Targeted for ACDS 21.4

Intel® Agilex® |-Series F-Tile Superlite || Demo designs
Supporting Documentation
V1.0

=

intel.

Introduction & Motivation

= This document serves as supporting documentation for the various F-tile Superlite Il demo
designs.

= All F-tile demo designs (including Superlite lI/IV variants) follow a similar configuration and
can have different number of channels, different clocking, using FEC or not, FGT or FHT
etc. but the look and feel is always the same, both from RTL implementation as well from
software implementation.

* The software is written in such a way that there is a single main.c file and supporting files
that is being re-used by all designs (whether FEC is used or not) and the parameterization
is done using the parameters.h file. Those software files are also maintained on the Intel
Forum Intel Agilex |-Series Demo page https://community.intel.com/t5/FPGA-Wiki/High-
Speed-Transceiver-Demo-Designs-Agilex-I-Series-F-Tile/ta-p/1315123

* This allows to maintain a single set of source files to be used across all designs and only
very little parameterization is required. E.g. to move from a design that is using 2 PHY's
with 4 channels each with PAM4 without FEC to a design that is using 3 PHY's with FEC
only very few lines need to be modified in the parameters.h file. Examples of those are also
maintained in the software section on the Intel Agilex |-Series Demo page.

intel.

2

https://community.intel.com/t5/FPGA-Wiki/High-Speed-Transceiver-Demo-Designs-Agilex-I-Series-F-Tile/ta-p/1315123

Introduction & Motivation

» This design illustrates how to use the Superlite Il V4 concept on Intel Agilex using the F-Tile
» The V4 version of Superlite Il is based on the V2+V3 version.

» The V2 version uses a valid signal in combination with the transmit data and there is also a
ready signal provided which can potentially halt the transmit traffic for a short interval
(based on filling level of Transmit FIFO). This interface is equivalent to the Avalon Streaming

Interface.
* The V3