,487; 5,341,044; 5,341,048; 5,341,308; 5,349,255; 5,350,954; 5,352,940; 5,353,248; 5,359,242; 5,359,243; 5,369,314;
5,371,422; 5,375,086; 5,376,844; 5,384,499; 5,399,922; 5,414,312; 5,432,467; 5,434,514; 5,436,574; 5,436,575; 5,438,295; 5,444,394 and
certain foreign patents.

U.S. and European patents pending
Copyright © 1995 Altera Corporation. All rights reserved. NSal

Y 4 4 L.S. EN I1SO 9001
9 Printed on Recycled Paper
[4 y P!

Contents

Preface

MAX+PLUS II DOCUMENEATIONeceeieeieieeeee ettt see e eve et saean xii
MAX+PLUS IIT DOCUMENESovieiiiniieitieetiecieeeieeecteeecaseereeaseeeeaee s enseeanes xii
MAX+PLUS ITHEIP ..ottt xiii
How to Use MAX+PLUS H Documentationccecoeveeeescnvesiessvuennn xdii

Documentation CONVENHONSovieiieiiieieeieceeeectie e creeser e e s e etre e saesneeans xiv
TerMUNOLOZY ..ottt xiv
Typographic CONVentionscccccouvinninininrsc e XV
Key Combinations ... s xii
Backus-INAUr FOIMN ..ottt sttt enas xii

MAX+PLUS IT Help Updates........cccouieiiiiniiciieicinsicnscn e xiii

Sample Files......ccociiiiicici s xix

About MAXAHPLUS IT AHDL ..ottt XX

Section 1 Introduction

AHDL Design BNtV ..ot s 2
How Does AHDL WOrk? ... 2
Text Design File SEUCHUTec.coccuiiiiiiciricicicnce e 4
Text Design File Sectionscccccrrririicciiiinicceeccce 4
Files in a Project HIerarchyc.cooeieeienmnecnienceccneinie e 7
Include Files.......ccooviiiiiiiciiiiiici s 7
MAX+PLUS II Text EAItOr ...cccooiicirirrcce st 9
AHDL Templates & Examples........ccccoiieenniiniiiiiiisicncee e 9
AHDL Context-Sensitive Help.........ccooooieeiieicee 10
Syntax COLOTING ... s 10
Resource & Device ASSIGNMENtS........coooviviiiiiieiiiiinnneei e, 11

fii

MAX+PLUS Il AHDL

iv

255 0) g8 e 1o=1 5 o) o URNNRURT TSRO 12
Compiling AHDL Text Design Files...........cccccooiiicnininiicicicceicccceee 13
GOLAEN RULES ...ttt e et e e e e e e s et e enaes 14

General Design Entry Golden Rulescccoovvirvivicvincininnninens 15

General MAX+PLUS II Golden RUleScoovveevieveivieeeieeeeeceeeenne 16

Section2 How to Use AHDL

INErOAUCHON 1ot s 18
USING NUMDETScociiiiiiiiciiccces e s 18
Using Constants & Evaluated FUunctions.........c.cocoeeeciiiccncccnnncnenes 19
Inserting an AHDL Template.........c.ccccccooovriimimincnicece 22
AHDL EXaQMPIEScviririiiirireicteieieietereececcst e seas 24

Combinatorial LOZICcvcriririiiriiiiiiie i 25
Implementing Boolean Expressions & Equationscccocoeveinuciennnee. 25
Declaring NOAes ..o s 27
Defining GrOUPS........ocvriicemccreceeer et 28
Implementing Conditional LOGIC........c.cccnvrirrinmiiniiiicicnnieccnieeen, 31

If Then Statement LOZIC.........ccoeovriininiiciiiiciiee e 31
Case Statement LOZIC.......ccociimmiicriiiriricncciiieie v 32
If Then Statement vs. Case Statementcocoocveerniiniicnicciiiannne 34
Creating Decoders..........c.covuurmirrrinriii et 35
Using Default Values for Variables ..., 39
Implementing Active-Low LOGIC......cccovuimiiiiiimiciccec 41
Implementing Bidirectional PInsccccccovrniiiinicniiciininicicceccne, 43
Implementing Tri-State BuSescccccciriiiciniiiiicniccccscsis 45

Sequential LOZICc.coiricuciiicceeesiecce st 47
Declaring Registersccoeiiriimiiiiniiiici e e 47
Declaring Registered Outputs..........cocccvveviiiiininiiiiiiccececcecen, 50
Creating COUNETScccviiiiiiiicciiieiiis st 51

State Machines.......cccccivermerecnieienennceitst bbb bbb nens 54
Implementing State Machines...........ccccooviiiiiiii, 55
Setting Clock, Reset & Enable Signals..........ccoeeioiiieiiiiiicicice 57
Assigning State Machine Bits & Values.............ccoooii 58
State Machines with Synchronous Outputs........ccccoeeeeiiicce 60
State Machines with Asynchronous Outputs ..., 64
Recovering From Illegal States...........ccoueuriecmmiiociiiiinccc 66

Implementing a Hierarchical Projectccccooniiiniiiicca 69
Using Altera-Provided Unparameterized Functions.........c..ccccoeiiiinnn. 69
Using Altera-Provided Parameterized Functionsceooviiriiinns 73
Using Custom Megafunctions & Macrofunctions.........c.oooeeeieeinnincnnes 76
Importing & Exporting State Machines ..o, 77

Implementing LCELL & SOFT Primitivescocociiusioniinniciinisininsinnan 81

Implementing RAM & ROMccoooiiiiiimmniicicici e 83

Naming a Boolean Operator or Comparator............ccoeeueiueisiiisriciisinissnins 84

Conients

Using Iteratively Generated LOGiCcccooueuiiieiiiiiii e 86
Using Conditionally Generated Logic........ccoooviuiiiiiieiiiiiiiic, 87
Using the Assert Statementcccoveeciiiiiicie e 89

Section3 Elements

Reserved Keywords & Identifiers ..o 92
Reserved KeyWords.........oooiiciiniiicnenee e 92
Reserved TAentfiers. ... icii ettt 93

SYINDOLS ...ttt 94

Quoted & Unquoted NAIMES ..o 97

GIOUPS -ttt bbb 99
Group NOAtiONS ... 99
Group Ranges & Subranges ..o 100

Numbers in AHDL ..ottt 102

Arithmetic EXPressions..........cocueeiiiciiiince e 103

Boolean EXPressions.........uiiiiiiiiccienncesee s 106
Logical Operators........ccocuciciiiriicceecccc e 107
Boolean Expressions USINg NOTcccceiiuiiniirunrminisiesinisceseecieeeee e 108
Boolean Expressions Using AND, NAND, OR, NOR, XOR, & XNOR.......... 108
Arithmetic Operators in Boolean Expressions..............cococcceiiiicuiunnnn.. 109
COMPATALOTS ... e e 111
Boolean Operator & Comparator Priorities ... 112

PIIMUEIVES vttt et eb et et et 113
BUFfer PIIMUIVES oottt ettt eat vt et 114

CARRY PrIIMUIVE ..ocuveieiiiireitis ettt st ee e e 114
CASCADE PIIMITIVE .oooueieeceeeetie ettt stee e eae e 116
EXP PrIMItIVe ooeeeiii ettt 117
GLOBAL PrImMitIVe ..ouveieiieieeeee ettt 118
LCELL PrimitivVe ..ot 120
OPNDRN PrimitiVe . ..ocovieiiieeeieceieeeeeete et 122
SOFT PrimitiVe. oo 123
TRI PrIMIIVE ottt e 125
Flipflop & Latch Primitivesocoviieiiiiiiice e 125
Primitive/Port INterconnections.cooeeooeeeeeieieieeeeeeeeeeeeeee e 127

MegafuNCHONS. ... 129

Old-Style Macrofunctionscccccoeeeriienriiiieeenscscsceicesescree e seasans 131

P OIS et 132
Ports of the Current File.......c..oceiviiiiieeei e 132
POrts Of INSTANCES woonveevie et 133

PaTAINETRIS ..ttt e e e e e et ae e e e e e ananeaeeans 136

MAX+PLUS il AHDL

Vi

Section4 Design Structure

OV ETVIOW ... ettt e e e e e e e e s neaeeeseeeeeannneeannns 140
Title SEALEIMEINE . .eocteieeieecee ettt et ea e e enee e e nre s ebeeeans 141
Parameters StateIMENE........ooooveiieiieeeeciecre ettt eaeeete e saeearens 142
INCIUAE SEALEIMIENE ...ttt ettt et ebeeaaesaeesaeeaaean 145
Constant STATEIMENT.....c..covieees ettt ettt e bt b e sreenean 147
DEfiNe SEAtEIMENE ... c.eicviieeieeeecteetee ettt et eese et e teesaesaeeas et eeneeaseas 149
Function Prototype Statement ... 151
Options StatemMent ..o 154
ASSEIt SEATEIMEINE .ottt ettt 155
Subdesign SECIONc.coiiiiiiiiiicccc e 157
Variable SOCHOMNii ettt eerr e sttt et eneeeen e 159
Instance Declarationccccccvivieveiiirie e cee et eee e tae e ae s 160
Node Declarationcoceeeiieiiieieiecie et taeeeae s 162
Register Declaration........ocoocvrririciriicicieeiereiei e 163
State Machine Declarationooeeeeeeicieieeeiceeeceee et 165
Machine Alias Declaration.......coocveuieceeeieieeceieeeeee ettt 166
LOGIC SECHOMN ... 168
Boolean EQUations..........coiviiiiiiiiminc e 168
Boolean Control EQUAtioNScccouiiiiiiriciicnccccccsees 171
Case STAtEIMENE ... e e 172
Defaults StAteMEN Ttcocvieiiiieiieecee et e e eae s 173
If TIEN SEALETNIENE -ttt n et e e eenarennaeens 176
If Generate StAtEIMENToove ittt e eve e bens 178
For Generate Statement........ccoicievvviiicieieieieerer ettt 179
In-Line Logic Function Reference.........c.ccccocooevoiiiiniicncccncccc, 180
Truth Table Statementc.ccvcveeieeciriece e 183

Section5 Style Guide

General Style Guidelinescccooieviiiiiiiiiii 188
WRILE SPACE ..ot 190
Comments & DoCUumMeNtationcooverrieerrierere e 191
Naming CONVENHONScorrririieieeiciciicicirce e 192
Indentation GUIAEINESc.ocuiviiieirieei ettt 193
GIOSSANY ..ot et e b ettt sh e ae sttt bt ne e 197
INABX .ottt b ettt et 223

Figure

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6

2-8

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23

Contents

lllustrations

Page
MAX+PLUS II & AHDL Design Entry......ccooeiiciniiiciccic, 3
AHDL Text Design File Structure.........o.ccooviiviriiiiiicniiiciccicccn 6
decodeltdf ..o 18
decodel.gdf.........c.coomiiiiiii e 19
decode2.tdf ... 20
Stremptdf oo e 21
minport.tdf ... 22
AHDL Template Dialog BoX.........cccoconiimiiniimiiccce 23
Defaults Statement Template ... 23
boolel.tdf ... 26
boolel.gdf ... 26
D001e2.tAf ... 27
D001e2.gAS ... 28
groupltdf ... 29
priority.tdf s 31
PHOTItY. AL ..o 32
decoder.tdf ... 33
decoder.gdf ..o 33
7segment.tdf ... 36
7segment.gdf ... 37
decode3.tdf ... 37
decoded.tdf ... 38
defaultl.tdf ... 39
default2.tdf ..o 40
default2.gdf ..o 41

vif

MAX+PLUS Il AHDL

vili

Figure

2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64

Page
daisy.tdf ... 42
daiSY.GAL ... e 43
bus_reg2.tdf ..o 43
bus_1eg2.8df ... 44
BAdirTdf ..o 44
I _DUSHAS oo 45
bur_reg.tdf ... 48
Ipm_reg.tdf ... 49
TEZBAL ..o 49
reg OULEAS ..o 50
ahdlent.tdf ... e 51
Ipm_cnttdf ..o 52
count.gdf ... 53
simpletdf ... 55
simple.gdf ... 56
SiMPleltdf ..o 57
stepper.tdf ... 59
Moore State Machine Diagram........ccccoouieeiiiiiiioiuiiiniiccecc 60
moorel.bdf ... 61
mMoorel.gdf ..., 62
MOOTE2.EAE ..o 63
Mealy State Machine Diagramccooovoiiiiiiiiiiiiiccii 64
mealy.tdf ... 65
mMealy.Gdf. ..o e 66
reCOVEL.EAL ..o 68
MACrOT.EAL .o 70
MAacro2.tdf ... 71
MACTO.EAL ... 72
Ipm_addTbdf ..o 74
Ipm_add2.bdf ..o 75
XTI (=3 2R 1 s & SO ORTRRRO 78
YRR L-T=R ¢ & USSP 78
LOPTLAAS .o 79
EOPTLGAL ..o 79
EOP2.EAS ..o 80
NODE Variables & SOFT Primitives ..o 82
DO01e3.tAS ..oiiiii e e 84
boole3.rpt & boolel.rpt Excerptscocoooiiiiicciiiii 85
fter_add.tdf ... 86
condlogl.bdf ... 87
condlog2.tdf ..o 90

http:condlog2.td
http:condlogl.td
http:iter_add.td
http:boole3.td
http:ss_use.td
http:ss_de�.td
http:Ipm_add2.td
http:lpm_addl.td
http:macro.gd
http:macro2.td
http:macrol.td
http:recover.td
http:mealy.gd
http:mealy.td
http:moore2.td
http:moorel.gd
http:moorel.td
http:stepper.td
http:simplel.td
http:simple.gd
http:simple.td
http:lpm_cnt.td
http:ahdlcnt.td
http:re~out.td
http:lpm_reg.td
http:bur_reg.td
http:bus_reg2.gd
http:bus_reg2.td
http:daisy.gd
http:daisy.td

Table

3-1
3-2

3-4

3-6
3-7

39

3-10
3-11
3-12
3-13

Contents

Page
AHDL Symbolscccooiiiiimicetceeceec s 94
Quoted & Unquoted Names..........cocoeeieiiimiiecniiccceccs 98
Arithmetic Operators and Comparators Used in Arithmetic
EXPIESSIONS ..vvvriincmiteteiiince et 103
Logical Operators Used in Boolean Expressions...........ccccococvueeee. 107
Arithmetic Operators Used in Boolean Expressions 109
Comparators Used in Boolean Expressions.........ccccccocovvniiiiceceee 111
Boolean Operator & Comparator Prioritiesccccocovrncnvinencn. 112
Global Signal Availabilityc.cooooviiiniiciniccicce 118
MAX+PLUS I Flipflops & Latches ..., 126
Primitive /Port InterconnectionsS........cooeevvvieeieieiiieeeceeee e 127
Primitive /Port to Register Connectionsccoocvceoiiinincenes 128
MAX+PLUS II Megafunctionscccerivinireiiennccecnccncnnen. 129
Commonly Used Ports ... 135

MAX+PLUS Il AHDL

Preface

2=
S=
o X
E%
S
E—C
Q_,CD
v =

MAX+PLUS |
Fundamentals

This section describes the MAX+PLUS Il manual and on-line help
documentation and conventions. You should be familiar with this
information before using MAX+PLUS II documentation.

2 MAX+PLUS II Documentationcoccoooverievieieivicciceee e xii
u Documentation CONVENTIONScc.cveviveiieeeeeceiee e eteeeeeeeetee e xiv
o MAX+PLUS IT Help Updates ..o xviii
L Sample FIles ... xix
u About MAXAPLUS ITAHDLocoov oot XX

Xi

MAX+PLUS 1l AHDL

MAX+PLUS Il Documentation

MAX+PLUS Il documentation is designed for the novice as well as for the
experienced user. It includes manuals and extensive, illustrated Help.

MAX+PLUS Il Documents

Xif

MAX+PLUS II printed documents contain the following information:

MAX+PLUS II Contains step-by-step instructions on how to

Getting Started install MAX+PLUS II hardware, software, and
licenses on PCs and workstations. It also provides
an overview of the entire MAX+PLUS II system,
and a tutorial that takes you from design entry to
device programming. In addition, it contains
information about MAX+PLUS II command-line
operation and Altera’s support services.

MAX+PLUS 11 Contains complete information on the Altera

AHDL Hardware Description Language (AHDL),
including a detailed How to Use AHDL section
with many examples.

MAX+PLUS 11 Provides information on how to use the Very High
VHDL Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL) with
MAX+PLUS 1], including a How to Use
MAX+PLUS II VHDL section with many
examples. (Available if you purchase PLSM-
VHDL or PLSM-VHDLWS.)

MAX+PLUS I Provides handy and colorful descriptions of how
Help Poster to use on-line help in MAX+PLUS I

MAX+PLUS II for workstations also includes the following Software
Interface Guides:

Cadence & MAX+PLUS II Software Interface Guide

Mentor Graphics & MAX+PLUS II Software Interface Guide
Synopsys & MAX+PLUS II Software Interface Guide

Viewlogic Powerview & MAX+PLUS II Software Interface Guide

Preface: MAX+PLUS Il Fundamentals

MAX+PLUS Il Help

Your primary source of information on MAX+PLUS II is the complete on-
line help. All of the information necessary to enter, compile, and verify a
design and to program an Altera device is available in MAX+PLUS II Help.

Help also provides introductions to all MAX+PLUS II applications,
guidelines for designing circuits with MAX+PLUS II, pin and logic cell
numbers for each Altera device package, and summaries of other Altera
documents, such as application notes, that can assist you with logic design.

=5
=
o >
55
S0
E—C
Q_JCD
v =

How to Use MAX+PLUS Il Documentation

How you use MAX+PLUS II documentation depends on your level of
expertise and your approach to learning how to use a new tool.

If you are a novice user, you should take time to read the MAX+PLUS II
Getting Started manual and complete the MAX+PLUS II Tutorial. Once you
begin using MAX+PLUS II applications, you will find that the easy-to-use,
extensive on-line help can quickly turn you into an expert MAX+PLUS II
user. For basic information on using on-line help, refer to the MAX+PLUS II
Help Poster. More detailed information on using Help is available in
MAX+PLUS 11 — A Perspective in MAX+PLUS II Getting Started.

If you are an experienced circuit designer or one who prefers to learn by
experimenting, you will find the on-line help invaluable. Context-sensitive
and menu-driven help give instant access to all MAX+PLUS II information.

Regardless of your level of expertise, you must follow the installation
instructions provided in MAX+PLUS II Getting Started. Before you install
the MAX+PLUS IThardware and software, you should also read the read.me
file provided on the first Install diskette or on the CD-ROM. If you are using
the CD-ROM on a PC, the read.me file is located in the \pc\maxplus2
directory; on a workstation, it is located in the /cdrom directory. Once you
have installed MAX+PLUS II, you can open the read.me file through the
Help menu in MAX+PLUSIL

Altera Applications Engineers are also available to answer your questions.
For more information about Altera’s technical support services, see
Appendix B: Altera Support Services in MAX+PLUS II Getting Started.

Xiii

MAX+PLUS 1l AHDL

Documentation Conventions

MAX+PLUS I manuals and MAX+PLUS II Help use the following
conventions to make it easy for you to find and interpret information.

Terminology

The following terminology is used throughout MAX+PLUS II Help and

manuals:

Term:

Button 1

Button 2

“point to”

//pressll

”Click”

“double-click”

“choose”

“select”

“turn on” /“turn off”

Xiv

Meaning:
Left mouse button.

Right button on a two-button mouse, or middle
and right buttons on a three-button mouse.

Indicates that you should move the mouse so that
the pointer is over the specified item.

Indicates that you must hold down a mouse
button or key.

Indicates a quick press and release of a mouse
button.

Indicates two clicks in rapid succession.

Indicates that you need to use a mouse or key
combination to start an action. For example, when
you use the mouse to choose a button, you point
to the button and click Button 1. When you use the
keyboard to choose a command, you press Alt and
then type letters that are underlined in the menu
bar and menu.

Indicates that you need to highlight text and /or
objects or an option in a dialog box with a key
combination or the mouse. A selection does not
start an action. For example: Select the AND2
primitive, then choose Delete from the Edit menu.

Indicates that you must click Button 1 on a
checkbox or choose a menu command to turn a
function on or off.

Preface: MAX+PLUS Il Fundamentals

Typographic Conventions

MAX+PLUS II documentation uses the following typographic conventions: |\iitad

Visual Cue: Meaning;:

Bold Initial Capitals Command names, dialog box titles, button
names, and diskette names are shown in bold,
with initial capital letters. For example: Find
Text command, Save As dialog box, Start
button, and Install diskette.

I =
S>=
Q X
S5
o I
EC
8P
wn =

bold Directory names, project names, disk drive
names, filenames, filename extensions, and
software utility names are shown in bold.
Examples: \maxplus2 directory, d: drive,
chiptrip.gdf file. These items are not case-
sensitive in the Windows environment;
however, they are case-sensitive in the
workstation environment. MAX+PLUS II Help
shows these items in the case appropriate to the
workstation environment.

Initia]l Capitals Keyboard keys, user-editable application
window fields, and menu names are shown with
initial capital letters. For example: Delete key,
the Start Time field, the Options menu.

“Subheading Title” Subheadings within a manual section are
enclosed in quotation marks. In manuals, titles of
help topics are also shown in quotation marks.

Italic Initial Capitals Help categories, section titles in manuals,
application note and brief names, checkbox
options, and options in dialog boxes are shown
in italics with initial capital letters. For example:
Text Editor Procedures, the Check Outputs option,
the Directories box in the Open dialog box.

italics Variables are enclosed in angle brackets (< >)
and shown in italics. For example: <filename>,
<project name>.acf file.

Bold Italics Manual titles are shown in bold italics with
initial capital letters. For example:
MAX+PLUS II Getting Started.

XV

http:name>.aC
http:chiptrip.gd

MAX+PLUS Il AHDL

Xvi

Visual Cue:

Courier font

Bold Courier font

1,2,3,...,a,b,c,...,
and i., ii., iii.,...

Special symbols

Meaning;:

Anything that must be typed exactly as it
appears is shown in Courier. For example:
c:\max2work\tutorial\chiptrip.gdf.
Also, sections of an actual file, such as a Report
File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), and primitive and
macrofunction names (e.g., DFF and 16CUDSLR)
are shown in Courier.

Insyntax descriptions, bold Courier may be used
to help distinguish literal text from variables.

Numbered steps are used in a list of items when
the sequence of the items is important, such as
the steps listed in a procedure.

Bullets are used in a list of items when the
sequence of the items is not important.

The checkmark indicates a procedure that
consists of one step only.

The hand points to information that requires
special attention.

In MAX+PLUS II manuals, the feet show you
where to go for more information on a particular
topic.

In MAX+PLUS II Help, the upward-pointing
hand indicates that you can click Button 1 (the
left mouse button) on any portion of the
illustration that follows it to get help on that
item. The mouse pointer changes to an upward-
pointing hand when it is over a picture or word
for which help is available.

Special symbols are used for these items:

« Enter key (manuals only)
I Low-to-high transition
1 High-to-low transition

Preface: MAX+PLUS Il Fundamentals

Key Combinations

Key combinations and sequences appear in the following format:

2=

Format Cue: Meaning: 2
o

3%

Keyl+Key?2 A plus (+) symbol indicates that you must hold S c
down the first key when you press the second = 2

key. For example: Ctrl+L means that you must
hold down Ctrl while pressing L, then release
both keys.

Keyl,Key2 A comma (,) indicates that you must press the
keys sequentially. For example: Alt,F1 means
that you must press the Alt key and release it,
then press the F1 key and release it.

Backus-Naur Form

The Backus-Naur Form (BNF) defines the syntax of the text file formats and
message variables. BNF uses the following notation:

Characters: Meaning:

n= “is defined as”

<> Identifiers (i.e., variables)

[...] Optional items

{...} Repeated items (zero or more times)
S Indicates a choice between items

nm Suffix indicates a range (e.g., <name char>:1:8
means “from 1 to 8 name characters”)

italics Variables in syntax descriptions

Courier font Literal text in syntax descriptions. Bold Courier
font is sometimes used to help distinguish literal
text from italic variables in syntax descriptions.

XVii

MAX+PLUS Il AHDL

MAX+PLUS Il Help Updates

Xvifi

MAX+PLUS II Help is updated whenever the MAX+PLUS II software is
updated; therefore, the on-line information is always current.

ILs” If you find a discrepancy between a MAX+PLUS II manual and
the MAX+PLUS II on-line Help, you should rely on the
MAX+PLUS II Help information.

You can get information on changes to MAX+PLUS Il software and Help by
choosing New Features in this Release (Help Menu) in MAX+PLUS II. Late-
breaking news on Help and software is also available with the READ.ME
command (Help menu).

Preface: MAX+PLUS Il Fundamentals

Sample Files

A number of sample design files are copied to your hard disk when you
install MAX+PLUS II. The installation procedure automatically creates
subdirectories for these files.

s The pathnames below are shown using the PC pathname
convention of backslash (\) characters, but UNIX pathnames use
forward slash (/) characters. On a UNIX workstation, the
/max2work directory is a subdirectory of the /usr directory.
Otherwise, the file and directory organization is identical.

4=
=
s >
o >
5%
22
E-C
2(‘/‘)
w =

] The \max2work\chiptrip directory contains all files for the chiptrip
tutorial project that is described in MAX+PLUS II Getting Started.

] The \max2work\ahdl directory contains all sample files used to
illustrate AHDL features in MAX+PLUS II Help and in the

MAX+PLUS II AHDL manual.

] The \max2work\vhdl directory contains all sample files used to
illustrate VHDL features in MAX+PLUS II Help and in the
MAX+PLUS II VHDL manual.

] The \max2work\edif directory contains all sample files used to

illustrate EDIF features in MAX+PLUS II Help.
“ .. - Go to “MAX+PLUS II File Organization” in the MAX+PLUS II Installation
section of the MAX+PLUS II Getting Started manual for more information
about MAX+PLUS II directory structure.

Go to the Altera-provided Software Interface Guide for your third-party
environment for information on the directory structure and sample files
installed for third-party interfaces to MAX+PLUS II.

Xix

MAX+PLUS Il AHDL

About MAX+PLUS Il AHDL

XX

MAX+PLUS I AHDL contains the following sections:

Section 1: Introduction discusses basic AHDL features and the order in which
AHDL statements appear in a Text Design File (.tdf). This section also
summarizes essential rules and guidelines that will help you use AHDL
effectively.

Section 2: How to Use AHDL describes how to develop a successful AHDL
design. Altera recommends that you read the topics in this section

sequentially.

Section 3: Elements describes the basic elements of a TDF. These elements are
used in the behavioral statements described in Section 4: Design Structure.

Section 4: Design Structure describes all behavioral statements and sections
used in AHDL.

Section 5: Style Guide provides guidelines for formatting TDFs to improve
readability and avoid errors.

Glossary

Index

Section

1

Introduction L=

=1
—
-
o
[=%
=
o
=2
o
s

This section provides an overview of the Altera Hardware Description
Language (AHDL). Some of the characteristics that distinguish AHDL as a
hardware description language are discussed, and AHDL file structure is
briefly described. This section also describes how to enter and process an
AHDL file, and provides essential rules and guidelines for using AHDL
effectively.

] AHDL Design Enfryccccooviimiiiiiie e 2
] Text Design File Structure ... 4
B MAX+PLUSII Text EdIOr. ...t 9
@ Compiling AHDL Text Design Files.........ccccooiiiiiiiiiiiiiiee, 13
o GOlden RULES ...ttt 14

Go to MAX+PLUS II Help for complete and up-to-date information on
AHDL.

MAX+PLUS Il AHDL

AHDL Design Entry

AHDL

==

The Altera Hardware Description Language (AHDL) is a high-level,
modular language that is completely integrated into the MAX+PLUS II
system. It is especially well suited for designing complex combinatorial
logic, group operations, state machines, truth tables, and parameterized
logic. You can use the MAX+PLUS II Text Editor or another text editor to
create AHDL Text Design Files (.tdf). You can then compile TDFs to create
output files for simulation, timing analysis, and device programming. In
addition, the MAX+PLUS II Compiler can generate AHDL Text Design
Export File (.tdx) and Text Design Output File (.tdo) that can be saved as
TDFs and re-used as design files.

How Does AHDL Work?

AHDL statements and elements are powerful, versatile, and easy to use. You
can create entire hierarchical projects with AHDL, or mix AHDL TDFs with
other types of design files in a hierarchical design (called a “project” in
MAX+PLUSII). In addition, AHDL TDFs can be parameterized.

Although you can use any ASCII text editor to create AHDL designs, the
MAX+PLUSII Text Editor allows you to take advantage of features available
only in MAX+PLUS II while you enter, compile, and debug an AHDL
design.

AHDL designs are easily incorporated into a design hierarchy. In the Text
Editor, you can automatically create a symbol that represents a TDF and
incorporate it into a Graphic Design File (.gdf). Similarly, you can
incorporate custom functions, and over 300 Altera-provided megafunctions
and macrofunctions—including Library of Parameterized Modules (LPM)
functions—into any TDF by automatically creating an Include File (.inc) in
the Text Editor. Altera provides Include Files for all mega- and
macrofunctions shipped with MAX+PLUS II.

You can use Assign menu commands or an Assignment & Configuration
File (.acf) to make resource and device assignments to allocate device
resources for AHDL TDFs. You can also check AHDL syntax or perform a
full compilation to debug and process your project. Any errors can be
automatically located by the Message Processor and highlighted in the Text
Editor window.

Section 1: Introduction

Figure 1-1 shows how TDFs can be integrated into the MAX+PLUS II
system. A hierarchical project can contain TDFs, GDFs, EDIF Input Files
(.edf), OrCAD Schematic Files (.sch), and VHDL Design Files (.vhd) at any
level of the project hierarchy. In contrast, Waveform Design Files (.wdf),
Altera Design Files (.adf), State Machine Files (.smf), and Xilinx Netlist
Format Files (.xnf) can be used only at the lowest level of a project hierarchy,
unless the entire project consists of a single WDF, ADF, SMF, or XNF File.

Figure 1-1. MAX+PLUS Il & AHDL Design Entry

One or more CNFs
created per design file

Text Design File
\ Adf » | MAX+PLUS II
Compiler
to the Compiler’s
Database Builder
module
"
.vhd .gdf .edf df
—— S A Symbol File with symbol that
.adf represents the logic in a
.sch xnf or wdf .sym / depsign il g
.smf

MAX+PLUS Il AHDL

Text Design File Structure

A Text Design File (.tdf) is an ASCI text file, written in AHDL, that can be
entered with the MAX+PLUS II Text Editor or any standard text editor.

Text Design File Sections

The following AHDL sections and statements are listed in the order in which
they appear in a TDF. Figure 1-2 also shows a TDF and the AHDL sections
and statements that it can contain, and how Include Files and files in a
project hierarchy can be used with AHDL.

(Optional) Title Statement — provides comments for the Report
File (.rpt) generated by the MAX+PLUS II Compiler.

(Optional) Include Statement — specifies an Include File that replaces
the Include Statement in the TDE.

(Optional) Constant Statement — specifies a symbolic name that can
be substituted for a constant.

(Optional) Define Statement — defines an evaluated function, which
is a mathematical function that returns a value that is based on
optional arguments.

(Optional) Parameters Statement — declares one or more parameters
that control the implementation of a parameterized megafunction or
macrofunction. A default value can be specified for each parameter.

(Optional) Function Prototype Statement — declares the ports of a
logic function and the order in which those ports must be declared in
an in-line reference. In parameterized functions, it also declares the
parameters used by the function.

(Optional) Options Statement — sets the default bit-ordering for the
file, or for the project if the file is a top-level TDF.

(Optional) Assert Statement — allows you to test the validity of an
arbitrary expression and report the results.

(Required) Subdesign Section — declares the input, output, and
bidirectional ports of an AHDL TDEF.

Section 1: Introduction

(Optional) Variable Section — declares variables that represent and
hold internal information. Variables can be declared for ordinary or
tri-state nodes, primitives, megafunctions, macrofunctions, and state
machines. Variables can also be generated conditionally with an If
Generate Statement. The Variable Section can include any of the
following constructs:

- Instance Declaration

- Node Declaration

- Register Declaration

- State Machine Declaration
- Machine Alias Declaration
- If Generate Statement

(Required) Logic Section — defines the logical operations of the file.
The Logic Section can define logic with Boolean equations, conditional
logic, and truth tables. It also supports conditional and iterative logic
generation, and the capability to test the validity of an arbitrary
expression and report the results. The Logic Section can include any of
the following constructs:

=3
=l
=
o
=%
=
(]
=
o
=

- Defaults Statement

- Assert Statement

- Boolean Equations

- Boolean Control Equations

- Case Statement

- For Generate Statement

- If Generate Statement

- If Then Statement

- In-Line Logic Function Reference
- Truth Table Statement

MAX+PLUS Il AHDL

Figure 1-2. AHDL Text Design File Structure

Constant

Parameters

Function
Prototype

Include Files (.inc)
contain Constant,
Define, Parameters, or
Function Prototype
Statements.

TDFs must
contain a
Subdesign
Section and
Logic Section.

L3 3 [3
.vhd .gdf .edf Adf

Inciyde statement
Constant Statement

Define statement

Subdesign Sectio®

Variable Sectio®

Logic section

13
.sch

~ Title Statement '

w_

—— TDFs can contain Title,
Include, Constant, Define,
Parameters, Options, and
Function Prototype
Statements, and Variable
Sections.

Lower-level TDFs, GDFs, WDFs, ADFs,
SMFs, EDIF Input Files, Xilinx Netlist
Files, and VHDL Design Files are
connected to higher-level TDFs through
references in Logic Sections.

< <
.adf
xnf or
.smf

Section 1: Introduction

AHDL is a concurrent language. All behavior specified in the Logic Section
of a TDF is evaluated at the same time rather than sequentially. Equations
that assign multiple values to the same AHDL node or variable are logically
connected (ORed if the node or variable is active high, ANDed if it is active
low). See “Defaults Statement” on page 173 in Design Structure and “Using
Default Values for Variables” on page 39 in How to Use AHDL for more
information.

A TDF must contain a Subdesign Section and a Logic Section. It can
optionally contain a single Variable Section, Options Statement, Title
Statement, and Defaults Statement, and one or more Include, Constant,
Define, and Function Prototype Statements.

The last entries in a TDF are the Subdesign Section, Variable Section
(optional), and Logic Section, which together contain the behavioral
description of the TDF.

=
=4
=
o
=%
=
(]
(=5
<)
=1

See Design Structure on page 139 for more information about AHDL
statements. Go to the Backus-Naur Form (BNF) syntax descriptions of each
AHDL section in MAX+PLUS II Help using Search for Help on (Help
menu).

Files in a Project Hierarchy

Files in a project hierarchy can be TDFs, GDFs, WDFs, ADFs, SMFs, EDIF
Input Files, OrCAD Schematic Files, AHDL Design Files, or Xilinx Netlist
Format Files. Each logic function is connected through its input and output
ports to the design file at the next higher level. For more information, see
“Implementing a Hierarchical Project” on page 69 in How to Use AHDL.

Include Files

An Include File is an ASCII text file (with the extension .inc) that can be
imported into a TDF with an AHDL Include Statement. The contents of the
Include File replace the Include Statement that calls the file. Include Files can
contain Function Prototype, Constant, Define, and Parameters Statements.

MAX+PLUS Il AHDL

Each Altera-provided megafunction and macrofunction has an Include File
that contains its Function Prototype:

] The Include Files for megafunctions, including LPM functions, are
located in the maxplus2\max2lib\mega_lpm directory created
during installation.

] The Include Files for macrofunctions are located in the
\maxplus2\max2inc directory created during installation.

1 On UNIX workstations, the maxplus2 directory is a
subdirectory of the /usr directory.

When you have a design file open in a Graphic, Text, or Waveform Editor
window, you can choose Create Default Include File (File menu) to
automatically generate an Include File that contains a default Function
Prototype for the design file. You can also manually create an Include File
with the MAX+PLUS II Text Editor or another standard text editor.

Go to “Creating a Default Include File” in MAX+PLUS II Help for more
information.

Section 1: Introduction

MAX+PLUS Il Text Editor

abcde
| ab
abcdy

AHDL Text Design Files (with the extension .tdf) can be entered with the
MAX+PLUS II Text Editor or any other text editor that follows standard
ASCII character conventions. If your text editor has both document and non-
document modes, you must use non-document mode, i.e., save the file as
text only.

The MAX+PLUS II Text Editor allows you to take advantage of the
following unique MAX+PLUS II features while you enter, compile, and [-
debug an AHDL TDEF:

AHDL templates and examples
AHDL context-sensitive help
Syntax coloring

Resource and device assignments
Error location

=3
=
=
(=]
(=X
[t
(@]
=2
(=}
=

Go to MAX+PLUS II Text Editor Help for more information on using the
MAX+PLUS II Text Editor.

AHDL Templates & Examples

MAX+PLUSII provides both AHDL templates and AHDL examples to
make design entry easier for you.

u AHDL Templates—You can insert AHDL templates into your TDF,
then replace placeholder variables in the templates with your own
identifiers and expressions.

] AHDL Examples—MAX+PLUS II provides a number of AHDL
examples that are used to illustrate AHDL features in the How to Use
AHDL section of this manual. These examples are available in the
\max2work\ahdl directory (a subdirectory of the /usr directory on a
UNIX workstation), and in MAX+PLUS II AHDL Help. You can
customize these examples to fit your needs.

Go to “Inserting an AHDL Template” on page 22 and “AHDL Examples” on
page 24 in How to Use AHDL for more information on using AHDL
templates and examples.

MAX+PLUS Il AHDL

10

AHDL Context-Sensitive Help

If the current file has the extension .tdf, the MAX+PLUS II Text Editor
provides context-sensitive help on all AHDL keywords, operators,
comparators, and punctuation, as well as on all MAX+PLUS Il-provided
primitives, megafunctions, and macrofunctions.

When you choose the context-sensitive Help button () from the toolbar
or press Shift+F1, the pointer turns into a question mark pointer. You can
then click Button 1 on a word or character in an AHDL. If context-sensitive
help is available for that item, the relevant information is displayed.
Otherwise, Help shows a list of all items for which context-sensitive help is
available.

Syntax Coloring

The MAX+PLUS II Text Editor allows you to view various elements of a TDF
in different colors. Syntax coloring can help you improve file readability and
accuracy. For instance, it can help you identify misspelled keywords and
sections of files that have been commented out by mistake.

To turn the syntax coloring feature on or off:

+/ Choose Syntax Coloring from the Options menu.

You can also use the Color Palette command (Options menu) to customize
the assigned colors for comments, illegal characters, megafunctions and

macrofunctions, reserved identifiers and keywords, strings, and text.

Go to “Using Syntax Coloring in Text Files” and “Changing Colors in
MAX+PLUS II” in MAX+PLUS II Help for more information.

Section 1: Introduction

Resource & Device Assignments

You can specify resource assignments—i.e., pin, logic cell, I/O cell,
embedded cell, Logic Array Block (LAB), Embedded Array Block (EAB),
row, column, chip, clique, logic option, connected pin, and timing
assignments—as well as device assignments for a TDF to guide logic
synthesis and fitting for your project. You can choose to have the Compiler
automatically fit your project into the best combination of devices from a
target device family and assign the resources within them. You can also
select a node or pin name in the Text Editor and enter a specific assignment
for it with the Pin/Location/Chip, Clique, Logic Options, Timing
Requirements, Connected Pins, and other commands on the Assign menu.
(Assign menu commands are also available in all other MAX+PLUS II
applications.) You can also enter assignments with the Floorplan Editor or
by editing the Assignment & Configuration File (.acf) in the Text Editor.

=
—
=
o
o
=
Q
=2
o
=

For example, you can assign a logic synthesis style that tailors logic synthesis
to your needs, and specify precisely how to divide a large project into
multiple devices, and make timing assignments to achieve speed
performance on individual logic functions.

s MAX+PLUS II provides the Use LPM for AHDL Operators logic
option, which allows the Compiler to substitute 1pm_add_sub
and 1pm_compare functions automatically for the following
operators and comparators:

Operator/ Description:
Comparator:

+ addition

- subtraction

== numeric equality
= not equal to

> greater than
>= greater than or equal to
< less than
<= less than or equal to
a® Go to MAX+PLUS II Help for more information on making resource and

device assignments.

11

MAX+PLUS Il AHDL

12

Error Location

MAX+PLUS Il interactively reports and locates errors that occur as you
process your project. As you compile a project, a Message Processor window
opens and lists error, information, and warning messages for the project.
You can locate the source(s) of a message by double-clicking Button 1 on the
message text. MAX+PLUS II then automatically opens the design file that
contains the source of the message, regardless of its location in the project
hierarchy or the type of application that created it. If the error occurs in a
TDF, MAX+PLUS Il opens a Text Editor window and highlights the text that
caused the error. You can also locate errors in the assignment floorplan for
the project in the MAX+PLUS II Floorplan Editor.

Go to “Locating the Source of a Message” using Search for Help on (Help
menu) for more information on error location.

Section 1. Introduction

Compiling AHDL Text Design Files

MAX+PLUS II automatically compiles AHDL TDFs. When you have
finished entering a TDF, you can check its syntax with the Project Save &
Check command (File menu), or compile all files in a project with the Project
Save & Compile command (File menu). If you wish to generate an AHDL
Text Design Output File (.tdo) for a compiled project, you can turn on the
Compiler’s Generate AHDL TDO File command (Processing menu) before
compiling the project. After the project has compiled successfully, you can
perform optional simulation and timing analysis, and then program one or
more devices.

For complete on-line information on the MAX+PLUS II Text Editor, go to
MAX+PLUS II Help. For detailed instructions and suggestions on how to
use AHDL sections and statements to develop a project, go to How to Use
AHDL on page 17. For a step-by-step tutorial on how to enter, compile,
simulate, and program a project that includes AHDL TDFs with
MAX+PLUS I, go to MAX+PLUS II Tutorial in the MAX+PLUS II Getting
Started manual.

=1
=
o
=%
=
Q
=3
=)
=

13

MAX+PLUS Il AHDL
Golden Rules

The following golden rules will help you use AHDL effectively:

= Use the Text Editor’s Syntax Coloring command (Options menu) to
help you identify typographical errors and different sections of AHDL
code.

| Follow the formatting and naming guidelines described in the Style
Guide on page 187 to improve readability and avoid errors.

[| Although AHDL is not case-sensitive, Altera recommends that you
follow the capitalization rules in the Style Guide to improve
readability.

[| Use constants and evaluated functions, which are created in Constant
and Define Statements, to improve readability and to avoid errors.

| You do not need to create AHDL Function Prototypes for primitives.
However, you can redefine primitives with a Function Prototype
Statement to change the calling order of inputs in your TDF.

|] Do not use nested If Then Statements when a Case Statement can be
used instead.

| When you use the MAX+PLUS Il Text Editor to create a TDF, each line
can be up to 255 characters long. However, the ideal line length is the

number of characters your screen can accommodate. Press Enter to
end a line.

i You can start new lines wherever white space (i.e., blank lines, tabs,
and spaces) is allowed, without any effect on meaning. White space is
allowed between major AHDL constructs.

u Keywords, names, and numbers must be separated by the appropriate
symbols or operators, and one or more spaces.

E Comments must be enclosed in percent symbols (%). A comment can
include any character except %, since the MAX+PLUS II Compiler
ignores everything between the percent symbols. Comments enclosed
in percent symbols cannot be nested .

14

Section 1: Introduction

VHDL-style comments (--) can be nested within $-style comments. If
you use VHDL-style comments for documentation-type comments,
you can use the %-style comments to exclude sections of code from
compilation (i.e., “comment out” sections of code).

When connecting a primitive to another primitive, you must use only
“legal” interconnections; not all primitives may connect to all other
primitives. For a list of legal interconnections for primitives, see
“Primitive /Port Interconnections” on page 127 in Elements.

Do not create your own cross-coupled structures; use only the
expdff, explatch, inpltch, nandltch, and norltch
macrofunctions provided with MAX+PLUSII. (These macrofunctions
are not optimized for FLEX 8000 and FLEX 10K architectures.) Avoid
tying multiple instances of expd£f £, explatch, inpltch,
nandltch, and norltch macrofunctions together. Multiple
instances of these macrofunctions should always be separated by
LCELL primitives.

=)
=
=
(=]
(=8
c
(2]
=a
(=]
=

General Design Entry Golden Rules

You should use Altera-provided primitives and AHDL logical
operators rather than the equivalent LPM functions in most cases:
they are much more convenient to instantiate. For example, if you
wish to load a register on a specific rising edge of the global Clock,
Altera recommends that you use the Clock Enable input of one of the
DFFE, TFFE, JKFFE, or SRFFE Enable-type flipflops to control when
the register is loaded.

Use LPM megafunctions rather than equivalent old-style
macrofunctions in most cases: the former are more convenijent to
instantiate and easier to modify if your design changes.

Use the Design Doctor to check the reliability of your project logic
during compilation. Go to “Project Reliability Guidelines” in
MAX+PLUS II Help for information on how to create reliable projects.

Do not attempt to create your own logic functions to implement RAM
or ROM: use Altera-provided megafunctions instead.

When you start a new design file, specify the target device family with
Device (Assign menu) right away, so that you can take advantage of

15

MAX+PLUS Il AHDL

family-specific macrofunctions. If you do not specify a device family,
the family for the current project is assumed.

General MAX+PLUS Il Golden Rules

| When you start work on a new design file, name it as the current
project with Project Set Project to Current File or Project Name (File
menu) right away so that you can compile it easily. You can always
change the project name later.

] Use the built-in hierarchy traversal features in MAX+PLUSII to move
between design files for the current hierarchy tree. To open a lower-
level file in a hierarchy, open the top-level file and then use the
Hierarchy Display window or Hierarchy Down (File menu) to open
the lower-level files. If you choose Open or Retrieve (File menu) to
open a lower-level file, that file is considered to be the top of a
different hierarchy tree, and resource, device, and probe assignments
that you enter are saved only for that hierarchy, not for the project.

[When you create an editable ancillary file for a project, the icon for the
file will appear in the Hierarchy Display if you use the same filename
as the project.

[] Don’t edit any MAX+PLUS II system files, including HIFs, TOK files,
maxplus2.idx files, or the maxplus2.ini file.

[Use the Save As command (File menu) if you wish to rename a design
file or an ancillary file. Do not rename design files from outside of the
MAX+PLUS II system (e.g., from DOS or with the Windows File
Manager).

[When you have completed a project, use Project Archive (File menu)

to save a complete backup copy of all project files that will not be
affected by future edits or deletions.

16

Section

2

How to Use
AHDL

This section describes how to develop a successful AHDL design. All sample
files shown in this section are also available in the \max2work\ahd]l

directory created during MAX+PLUS Il installation. (On a UNIX Z

workstation, the max2work directory is a subdirectory of the /usr directory.) % ;

T c

Design practices are discussed in the following order: &
| INETOAUCHON ..o 18
u Combinatorial LOGIC. ..o 25
| Sequential LOGICccccoivuiiimiiiciiccrc e 47
| State Machines........ccceveiiiiiiin s 54
| Implementing a Hierarchical Project ... 69
m Implementing LCELL & SOFT Primitivesccccooceiiiciiiiiiicnne. 81
= Implementing RAM & ROM.......cccooooiiiniiiiiiccccs s 83
| Naming a Boolean Operator or Comparator..........cccocooeieceiiinnnne. 84
| Using Iteratively Generated Logiccccoveeeeciiciiiiicce, 86
u Using Conditionally Generated LOgIC......cccoouivcmimiccciiiiiiciceccce e 87
u Using the Assert Statementoocooeciiinnccisc e 89
B ‘. - Go to MAX+PLUS II Help for up-to-date information on how to use AHDL.

17

MAX+PLUS I AHDL

Introduction

AHDL is an easy-to-use text entry language for describing logic designs.
You can use the MAX+PLUS II Text Editor or your own text editor to create
AHDL Text Design Files (.tdf), which can be incorporated into a project
hierarchy together with other design files. You can then compile the project,
simulate it, and program Altera devices.

AHDL consists of a variety of elements that are used in behavioral
statements to describe logic. This section includes information on how these
elements and statements are used; for detailed descriptions and rules, refer
to Elements and Design Structure.

The following topics are discussed:

L USINg NUIMDETS ..ot 18
@ Using Constants & Evaluated Functions..........c.ccccooiiiini 19
[] Inserting an AHDL Template........ccccooovimriiicinioceicicccc, 22
u AHDL EXampIescoooviiiiiiiiiiiiicnicesevisinecit et 24

Using Numbers

18

Numbers are used to specify constant values in Boolean expressions and
equations, arithmetic expressions, and parameter values. AHDL supports
all combinations of decimal, binary, octal, and hexadecimal numbers.

The decodel.tdf file shown in Figure 2-1 is an address decoder that
generates an active-high chip enable when the address is 370 Hex.

Figure 2-1. decode1.tdf

SUBDESIGN decodel
(

address([15..0]) : INPUT;

chip_enable :OUTPUT;
)
BEGIN

chip_enable = (address([15..0] == H"0370");
END;

http:decodel.td

Section 2: How to Use AHDL

In this sample file, the decimal numbers 15 and 0 are used to specify bits of
the address bus. The hexadecimal number H"0370" specifies the address
that is decoded.

Figure 2-2 shows a Graphic Design file (.gdf) that is equivalent to
decodel.tdf.

Figure 2-2. decode1.gdf

ADDRESS0 [Co———q
ADDRESS1 CO—¢
ADDRESS2 Co>—
ADDRESS3 [C>——9
ADDRESS4 [CO——
ADDRESS5 [CO——
ADDRESS6 [Co>—

ADDRESS7 D—D CHIP_ENABLE
ADDRESS8 [T>——— -

ADDRESS9 [Co——
ADDRESS10 [>——9
ADDRESS11 [Oo—9
ADDRESS12 [O>——1
ADDRESS13 [>———9
ADDRESS14 [C—mmm¢
ADDRESS15 [o>——

o
<)
=3
=
<
c
w
<@

“ = . .
ad® Go to the following topics for more information:

“Numbers in AHDL” on page 102 in Elements
“Parameters Statement” on page 142 in Design Structure
“Using Constants & Evaluated Functions” on page 19 in this section

Using Constants & Evaluated Functions

You can use a constant in an AHDL file to give a descriptive name to a
number or text string. Similarly, you can use an evaluated function to give a
descriptive name to an arithmetic expression. This name, which can be used
throughout a file, can be more informative and readable than the number,
string, or arithmetic expression. For example, the numeric constant
UPPER_LIMIT is more informative than the number 130.

19

MAX+PLUS Il AHDL

20

Constants and evaluated functions are especially useful if the same number,
text string, or arithmetic expression is repeated several times in a file: if it
changes, only one statement needs to be changed. In AHDL, constants are
implemented with Constant Statements, and evaluated functions are
implemented with Define Statements.

The decode2.tdf file shown in Figure 2-3 has the same functionality as
decodel.tdf (shown in Figure 2-1 on page 18), but uses the constant
IO_ADDRESS instead of the number H”0370".

Figure 2-3. decode?2.tdf

CONSTANT IO_ADDRESS = H"0370";

SUBDESIGN decode2
(

afl5..0] : INPUT;

ce : OUTPUT;
)
BEGIN

ce = (a[l5..0] == IO_ADDRESS);
END;

You can define constants and evaluated functions with arithmetic
expressions. Constants and evaluated functions can also be defined with
previously defined constants, evaluated functions, or parameters.

In the following example, the constant foo is defined with an arithmetic
expression and the constant foo_plus_one is defined with the previously
defined constant foo:

CONSTANT foo = 1 + 2 DIV 3 + LOG2(256);
CONSTANT foo_plus_one = foo + 1;

In the following example, the evaluated function CEILING_ADD is defined
on the basis of the previously defined evaluated function MAX:

DEFINE MAX(a,b) = (a > b) ? a : b;
DEFINE CEILING_ADD(a,b) = MAX(a,b) + 1;

I The Compiler evaluates arithmetic operators in arithmetic
expressions and reduces them to numerical values. No logic is
generated for these expressions.

Section 2: How to Use AHDL

The stremp.tdf file shown in Figure 2-4 defines the constant FAMILY and
uses it in an Assert Statement to check whether the current device family is
FLEX 8000.

Figure 2-4. stremp. tdf

PARAMETERS

(

DEVICE_FAMILY % DEVICE_FAMILY is a predefined Altera parameter %
)i

CONSTANT FAMILY = "FLEX8000";

SUBDESIGN strcmp
(

a : INPUT;
b : OUTPUT;
)
BEGIN
IF (DEVICE_FAMILY == FAMILY) GENERATE
ASSERT

REPORT "Detected compilation for FLEX8000 family"
SEVERITY INFO;

b = a; -
ELSE GENERATE o
ASSERT i
REPORT "Detected compilation for % family" g;
DEVICE_FAMILY g
SEVERITY ERROR;
b = a;
END GENERATE;

END;

The minport.tdf file shown in Figure 2-5 defines the evaluated function MAX,
which ensures a minimum port width in the Subdesign Section:

21

MAX+PLUS Il AHDL

Figure 2-5. minport.tdf

PARAMETERS (WIDTH) ;
DEFINE MAX(a,b) = (a > b) ? a : b;

SUBDESIGN minport
(
dataA[MAX (WIDTH,0)..0] : INPUT;
dataB[MAX (WIDTH,0)..0] : OUTPUT;
)

BEGIN
dataB[] = dataAl[];
END;
«e®
P Go to the following topics for more information:

“Constant Statement” on page 147 in Design Structure

“Define Statement” on page 149 in Design Structure

“Quoted & Unquoted Names” on page 97 in Elements

“Using Default Values for Variables” on page 39 in this section

Inserting an AHDL Template

The fastest way to create AHDL designs in MAX+PLUS Il is to use the
Altera-provided AHDL templates. With the AHDL Template command
(Templates menuy), available in the MAX+PLUS Il Text Editor, you can insert
AHDL templates into your TDF to speed design entry.

A single template is available for the overall AHDL file structure. This
template, called “Overall Structure,” lists all AHDL constructs in separate
comment lines in the order in which they appear in a TDF. The syntax of
these sections and statements is not included; you must replace the comment

line with the correct AHDL syntax for each section you wish to use in your
file.

Use the following steps to insert an AHDL template at the current insertion
point in a MAX+PLUS II Text Editor file:

1. Save your file with the .tdf extension.

2. Choose AHDL Template (Templates menu). The AHDL Template
dialog box is displayed, as shown in Figure 2-6:

22

Figure 2-6. AHDL Template Dialog Box

=| AHDL Template

Template Section:

Assert Statement

Boolean E quation

Case Statement

Constant Statement

Defaults Statement

For Generate Statement

Function Prototype Statement [(non-parameterized)
Function Piototype Statement [parameterized)
If Generate Statement

If Then Statement

In-Line Reference [non-parametenized)
In-Line Reference [parameterized)

In-Line Reference (named port assaciation)
Include Statement

Instance Declaration (non-parameterized)
Instance Declaration (parameterized]

Logic Section

Machine Alias Declaration

Dverall Structure +

Node Declaration —
1 enk hd

- [+

3.

4.

Select a name in the Template Section box.

Choose OK.

Section 2: How to Use AHDL

1AHY
as() 0] MOH

s 1. Shortcuts are available for this command. Go to “AHDL
Template command” in MAX+PLUS II Help for details.

2. All AHDL templates are also available in the ASCII ahdl.tpl
file, which is automatically installed in the \maxplus2
directory (a subdirectory of the fusr directory on a UNIX

workstation).

Once you have inserted a template into your TDF, you must replace all

variables in the template with your own logic. Figure 2-7 shows the Defaults
Statement template.

Figure 2-7. Defaults Statement Template

DEFAULTS

node_name = constant_value;

END DEFAULTS;

23

MAX+PLUS [l AHDL

Each AHDL keyword is capitalized and each variable name starts with two
underscores (__) to help you identify them. For example, you would replace
the __node_name placeholder in Figure 2-7 with the name of a node. You
can also use Syntax Coloring (Options menu) to make keywords and
variables easy to see.

MAX+PLUS Il provides templates for all AHDL constructs. These templates
are listed in alphabetical order, and can be used to replace the comment lines
in the “Overall Structure” template.

AHDL Examples

24

MAX+PLUS II provides AHDL examples to help you enter AHDL designs
quickly. The sample AHDL Text Design Files used in this section are
available in the \max2work\ahdl directory (a subdirectory of the /usr
directory on a UNIX workstation). You can open these sample files with the
MAX+PLUS II Text Editor or any standard text editor, save them with a
different filename, and edit them as necessary to fit your needs.

s MAX+PLUS II AHDL Help also contains examples that you can
copy and paste directly into your TDF.

Choose How to Use Help (Help menuy) for information on how to copy a
help topic.

Section 2: How to Use AHDL
Combinatorial Logic

Logic is combinatorial if outputs at a specified time are a function only of the
inputs at that time. Combinatorial logic is implemented in AHDL with
Boolean expressions and equations, truth tables, and a variety of
megafunctions and macrofunctions. Examples of combinatorial logic
functions include decoders, multiplexers, and adders.

Information on combinatorial logic is available in the following topics:

Implementing Boolean Expressions & Equations............ccccooueunne..
Declaring NOdes ...
Defining GIOUPSccvueuveiiiiciieiiie i
Implementing Conditional LOGICc.ccocoviiiiniiiniiiiiiiciccces
- If Then Statement LOZICovveiiciicciiccc e
- Case Statement LOZIC........ooviiiiiimiiieiiec
- If Then Statement vs. Case Statement..........c.cocovvirriivnininnes
Creating Decodersooviieiieiiice
Using Default Values for Variables............ccooooiiiiniii,
Implementing Active-Low Logic......ccooueiiiii
Implementing Bidirectional Pins..........ccocooiiiinniiciicicccie
Implementing Tri-State Buses ...

a®
a® Go to the following topics for more information:

jum
=)
=
—
o
c
[%2]
<

“Using Iteratively Generated Logic” on page 86 in this section
“Using Conditionally Generated Logic” on page 87 in this section

Implementing Boolean Expressions & Equations

Boolean expressions are sets of nodes, numbers, constants, and other
Boolean expressions, separated by operators and/or comparators, and
optionally grouped with parentheses. A Boolean equation sets a node or
group equal to the value of a Boolean expression.

25

MAX+PLUS Il AHDL

26

The boolel.tdf file shown in Figure 2-8 shows two simple Boolean
expressions that represent two logic gates.

Figure 2-8. boole1.tdf

SUBDESIGN boolel
(

a0, al, b : INPUT;
outl, out2 : OUTPUT;
)
BEGIN
outl al & la0;

out2 = outl # b;

END;

In this sample file, the out 1 output is driven by the logical AND of al and
the inverse of a0, and the out 2 output is driven by the logical OR of out1l
and b. Since these equations are evaluated concurrently, their order in the
file is not important.

Figure 2-9 shows a GDF that is equivalent to boolel.tdf.

Figure 2-9. boole1.gdf

AQ Eii::::::::j >
’ = OuT1
A1

OuT2
B >

Go to the following topics for more information:

“Boolean Equations” on page 168 in Design Structure
“Boolean Expressions” on page 106 in Elements

Section 2: How to Use AHDL

Declaring Nodes

A node, which is declared with a Node Declaration in the Variable Section,
can be used to hold the value of an intermediate expression.

Node Declarations are especially useful when a Boolean expression is used
repeatedly. The Boolean expression can be replaced with a descriptive node

name, which is easier to read.

The boole2.tdf file shown in Figure 2-10 contains the same logic as
boolel.tdf, but has only one output.

Figure 2-10. boole2.tdf

SUBDESIGN boole2
(

a0, al, b : INPUT;
out : QUTPUT;

)

VARIABLE m
a_equals_2 : NODE;

BEGIN

a_equals_2 = al & 'a0;
out = a_equals_2 # b;
END;

1AHY
as() 0} MOH

This file declares the node a_equals_2 and assigns the value of the
expressional & !a0 toit. Using nodes can save device resources when the
node is used in several expressions.

Both ordinary nodes (NODE keyword) and tri-state nodes
(TRI_STATE_NODE keyword) can be used. NODE and TRI_STATE_NODE
differ in that multiple assignments to them yield different results:

] Multiple assignments to nodes of type NODE tie the signals together by
wired-AND or wired-OR functions. The default values for variables
declared in Defaults Statements determine the behavior: a VvCC default
produces a wired-AND function; a GND default produces a wired-OR
function.

[Multiple assignments to a TRI_STATE_NODE tie the signals to the
same node.

| If only one variable is assigned to a TRI_STATE_NODE, it is treated as
NODE.

27

MAX+PLUS I AHDL

Figure 2-11 shows a GDF that is equivalent to boole2.tdf.

Figure 2-11. boole2.gdf

A0 A_EQUALS_2
A1

ouT

Go to the following topics for more information:

“Defaults Statement” on page 173 in Design Structure
“Implementing Tri-State Buses” on page 45 in this section
“Node Declaration” on page 162 in Design Structure

Defining Groups

28

A group, which can include up to 256 members (or “bits”), is treated as a
collection of nodes and acted upon as one unit. A group name can be
specified with a single-range group name, dual-range group name, or
sequential group name format.

In Boolean equations, a group can be set equal to a Boolean expression,
another group, a single node, VCC, GND, 1, or 0. In each case, the value of the
group is different. The Options Statement can be used to specify whether the
lowest numbered bit of the group will be the MSB, the LSB, or either.

s Once a group has been defined, [] is a shorthand way of
specifying an entire range. For example, a[4..1] can also be
denoted by a[]; similarly, b[5..4][3..2] can be represented
byb[1[].

Section 2: How to Use AHDL

The groupl.tdf file shown in Figure 2-12 shows simple Boolean expressions
that define multiple groups.

Figure 2-12. group1.tdf

OPTIONS BITO = MSB;

CONSTANT MAX_WIDTH = 1+2+3-3-1; % MAX_WIDTH = 2 %
SUBDESIGN groupl

(

afl..2], use_exp_in([1l+2-2..MAX_ WIDTH] : INPUT;
d[l..2], use_exp_out[1l+2*2-4..MAX_WIDTH] : OUTPUT;
dual_range[5..4]1(3..2] : OQUTPUT;
)
BEGIN
df{] = al[l + B"10";
use_exp_out[] = use_exp_in[];
dual_range[][] = VCC;
END;

In this example, the Options Statement is used to specify that the rightmost
bit of each group will be the MSB, and a 1 (decimal) is added to group a[].
If 00 is applied to input a [], then the result of this sample program will be
dl] == 1 (decimal). The groups use_exp_in[] and use_exp_out []
show how constants and arithmetic expressions can be used to delimit
group ranges.

=
o
=
—
o
c
w
<@

The following examples illustrate group usage:

| When a group is set equal to another group of the same size, each
member on the right is assigned to the member on the left that
corresponds in position.

In the following example, each bit in the first group is connected to the
corresponding bit in the second group. Bit d2 is connected to bit g8,
dl to g7, and 40 to g6:

df[2..0] = gl8..6]

In the following example, each bit in the first group is connected to the

corresponding bit in the second group. Bit d1_1 is connected to bit
gl0,bitdl_0 to g9, bit d0_1 to g8, and bit d0_0 to g7:

29

MAX+PLUS Il AHDL

30

3] When a group is set equal to a single node, all bits of the group are

connected to the node. In the following example, d2, d1, and d0 are
all connected to n:

df2..0] = n

| When a group is set equal to VCC or GND, all bits of the group are

connected to that value. In the following example, d2, d1,and d0 are
all connected to VCC:

d[2..0] = vCcC

| When a group is set equal to 1 (decimal), only the LSB of the group is

connected to the value vCC. All other bits in the group are connected
to GND. In the following example, only d0 is connected to VCC; the
value 1 (decimal) is sign-extended to B"001".

dl2..0] =1

i When a group is set equal to another group of a different size, the

number of bits in the group on the left side of the equation must be
evenly divisible by the number of bits in the group on the right side of
the equation. The bits on the left side of the equation are mapped to
the right side of the equation, in order. The following equation is legal:

af4..1] = b[2..1]

In this equation, the bits are mapped as follows:

ad = b2
a3 = bl
a2 = b2
al = bl

Go to the following topics for more information:

“Arithmetic Expressions” on page 103 in Elements

“Boolean Equations” on page 168 in Design Structure
“Groups” on page 99 in Elements

“Using Default Values for Variables” on page 39 in this section

Section 2: How to Use AHDL

Implementing Conditional Logic

Conditional logic chooses among different behaviors depending on the
values of the logic inputs. If Then and Case Statements are ideal for
implementing conditional logic:

[] If Then Statements evaluate one or more Boolean expressions, then
describe the behavior for different values of the expressions.

u Case Statements list alternatives that are available for each value of an
expression. They evaluate the expression, then select a course of action
on the basis of the value of the expression.

I Conditional logic implemented with If Then and Case Statements
should not be confused with logic that is generated conditionally
in an If Generate Statement. Logic that is generated conditionally
is not necessarily conditional logic.

If Then Statement Logic

The priority.tdf file shown in Figure 2-13 shows a priority encoder that
converts the level of the highest-priority active input into a value. It
generates a 2-bit code that indicates the highest-priority input driven
by vcc.

1AHY
as[) 0} MOH

Figure 2-13. priority.tdf

SUBDESIGN priority
(

low, middle, high : INPUT;
highest_level([1l..0] : OUTPUT;
)
BEGIN

IF high THEN

hichest - dewrek{] -~ J;
ELSIF middle THEN
highest_levell]l = 2;
ELSIF low THEN
highest_level[] = 1;
ELSE
highest_level[] = 0;
END IF;
END;

31

MAX+PLUS Il AHDL

32

In this example, the inputs high, middle, and low are evaluated to
determine whether they are driven by vCC. The If Then Statement activates
the equations that follow the active IF or ELSE clause, e.g., if high is driven
by VCC, highest_level([] is 3.

If more than one input is driven by VCC, the If Then Statement evaluates the
priority of the inputs, which is determined by the order of the IF and ELSIF
clauses (the first clause has the highest priority). In priority.tdf, high has the
highest priority, middle has the next highest priority, and 1ow has the
lowest priority. The If Then Statement activates the equations that follow the
highest-priority IF or ELSE clause that is true.

If none of the inputs are driven by vCC, the equations following the ELSE
keyword are activated.

Figure 2-14 shows a GDF that is equivalent to priority.tdf.

Figure 2-14. priority.gdf

HIGH =

[
»—OD_:D—D HIGHEST_LEVEL1

MIDDLE >

j) >——— > HIGHEST_LEVELO
LOW

Go to the following topics for more information:

“If Then Statement” on page 176 in Design Structure

“If Then Statement vs. Case Statement” on page 34 in this section
Case Statement Logic

The decoder.tdf file in Figure 2-15 shows a 2-bit-to-4-bit decoder. It converts
two binary code inputs into a “one-hot” code.

Section 2: How to Use AHDL

Figure 2-15. decoder.tdf

SUBDESIGN decoder
(

code[l..0] : INPUT;
out[3..0] : QUTPUT;
)
BEGIN

CASE code[] IS

WHEN 0 => out(] = B"0001";

WHEN 1.=> gut[l = B*0010";

WHEN 2 => out[] = B"0100";

WHEN 3 => out[] = B"1000";
END CASE;

END;

In this example, the input group code [1. . 0] hasthe value 0, 1, 2, or 3. The
equation following the appropriate => symbol in the Case Statement is
activated. For example, if code[] is 1, outlis set to B"0010". Since the
values of the expression are all different, only one WHEN clause can be active
at one time.

Figure 2-16 shows a GDF that is equivalent to decoder.tdf.

Figure 2-16. decoder.gdf

as() 0} MOH

CODEO0 C>—4

) > OuTo
CODE1
q
} > OuUT1
[
h > OuT2
) > OUT3

Go to the following topics for more information:
“Case Statement” on page 172 in Design Structure

“Creating Decoders” on page 35 in this section
“If Then Statement vs. Case Statement,” next

33

MAX+PLUS Il AHDL

If Then Statement vs. Case Statement

If Then and Case Statements are similar. In some cases, you can use either
statement to achieve the same results. The following example shows the
same operation expressed in both If Then and Case Statement formats:

If Then Statement:

= 0 THEN

]
[N
=]
sy
g

N
H
a5y
3]
Z

'yl
SN Q

1

Case Statement:

CASE al] IS

WHEN 0 =>

y = ¢ & d;
WHEN 1 =>

y = e & £;
WHEN 2 =>

Y = g & h;
WHEN 3 =>

y = i;
WHEN OTHERS =>

y = GND;

END CASE;

Important differences exist between If Then and Case Statements:

Any kind of Boolean expression can be used in an If Then Statement. Each
expression following an IF or ELSIF clause may be unrelated to the
other expressions in the statement. In a Case Statement, however, a single
Boolean expression is compared to a constant in each WHEN clause.

Using the ELSIF clause can result in logic that is too complex for the
MAX+PLUS Il Compiler, because each successive ELSIF clause must
still test that the preceding IF/ELSIF clauses are false. The following
example shows how the Compiler interprets an If Then Statement. If
a and b are complex expressions, then the inversion of each

34

expression is likely to be even more complex.

If Then Statement:

IF a THEN
c = d;

ELSIF b THEN

c = ¢g;
ELSE

c = £;
END IF;

Compiler Interpretation:

IF a THEN
c = d;
END IF;

IF !'a & b THEN
c = &
END IF;

IF 'a & !b THEN
c = f£;
END IF;

Section 2: How to Use AHDL

.=
ad® Go to the following topics for more information:

“If Then Statement” on page 176 and “Case Statement” on page 172 in
Design Structure

Creating Decoders

A decoder contains combinatorial logic that interprets input patterns and
converts them to output values. In AHDL, you can use a Truth Table
Statement or the 1pm_compare or 1pm_decode function to create a
decoder.

The 7segment.tdf file shown in Figure 2-17 is a decoder that specifies logic
for patterns of light-emitting diodes (LEDs). The LEDs are illuminated in a
seven-segment display to show the hexadecimal numbers 0 to 9 and the
letters A to F.

1dHY
as() 0} MOH

35

MAX+PLUS Il AHDL

36

Figure 2-17. 7segment.tdf

0123456789 AbCAdETF

0P 0@ 00 Of 0P 0P OP of
o
o]

O oP 0P OF 0P o P oP

SUBDESIGN 7segment
(

i[3..0] : INPUT;
a, b, ¢, 4, e, £, g : OUTPUT;
)
BEGIN

TABLE
P[F35.503 => al b iRses Y LAl T EE e ep
H"O" = Vi b g R, Al L v
Hrae => R Ol A)7 oy Rl e [
HEE => % P eg 0. % Brlee g sl e bl
H"3" => It L L L e Lt o
H"4" => (CAt T 5 L O R TR
H"S" => g Dt 1 B g S L e T 4
HEG => RO AT
HT => DRI gt LA WA B T 7 (R R Ry 0
BB = L M T i s L e e
H"9" =2 3 b T e LR B
- T b => z St T U U e L)
H"B" => TR s el SRS e
R (CX == T o0 RAOLN RO e ST L ()R
Hen = O et Ll T A
H"E" => 4, S0 2 M Sl i i B L
H VR => 3 B 1 0o ot R T Tl o

END TABLE;

END;

In this example, the output pattern for all 16 possible input patterns of
i[3..0] is described in the Truth Table Statement.

Figure 2-18 shows a GDF that is equivalent to 7segment.tdf.

Section 2: How to Use AHDL

Figure 2-18. 7segment. gdf

131211 10

i

U

—@

.or
‘ r [ole}

L

I
(]
é
—
o
[
w
(9°]

The decode3.tdf file shown in Figure 2-19 is an address decoder for a
generalized 16-bit microprocessor system.

Figure 2-19. decode3. tdf

SUBDESIGN decode3
(

addr[15..0], m/io : INPUT;
rom, ram, print, sp(2..1] : OUTPUT;
)
BEGIN
TABLE
m/io, addr[15..0] => rom, ram, print, spll;
A B" 0 OXXXXXXXXXKXXXXX " = 1, (¢ 0, B"00";
15 B"100XXXXXXXXXXXXX " => 0, 15 0, 86
0, B"0000001010101110" => 0, 0, %, B"00";
0, B"0000001011011110" =>0, 0, 0, B"01";
0, B"0000001101110000" =BOE 0, 0, B0
END TABLE;
END;

37

MAX+PLUS Il AHDL

38

In this example, thousands of possible input patterns exist, so it is
impractical to specify all of them in the Truth Table Statement. Instead, you
can use an X (don’t care) logic level to indicate that the output does not
depend on the input corresponding to the position of the X characters. For
example, in the first line of the TABLE statement, rom would be high for all
16,384 input patterns of addr [15. .0] that start with 00. Therefore, you
only need to specify the common portion of the input pattern (i.e., 00), then
use X characters for the rest of the input pattern. With don't care inputs, your
project may require fewer device resources.

s When you use X (don't care) characters to specify a bit pattern,
you must ensure that the pattern cannot assume the value of
another bit pattern in the truth table. AHDL assumes that only one
condition in a truth table is true at a time; therefore, overlapping
bit patterns may cause unpredictable results.

The decode4.tdf file shown in Figure 2-20 uses the 1pm_decode function to
achieve the same functionality as decodel.tdf (described in “Using
Numbers” on page 18).

Figure 2-20. decode4.tdf

INCLUDE "lpm_decode.inc";

SUBDESIGN decoded
(

address[15..0] : INPUT;
chip_enable : OUTPUT;
)
BEGIN

chip_enable = lpm_decode(.datal]=address(])
WITH (LPM_WIDTH=16, LPM_DECODES=2"10)
RETURNS (.eq[H"0370"1);
END;

Go to the following topics for more information:

“Implementing Conditional Logic” on page 31 in this section
“Truth Table Statement” on page 183 in Design Structure

http:decodel.td
http:decode4.td

Section 2: How to Use AHDL

Using Default Values for Variables

You can define a default value for a node or group that is used when the
value of the node or group is not specified elsewhere in the file. AHDL also
allows you to assign the value of a node or group more than once in a single
file. If these multiple assignments conflict, the default value is used to
resolve the conflict. When no defaults are specified, the default value is GND.

You can use the AHDL Defaults Statement to specify default values for
variables used in Truth Table, If Then, and Case Statements. For example,
since the Logic Synthesizer automatically connects all AHDL truth table
outputs to GND when no truth table input conditions are satisfied, you can
use one or more Defaults Statements to drive truth table outputs to vcc
instead.

s You should not confuse default values for variables with default
values for ports that are assigned in the Subdesign Section.

The defaultl.tdf file shown in Figure 2-21 evaluates inputs and chooses one
of five ASCII codes based on the inputs. m

Figure 2-21. default1.tdf

SUBDESIGN defaultl
(

1aHY
8S[) 0} MOH

i[3..0] : INPUT;
ascii_code(7..0] : OUTPUT;
)
BEGIN
DEFAULTS
ascii_code[] = B"00111111"; % ASCII question mark "?" %

END DEFAULTS;

TABLE
1[3..0] => ascii_codel];
B"1000" => B"01100001"; % "a" %
B*0l100" => B"01100010"; % "b" %
B"0010" => B"01100011"; % "c" %
B"0001" => B"01100100"; % "d" %

END TABLE;

END;

39

MAX+PLUS It AHDL

40

When an input pattern matches one of the patterns shown on the left side of
the Truth Table Statement, the table’s outputs are set to the corresponding
pattern on the right. If the input pattern does not match any pattern on the
left side, the outputs default to B"00111111", i.e., nodes
ascii_code[5..0] aredriven to VCC while nodes ascii_code[7..6]
are connected to GND.

The default2.tdf file in Figure 2-22 illustrates how conflicts arise when a

single node is assigned more than one value, and how these conflicts are
resolved by AHDL.

Figure 2-22. default?. tdf

SUBDESIGN default2
(

a, b, c : INPUT;
select_a, select_b, select_c : INPUT;
wire_or, wire_and : OUTPUT;
)
BEGIN
DEFAULTS

wire_or = GND;
wire_and = VCC;
END DEFAULTS;

IF select_a THEN
wire_or = a;
wire_and = a;

END IF;

IF select_b THEN
wire_or = b;
wire_and = b;

END IF;

IF select_c THEN
wire_or = c;
wire_and = c;

END IF;

END;

In this example, wire_or is set to the values of a, b, or ¢, depending on the
values of the select_a, select_b,and select_c signals. If none of these
signals is VCC, then wire_or defaults to GND.

Section 2: How to Use AHDL

If more than one of the select_a, select_b, or select_c signals are
VCC,wire_or is set to the logical OR of the corresponding input values. For
example, if select_aand select_bare VCC,wire_or is set to the logical
OR of a and b.

The wire_and signal works in the same way, except that it defaults to vCC
when none of the “select” signals is VCC, and is set to the logical AND of

the corresponding input values when more than one of the signals is VCC.

Figure 2-23 shows a GDF that is equivalent to default2.tdf.

Figure 2-23. default2.gdf

SELECT_A =
A -

SELECT_B [
B =

R
N > WIRE_OR

SELECT_C =
Cc =

1aHY
9s() 0] MOH

)
— > WIRE_AND

LR

Go to the following topics for more information:

“Case Statement” on page 172 in Design Structure
“Defaults Statement” on page 173 in Design Structure
”If Then Statement” on page 176 in Design Structure
“Truth Table Statement” on page 183 in Design Structure

Implementing Active-Low Logic

An active-low signal becomes active when its value is GND. Active-low
signals can be useful for controlling memory, peripheral, and
microprocessor chips.

41

http:de�ault2.td

MAX+PLUS Il AHDL

42

The daisy.tdf file shown in Figure 2-24 is a module of a daisy-chain
arbitration circuit. This module makes requests for bus access to the
preceding module in the daisy chain. It receives requests for bus access from
itself and from the next module in the chain. Bus access is granted to the
highest-priority module that requests it.

Figure 2-24. daisy.tdf

SUBDESIGN daisy
(

/local_request : INPUT;
/local_grant : OUTPUT;
/request_in : INPUT; % from lower priority %
/request_out : QUTPUT; % to higher priority %
/grant_in : INPUT; % from higher priority %
/grant_out : OUTPUT; % to lower priority %
)
BEGIN
DEFAULTS
/local_grant = VCC; % active-low output %
/request_out = VCC; % signals should default %
/grant_out = VCC; % to VCC %
END DEFAULTS;
IF /request_in == GND # /local_request == GND THEN
/request_out = GND;
END IF;
IF /grant_in == GND THEN
IF /local_request == GND THEN
/local_grant = GND;
ELSIF /request_in == GND THEN
/grant_out = GND;
END IF;
END IF;

END;

All signals in this file are active low. Altera recommends that you choose a
node-naming scheme that clearly indicates active-low signal names—e.g.,
an initial “n” or a slash (/)—and use it consistently. A slash is not an
operator, but is simply part of the signal name.

If Then Statements are used to determine whether modules are active, i.e.,
whether the signal equals GND. If a signal is active, the equations following
the appropriate If Then Statement are activated. The Defaults Statement
specifies that a signal is assigned to VCC when it is not active.

Figure 2-25 shows a GDF that is equivalent to daisy.tdf.

Section 2: How to Use AHDL

Figure 2-25. daisy.gdf

Bus request
and grant for
higher-priority
module

Local bus
request

Implementing Bidirectional Pins

/REQUEST_IN
/REQUEST_OUT Bus request
and grant for
lower-priority
/GRANT_OUT) module

/GRANT_IN =

LOCAL_REQUEST C—=>
fLOCAL_REQ 4D—D /LOCAL_GRANT Local bus grant

Go to the following topics for more information:

“Naming a Boolean Operator or Comparator” on page 84 in this section
“Using Default Values for Variables” on page 39 in this section

MAX+PLUS I allows I/O pins in Altera devices to be configured as
bidirectional pins. Bidirectional pins can be specified with a BIDIR port that
is connected to the output of a TRI primitive. The signal between the pin and
the TRI primitive is a bidirectional signal that can be used to drive other
logic in the project.

1aHY
33() 0} MOH

The bus_reg2.tdf file shown in Figure 2-26 implements a register that
samples the value found on a tri-state bus. It can also drive the stored value
back to the bus.

Figure 2-26. bus_reg2.tdf

SUBDESIGN bus_reg2
(

clk : INPUT;
oe : INPUT;
30 : BIDIR;
)
BEGIN

dff_out = DFF(io, clk, ,);
io = TRI(Aff_out, oe);
END;

43

MAX+PLUS Il AHDL

44

The bidirectional io signal, driven by TRI, is used as the d input to a
D flipflop (DFF). Commas are used as placeholders for the clrn and prn
flipflop ports, which default to the inactive state.

Figure 2-27 shows a GDF that is equivalent to bus_reg2.tdf.

Figure 2-27. bus_reg2.gdf

OE =
)
PRN
—D Q —>] 10
CLK =
CLRN
7

You can also connect a bidirectional pin from a lower-level TDF to a top-
level pin. The bidirectional output port of the subdesign should be
connected to a bidirectional pin at the top level of the hierarchy. The
Function Prototype for the lower-level TDF should include the bidirectional
pin in the RETURNS clause. The bidir1.tdf file shown in Figure 2-28 includes
four instances of the bus_reg2 function shown in Figure 2-27.

Figure 2-28. bidir1.tdf

FUNCTION bus_reg2 (clk, oe) RETURNS (io);

SUBDESIGN bidirl
(

clk, oe : INPUT;
io[3..0]) : BIDIR;

)

BEGIN
io0 = bus_reg2(clk, oe);
iol = bus_reg2(clk, oe);
io2 = bus_reg2(clk, oe);
io3 = bus_reg2(clk, oe);

END;

Section 2: How to Use AHDL

- . : . :
«a® Go to the following topics for more information:

“Ports” on page 132 in Elements
“Declaring Registers” on page 47 and “Using Default Values for Variables”
on page 39 in this section

Implementing Tri-State Buses

TRI primitives that drive OUTPUT or BIDIR ports have an Output Enable
input for placing the pin output in a high-impedance state in which it
behaves as if it is not connected to the circuit.

You can create a tri-state bus by connecting TRI primitives and BIDIR or
OUTPUT ports together with a node of type TRI_STATE_NODE. The control
circuitry must ensure that at most one output is enabled (i.e., not in a high-
impedance state) at any given time. This enabled output can transmit low (0)
and high (1) logic levels onto the bus.

The tri_bus.tdf file shown in Figure 2-29 implements a tri-state bus using a E
TRI_STATE_NODE-type node created in a Node Declaration:

JaHY
as[) 0] MOH

Figure 2-29. tri_bus.tdf

SUBDESIGN tri_bus
(

in[3..1], oe[3..1] : INPUT;
outl : OUTPUT;
)
VARIABLE
tnode o TRI _STATE NODE;
BEGIN
tnode = TRI(inl, oel);
tnode = TRI(in2, oe2);
tnode = TRI{Ind, oe3);
outl = tnode;
END;

45

MAX+PLUS Il AHDL

46

In tri_bus.tdf, multiple assignments to tnode tie the signals together. The
TRI_STATE_NODE node type, rather than the ordinary NODE node type, is
required to implement a tri-state bus: multiple assignments to nodes of type
NODE tie the signals together by wired-AND or wired-OR functions; whereas
multiple assignments to a TRI_STATE_NODE tie the signals to the same
node. However, if only one variable is assigned to a TRI_STATE_NODE-type
node, if is treated as an ordinary NODE instead.

Go to the following topics for more information:

“Implementing Boolean Expressions & Equations” on page 25 in this section
“Declaring Nodes” on page 27 in this section

“Implementing Bidirectional Pins” on page 43 in this section

“Node Declaration” on page 162 in Design Structure

Section 2: How to Use AHDL
Sequential Logic

Logic is sequential if outputs at a specified time are a function of the inputs
at that time and at some or all preceding times. All sequential circuits must
include one or more flipflops. Sequential logic can be implemented in AHDL
with state machines, registers, or latches; LPM functions are also available.
State machines are especially useful for implementing sequential logic.
Other examples of sequential logic include counters and controllers.

Information on sequential logic is available in the following topics:

u Declaring Registers...........covriuiiiiiuiiniiiiiie e 47
] Declaring Registered OUtputs.........ccovieeiceieiiiiiccccc, 50
| Creating COUNtErS.......ccoeiiiiiiiciiiiict e 51
e
«® Go to the following topics for more information:

“State Machines” on page 54 in this section

“Megafunctions” on page 129 in Elements

“Using Iteratively Generated Logic” on page 86 in this section
“Using Conditionally Generated Logic” on page 87 in this section

1aHY
as() 01 MOH

Declaring Registers

Registers store data values and synchronize data with a Clock signal. You
can declare, i.e., implement, an instance of a register with a Register
Declaration in the Variable Section. (You can also implement registers with
in-line references in the Logic Section.) AHDL offers several register
primitives and also supports registered LPM functions.

Once you have declared a register, you can connect it to other logic in the
TDF by using its ports. A port of an instance is used in the following format:

<instance name> . <port name>
The bur_reg.tdf file shown in Figure 2-30 uses a Register Declaration to

create a byte register that latches values of the d inputs onto the g outputs
on the rising edge of the Clock when the 1oad input is high.

47

MAX+PLUS Il AHDL

48

Figure 2-30. bur_reg.tdf

SUBDESIGN bur_reg
(

clk, load, d[7..0} : INPUT;

ql7..0] : OUTPUT;
)
VARIABLE

££[7..0] : DFFE;
BEGIN

B etk Sicll:

ff{).ena = load;

EEfTd = afl>

gl = £EE e
END;

The registers are declared as Enable D flipflops (DFFE) in the Variable
Section. The first Boolean equation in the Logic Section connects the
bur_reg.tdf file’s Clock input, c1k, to the Clock ports of the ££[7..0]
flipflops. The second equation connects the 1oad input to the Clock Enable
ports. The third equation connects the file’s data inputs, d[7..0], to the
datainput portsof the ££[7. . 0] flipflops. The fourth equation connects the
file’s outputs to the flipflop outputs. All four statements are evaluated
concurrently.

You can also declare T, JK, and SR flipflops in the Variable Section, then use
them in the Logic Section. For example, for T flipflops (TFF), you would
change the Register Declaration to ££[7..0] : TFF;and change f£{].d
to ££[] .t in the third equation. Similarly, for Enable JK flipflops (JKFFE),
you would change the Register Declarationto ££ [7..0] : JKFFE;and
replace the third equation with two equations that connect the ££[] . j and
££[] .k ports to other signals.

s If you wish to load a register on a specific rising edge of the global
Clock, Altera recommends that you use the Clock Enable input of
one of the DFFE, TFFE, JKFFE, or SRFFE Enable-type flipflops to
control when the register is loaded.

The lpm_reg.tdf file shown in Figure 2-31 uses an in-line reference to
implement an instance of the 1pm_dff function that has the same
functionality as the bur_reg.tdf file.

Section 2: How to Use AHDL

Figure 2-31. Ipm_reg.tdf

INCLUDE "lpm_dff.inc";
SUBDESIGN lpm_reg
(

clk, load, d[7..0] : INPUT;
ql7..0] : OUTPUT;
)
BEGIN

qall = lpm_dff (.clock=clk, .enable=load, .datal]l=dl[])
WITH (LPM_WIDTH=8)
RETURNS (.qfl);
END;

Figure 2-32 shows a GDF that is equivalent to the TDFs in Figures 2-30
and 2-31.

Figure 2-32. reg.gdf

PRN
D0 = D Q > Qo

ENA
CLRN

PRN
D1 = D Q — Q1

ENA
CLRN

—

T
Do— eee

D7 = D Q > Q7
CLK [—

LOAD [ENA
CLRN

Go to the following topics for more information:
“Declaring Registered Outputs,” next

“Ports” on page 132 in Elements
“Register Declaration” on page 163 in Design Structure

49

-
=)
<
—
o
c
w
(9]

MAX+PLUS Il AHDL

Declaring Registered OQutputs

50

You can declare registered outputs of a subdesign by declaring the output
ports as flipflops in a Register Declaration in the Variable Section. The
reg_out.tdf file shown in Figure 2-33 has the same functionality as the
bur_reg.tdf file shown in Figure 2-30 on page 48, but has registered outputs.

Figure 2-33. reg_out.tdf

SUBDESIGN reg_out
(

clk, load, d4d[7..0] : INPUT;
ql7..0] : OUTPUT;
)
VARIABLE
o FNNIE : DFFE; % also declared as outputs %
BEGIN
qll.clk = clk;
gl]l.ena = load;
qll = dll;
END;

When you assign a value to a registered output in the Logic Section, that
value drives the d inputs to the registers. The register’s output does not
change until the rising edge of the Clock. To define the Clock input to the
register, use <register name>. c1k for the Clock input to the register in the
Logic Section. You can implement a global Clock with the GLOBAL primitive
or with the Automatic Global Clock option in the Global Project Logic
Synthesis dialog box (Assign menu).

In the sample file shown in Figure 2-33, each Enable D flipflop (DFFE)

declared in the Variable Section feeds an output with the same name, so you

can refer to the g outputs of the declared flipflops without using the g port
of the flipflops.

s In a top-level TDF, output ports are synonymous with output
pins. When you declare the same name for an output port and a
register, any logic option assignments on that name are applied to
the pin rather than the register. These identical names can prevent
you from assigning a register-specific logic option such as I/O Cell
Register. Therefore, if you wish to use a register-specific logic
option, you must name the registers and ports differently.
(However, you may be able to implement the desired
functionality in a different way. For example, you can use the
Automatic I/O Cell Registers option in the Global Project Logic

Section 2: How to Use AHDL

Synthesis dialog box to automatically implement registers in I/O
cells, regardless of whether you have declared the same name for
output ports and registers.)

Go to the following topics for more information:

“Register Declaration” on page 163 in Design Structure
“Implementing a Hierarchical Project” on page 69 in this section

Creating Counters

Counters use sequential logic to count Clock pulses. Some counters can
count forward and backward, and can be loaded with data and cleared to
zero. Counters can be defined with D flipflops (DFF and DFFE) and If Then
Statements or with the 1pm_counter function.

The ahdlcnt.tdf file shown in Figure 2-34 implements a 16-bit loadable up
counter that can be cleared to zero.

Figure 2-34. ahdicnt. tdf

SUBDESIGN ahdlcnt
(

1dHY
s 01 MOH

clk, load, ena, clr, d[l1l5..0] : INPUT;

gl15..0]) : OUTPUT;
)
VARIABLE

count[15..0] : DFF;
BEGIN

count[].clk = clk;

count{].clrn = !clr;

IF load THEN
count[].d = d[l;
ELSIF ena THEN
count[].d = count[].q + 1;
ELSE
count[].d = count[].q;
END IF;

ql]l = count[];

51

MAX+PLUS Il AHDL

52

In this file, 16 D flipflops are declared in the Variable Section and assigned
the names count0 through count15. The If Then Statement determines the
value that is loaded into the flipflops on the rising Clock edge (e.g., if 1load
is driven by vcc, the flipflops are assigned the value of 411).

The Ipm_cnt.tdf file shown in Figure 2-35 uses the 1pm_counter function
to implement the same functionality as ahdlent.tdf:

Figure 2-35. Ipm_cnt. tdf

INCLUDE "lpm_counter.inc";
SUBDESIGN lpm_cnt
(

clk, load, ena, clr, 4[15..0] : INPUT;
qll5..0] : OUTPUT;
)
VARIABLE

my_cntr: lpm counter WITH (LPM_WIDTH=16) ;

BEGIN
my_cntr.clock = clk;
my_cntr.aload = load;
my_cntr.cnt_en = ena;
my_cntr.aclr = ¢clr;
my_cntr.datal]l = 4[];
g[]l = my_cntr.ql]l;

END;

Figure 2-36 shows a GDF that is equivalent to ahdlent.tdf and lpm_cnt.tdf.

http:pm_enl.ld
http:ahd1cnt.td
http:lpm_cnt.td

Section 2: How to Use AHDL

Figure 2-36. count. gdf

LOAD =
ENA
® ‘ L
PRN
T Q — Q0
L
DO Co——
PD_ CLRN
9
. ‘ \
PRN
T Q — Q1
q
D1 o——
D_ CLRN
b B
: : : &
1 PAN
T Q — Q15
>
D15
CLRN
.’4
CLK ™=
CLR = o

Go to the following topics for more information:

“If Then Statement” on page 176 in Design Structure
“Implementing Conditional Logic” on page 31 in this section

53

T
<)
=
—
o
c
[72]
<D

MAX+PLUS Il AHDL

State Machines

54

State machines, like truth tables and Boolean equations, are easily
implemented in AHDL. The language is structured so that you can either

assign state bits and state values yourself, or allow the MAX+PLUS I
Compiler to do the work for you.

The Compiler uses advanced proprietary heuristic algorithms to make
automatic state assignments that minimize the logic resources required to
implement the state machine.

You simply need to draw a state diagram and construct a next-state table.
The Compiler then performs the following functions automatically:

n Assigns bits, selecting either a T or D flipflop (TFF or DFF) for each bit

n Assigns state values

[Applies sophisticated logic synthesis techniques to derive the
excitation equations

To specify a state machine in AHDL, you must include the following items
in the TDEF:

| State Machine Declaration (Variable Section)

] Boolean control equations (Logic Section)
u State transitions in Truth Table Statements or Case Statements (Logic
Section)

You can also import and export AHDL state machines between TDFs and

other design files by specifying an input or output signal as a machine port
in the Subdesign Section.

The following topics provide information on creating state machines:

= Implementing State Machines...........ccccccocoviviiinii 55
| Setting Clock, Reset & Enable Signals.........cccococuiviiiiiiicicii, 57
il Assigning State Machine Bits & Values.........cccooiiiiicn, 58
u State Machines with Synchronous Outputs........ccoeeeviiiiiiinn, 60
m State Machines with Asynchronous Outputs ..o 64
B Recovering From Illegal States..........ccccovreviiiiiiiiiiiic 66

Section 2: How to Use AHDL

«e®
@ P Go to the following topics for more information:

“Importing & Exporting State Machines” on page 77 in this section
“Ports” on page 132 in Elements

Implementing State Machines

You can create a state machine by declaring the name of the state machine,
its states, and, optionally, the state machine bits in a State Machine
Declaration in the Variable Section.

The simple.tdf file shown in Figure 2-37 has the same functionality as a
D flipflop (DFF).
Figure 2-37. simple.tdf

SUBDESIGN simple
(
clk, reset, d : INPUT;

a : OUTPUT; -

Qo

) =S
VARIABLE =
Ss: MACHINE WITH STATES (s0, sl); c
BEGIN &

ss.clk = clk;
ss.reset = reset;

CASE st
WHEN sO0 =>
g = GND;

IF d THEN
ss = sl;
END IF;
WHEN sl =>
g = NEEs

IF !d THEN
5 =S50
END IF;
END CASE;
END;

556

MAX+PLUS I AHDL

56

In simple.tdf, a state machine with the name ss is declared in a State
Machine Declaration in the Variable Section. The states of the machine are
defined as s0 and s1, and no state bits are declared.

State machine transitions define the conditions under which the state
machine changes to a new state. You must conditionally assign the states
within a single behavioral construct to specify state machine transitions.
Case or Truth Table Statements are recommended for this purpose. For
example, in simple.tdf, the transitions out of each state are defined in the
WHEN clauses of the Case Statement.

You can also define an output value for a state with an If Then or Case
Statement. In Case Statements, these assignments are made in WHEN clauses.
For example, in simple.tdf, output q is assigned to GND when state machine
ss is in state s0, and to VCC when the machine is in state s1.

Output values can also be defined in truth tables, as described in “ Assigning
State Machine Bits & Values” on page 58.

Figure 2-38 shows a GDF that is equivalent to simple.tdf.

Figure 2-38. simple.gdf

VCC

=

PRN
D E——m
CLK &——m

o
o
[9)

CLRN

RESET D—DO—T

Go to the following topics for more information:

“Implementing Conditional Logic” on page 31 in this section
“Importing & Exporting State Machines” on page 77 in this section
“State Machine Declaration” on page 165 in Design Structure

“State Machines with Asynchronous Outputs” on page 64 in this section
“State Machines with Synchronous Outputs” on page 60 in this section

Setting Clock, Reset & Enable Signals

Section 2: How to Use AHDL

Clock, Reset, and Clock Enable signals control the flipflops of the state
register in the state machine. These signals are specified with Boolean
control equations in the Logic Section.

In the file simplel.tdf shown in Figure 2-39, the state machine Clock is
driven by the input c1k. The state machine’s asynchronous Reset signal is
driven by reset, which is active high. In this design file, the declaration of
the ena input in the Subdesign Section and the Boolean equation

ss.ena = ena in the Logic Section connect the Clock Enable signal.

Figure 2-39. simple1.tdf

SUBDESIGN simple
(
clk, reset, d, ena : INPUT;
q : OUTPUT;
)
VARIABLE
ss: MACHINE WITH STATES (sO,
BEGIN
ss.clk = clk;
ss.reset = reset;
ss.ena = ena;

CASE ss IS
WHEN s0 =>
g = GND;

IF d THEN
ss = sl;
END IF;
WHEN sl =>
g = VCC;

IF 'd THEN
ss = s0;
END IF;
END CASE;
END;

Go to the following topics for more information:

sl);

“Boolean Control Equations” on page 171 in Design Structure

“Ports” on page 132 in Elements

57

I
S
=
—
(S
c
w
(4+]

MAX+PLUS I AHDL

Assigning State Machine Bits & Values

58

A state bit is an output of a flipflop used by a state machine to store one bit
of the value of the state machine. In most cases, you should allow the
MAX+PLUS Il Compiler to assign state bits and values to minimize the logic
resources required: the Logic Synthesizer automatically minimizes the
number of state bits needed, optimizing both device utilization and
performance.

However, some state machines may operate faster with state values that use
more than the minimum number of state bits. In addition, you may want
explicit state bits to be the outputs of a state machine. To control these cases,
you can declare state machine bits and values in the State Machine
Declaration.

s The Global Project Logic Synthesis dialog box (Assign menu)
includes a One-Hot State Machine Encoding option that
automatically implements one-hot encoding for a project. In
addition, the MAX+PLUS II Compiler automatically implements
one-hot state machine encoding for FLEX 8000 and FLEX 10K
devices, regardless of whether the One-Hot State Machine Encoding
option is turned on or off. If you explicitly assign state bits in
addition to using automatic one-hot encoding, your project’s logic
may be implemented inefficiently.

The stepper.tdf file shown in Figure 2-40 implements a stepper motor
controller.

Figure 2-40. stepper.tdf

SUBDESIGN stepper
(

clk, reset : INPUT;
ccw, Cw : INPUT;
phase[3..0] : OUTPUT;
)
VARIABLE

ss: MACHINE OF BITS (phase([3..0])
WITH STATES (
s0 = B"0001",
sl = B"0010",
s2 = B"0100",

s3 = B"1000");
BEGIN
ss.clk = clk;
ss.reset = reset;
TABLE
ss, cew, cw => ss;
s0, 1, X => s3;
s0, X, 1 => sl;
s1, 1, X => s0;
sl, X, 1 => s2;
s2, 1, x => sl;
s2, X, 1 => s3;
s3, 1, x => s2;
s3, X, 1 => s0;
END TABLE;
END;

Section 2: How to Use AHDL

In this example, the phase[3. . 0] outputs declared in the Subdesign
Section are also declared as bits of the state machine ss in the State Machine
Declaration. Note that ccw and cw must never both be equal to 1 in the same
table. AHDL assumes that only one condition in a truth table is true at a time;
therefore, overlapping bit patterns may cause unpredictable results.

Go to “Truth Table Statement” on page 183 in Design Structure for more

information.

59

T
o
=3
—
o
c
w
@D

MAX+PLUS Il AHDL

State Machines with Synchronous Outputs

If the outputs of a state machine depend only on the machine’s state, you can
specify the state machine outputs in the WITH STATES clause of the State
Machine Declaration. These state value assignments make state machine

entry less prone to error, and in some cases, the logic may use fewer logic
cells.

Figure 2-41 shows a four-state Moore state machine diagram. In Moore state
machines, the present state of the state machine depends only on its
previous input and previous state, and the present output depends only on
the present state.

Figure 2-41. Moore State Machine Diagram

ly
Iy _ s0 y
0
ly
s1 y s2
1 1
ly
y s3 y

The moorel.tdf file shown in Figure 2-42 implements a four-state Moore
state machine.

60

Section 2: How to Use AHDL

Figure 2-42. moore1.tdf

SUBDESIGN moorel
(

clk : INPUT;
reset : INPUT;
Y : INPUT;
z : OUTPUT;
)
VARIABLE
% current current %
% state output %
ss: MACHINE OF BITS (z)
WITH STATES (sO0 = 0,
sl = i
52 .= q
s3 = 0);
BEGIN
ss.clk = clk;
ss.reset = reset;
TABLE
% current current next %
% state input state %
ss, y => ss;
=
s0, 0 => s0; g
s0, 1 => s2; =
sl, 0 => s0; c
sl, 1 => s2; 8
s2, 0 => s2;
s2, 1 => s3;
s3, 0 => s3;
s3, 1 => sl;
END TABLE;
END;

This example defines the states of the state machine with a State Machine
Declaration. The state transitions are defined in a next-state table, which is
implemented with a Truth Table Statement. In this example, machine ss has
four states but only one state bit (z). The MAX+PLUS II Compiler
automatically adds another bit and makes appropriate assignments to this
synthetic variable to produce a four-state machine. This state machine
requires at least two bits.

Figure 2-43 shows a GDF that is equivalent to moorel.tdf.

61

MAX+PLUS Il AHDL

62

Figure 2-43. moore1.gdf

PRN
Y D o g = 7
CLRN
L
PRN
D Q
L D
CLRN
|
CLK =
RESET — o

When state values are used as outputs, as in moorel.tdf, the project may use
fewer logic cells, but the logic cells may also require more logic to drive their
flipflop inputs. The Compiler’s Logic Synthesizer module may not be able to
fully minimize the state machine in these cases.

Another way to design state machines with synchronous outputs is to omit
state value assignments and to explicitly declare output flipflops. The file
moore2.tdf, shown in Figure 2-44, illustrates this alternative method.

Section 2: How to Use AHDL

Figure 2-44. moore2.tdf

SUBDESIGN moore?2
(

clk . INPUT;
reset : INPUT;
Y : INPUT;
z : OUTPUT;
)
VARIABLE
ss: MACHINE WITH STATES (s0O, sl, s2, s3);
zd: NODE;
BEGIN
ss.clk = clk;

sSs.reset = reset;

Z =D ed, o, COE VO

TABLE
% current current next next %
% state input state output %
ss, Y => ss, zd;
s0, 0 => s0, 0;
s0, 1 => s2, 1;
sl, 0 => s0, 0;
sl, 1 => s2, 1;
s2, 0 => s2, 1;
s2, 1 => s3, 0;
s3, 0 => s3, 0;
s3, 1 => sl, 1;
END TABLE;
END;

Instead of specifying the output with state value assignments in the State
Machine Declaration, this example includes a “next output” column after

the “next state” column in the Truth Table Statement. This method uses a D
flipflop (DFF)—called with an in-line reference—to synchronize the outputs

with the Clock.

Go to “Truth Table Statement” on page 183 in Design Structure for more
information.

63

xI
o
=
—
o
c
w
(-]

MAX+PLUS It AHDL

State Machines with Asynchronous Outputs

AHDL supports the implementation of state machines with asynchronous
outputs. The outputs of these types of state machines can change whenever
the inputs change, regardless of Clock transitions.

Figure 2-45 shows a four-state Mealy state machine diagram. In Mealy state
machines, the outputs are a function of the inputs and the current state.

Figure 2-45. Mealy State Machine Diagram

%

\ 4

o,

s2
AN

The mealy.tdf file shown in Figure 2-46 implements a four-state Mealy state
machine with asynchronous outputs.

Figure 2-46. mealy.tdf

SUBDESIGN mealy
(

clk INPUT;
reset INPUT;
A% : INPUT;
z : OUTPUT;
)
VARTABLE
ss: MACHINE WITH STATES (s0, sl1,
BEGIN
ss.clk = clk;
ss.reset = reset;
TABLE
% current current current
% state input output
ss, v e
s0, 0 - 5 1)
s0, 1 e Lo
sl, 0 e
si, 1 == a 0
52, 0 =0
s2, 1 S5 Sl
s3, 0 =l
s3, 1 =R
END TABLE;
END;

Section 2: How to Use AHDL

s2, s3);

next %
state %
ss;

s0;
si;
sl;
s2;
s2;
s3;
s3;
s0;

JAHY
as() 01 MOH

Figure 2-47 shows a GDF that is equivalent to mealy.tdf.

65

MAX+PLUS Il AHDL

Figure 2-47. mealy.gdf

Y >o—o A
PRN
j > b @ D—D z
CLAN
— Y
4
PRAN
D a
CLRN
[
CLK ™=
RESET — o
«.®
ad® Go to “Truth Table Statement” on page 183 in Design Structure for more
information.

Recovering From lllegal States

Logic generated for a state machine by the MAX+PLUS II Compiler will
behave as you specified in the TDF. However, state machine designs that
explicitly declare state bits and which also do not use one-hot encoding often
allow state bit values that are not assigned to valid states. These unassigned
state bit values are called illegal states. A design that enters an illegal state—
for example, as a result of setup or hold time violations—can cause
erroneous outputs. Although Altera recommends that state machine inputs
meet all setup and hold time requirements, you can make a state machine
recover from an illegal state by forcing the illegal state to a known state with
a Case Statement.

66

http:mea/y.gd

Section 2: How to Use AHDL

s~ The Global Project Logic Synthesis dialog box (Assign menu)
includes a One-Hot State Machine Encoding option that
automatically implements one-hot encoding—which
automatically assigns all state bits to valid states—for a project. In
addition, the MAX+PLUS Il Compiler automatically implements
one-hot state machine encoding for FLEX 8000 and FLEX 10K
devices, regardless of whether the One-Hot State Machine Encoding
option is turned on or off. If you explicitly assign state bits in
addition to using automatic one-hot encoding, your project’s logic
may be implemented inefficiently.

To recover from illegal states, you must name all illegal states in a state
machine. The WHEN OTHERS clause in the Case Statement, which forces each
transition from an illegal state to a known state, applies only to states that
have been declared but are not mentioned in a WHEN clause. The

WHEN OTHERS clause can force the required transitions only if all illegal
states are defined in the State Machine Declaration.

For an n-bit state machine, 2/n possible states exist. If you declare n bits in a
state machine, you should continue to add dummy state names until the
number of states reaches a power of 2. The recover.tdf file shown in
Figure 2-48 contains a state machine that can recover from illegal states.

25
Q
=
—
o
[
&
<<

67

http:recover.td

MAX+PLUS Il AHDL

Figure 2-48. recover.tdf

SUBDESIGN recover

(
clk : INPUT;

go : INPUT;
ok : OUTPUT;
)
VARIABLE

sequence : MACHINE
OF BITS (g(2..0])
WITH STATES (
idle,
one,
two,
three,
four,
1l1Tegalll,
illegal2,
illegal3) ;
BEGIN
sequence.clk = clk;

CASE sequence IS
WHEN idle =>
IF go THEN
sequence = one;
END IF;
WHEN one =>
sequence = two;
WHEN two =>
sequence = three;
WHEN three =>
sequence = four;
WHEN OTHERS =>
sequence = idle;
END CASE;

ok = (sequence == four);

This example contains 3 bits: g2, g1, and g0. Therefore, 2/\3 states, i.e., 8
states, exist. Since only 5 of the states are declared, 3 dummy state names
were added, creating a total of 8 states.

68

Section 2: How to Use AHDL

Implementing a Hierarchical Project

AHDL TDFs can be mixed with other design files in a project hierarchy.
Lower-level files in a project hierarchy can either be Altera-provided mega-
or macrofunctions or user-defined functions.

Information on implementing a hierarchical project is available in the
following topics:

= Using Altera-Provided Unparameterized Functions 69

u Using Altera-Provided Parameterized Functions..........ccccococvviniennan 73

2 Using Custom Megafunctions & Macrofunctionscccccceuevuieee 76

L] Importing & Exporting State Machines.........c.coococeiiiiicniniina, 77
- ‘- oD Go tothe following sources for more information:

“Renaming a Megafunction or Macrofunction in the Current Project” in

MAX+PLUS II Help

“Megafunctions” on page 129 and “Old-Style Macrofunctions” on page 131

in Elements

Using Altera-Provided Unparameterized Functions

MAX+PLUS Il includes libraries of primitives and old-style macrofunctions
that are not inherently parameterized; in addition, some megafunctions are
not inherently parameterized. All MAX+PLUS Il logic functions can be used
to create hierarchical logic designs. Mega- and macrofunctions are
automatically installed in subdirectories of the \maxplus2\max2lib
directory created during installation; primitive logic is built into AHDL. (On
a UNIX workstation, the maxplus2 directory is a subdirectory of the /usr
directory.)

There are two ways to use (i.e., insert an instance of) an unparameterized
function in AHDL:

Declare a variable for the function, i.e., an instance name, in an
Instance Declaration in the Variable Section, and use ports of the
instance of the function in the Logic Section.

Use an in-line logic function reference in the Logic Section of the TDF.

69

1QHVY
as() 0} MOH

MAX+PLUS II AHDL

70

The inputs and outputs of mega- and macrofunctions must be declared with
a Function Prototype Statement. (Function Prototypes are not required for
primitives.) MAX+PLUS II provides Include Files (.inc) that contain
Function Prototypes for all MAX+PLUS II mega- and macrofunctions in the
\maxplus2\max2lib\mega_lpm and \maxplus2\max2inc directories,
respectively. With an Include Statement, you can import the contents of an
Include File into a TDF to declare the Function Prototype of a MAX+PLUS II
mega- or macrofunction.

The macrol.tdf file shown in Figure 2-49 shows a 4-bit counter connected to
a 4-bit-binary-to-16-line decoder. These macrofunctions are called with
Instance Declarations in the Variable Section.

Figure 2-49. macro1.tdf

INCLUDE "4count";
INCLUDE "l6dmux";

SUBDESIGN macrol
(

clk : INPUT;
out[15..0] : OUTPUT;
)
VARIABLE
counter : 4count;
decoder : 16dmux;
BEGIN

counter.clk = clk;
counter.dnup = GND;
decoder. (d,c,b,a) = counter. (qd,gc,ab,ga);
out[15..0] = decoder.qg[1l5..0];
END;

This file uses Include Statements to import Function Prototypes for two
Altera-provided macrofunctions: 4count and 16dmux. In the Variable
Section, the variable counter is declared as an instance of the 4count
function, and the variable decoder is declared as an instance of the 1 6dmux
function. The input ports of both functions, which are in the format
<instance name> . <port name>, are defined on the left side of the Boolean
equations in the Logic Section; the output ports are defined on the right.

Section 2: How to Use AHDL

The macro2.tdf file shown in Figure 2-50 has the same functionality as
macrol.tdf, but creates instances of the two functions with in-line references
and thenodes g[3..01]:

Figure 2-50. macro?2. tdf

INCLUDE “4count"”;
INCLUDE "16dmux"”;

SUBDESIGN macro?2
(

clk : INPUT;
out (15..0] : OUTPUT;
)
VARIABLE
qfi3..0] : NODE;
BEGIN
(a3l OldueddcoBnE pial ks m Sl s N GNDL i)%

% equivalent in-line ref. with named port association %
% {(ql3..0],) = 4count (.clk=clk, .dnup=GND) ; %

% equivalent in-line ref. with named port association %
% and RETURNS clause specifying which outputs are used %

I
% gl(3..0] = 4count (.clk=clk, .dnup=GND) % - g
% RETURNS (qgd, gc, gb, qa); % I
O o
e
o155, .07 C=olbdmax {6dr e, b, afsal3 a0 &
% equivalent in-line ref. with positional port association %
% out[15..0] = 1l6dmux (g[3..0]1); %
END;

The Function Prototypes for the two macrofunctions, which are stored in the
Include Files 4count.inc and 16dmux.inc, are shown below:

FUNCTION 4count (clk, clrn, setn, 1ldn, cin, dnup, d, c, b, a)
RETURNS (qd, qgc, gb, ga, cout);

FUNCTION 16dmux (d, c, b, a)
RETURNS (g[15..01);

The in-line references for 4count and 16dmux appear in the first and
second Boolean equations in the Logic Section, respectively. The in-line
reference for 4count uses positional port association, whereas the in-line
reference for 16dmux uses named port association. The input ports of both
macrofunctions are defined on the right side of the in-line references; the
output ports are defined on the left.

71

MAX+PLUS Il AHDL

Comments show the equivalent in-line references for different styles of port
association. In an in-line reference, ports on the right-hand side of the equals
symbol (=) can be listed with either positional or named port association;
ports on the left-hand side of the equals symbol always use positional port
association. When positional port association is used, the order of ports is
important because there is a one-to-one correspondence between the order
of the ports in the Function Prototype and the ports defined in the Logic
Section. In the in-line reference for 4count, commas are used as
placeholders for ports that are not explicitly connected.

A RETURNS clause, which is based on the RETURNS clause in the Function
Prototype, is optional in an in-line reference. The RETURNS clause can be
used to list the subset of the function’s outputs that is used in the instance.
In macro2.tdf, the second comment that shows an alternative in-line
reference for 4count omits the cout output of 4count from the RETURNS
clause; therefore, only the g [3. . 0] outputs are listed in the in-line reference
and a comma placeholder is not required for cout.

s Primitives and old-style macrofunctions always have default
values for unconnected inputs. In contrast, megafunctions do not

necessarily have default values for unconnected inputs.

Figure 2-51 shows a GDF that is equivalent to macrol.tdf and macro2.tdf.

Figure 2-51. macro.gdf

16DMUX
Qis——1— OUT15
Ql4——— OUT14
Qi3—— OUT13
4COUNT Q12— > 0UT12
—|LDN ot ———1—> OUTMN
—A Qio——— OUT10
—B QA A Q9 ouT9
—c QB B Q8 ::g ouTs
—D Qc [Q——1—> OUT7
—CIN Qb D e—L—> OUT6
ﬁDNUP cou |— os—L—> OUT6
GND —q SETN T u——— > 0OUT4
—9CLRN Qa—————— OUT3
CLK ——ck Q@——T—> OUT2
Ql——T—> OUT1
Q—CT—> OUTo

72

Section 2: How to Use AHDL

Go to the following topics for more information:

“Function Prototype Statement” on page 151 in Design Structure
“In-Line Logic Function Reference” on page 180 in Design Structure
“Include Statement” on page 145 in Design Structure

“Instance Declaration” on page 160 in Design Structure

“Logic Section” on page 168 in Design Structure

“Ports” on page 132 in Elements

Using Altera-Provided Parameterized Functions

MAX+PLUS Il includes inherently parameterized megafunctions, including
LPM functions. For example, parameters are used to specify the width of a
port or whether a block of RAM should be implemented as synchronous or
asynchronous memory. Parameterized functions can contain other
subdesigns, which may be parameterized or unparameterized. Parameters
can also be used on some old-style macrofunctions that are not inherently
parameterized. (Primitives cannot be parameterized.) All MAX+PLUS II
logic functions can be used to create hierarchical logic designs. Mega- and
macrofunctions are automatically installed in subdirectories of the
\maxplus2\max2lib directory created during installation; primitive logic is
built into AHDL.

1AHY
asM 0} MOH

Parameterized functions are instantiated with an in-line logic function
reference or an Instance Declaration in the same way as unparameterized
functions, as described in “Using Altera-Provided Unparameterized
Functions,” with a few additional steps:

] The logic function instance must include a WITH clause, which is
based on the WITH clause in the Function Prototype, that lists the
parameters used by the instance. You can use the WITH clause to
optionally assign parameter values on an instance; however, for all
required parameters in a function, a parameter value must be
supplied somewhere within the project. If the instance itself does not
include some or all of the values for required parameters, the
Compiler searches for them in the parameter value search order
described on page 136 in Elements.

| Since parameterized megafunctions do not necessarily have default
values for unconnected inputs, you must ensure that all required ports
are connected. In contrast, primitives and old-style macrofunctions
always have default values for unconnected inputs.

73

MAX+PLUS Il AHDL

74

The inputs, outputs, and parameters of the function are declared with a
Function Prototype Statement. MAX+PLUS II provides Include Files that
contain Function Prototypes for all MAX+PLUS II mega- and
macrofunctions in the \maxplus2\max2lib\mega_lpm and
\maxplus2\max2inc directories, respectively. With an Include Statement,
you can import the contents of an Include File into a TDF to declare the
Function Prototype of a MAX+PLUS II mega- or macrofunction.

The Ipm_add1.tdf file shown in Figure 2-52 implements an 8-bit adder with
an in-line logic function reference to the parameterized 1pm_add_sub
megafunction:

Figure 2-52. Ipm_add1.tdf

INCLUDE "lpm_add_sub.inc";

SUBDESIGN lpm_addl
(

a(8..1], b(8..1] : INPUT;
c{8..1] : OUTPUT;
carry_out : OUTPUT;
)
BEGIN
% Megafunction instance with positional port association %
-- (c[], carry_out,) = lpm_add_sub(GND, al], bl]l, GND)

= WITH (LPM_WIDTH=8,

~~ LPM_REPRESENTATION="unsigned") ;
% Equivalent instance with named port association %

-- (c[], carry_out,) = lpm_add_sub(.dataa[]=a[], .datab(]l=b[]
-— .cin=GND, .add_sub=GND)

-- WITH (LPM_WIDTH=8,

-= LPM_REPRESENTATION="unsigned") ;
END;

The Function Prototype for 1pm_add_sub, which is stored in the Include
File Ipm_add_sub.inc, is shown below:

FUNCTION lpm_add_sub(cin, dataa[LPM _WIDTH-1..0), datab(LPM_WIDTH-
1..0], add_sub)
WITH (LPM_WIDTH, LPM_REPRESENTATION, LPM_DIRECTION, ADDERTYPE,
ONE_INPUT_IS_CONSTANT)
RETURNS (result[LPM_WIDTH-1..0]), cout, overflow);

Only the LPM_WIDTH parameter is required, and the instance of the
lpm_add_sub function in lpm_add1.tdf specifies parameter values only for
the LPM_WIDTH and LPM_REPRESENTATION parameters.

http:lpm_addl.td

Section 2: How to Use AHDL

The lpm_add2.tdf file shown in Figure 2-53 is identical to lpm_add1.tdf, but
implements the 8-bit adder with an Instance Declaration:

Figure 2-53. Ipm_add2.tdf

INCLUDE "lpm_add_sub.inc";

SUBDESIGN lpm_add2
(

a(8..1], b[8..1] : INPUT;
ci8..1] : OUTPUT;
carry_out : OUTPUT;
)
VARIABLE

8bitadder : lpm_add_sub WITH (LPM_WIDTH=8,
LPM_REPRESENTATION="unsigned") ;

BEGIN

8bitadder.cin = GND

8bitadder.dataal(] = al]

8bitadder.databl(] bl

8bitadder.add_sub = GND

cl[] = 8bitadder.resultl[]

carry_out = 8bitadder.cout
END;

I
(=)
=
—
(=]
(e
172
@

Go to the following topics for more information:

“Function Prototype Statement” on page 151 in Design Structure
“In-Line Logic Function Reference” on page 180 in Design Structure
“Include Statement” on page 145 in Design Structure

“Instance Declaration” on page 160 in Design Structure

“Logic Section” on page 168 in Design Structure

“Parameters” on page 136 in Elements

“Ports” on page 132 in Elements

75

MAX+PLUS Il AHDL

Using Custom Megafunctions & Macrofunctions

76

You can easily create and use custom megafunctions or macrofunctions in
AHDL TDFs.

Once you have defined the logic for a custom function in a design file, a few
steps are required to use the function in other TDFs or other types of design
files.

To prepare a custom AHDL-based mega- or macrofunction for use in other
design files:

1. Compile and optionally simulate the design file to ensure that it
functions correctly.

2. If you plan to use the function in multiple projects, you should
designate the directory that contains the design file as a user library
with User Libraries (Options menu) or save a copy of the file to an
existing user library directory. Otherwise, save a copy of the file to the
directory containing the project that will use the custom function.

3. With the file open in a Text Editor window, create an Include File and
a symbol that represent the current file:

a. Choose Create Default Include File (File menu) to create an
Include File that can be used in a higher-level TDF. With an
Include Statement, you can import the contents of an Include
File into a TDF to declare the Function Prototype of a custom
mega- or macrofunction.

b. Choose Create Default Symbol (File menu) to create a symbol
that can be used in a GDF.

Once you have prepared a function for use in other design files, you can
create a new TDF and insert an instance of the function with an Instance
Declaration or an in-line reference. You can use custom functions in exactly
the same way as Altera-provided functions. See “Using Altera-Provided
Unparameterized Functions” on page 69 and “Using Altera-Provided
Parameterized Functions” on page 73 for more information.

Sectfon 2: How to Use AHDL

Importing & Exporting State Machines

You can import and export state machines between TDFs and other design
files by specifying an input or output port as MACHINE INPUT or MACHINE
OUTPUT in the Subdesign Section. The Function Prototype that represents
the file containing the state machine must indicate which inputs and outputs
are state machines by prefixing the signal names with the keyword
MACHINE.

I MACHINE INPUT and MACHINE OUTPUT port types cannot be
used in a top-level design file. Although top-level files with these
port types do not compile fully, you can use Project Save & Check
(File menu) to check their syntax and Create Default Include File
(File menu) to create an Include File that represents the current
file.

You can rename a state machine with a temporary name by entering a

Machine Alias Declaration in the Variable Section. You can use a machine

alias in the file where the state machine is created or in a file that uses a

MACHINE INPUT porttoimporta state machine. You can then use this name m
instead of the original state machine name.

The ss_def.tdf file shown in Figure 2-54 defines and exports the state
machine ss with the MACHINE OUTPUT port ss_out.

1AHY
9S() 0} MOH

77

MAX+PLUS il AHDL

Figure 2-54. ss_def.tdf

SUBDESIGN ss_def
(

clk, reset, count : INPUT;

ss_out : MACHINE OUTPUT;
)
VARIABLE

ss: MACHINE WITH STATES (sl, s2, s3, s4, s5);
BEGIN

ss_out = ss;

CASE ss IS
WHEN sl=>
IF count THEN ss = s2; ELSE ss = sl; END IF;
WHEN s2=>
IF count THEN ss = s3; ELSE ss = s2; END IF;
WHEN s3=>
IF count THEN ss = s4; ELSE ss = s3; END IF;
WHEN s4=>
IF count THEN ss = s5; ELSE ss = s4; END IF;
WHEN s5=>
IF count THEN ss = sl; ELSE ss = s5; END IF;
END CASE;
ss. (clk, reset) = (clk, reset);

END;

The ss_use.tdf file shown in Figure 2-55 imports a state machine with the
MACHINE INPUT port ss_in.
Figure 2-55. ss_use.tdf

SUBDESIGN ss_use
(

ss_in : MACHINE INPUT;
out : OUTPUT;
)
BEGIN
out = (ss_in == s2) OR (ss_in == s4);

END;

78

http:sS_llse.td

Section 2: How to Use AHDL

The top1.tdf file shown in Figure 2-56 uses in-line references to insert
instances of the functions ss_def and ss_use. The Function Prototypes for
ss_def and ss_use include MACHINE keywords that indicate which inputs
and outputs are state machines.

Figure 2-56. top1.tdf

FUNCTION ss_def (clk, reset, count) RETURNS (MACHINE ss_out);
FUNCTION ss_use (MACHINE ss_in) RETURNS (out);

SUBDESIGN topl
(

sys_clk, /reset, hold : INPUT;

sync_out : OUTPUT;
)
VARIABLE

ss_ref: MACHINE; % Machine Alias Declaration %
BEGIN

ss_ref = ss_def(sys_clk, !/reset, 'hold);
sync_out = ss_use(ss_ref);
END;

Figure 2-57 shows a GDF that is equivalent to top1.tdf.

JAHY
as() 0} MOH

Figure 2-57. top1.gdf

SS_DEF SS_USE
SYS_CLK = ok ss_out 2P e out SYNC_OUT
/RESET [o RESET

HOLD [— >o COUNT

An external state machine can also be implemented in a top-level TDF with
an Instance Declaration in the Variable Section. The top2.tdf file shown in
Figure 2-58 has the same functionality as top1.tdf, but uses Instance
Declarations instead of in-line references to instantiate the functions.

79

MAX+PLUS I AHDL

80

Figure 2-58. top2.tdf

FUNCTION ss_def (clk, reset, count) RETURNS (MACHINE ss_out);
FUNCTION ss_use (MACHINE ss_in) RETURNS (out);

SUBDESIGN top2
(

sys_clk, /reset, hold : INPUT;
sync_out : OUTPUT;
)
VARIABLE
sm_macro =eas defs
sync B oo e
BEGIN
sm_macro. (clk, reset, count) = (sys_clk, !/reset, 'hold);
sync.ss_in = sm_macro.ss_out;
sync_out = sync.out;
END;

Go to the following topics for more information:

“Implementing a Hierarchical Project” on page 69 in this section

“Machine Alias Declaration” on page 166 in Design Structure

“State Machines” on page 54 in this section

“Using Altera-Provided Parameterized Functions” on page 73 in this section

“Using Altera-Provided Unparameterized Functions” on page 69 in this
section

“Using Custom Megafunctions & Macrofunctions” on page 76 in this section

Section 2: How to Use AHDL
Implementing LCELL & SOFT Primitives

You can limit the extent of logic synthesis by changing NODE variables into
SOFT and LCELL primitives. NODE variables and LCELL primitives provide
the greatest control over logic synthesis. SOFT primitives provide less
control over logic synthesis.

NODE variables, which are declared with a Node Declaration in the Variable
Section, place very few restrictions on logic synthesis. During synthesis, the
Logic Synthesizer replaces each instance of a NODE variable with the logic
that the variable represents. It then minimizes the logic to fit into a single
logic cell. This method usually yields the greatest speed, but may result in
logic that is too complex or hard to fit.

SOFT buffers provide more control over resource usage than NODE variables.
The Logic Synthesizer chooses when to replace instances of SOFT primitives
with LCELL primitives. SOFT buffers may help eliminate logic that is too
complex and make the project easier to fit, but may increase logic cell
utilization and reduce speed performance.

LCELL primitives provide the most control. The Logic Synthesizer
minimizes all logic that drives an LCELL primitive so that the logic fits into
a single logic cell. LCELL primitives are always implemented in a logic cell,
and they are never removed from the project even if they are fed by a single
input. If the project is minimized so that an LCELL primitive is fed by a
single input, you can use a SOFT primitive instead of an LCELL primitive so
that the SOFT primitive is removed during logic synthesis.

X
=)
=
—
o
c
wn
(1°]

MAX+PLUS II provides several logic options that automatically insert or
remove SOFT and LCELL buffers at appropriate locations in the project. See
“Assigning a Logic Option” in MAX+PLUS II Help for more information.

Figure 2-59 shows two versions of a TDF: one is implemented with NODE

variables and one with SOFT primitives. In nodevar, the variable
odd_parity is declared as a NODE, then assigned the value of the Boolean

81

MAX+PLUS Il AHDL

expressiond0 $ di $... $ d8.Insoftbuf, the Compiler will replace
some of the SOFT primitives with LCELL primitives during processing to
improve device utilization.

Figure 2-59. NODE Variables & SOFT Primitives

TDF with NODE Variables: TDF with SOFT Primitives:
SUBDESIGN nodevar SUBDESIGN softbuf
((
))
VARIABLE VARIABLE
odd_parity : NODE; odd_parity : NODE;
BEGIN BEGIN
odd_parity = d0 $ dl $ a2 odd_parity = SOFT(d0 $ d1 § d2)
$d3 $ a4 s ds $ SOFT(d3 $ d4 $ d5)
$ d6 $ a7 $ as; $ SOFT(d6 $ 47 $ d8);
END; END;
- . . :
adP Go to the following sources for more information:

“Declaring Nodes” on page 27 in this section

“Guiding the Partitioner” in MAX+PLUS II Help

“LCELL Primitive” on page 120 and “SOFT Primitive” on page 123 in
Elements

82

Section 2: How to Use AHDL

Implementing RAM & ROM

MAX+PLUSII (and AHDL) provide several LPM functions and other
megafunctions that allow you to implement RAM and ROM in
MAX+PLUS II devices. The generic, scalable nature of each of these
functions ensures that you can use them to implement any supported type
of RAM or ROM in MAX+PLUS II.

s Altera does not recommend creating custom logic functions to
implement memory. You should use Altera-provided functions in
all cases where you wish to implement RAM or ROM.

The following megafunctions can be used to implement RAM and ROM in
MAX+PLUS IL:

Name: Description:

lprn_ram_dg Synchronous or asynchronous memory with separate
input and output ports

lpm_ram_io Synchronous or asynchronous memory with a single

I/0O port ps

==

lpm_rom Synchronous or asynchronous read-only memory S=
csdpram Cycle-shared dual port-memory =
csfifo Cycle-shared first-in first-out (FIFO) buffer ®

In these LPM functions, parameters are used to determine the input and
output data widths; the number of data words stored in memory; whether
data inputs, address/control inputs, and outputs are registered or
unregistered; whether an initial memory content file is to be included for a
RAM block; and so on.

Choose Megafunctions/LPM (Help menu) for detailed information on
memory megafunctions.

83

MAX+PLUS Il AHDL

Naming a Boolean Operator or Comparator

84

You can name Boolean operators and comparators in AHDL files to make it

easy to enter resource assignments and to interpret the Equations Section of
the project’s Report File (.rpt).

The boole3.tdf file shown in Figure 2-60 is identical to the boolel.tdf file
(shown inFigure 2-8), but uses named operators. The operator name is

separated from the operator by a colon (:); the name can contain up to
32 name chararacters.

Figure 2-60. hoole3.tdf

SUBDESIGN boole3
(
a0, al, b : INPUT;
outl, out2 : OUTPUT;
)

BEGIN
outl = al tiger:& !a0;
out2 = outl panther:# b;
END;

The following Report File excerpts show the difference between boole3.rpt
and boolel.rpt for the first of the two equations:

Section 2: How to Use AHDL

Figure 2-61. hoole3.rpt & boole1.rpt Excerpts

-- boole3.rpt equations:

~- Node name is 'outl' from file "boole3.tdf" line 7, column 2
-- Equation name is 'outl', location is LC3_Al, type is output
outl = tiger-~0;

~- Node name is 'tiger~0' from file "boole3.tdf" line 7, column 18
-- Equation name is 'tiger-~0', location is LC2_Al, type is buried
tiger~0 = LCELL(_EQ002);

_EQO002 = la0 & al;

-- boolel.rpt equations:

-- Node name is 'outl' from file "boolel.tdf" line 7, column 2
-- Equation name is 'outl', location is LC3_Al, type is output
outl = _LC2_Al;

-- Node name is ':33' from file "boolel.tdf" line 7, column 12
-- Equation name is '_LC2_Al', type is buried
LC2_Al = LCELL{ _EQO001);

_EQO01 = !al & al;

Depending on the logic of the equation, a named operator can produce
multiple node names; however, all names are based on the operator name
and are thus easily recognizable in the Report File. In boole3.rpt, a single
node, tiger~0, is generated for the first equation. In boolel.tdf, the
Compiler assigns the net ID :33 to the same node.

1dHY
as() 01 MOH

After you have compiled a project, you can use the named operator-based
node names shown in the Report File to enter resource assignments for
future compilations, even if the project logic changes. The names of logic
cells created from named operators remain constant if you change unrelated
logic (e.g., other equations) in the file. For example, you can enter an
assignment on the node tiger~0. In contrast, if operators are unnamed,
only net ID numbers are available, and these numbers are randomly
reassigned with each compilation.

Go to the following topics for more information:
“Implementing Boolean Expressions & Equations” on page 25 in this section

“Logical Operators” on page 107 in Elements
”Quoted & Unquoted Names” on page 97 in Elements

85

MAX+PLUS Il AHDL

Using lteratively Generated Logic

86

When you wish to use multiple blocks of logic that are very similar, you can
use the For Generate Statement to iteratively generate logic based on a
numeric range delimited by arithmetic expressions.

The iter_add.tdf file shown in Figure 2-62 shows an example of iterative
logic generation:

Figure 2-62. iter_add.tdf

CONSTANT NUM_OF_ADDERS = 8;

SUBDESIGN iter_add
(
a[NUM_OF_ADDERS..1], b[NUM_OF_ADDERS..1l], cin : INPUT;
c [NUM_OF_ADDERS. .1], cout : OUTPUT;
)

VARIABLE
sum [NUM_OF_ADDERS..1], carryout[(NUM_OF_ADDERS+1)..1]

BEGIN
carryout{l] = cin;
FOR i IN 1 TO NUM_OF_ADDERS GENERATE
sum[i] = al[i] % b[i] $ carryout[i]; % Full Adder %
carryout [i+1] = a[i] & b[i] # carryout[i] & (a[i] $ b[i]);

END GENERATE;
cout = carryout [NUM_OF_ADDERS+1];
cl{] = sum[];

END;

In iter_add.tdf, the For Generate Statement is used to instantiate full adders
that each perform one bit of the NUM_OF_ADDERS-bit (i.e., 8-bit) addition.
The carryout of each bit is generated along with each full adder.

s The If Generate Statement is especially useful with For Generate
Statements that handle special cases differently, for example, the
first and last stages of a multi-stage multiplier. See “Using
Conditionally Generated Logic,” next, for more information.

Go to “For Generate Statement” on page 179 in Design Structure for more
information.

Section 2: How to Use AHDL
Using Conditionally Generated Logic

You can generate logic conditionally with If Generate Statements, if, for
example, you wish to implement different behavior based on the value of an
arithmetic expression. An If Generate Statement lists a series of behavioral
statements that are activated after the positive evaluation of one or more
arithmetic expressions.

The condlogl.tdf file shown in Figure 2-63 uses an If Generate Statement to
implement different behavior for the output_b output on the basis of the
current device family:

Figure 2-63. condlog1.tdf

PARAMETERS (DEVICE_FAMILY) ;

SUBDESIGN condlogl

(
input_a : INPUT;
output_b : OUTPUT;

)
BEGIN
IF DEVICE_FAMILY == "FLEX8K" GENERATE
output. b =-input a;
ELSE GENERATE
output b = BCELE{input_a) ;
END GENERATE;
END;

1AHY
asf) 0) MOH

The If Generate Statement is especially useful with For Generate Statements
that handle special cases differently, for example, the first and last stages of
amulti-stage multiplier. See “Using Iteratively Generated Logic” on page 86
for more information on For Generate Statements.

MAX+PLUS Il includes the predefined parameter DEVICE_FAMILY, as
shown in the example above, and the predefined evaluated function USED,
which can be used in arithmetic expressions. The DEVICE_FAMILY
parameter can be used to test the current device family for the project, which
is specified with Device (Assign menu). The USED evaluated function can be
used to test whether an optional port has been used in the current instance.
USED takes the port name as input and returns a value of FALSE if the port
is not used.

87

http:condlogl.td

MAX+PLUS Il AHDL

88

You can find numerous additional examples of If Generate Statements in the
TDFs that implement LPM functions in MAX+PLUS II. These TDFs are
located in the mega_lpm subdirectory of the \maxplus2\max2lib directory.
(On a UNIX workstation, the maxplus2 directory is a subdirectory of the
/usr directory.)

Go to “If Generate Statement” on page 178 in Design Structure for more
information.

Section 2: How fo Use AHDL
Using the Assert Statement

You can use the Assert Statement to test the validity of any arbitrary
expression that uses parameters, numbers, evaluated functions, or the used
or unused status of a port. You might, for example, use the Assert Statement
to determine whether the value of an optional parameter falls within a range
determined by the value of a second parameter.

When you use an Assert Statement with conditions, you list the acceptable
values for the assertion conditions. If a value is unacceptable, the assertion
is activated and a message is issued. If you use an Assert Statement without
conditions, the assertion is always activated.

The Compiler evaluates each assertion condition only once, after the
Compiler Netlist Extractor module has resolved all parameter values. An
assertion cannot depend on the value of a signal that is implemented in the
device. For example, if an Assert Statement is placed after an If Then
Statement of the form IF a = VCC THEN c = 4, the assertion condition
cannot depend on the value of a.

The condlog?2.tdf file shown in Figure 2-64 has the same functionality as
condlogl.tdf (shown in Figure 2-63 on page 87), but uses Assert Statements
in the Logic Section to report which logic was generated by the If Generate
Statement:

TAHY
as() 01 MOH

89

MAX+PLUS Il AHDL

Figure 2-64. condlog2.tdf

PARAMETERS (DEVICE_FAMILY);

SUBDESIGN condlog?2
(
input_a : INPUT;
output_b : OUTPUT;
)
BEGIN
IF DEVICE_FAMILY == "FLEX8000" GENERATE
output_b = input_a;

-- Assertion is always activated if there is no condition
ASSERT

REPORT "Compiling for FLEX8000 family"
SEVERITY INFO;
ELSE GENERATE
output_b = LCELL(input_a);
-- Assertion is activated if current family is not FLEX10K
-- or FLEX 8000. Severity defaults to ERROR
ASSERT (DEVICE_FAMILY == "FLEX10K")

REPORT "Compiling for % family", DEVICE_FAMILY;
END GENERATE;

END;

You can find numerous additional examples of Assert Statements in the
TDFs that implement LPM functions in MAX+PLUS II. These TDFs are
located in the mega_lpm subdirectory of the \maxplus2\max2lib directory.
(On a UNIX workstation, the maxplus2 directory is a subdirectory of the
/usr directory.)

90

Section

3

Elements

This section describes the basic format of an AHDL Text Design File (.tdf)
and its elements. These elements are used in the behavioral statements
described in Design Structure on page 139.

] Reserved Keywords & Identifiersccocoooiiinccincinicnciicccccca 92
n SYMDOIS ... 94
| Quoted & Unquoted Namescccevvieiiiciiieiniccsce s 97
| GIOUPS ..ttt 99
| Numbers in AHDL ..o 102
[| Arithmetic EXPressions..........ccceceiiiiuiiiinieccceeceeeec 103
| Boolean EXPressions ..ot 106
[] PrIITUEIVES 1ottt ettt e et eete s e e ane e s e emeeeateseseeebesosbessseeeane 113
| MegafUNCHONSveuiciri it 129
] Old-Style MacrofunCtONS.c.c.cucerureriririacieeesceerceeseeesecesiesieeenaennes 131
| e o =TSO SRR RO 132
| | Patammeters ..o veeeeeeeee e et een e 136

Go to MAX+PLUS II Help for complete and up-to-date information on
AHDL elements. For information on element syntax, refer to MAX+PLUS I
Help.

91

SjusWs|g H

MAX+PLUS If AHDL

Reserved Keywords & Identifiers

Reserved keywords are used for beginnings, endings, and transitions of
AHDL statements and for the predefined constant values GND and VCC.

Reserved keywords differ from reserved identifiers in that keywords can be
used as symbolic names when they are enclosed in single quotation marks
('), whereas reserved identifiers cannot. Both reserved keywords and
reserved identifiers can be used freely in comments.

s> Altera recommends that you enter all keywords and reserved
identifiers in capital letters for easy readability. See Style Guide on

page 187 for more information.

Reserved Keywords

The following list shows all AHDL reserved keywords:

AND
ASSERT
BEGIN
BIDIR
BITS
BURIED
CASE
CLIQUE
CONNECTED_PINS
CONSTANT
DEFAULTS
DEFINE
DESIGN
DEVICE
DIV

ELSE
ELSIF
END

FOR

92

FUNCTION
GENERATE
GND
HELP_ID
IF
INCLUDE
INPUT

Is

LOG2
MACHINE
MOD
NAND
NODE
NOR

NOT

OF
OPTIONS
OR
OTHERS

OUTPUT
PARAMETERS
REPORT
RETURNS
SEGMENTS
SEVERITY
STATES
SUBDESIGN
TABLE
THEN
TITLE

TO
TRI_STATE_NODE
VARIABLE
vce

WHEN

WITH

XNOR

XOR

Section 3: Elements

Reserved ldentifiers

The following list shows all AHDL reserved identifiers:

CARRY JKFFE SRFFE
CASCADE JKFF SRFF
CEIL LATCH TFFE
DFFE LCELL TFF
DFF MCELL TRI
EXP MEMORY WIRE
FLOOR OPNDRN X
GLOBAL SOFT

STENEE]

93

MAX+PLUS Il AHDL

Symbols

Table 3-1 lists the symbols that have predefined meanings in AHDL. This
table includes symbols that are used as operators and comparators in
Boolean expressions and as operators in arithmetic expressions.

Table 3-1. AHDL Symbols (Part 1 of 3)

Symbol Function

_ (underscore) User-defined identifiers used as legal characters in

- (dash) symbolic names.

/ (forward slash)

- (two dashes) Starts a VHDL-style comment, which extends to the end
of the line. (Go to “Comments & Documentation” on
page 191 in Style Guide for more information.)

% (percent) Encloses AHDL-style comments. (Go to “Comments &

Documentation” on page 191 in Style Guide for more
information.)

() (left & right parentheses)

Enclose and define sequential group names.

Enclose pin names in Subdesign Sections and Function
Prototype Statements.

Optionally enclose inputs and outputs of truth tables in
Truth Table Statements.

Enclose bits and states of State Machine Declarations.

Enclose highest priority operations in Boolean and
arithmetic expressions.

Enclose parameter definitions in Parameters Statements
and parameter names in Function Prototype Statements,
Instance Declarations, and in-line references.

Optionally enclose the condition in an Assert Statement.

Enclose the arguments of evaluated functions in Define
Statements.

[] (left & right brackets)

Enclose the range of a single- or dual-range group name.

L (single quotation marks)

Enclose quoted symbolic names.

94

Table 3-1. AHDL Symbols (Part 2 of 3)

Section 3: Elements

Symbol

Function

(double quotation marks)

Enclose strings in Title Statements, Parameters
Statements, and Assert Statements.

Enclose a filename in Include Statements.

Enclose digits in non-decimal numbers.

(period)

Separates symbolic names of Jogic function variables from
port names.

Separates extensjons from filenames.

(ellipsis)

Separates most significant bit from least significant bit in
ranges.

(semicolon)

Ends AHDL statements and sections.

(comma)

Separates members of sequential groups and lists.

(colon)

Separates symbolic names from types in declarations.

(equals)

Assigns default GND and vCC values to inputs in a
Subdesign Section.

Assigns settings to options in an Options Statement.

Assigns a default value to a parameter in a Parameters
Statement or an in-line reference.

Assigns values to state machine states.
Assigns values in Boolean equations.

Connects a signal to a port in an in-line reference that uses
named port association.

(arrow)

Separates inputs from outputs in Truth Table Statements.

Separates WHEN clauses from Boolean expressions in Case
Statements.

(plus)

Addition operator

(minus)

Subtraction operator

(two equal signs)

Numeric or string equality operator

(exclamation point)

NOT operator

(exclamation equals)

Not equal to operator

(greater than)

Greater than comparator

(greater than equals)

Greater than or equal to comparator

95

STEMETE]

MAX+PLUS Il AHDL

Table 3-1. AHDL Symbols (Part 3 of 3)

Symbol Function
< (less than) Less than comparator
<= (less than equals) Less than or equal to comparator
& (ampersand) AND operator
& (exclamation ampersand) | NAND operator
$ (dollar sign) XOR operator
13 (exclamation dollar) XNOR operator
(pound sign OR operator
T# (exclamation pound) NOR operator
? (question mark) Ternary operator
° .. - Go to the following topics for more information:

96

” Arithmetic Expressions” on page 103 in this section

“ Arithmetic Operators in Boolean Expressions” on page 109 in this section

“Boolean Equations” on page 168 in Design Structure
“Comparators” on page 111 in this section
“Logical Operators” on page 107 in this section

Section 3: Elements

Quoted & Unquoted Names

Three types of names exist in AHDL:

] Symbolic names are user-defined identifiers in AHDL. They are used
to name the following parts of a TDF:

- Internal and external nodes and groups

- Constants

- State machine variables, state bits, and state names
- Instances

- Parameters

- Memory segments

- Evaluated functions

- Named operators

B Subdesign names are user-defined names for lower-level design files.
The subdesign name must be the same as the TDF filename.

] Port names are symbolic names that identify the input or output of a
logic function.

s Compiler-generated pin names that contain the tilde (~) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project’s Assignment & Configuration File (.acf). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

Two notations are available for subdesign, symbolic, and port names:
quoted and unquoted. Quoted names are enclosed in single quotation marks
("); unquoted names are not.

SOEEE|

s~ When you create a default symbol for a TDF that includes quoted
port names, the quotes are not included in the pinstub names
shown in the symbol.

97

MAX+PLUS Il AHDL

Table 3-2 summarizes the characteristics of subdesign, symbolic, and port
names:

Table 3-2. Quoted & Unquoted Names

Legal Name Unquoted Quoted Unquoted Quoted Unquoted Quoted
Characters Subdesign | Subdesign | Symbolic | Symbolic Port Port
Note (1) Name Name Name Name Name Name

A2 v v v v v v
a-z v/ v v v/ v/ v
0-9 v v N v v v
Underscore (_) v N4 v v v v/
Slash (/) No No v v v v
Dash (-) No v No v No v
Digits only (0-9) v v No v/ v/ v/
Keyword No v No v No v
Identifier No v No No No v
Max. Characters 32 32 32 32 32 32

Note:

(1) The delimiters of ranges in single-range and dual-range group names can also include the operators
described in “Arithmetic Expressions” on page 103.

For example, legal unquoted and quoted symbolic names include:

a

/al

" —bar'

'table’

11221

Illegal unquoted and quoted symbolic names include:

-foo

'a_name_with more_than 32_characters'

98

node

55

‘bowling4s'

‘has a space'

Go to “Reserved Keywords & Identifiers” on page 92 for more information.

Groups

Section 3: Elements

Symbolic names and ports of the same type may be declared and used as
groups in Boolean expressions and equations.

A group, which can include up to 256 members (or “bits”), is treated as a
collection of nodes and acted upon as a single unit.

Groups in the Logic Section or Variable Section of a TDF can consist of
nodes. Single nodes and the constants GND and VCC may be duplicated to
form groups in Boolean expressions and equations.

Group Notations

Groups can be declared with the following three notations:

1.

A single-range group name consists of a symbolic name or port name
followed by a single range of numbers enclosed in brackets, e.g.,
al[4..1]. The symbolic or port name, together with the longest
number in the range, can contain up to 32 name characters.

Once a group has been defined, [] is a shorthand way of specifying
the entire range. For example, a[4 . .1] can also be denoted by a[].

A single number can be used in place of arange, e.g., a [5]. However,
this notation signifies a single symbolic name, not a group, and is
equivalent to the name a5.

A dual-range group name consists of a symbolic name or port name

followed by two ranges enclosed in brackets, e.g., d[6..0]1[2..0].

The symbolic or port name, together with the longest number in each
range, can contain up to 32 name characters.

Sjuawa|3

The dual-range group notation is useful for specifying groups of buses
and for designs with two-dimensional topologies. Once a group has
been defined, [1 [] is a shorthand way of specifying both ranges. For
example, b[6..0] [3..2] can also be denoted by b[][1].

An individual node within the group can be referenced as

name [y] [z] or namey_z, where y and z are numbers in the group
ranges.

99

MAX+PLUS Il AHDL

A sequential group name consists of a list of symbolic names, ports, or
numbers, separated by commas and enclosed in parentheses, e.g.,
(a, b, c).Single-and dual-range group names can be listed within
the parentheses. For example, (a, b, c[5..1]) isalegal group.

This notation is useful for specifying port names. For example, the
input ports of variable reg of type DFF can be written as
reg. (d, clk, clrn, prn).

The following two sets of examples show two groups specified with
different notations:

b([5..0]
(b5, b4, b3, b2, bl, bl)
bl]

bl[log2(256)..1+2-1]
b[278..3 mod 1)
b[2*8..8 div 2]

Compiler-generated pin names that contain the tilde (~) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project’s Assignment & Configuration File (.acf). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

Group Ranges & Subranges

100

Ranges of single- or dual-range group names can consist of numbers or
arithmetic expressions that are separated by two periods (. .) and enclosed
in brackets []. For example:

al4d..

1] is a group with members a4, a3, a2, and al.

d[B"10"..B"00"] is a group with members d2, d1, and d0.

b{2*2..2-1] is a group with members b4, b3, b2, and bl. The

group range delimiters are defined with arithmetic
expressions.

Section 3. Elements

g[MAX..0] is a legal group if the constant MAX has been
previously defined in a Constant Statement.

c[MIN(a,b)..0] is a legal group if the evaluated function MIN has
been previously defined in a Define Statement.

Regardless of whether a range delimiter is a number or an arithmetic
expression, the Compiler resolves and interprets the delimiters as decimal
values (integers).

Subranges include a subset of the nodes specified in a declared group, and
can be specified in a number of ways. Commas can be used as placeholders
only in groups on the left side of a Boolean equation or in an in-line
reference.

For example, if you declare the group ¢ [5. . 1], you can use the following
subranges of this group:

cl[3..1]

cl(4..2]

c4

cl[5]

(c2, , c4)

In the subrange (c2, , c¢4),acomma is used to hold the place of an

unassigned group member.

Ranges are normally listed in descending order. To list ranges in ascending
order or in both ascending and descending order, you must specify the BITO E-
option with the Options Statement to prevent the Compiler from issuing

warning messages. In dual-range group names, the BIT0 option affects both
of the ranges.

oy
@D
=
<D
=
—
[72]

Go to the following topics for more information:

”Arithmetic Expressions” on page 103 in this section

“Defining Groups” on page 28 in How to Use AHDL

“Numbers in AHDL” on page 102 in this section

“Quoted & Unquoted Names” on page 97 in this section

“Using Constants & Evaluated Functions” on page 19 in How to Use AHDL

101

MAX+PLUS I AHDL

Numbers in AHDL

102

You can use decimal, binary, octal, and hexadecimal numbers in any
combination in AHDL. The syntax for each radix (numbering system) is
shown below.

Radix: Values:

Decimal <series of digits 0 to 9>

Binary B <series of 0’s, 1’s, X's>"(where X = “don’t care”)
Octal O <series of digits 0 to 7>" or

Q" <series of digits 0 to 7>"
Hexadecimal X" <series from Oto 9, Ato F>" or
H" <series from 0 to 9, A to F>"

The following examples show valid AHDL numbers:

B"0110X1X10"
Q"4671223"
H"123AECF"

The following rules apply to AHDL numbers:

| The MAX+PLUS II Compiler always interprets numbers in Boolean
expressions as groups of binary digits; numbers in group ranges are
interpreted as decimal values.

@ Numbers cannot be assigned to single nodes in Boolean equations.
Use vCC and GND instead.

Go to the following topics for more information:

“Arithmetic Expressions” on page 103 in this section
“Boolean Equations” on page 168 in Design Structure
“Boolean Expressions” on page 106 in this section
“Using Numbers” on page 18 in How to Use AHDL

Section 3: Elements

Arithmetic Expressions

Arithmetic expressions can be used to define evaluated functions in Define
Statements, constants in Constant Statements, and as the delimiters of group
ranges.

In the following example, a range is defined with an arithmetic expression:

SUBDESIGN foo
(

af4..2+1-3+8] : INPUT;
)

In the following examples, a constant and an evaulated function are defined
with arithmetic expressions:

CONSTANT foo = 1 + 2 DIV 3 + LOG2(256);

DEFINE MIN(a,b) = ((a < b) ? a : b);

The arithmetic operators and comparators used in these expressions
perform basic arithmetic and comparison operations on the numbers used

in the expression. Table 3-3 shows the arithmetic operators and comparators
used in AHDL arithmetic expressions:

Table 3-3. Arithmetic Operators and Comparators Used in Arithmetic Expressions

(Part 1 0f 2) m

Cgitg::gtrér Example Description Priority m
+ (unary) +1 positive 1 g
- (unary) -1 negative 1 ’
! la NOT 1
» a2 exponent 1
MOD 4 MOD 2 modulus 2
DIV 4 DIV 2 division 2
* a* 2 multiplication 2
LOG2 LOG2 (4-3) logarithm base2 2
+ 1+1 addition 3

103

MAX+PLUS Il AHDL

104

Table 3-3. Arithmetic Operators and Comparators Used in Arithmetic Expressions

(Part 2 of 2)

Operator/ .. .
Comparator Example Description Priority
- 1-1 subtraction 3
== (numeric) 5==75 numeric equality 4
== (string) a" = "b" string equality 4
= 5 1=4 not equal to 4
> 5> 4 greater than 4
>= 5>=5 greater than or equal to 4
< a < b+2 less than 4
<= a <= b+2 less than or equal to 4
& a&b AND 5
AND a AND b
& 11&0 NAND (AND inverter) 5
NAND 1 NAND 0
$ 1s$1 XOR (exclusive OR) 6
XOR 1 XCR 1
1$ 1161 XNOR (exclusive NOR) 6
XNOR 1 XNOR 1
a#b OR 7
OR a OR b
L# a '¥b NOR (CR inverter) 7
NOR a NOR b
? (5<4) ? 3:4 ternary 8

The unary plus (+) and minus (-) are prefix operators. The + operator does
not affect its operand, but you may use it for documentation purposes (i.e.,

to indicate a positive number).

Section 3: Elements

I The predefined evaluated functions CEIL and FLOOR can also be
used in arithmetic expressions. The ceiling (CEIL) of a real
number is the smallest integer that is at least that real number; the
floor (FLOOR) is the largest integer that is at most that real number.
Although these operation apply to all arithmetic expressions, they
are meaningful only for LOG2 and DIV operations in which the
result can be a real number. The ceiling or floor is obtained by
enclosing the expression in parentheses and prepending CEIL or
FLOOR to it.

The following examples show the ceiling and floor of a real

number:
CEIL(LOG2 (255)) = 8
FLOOR (LOG2 (255)) = 7

The following rules apply to all arithmetic expressjons:
s Arithmetic expressions must resolve to non-negative numbers.

u When the result of LOG2 is not an integer, the result is automatically
rounded up to the next integer. For example, LOG2 (257) = 9.

s The arithmetic operators that are supported in arithmetic
expressions are a superset of the arithmetic operators supported
in Boolean expressions, which are described in “Arithmetic
Operators in Boolean Expressions” on page 109.

Go to “Numbers in AHDL” on page 102 for more information.

o)
<
=
(42}
=
—
w

105

MAX+PLUS It AHDL

Boolean Expressions

106

Boolean expressions consist of operands that are separated by logical and
arithmetic operators and comparators, and are optionally grouped within
parentheses. Expressions are used in Boolean equations as well as in other
statements such as Case and If Then Statements.

A Boolean expression may be one of the following:

] An operand
For example: a, b(5..11, 7, VCC

] An in-line logic function reference
For example: out[15..0] = 1l6dmux (q[3..0]);
| A prefix operator (! or -) applied to a Boolean expression

For example: !c

] Two Boolean expressions separated by a binary (non-prefix) operator
For example: dl §$ d3

B A Boolean expression enclosed in parentheses
For example: (!foo & bar)

The result of every Boolean expression has the same width as its operands.

You can name Boolean operators and comparators in AHDL files to make it
easy to enter resource assignments and to interpret the Equations Section of
the Report File (.rpt). For more information, go to “Naming a Boolean
Operator or Comparator” on page 84 in How to Use AHDL.

Go to the following topics for more information:

“Arithmetic Operators in Boolean Expressions” on page 109 in this section

“Boolean Operator & Comparator Priorities” on page 112 in this section

“Boolean Equations” on page 168 in Design Structure

“Comparators” on page 111

“Implementing Boolean Expressions & Equations” on page 25 in How to Use
AHDL

“In-Line Logic Function Reference” on page 180 in Design Structure

“Logical Operators” on page 107 in this section

“Numbers in AHDL” on page 102 in this section

Section 3: Elements

Logical Operators

Table 3-4 shows logical operators that can be used in Boolean expressions:

Table 3-4. Logical Operators Used in Boolean Expressions

Operator Example Description
! 'tob one’s complement (prefix inverter)
NOT NOT tob
& bread & butter AND
AND bread AND butter
'& af3..1] !'& b[5..3] AND inverter
NAND af3..1] NAND b{5..3]
trick # treat CR
OR trick OR treat
14 c[8..5] !# 4[7..4] CR inverter
NOR c[8..5] NOR d[7..4]
$ foo $ bar exclusive OR
XOR foo XOR bar
'3 x2 1§ x4 exclusive NOR
XNOR x2 XNOR x4

Each operator represents a two-input logic gate, except the NOT (!) operator,
which is a prefix inverter on a single node. You can use either the name or
the symbol to represent a logical operator.

Expressions that use these operators are interpreted differently, depending
on whether the operands are single nodes, groups, or numbers. Also,
expressions with the NOT operator are interpreted differently from those
with other logical operators.

)
(3]
3
<
=
—
w

You can name Boolean operators and comparators in AHDL files to make it

easy to enter resource assignments and to interpret the Equations Section of

the Report File (.rpt). For more information, go to “Naming a Boolean

Operator or Comparator” on page 84 in How to Use AHDL.

s You can allow the Compiler to replace AND operators in Boolean
expressions with the 1pm_add_sub function if you use the Use
LPM for AHDL Operators logic option, or a logic synthesis style
that includes this logic option. Go to “Assigning an Individual

107

MAX+PLUS Il AHDL

Logic Option or Synthesis Style” in MAX+PLUS II Help for more

information.

Boolean Expressions Using NOT

The NOT operator (!) is a prefix inverter. The behavior of the NOT operator
depends on the operand that it affects.

Three operand types can be used with the NOT operator:

[] If the operand is a single node, GND, or VCC, a single inversion
operation is performed. For example, ! a means that the signal a
passes through an inverter.

u If the operand is a group of nodes, every member of the group passes
through an inverter. For example, the group !'a[4..1] isinterpreted
as (la4, 'a3, lta2, !al).

u If the operand is a number, it is treated as a binary number with as
many bits as the group context in which it is used, and every bit is
inverted. For example, !9 in a four-member group context is
interpreted as !B"1001", which is the same as B"0110".

Boolean Expressions Using AND, NAND, OR, NOR, XOR, & XNOR

Four operand combinations exist with the binary (non-prefix) operators, and
each of these combinations is interpreted differently.

] If both operands are single nodes or the constants GND or VCC, the
operator performs the logical operation on the two elements, e.g.,
(a & b).

] If both operands are groups of nodes, the operator acts upon the
corresponding nodes of each group, producing a bitwise set of
operations between the groups. The groups must be the same size. For
example, (a, b, c) # (4, e, f) isinterpreted as
(a #d, b# e, c# f).

[| If one operand is a single node, GND, or VCC, and the other operand is

a group of nodes, the single node or constant is duplicated to form a
group of the same size as the other operand. The expression is then

108

s

Arithmetic Operators in Boolean Expressions

Arithmetic operators are used to perform arithmetic addition and
subtraction operations on groups and numbers in Boolean expressions.
Table 3-4 shows the available operators.

Section 3: Elements

treated as a group operation. For example,a & bl4..1] is
interpreted as (a & b4, a & b3, a & b2, a & bl).

If both operands are numbers, the shorter number is sign-extended to
match the size of the other number. The expression is then treated as
a group operation. For example, in the expression (3 # 8),the3 and
8 are converted to the binary numbers B"0011" and B"1000",
respectively. The expression then becomes B"1011".

If one operand is a number and the other is a node or group of nodes,
the number is truncated or sign-extended to match the size of the
group. If any significant bits are truncated, an error message is
generated. The expression is then treated as a group operation. For
example, in the expression (a, b, c) & 1,thel isconverted to
B"001" and the expression becomes (a, b, c) & (0, 0, 1).The
expression is then interpreted as (a & 0, b & 0, ¢ & 1).

An expression that uses VCC as an operand is interpreted
differently from an expression that uses 1 as an operand. In the
first equation shown below, the number 1 is sign-extended to
match the size of the group. In the second equation, the node vcc
is duplicated to form a group of the same size. Each equation is
then treated as a group operation.

(a, b,) &1
(a, b, c) & VCC

(0, 0,)
(a, b, c)

o
D
3
<>
=
—
w

Table 3-5. Arithmetic Operators Used in Boolean Expressions

Operator Example Description
+ (unary) +1 positive
- (unary) -al4..1] negative
+ count [7..0] + deltal7..0] addition
- rightmost_x[] - leftmost_x[] subtraction

109

MAX+PLUS Il AHDL

110

The unary plus (+) and minus (-) are prefix operators. The + operator does
not affect its operand, but you may use it for documentation purposes (i.e.,
to indicate a positive number). The - operator interprets its operand as a
binary representation of a number if it is not already a number. It then
performs a two’s complement unary-minus operation on the operand.

The following rules apply to the other arithmetic operators:

| Operations are performed between two operands, which must be
groups of nodes or numbers.

] If both operands are groups of nodes, the groups must be the same
size.
] If both operands are numbers, the shorter number is sign-extended to

match the size of the other operand.

] If one operand is a number and the other is a group of nodes, the
number is truncated or sign-extended to match the size of the group.
If any significant bits are truncated, the MAX+PLUS II Compiler
generates an error message.

I 1. When you add two groups together on the right side of a
Boolean equation with the + operator, you can place a 0 on
the left of each group to sign-extend the width of the group.
This method provides an extra bit of information to the
group on the left side of the equation that can be used as a
carry-out signal.

In the following example, the groups count [7..0] and
delta[7..0] are sign-extended with zeros to provide
information to the cout carry-out signal:

(cout, answer[7..0]1) = (0, count[7..0]1) + (O,
deltal[7..01)
2. You can name Boolean operators and comparators in

AHDL files to make it easy to enter resource assignments
and to interpret the Equations Section of the Report

File (.rpt). For more information, go to “Naming a Boolean
Operator or Comparator” on page 84 in How to Use AHDL.

3. The arithmetic operators that are supported in Boolean
expressions are a subset of the arithmetic operators
supported in arithmetic expressions.

Comparators

Section 3: Eleme

Two types of comparators are used to compare single nodes or groups:
logical and arithmetic. Table 3-6 shows the comparators that can be used in

Boolean expressions:

Table 3-6. Comparators Used in Boolean Expressions

nts

Comparator: Example Description
== (logical) addr(19..4] == B"B800" equal to
'= (logical) bl != b3 not equal to

< (arithmetic)

fame[] < power(]

less than

<= (arithmetic)

money[] <= power|[]

less than or equal to

> (arithmetic)

love[]l > moneyl]

greater than

>= (arithmetic)

deltaf] >= 0

greater than or equal to

Logical comparators can compare single nodes, groups of nodes, and
numbers without “don’t care” (X) values. If groups of nodes or numbers are
compared, the groups must be the same size. The MAX+PLUS II Compiler
performs a bitwise comparison on the groups, returning VCC when the
comparison is true and GND when the comparison is false.

Arithmetic comparators may only compare groups of nodes and numbers,

and the groups must be the same size. The Compiler performs an unsigned m

magnitude comparison on the groups; that is, each group is interpreted as a

positive binary number and compared to the other group.

s You can allow the Compiler to replace comparators in Boolean
expressions with the 1pm_compare function if you use the Use

LPM for AHDL Operators logic option, or a logic synthesis style
that includes this logic option. Go to “Assigning an Individual
Logic Option or Synthesis Style” in MAX+PLUS II Help for more
information.

oy
@
3
@
=
—
17

111

MAX+PLUS It AHDL

Boolean Operator & Comparator Priorities

Operands separated by logical and arithmetic operators and comparators
are evaluated according to the priority rules listed in Table 3-7 (priority 1 is
the highest priority). Operations of equal priority are evaluated from left to
right. Parentheses () may change the order of evaluation.

Table 3-7. Boolean Operator & Comparator Priorities

Priority Operator/Comparator
1 - (negative)
1 ! (NOT)
2 + (addition)
2 - (subtraction)
3 == (equal to)
3 = (not equal to)
3 < (less than)
3 <= (less than or equal to)
3 > (greater than)
3 >= (greater than or equal to)
4 & (AND)
4 & (NAND)
5 $ (XOR)
5 '3 (XNOR)
6 # (OR)
6 4 (NOR)
s The arithmetic operators that are supported in Boolean

expressions are a subset of the arithmetic operators supported in
arithmetic expressions.

112

Section 3: Elements

Primitives

MAX+PLUS II provides a variety of primitive functions for designing
circuits for Altera devices.

AHDL TDFs use statements, operators, and keywords in place of certain
Graphic Design File (.gdf) primitives:

u The INPUT, OUTPUT, and BIDIR ports in AHDL replace the INPUT,

OUTPUT, and BIDIR primitives used in GDFs.

= The AND, NAND, BAND, BNAND, OR, NOR, BOR, BNOR, XNOR, XOR, and

NOT logic primitives in GDFs are replaced by logical operators in

AHDL.

u The vCC and GND primitives in GDFs are replaced by VCC and GND
keywords in AHDL.

u The GDF Title Block primitive is replaced by an AHDL Title
Statement.

u The GDF PARAM and CONSTANT primitives are replaced by AHDL

Parameters and Constant Statements.

This section provides information about the available primitives, possibl
interconnections between primitives and ports, descriptions of each

e

primitive, and their AHDL Function Prototypes. The Function Prototypes
are not required in TDFs. However, you may redefine the calling order of the

primitive inputs with a Function Prototype Statement.

This section discusses the following topics:

| Buffer PrimuitiVes ..ooooceveeiceeieceeeee et ettt e e eeeseennes
] Hlipflop & Latch Primitives ...,
[] Primitive/Port INtercONNECHONScvirreeeieeee e

Go to the following topics for more information:

“Constant Statement” on page 147 in Design Structure
“Function Prototype Statement” on page 151 in Design Structure
“Logical Operators” on page 107 in this section

“Parameters Statement” on page 142 in Design Structure

“Ports” on page 132 in this section

“Subdesign Section” on page 157 in Design Structure

“Title Statement” on page 141 in Design Structure

113

m
@
=
@
S
—
(73

MAX+PLUS Il AHDL

Buffer Primitives

CARRY

114

The following buffer primitives are provided:

CARRY = Carry Buffer

CASCADE = Cascade Buffer

EXP = Expander Buffer

GLOBAL = Global Buffer (SCLK is also available for backward
compatibility)

LCELL = Logic Cell Buffer (MCELL is also available for backward
compatibility)

OPNDRN = Open Drain Buffer

SOFT = Soft Buffer

TRI = Tri-State Buffer

All buffer primitives except TRI and OPNDRN allow you to control the logic
synthesis process. In most circumstances, you do not need to use these
buffers; however, if the Compiler indicates that your project is too complex
and cannot be processed, you can insert them in parts of the project that
cause logic expansion, thus guiding the Logic Synthesizer to produce special
results.

For help with using these primitives in your projects, contact Altera

Applications. Go to “Contacting Altera” in MAX+PLUS II Help for
information on contacting Altera.

CARRY Primitive

Function Prototype: FUNCTION CARRY (in)
RETURNS (out) ;

The CARRY primitive designates the carry-out logic for a function, and acts
as the carry-in to another function. The carry function implements fast carry-

chain logic for functions such as adders and counters.

s The CARRY primitive is supported only for the FLEX 8000 and
FLEX 10K device families; it is ignored for other devices.

When you use a CARRY primitive, you must observe the following rules:

[A CARRY primitive can feed one or two cones of logic. If the CARRY
primitive feeds two cones of logic, then one and only one of the cones

Section 3: Elements

of logic must be buffered by another CARRY primitive. In this case,
both cones of logic are implemented in the same logic cell. You must
follow this rule to tie down the sum and carry-out functions for the
first stage of an adder or counter.

= A cone of logic fed by a CARRY primitive can have up to two inputs. A
third input is allowed only if it is a CARRY input.

B A cone of logic that feeds a CARRY primitive can have up to two
inputs. A third input is allowed only if it is a CARRY input.

| The CARRY primitive cannot feed an OUTPUT or OUTPUTC pin.

| The CARRY primitive cannot be fed by an INPUT or INPUTC pin or a
register.

u Two CARRY primitives cannot feed the same gate.

If you use the CARRY primitive incorrectly, it is ignored and the Compiler
issues a warning.

You can allow the Compiler to automatically insert or remove CARRY

primitives during logic synthesis with the Carry Chain logic option or a logic

synthesis style that includes the Carry Chain option.

s Multi-level synthesis may implement a FLEX 8000 or FLEX 10K
register in the counter mode even if it is not fed by a CARRY buffer.
To prevent a register that is not explicitly fed by a CARRY buffer
from using the counter mode, set the Carry Chain logic option to
IGNORE for that register. If the register is explicitly fed by a CARRY
buffer, you must also set the Carry Chain logic option to IGNORE
on the CARRY buffer.

The following example shows a register implemented in counter
mode without a carry chain input:

a = dff ((egqn & load # data & !load) & clear,
) ¢

o)
[1°]
3
<
=
—
w

egqn = g & 'ena # !'gq & ena; ¢

-a
ad® Go to “Assigning an Individual Logic Option or Synthesis Style” in

MAX+PLUS II Help using Search for Help on for more information.

115

MAX+PLUS Il AHDL

CASCADE

—]>—

116

CASCADE Primitive

Function Prototype: FUNCTION CASCADE (in)
RETURNS (out) ;

The CASCADE buffer designates the cascade-out function from an AND or OR
gate, and acts as a cascade-in to another AND or OR gate. The cascade-in
function allows a cascade, which is a fast output located on each
combinatorial logic cell, to be ORed or ANDed with the output of an
adjacent combinatorial logic cell in the device. With the CASCADE primitive,
the AND or OR gate that feeds the CASCADE primitive and the AND or OR gate
that is fed by the CASCADE primitive are placed in the device, with the first
symbol logically ORed or ANDed into the second.

s The CASCADE primitive is supported only for the FLEX 8000 and
FLEX 10K device families; it is ignored for other devices.

When you use a CASCADE primitive, you must observe the following rules:

] A CASCADE primitive can only feed or be fed by a single gate, which
must be an AND or an OR gate.

An inverted OR gate is treated as an AND gate and vice-versa. Logical
equivalents of AND gates are BAND, BNAND, and NOR. Logical
equivalents of OR gates are BOR, BNOR, and NAND.

| Two CASCADE primitives cannot feed the same gate.

B A CASCADE primitive cannot feed an XOR gate.

] A CASCADE primitive cannot feed an OUTPUT or OUTPUTC pin
primitive or a register.

n The De Morgan’s inversion theorem implementation of cascaded AND
and OR gates requires all primitives in a cascaded chain to be of the
same type. A cascaded AND gate cannot feed a cascaded OR gate, and
vice-versa.

If you use the CASCADE primitive incorrectly, it is ignored and the Compiler
issues a warning.

You can allow the Compiler to automatically insert or remove CASCADE
primitives during logic synthesis with the Cascade Chain logic option or a
logic synthesis style that includes the Cascade Chain logic option.

Go to “Assigning an Individual Logic Option or Synthesis Style” in
MAX+PLUS II Help using Search for Help on for more information.

EXP

Section 3: Elements

EXP Primitive

Function Prototype: FUNCTION EXP (in)
RETURNS (out) ;

The EXP expander buffer specifies that an expander product term is desired
in the project. The expander product is inverted in the device.

s The EXP primitive is supported only for the MAX 5000,
MAX 7000, and MAX 9000 device families; it is treated as a NOT
gate in other device families. Refer to individual device data
sheets for information on how specific devices use logic cells and
expander product terms.

Whether or not an expander product term is used depends on the logic
polarity required by the destination functions. For example, if an EXP buffer
feeds two AND gates (i.e., product terms) and the second AND gate has a
inverted input, the EXP feeding the inverted input is removed during logic
synthesis, thereby creating positive logic. The EXP feeding the non-inverted
input is not removed and the expander product term is used to implement
logic, as shown in the illustration below. (Normally, the Logic Synthesizer
determines where to insert or remove EXP buffers. Altera recommends that
only experienced MAX+PLUS II designers should use the EXP primitive in
their projects.)

il
[4°]
=
@
=
—
w

In devices that contain multiple Logic Array Blocks (LABs), the EXP buffer
output can only feed logic within a single LAB. The EXP is duplicated for
each LAB that requires it. If a project contains a large number of expanders,
the Logic Synthesizer may convert them into LCELL buffers to balance
expander product term and logic cell usage.

s Do not use EXP primitives to create an intentional delay or
asynchronous pulse. The delay of these elements varies with
temperature, power supply voltage, and device fabrication
process, so race conditions can occur and create an unreliable
circuit.

117

MAX+PLUS Il AHDL

GLOBAL

—]>—

118

GLOBAL Primitive

Function Prototype: FUNCTION GLOBAL (in)
RETURNS (out);

The GLOBAL buffer indicates that a signal must use a global (synchronous)
Clock, Clear, Preset, or Output Enable signal, instead of signals generated
with internal logic or driven by ordinary I/O pins. Table 3-8 shows how
global signals are used in different device families.

s 1. The SCLK buffer is available for backward compatibility
and can be used in place of a GLOBAL primitive only to
specify a global Clock in Classic and MAX 5000 devices.
SCLK may be used to request global clocking of a register
when the Clock is driven by a pin. A direct connection must
exist from the input pin to SCLK to the register.

2. The GLOBAL primitive is ignored for devices that do not
support it. In addition, global and array clocking are not
allowed within the same Logic Array Block (LAB) in
MAX 5000 devices.

Table 3-8. Global Signal Availability

Device Family Cé‘llobal Global Global Global Output
ock Clear Preset Enable

Classic v
MAX 5000 v v (1) N v (1)
MAX 7000 v/ v v
FLEX 8000 v v v v
MAX 9000 v/ v v/
FLEX 10K v/ v/ v/ v/
Note:

(1) Available for EPS464 devices only.

Section 3: Elements

If an input pin feeds directly to the input of GLOBAL, the output of GLOBAL
can be used to feed a Clock, Clear, Preset, or Output Enable input to a
primitive. A direct connection must exist from the output of GLOBAL to the
input of the register or the TRI buffer. A NOT gate may be required between
the input pin and GLOBAL when the GLOBAL buffer feeds the Output Enable
input of a TRI bulffer.

A single input may pass through GLOBAL before feeding the Clock, Clear, or
Preset input of a register, or the Output Enable input of a TRI buffer.

Global signals propagate more quickly than array signals and may free up
device resources for other logic. GLOBAL should be used to implement

global clocking in a portion or all of the project. To verify that registers are
globally clocked, you can refer to the Report File for the processed project.

If your MAX 5000 device project contains global and array (asynchronous)
clocking and the Fitter module of the Compiler cannot find a fit, removing
the GLOBAL buffer may make a fit possible. If you encounter a similar
problem with a MAX 7000 project, replace array clocking with global
clocking.

As an alternative to using the GLOBAL primitive, you can direct the
Compiler to automatically select an existing signal in a project to be a global
Clock, Clear, Preset, or Output Enable signal with the Global Project Logic
Synthesis command (Assign menu).

The following illustration shows some legal uses of the GLOBAL buffer:

SjuawWalg

119

MAX+PLUS Il AHDL

DFF L
PRN
GLOBAL D Qr—
= —>
CLRN
DFF)
PRN
GLOBAL D Qr—
Co——1
CLRN
GLOBAL
N
[— {>c 1>
TRI

The following illustration shows an illegal use of the GL.OBAL buffer:

GLOBAL
N
>
e
ad® Go to “Clock Configuration Guidelines,” “Preset & Clear Configuration
Guidelines,” and “Master Reset Guidelines” using Search for Help on
(Help menu).
LCELL Primitive
LCELL Function Prototype: FUNCTION LCELL (in)

_[} RETURNS (out);

The LCELL buffer allocates a logic cell for the project. The LCELL buffer
produces the true and the complement of a logic function and makes both
available to all logic in the device. (The output of the LCELL buffer must feed
through a NOT gate to use the complement of the logic function.)

120

Section 3: Elements

& The MCELL buffer, which has the same functionality as the LCELL
buffer, is available for backward compatibility with earlier
versions of MAX+PLUS II. New projects should use LCELL
exclusively.

An LCELL buffer always consumes one logic cell. It is not removed from a
project during logic synthesis.

s~ Do not use LCELL primitives to create an intentional delay or
asynchronous pulse. The delay of these elements varies with
temperature, power supply voltage, and device fabrication
process, so race conditions can occur and create an unreliable
circuit.

The following illustrations show the effect of logic synthesis on a project
when LCELL or SOFT buffers are used. The first project (1) requires four
logic cells after synthesis (in dotted boxes) and three input pins. If the LCELL
buffers are replaced with SOFT buffers, as shown in (2), the SOFT buffers are
removed by logic synthesis and the project requires one logic cell and three

inputs.
(1)
Before Logic Synthesis After Logic Synthesis
LCELL LCELL
— > D>
LCELL
LCELL forces a buffer
()
Before Logic Synthesis After Logic Synthesis
SOFT SOFT
SOFT

If the Delay Chains option is turned on in the Design Doctor Settings dialog
box (Processing menu), the Compiler issues a warning message for any
series of LCELL or EXP primitives used to create an intentional delay or
asynchronous pulse.

121

STENEE i

MAX+PLUS Il AHDL

OPNDRN

e

122

In standard logic synthesis, combinatorial feedback from a logic cell to itself
is illegal unless an LCELL buffer is used. The Logic Synthesizer detects
illegal combinatorial feedback and issues an error message when a project is
compiled with standard synthesis. If you use multi-level synthesis, the Logic
Synthesizer automatically inserts an LCELL buffer.

llegal Legal

MAX+PLUS II includes several logic options that automatically insert
LCELL and SOFT buffers during project compilation. In addition, you can
use the Compiler’s Fitter Settings command (Processing menu) to direct the
Compiler to automatically insert LCELL buffers into a project if they are
needed to achieve a fit when user-defined resource and device assignments
would otherwise prevent a project from fitting.

Go to “Assigning an Individual Logic Option or Synthesis Style” and “Delay
Chain Guidelines” using Search for Help on (Help menu).

OPNDRN Primitive

Function Prototype: FUNCTION OPNDRN (in)
RETURNS (out) ;

The OPNDRN primitive is similar to a TRI primitive, with a single input and
a single output. The OPNDRN primitive is equivalent to a TRI primitive
whose Output Enable input is fed by any signal, but whose primary input is
fed by a GND primitive.

If the input to the OPNDRN primitive is low, the output will be low. If the
input is high, the output will be a high-impedance logic level.

s The OPNDRN primitive is supported only for the FLEX 10K device
family; it is converted to a TRI primitive for other devices.

Section 3: Elements

If you turn on the Automatic Open-Drain Pins option in the Global Project
Logic Synthesis dialog box (Assign menu) for a FLEX 10K-based project, the
Compiler converts the following structures to the OPNDRN primitive:

u A TRI primitive whose Output Enable input is fed by any signal, but
whose primary input is fed by a GND primitive

E A TRI primitive whose Output Enable input is fed by the complement
of its primary input.

When you use an OPNDRN buffer, you must observe the following rules:
L An OPNDRN buffer may drive only one BIDIR or BIDIRC pin.

B If an OPNDRN buffer feeds logic, it must also feed a BIDIR or BIDIRC
pin. If it feeds a BIDIR or BIDIRC pin, it may not feed any other
outputs.

SOFT Primitive

Function Prototype: FUNCTION SOFT (in)
RETURNS (out);

The SOFT buffer specifies that a logic cell may be needed in the project.
During project processing, the Logic Synthesizer examines the logic feeding
the primitive and determines whether a logic cell is needed. If it is needed,
the SOFT buffer is converted into an LCELL; if not, the SOFT buffer is
removed.

The following illustrations show the effect of logic synthesis on a project that
uses SOFT buffers. In the first project (1), the Logic Synthesizer removes the
SOFT buffers, and the project uses one logic cell. In the second project (2), it
removes one SOFT buffer and converts the other into an LCELL buffer. This
LCELL buffer reduces the complexity of the project, i.e., the number of
product terms. The second project also uses one logic cell.

SjuaWa|3

Before Logic Synthesis After Logic Synthesis

= [

’l> :
— : —
SOFT
N
1

123

MAX+PLUS Il AHDL

(2)

Before Logic Synthesis After Logic Synthesis

SOFT

(- > —

If the Compiler indicates that the project is too complex, you can edit the
project by inserting SOFT buffers to prevent logic expansion. For example,
you can add a SOFT buffer at the combinatorial output of a logic function to
decouple two combinatorial circuits:

A SOFT buffer inserted between two combinatorial circuits
prevents logic expansion (although it may consume one
additional logic cell).

[TT1T]

Y
[TTTT
[1]

MAX+PLUS Il includes logic options that automatically insert or ignore
SOFT and LCELL buffers during project compilation.

“ .. <D Go to “Assigning an Individual Logic Option or Synthesis Style” and “Delay
Chain Guidelines” using Search for Help on (Help menu) in MAX+PLUS II
Help.

124

Section 3: Elements

TRI Primitive

TRI Function Prototype: FUNCTION TRI (in, oe)
RETURNS (out) ;

The TRI primitive is a tri-state buffer with an input, output, and Output
Enable signal. If the Output Enable signal is high, the output will be driven
by the input.

The Output Enable defaults to VCC.

If the Output Enable of a TRI buffer is connected to VCC or a logic function
that will minimize to true, a TRI buffer may be converted into a SOFT buffer
during logic synthesis.

When you use a TRI buffer, you must observe the following rules:

] A TRI buffer may drive only one BIDIR or BIDIRC pin. You must use
a BIDIR or BIDIRC pin if feedback is included after the TRI buffer.

| If a TRI buffer feeds logic, it must also feed a BIDIR or BIDIRC pin.
If it feeds a BIDIR or BIDIRC pin, it may not feed any other outputs.

Flipflop & Latch Primitives

Table 3-9 lists the MAX+PLUS 1I flipflop and latch primitives and their
Function Prototypes. All flipflops are positive-edge-triggered; latches are
level-sensitive.

s When the Latch or Clock Enable (ena) input is high, the flipflop
or latch passes the signal from the data input(s) to g. When the
ena input is low, the state of g is maintained, regardless of the
data input(s).

SUENEE

125

MAX+PLUS Il AHDL

For devices that do not support Latch and /or Clock Enable, logic synthesis
generates logic equations containing flipflops with Clock Enables and
latches with Latch Enables. These logic equations correctly emulate the logic
specified in your project.

Table 3-9. MAX+PLUS Il Flipflops & Latches

Primitive AHDL Function Prototype

LATCH FUNCTION LATCH (d, ena)
RETURNS (q);

DFF FUNCTION DFF (d, clk, clrn, prn)
RETURNS (q);

DFFE FUNCTION DFFE (d, clk, cl¥xn, prn, ena)
RETURNS (q);

JKFF FUNCTION JKFF (j, k, clk, clrn, prn)
RETURNS (q);

JKFFE FUNCTION JKFFE (j, k, clk, clrn, prn, ena)
RETURNS (q);

SRFF FUNCTION SRFF (s, r, c¢lk, clrm, prn)
RETURNS (q);

SRFFE FUNCTION SRFFE (s, r, clk, clrn, prn, ena)
RETURNS (q) ;

TFF FUNCTION TFF (t, clk, clrn, prn)
RETURNS (q) ;

TFFE FUNCTION TFFE (t, clk, clrn, prn, ena)
RETURNS (q) ;

Notes:

clk = Register Clock Input

clrn = Clear Input

4, j, k, r, s, t = Datainputfrom Logic Array

ena = Latch Enable or Clock Enable Input

prn = DPreset Input

q = Output

126

Section 3: Elements

Primitive/Port Interconnections

Not all primitives and ports may connect to all other primitives and ports in
a design file. Table 3-10 shows the possible interconnections for all AHDL
primitives and ports.

Table 3-10. Primitive/Port Interconnections

Destination
Source . -~ e < A
5 1 .l < A & > < 4
& H @ & B < =) o O a
E A H Q = Ay fy &b & = 5 2
D H e p 3 >< O o} Z < A
o m B O A & ot = A 3] U o
INPUT Y N Y Y na na na Y Y na na Y
OUTPUT (3) N N N N N N N N N na na N
BIDIR N N Y N na na na Y Y na na Y
TRI Y Y N(4)| na [N | N@ | N@ |N@ | N@| na na | N(4)
GLOBAL (5) na N (6) Y na na na na na Y na
LCELL (7) Y N Y na na na na Y na na na Y
EXP na N na N na na na Y na na na na
SOFT Y N na N na na na Y na na na na
\Yele Y N Y N na na na Y Y na na Y
GND Y N Y N na na na Y Y na na Y
Logic Y N Y N Y Y Y Y Y Y Y Y
Register Output| Y N Y N na na Y Y Y na na Y
CARRY na na na na Y na na Y na na na na
CASCADE na na na na na na na Y na na na na i
OPNDRN Y Y |N@ | na |[N(4)|N(@4) | N4 | N4 |N@ | na na | N4 CBD
@
Notes: =1
(1) Includes both data and Output Enable inputs to TRI. @
(2) The INPUT (or IN) port can only be fed by device pins or higher levels in the hierarchy.
(3) The OUTPUT (or OUT), OUTPUTC, BIDIR (or INOUT), and BIDIRC primitives/ports can only drive out to
device pins or higher levels in the hierarchy.
(4) These connections change to legal (Y) or not advisable (na) only if the output of the TRI or OPNDRN is also
connected to a BIDIR (or INOUT) or BIDIRC primitive/port.
(5) sCLK in MAX+PLUS (DOS) designs is interpreted as GLOBAL. New projects should only use GLOBAL.
(6) Connecting a GLOBAL output to the TRI Output Enable input is legal in FLEX 8000 and FLEX 10K
devices. Connections to Output Enable in other devices are ignored.
(7) MCELL in pre-version 3.0 MAX+PLUS II design files is interpreted as LCELL. New projects should only
use LCELL.
Y Interconnection is legal.
N Interconnection is illegal.
na Interconnection is legal but not advisable or may implement logic inefficiently.

127

MAX+PLUS Il AHDL

128

Table 3-11 shows the possible connections to registers for primitives and

ports.

Table 3-11. Primitive/Port to Register Connections

Register
Source
INPUT (1) CLK PRN CLRN

INPUT Y Y Y Y
OUTPUT (2) N N N N
BIDIR(2) Y Y Y Y
TRI N (3) N 3) N 3) N @3)
GLOBAL (4) na Y Y Y
LCELL (5) na Y Y Y
EXP na na na na
SOFT na Y Y Y
vCe Y N Y Y
GND N Y Y
Logic Y Y Y Y
Register Output Y Y Y
CARRY na na na na
CASCADE na na na na
OPNDRN N (3) N (3) N 3) N @3)
Notes:

(1) The INPUT (or IN) port can only be fed by device pins or higher levels in the hierarchy.
(2 The OUTPUT (or OUT), OUTPUTC, BIDIR (or INOUT), and BIDIRC primitives/ports can

only drive out to device pins or higher levels in the hierarchy.

(3) These connections change to legal (Y) or not advisable (na) only if the output of the TRT

or OPNDRN is also connected to a BIDIR (or INOUT) or BIDIRC primitive/port.

(4) sCLKin MAX+PLUS (DOS) designs is interpreted as GLOBAL. New projects should only

use GLOBAL.
(5) MCELL in pre-version 3.0 MAX+PLUS II design files is interpreted as LCELL. New
projects should only use LCELL.
Interconnection is legal.
Interconnection is illegal.
na Interconnection is legal but not advisable or may implement logic inefficiently.

Z =<

Section 3: Elements

Megafunctions

MAX+PLUS II megafunctions are a collection of complex logic functions,
including Library of Parameterized Modules (LPM) functions, that can be
used in logic designs. These megafunctions are particularly efficient in
optimizing logic functions for Altera devices. The MAX+PLUS Il installation
procedure automatically installs these megafunctions in the \maxplus2\
max2lib\mega_lpm directory. This directory also contains an Include File
(.inc) with a Function Prototype for each megafunction. (On a UNIX
workstation, the maxplus2 directory is a subdirectory of the fusr directory.)

You may use these megafunctions freely in all MAX+PLUS Il logic designs.
When the MAX+PLUS II Compiler analyzes a logic circuit, it automatically
removes all unused gates and flipflops, thereby ensuring that design
efficiency is not reduced.

Table 3-12 describes all MAX+PLUS II megafunctions. Names of LPM
functions that are currently included in the LPM 2.0.1/2.1.0 standard start
with “1pm_.” Detailed information on these megafunctions is available in
MAX+PLUS II Help.

Table 3-12. MAX+PLUS Il Megafunctions (Part 1 of 2)

Type Name Description

Gates lpm_and Parameterized AND Gate
lpm bustri Parameterized Tri-State Buffer
lpm_clshift Parameterized Combinatorial Shifter Module
lpm_constant Parameterized Constant Generator Module ‘;%1
1lpm_decode Parameterized Decoder Module :EE,
lpm_inv Parameterized Inverter Module
lpm_mux Parameterized Multiplexer Module
lpm_or Parameterized OR Gate
lpm_xor Parameterized XOR Gate

129

MAX+PLUS Il AHDL

Table 3-12. MAX+PLUS Il Megafunctions (Part 2 of 2)

Type Name Description

Arithmetic 1lpnm_abs Parameterized Absolute Value

Components 1lpm_add_sub Parameterized Adder/Subtractor Module
lpm_decode Parameterized Comparator Module
lpm_counter Parameterized Counter Module
lpr_mult Parameterized Multiplier Module

Storage lpm_dff Parameterized D-Type Flipflop and Shift Register Module

Components lpm_latch Parameterized Latch Module
lpm_ram_dq Random Access Memory with Separate Input and Output

Ports

lpm_ram_io Random Access Memory with a Single I/O Port
lpm_rom Read-Only Memory
lpm_tff Parameterized T-Type Flipflop Module
csdpram Cycle-Shared Dual-Port Random Access Memory
csfifo Cycle-Shared FIFO

Other Functions | a6502 6502 Microprocessor
ntsc NTSC Video Control Signal Generator
pll Rising- and Falling-Edge Detector

«e®
a® Choose Megafunctions/LPM (Help menu) in MAX+PLUS II for detailed

130

information about megafunctions. Go to “Implementing a Hierarchical
Project” on page 69 in How to Use AHDL for information on using
megafunctions.

Section 3: Elements

Old-Style Macrofunctions

MAX+PLUS II old-style macrofunctions are a collection of high-level
building blocks that can be used in logic designs. The MAX+PLUS I
installation procedure automatically installs these macrofunctions in the
\maxplus2\max2lib directory and its subdirectories. The \maxplus2\
max2inc directory, which is also installed automatically, contains an Include
File (.inc) with a Function Prototype for each macrofunction. (On a UNIX
workstation, the maxplus2 directory is a subdirectory of the /usr directory.)

You may use these macrofunctions freely in all MAX+PLUS Il logic designs.
When the MAX+PLUS II Compiler analyzes a logic circuit, it automatically
removes all unused gates and flipflops, thereby ensuring that design
efficiency is not reduced. All input ports also have default signal values, so
that unused inputs can simply be left unconnected.

Choose Old-Style Macrofunctions (Help menu) in MAX+PLUS II for
detailed information about old-style macrofunctions. Go to “Implementing
a Hierarchical Project” on page 69 in How to Use AHDL for information on
using old-style macrofunctions.

131

SjuawWa|3 H

MAX+PLUS Il AHDL

Ports

A port is an input or output of a logic function. A port can appear in two
locations:

] A port that is an input or output of the current file is declared in the
Subdesign Section.

] A port that is an input or output of an instance of a primitive or lower-
level design file is used in the Logic Section.

Ports of the Gurrent File

132

A port that is an input or output of the current file is declared in the
following format within the Subdesign Section:

<port name>: <port type> [= <default port value>]

The following port types are available:

INPUT MACHINE INPUT
OUTPUT MACHINE OUTPUT
BIDIR

When a TDF is the top-level file in a hierarchy, the port name is synonymous
with a pin name. The optional default port value, which is either VCC or GND,
can be specified for INPUT and BIDIR port types. This default value is used
only if the port is left unconnected when an instance of the TDF is used in a
higher-level design file.

In the following example, the input, output, and bidirectional ports of the
file are declared in the Subdesign Section:

SUBDESIGN top
{

foo, bar, clkl, clk2, c[4..0][6..0] : INPUT = VCC;
% VCC is default port value %

a0, al, a2, a3, a4 : OQUTPUT;
b(7..0] : BIDIR;

Section 3: Elements

You can import and export state machines between TDFs and other design
files by specifying an input or output port as MACHINE INPUT or MACHINE
OUTPUT in the Subdesign Section. The Function Prototype that represents
the file must indicate which ports are state machines. MACHINE INPUT and
MACHINE OUTPUT ports can only be used in lower-level files in a project
hierarchy.

Ports of Instances

A port that is an input or output of an instance of a logic function is
connected in the Logic Section. To connect a logic function to other portions
of a TDF, you insert an instance of the function with an in-line reference or
Instance Declaration or declare a state machine with a State Machine
Declaration, and then use ports of the function in the Logic Section.

If you use an in-line reference with positional port association to create an
instance of a logic function, the order of the ports, not the names, is
important. The order of ports is defined in the Function Prototype for the
function.

If you use an Instance Declaration or an in-line reference with named port
association to create an instance of a logic function, the names of the ports,
not their order, are important.

In the following example, an instance of a D flipflop is declared as the
variable reg in the Variable Section, then used in the Logic Section:

VARIABLE
reg : DFF;

BEGIN
reg.clk = clock
reg.d = data_input
output = reg.qgq

END;

Port names can thus be connected to other nodes in the Logic Section in the
following format:

<instance name> . <port name> = <node name>

133

S)uaWa|3 i

MAX+PLUS Il AHDL

134

The <instance name> is a user-defined name for a function. The <port name>
is identical to the port name that is declared as an input or output of the file
in the Subdesign Section of a lower-level TDF, or to a pin name in another
type of design file. This <port name> is synonymous with the pinstub name
for the symbol that represents an instance of the design file in a Graphic
Design File (.gdf).

As illustrated by the example above, if you use an Instance Declaration to
create an instance of a logic function, the names of the ports in the design file
that defines the logic function is important. The same is true of the right-
hand sides of in-line logic function references that use named port
association. (The left-hand side of all in-line references use positional port
association.) The following example shows the Function Prototype for the
21mux macrofunction and an in-line reference that uses named port
association:

FUNCTION 21MUX (s, a, b)
RETURNS (y);

BEGIN
output = 21MUX (.s = select, .b = dataB, .a = datad);
END;

The nodes output, select, datad, and dataB are connected to the vy, s,
a, and b ports of the 2 1mux macrofunction. Thus, within an in-line reference
that uses named port association, the ports on the right-hand side of the
equals symbol (=) are listed in the following format:

. <port name> = <node name>

In contrast, if you use an in-line reference with positional port association to
create an instance of a logic function, the order of the nodes listed in the in-
line reference, not the port names of the instantiated logic function, is
important. The order of ports is defined in the Function Prototype for the
function. The following example shows an in-line reference for the same

2 1mux macrofunction that uses positional port association:

BEGIN
output = 21MUX (select, dataA, dataB);
END;

Section 3: Eleme

nts

All Altera-provided logic functions have predefined port (pinstub) names,
which are shown in the Function Prototype. Commonly used primitive port
names are shown in Figure 3-13.

Table 3-13. Commonly Used Ports

Port Name: Definition:

.g Output of a flipflop or latch

.d Data input to a D flipflop or latch

.t Toggle input to a T flipflop

-3 J input to a JK flipflop

.k K input to a JK flipflop

.s Set input to an SR flipflop

.r Reset input to an SR flipflop

clk Clock input to a flipflop

.ena Clock Enable input to a flipflop, Latch Enable
input to a latch, or Enable input to a state machine

.prn Active-low Preset input to a flipflop

.clrm Active-low Clear input to a flipflop

.reset Active-high Reset input to a state machine

.oe Output Enable input to a TRI primitive

.in Primary input to CARRY, CASCADE, EXP, TRI,
OPNDRN, SOFT, GLOBAL, and LCELL primitives

-out Output of CARRY, CASCADE, EXP, TRI,
OPNDRN, SOFT, GLOBAL, and LCELL primitives

Go to the following topics for more information:

“Machine Alias Declaration” on page 166 in Design Structure
“Port Syntax” in MAX+PLUS II Help

“Quoted & Unquoted Names” on page 97 in this section
“Subdesign Section” on page 157 in Design Structure

SUENEIE| i

135

MAX+PLUS Il AHDL

Parameters

136

Attributes of a megafunction or macrofunction that determine the logic
created or used to implement the function, i.e., characteristics that determine
the size, behavior, or silicon implementation of a function. For example,
parameters are often used to define the width of a bus.

A parameterized function is a function whose behavior is controlled by one
or more parameters. Some logic functions, such as the megafunctions in the
Library of Parameterized Modules (LPM), are inherently parameterized and
require parameter values to be assigned. Parameters can also optionally be
assigned to some functions that are not inherently parameterized, such as
old-style macrofunctions, to determine their style of implementation.

When you use an existing parameterized function, such as an LPM function,
you can customize the parameters used and assign parameter values on an
instance-by-instance basis. In a GDF, you can customize an instance (i.e.,
symbol) with the Graphic Editor’s Edit Ports/Parameters command (Symbol
menu). In an AHDL TDF, you can declare parameters and assign values
when you create an instance with an Instance Declaration or an in-line
reference.

Parameter values are not necessarily specified on an instance-by-instance
basis. Because parameter values can be inherited from higher hierarchical
levels a hierarchical project, the Compiler searches for parameter values in
the following parameter value search order:

1. Aspart of the instance of the logic function. For example, in a TDF, in
an instance that is created in an Instance Declaration or an in-line
reference, you can declare which parameters are used and optionally
assign their values. In a GDF, you can select a symbol and use the Edit
Ports/Parameters dialog box (Symbol menu) to assign parameter
values for that instance.

2. As part of the instance of the logic function at the next higher
hierarchy level. The parameter values for an instance of a logic
function apply to the subdesigns of that logic function if the subdesign
instances do not have assigned parameter values.

3. Inthe global project default parameter values specified with the
Global Project Parameters dialog box (Assign menu). These values
are stored in the Assignment & Configuration file (.acf) for the project.

Section 3: Elements

4. In the optional default value listed in the Parameters Statement(s) of
the TDF or the PARAM primitives of the GDF that defines the logic
function. These default values apply only to the file in which they are
listed, they are not applied the file’s subdesigns.

When you create a parameterized design file, you can specify the parameters
used within that file and optional default parameter values (which are used
only if no parameter values are specified elsewhere). In a GDF, you specify
the parameters used within the current file with PARAM primitives; in a TDF,
the parameters used within the current file are specified in a Parameters
Statement. Once you create a parameterized design file, you can use the
Create Default Include File and Create Default Symbol commands (File
menu) to create default AHDL Function Prototypes (in Include Files) and
symbols (in Symbol Files), respectively, that include the names (but not the
values) of parameters used within the file. You can edit the parameters and
parameter values for a Symbol File with the Symbol Editor’s Enter
Parameters command (Element menu). These parameter names and values
then appear as the defaults for each instance of the symbol when it is first
entered in a GDF. Once you enter the symbol in a GDF, these default
parameters and values can be customized with Edit Ports/Parameters on an
instance-by-instance basis.

MAX+PLUS II allows you to assign global, project-wide default values for
parameters with the Global Project Parameters command (Assign menu).
As an alternative to using Global Project Parameters, you can specify
default parameter settings in the Global Project Parameters Section of the
ACF.

The following guidelines apply to parameters:

] All logic options can be assigned as parameters for individual
instances of mega- or macrofunctions. A logic option that is assigned
to a logic function instance as a parameter overrides the global project
default synthesis style—which is specified with Global Project Logic
Synthesis (Assign menu)—for that instance. However, if an instance
has the same logic option assigned both as a parameter and as an
individual logic option, the logic option setting overrides the
parameter setting. In addition, logic options cannot be assigned as
global, project-wide default parameter values with Global Project
Parameters.

] You cannot assign a value to the predefined Altera parameter

DEVICE_FAMILY, which represents the device family assigned for the
project. However, you can use the parameter value in comparisons.

137

SUENIELE|

MAX+PLUS Il AHDL

138

The legal values are FLEX10K, FLEX8000, MAX9000, MAX7000E,
MAX7000, MAX5000, CLASSIC, and EP330/EP320.

L] The predefined Altera LATENCY parameter can be assigned to an
instance of a mega- or macrofunction. However, the parameter
applies only to that instance, and is not inherited by the subdesigns of
that instance.

L Parameters appear on the top right corner of a symbol in the Graphic
or Symbol Editor if Show Parameters (Options menu) is turned on.
(Show All also displays or hides all parameters in the current GDF.)

Double-clicking Button 1 on a parameter opens the Edit Ports/Parameters or
Enter Parameters dialog box in the Graphic and Symbol Editors,
respectively. Show Parameters or Show All displays or hides all parameters
in the current GDF. You can print a Graphic or Symbol Editor file that shows
parameters by turning on Show Parameters (or Show All) before printing
the file.

Go to the following sources for more information:

“Customizing a Mega- or Macrofunction’s Ports & Parameters” in
MAX+PLUS 11 Help

“Entering a Parameter” in MAX+PLUS II Help

“Parameters Statement” on page 142 in Design Structure

“Showing Parameters and Probe & Resource Assignments” in
MAX+PLUS II Help

“Specifying Global Project Parameters” in MAX+PLUS II Help

Section

1

Design
Structure

This section describes basic AHDL design structure. AHDL sections and

statements are described in the order in which they appear in a Text Design
File (.tdf).

[] OVEIVIBW ..ottt et e e et s e e s b e e e e etb e s eeaab e e e etseeeeesseeeessneeeneeeens 140
[] Title StateIMENt....ci i 141
[] Parameters StateIMent.......coocviiieereeieeeeece et se e ses e s ess et e eenereas 142
[] Include Statementcoeiiciieeeeeceeeeeee et 145
[] Constant StateIMENt........ccviiiiiiee et 147
[] Define StateIMeNtccvvieevieerieeieeeeee ettt e e 149
] Function Prototype Statement ..., 151
[] Options Statementcccouceviiiiiieiiee e 154
[| ASSErt STAtEIMENTciieiieii e e e 155
] Subdesign Sectionccciviiiiiiiii 157
[] Variable SECHIONccio ottt 159
] LOgIC SeCtiONciiiiiicc e 168

Go to MAX+PLUS II Help for complete and up-to-date information on
AHDL design structure.

alnonig ubissq

139

MAX+PLUS [l AHDL

Overview

140

An AHDL TDF must contain, at a minimum, a Subdesign Section and a
Logic Section. All other sections and statements are optional. In this section,
information is provided in the order in which the statements and sections
appear in the TDF.

For information on how to create an AHDL design, go to How to Use AHDL
on page 17.

For information on recommended file structure, go to “Text Design File
Structure” on page 4 in Introduction.

For information on the syntax of AHDL sections and statements, choose
AHDL (Help menu), then click Button 1 on “Syntax.”

For information on AHDL syntax that is no longer supported, go to
“Obsolete AHDL Statements” in MAX+PLUS II Help using Search for
Help on.

Section 4: Design Structure

Title Statement

The Title Statement allows you to provide documentary comments for the
Report File (.rpt) generated by the Compiler. The following example shows
a Title Statement:

TITLE "Display Controller";

The Title Statement has the following characteristics:

| A Title Statement begins with the keyword TITLE, followed by a text

string enclosed in double quotation marks ("). The statement ends
with a semicolon (;).

| If a Title Statement is included in a TDF, the title appears at the top of
the Report File. In the example shown above, the title Display
Controller appears in the Report File.

Title Statements must conform to the following rules:

B The string can contain a maximum of 255 characters and may not
contain end-of-line or end-of-file characters. To include quotation
marks in the title, use two quotation marks. For example:

TITLE """EPM5130"" Display Controller";

a The Title Statement can only be used once in a TDF.

| The Title Statement must be placed outside of all other AHDL
sections.

Go to “Title Statement Syntax” in MAX+PLUS II Help for more information.

amonis ubisag

141

MAX+PLUS Il AHDL

Parameters Statement

142

The Parameters Statement allows you to declare one or more parameters
that control the implementation of a parameterized megafunction or
macrofunction. The following example shows a Parameters Statement:

PARAMETERS
(
FILENAME = "myfile.mif", -- optional default value follows "=" sign
WIDTH,
AD_WIDTH = 8,
NUMWORDS = 27AD_WIDTH
)i

The Parameters Statement has the following characteristics:

= A Parameters Statement begins with the keyword PARAMETERS,
followed by a list of one or more parameters and optional default
values, enclosed in parentheses ().

| Parameters in the parameter list are separated by commas (,);
parameter names are separated from optional default values by an
equals symbol (=). In the example shown above, only the WIDTH
parameter does not have a default value.

= Parameter names can be user-defined symbolic names or predefined
Altera parameters.

] Parameter values can consist of text strings enclosed in double
quotation marks ("), which are evaluated as strings. When parameter
values are unquoted, the Compiler attempts to treat them as
arithmetic expressions; failing that, they are treated as strings.

o The statement ends with a semicolon (;).
@ Once a parameter has been defined, you can use it throughout the
TDEF.

Section 4: Design Structure

Parameter Statements must conform to the following rules:

] A parameter can only be used after it is declared.
| Each parameter name must be unique.
] The parameter name cannot contain spaces. Use underscores to

separate words and improve readability.
] The Parameters Statement can be used any number of times in a TDF.

| The Parameters Statement must be placed outside of all other AHDL

sections.

[Parameters used in the definition of other parameters must already be
defined.

| Circular references are not allowed. The following example shows a

circular reference:

PARAMETERS

(
FOO = BAR;
BAR = FOO;

)i

When a project is compiled, the Compiler searches for parameter values in
the the following order:

1. As part of the instance of the logic function. For example, in a TDF, in
an instance that is created in an Instance Declaration or an in-line
reference, you can declare which parameters are used and optionally
assign their values. In a GDF, you can select a symbol and use the Edit
Ports/Parameters command (Symbol menu) to assign parameter
values for that instance.

2. As part of the instance of the logic function at the next higher
hierarchy level. The parameter values for an instance of a logic
function apply to the subdesigns of that logic function if the subdesign
instances do not have assigned parameter values.

3. In the global project default parameter values specified with the

Global Project Parameters command (Assign menu). These values
are stored in the Assignment & Configuration file (.acf) for the project.

143

|}
D
.
S
=]
X
=
=
o=
=]
@

MAX+PLUS Il AHDL

4. In the optional default value listed in the Parameters Statement(s) of
the TDF or the PARAM primitives of the GDF that defines the logic
function. These default values apply only to the file in which they are
listed, they are not applied the file’s subdesigns.

QD>
- Go to the following sources for more information:

“Parameters Statement Syntax” in MAX+PLUS II Help

“Using Altera-Provided Parameterized Functions” on page 73 in How to Use
AHDL

144

Section 4: Design Structure
Include Statement

The Include Statement allows you to import text from an Include File (.inc)
into the current file. The following example shows an Include Statement:

INCLUDE "const.inc";
The Include Statement has the following characteristics:

] The Include Statement begins with the keyword INCLUDE, followed
by the name of the file to be included, enclosed in double quotation
marks (").

u If you do not specify a filename extension, the Compiler assumes the
extension .inc.

] The statement ends with a semicolon (;).

] When the Compiler processes the project, the text from the Include
File is substituted for the Include Statement. In the example shown
above, the file const.inc is substituted for the text INCLUDE
"const.inc";.

Include Statements are often used to include Function Prototypes for a
lower-level design file in a TDF. To use a megafunction or macrofunction,
you must first define its logic in a design file. You must then use a Function
Prototype Statement to specify the ports of the function. Alternatively, you
can use Include Statements to include Function Prototypes that are saved in
Include Files. You can then insert an instance of the logic function with an
Instance Declaration or an in-line reference.

You can automatically generate an Include File that contains a Function
Prototype for a design file with Create Default Include File (File menu).

When you compile a file, the Compiler searches your computer’s directories
for Include Files in the following order:

1. The project directory.

2. Any user libraries specified with User Libraries (Options menu).

3. The \maxplus2\max2lib\mega_lpm and \maxplus2\max2inc
directories created during installation.

[ww)
[4=]
28
«
3
12}
<
(=
=}
g
(4°]

145

MAX+PLUS Il AHDL

If you change a TDF that includes an Include File, you can use Project Save
& Check (File menu) or fully recompile the project to update the view of the
project’s hierarchy tree that is displayed in the Hierarchy Display window.

Include Statements must conform to the following rules:

m The filename specified in the Include Statement cannot contain a path
name.
[| In the workstation environment, filenames are case-sensitive. In

MAX+PLUS II documentation, filenames may be listed in upper- or
lowercase letters. However, the case of the filename in an Include
Statement must match the case of the Include File name. Altera-
provided macrofunction and megafunction design files all have
lowercase filenames; therefore, their corresponding Include Files list
function names with lowercase letters.

= An Include Statement must be placed outside of all other AHDL
sections.

L] An Include Statement can appear any number of times in a TDF.
Include Files must conform to the following rules:
o Names of Include Files must have the extension .inc.

o Include Files should contain only Function Prototype, Define,
Parameters, or Constant Statements.

m Include Files cannot contain Subdesign Sections.
= Include Files cannot be nested.

- .- - Go to the following sources for more information:
“Creating a Default Include File” in MAX+PLUS II Help

“Implementing a Hierarchical Project” on page 69 in How to Use AHDL
“Include Statement Syntax” in MAX+PLUS II Help

146

Section 4: Design Structure

Constant Statement

The Constant Statement allows you to substitute a meaningful symbolic
name for a number or an arithmetic expression. The symbolic name simply
represents that number. The following examples show Constant Statements:

CONSTANT UPPER_LIMIT = 130;
CONSTANT BAR = 1 + 2 DIV 3 + LOG2(256);

CONSTANT FOO = 1;
CONSTANT FOO_PLUS_ONE = FOO + 1;

The Constant Statement has the following characteristics:

] The Constant Statement begins with the keyword CONSTANT,
followed by a symbolic name, an equals symbol (=), and a number
(including a radix, if necessary) or an arithmetic expression.

m The statement ends with a semicolon (;).

g Once a constant is declared, you can use it to represent the number
throughout the TDF. In the example shown above, you can use
UPPER_LIMIT in the Logic Section to represent the decimal number

130.

| Constants can be declared as arithmetic expressions. These arithmetic
expressions can include previously defined constants.

I The Compiler evaluates arithmetic expressions in Constant
Statements and reduces them to numerical values. No logic
is generated for these expressions.

Constant Statements must conform to the following rules:
[A constant can only be used after it is declared.

L Each constant name must be unique.

B Theconstant name cannot contain spaces. Use underscores to separate
words and improve readability.

o
D
@£,
«Q
3
X
%
c
=]
=
(a2}

] The Constant Statement can be used any number of times in a TDF.

147

MAX+PLUS I AHDL

148

o The Constant Statement must be placed outside of all other AHDL

sections.

a Constants used in the definition of other constants must already be
defined.

o Circular references are not allowed. The following example shows a

circular reference:

CONSTANT FOO BAR;
CONSTANT BAR = FOO;

Go to the following sources for more information:

“Constant Statement Syntax” in MAX+PLUS II Help

“Define Statement” on page 149 in this section

“Numbers in AHDL” on page 102 in Elements

“Using Constants & Evaluated Functions” on page 19 in How to Use AHDL

Section 4: Design Structure

Define Statement

The Define Statement allows you to define an evaluated function, whichis a
mathematical function that returns a value that is based on optional
arguments.

The following example defines the evaluated function MAX, which ensures
that the Subdesign Section declares at least one port.

DEFINE MAX(a,b) = (a > b) ? a : b;
SUBDESIGN

(
dataa [MAX (WIDTH,0)..0]: INPUT;
datab[MAX (WIDTH, 0) ..0]: OUTPUT;
)
BEGIN
databl] = dataal];
END;

The Define Statement has the following characteristics:

[The Define Statement begins with the keyword DEFINE, followed by
a symbolic name and a list of one or more arguments enclosed in
parentheses ().

u Arguments in the argument list are separated by commas (,). An
equals symbol (=) separates the argument list from an arithmetic
expression.

s 1. If no arguments are listed, an evaluated function
behaves as a constant.

2. The Compiler evaluates arithmetic expressions in
Define Statements and reduces them to numerical
values. No logic is generated for these expressions.

m The statement ends with a semicolon (;). E-
[] Once an evaluated function has been defined, you can use it
throughout the TDF.

()
[==]
3.
(=]
3
o
=%
[o
o
S
E
D

149

MAX+PLUS Il AHDL

150

Evaluated functions can be defined in terms of previously defined
evaluated functions. For example, the following MIN_ARRAY_BOUND
function is based on the MAX function defined above:

DEFINE MIN_ARRAY_BOUND(x) = MAX(0,x) + 1;

Define Statements must conform to the following rules:

An evaluated function can only be used after it has been defined.
Each evaluated function must be unique.

The evaluated function name cannot contain spaces. Use underscores
to separate “words” and improve readability.

The Define Statement can be used any number of times in a TDF.

The Define Statement must be placed outside of all other AHDL
sections.

Go to the following sources for more information:

“Constant Statement” on page 147 in this section

“Define Statement Syntax” in MAX+PLUS II Help

“Using Constants & Evaluated Functions” on page 19 in How to Use AHDL
“Using Numbers” on page 18 in How to Use AHDL

Section 4: Design Structure

Function Prototype Statement

Function Prototype Statements have the same function as symbols in
schematic design files. Both provide a shorthand description of a logic
function, listing its name and its input, output, and bidirectional ports.
Machine ports can also be used for functions that import or export state
machines.

However, megafunction and macrofunction input port default values are
not automatically assigned as they are in MAX+PLUS II Graphic Editor files;
you must assign them explicitly in the Subdesign Section of a TDF. You can
also assign a default value for bidirectional ports in the Subdesign Section.
However, output ports cannot be assigned a default value.

When you wish to implement an instance of a mega- or macrofunction, you
must ensure that its logic is defined in its own design file. You then use a
Function Prototype Statement to specify the ports of the function, and
implement an instance of the function with an in-line reference or an
Instance Declaration.

The following examples show Function Prototype Statements. The first is for
a parameterized function; the second is for an unparameterized function:

FUNCTION lpm_add_sub (cin, dataa[LPM_WIDTH-1..0], datab[LPM_WIDTH-
1..0], add_sub)
WITH (LPM _WIDTH, LPM_REPRESENTATION, LPM DIRECTION, ADDERTYPE,
ONE_INPUT_TIS_CONSTANT)
RETURNS (result[LPM_WIDTH-1..0], cout, overflow);

FUNCTION compare (a[3..0], b(3..0])
RETURNS (less, equal, greater);

The Function Prototype Statement has the following characteristics:

| The keyword FUNCTION is followed by the name of the function. In
the examples shown above, the function names are 1pm_add_sub
and compare.

= A list of input ports to the function follows the name. In the first
example shown above, the input ports are cin, dataa [LPM_WIDTH-
1..0],and datab[LPM_WIDTH-1..0];in the second, they are a3,
a2,al, a0, b3, b2, bl,and b0.

(o]
[1°3
128
((en}
=
L
&
=
=}
g
(47]

151

MAX+PLUS Il AHDL

In a parameterized function, the keyword WITH and a parameter
name list follow the input port list. The list is enclosed in parentheses
(); the individual parameter names are separated by commas (,).

The keyword RETURNS is followed by a list of output and
bidirectional ports of the function. In the first example shown above,
the output ports are result ,[LPM_WIDTH-1..0], cout, and
overflow; in the second, they are less, equal, and greater.

Both the input and output lists are enclosed in parentheses; the
individual port names are separated by commas.

When you import or export a state machine, the Function Prototype
for the file must use a machine port (identified by the MACHINE
keyword) to indicate which inputs and outputs are state machines.
For example:

FUNCTION ss_def (clock, reset, count)
RETURNS (MACHINE ss_out);

The Function Prototype Statement ends with a semicolon (;).

A Function Prototype Statement must be placed outside of the
Subdesign Section in a TDF, and it must be placed before the logic
function is instantiated in an in-line reference or Instance Declaration.

To implement an instance of a primitive, you also use an in-line reference or
an Instance Declaration. However, in contrast to mega- and macrofunctions,
primitive logic is predefined, so you do not need to define the primitive logic
in a separate design file. In addition, you do not need to use a Function
Prototype Statement unless you wish to change the order of the primitive
inputs.

The following example shows the default Function Prototype for a JKFF
primitive:

FUNCTION JKFF (j, k, clk, clrn, prn)
RETURNS (q) ;

The following example shows a modified Function Prototype for a JKFF
primitive:

FUNCTION JKFF (k, j, clk, clrn, prn)
RETURNS (q) ;

152

Section 4: Design Structure

As an alternative to using a Function Prototype Statement in a file, you can
use an Include Statement to call an Include File (.inc) that confains a
Function Prototype Statement. MAX+PLUS II also provides the Create
Default Include File command (File menu), which automatically creates an
Include File containing a Function Prototype for any design file.

Function Prototypes for all MAX+PLUS II megafunctions and
macrofunctions are stored in Include Files in the
\maxplus2\max2lib\mega_lpm and \maxplus2\max2inc directories,
respectively. On-line help for all megafunctions, macrofunctions, and
primitives shows the Function Prototype for each Altera-provided function.
(On a UNIX workstation, the maxplus2 directory is a subdirectory of the
/Jusr directory.)

Go to the following sources for more information:

“Creating a Default Include File” in MAX+PLUS II Help

“Function Prototype Statement Syntax” in MAX+PLUS II Help
“Implementing a Hierarchical Project” on page 69 in How to Use AHDL
“Ports” on page 132 in Elements

1563

i

o
[15]
|28
(=}
=
xR
<
—
Q
S
E
<D

MAX+PLUS Il AHDL

Options Statement

154

The Options Statement sets the BITC option to specify whether the lowest
numbered bit of a group will be the most significant bit (MSB), the least
significant bit (LSB) or either, depending on its location.

The Options Statement begins with the keyword OPTIONS, followed by the
BITO option and setting. The Options Statement ends with a semicolon (;).

The following example shows an Options Statement:
OPTIONS BITO = MSB;

In this example, the lowest numbered bit of a group is specified as the MSB.
The other settings available are LSB and ANY.

An Options Statement at the beginning of a TDF sets the default bit-ordering
for the entire file. If the file is a top-level TDF, the Options Statement applies
to the entire project. If the file is lower in the project hierarchy, the Options
Statement specifies the bit-ordering only for that file.

Go to the following sources for more information:

“Defining Groups” on page 28 in How to Use AHDL
“Options Statement Syntax” in MAX+PLUS II Help

Section 4: Design Structure
Assert Statement

The Assert Statement allows you to test the validity of any arbitrary
expression that uses parameters, numbers, evaluated functions, or the used
or unused status of a port.

The following example shows an Assert Statement:

ASSERT (WIDTH > 0)

REPORT Width (%) must be a positive integer" WIDTH
SEVERITY ERROR
HELP_ID INTVALUE; -- for internal Altera use only

The Assert Statement has the following characteristics:

o The keyword ASSERT is followed by an arithmetic expression that is
optionally enclosed in parentheses (). When the expression is false,
the assertion is activated and the message string following the
REPORT keyword is displayed in the Message Processor. If you do not
specify a condition, the assertion is always activated.

| The REPORT keyword is followed by a message string and optional
message variables. The message string is enclosed in double quotation
marks ("), and can include % characters that are substituted with the
values of optional message variables. If no REPORT keyword is used,
an assertion that is activated displays a generic message of the
following format in the Message Processor:

<severity>: Line <line number>, File <filename>: Assertion failed

| Optional message variables consist of one or more parameters,
evaluated functions, or arithmetic expressions. Multiple message
variables are separated by commas (,). The values of the message
variables are substituted, in order, for the % characters in the quoted
message string. In the example shown above, the value of WIDTH is
substituted for the % in the quoted message string. E-

o The optional SEVERITY keyword is followed by a severity level of
ERROR, WARNING, or INFO. If no severity is specified, it defaults to
ERROR.

u The HELP_ID keyword and help string are used in some Altera-
provided logic functions and are reserved for internal Altera use.

)
[a]
D,
«Q
=
L
&
=
=}
=
<D

155

MAX+PLUS Il AHDL

[The statement ends with a semicolon (;).

= The Assert Statement can be used within the Logic Section or outside
of any other AHDL section.
«eW
ad® Go to the following sources for more information:

“Assert Statement Syntax” in MAX+PLUS Il Help

“Naming a Boolean Operator or Comparator” on page 84 in How fo Use
AHDL

156

Section 4: Design Structure

Subdesign Section

The Subdesign Section declares the input, output, and bidirectional ports of
the TDF.

The following example shows a Subdesign Section:

SUBDESIGN top

(
foo, bar, clkl, clk2 : INPUT = VCC;
a0, al, a2, a3, a4 : OUTPUT;
b[7..01] : BIDIR;

)

The Subdesign Section has the following characteristics:

u The keyword SUBDESIGN is followed by the subdesign name. The
subdesign name must be the same as the TDF filename. In this
example, the subdesign name is top.

n The list of signals is enclosed in parentheses ().

u Signal names are represented by symbolic names such as foo, and are
assigned a port type such as INPUT.

] Signal names are separated by commas (,), are followed by a colon (:)
and a port type, and end with a semicolon (;).

@ The port type may be INPUT, OUTPUT, BIDIR, MACHINE INPUT, or
MACHINE OUTPUT. In the example shown above, the foo, bar, clkl,
and c1k2 signals are inputs and a0, al, a2, a3, and a4 are outputs.
Thebus b[7..0] is bidirectional.

L The MACHINE INPUT and MACHINE OUTPUT keywords are used to
import and export state machines between TDFs and other design
files. However, MACHINE INPUT and MACHINE OUTPUT port types
cannot be used in a top-level TDF.

= You can optionally assign a default value of GND or VCC after the port
type (otherwise, no default value is assumed). In the example shown
above, VCC is the default value for the input signals unless they are
assigned in a higher-level file (assignments in a higher-level file take
precedence).

(o)
D
o
(=]
=
L
&
f
S
g
[45]

157

MAX+PLUS Il AHDL

158

In a top-level design file, INPUT, OUTPUT, and BIDIR port types represent
actual device pins. In a lower-level design file, all port types are the inputs
and outputs of the file, but not of the project itself.

Go to the following sources for more information:
“Importing & Exporting State Machines” on page 77 in How to Use AHDL

“Ports” on page 132 in Elements
“Subdesign Section Syntax” in MAX+PLUS II Help

Section 4: Design Structure

Variable Section

The optional Variable Section is used to declare and/or generate any
variables used in the Logic Section. AHDL variables are similar to variables
in a high-level programming language; they are used to define buried
(internal) logic.

The following example shows a Variable Section:

VARIABLE

a, b, c : NODE;

temp : halfadd;

tsnode : TRI_STATE_NODE;

IF DEVICE_FAMILY == "FLEX8000" GENERATE
8kadder : flex_adder;
d, e : NODE;

ELSE GENERATE
Tkadder : pterm_adder;
f,.g : NODE;

END GENERATE;

The Variable Section can include one or more of the following statements or
constructs:

Instance Declarationc.cc.ovcverveeireeeeniiceeeeeeee ettt ens
Node Declaration...........c............

Register Declaration................

State Machine Declaration
Machine Alias Declaration

1S The Variable Section can also contain If Generate Statements,
which can be used to generate Instance, Node, Register, State
Machine, and Machine Alias Declarations.

The Variable Section has the following characteristics:

o The keyword VARIABLE begins the Variable Section.

i

u User-defined, symbolic variable names are separated from each other
by commas (,) and from the variable type by a colon (:). The variable
type can be NODE, TRI_STATE_NODE, <primitive>, <megafunction>,
<macrofunction>, or <state machine declaration>. In the example shown
above, the internal variables are a, b, and ¢ of type NODE; temp, an
instance of the macrofunction hal fadd; and tsnode, an instance of
type TRI_STATE_NODE.

(s
D
A,
«Q
=
L
&
=
g
g
<

159

MAX+PLUS Il AHDL

| Each entry in the list of variables ends with a semicolon (;).

I Compiler-generated names that contain the tilde (~) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project’s Assignment & Configuration File (.acf). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

Go to the following sources for more information:

“If Generate Statement” on page 178 in this section
“Variable Section Syntax” in MAX+PLUS II Help

Instance Declaration

160

Each individual usage, or instance, of a particular logic function can be
declared as a variable with an Instance Declaration in the Variable Section.
After it is declared, you can use the input and output ports of each logic
function as ports in the Logic Section.

When you wish to implement an instance of a megafunction or
macrofunction, you must ensure that its logic is defined in its own design
file. You then use a Function Prototype Statement to specify the ports and
parameters of the function, and implement an instance of the function with
an in-line reference or an Instance Declaration.

To implement an instance of a primitive, you also use an in-line reference or
an Instance Declaration. However, in contrast to mega- and macrofunctions,
primitive logic is predefined, so you do not need to define the primitive logic
in a separate design file. In most cases, a Function Prototype Statement is not
needed. See “Function Prototype Statement” on page 151 for more
information.

To use an Instance Declaration, you declare a variable of type <primitive>,
<megafunction>, or <macrofunction> in the Variable Section. For a
parameterized mega- or macrofunction, the declaration includes a list of the
parameters used by the instance and optional parameter values. Once you
declare the variable, you can use ports of the instance of the function in the
following format:

<instance name> . <port name>

Section 4: Design Structure

For example, if you wish to incorporate the compare and adder functions
(taken from the example in “Function Prototype Statement” on page 151)
into your current TDF, make the following Instance Declarations in the
Variable Section:

VARIABLE
comp : compare;
adder : lpm add_sub WITH (LPM_WIDTH = 8)

The variables comp and adder are instances of the functions compare and
lpm_add_sub, which have the following inputs and outputs:

al3..0]1, b[(3..0] : INPUT; -- inputs to compare
less, equal, greater : OUTPUT; -- outputs of compare
al8..1]1, b[(8..1] : INPUT; -- inputs of adder
sum([8..1] : OUTPUT; -- outputs of adder

You can therefore use the following ports of comp and adder in the current
Logic Section:

comp.all], comp.b[], comp.less, comp.equal, comp.greater

adder.dataal], adder.databl], adder.result[]

These ports can be used in any behavioral statement in the same way as
nodes.

Since all primitives have only one output, you can use the name of a
primitive without a port name (e.g., without . g or . out) on the right side of
an equation if you want to use its output. Similarly, for all primitives that
have a single primary input (i.e., all primitives except JKFF, JKFFE, SRFF,
and SRFFE), you can use the name of a primitive without a port name (e.g.,
without .4, .t, or . in) on the left side of an equation to connect the
primitive to its primary input. See “Register Declaration” on page 163 for
more information.

When MAX+PLUS II compiles a project, the Compiler searches for
parameter values for each instance of a mega- or macrofunction in the

parameter value search order described on page 142.

Go to the following sources for more information:

g
&
=
o
%
<
=
=}
g
(4]

“Creating a Default Include File” in MAX+PLUS II Help
“If Generate Statement” on page 178 in this section
“Implementing a Hierarchical Project” on page 69 in How to Use AHDL

161

MAX+PLUS Il AHDL

“Primitives,” “Megafunctions,” “Old-Style Macrofunctions,” and “Ports”
beginning on page 113 in Elements
“Variable Section Syntax” in MAX+PLUS II Help

Node Declaration

162

AHDL supports two types of nodes: NODE and TRI_STATE_NODE.

Both types are all-purpose variable types used to store signals that have not
been declared in the Subdesign Section or elsewhere in the Variable Section.
Therefore, a variable of either type can be used on the left or right side of an
equation.

Both NODE and TRI_STATE_NODE are similar to the INPUT, OUTPUT, and
BIDIR port types of the Subdesign Section, in that they represent a single
wire that propagates signals.

s Compiler-generated names that contain the tilde (~) character
may appear in the Fit File (.fit) for a project. If you back-annotate
the Fit File assignments, these names will then appear in the
project’s Assignment & Configuration File (.acf). The tilde
character is reserved for Compiler-generated names only; you
cannot use it in your own pin, node, and group (bus) names.

The following example shows a Node Declaration:
SUBDESIGN node_ex

(
a, oe : INPUT;

b : OUTPUT;

C : BIDIR;
)
VARIABLE

b : NODE;

t : TRI_STATE_NODE;
BEGIN

b = a;

out = b % therefore out = a %

t = TRI(a, oe);

t =c; % t is bus of ¢ and tri_stated a %
END;

Section 4: Design Structure

NODE and TRI_STATE_NODE differ in that multiple assignments to them
yield different results:

B Multiple assignments to nodes of type NODE tie the signals together by
wired-AND or wired-OR functions. The default values for variables
declared in Defaults Statements determine the behavior: a vCC default
produces a wired-AND function; a GND default produces a wired-OR
function.

] Multiple assignments to a TRI_STATE_NODE tie the signals to the
same node.

| If only one variable is assigned to a TRI_STATE_NODE, it is treated as
NODE.

The following primitives and signals can feed TRI_STATE_NODE nodes:

= TRI primitives

n INPUT ports from a design file at a higher hierarchical level

L] OUTPUT and BIDIR ports from a design file at a lower hierarchical
level

[] BIDIR ports of the current file

o Other nodes declared as TRI_STATE_NODE types in the current file

Go to the following sources for more information:

“Declaring Nodes” on page 27 in How to Use AHDL
“If Generate Statement” on page 178 in this section
“Implementing Tri-State Buses” in How fo Use AHDL
“Variable Section Syntax” in MAX+PLUS II Help

Register Declaration

A Register Declaration is used to declare registers, including D, T, JK, and SR
flipflops (DFF, DFFE, TFF, TFFE, JKFF, JKFFE, SRFF, and SRFFE) and
latches (LATCH). The following example shows a Register Declaration:

VARIABLE
ff : TFF;

wo)
D
128
=]
=]
L
=
c
(=3
j ot
=
(1°]

The name of this instance of a T flipflop is £ £. After making this declaration,
you can use the input and output ports of the instance of ££ in the format
<instance name> . <port name>:

163

MAX+PLUS Il AHDL

164

ff.t
ff.clk
ff.clm
ff.prn
ff.g

Since all primitives have only one output, you can use the name of an
instance of a primitive without appending a port name (e.g., without . q or
.out) on the right side of an equation if you want to use its output.
Similarly, for all primitives that have a single primary input, i.e., all
primitives except JKFF, JKFFE, SRFF, and SRFFE, you can use the name of
an instance of a primitive without a port name (e.g., without .4, . t, or . in)
on the left side of an equation to connect the primitive to its primary input.

For example, the DFF Function Prototype is FUNCTION DFF (d, clk,
clrn, prn) RETURNS (qg);.Inthe following TDF excerpt,a = bis
equivalenttoa.d = b.qg:

VARIABLE
a, b : DFF;
BEGIN

Go to the following sources for more information:

“Declaring Registered Outputs” on page 50 in How to Use AHDL
“Declaring Registers” on page 47 in How to Use AHDL

“If Generate Statement” on page 178 in this section

“Ports” on page 132 and “Primitives” on page 113 in Elements
“Variable Section Syntax” in MAX+PLUS II Help

Section 4: Design Structure

State Machine Declaration

You create a state machine by declaring the name of the state machine, its
states, and, optionally, its bits in the Variable Section.

The following example shows a State Machine Declaration:

VARIABLE
ss : MACHINE
OF BITS (gl, @2, 43)
WITH STATES (

sl = B"000",
s2 = B"010",
s3 = B"111");

The state machine name is ss. The state bits g1, g2, and g3 are outputs of
registers for this machine. The states of this state machineare s1,s2,and s3,
each of which is assigned a numerical state value for the state bits g1, g2,
and g3.

A State Machine Declaration has the following characteristics:

B The state machine name is a symbolic name. In the example shown
above, the state machine name is ss.

u The state machine name is followed by a colon (:) and the keyword
MACHINE.

] The State Machine Declaration must include a list of states, and can
include a list of state bit names.

u Optional state bits are specified with the keywords OF BITS,
followed by a comma-separated list of symbolic names; the list must
be enclosed in parentheses () . The example shown above specifies the
state bits g1, g2, and g3.

o States are specified by the keywords WITH STATES, followed by a
comma-separated list of symbolic names; the list must also be
enclosed in parentheses. The example shown above specifies the states
sl,s2,and s3.

u The first state listed in the WITH STATES clause is the Reset state for
the state machine.

(W]
€D
(28
(=]
=
L
&
(=
g
g
(4]

165

MAX+PLUS Il AHDL

| The state names may be optionally assigned to a value with an equals
symbol (=) followed by a numerical value. In the example shown
above, s1 is assigned to B" 000", s2 is assigned to B" 010", and s3 is
assigned toB"111".

[] You can use a Machine Alias Declaration, as described below, to
assign an alternate name to a state machine that is declared in the
current file or imported from another file.

B A semicolon (;) ends a State Machine Declaration.

s Each state of a state machine is represented by a unique pattern of
high and low flipflop output signals. The state bits are the
flipflops required by the machine to store the states. The number
of states has the following relationship to the number of state bits
in a state machine:

<number of states> <= 2\<number of state bits>
Go to the following sources for more information:

“Assigning State Machine Bits & Values” on page 58 in How to Use AHDL

“If Generate Statement” on page 178 in this section

“Importing & Exporting State Machines” on page 77 in How to Use AHDL

“Numbers in AHDL” on page 102 in Elements

“Recovering From Illegal States” on page 66 in How to Use AHDL

“Instance Declaration Syntax” and “Variable Section Syntax” in
MAX+PLUS II Help

“State Machines” on page 54 in How to Use AHDL

“Variable Statement Syntax” in MAX+PLUS II Help

Machine Alias Declaration

166

You can rename a state machine with a temporary name using a Machine
Alias Declaration in the Variable Section. You can use a machine alias in the
file where the state machine is created, or in a file that uses a MACHINE
INPUT port to import a state machine. You can then use this name instead of
the original state machine name. For example:

Section 4: Design Structure

FUNCTION ss_def (clock, reset, count)
RETURNS (MACHINE ss_out);

VARIARLE
ss : MACHINE;
BEGIN
ss = ss_def (sys_clk, reset, 'hold);

IF ss == s0 THEN

ELSIF ss == sl THEN

END;
A Machine Alias Declaration has the following characteristics:

B Themachinealias is a symbolic name. It is followed by a colon (:) and
the keyword MACHINE. In the example shown above, ss is the
machine alias.

L] You can import and export state machines between TDFs and other
design files by specifying an input or output port as MACHINE INPUT
or MACHINE OUTPUT in the Subdesign Section.

| When you import or export a state machine, the Function Prototype
that represents the file must indicate which inputs and outputs are
state machines. In the example shown above, ss_out is the state
machine name.

] A semicolon (;) ends a Machine Alias Declaration.

s MACHINE INPUT and MACHINE OUTPUT port types cannot be
used in a top-level TDF.

Go to the following sources for more information:

“Importing & Exporting State Machines” on page 77 in How to Use AHDL
“Variable Section Syntax” in MAX+PLUS II Help

e
D
28
«Q
3
2
=
=
a
o
=
@

167

MAX+PLUS Il AHDL

Logic Section

The Logic Section specifies the logical operations of the TDF and is the body
of a TDF. This section is required. One or more of the following statements
or constructs may be used in this section:

| Boolean Equations...........cccooviiiniciiii 168
[| Boolean Control EQUAtions..........cccviicciciiniiinccscrcccsscsecaes 171
u Case StAteIMENtcvieiiivieiecec et 172
] Defaults StatemMentcoviiviiiieeceeeieecee et 173
[] If Then Statementcc..oioviecie et 176
[| If Generate StatemMeNtccieveereereeececr et s 178
[] For Generate Statement..........cccoovevvevierviciciiceiee it 179
=] Truth Table Statementccooouiv oo 183
s The Logic Section can also include Assert Statements. Go to

“Assert Statement” on page 155 for more information.

The BEGIN and END keywords enclose the Logic Section. A semicolon (;)
follows the END keyword and terminates this section. The Defaults
Statement must be the first statement in the section.

AHDL is a concurrent language. The Compiler evaluates all behavior
specified in the Logic Section of a TDF at the same time rather than
sequentially. Equations that assign multiple values to the same AHDL node
of type NODE or variable are logically ORed. See “Defaults Statement” on
page 173 for more information.

Boolean Equations

168

Boolean equations are used in the Logic Section of your AHDL TDF to
represent the connection of nodes, the flow of inputs into and the flow of
outputs from input and output pins, primitives, megafunctions,
macrofunctions, and state machines.

The following example shows a complex Boolean equation:

all] = ((c[] & -B"001101") + e[6..1]) # (p, a, r, s, t, v);

Section 4: Design Structure

The left side of the equation can be a symbolic, port, or group name. You can
use the NOT (!) operator to invert any item on the left. The right side of the
equation consists of a Boolean expression, which is evaluated as described

in “Boolean Operator & Comparator Priorities” on page 112 in Elements.

The equals symbol (=) is used in Boolean equations to indicate that the result
of the Boolean expression on the right side is the source of the symbolic node
or group on the left side. The single equals symbol differs from the double
equals symbol (==), which is used as a comparator.

In the example shown above, the Boolean expression on the right is
evaluated according to the Boolean equation priority rules:

1.

2.

The binary number B" 001101 " is negated and becomes B"110011".
The unary minus (-) has first priority.

B"110011" is anded (&) with the group c (1. This expression has
second priority because it is enclosed in parentheses.

The result of the group expression in step 2 is added to the group
e[6..1].

The result of the expression in step 3 is ORed (#) with the group (p,
a, r, s, t, v).Thisexpression has last priority.

The final result is assigned to the group a[].

For the sample equation shown above to be legal, the number of bits in the
group on the left side of the equation must be evenly divisible by the number
of bits in the group on the right side of the equation. The bits on the left side
of the equation are mapped to the right side of the equation in order.

The following rules apply to Boolean equations:

Multiple assignments to a variable are logically ORed (#), except
when the default for the variable is VCC.

If the number of nodes on the left side of the Boolean equation equals
the number of nodes on the right, a one-to-one correspondence exists.

If a single node, GND, or VCC on the right side of an equation is E-
assigned to a group, the node or constant is duplicated to match the
size of the group. For example: (a, b) = e; isthe same as

a =e; b=e;

o)
(9]
{225
©Q
=]
2
=
2
o
=
(4]

If both the left and right sides of the equation are groups of the same
size, each member on the right is assigned to the member on the left

169

MAX+PLUS Il AHDL

170

s

that corresponds in position. For example: (a, b) = (c, d); isthe
sameasa = c; b = d;

When you add two groups together on the right side of a Boolean
equation with the + operator, you can place a 0 on the left of each
group to sign-extend the width of the group. This method
provides an extra bit of information to the group on the left side of
the equation that can be used as a carry-out signal. In the
following example, the groups count [7..0] anddelta[7..0]
are sign-extended with zeros to provide information to the cout
carry-out signal:

cout, answer[7..0]) = (0, count[7..0]) + (0, deltal[7..0])

If the left and right sides of an equation have groups of different sizes,
the number of bits in the group on the left must be evenly divisible by
the number of bits in the group on the right. The bits on the left side of
the equation are mapped to the right side of the equation, in order. The
following equation is legal:

af4..1] = bl2..1]

In this equation, the bits are mapped as follows:

ad = b2
a3 = bl
a2 = b2
al = bl

A group of nodes or numbers cannot be assigned to a single node.

If a number on the right side of an equation is assigned to a group, the
number is truncated or sign-extended to match the size of the group.
If any significant bits are truncated, the Compiler issues an error
message. Each member on the right is assigned to the member on the
left with the corresponding position. For example, (a, b) = 1;is
thesameasa = 0; b = 1;

Commas can be used to hold the places of unassigned group members
in a Boolean equation. The following example shows commas that
hold the places of two members of the group (a, b, ¢, d):

(a, , ¢,) = B"1011";

In this example, both a and ¢ are assigned the value 1.

Section 4: Design Structure

= A semicolon (;) ends each equation.
Go to the following sources for more information:

“Boolean Equation Syntax” in MAX+PLUS I Help

“Boolean Expressions” on page 106 in Elements

“Boolean Operator & Comparator Priorities” on page 112 in Elements
“Defaults Statement” on page 173 in this section

“Implementing Boolean Expressions & Equations” on page 25 in How to Use
AHDL

Boolean Control Equations

Control equations are Boolean equations used in the Logic Section to set up
the state machine Clock, Reset, and Clock Enable signals.

The following examples show Boolean control equations:

ss.clk = clkl;
ss.reset = a & b;
ss.ena = clklena;

Boolean control equations have the following characteristics:

| You can define the Clock, Reset, and Clock Enable inputs of each state
machine in the format <state machine name> . <port name>. In the
example above, these inputs are defined for the state machine ss.

B You can use the state machine name declared in the State Machine
Declaration as the state machine name in the control equations.

u The Clock signal <state machine name> . c1k must always be assigned
a value.

u If the start state of the state machine has been assigned a non-zero
value, then the Reset signal <state machine name> . reset assignment
is required; otherwise, it is optional.

u Assigning the Clock Enable signal <state machine name> . ena to a
value is always optional.

()
[4°]
|28
<«
=
L
<
c
=}
g
(9°]

u A semicolon (;) ends each equation.

171

MAX+PLUS Il AHDL

Go to the following sources for more information:

“Boolean Control Equation Syntax” in MAX+PLUS II Help
“Setting Clock, Reset & Enable Signals” on page 57 in How to Use AHDL
“State Machines” on page 54 in How to Use AHDL

Case Statement

172

The Case Statement lists the alternatives that may be activated depending on
the value of the variable, group, or expression following the CASE keyword.

The following example shows a Case Statement:

CASE f[].g IS
WHEN H"00" =>
addr[] = 0;
s =a & b;
WHEN H"01l" =>
count[].d = count[].g + 1;
WHEN H"02", H"03", H"04" =>
£[3..0).4 = addr([4..1];
WHEN OTHERS =>
f[1.d = £[].q;
END CASE;

The Case Statement has the following characteristics:

| The keywords CASE and IS enclose a Boolean expression, group, or
state machine (in the example shown above, £ [] . q).

| The Case Statement is terminated by the keywords END CASE and a
semicolon (;).

@ One or more unique alternatives are listed in the WHEN clauses in the
body of the Case Statement. Each WHEN clause begins with the
keyword WHEN.

x| In each alternative WHEN clause, one or more comma-separated

constant values are followed by an arrow symbol (=>). In this
example, the H"02", H" 03", and H" 04 " constant values are listed in
a single WHEN clause; the H* 00" and H" 01" constant values are listed
in separate WHEN clauses.

Defaults Statement

Section 4: Design Structure

If the Boolean expression following the CASE keyword evaluates to a
specific alternative, all the behavioral statements following the arrow
are activated. In the example shown above, if £ [] . g evaluates to
H"01", the Boolean equation count [].d = count[].qg + 1is
activated.

When no other alternative is true, the optional keywords WHEN
OTHERS define the default alternative. In the example shown above, if
f[].qgdoesnotequal H"00",H" 01", or H"CF", the Boolean equation
£[1.4 = £[].gisactivated.

The Defaults Statement defines the default behavior if the WHEN
OTHERS clause is not used.

If the Case Statement is used to define the transitions of a state
machine, the keywords WHEN OTHERS cannot be used to recover from
illegal states of an n-bit state machine unless the state machine
contains exactly 2”n states.

Each behavioral statement ends with a semicolon (;).

Go to the following sources for more information:

“Case Statement Syntax” in MAX+PLUS II Help
“Implementing Conditional Logic” on page 31 in How to Use AHDL
“Recovering From Illegal States” on page 66 in How to Use AHDL

The following topics in How to Use AHDL show additional examples of Case
Statements:

“Implementing State Machines” on page 55
“Setting Clock, Reset & Enable Signals” on page 57
“Importing & Exporting State Machines” on page 77

The Defaults Statement allows you to specify default values for variables
used in Truth Table, If Then, and Case Statements. Since active-high signals
automatically default to GND, Defaults Statements are required only for
active-low signals.

s

o
D
£,
Q
=
2
=
=
=
=
=]

You should not confuse default values for variables with default
values for ports that are assigned in the Subdesign Section.

173

MAX+PLUS Il AHDL

174

The following example shows a Defaults Statement:

BEGIN
DEFAULTS
a = VCC;
END DEFAULTS;
IF vy & z THEN
a = GND; % a is active low %
END IF;
END;

The Defaults Statement has the following characteristics:

L It is enclosed by the keywords DEFAULTS and END DEFAULTS and
ends with a semicolon (;).

n The body of the Defaults Statement consists of one or more Boolean
equations that assign constant values to variables. In the example
shown above, the Defaults Statement assigns the default value VCC to
the variable a.

u Each equation ends with a semicolon (;).
u The Defaults Statement is activated if a variable that follows it is
undefined for certain conditions. In the example shown above, the

variable a is undefined when y or z is a logical low, so the equation
(a = VCC) in the Defaults Statement is activated.

The following rules apply to Defaults Statements:

u Only one Defaults Statement is allowed in the Logic Section, and it
must be the first statement after the BEGIN keyword.

B Ifasingle variable is assigned a value more than once in a Defaults
Statement, all assignments but the last are ignored.

m A Defaults Statement cannot be used to set a default value of X (don’t
care) to a variable.

Section 4: Design Structure

Multiple assignments to a node of the type NODE variable outside of a
Defaults Statement are logically ORed, except when the default for the
variable is VCC. The following TDF excerpt illustrates the default
values for two variables: a with default value GND, and bn with
default value vcc:

BEGIN

DEFAULTS
a = GND;
bn = VCC;

END DEFAULTS;

IF ¢l THEN
a = al;
bn = bln;

END IF;

IF c2 THEN
a = a2;
bn = b2n;

END IF;

END;

This example is equivalent to the following equations:

a=cl & al # c2 & a2;
bn = (!cl # bln) & (!c2 # b2n);

Active-low variables that are assigned more than once should be
given a default value of VCC. In the following example, reg[] .clrn
is given a default value of VCC:

SUBDESIGN 5bcount
(

d[5..1] : INPUT;
clk : INPUT;
clr . INPUT;
sys_reset : INPUT;
enable : INPUT;
load : INPUT;
als..1] : OUTPUT;
)
VARIABLE
reg[5..1] : DFF; 5
&
BEGIN ;5
DEFAULTS =
reg[].clrn = VCC; §'
(4]

END DEFAULTS;

175

MAX+PLUS Il AHDL

regl].clk clk;

all = reg[];

IF sys_reset # clr THEN
reg(].clrn = GND;

END IF;

'reg(].prn (load & d[]) & !clr;
treg[].clrn = load & !d[];

reg[] = regl] + (0, enable);
END;

Go to the following sources for more information:

“Defaults Statement Syntax” in MAX+PLUS II Help
“Using Default Values for Variables” on page 39 in How to Use AHDL

If Then Statement

176

The If Then Statement lists a series of behavioral statements to be activated
after the positive evaluation of one or more Boolean expressions.

The following example shows an If Then Statement:

IF a[] == b[] THEN
c(8..1] =H "77";
addr[3..1] = £(3..1].q;
f{1.d = addr[] + 1;

ELSIF g3 $ g4 THEN
f[].d = addr[];

ELSE
d = VCC;

END IF;

The If Then Statement has the following characteristics:

m The keywords IF and THEN enclose the Boolean expression to be
evaluated and are followed by one or more behavioral statements,
each of which ends with a semicolon (;).

m The keywords ELSIF and THEN enclose any additional Boolean
expressions to be evaluated, and are also followed by one or more
behavioral statements. These optional statements can be repeated.

Section 4: Design Structure

The behavioral statement(s) following the keyword THEN are
activated for the first expression that evaluates to true.

The keyword ELSE followed by one or more behavioral statements is
similar to the WHEN OTHERS default alternative of the Case Statement.
If none of the previously evaluated Boolean equations is true, then the
behavioral statement(s) following ELSE are activated. In the example
shown above, if neither expression evaluates to true, the equationd =
VCC is activated. The ELSE clause is also optional.

Expressions following IF and ELSIF keywords (in the example
shownabove,a{] == b[]and g3 $ g4) are evaluated concurrently.

The keywords END IF and a semicolon (;) end the If Then Statement.

An If Then Statement may generate logic that is too complex for the
MAX+PLUS II Compiler. If an If Then Statement contains complex
expressions, then the inversion of each expression is likely to be even
more complex. In the following example, if a and b are complex
expressions, then the inversion of each expression is likely to be even
more complex.

If Then Statement: Compiler Interpretation:
IF a THEN IF a THEN
c = d; c = d;
END IF;
ELSIF b THEN IF !'a & b THEN
c=e; c = e;
END IF;
ELSE IF !'a & !'b THEN
c = f; c = £f;
END TF; END IF;
s Unlike If Then Statements, which can evaluate only Boolean

expressions, If Generate Statements can evaluate the
superset of arithmetic expressions. The essential difference
between an If Then Statement and an If Generate Statement
is that the former is evaluated in hardware (silicon),
whereas the latter is evaluated when the design is compiled.

177

o)
(9]
N
=)
S
L
=
f o=
2
=
<

MAX+PLUS Ii AHDL

Go to the following sources for more information:

“Boolean Equations” on page 168 in this section

“If Then Statement Syntax” in MAX+PLUS II Help

“If Then Statement vs. Case Statement” on page 34 in How to Use AHDL
“Implementing Conditional Logic” on page 31 in How to Use AHDL

The following topics in How to Use AHDL show additional examples of
If Then Statements:

“Implementing Active-Low Logic” on page 41
“Creating Counters” on page 51

If Generate Statement

178

The If Generate Statement lists a series of behavioral statements that are
activated after the positive evaluation of an arithmetic expression.

The following example shows an If Generate Statement:

IF DEVICE_FAMILY == "FLEX8K" GENERATE
c[] = 8kadder(all, bl(], cin);

ELSE GENERATE
c[] = otheradder(afl, bl[l, cin);

END GENERATE;
The If Generate Statement has the following characteristics:

u The keywords IF and GENERATE enclose the arithmetic expression to
be evaluated and are followed by one or more behavioral statements,
each of which ends with a semicolon (;). These statements are
activated if the expression is true.

| The keywords ELSE GENERATE are followed by one or more
behavioral statements, each of which ends with a semicolon. These
statements are activated if the arithmetic expression is false.

[| The keywords END GENERATE and a semicolon (;) end the If
Generate Statement.

| The If Generate Statement can be used in the Logic Section or in the
Variable Section.

Section 4: Design Structure

expressions, If Generate Statements can evaluate the

I 1. Unlike If Then Statements, which can evaluate only Boolean

superset of arithmetic expressions. The essential difference
between an If Then Statement and an If Generate Statement

is that the former is evaluated in hardware (silicon),

whereas the latter is evaluated when the design is compiled.

2. TheIf Generate Statement is especially useful with For

Generate Statements that handle special cases differently,

for example, the least significant bit of a multi-stage

multiplier. It can also be used to test parameter values, as

shown in the example above.
Go to the following sources for more information:

“If Generate Statement Syntax” in MAX+PLUS II Help

“Using Conditionally Generated Logic” on page 87 in How to Use AHDL

“Naming a Boolean Operator or Comparator” on page 84 in How to Use
AHDL

For Generate Statement

The following example shows an iterative For Generate Statement:

CONSTANT NUM_OF_ADDERS = 8;
SUBDESIGN 4gentst
(
a[NUM_OF_ADDERS..1l], b[NUM _OF ADDERS..1], cin : INPUT;

¢ [{NUM_OF_ADDERS..l1], cout : OUTPUT;
)
VARIABLE
carryout [(NUM_OF_ADDERS+1)..1] : NODE;
BEGIN
carryout[l] = cin;
FOR 1 IN 1 TO NUM_OF_ADDERS GENERATE
c[i] = alil $ bli]l $ carryoutli] ;% Full Adder %
carryout [i+1] = a[i] & b[i] # carryout[i) & (a[i]) $ bli));

END GENERATE;
cout = carryout [NUM_OF_ADDERS+1];
END;

o)
<D
28
S
=
w
[=
=
=
Q
—t
=
=
[s>

179

MAX+PLUS Il AHDL

The For Generate Statement has the following characteristics:
u The keywords FOR and GENERATE enclose the following items:

1. A temporary variable name, which consists of a symbolic name
that is used only within the context of the For Generate
Statement, i.e., the variable ceases to exist after the Compiler
processes the statement. In the example shown above, the
variable is i. This variable name cannot be a constant,
parameter, or node name that is used elsewhere in the project.

2. The word 1IN, which is followed by a range delimited by two
arithmetic expressions. The arithmetic expressions are
separated by the TO keyword. In the example shown above, the
arithmetic expressions are 1 and NUM_OF_ADDERS. The range
endpoints can consist of expressions containing only constants
and parameters; variables are not required.

e The GENERATE keyword is followed by one or more logic statements,
each of which ends with a semicolon (;).

u The keywords END GENERATE and a semicolon (;) end the For
Generate Statement.

Go to the following sources for more infomation:
”Arithmetic Expressions” on page 103 in Elements

“For Generate Statement Syntax” in MAX+PLUS II Help
“Using Iteratively Generated Logic” on page 86 in How to Use AHDL

In-Line Logic Function Reference

180

An in-line logic function reference is a Boolean equation that implements a
logic function. It is a shorthand method for implementing a logic function
that uses only one line of the Logic Section and does not require a Variable
Declaration.

When you wish to implement an instance of a megafunction or
macrofunction, you must ensure that its logic is defined in its own design
file. You then use a Function Prototype Statement of the function, and
implement an instance of the function with an in-line reference or an
Instance Declaration.

Section 4: Design Structure

To implement an instance of a primitive, you also use an in-line reference or
an Instance Declaration. However, in contrast to mega- and macrofunctions,
primitive logic is predefined, so you do not need to define the primitive logic
in a separate design file. In most cases, a Function Prototype Statement is not
needed. See “Function Prototype Statement” on page 151 for more
information.

The following examples show the Function Prototypes for the compare and
lpm_add_sub functions. The compare function has input ports a[3. . 0]
andb[3..0] and output ports less, equal, and greater; the
1pm_add_sub function has the input ports dataa [LPM_WIDTH-1..0],
dataa [LPM_WIDTH-1..0], cin, and add_sub, and output ports
result [LPM_WIDTH-1..0], cout, and overflow.

FUNCTION compare (a[3..0], b[3..0]1)
RETURNS (less, equal, greater);
FUNCTION lpm_add sub (cin, dataa[LPM WIDTH-1..0],
datab [LPM WIDTH-1..0], add_sub)
WITH (LPM_WIDTH, LPM_REPRESENTATION)
RETURNS (result[LPM WIDTH-1..0], cout, overflow);

The in-line logic function references for the compare and lpm_add_sub
functions appear on the right side of the equations below:

(clockwise, , counterclockwise) = compare(position[], target[]):;
sum|] = lpm_add_sub (.databl[] = b[], .dataal]l = all)

WITH (LPM_WIDTH = 8)

RETURNS (.result(]);

The in-line reference for a logic function has the following characteristics:

] The function name on the right side of the equals symbol (=) is
followed by a signal list enclosed in parentheses (), containing
symbolic names, decimal numbers, or groups, separated by commas
(,). These items correspond to the input ports of the function.

E In the signal list, port names can be given through positional port
association or named port association:

- In the compare example shown above, thea[3..0] and
b[3..0] inputs of compare are connected to the variables
named position[] and target[], respectively, through
positional port association. When you use positional port
association, you can use commas as placeholders for outputs
that are not connected to a variable. In compare, the equal
output is not connected to any variable, so an extra comma is

jwo)
<D
R,
<«Q
3
(@p]
—
&
o
S
=
[4°]

181

MAX+PLUS Il AHDL

182

needed to hold its place in the group on the left side of the
equation.

- In the 1pm_add_sub example shown above, the .datab[]
and .dataal[] inputs of 1pm_add_sub are connected to the
variables b [] and a [], respectively, through named port
association. Port names are connected to variables with an
equals symbol (=).

s 1. Port names must have the format . <port name> on
both the left and right sides of in-line references that
use named port association.

2. Named port association is supported only on the
right side of an in-line reference. The left side of an in-
line reference is always connected to variables by
positional port association.

In a parameterized function, the keyword WITH and parameter name
list follows the input port list. The list is enclosed in parentheses;
parameter names are separated by commas. Only the parameters used
by the instance are declared; optional parameter values are separated
from parameter names by an equals symbol. In the 1pm_add_sub
example shown above, the LPM_WIDTH parameter is assigned a value
of 8. If no parameter values are assigned in the in-line reference, the
Compiler searches for them in the parameter value search order
described on page 142.

On the left side of the in-line reference, the outputs of the function are
connected to variables. In the compare example shown above, the
function’s less and greater outputs are connected to the variables
clockwise and counterclockwise, respectively, through
positional port association. Similarly, in the 1pm_add_sub example,
the function’s sum[] outputs are connected through positional port
association.

The values of the variables, which are determined elsewhere in the
Logic Section, feed the associated inputs and outputs. In the compare
example shown above, the values of position[] and target[]
feed the inputs of compare. The values of output ports less and
greater feed clockwise and counterclockwise, respectively.
These variables may be used in other operations in the Logic Section.

Section 4: Design Structure

Go to the following sources for more information:

“Boolean Equations” on page 168 in this section

“Function Prototype Statement” on page 151 in this section
“Implementing a Hierarchical Project” on page 69 in How to Use AHDL
“In-Line Logic Function Reference Syntax” in MAX+PLUS II Help

The following topics in How to Use AHDL show additional examples of in-
line references:

“Implementing Bidirectional Pins” on page 43

“Using Altera-Provided Unparameterized Functions” on page 69
“Using Altera-Provided Parameterized Functions” on page 73
“Implementing LCELL & SOFT Primitives” on page 81

Truth Table Statement

The Truth Table Statement is used to specify combinatorial logic or state
machine behavior. In an AHDL truth table, each entry in the table contains
a combination of input values that will produce specified output values.
These output values can be used as feedback to specify state transitions and
outputs of state machines.

The following example shows a Truth Table Statement:

TABLE
al, fl4..1].g => f[4..11.4, control;
0, B"0000" = B"0001", 1;
0, B"0100" => B"0010", 0;
1, B"OXXX" => B"0100", 0;:
X, B"1111" => B"0101", 1;
END TABLE;

The Truth Table Statement has the following characteristics:

o] The truth table heading consists of the keyword TABLE, followed by a
comma-separated list of table inputs, an arrow symbol (=>), and a
comma-separated list of table outputs. The heading ends with a
semicolon (;).

(s}
(==}
|28
(=}
3
L
&
(=
g
=
(4]

183

MAX+PLUS Il AHDL

| Truth table inputs are Boolean expressions; truth table outputs are
variables. In the example shown above, the input signals are a0 and
f[4..1] . the outputsignalsare £[(4..1] .dand control.

| The body of the table consists of one or more entries, each spanning
one or more lines and ending with a semicolon.

u An entry consists of a comma-separated list of inputs and a comma-
separated list of numerical outputs. The inputs and outputs are
separated by =>.

n Each signal has a one-to-one correspondence with the values in each
entry. Thus, the first entry in the example shown above signifies that
when a0 has the value 0 and £[4..1] .qghas the value B"0000",
then £[4..1] .4 will have the value B*0001", and control will
have the value 1.

] Input and output values can be numbers, predefined constants VCC or
GND, symbolic constants (i.e., symbolic names used as constants), or
groups of numbers or constants. Input values can also be X (don’t
care).

| Input and output values correspond to the inputs and outputs of the
table heading.

] The keywords END TABLE, followed by a semicolon (;), end the truth
table.

The following rules apply to the Truth Table Statement:
u The names in the table heading can be either single nodes or groups.

= Every conceivable combination of input values need not be listed. You
can use an X (don’t care) to indicate that the output does not depend
on the input corresponding to the position of the X. The following
example specifies that if a0 is high and £4 is low, the value of the other
inputs is not important. Therefore, you can specify the common
portion of the input pattern (in this example, 0), then use X characters
for the rest of the input pattern (in this example, XXX).

184

Section 4: Design Structure

TABLE
ao, fl4..11.g => fr4..1].4d, control;
0, B"0000" => B"0001", 1;
0, B"0100" => B"0010", 0;
1, B"OXXX" => B"0100", 0;
X, B*1111" => B"0101", 1;
END TABLE;

= The number of comma-separated items in a truth table row must

equal the number of comma-separated items in the truth table
heading.

] The Defaults Statement assigns output values in cases when the actual
inputs do not match the input values of the table.

s When you use X (don’t care) characters to specify a bit pattern,
you must ensure that the pattern cannot assume the value of
another bit pattern in the truth table. AHDL assumes that only one
condition in a truth table is true at a time; therefore, overlapping
bit patterns may cause unpredictable results.

Go to the following sources for more information:

“Using Default Values for Variables” on page 39 in How to Use AHDL for
information on how to specify default values for truth table outputs.
“Truth Table Statement Syntax” in MAX+PLUS II Help

The following topics in How to Use AHDL show additional examples of
Truth Table Statements:

“Creating Decoders” on page 35

“Using Default Values for Variables” on page 39
“Assigning State Machine Bits & Values” on page 58
“State Machines with Synchronous Outputs” on page 60
“State Machines with Asynchronous Outputs” on page 64

&
&,
(=]
=
w
—
<
[
g
=
<@

185

MAX+PLUS Il AHDL

186

Section

0

w
=
=
<
[ep)
=,
=¥
)

Style Guide

This style guide provides suggestions for formatting Text Design Files (.tdf)
to improve readability and thus avoid errors. These are recommendations
only and are not required for your TDFs to compile successfully. Examples
that illustrate guidelines are provided.

s You can use the Text Editor’s Syntax Coloring command
(Options menu) to identify typographical errors and different
sections of AHDL code. Go to “Syntax Coloring” on page 10 in
Introduction for more information.

Style guidelines are discussed in the following order:

u General Style GUidelinesccooeuiriiicciciicrirccscr e 188
m WHhite SPpaceccooiiiiiec e 190
o Comments & Documentationcc.eeoceeeieineieiie et 191
[] Naming COnVentionsceceeuiemirrircieieieee s 192
[| Indentation GUIAEHNEScccoveeviericrreiriiieeeceere e 193

Go to MAX+PLUS II Help for complete and up-to-date information on style
guidelines.

187

MAX+PLUS Il AHDL

General Style Guidelines

u All keywords, device names, constants, and primitives should be
entered in capital letters; all other text should be lowercase, including
filenames, megafunctions, and macrofunctions.

Unformatted:

case tap is
when test_logic_reset =>
if !tms then
tap = run_test/idle;
end if;

when run_test/idle =>
if tms then
tap = select_dr_scan;
end if;

when select_dr_scan =>
1f tms then
tap = select_ir_scan;
else
tap =
end 1if;

capture_dr;

end case;

Formatted:

CASE tap IS
WHEN test_logic_reset =>
IF !tms THEN
tap = run_test/idle;
END IF;

WHEN run_test/idle =>
IF tms THEN
tap = select_dr_scan;
END IF;

WHEN select_dr_scan =>

IF tms THEN
tap = select_ir_scan;
ELSE
tap = capture_dr;
END IF;
END CASE;

B FEither list all input and output ports on the same line, or enter
INPUT; after each line of inputs and : OUTPUT; after each line of
outputs. With this formatting style, all ports are clearly labeled.

o Lines should not be longer than the width of the screen. If necessary,
move part of a line to the next line and indent it. The Text Editor
provides the Auto-Indent command (Options menu), and the
Increase Indent and Decrease Indent commands (Edit menu), to help

you indent text easily.

188

Section 5: Style Guide

m Place opening and closing parentheses of the Subdesign Section and
of Parameters Statements on a separate line to easily distinguish
inputs and outputs. This formatting style also allows you to add and
edit signal and parameter names easily.

Unformatted: Formatted:
SUBDESIGN s (il, i2, i3: INPUT; SUBESIGN s
ol, 02, 03: OUTPUT;) (
BEGIN il, i2, i3 : INPUT;

SN ol, o2, o3 : OUTPUT;
END;)

BEGIN
END;
| Do not use quoted symbolic names if you can use unquoted names.
Unformatted: Formatted:
VARIABLE VARIABLE
tap: MACHINE WITH STATES (tap: MACHINE WITH STATES (
'Test-Logic-Reset’, test_logic_reset,
'Run-Test/Idle", run_test_idle,
'Select-DR-Scan', select_dr_scan,
'Capture-DR"', capture_dr,
'Shift-DR', shift_dr,
'Exitl-DR', exitl_dr,
‘Pause-DR', pause_dr,
'Exit2-DR"', exit2_dr,
'Update-DR', update_dr,
'Select-IR-Scan', select_ir_scan,
'Capture-IR"', capture_ir,
'Shift-IR', shift_ir,
'Exitl-IR", exitl_ir,
'Pause-IR', pause_ir,
'Exit2-IR"', exit2_ir,
'Update-IR"') ; update_ir);

| Follow the indentation guidelines under “Indentation Guidelines” on
page 193.

189

MAX+PLUS It AHDL

White Space

190

Use white space (blank lines, spaces, and tabs) around logical groups.

Do not place extra spaces before semicolons (;) commas (,), closing
double quotation marks ("), or closing parentheses ()), or after
opening double quotation marks (") or opening parentheses (().

Unformatted: Formatted:

DFF (@ , clk , ¢lrn , pren); DFF(d, clk, clrn, prn)

Use tabs and spaces to align colons, truth table entries, etc.

Unformatted: Formatted:

inl, clk : INPUT; inl, clk : INPUT;
outl, out2, out3 : OUTPUT: outl, out2, out3 : OUTPUT;
bus[8..1] : BIDIR bus[8..1] : BIDIR

Leave a blank space before an opening parenthesis to separate it from
a keyword.

Unformatted: Formatted:

OF BITS(q[3..0]) OF BITS (g[3..01)

Place one blank space before and after operators and comparators
(unless you are aligning signal names).

Unformatted: Formatted:
enable = 'a3&a2&al&al; enable = !'a3 & a2 & al & a0;
enable = (a[]==B"0111"); enable = (a[] == B"0111");

Section 5: Style Guide

Comments & Documentation

B Describe the design at the beginning of the TDF with a substantial
comment in natural language. Specifically, describe the ports and
function of the design.

apiny 8|A1S

u Use comments where appropriate to document the file. These
comments should provide relevant information about the
corresponding statement, and should be updated along with the file.

] Do not duplicate a statement as a comment.
With Duplication: Without Duplication:
IF clear THEN IF clear THEN
% load ql] with 0 % all = 0;
all = 0; END IF;
END IF;

] Place a comment either directly above the section it describes at the
same indentation level, or aligned with other comments to the right of
the lines of code.

| Leave one blank space between documentation text and the percent
symbol (%) for AHDL-style comments or two dashes (--) for VHDL-
style comments. Align the opening and closing symbols for easy
readability.

Unformatted: Formatted:

$Leave one blank space between$ % Leave one blank space between %
$the percent symbol and the% % the percent symbol and the %
$documenting text. Line up% % documenting text. Line up %
%$opening and closing percent$ % opening and closing percent %
%$symbols for easy readability.% % symbols for easy readability. %

] VHDL-style comments can be nested within %$-style comments. If you
use VHDL-style comments (--) for documentation-type comments,
you can then use the %-style comments to exclude sections of code
from compilation (i.e., “comment out” sections of code).

191

MAX+PLUS Il AHDL

Naming Conventions

192

All symbolic names and identifiers should be meaningful and
completely understandable, and should reflect the purpose or action
of the function.

Ambiguous Name: Unambiguous Name:
direction up
access_mode access_Imenory

Active-low signals should be specified with a clear and consistent
notation. The notations shown below are supported in MAX+PLUS II
design files. You should choose one notation and use it throughout a
project.

/write
nchip_enable
resetn

Use underscores to separate “words” in symbolic and simple names.

Unformatted: Formatted:
regload reg_load
idleio idle_io

goidle go_idle
CSYNCPREEQJ CSYNC_PRE _EQ J

Do not use abbreviations unless they are obvious.

Ambiguous Name: Unambiguous Name:
c clk

clrg clear_reg

sb sync_bit

sm select_mem

rdrm refresh_dram

f forward

r reverse

The Title Statement should include a short, descriptive name for the
design.

TITLE "NTSC Waveform Generator";

Section 5: Style Guide

= Replace numbers with constants to provide meaningful names and a
visual reference for all numbers. Only use 0 and 1 in the code.

CONSTANT TERMINAL_COUNT = 103;

w
—
=
(9°]
[ep]
=1
o
D

Indentation Guidelines

This section illustrates recommended indentation of AHDL sections and
statements.

s You can use the Text Editor’s Auto-Indent command (Options
menu), and Increase Indent and Decrease Indent commands
(Edit menu), to help you indent text easily.

Parameters Statement, Subdesign Section, and Logic Section Indentation:

PARAMETERS
(
% parameter %
% parameter %
)

SUBDESIGN
(
% inputs %
% outputs %
% bidirs %
)
BEGIN
% statement %
% statement %
END;

If Then Statement Indentation:

IF expressionl THEN
% statement %
% statement %
ELSIF expression2 THEN
% statement %
% statement %
ELSE
% statement %
% statement %
END IF;

193

MAX+PLUS Il AHDL

s Use a similar style for If Generate and For Generate statements.
Case Statement Indentation:

CASE expression IS
WHEN constantl

% statement

% statement

o0 o I}

WHEN constant?2
% statement
% statement

0@ of I

WHEN constant3
% statement
% statement

o o |l

WHEN OTHERS =>
% statement
% statement %
END CASE;

a0

or:

CASE expression IS
WHEN constantl => % statement %
WHEN constant2 % statement %
WHEN constant3 => % statement %
WHEN OTHERS => % statement %
END CASE;

I
\

Truth Table Statement Indentation:

TABLE
ss, inputs[] => outputs[],ss;

s0, B'xxxxx0" => B"000001",sl;

s, B'xooxx01" => B"000011",s2;

s2, B'xxx011" => B"000111",s3;

s3, B"xx0111" => B"00111l1l",s4;

s4, B"x01111" => B"011111",s5;

s5, B"011111" => B"111111",s0;
END TABLE;

194

Section 5: Style Guide

Variable Section & State Machine Declaration Indentation:

VARIABLE
ss: MACHINE WITH STATES (sO, sl, s2, s3);

tt: MACHINE
OF BITS (q[3..0])
WITH STATES (

t0 = B"0001",
tl = B"0010",
t2 = B"0100",
t3 = B"1000");

Assert Statement Indentation:

ASSERT condition
REPORT "message"
% message variables %
SEVERITY ERROR;

195

MAX+PLUS Il AHDL

196

Glossary

[ep)
<)
177
1741
&
=
<

This glossary defines selected terms used in MAX+PLUS II documentation.

I

A

ACF see Assignment & Configuration
File.

active-high node A node that is activated
when it is assigned a value of one (1 in
AHDLor '1" in VHDL) or VCC (e.g., ena,
clk).

active-low node A node that is activated
when it is assigned a value of zero (0 in
AHDLor '0' in VHDL) orGND (e.g., clrn,
prn, oen). In AHDL design files, an active-
low node should be assigned a default
value of VCC with the Defaults Statement.

ADF see Altera Design File.

Altera Design File (.adf) An ASCII-format
file (with the extension .adf) for Boolean

Choose Glossary (Help menu) to view the full MAX+PLUS II glossary on-line.

equation entry, used with Altera’s
A+PLUS software. ADFs use a netlist
format and Boolean equations to describe a
design. The MAX+PLUS II Compiler
automatically translates an ADF into a
Compiler Netlist File (.cnf) during project
compilation.

An ADF is also generated when a State
Machine File (.smf) is compiled.

ancillary file A file that is associated with
a MAX+PLUS II project, but is not a design
file in the project hierarchy tree. Most
ancillary files also do not contain design
logic. User-editable ancillary files with the
same filename as the project appear in the
Hierarchy Display window. See the
following list:

197

MAX+PLUS Il AHDL

Editable Ancillary Files:

Assignment & Configuration File (.acf)
Assignment & Configuration Output
File (.aco)

Command File (.cmd)

EDIF Command File (.edc)

Fit File (.fit)

Hexadecimal (Intel-format) File (.hex)
History File (.hst)

Include File (.inc)

JTAG Chain File (.jcf)

Library Mapping File (.1mf)

Log File (.log)

Memory Initialization File (.mif)
Memory Initialization Output File (.mio)
Message Text File (.mtf)

Programmer Log File (.plf)

Report File (.rpt)

Simulator Channel File (.scf)

Standard Delay Format (SDF) Output
File (.sdo)

Symbol File (.sym)

Table File (.tbl)

Tabular Text File (.ttf)

Text Design Export File (.tdx)

Text Design Output File (.tdo)

Timing Analyzer Output File (.tao)
Vector File (.vec)

VHDL Memory Model Output File (.vmo)

Non-Editable Ancillary Files:
Compiler Netlist File (.cnf)
Hierarchy Interconnect File (.hif)
JEDEC File (.jed)

Node Database File (.ndb)
Programmer Object File (.pof)
Raw Binary File (.rbf)

Serial Bitstream File (.sbf)
Simulator Initialization File (.sif)
Simulator Netlist File (.snf)
SRAM Object File (.sof)

ASCIl American Standard Code for

Information Interchange. Text editing
software used for any MAX+PLUS II text

198

file, e.g., Text Design File (.tdf), Library
Mapping File (.lmf), or Vector File (.vec),
must conform to this textual data coding
system.

assignment In AHDL and VHDL,
assignment refers to the transfer of a value
to a symbolic name or group, usually
through a Boolean equation. The value on
the right side of the equation is assigned to
the symbolic name or group on the left.

assignment (resource)
assignment.

see resource

Assignment & Configuration File (.acf) An
ASCII file (with the extension .acf) that
stores information about probe, pin,
location, chip, clique, logic option, timing,
connected pin and device assignments, as
well as configuration settings for the
Compiler, Simulator, and Timing Analyzer
for an entire project.

The ACF stores information entered with
menu commands in all MAX+PLUS I
applications, as well as pin, location, and
chip assignments entered in the Floorplan
Editor window. You can also edit an ACF
manually in a Text Editor window.

binary The base 2 number system (radix).
Binary digits are 0 and 1.

In AHDL, binary numbers are indicated
with the following notation:

B"<series of 0, 1, and X characters>"

where X="don’t care.” Example:
B"0110X1X10"

BITO option An option that prevents
certain warning messages if you use the
lowest-numbered bit of a group as
anything other than the least significant bit
(LSB).

When you declare a group with a range of
numbers, the first number listed is always
the most significant bit (MSB), the last is
always the LSB. If you specify a range in
ascending order, a warning message is
issued unless you have used the BITO
option to specify that the lowest numbered
bit is the MSB. If you set the BIT0 option to
MSB, a warning message is generated if
you specify a range in descending order. If
you set BITO to ANY, you may specify
ranges in either ascending or descending
order without receiving a warning,.

Boolean logic Logic that obeys the
theorems of Boolean algebra (George
Boole, “The Laws of Thought,” 1854). The
Boolean portion of a design is the portion
which can be implemented in the AND-OR
matrix of a device.

buried node A combinatorial or registered
signal that does not drive an output pin.

buried register A register in an Altera
device that does not drive its output to a
pin. A buried register can be located on an
I/O pin or on a logic cell that has no output
to a pin. A buried register can be used to
implement internal logic.

bus (or group) name The name of a bus (or
group) of up to 256 nodes.

A single-range or dual-range name consists
of up to 32 name characters, followed by
one or two ranges of numbers or arithmetic
expressions in brackets. (Dual-range
names are not supported in Waveform

Glossary

Editor files.) The start and end of the
number range are separated by two
periods. Each number in the sequence
represents an individual node (or bit).

Example: bus a[4..1] consists of the
nodes a4, a3, a2, and al.

Example:busb[2..1][1..0] consists of
the nodes b2_1,b2_0,bl_1, and bl_0.

. I~ Glossa
A sequential name, consisting of a comma-

separated list of names, can be entered in
AHDL Text Design Files (.tdf) and Graphic
Design Files (.gdf). In TDFs and ACFs, this
list of names must be enclosed in
parentheses. Sequential bus names can
include single- and dual-range bus names.

Example:a[3..0],dout[6..4],23

The first name in the series of names in a
single-range, dual-range, or sequential
name is the most significant bit (MSB) of
the bus; the last name is the least significant
bit (LSB).

An arbitrary bus name, consisting of up to
32 name characters, can be entered in a
Waveform Design File (.wdf), Simulator
Channel File (.scf), or Vector File (.vec). An
arbitrary bus name does not indicate how
many members are included in the bus.

bus pinstub The location on the boundary
of a mega- or macrofunction symbol,
represented by an “x” in the Symbol File
(.sym), that represents multiple inputs or
outputs to the function. A bus (thick line)
drawn in a Graphic Editor file must
connect to a bus pinstub with the same
number of bits to be recognized as a
connection to the function.

199

MAX+PLUS Il AHDL

C

chip A group of logic functions defined as
a single, named unit. A chip is assigned to
an actual device by either the user or the
Compiler.

You can make chip assignments on logic
functions in design files. Items that are
assigned to the same chip are placed in the
same device during compilation. The term
device always refers to an actual
programmable logic device, whereas the
term chip always refers to a group of logic
functions.

When the Compiler processes a project,
each chip name is assigned to a
corresponding programming file for a
particular device.

Classic An Altera device family based on
Altera’s original EPROM-based EPLD
architecture. MAX+PLUS II provides
support for the following Classic devices:
EP220, EP3201, EP330, EP600L, EP610,
EP610I, EP900L, EP910, EP9101I, EP1800I,
and EP1810 devices.

Clear An input signal that
asynchronously resets a register,
regardless of the Clock signal.

clique A group of logic functions defined
as a single, named unit. The Compiler
attempts to keep clique members together
when it fits the project. A clique
assignment allows you to group all logic on
a speed-critical path, thus improving
performance.

If possible, all clique members are assigned
to the same LAB. If the clique members will
not fit into a single LAB, they are placed in
the same row (in FLEX 10K, FLEX 8000,

200

and MAX 9000 devices only) or the same
device.
Clock A signal that triggers registers.

In a flipflop or state machine, the Clock is
an edge-sensitive signal. The output of the
flipflop can change only on the Clock edge.
For example, in a D flipflop, the input

value is stored and placed on the output at
the Clock edge.

In some cases, MAX+PLUS I lists the Latch
Enable input to a latch as a Clock, e.g., in a
Delay Matrix timing analysis.

Clock Enable The level-sensitive signal on
an enabled flipflop, i.e., a flipflop with an

“E” suffix, including DFFE, TFFE, SRFFE,

and JKFFE. When the Clock Enable is low,
Clock transitions on the Clock input to the
flipflop are ignored.

combinatorial feedback Feedback from a
logic cell that goes back into the device’s
logic array. It is the direct function of the
inputs to a logic cell, and does not retain
values from earlier inputs.

combinatorial output Output from a logic
cell that is a direct function of the inputs,
without regard to the Clock; i.e., it does not
retain values resulting from earlier inputs.

comment In the Graphic and Symbol
Editors, a comment is a free-floating block
of text used to document the design. It is
not associated with any object. A comment
stands alone anywhere within Graphic
Editor files. A comment also stands alone
within the symbol border of a Symbol
Editor file. Comments are ignored by the
Compiler, and can be used to document
various sections of a file.

In the Waveform Editor, a comment is a
line of text used to annotate the waveforms
in the waveform drawing area. It is not
associated with any waveform. A comment
is anchored to the time on the time scale
where the first character is entered. A label
appears in the Name field to indicate a
comment line; when a comment is added
between two existing nodes, it appears in a
blank space, which is inserted between the
waveforms. Comments are ignored by the
Compiler.

In all MAX+PLUSII text files except VHDL
Design Files (.vhd) and Assignment &
Configuration Files (.acf), e.g., in Report
Files (.rpt), Vector Files (.vec), and Text
Design Files (.tdf), a comment is any string
of characters enclosed in percent symbols
(%). You can insert comments wherever
white space is allowed in text files.

In VHDL Design Files and ACFs,
comments begin with two dashes (--) and
continue to the End-of-Line. AHDL TDFs
also support VHDL-style comments. If you
use a VHDL-style comment in a TDF, you
must separate the two dashes from any
preceding symbolic name with at least one
space.

ACFs also support comments consisting of
any string of characters enclosed between
/* and */ characters. You can insert
comments at any location in the file.

comparator A comparator is an operator
used to compare nodes, groups, and
numbers. AHDL provides the following
comparafors:

Glossary

Comparator: Definition:

== equal to

= not equal to

> greater than

< less than

<= less than or equal to

>= greater than or equal to

Compiler Netlist File (.cnf) A binary file
(with the extension .cnf) that contains the
data from a design file. The CNF is created
by the Compiler Netlist Extractor module
of the MAX+PLUS II Compiler.

Aesso|n

cone of logic A group of logic functions
whose outputs eventually feed into a single
gate.

Configuration EPROM Altera’s family of
serial EPROMSs, which are designed to
configure FLEX 8000 and FLEX 10K
devices. This device family includes the
EPC1, EPC1213, and EPC1064 devices.

construct A unit in a text design language
such as AHDL, VHDL, or EDIF.

D

flatabase A flattened representation of all
design files in a MAX+PLUS II project

hierarchy. The database is used internally
by Compiler modules during compilation.

De Morgan’s Inversion Theorem A
theorem developed by Augustus De
Morgan that is used in Boolean algebra.
This theorem states that the complement of
the product of the factors equals the sum of
the complements of the addends; or that
the complement of the sum of the addends
equals the products of the complement of
each factor.

201

MAX+PLUS Il AHDL

Example: ! (A & B) = !'A # !B

decimal The base 10 number system
(radix). Decimal digits are 0 through 9.

In AHDL, no special notation is needed to
indicate decimal digits.

delimiter A text string, character, or
keyword used to define the beginning or
the end of a statement or construct in a text
file.

For example, [and] are delimiters of
AHDL group ranges and % is a comment

delimiter in many MAX+PLUS II text files.

design file A file that contains logic for a
MAX+PLUS II project and is compiled by
the Compiler. The following files are
design files:

Altera Design File (.adf)

EDIF Input File (.edf) *
Graphic Design File (.gdf) *
OrCAD Schematic File (.sch) *
State Machine File (.smf)

Text Design File (.tdf) *

VHDL Design File (.vhd) *
Waveform Design File (.wdf)
Xilinx Netlist Format File (.xnf)

An asterisk (*) indicates the design files
that can exist as top-level files in
hierarchical projects. Other design files
must be the only design file in a project or
must exist at the bottom level of a
hierarchical project.

device A device refers to an Altera
programmable logic device, including
Classic, MAX 5000, MAX 7000, MAX 9000,
FLEX 8000, FLEX 10K, and FLASHIlogic
devices.

202

Altera also offers Configuration EPROM
devices which are used to configure
FLEX 8000 and FLEX 10K devices.

device family A group of Altera
programmable logic devices with the same
fundamental architecture. Altera families
include the Classic, MAX 5000, MAX 7000,
MAX 9000, FLEX 8000, FLEX 10K, and
FLASHIogic device families.

dual 1/0 feedback A combination of pin
feedback and register or combinatorial
feedback on the same logic cell.

dual-range group (or bus) name The name
of a group (or bus) of up to 256 nodes,
consisting of up to 32 name characters,
followed by a two ranges of numbers or
arithmetic expressions in brackets. The
start and end of the ranges are separated by
two periods. Each set of numbers in the
two ranges represents an individual node
(or “bus bit”).

Example: groupa[2..1][5..3] consists
of the nodes a2_5,a2_4,a2_3, al_5,
al 4,and al_3.

In a Graphic Editor files, a sequential bus
name can also include one or more single-
or dual-range bus names in a series. The
first node of the series or the first node in
the first range is the most significant bit of
the bus; the last node of the series or the last
node in the last range is the least significant
bit.

Example:a[8..0][2..0], bl,
dout[6..4]

E

EAB see Embedded Array Block.

EC sec embedded cell.

EDIF Electronic Design Interchange
Format. An industry-standard format for
the transmission of design data.

You can generate an EDIF2000r300
netlist file from a schematic design or from
a VHDL or Verilog HDL design that has
been processed with an appropriate
industry-standard synthesis tool and then
import the file into MAX+PLUS II as an
EDIF Input File (.edf). MAX+PLUSII
supports EDIF Input Files that contain
functions from the Library of
Parameterized Modules (LPM). The
MAX+PLUS II Compiler can also generate
one or more EDIF Output Files (.edo) in
either EDIF200 or 3 00 format that contain
functional or timing information for
simulation with a standard EDIF
simulator.

EDIF Input File (.edf) AnEDIF version200
or 3 0 0 netlist file generated by any
standard EDIF netlist writer. EDIF Input
Files (with the extension .edf) can be
compiled by the MAX+PLUS II Compiler.
MAX+PLUS II supports EDIF Input Files
that contain functions from the Library of
Parameterized Modules (LPM).

EDIF Output File (.edo) An EDIF version
200 or 3 0 0 netlist file (with the
extension .edo) generated by the EDIF
Netlist Writer module of the Compiler.
This file can be exported to an industry-
standard workstation or PC environment
for simulation.

Embedded Array Block (EAB) A physically
grouped set of 8 embedded cells that
implement memory (RAM or ROM) or
combinatorial logic in a FLEX 10K device.
An EAB consists of an embedded cell array,

Glossary

with data, address, and control signal
inputs and data outputs that are optionally
registered.

A single EAB can implement a memory
block of 256 x 8, 512 x 4, 1,024 x 2, or 2,048
x 1 bits. Each embedded cell within the
EAB implements up to 256 bits of memory.
For memory blocks of these sizes, an EAB
has 8, 4, 2, or 1 outputs, respectively.
Multiple EABs can be combined to create
larger memory blocks.

The EAB is fed by row interconnect paths
and a dedicated input bus.

[ep)
(=]
w
w
(<)
=
<

embedded cell (EC) A memory element
that exists in the embedded array of a
FLEX 10K device, and which can
implement memory (RAM or ROM) or
combinatorial logic. An Embedded Array
Block (EAB) consists of a group of 8
embedded cells that can implement a
memory block of 256 x 8,512 x 4, 1,024 x 2,
or 2,048 x 1 bits. Each embedded cell within
an EAB implements up to 256 bits of
memory. Depending on the depth of the
memory, up to 8 of the embedded cells in
an EAB have outputs. For memory blocks
of 256 x8,512x4,1,024 x2, or 2,048 x 1 bits,
an EAB has §, 4, 2, or 1 outputs,
respectively.

Embedded cells have “numbers” of the
format EC<number>_<row letter>, where
<number> ranges from 1 to 8 and <row
letter> consists of the row letter of the EAB.

EPLD Erasable Programmable Logic
Device, i.e., an Altera device that is a
member of the Classic, MAX 5000,

MAX 7000, or MAX 9000 device families.

evaluated function An mathematical
function that evaluates an arithmetic

203

MAX+PLUS Il AHDL

exprebsion and returns a value based on
one or more arguments. The AHDL Define
Statement can be used to create evaluated
functions. The following example shows
the definition of the evaluated function
MAX:

DEFINE MAX(a,b) = (a > b) ? a : b;

excitation equation Combinatorial logic
that directs state transitions in a state
machine.

expander product term A single product
term with an inverted output that feeds
back into the Logic Array Block (LAB) of a
MAX 5000, MAX 7000, or MAX 9000
device.

An uncommitted expander product term
that can be shared with other logic cells in
the same LAB is called a shareable
expander; a product term that has been
shared in this manner is called a shared
expander.

In MAX 7000 and MAX 9000 devices only,
an expander product term that is
“borrowed” from an adjacent logic cell in
the same LAB is called a parallel expander.

extension see filename extension.

F

family-specific mega- or macrofunction An
Altera-provided mega- or macrofunction
that contains logic optimized for the
architecture of a specific device family.

The functionality of a family-specific mega-
or macrofunction is always the same,
regardless of the device family for which it
is designed. However, the actual
primitives and nodes used within the

204

mega- or macrofunction file can vary from
family to family to take advantage of
different device architectures, thus
providing higher performance and/or
more efficient implementation.

fan-in and fan-out Fan-in refers to input
signals that feed the input equations of a
logic cell.

Fan-out refers to output signals that are fed
by the output equations of a logic cell.

filename The name of a design file,
ancillary file, or other file, without the
extension.

A single filename can contain up to 32
name characters, plus a 3-character
filename extension. A full pathname plus
filename and extension can contain up to
128 characters.

Since Windows 3.1 and Windows for
Workgroups 3.11 support only 8-character
filenames, MAX+PLUS Il maps longer
filenames on these operating systems to
8-character filenames. These filename
mappings are stored in the maxplus2.idx
file in each directory that contains long
filenames.

In the Hierarchy Display window, a
filename, along with the file icon and
filename extension, represents a file in the
current hierarchy tree.

filename extension The one, two, or three-
letter extension of a filename that follows a
period (.).

In the Hierarchy Display window, a
filename extension, along with the
filename and the file icon, represents a file

in the current hierarchy or the current
project.

Fit File (.fit) An ASCII file (with the
extension .fit) generated by the Compiler
that documents pin, logic cell, [/O cell,
chip, and device assignments made during
the last compilation. Assignments are
recorded in Assignment & Configuration
File (.acf) syntax.

The Fit File can be used for back-annotation
and for functional testing in the Simulator
and Programmer. To preserve assignments
permanently, Fit File assignments can be
back-annotated into a project’s ACF with
the Back-Annotate Project command
(Assign menu).

You can also display a read-only version of
Fit File information from the most recent

project compilation in the Floorplan Editor.

FLASHIogic (formerly FLEXlogic) An Altera
device family consisting of SRAM-based
devices with shadow EPROM or shadow
FLASH memory. The high-performance
FLASHIlogic device family includes the
EPX8160, EPX880, EPX780, and EPX740
devices.

MAX+PLUS II provides programming-
only support for FLASHlogic devices. Full
compilation, simulation, timing analysis,
and programming support for all
FLASHlogic devices will be available in a
future version of MAX+PLUS II.

FLEX 8000 An Altera device family based
on Flexible Logic Element MatriX
architecture. This SRAM-based family
offers high-performance, register-
intensive, high-gate-count devices. The
FLEX 8000 device family includes the
EPF8282, EPF8282V, EPF8282A, EPF8452,

Glossary

EPF8452A, EPF8636A, EPF8820,
EPF8820A, EPF81188, EPF81188A,
EPF81500, EPF81500A, and EPF8050M
devices.

FLEX 8000A devices provide the same
architectural features as equivalent

FLEX 8000 devices, but offer faster speeds
and smaller die sizes.

The EPF8050M device has a multi-chip
module architecture. When you compile a
project for the EPF8050M, the Report

File (.rpt) includes information for up to
four chips, each of which is labeled
EPF8050M /4.

oD
=)
7]
w
=
<

FLEX10K An Altera device family based
on Flexible Logic Element MatriX
architecture. This SRAM-based family
offers high-performance, register-
intensive, high-gate-count devices with
embedded arrays. The FLEX 10K device
family includes the EPF10K50 device.

flipflop or register An edge-triggered,
clocked storage unit that stores a single bit
of data. A low-to-high transition on the
Clock signal changes the output of the
flipflop, based on the value of the data
input(s). This value is maintained until the
next low-to-high transition of the Clock, or
until the flipflop is preset or cleared.

Depending on the architecture of the
device family, a register can be
programmed as a level-sensitive flow-
through latch or as an edge-triggered D, T,
JK, or SR flipflop.

G

GDF see Graphic Design File.

205

MAX+PLUS I AHDL

global signal A signal from a dedicated
input pin that does not pass through the
logic array before performing its specified
function. Clock, Preset, Clear, and Output
Enable signals can be global signals.

A global signal can be designated during
design entry with a GLOBAL primitive in a
Graphic Design File (.gdf), Text Design File
(.tdf), or VHDL Design File (.vhd). Or,
when the appropriate Automatic Global
option in the Global Project Logic
Synthesis dialog box (Assign menu) is
turned on, the Compiler chooses the signal
that feeds the most flipflops as a global
Clock, Preset, or Clear, and the signal that
feeds the most TRI buffers is chosen as the
global Output Enable.

GND A low-level input voltage.

GND is the default inactive node value. In
an AHDL Text Design File (.tdf), GND is
used as a predefined constant and
keyword. In a VHDL Design File (.vhd),
GND is represented by ' 0'. In a Graphic
Editor file, GND is a primitive symbol. GND
is represented as a low (0) logic level in the
Simulator and Waveform Editor.

Graphic Design File (.gdf) A schematic
design file (with the extension .gdf) created
with the MAX+PLUS II Graphic Editor.

An OrCAD Schematic File (.sch) is
automatically translated into a GDF and
treated as a GDF in the MAX+PLUS II
Graphic Editor and Compiler.

Gray code A counting scheme in which
only one bit at a time changes value
between consecutive count values. In
contrast, a binary count sequence does not
preclude more than one bit changing at
consecutive count values. When only one

206

bit changes, noise susceptibility is reduced
in the circuit.

group In AHDL, a group is a collection of
up to 256 symbolic names that are treated
as a unit. A group name can be specified
with a single-range group name, dual-
range group name, or sequential group
name format.

In the Waveform Editor and Simulator, a
group is a collection of up to 256 nodes that
are treated as a unit. In these applications,
a group name can be specified with an
arbitrary group name or single-range
group name format.

group name see bus name.

H

hard logic function A logic function in a
design file that is not removed during
standard logic synthesis and therefore can
be assigned to a physical resource such as a
specific device, pin, logic cell, or I/O cell.

In Graphic Design Files (.gdf) and Text
Design Files (.tdf), hard logic primitives/
ports include INPUT, INPUTC, OUTPUT,
OUTPUTC, BIDIR, BIDIRC, LCELL,
MCELL, DFF, DFFE, TFF, TFFE, JKFF,
JKFFE, SRFF, SRFFE, and LATCH.
However, INPUT and INPUTC primitives
that do not affect project outputs are not
considered to be hard logic functions.
When SOFT, TRI, and OPNDRN primitives
are not removed during logic synthesis,
they are also hard logic primitives. A
macrofunction that contains a hard logic
primitive is considered to be a hard logic
function.

In Waveform Design Files (.wdf), hard
logic functions are input nodes and output

and buried nodes with registered and
combinatorial node types.

hexadecimal The base 16 number system
(radix). Hexadecimal digits are 0 through 9
and A through F.

In AHDL, hexadecimal numbers are
indicated with the following notation:

X" <series of digits 0 to 9, A to F>" or
H"<series of digits 0 to 9, Ato F>"

Example: H" 123AECF"

Hexadecimal (Intel-format) File (.hex) A
hexadecimal file (with the extension .hex)
in the Intel Hex format.

The MAX+PLUS II Compiler and
Simulator can use Hex Files as inputs to

specify the initial contents of a memory
(e.g., a ROM).

The MAX+PLUS I Compiler automatically
creates output Hex Files containing
configuration data for the Active Parallel
Up (APU) configuration scheme for a
FLEX 8000 devices, and the Passive Serial
(PS) configuration scheme for FLEX 10K
devices.

After compilation, you can also create Hex
Files that support other configuration
schemes for FLEX 8000 and FLEX 10K
devices.

=" Ifyour project uses memory and you

use a Hex File to specify its initial
contents, you should name the file
with a name that is not the same as
the project name or any chip name
within the project. Because the
Compiler automatically generates
Hex Files as outputs for FLEX 8000

Glossary

and FLEX 10K devices, these output
files may overwrite your initial
memory content files.

hierarchical node or symbol name The
unique name for a node or symbol that is
based on its location in the hierarchy of
design files and the net ID number or the
AHDL or VHDL instance name of the logic
function to which it is connected.

Every node and symbol in a project has a

hierarchical name; you can also assign a
node name or a probe name to a node.

Hierarchy Interconnect File (.hif) An ASCII
file (with the extension .hif) created by the
Compiler’s Netlist Extractor module. This
file specifies the hierarchical
interconnections between design files in a
project.

1/0 cell AnI/O cellisaregister that exists
on the periphery of a FLEX 10K, FLEX 8000,
or MAX 9000 device (also known as anI/O
element) or a fast input-type logic cell that
is associated with an I/O pinin a

MAX 7000E device. 1/O cells permit short
setup time.

I’ In pre-version 5.0 releases of
MAX+PLUSII, 1/0 cells were
known as peripheral registers.

I/0 feedback Feedback from the output
pin on an Altera device. It allows an output
pin to be also used as an input pin.

Include File (.inc) An ASCII text file (with
the extension .inc) that can be imported
into a Text Design File (.tdf) by an AHDL
Include Statement. The Include File
replaces the Include Statement that calls it.

207

Alesso|n

MAX+PLUS Il AHDL

Include Files can contain Function
Prototype, Define, Parameters, or Constant
Statements. Include Files that contain
Function Prototypes for Altera-provided
mega- and macrofunctions are located in
the \maxplus2\max2lib\mega_lpm and
\maxplus2\max2inc directories created
during installation, respectively. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the /usr directory.)

insertion point The location at which text
or graphics are inserted.

In a dialog box or in the Text Editor
window, the insertion point appears as a
flashing vertical bar. In the Graphic or
Symbol Editor, it appears as a flashing
square. In the Waveform Editor, an
insertion point in the waveform drawing
area appears as a short horizontal line that
extends to the right of the Time cursor. In
the node/group information area, a name
or blank space that is selected is interpreted
as an insertion point.

When you type text, it appears to the left of
the insertion point, which moves to the
right as you type. When you enter or paste
symbols or waveforms, the upper left
corner of the item(s) appears at the
insertion point.

instance The use of a logic function in a
design file. In the Graphic Editor, the
instance is represented by the symbol (net)
ID number in the lower left corner; in the
Waveform Editor, it is the name of the
node. In AHDL, instances are declared in
one of two forms: an Instance Declaration
that declares a variable of the type
<primitive>, <megafunction>, or
<macrofunction>, or an in-line logic
function reference.

208

In the Hierarchy Display, an instance of a

mega- or macrofunction is represented by
the function name, followed by a colon (:)
and a net ID number. Inan AHDL Variable
Declaration, an instance is represented by

the instance name followed by a colon and
the function name.

K

keyword Words that are reserved for
implementing syntax in files used as inputs
to MAX+PLUS 1], including AHDL Text
Design Files (.tdf), Assignment &
Configuration Files (.acf), Command Files
(.emd), EDIF Command Files (.edc),
Library Mapping Files (.lmf), VHDL
Design Files (.vhd), and Vector Files (.vec).
For example, the keyword OF cannot be
used as an unquoted symbolic name in an
AHDL file.

L

LAB see Logic Array Block.

latch A level-sensitive clocked storage
unit that stores a single bit of data. A high-
to-low transition on the Latch Enable signal
fixes the contents of the latch at the value of
the data input until the next low-to-high
transition of the Latch Enable.

Latch Enable A level-sensitive signal that
controls a latch. When it is high, the input
flows through the output; when it is low,

the output holds its last value.

LC see logic cell.

least significant bit (LSB) The bitof a
binary number that contributes the
smallest quantity to the value of that
number, i.e., the last member in a bus or
group name. For example, the LSB for a bus

or group named a[31..0] isa[0] (or
a0).

Library of Parameterized Modules (LPM) A
technology-independent library of logic
functions that are parameterized to achieve
scalability and adaptability. Altera has

implemented parameterized modules (also

called “parameterized functions”) from
LPM version 2.0.1/2.1.0 that offer
architecture-independent design entry for
all MAX+PLUS Il-supported devices. The
MAX+PLUS II Compiler includes built-in
compilation support for LPM functions
used in schematic, AHDL, and EDIF input
files.

logic function or Design Entity A primitive,
megafunction, macrofunction, or state
machine, which may be represented as
either a name or a symbol in a design file.

Logic Array Block (LAB) A physically
grouped set of logic resources in an Altera
device. An LAB consists of alogic cell array
and, in some device families, an expander
product term array. Any signal that is
available to any one logic cell in the LAB is
available to the entire LAB.

In Classic devices, the logic in the LAB
shares a global Clock signal. The LABis fed
by a global bus and a dedicated input bus.
(In an EP1810 device, an LAB is
synonymous with a quadrant.) In

MAX 5000 and MAX 7000 devices, the LAB
is fed by a Programmable Interconnect
Array (PIA) and a dedicated input bus. In
FLEX 8000, MAX 9000, and FLEX 10K
devices, the LAB is fed by row interconnect
paths and a dedicated input bus.

Glossary

logic cell (LC) The generic term for a basic
building block of an Altera device. In
Classic, MAX 5000, MAX 7000, and

MAX 9000 devices, a logic cell (also called a
macrocell) consists of two parts:
combinatorial logic and a configurable
register. The combinatorial logic allows a
wide variety of logic functions. In

FLEX 8000 and FLEX 10K devices, a logic
cell (also called a logic element) consists of
a look-up table (LUT), i.e., a function
generator that quickly computes any
function of four variables, and a
programmable register to support
sequential functions.

A1esso|n E

The register can be programmed as a flow-
through latch; asa D, T, JK, or SR flipflop;
or bypassed entirely for pure
combinatorial logic. The register can feed
other logic cells or feed back to the logic cell
itself. Some logic cells feed output or
bidirectional I/O pins on the device.

You can assign a logic function to a specific
logic cell. You can also assign a logic
function to alogic array block (LAB), a row,
or a column to ensure that the function is
implemented in a logic cell in a particular
LAB, row, or column.

In FLEX 10K, FLEX 8000, and MAX 9000
devices, logic cells have “numbers” of the
format LC<number>_ <L AB name>, where
<number> ranges from 1 to 8 and <LAB
name> consists of the row letter and
column number of the LAB. In Classic,
MAX 5000, and MAX 7000 devices, logic
cells have numbers of the format
LC<number>, where <number> may consist
of both digits and letters.

209

MAX+PLUS Il AHDL

5" FLEX 10K, FLEX 8000, MAX 9000,
and MAX 7000E devices have
specialized logic cells, called I/O
cells, on the periphery of the device.

logic element see logic cell.

logic level The input and output logic

levels of nodes and groups are defined
with the following characters:

Character: Logic Level:
Logic low (GND)
Logic high (vcC)
X Undefined /Don’t Care (not
permitted for initialization)
pA High impedance (no input

to pin); e.g., used for the
“output” part of a
bidirectional pin when the
“input” part of the pin is
driving in.

0to9,AtoF Used for groups and
interpreted as binary,
decimal, hexadecimal, or
octal values according to
the current radix. The most
significant bit is first; the
least significant bit is last.

logic option An option that controls the
logic synthesis process on one or more
logic functions.

A variety of logic options are available.

Logic option assignments can be applied to
individual logic functions; a group of logic
option assignments, called a logic synthesis
style, can be applied to individual logic

functions. A default logic synthesis style is
also applied to the project as a whole. The
logic cell Turbo Bit logic option can also be

210

turned on or off on a device-by-device
basis.

Logic options can also be assigned as
parameters for a megafunction or
macrofunction.

[(5° Some logic options are not available
with standard synthesis; all logic
options are available with multi-
level synthesis.

logic synthesis style A combination of
logic synthesis option settings that are
saved under a single name.

A logic synthesis style can be individually
tailored for different device families, so
that the logic synthesis option settings vary
according to the architecture of the target
device family.

LPM see Library of Parameterized
Modules.

LSB see least significant bit.

macrocell see logic cell.

macrofunction A high-level building block
that can be used together with gate and
flipflop primitives and/or megafunctions
in MAX+PLUS II design files.

5~ Ingeneral, Altera recommends using
megafunctions in preference to
equivalent macrofunctionsin allnew
projects. Megafunctions are easier to
scale to different sizes and may offer
more efficient logic synthesis and
device implementation.

Altera provides a library of over 300 old-
style macrofunctions in the \maxplus2\
max2lib directory and its subdirectories
created during installation. AHDL Include
Files (.inc) for these macrofunctions are
located in the \maxplus2\max2inc
directory; VHDL Component Declarations
for macrofunctions supported by VHDL
are provided in the maxplus2 package in
the altera library, which is located in the
\maxplus2\max2vhdl directory. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the /usr directory.)

To view the file that contains the logic for a
macrofunction, select the macrofunction
symbol in the Graphic Editor or
macrofunction name in the Text Editor and
choose Hierarchy Down (File menu).

MAX 5000 An Altera device family based
on the first generation of Multiple Array
MatriX architecture. This EPROM-based
device family includes the EPM5016,
EPM5032, EPMb5064, EPM5128,
EPMb5128A, EPM5130, EPM5192, and
EPS464 devices.

MAX 7000 (and MAX 7000E) An Altera
device family based on the second
generation of Multiple Array MatriX
architecture that includes MAX 7000 and
MAX 7000E devices. These EPROM- and
EEPROM-based devices include EPM7032,
EPM7032V, EPM7064, EPM7096,
EPM7128E, EPM7128, EPM7160E,
EPM7160, EPM7192E, EPM7192, and
EPM7256E devices.

MAX 7000E devices are enhanced versions
of MAX 7000 devices and are function-,
pin-, and programming-file-compatible
with MAX 7000 devices. MAX 7000E
devices differ from MAX 7000 devices in

that they offer up to six pin- or logic-driven

Glossary

Output Enable signals, fast input setup
times to logic cells, and multiple global
Clocks with optional inversion.

Il5~ Altera recommends using
MAX 7000E devices rather than
MAX 7000 devices for new designs.

MAX 9000 An Altera device family based
on the third generation of Multiple Array
MatriX architecture. These EEPROM-based
devices include the EPM9560, EPM9480,
EPM9400, and EPM9320 devices.

MAX+PLUS (DOS) Altera’s DOS-based
Multiple Array MatriX Programmable
Logic User System. MAX+PLUS is a set of
computer programs and hardware support
products for designing and implementing
custom logic circuits with Altera Classic
and MAX 5000 devices. Graphic Design
Files (.gdf) created for MAX+PLUS are
automatically converted and processed
with the MAX+PLUS II Compiler; AHDL
Text Design Files (.tdf) are compiled
directly. The MAX+PLUS II Programmer
can program Classic and MAX 5000
devices with JEDEC Files (.jed) and
Programmer Object Files (.pof) created by
MAX+PLUS.

Il5" MAX+PLUS is no longer offered by
Altera. All new designs should be
created with MAX+PLUS 1L

Mealy state machine A type of state
machine in which the outputs are a
function of the inputs and the current state.

Mealy, George H., A Method for
Synthesizing Sequential Circuits, in The
Bell System Technical Journal, Vol. 34,
American Telephone and Telegraph
Company (September 1955).

211

[«p]
o
7]
7]
=SY
=
<

MAX+PLUS Il AHDL

megafunction A complex or high-level
building block that can be used together
with gate and flipflop primitives and/or
old-style macrofunctions in MAX+PLUS II
design files.

Altera provides a library of megafunctions,
including functions from the Library of
Parameterized Modules (LPM), in the
\maxplus2\max2lib\mega_lpmdirectory
created during installation. AHDL Include
Files (.inc) for these megafunctions are also
located in the \maxplus2\max2lib\
mega_lpm directory. (On a UNIX
workstation, the maxplus2 directory is a
subdirectory of the /usr directory.)

To view the file that contains the logic for a
megafunction, select the megafunction
symbol in the Graphic Editor or
megafunction name in the Text Editor and
choose Hierarchy Down (File menu).

memory bit and memory word Amemory
bit is an individual memory address in a
memory (i.e., RAM or ROM) block.

A memory word is a group of memory bits
in a RAM or ROM block.

For example, the content5_[4..0]
memory word defines a byte of memory in
which the individual memory bits are
contentb_4, content5_3,
content5_2, content5_1, and
content5_0.

Memory Initialization File (.mif) An ASCII
file (with the extension .mif) that specifies
the initial content of a memory block (RAM
or ROM), i.e., the initial values for each
address. This file is used during project
compilation and/or simulation.

212

Moore state machine A state machine in
which the present state depends only on its
previous input and previous state, and the
present output depends only on the
present state.

Moore, Edward F., Gedanken-Experiments
on Sequential Machines, in Automata
Studies, Annals of Mathematics Studies
Number 34, ed. C. E. Shannon and J.
McCarthy, Princeton: Princeton University
Press (1956).

most significant bit (MSB) The bit of a
binary number that contributes the greatest
quantity to the value of that number, and
the first member in a bus or group name.
For example, the MSB for a bus named
al3l..0]isa[31].

name characters ThecharactersAtoZ,ato
z,0to 9,slash (/),dash (-), and underscore
() are legal for MAX+PLUS II breakpoint,
chip, clique, file, group (bus), node,
parameter, pin, pinstub, probe, logic
synthesis style, and quoted and unquoted
symbolic names, with the exceptions listed
below. Case is not significant.

Item: Name Character
Exception:
filename No slash (/) is

permitted. Case is
significant on UNIX
workstations.

Item:

single-range
group (bus)
name

dual-range
group (bus)
name

sequential
group (bus)
name

unquoted
symbolic
name (AHDL)

Name Character
Exception:

No slash (/) is
permitted. The name is
followed by a range of
numbers or arithmetic
expressions in brackets.
The start and end of the
range are separated by
two periods. For
example, group
al3..1] consists of the
nodes a3, a2,and al.In
Graphic Editor files
only, sequential bus
names can also include a
series of single-range
bus names. For example,
al[8..0],d4[6..4].
Same as single-range
group names, with two
ranges of numbers or
arithmetic expressions
in brackets. For
example,
al[6..31[4..01.

The name consists of a
series of comma-
separated node names
enclosed in parentheses.
For example, group (a,
b, c) consists of the
nodes a, b, and c. In
Graphic Editor files,
parentheses are not
used.

No dash (-) is
permitted. Names
cannot consist entirely
of digits. AHDL
keywords cannot be
used.

Glossary

Name Character
Exception:

Item:

VHDL names No slash (/) or dash (-)
is permitted. The name
must start with a letter,
cannot end with an
underscore (), and
cannot contain two
underscores (_ _)ina
row. VHDL keywords
cannot be used.

ACFnames Names that contain
slash (/), dash (-),
vertical bar (|), colon
(:), and/or period (.)
characters must be
enclosed in double

quotation marks ().

nesting The repetition of an element or
statement within an AHDL statement, e.g.,
an If Statement within an If Statement.

net ID number see symbol ID number.
node A node represents a wire carrying a

signal that travels between different logical
components of a design file.

In the Graphic Editor files, nodes are
represented as lines; in text files, they are
symbolic names; in Waveform Editor files,
they are waveforms.

node name Thename giventoasignalina
design file. A node name can contain up to
32 of the following name characters: A to z,
ato z, 0to 9,slash (/), dash (-), and
underscore (_). Hierarchical node names
can contain 128 characters, including
vertical bar (1), colon (:), and period (.).
Case is not significant.

213

(2]
)
w
w
<
-
<

MAX+PLUS 1l AHDL

Some restrictions apply to names in VHDL
Design Files (.vhd) and unquoted port and
symbolic names in AHDL Text Design
Files (.tdf).

0

octal The base 8 number system (radix).
Octal digits are 0 though 7.

In AHDL, octal numbers are indicated with
the following notation:

o"<series of digits 0 to 7>" or
Q" <series of digits 0 to 7>"

Example: Q"4671223"

one-hot encoding A type of binary coding
in which one and only one bit of a value is
set to 1. For example, the four legal values
0001,0010,0100, and 1000 together
comprise a “one-hot” code sample because
in each of these four values a single bit is set
to 1.

You can manually implement one-hot
encoding. In addition, the Global Project
Logic Synthesis dialog box (Assign menu)
includes a One-Hot State Machine Encoding
option to allow the Compiler to
automatically implement one-hot
encoding for the entire project. Altera
strongly recommends using the One-Hot
State Machine Encoding option rather than
manual one-hot encoding to implement
one-hot encoding.

one’s complement A system of
representing binary numbers in which the
negative of a number is obtained by
inverting each bit individually.

operand A node, group, or number that is
acted upon in an operation.

214

operator A symbol thatsignifies the action
of an operation. AHDL and VHDL offer
both logical and arithmetic operators.

Output Enable A high logic level on the
Output Enable signal enables the output.

In MAX 7000 devices (not including
MAX 7000E devices), the signal from the
active-low global Output Enable pin must
be inverted and connected to the active-
high Output Enable input of the TRI
primitive. In all other device families,
either active-high or active-low polarity
can be used.

In MAX 9000 devices, the Fitter
automatically inserts additional LCELL
primitives to provide the correct polarity
for a non-global Output Enable pin or an
Output Enable signal driven by a logic cell.

P

parameter or parameterized A
parameter is an attribute of a logic function
that determines the logic created or used to
implement the function, i.e., a
characteristic that determines the size,
behavior, or silicon implementation of a
function. The parameter information can
be used to determine the actual primitives
and other subdesigns needed to implement
the logic of the function.

A parameterized function is a function
whose behavior is controlled by one or
more parameters. Some logic functions,
such as the functions in the Library of
Parameterized Modules (LPM), are
inherently parameterized and require
parameter values to be assigned.

Parameters can be assigned to any
individual instance of a megafunction in

MAX+PLUS II to control its size or
implementation. Some parameters can also
be applied to old-style macrofunctions to
determine their style of implementation.
MAX+PLUS II also allows you to assign
global, project-wide default values for
parameters.

parameterized module A logic function
that uses parameters to achieve scalability,
adaptability, and efficient silicon
implementation. MAX+PLUSII supports a
variety of parameterized modules (also
called “parameterized functions”),
including functions belonging to the
Library of Parameterized Modules (LPM).

LPM functions provide architecture-
independent design entry for all
MAX+PLUS Il-supported devices. The
MAX+PLUS Il Compiler includes built-in
compilation support for LPM functions
used in schematic, AHDL, and EDIF input
files.

pin A pinis an actual input or I/O pin on
an Altera device.

In Graphic Editor files, a pin is represented
by an INPUT, INPUTC, OUTPUT, OUTPUTC,
BIDIR, or BIDIRC symbol. In a Text
Design File (.tdf), a pin is represented as an
INPUT, OUTPUT, or BIDIR port. Ina VHDL
Design File (.vhd), a pin is represented as
an IN, OUT, or INOUT port. In a Waveform
Design File (.wdf), a pin is represented as a
node with an input, output, or
bidirectional I/O type and a pin input,
registered, or combinatorial node type.

You can assign a logic function to a specific
pin number. You can also assign a logic
function to a row or a column to ensure that
the function is implemented in a pin on a
particular row or column.

Glossary

pin number A number used to assign an
input or output signal in a design file,
which corresponds to the pin number on
an actual device.

Both letters and digits are used to specify
pin numbers for PGA-package devices.

pinstub In the Graphic and Symbol
Editors, a pinstub is the location on the
boundary of a symbol represented by an
“x” in a Symbol File (.sym) and a name that
represents an input or output of the
primitive or of the megafunction or
macrofunction design file that the symbol
represents. A line (node) drawn in a
schematic must connect to this pinstub to
be recognized by the Compiler as a
connection between the logic in the current
file and the logic in the primitive,
megafunction, or macrofunction.

A i
18S50|9 2
g
3

You can specify whether or not to use an
optional pinstub when you edit a symbol
instance in a Graphic Editor file.

Pinstubs in Graphic Editor files are
synonymous with ports in AHDL Function
Prototypes and VHDL components. They
are also synonymous with ports listed in
the Subdesign Sections of lower-level Text
Design Files (.tdf), and in Entity
Declarations of lower-level VHDL Design
Files (.vhd).

pinstub name A symbolic name that
identifies an input or output of a logic
function.

In the Symbol Editor, the “visible” pinstub
name appears both inside and outside of
the symbol. This “visible” pinstub name
can be an abbreviation or an alias for the
“full” pinstub name, which represents the
full name of the original input, output, or

215

MAX+PLUS Il AHDL

bidirectional pin in a mega- or
macrofunction design file or primitive
Function Prototype.

You can specify whether or not to display
the “visible” pinstub name in a Graphic
Editor file when you create a pinstub in the
Symbol Editor. The use or non-use of a
particular pinstub (and hence its visibility)
can be customized when you edit a symbol
instance in the Graphic Editor with Edit
Ports/Parameters (Symbol menu).

Pinstubs in Graphic Editor files are
synonymous with ports in AHDL Function
Prototypes and signals listed in the
Subdesign Sections of lower-level Text
Design Files (.tdf).

port A symbolic name that represents an
input or output of a primitive or of a design
file.

In AHDL, a port name in the Subdesign
Section represents an input or output of the
current file. This port name also appears in
the Function Prototype for the function.
When an instance of a primitive or lower-
level design file is implemented with an
Instance Declaration or an in-line
reference, its ports are used to connect it to
other functions in the TDF. After an
instance is declared, its inputs and outputs
are expressed as names in the format
<instance name> . <port name> in the Logic
Section. When an in-line reference is used,
either named port association or positional
port association can be used to connect the
function’s ports to other functions in the
TDF.

A port name in an AHDL Subdesign
Section or VHDL Entity Declaration is
synonymous with a pin name in a Graphic
Design File (.gdf) or Waveform Design

216

File (.wdf). A port name that is appended
to an instance name is synonymous with
the full pinstub name in an instance of a
symbol in a Graphic Editor file.

Preset An input signal that
asynchronously sets the output of a
register to a logic high (1), regardless of
other inputs.

primitive One of the basic functional
blocks used to design circuits with
MAX+PLUS II software. Primitives are
used in Graphic Design Files (.gdf), AHDL
Text Design Files (.tdf), and VHDL Design
Files (.vhd).

Graphic Editor primitives include buffers,
flipflops, a latch, input and output
primitives, and logic primitives. Primitive
symbols for Graphic Editor files are
provided in the \maxplus2\max2lib\
prim directory created during installation.

AHDL and VHDL primitives, which
include buffers, flipflops, and a latch, are a
subset of the primitive symbols used in
Graphic Editor files. Other functions are
represented by logical operators, ports,
and other constructs. Function Prototypes
for AHDL primitives are built into the
MAX+PLUS II software; Component
Declarations for VHDL primitives are
provided in the maxplus2 package in the
altera library, which is located in the
\maxplus2\max2vhdl directory. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the /usr directory.)

probe A unique name assigned to any
node, e.g., the input or output of a
primitive or macrofunction, which can be
used instead of the full hierarchical node
name throughout MAX+PLUS II. A probe

name thus provides a short name to
identify a node.

product term Two or more factors in a
Boolean expression combined with an AND
operator constitute a product term, where
“product” means “logic product.”

project A project consists of all files that
are associated with a particular design,
including all subdesign files and related
ancillary files created by the user or by
MAX+PLUS II software. The project name
is the same as the name of the top-level
design file in the project, without the
filename extension.

MAX+PLUS II performs compilation,
simulation, timing analysis, and

programming on only one project at a time.

R

radix A number base. Group logic level
and numerical values are entered and
displayed in binary, decimal, hexadecimal,
or octal radix in MAX+PLUS II.

range A sequence of numbers or
arithmetic expressions that define the
width of a group (bus) in a Graphic Editor
or AHDL file. A range is enclosed in
brackets; the most significant bit (MSB) of
the range is shown first; the least
significant bit (LSB) is shown last. The start
and end of the range are separated by two
periods.

Example: group a{2..0] consists of the
nodes a2, al, and a0; the MSB is a2; and
the LSB is a0.

register see flipflop.

Glossary

registered feedback Feedback that is the
output of a flipflop or latch.

registered output The output of a flipflop
or latch, which can feed an output pin on
the device.

Reset An active-high input signal that
asynchronously resets the output of a
register to a logic low (0) or a state machine
to its initial state, regardless of other

. Glossary
inputs.

resource A resource is a portion of an
Altera device that performs a specific, user-
defined task (e.g., pins, logic cells).

A1esso| I

resource assignment An assignment of a
logic function in a project to a particular
pin, logic cell, I/O cell, embedded cell,
logic array block (LAB), embedded array
block (EAB), row, column, or chip. This
type of resource assignment assigns a logic
function to a physical resource in a device.

A resource assignment can also consist of a
clique, logic option, connected pin, or
timing requirement assignment to a
particular logic function in a project. This
type of resource assignment assigns a
compilation resource to a logic function.

S
SDF Output File see Standard Delay
Format Output File.

secondary input The Clock, Preset, and
Reset (Clear) inputs to a register or a state
machine in a design file.

sign-extend To extend a two’s
complement binary number by padding to
the left with 0’s if the number is positive, or
with 1’s if the number is negative.

217

MAX+PLUS Il AHDL

single-range group (or bus) name The
name of a group (or bus) of up to 256
nodes, consisting of up to 32 name
characters, followed by a range of numbers
or arithmetic expressions in brackets. The
start and end of the range are separated by
two periods. Each number in the sequence

represents an individual node (or “bus
bit”).

Example: group a{4..1] consists of the
nodes a4, a3,a2, and al.

In a Graphic Editor files, a sequential bus
name can also include one or more single-
range bus names in a series. The first node
of the series or the first node in the first
range is the most significant bit of the bus;
the last node of the serjes or the last node in
the last range is the least significant bit.

Example:a[8..0], bl, dout[6..4]
SMF see State Machine File.

Standard Delay Format Output File (.sdo)

An optional output file (with the extension
.sdo) containing timing delay information
that allows you to perform back-
annotation for simulation with VHDL
simulators that use VITAL-compliant
simulation libraries; back-annotation for
simulation in Verilog simulators; and
timing analysis and resynthesis with EDIF
simulation and synthesis tools.The
Standard Delay Format (SDF) is an
industry-standard format.

The MAX+PLUS II Compiler’s EDIF,
VHDL, and Verilog Netlist Writer modules
of the MAX+PLUS II Compiler can
generate SDF QOutput Files in SDF version
2.1 or 1.0 format.

218

state A state is implemented in a device
as a pattern of 1’s and 0’s (bits) that are the
outputs of multiple flipflops (collectively
called a state machine state register). States
can be defined in an AHDL Text Design
File (.tdf), a Waveform Design File (wdf),
a Vector File (.vec), a VHDL Design File
(.vhd), or a State Machine File (.smf), and
are reported in the State Machine
Assignments Section of the Report

File (.rpt).

state bit An output of a flipflop used by a
state machine to store one bit of the value of
the state machine.

state control equation An AHDL equation
that assigns a value to the Clock, Clock
Enable, or Reset port(s) of the D or T
flipflop(s) on which a state machine is
implemented.

state machine A sequential circuit that
advances through a number of states. A
state machine can be defined in a
Waveform Design File (.wdf), State
Machine File (.smf), Vector File (.vec),
VHDL Design File (.vhd), or in a State
Machine Declaration in an AHDL Text
Design File (.tdf).

State Machine File (.smf) An ASCII file
(with the extension .smf) that contains a
state machine design created for use with
Altera’s A+PLUS or SAM+PLUS software.
This file contains a symbolic representation
of the data for a circuit in terms of inputs,
outputs, and transitions between states.
The MAX+PLUSII Compiler automatically
translates an SMF into an Altera Design
File (.adf) and a Compiler Netlist File (.cnf)
during compilation.

state name A symbolic name that
represents the state of a state machine.

state transition A conditional assignment
of a state to the state machine variable.
State transitions are created by
conditionally assigning the state variables
with a single behavioral construct.

In AHDL, state transitions are created with
Case or Truth Table Statements. State
transitions occur on the rising edge of the
Clock.

In VHDL, state transitions are created with
Case Statements. You must also provide a
Wait Statement to cause each state
transition to occur on a Clock edge.

subdesign A lower-level design file in a
MAX+PLUS II project, i.e., an Altera-
provided or user-created megafunction or
macrofunction.

Altera provides libraries of mega- and
macrofunctions in the mega_lpm and mf
subdirectories of the \maxplus2\max2lib
directory. AHDL Include Files (.inc) for
these functions are located in the
\maxplus2\max2lib\mega_lpm and
\maxplus2\max2inc directories,
respectively. Component Declarations for
functions supported by VHDL are
provided in the maxplus?2 package in the
altera library, which is located in the
\maxplus2\max2vhdl directory. (On a
UNIX workstation, the maxplus2 directory
is a subdirectory of the /usr directory.)

subdesign name A name that represents
the name of a subdesign. In AHDL, the
subdesign name is a quoted or unquoted
symbolic name that must be the same as
the Text Design File (.tdf) filename.

Glossary

Unquoted subdesign name:

Maximum 32 characters
length:
a-z,A-%7,0-9,and

underscore (L)

Legal characters:

Anunquoted subdesign
name cannot be a
reserved AHDL
identifier or keyword.

Quoted subdesign name:
Maximum 32 characters
length:

Legal characters: a-z,A-7,0-9,dash (-),
and underscore (_)
5" In the UNIX workstation
environment, filenames and hence
subdesign names are case-sensitive.

sum-of-products A Boolean expression is
said to be in sum-of-products form if it
consists of product terms combined with
the OR operator.

symbol ID number or net ID number A
number that uniquely identifies every
node and symbol in a design file.

In the Graphic Editor, this number appears
inside the bottom left corner of a symbol
and reflects the order in which symbols are
entered in a Graphic Editor file. In other
types of design files, the Compiler assigns
ID numbers to nodes when the project is
compiled. In the Hierarchy Display
window, the name of each lower-level
design file is appended with a colon (:)
plus the ID number or an AHDL or VHDL
mega- or macrofunction instance name.

219

A1essoly E

MAX+PLUS I AHDL

symbolic name
AHDL.

A user-defined name in

Unquoted symbolic name:

Maximum 32 characters

length:

Legal characters: a-z, A-Z, 0-9, slash (/),
and underscore ()
An unquoted symbolic
name cannot consist
entirely of digits and
cannot be a reserved
identifier or keyword.

Quoted symbolic name:

Maximum 32 characters

length:

Legal characters: a-z, A-Z, 0-9, slash (/),
dash (-), and underscore
)
A quoted symbolic
name cannot be a
reserved identifier.

T

TDF see Text Design File.

ternary operator An operator that selects
between two expressions within an AHDL
arithmetic expression. The ternary
operator is used in the following format:
<expn 1> ? <expn 2> : <expn 3>

If the first expression is non-zero (true), the
second expression is evaluated and given
as the result of the ternary expression.
Otherwise, the third expression is
evaluated and given as the result of the
ternary expression.

220

Text Design Export File (.tdx} An ASCII
text file (with the extension .tdx) in AHDL
that is optionally generated when you
compile a Xilinx Netlist Format File (.xnf).
It contains the same logic as the XNF File.

A Text Design Export File can be saved as a
Text Design File (.tdf) and used to replace
the corresponding XNF File in the
hierarchy of a project.

Text Design File (.tdf) An ASCII text file
(with the extension .tdf) written in AHDL.
Text Design Export Files (.tdx) and Text
Design Output Files (.tdo) can be saved as
TDFs and compiled with MAX+PLUS II.

Text Design Output File (.tdo) An ASCII
text file (with the extension .tdo), generated
by the MAX+PLUS II Compiler, that
contains the AHDL equivalent of the fully
optimized logic for a device in the project.

The Compiler generates a TDO File, as well
as an Assignment & Configuration Output
File (.aco) when you compile a project if
you turn on the Generate AHDL TDO File
command (Processing menuy).

You can save a TDO File as a Text Design
File (.tdf) and recompile it. (You must also
save the Assignment & Configuration
Output File (.aco) as an Assignment &
Configuration File (.acf) if you wish to
preserve the assignments for the device.)
TDO Files facilitate back-annotation and
preserve the existing logic synthesis in the
project.

tri-state buffer A buffer with an input,
output, and controlling Output Enable
signal. If the Output Enable input is high,
the output signal equals the input. If the
Output Enable input is low, the output
signal is in a state of high impedance. The

tri-state buffer is implemented with the
TRI primitive.

Tri-state buses can be implemented by
tying multiple nodes together in a Graphic
Editor file and with the TRI_STATE_NODE
variable in an AHDL file.

truncate In AHDL, to shorten a binary

number by subtracting digits from the left.

two’s complement A system of
representing binary numbers in which the
negative of a number is equal to its inverse
plus 1. Arithmetic operators in AHDL
assume that groups they operate on are a
two’s complement binary number.

u

unary An arithmetic operator that
operates only on one operand.

user libraries One or more directories that
contain your own megafunctions,
macrofunctions, Symbol Files (.sym),
AHDL Include Files (.inc), or precompiled,
user-defined VHDL packages.

The Compiler automatically searches for
these user-specified libraries when it
compiles a project. The Compiler's VHDL
Netlist Settings command (Interfaces
menu) specifies VHDL design libraries for
the current project. You can specify which
directories contain your other user libraries
with the User Libraries command
(Options menu) in any MAX+PLUS II
application.

v

variable A name thatrepresentsanode. In
AHDL, a variable can also represent a state
machine or an instance of a primitive,

Glossary

megafunction, or macrofunction and is
declared in the Variable Section. In VHDL,
variables have a single current value, and
are declared and used only in processes
and subprograms. A VHDL variable is
declared with a Variable Declaration; the
value of a variable can be modified with a
Variable Assignment Statement.

VCC A high-level input voltage
represented as a high (1) logic level in
binary group values.

In an AHDL Text Design File (.tdf), vCC is
a predefined constant and keyword, and
the default active node value. Ina VHDL
Design File (.vhd), VCC is represented by
*1'.In a Graphic Editor file, vCC is a
primitive symbol. VCC is represented as a
high (1) logic level in the Simulator and
Waveform Editor.

VHDL Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language.

You can create a VHDL Design File (.vhd)
with the MAX+PLUS II Text Editor or any
standard text editor and compile it directly
with MAX+PLUSII. You can also generate
an EDIF 2 0 0 or 3 0 0 netlist file from a
VHDL design that has been processed with
a VHDL synthesis tool, then import the file
into MAX+PLUS 1II as an EDIF Input File
(.edf). The MAX+PLUS II Compiler can
also generate a VHDL Output File (.vho)
that contains functional and timing

information for simulation with a standard
VHDL simulator.

VHDL Design File (.vhd) An ASCII text file
(with the extension .vhd) written in VHDL.
VHDL Design Files can be compiled by the
MAX+PLUS Il Compiler.

221

0
=
@
2
<

Alessoly

MAX+PLUS Il AHDL

X

Xilinx Netlist Format (XNF) File (.xnf) A
netlist file (with the extension .xnf)
generated by Xilinx software. XINF Files
that are generated by running the Xilinx
LCA2XNF utility can be compiled directly
by the MAX+PLUS II Compiler. An XNF
File can define all logic in a project, or be
incorporated at the bottom level in a
hierarchical project.

222

Index E

All index references are to the MAX+PLUS II AHDL manual. Definitions of technical terms
are given in Glossary.

Symbols

- character 11, 95, 103, 109, 112
-- characters 95, 191
! character 95, 103, 107, 108, 112
! # characters 96, 104, 107, 108, 112
!'$ characters 96, 104, 107, 112
! & characters 96, 107, 108, 112
! = characters 11, 95, 103, 111, 112
" character 94, 141, 145, 190
character 96, 104, 107, 108, 112
$ character 96, 104, 107, 108, 112
% character 94, 191
& character 96, 104, 107, 108
' character 94
() characters 94, 99, 112, 190
* character 103
+ character 11, 95, 103, 109, 112
, character 43, 94, 100, 169, 190
. character 94, 133, 134

. characters 94, 100
/ character 42, 94, 192
: character 94, 190

223

MAX+PLUS If AHDL

; character 94, 190

< character 11, 96, 104, 111, 112
<= characters 96, 104, 111, 112

= character 94

== characters 11, 95, 103, 111, 112
=> characters 33, 36, 94, 172, 183
> character 11, 95, 104, 111, 112
>= characters 11, 95, 104, 111, 112
? character 96, 104

@ character 94

[1 characters 28, 94, 99

\ character 94

~ character 103

_ character 94, 192

~ character 85, 100, 162

A

a6502 megafunction 130
ACF 2,11
active-low signals 41, 173, 192
ADF 3
AHDL
automatic LPM substitution for operators & comparators 11
comments 191
elements 91
examples 9, 24
file structure 4
formatting guidelines 188
general description 2
golden rules 14
syntax coloring 10
templates 9, 22
using 17
AHDL Template command 22
ahdl.tpl file 23
Altera Design Files (.adf) 3
AND operator 104, 107, 108
arithmetic comparators 111, 112
arithmetic expressions 100, 103
arithmetic functions 20
arithmetic operators 109, 112
ASSERT keyword 155

224

Assert Statement
general description 155
implementing 21, 89
position in a TDF 5
sample files 21, 90
Assign menu commands 2, 11
Assignment & Configuration File (.acf) 2, 11
assignments, resource & device 11
Auto-Indent command 188, 193

Backus-Naur Form xvii
BEGIN keyword 168
BIDIR keyword (see ports)
bidirectional pins 43
binary numbers 18, 102
BITO option (see Options Statement)
BNF xvii
Boolean equations
control equations 57, 171
general description 168
general rules 169
implementing 25
position in a TDF 5
priority rules 112
using groups 28
Boolean expressions 108, 112
arithmetic operators 109
comparators 111
general description 106
implementing 25
in Case Statements 34
in If Then Statements 31, 34, 176
logical operators 107, 108
naming operators & comparators 84
buffer primitives 114125
buses, tri-state (see groups and tri-state buses)

C

Carry Chain logic option 115

Index

225

Xapu

MAX+PLUS Il AHDL

CARRY primitive
general description 114
primitive/port interconnections 127
primitive/port to register connections 128

carry-out signal 110, 169

Cascade Chain logic option 116

CASCADE primitive
general description 116
primitive/port interconnections 127
primitive/port to register connections 128

CASE keyword 172

case sensitivity 146

Case Statement
compared with If Then Statement 34
formatting guidelines 194
general description 172
implementing 31, 32
position in a TDF 5
recovering from illegal states 67
sample files 33, 55, 57, 68, 78
specifying default values for variables 39, 173
specifying output values for states 56
state transitions 56

CEIL function 105

chip assignments 11

Clear signal 118

clique assignments 11

Clique command 11

CLIQUE keyword 92

Clock Enable signal 48, 57, 171

Clock signal 118
global 50
in state machines 57, 60, 64, 171
loading a register 52
synchronizing state machine outputs 63

Color Palette command 10

column assignments 11

combinatorial feedback 122

combinatorial logic 2545, 124

comments 191

comparators 25, 84, 103, 111, 112, 190
context-sensitive help 10
substituting LPM functions 11
syntax coloring 10

conditional logic 31-35, 172, 176

226

Index

conditionally generated logic 87
Connected Pins command 11
CONNECTED_PINS keyword 92
CONSTANT keyword 147
CONSTANT primitive 113
Constant Statement 101, 103
general description 147
implementing 19, 21
position in a TDF 4
sample files 20, 21
constants, in Boolean expressions & equations 25
control equations (see Boolean equations)
counters 51
Create Default Include File command 8, 70, 76, 77, 145, 153
Create Default Symbol command 76
creating evaluated functions 149
csdpram megafunction 83, 130
csfifo megafunction 83, 130

D

decimal numbers 18, 102
decoders 19, 32, 35, 36, 37, 70
Decrease Indent command 188, 193
default pin/port values 157
DEFAULTS keyword 173
Defaults Statement
general description 173, 185
implementing 39
position in a TDF 5
sample files 39, 40, 42
DEFINE keyword 149
Define Statement
general description 149
implementing 19, 21
position in a TDF 4
sample files 21
delay chains 121
Design Doctor Settings command 121
DESIGN keyword 92
device assignments 11
DEVICE keyword 92
DEVICE_FAMILY parameter 87
DFF primitive 50, 51, 63, 93, 126, 127
DFFE primitive 48, 50, 51, 93, 126, 127

227

MAX+PLUS Il AHDL

228

DIV operator 103
documentation conventions xiv
dual-range group names 99

E

EDIF Input Files (.edf) 3
Edit Ports/Parameters command 137
ELSE GENERATE keywords 178
ELSE keyword 176
ELSIF keyword 176
embedded cell assignments 11
Enable signal 48, 171
END CASE keywords 172
END DEFAULTS keywords 173
END GENERATE keywords 178, 179
END IF keywords 176
END keyword 168
END TABLE keywords 183
Enter Parameters command 137
evaluated expression 103
evaluated functions
creating 149
implementing 19
testing 155
examples xix, 9
EXP primitive
conversion to LCELL buffer 117
general description 117
primitive/port connections 127
primitive/port to register connections 128
expander product terms 117
exponent operator 103

F

Fitter Settings command 122
flipflops 125

FLOOR function 105
Floorplan Editor 11, 12

Index

For Generate Statement
formatting guidelines 194
general description 179
implementing 86
position ina TDF 5
sample files 86

FOR keyword 179

formatting guidelines 188-197

FUNCTION keyword 151

Function Prototype Statement

general description 151 m
implementing megafunctions & macrofunctions 69
position in a TDF 4
sample files 44, 71, 79 _
G &
x
GDF 2

Generate AHDL TDO File command 13
GENERATE keyword 178, 179
GLOBAL primitive 50
general description 118
primitive/port interconnections 127
primitive/port to register connections 128
Global Project Logic Synthesis command 50, 58, 67, 123, 137
Global Project Parameters command 137
global signals 50, 118
GND 30, 39, 40, 102, 127, 128, 157, 173
golden rules 14
Graphic Design File (.gdf) 2
Graphic Editor 137
groups
bit-ordering 154
default values 39
defining 28
general description 99
in Boolean equations 25, 28, 169
in Boolean expressions 108, 109, 111
in truth tables 184
names 99
ranges 100, 103
set equal to VCC & GND 30
sign-extending 30, 110

229

MAX+PLUS Il AHDL

H

Help
context-sensitive 10
examples 24
updates xviii
HELP_ID keyword 155
hexadecimal numbers 18, 102
hierarchical designs
general description 3, 7
implementing in AHDL 69-80
Hierarchy Down command 16

identifiers, reserved 93
If Generate Statement
formatting guidelines 194
general description 178
implementing 87
position in a TDF 5
sample files 87, 90
IF keyword 176, 178
If Then Statement
compared with Case Statement 34
Compiler interpretation 34
creating counters 51
formatting guidelines 193
general description 176
implementing 31
position in a TDF 5
sample files 31, 42
specifying default values for variables 39, 173
specifying output values for states 56
Include File (.inc) 2, 7, 70, 74, 76, 145
INCLUDE keyword 145
Include Statement
general description 145
implementing 70
position in a TDF 4
Increase Indent command 188, 193

230

Index

in-line logic function reference
general description 180
implementing 69
named port association 71
position in a TDF 5
positional port association 71
RETURNS clause 72
INPUT keyword (see ports)
Instance Declaration 80
general description 160
implementing 69
position in a TDF 5
IS keyword 172
iteratively generated logic 86

J

JKFF primitive 48, 93, 126, 127, 128
JKFFE primitive 48, 93, 126, 127, 128

K

keywords
context-sensitive help 10
reserved AHDL keywords 92, 93
syntax coloring 10

L

LATCH primitive 93, 126, 127, 128
LATENCY parameter 138
LCELL primitive
converting EXP buffer 117
converting SOFT buffer 123
general description 120
implementing 81
primitive/port interconnections 127
primitive/port to register connections 128
Library of Parameterized Modules (LPM) 2, 11, 129
location assignments 11
LOG2 operator 103, 105

231

MAX+PLUS Il AHDL

232

logic
active-low 41
combinatorial 25—45
conditional 31-35, 172, 176
sequential 47—-53
Logic Array Block 117
logic cells
assignments 11
converting SOFT buffer 123
logic expansion 124
logic option assignments 11
Carry Chain logic option 115
Cascade Chain logic option 116
inserting LCELL buffers 122
inserting SOFT buffers 124
used as parameters 138
Logic Options command 11
Logic Section
Assert Statement 89, 155
Boolean control equations 57, 171
Boolean equations 168
Case Statement 31, 32, 34, 39, 56, 67, 172, 173, 194
Defaults Statement 39, 173
For Generate Statement 179
formatting guidelines 193
general description 168
If Generate Statement 178
If Then Statement 31, 34, 39, 51, 56, 173, 176, 193
in-line logic function reference 69, 180
ports 132
position in a TDF 5
Truth Table Statement 35, 39, 56, 60, 61, 63, 173, 183
Logic Synthesizer 60, 62, 117, 123
logic, reducing complexity 124
logical comparators 111, 112
logical operators 25, 84, 106, 107, 108, 112
LPM 2, 11, 111, 129
lpm_add_sub 11,74
lpm_compare 11, 35, 111
lpm_counter 51
lpm_decode 35
lpm_dff 48
lpm_ram_dg 83
lpm_ram_io 83

Index

lpm_rom 83
LSB keyword (see Options Statement)

Machine Alias Declaration

general description 166

implementing 77

position in a TDF 5

sample files 79
MACHINE INPUT keywords 77, 157, 166
MACHINE keyword 151, 165, 166
MACHINE OUTPUT keywords 77, 157, 166
macrofunctions

context-sensitive help 10

formatting guidelines 188

general description 131

implementing 69-80, 159, 160, 180

in-line reference 69

Instance Declaration 69

instances 159, 160

ports 70, 72

prototypes 151

syntax coloring 10

unconnected inputs 72

user-defined 76
MAX+PLUS II Floorplan Editor 11, 12
MAX+PLUS II Graphic Editor 137
MAX+PLUS Il manuals

documentation conventions xiv

help updates xviii

list of documents xii
MAX+PLUS Il Symbol Editor 137
MAX+PLUS II Text Editor

AHDL templates & examples 9

context-sensitive help 10

error location 12

resource & device assignments 11
max2inc directory 8, 131, 145
max2lib directory §, 131, 145
max2work\ahd]l directory 9, 24
maxplus2.idx file 16
maxplus2.ini file 16
maxplus2\max2inc directory 8, 131, 145
maxplus2\max2lib directory 8, 131, 145

233

MAX+PLUS Il AHDL

234

MCELL primitive 93, 121

Mealy state machines 64

mega_lpm directory 129, 145

megafunctions
context-sensitive help 10
formatting guidelines 188
general description 129
implementing 69-80, 159, 160, 180
in-line reference 69
Instance Declaration 69
instances 159, 160
ports 70, 72
prototypes 151
syntax coloring 10
unconnected inputs 73
user-defined 76

MEMORY identifier 93

message location 12

MOD operator 103

Moore state machines 60

MSB keyword (see Options Statement)

multiplication operator 103

named port association 71, 135

names
formatting guidelines 189
group 99
naming conventions 192
on logical operators & comparators 84
ports 97, 133
subdesign 97
symbolic 97, 132

NAND operator 104, 107, 108

net ID numbers 85

Node Declaration
general description 162
implementing 27, 81
position in a TDF 5
sample files 82

NODE keyword 159, 162

Index

nodes
active-low 41, 173
creating 162
declaring 27, 162
default values 39
grouping 28, 99
in Boolean equations 25, 168, 169
in Boolean expressions 108, 111
in truth tables 184
names 42

NOR operator 104, 107, 108

NOT operator 107, 108

ntsc megafunction 130

numbers 149, 169
general description 102
implementing 18, 19
in Boolean equations 112
in Boolean expressions 108, 109
replacing with constants 147
sign-extended 169
truncated 169

numeric equality operator 104

0

obsolete syntax 140
octal numbers 18, 102
OF BITS keywords 165
old-style macrofunctions (see macrofunctions)
one-hot code 32
one-hot encoding 67
One-Hot State Machine Encoding option 58, 67
open-drain pins 122
operands 106
operator and comparator priorities 112
operators 25, 103, 106, 107, 108, 109, 112, 190
context-sensitive help 10
substituting LPM functions 11
syntax coloring 10
OPNDRN primitive
general description 122
primitive/port interconnections 127
primitive/port to register connections 128
OPTIONS keyword 154

235

MAX+PLUS Il AHDL

236

Options Statement
BITO option 100
general description 154
implementing 28
position in a TDF 4
sample files 29
OR operator 104, 107, 108
OrCAD Schematic Files (.sch) 3
Output Enable signal 118
OUTPUT keyword (see ports)

P

PARAM primitive 113
parameters 20
creating 142
general description 137
in Assert Statements 89
in Function Prototypes 151
in Instance Declarations & in-line references 73
testing 155
PARAMETERS keyword 142
Parameters Statement
Compiler parameter value search order 137
formatting guidelines 189
general description 142
position in a TDF 4
pin assignments 11
Pin/Location/Chip command 11
pins
bidirectional 43
default values 157
naming 132
placeholders 43, 100
p1l1 megafunction 130
ports
bidirectional 43
commonly used ports 135
default values 157
formatting guidelines 188
general description 132
groups 99
named association 71
names 97
positional association 71

Index

primitive/port interconnections 127
primitives 163
replacing INPUT, OUTPUT & BIDIR primitives 113
specifying the port type 157
testing usage with USED 87, 155
using 47, 70, 72, 160
positional port association 71
Preset signal 118
primitives
context-sensitive help 10
flipflops and latch 125—-126
general description 113 m
implementing 50, 81, 159, 160, 163, 180
Instance Declaration 82
legal interconnections 127
ports 47, 163
prototypes 151
Register Declaration 47, 50, 51
syntax coloring 10
unconnected inputs 72
priority rules, in Boolean equations 112
product terms
expanders 117
reducing number 123
Project Archive command 16
Project Name command 16
Project Save & Check command 13, 77, 146
Project Save & Compile command 13
Project Set Project to Current File command 16
punctuation
context-sensitive help 10
syntax coloring 10

Xapu|

Q

quoted names 97

R

radixes 102

RAM, implementing 83

ranges 99, 100, 103
group 154

read.me file xviii

237

MAX+PLUS Il AHDL

238

Register Declaration
creating counters 51
declaring registered outputs 50
general description 163
implementing 47
position in a TDF 5

REPORT keyword 155

reserved identifiers 93

reserved keywords 92

Reset signal 57, 171

resource assignments 11

RETURNS clause 72

RETURNS keyword 151

ROM, implementing 83

row assignments 11

S

Save As command 16

SCH file 3

SCLK primitive 118

SEGMENTS keyword 92

sequential group names 100

sequential logic 4753

SEVERITY keyword 155

Shift+F1 keys 10

signals, active-low 41, 192

sign-extended numbers 169

single-range group names 99

SMEF 3

SOFT primitive
comparison to LCELL primitive 121
general description 123
implementing 81
primitive/port interconnections 127
primitive/port to register connections 128

SRFF primitive 48, 93, 126, 127

SRFFE primitive 48, 93, 126, 127

State Machine Declaration
assigning state bits & values 58
formatting guidelines 195
general description 165
implementing 55
Mealy state machines 64
Moore state machine 60

MAX+PLUS Il AHDL

240

T

TABLE keyword 183
TDO file 2
TDX file 2
templates, AHDL 9, 22
ternary operator 104
Text Design Export File (.tdx) 2
Text Design File (.tdf)
checking syntax 13
comments 191
compiling 13
formatting guidelines 188—195
in hierarchical designs 7
structure 4
Text Design Output File (.tdo) 2, 13
Text Editor (see MAX+PLUS II Text Editor)
TFF primitive 48, 93, 126, 127
TFFE primitive 48, 93, 126, 127
THEN keyword 176
timing assignments 11
Timing Requirements command 11
Title Block 113
TITLE keyword 141
Title Statement
general description 141
naming conventions 192
position in a TDF 4
TO keyword 179
TOK file 16
TRI primitive 43
conversion of OPNDRN buffer 122
general description 125
primitive/port interconnections 127
primitive/port to register connections 128
TRI_STATE_NODE keyword 27, 159, 162
tri-state buffer (see TRI primitive)
tri-state buses 27, 43, 45
tri-state nodes 162
truncated numbers 169

Index

position in a TDF 5
sample files 55, 57, 59, 61, 63, 65, 68, 78
specifying machine outputs 60
State Machine Files (.smf) 3
State Machines
state machines
assigning state bits & values 54, 55, 56, 58, 60, 61, 67, 165
Clock, Reset & Enable signals 57
control equations 171
dummy states 67
general description 54
implementing 55—68
importing & exporting 77
logic minimization 62
machine alias 77, 166
Mealy state machines 64
Moore state machines 60
naming 165
one-hot encoding 58
ports 47
processing 54
recovering from illegal states 66
Reset state 165
sample files 55, 57, 59, 61, 63, 65, 68, 78
state transitions 56, 60
synchronizing outputs 60, 63
with asynchronous outputs 64
with synchronous outputs 60
string equality operator 104
Style Guide 187
SUBDESIGN keyword 157
subdesign names 97
Subdesign Section
formatting guidelines 189, 193
general description 157
ports 132
position in a TDF 4
subranges 100
Symbol Editor 137
Symbol File (.sym) 138
symbolic names 97, 132, 192
symbols 94
syntax checking 13
Syntax Coloring command 10, 14, 24, 187
syntax, obsolete 140

239

Index

Truth Table Statement
formatting guidelines 194
general description 183
implementing 35
position in a TDF 5
sample files 36, 37, 59, 61, 63, 65
specifying default values for variables 39, 173
state transitions 56, 61, 63

u

unary + and - operators 110

undefined (X) logic levels 35, 93

unquoted names 97

Use LPM for AHDL Operators logic option 11, 111
USED evaluated function 87

User Libraries command 76

usr/maxplus?2 directory (see maxplus2 directory)

vV

VARIABLE keyword 159
Variable Section
formatting guidelines 195
general description 159
If Generate Statement 178
Instance Declaration 69, 160
Machine Alias Declaration 77, 166
Node Declaration 27, 81, 162
position in a TDF 5
Register Declaration 47, 50, 51, 163
State Machine Declaration 55, 60, 165, 195
vce 30, 39, 40, 102, 127, 128, 157, 173
VHDL Design Files (.vhd) 3

W

Waveform Design Files (.wdf) 3
WHEN keyword 172

WHEN OTHERS keywords 172
white space 190

WITH clause 73

WITH keyword 151, 180

WITH STATES keywords 165

241

MAX+PLUS Il AHDL

242

X

X character 38, 183

Xilinx Netlist Format Files (.xnf) 3
XNOR operator 108

XOR operator 104, 107, 108

g
mm‘lﬂﬂﬂll}lm]:ffﬂmmmﬂmﬁ

gAY ALy

gyl
[

AAAAAAAAAAAAAAAAA
IIIIIIIIIIIIIIIIII

AAAAAAAAAAAAAAAAAA

222222222222

	Contents

	Preface - MAX+PLUSII Fundamentals

	Section 1 - Introduction

	Section 2 - How to use AHDL

	Section 3 - Elements

	Section 4 - Design Structure

	Section 5 - Style Guide
	Glossary

	Index

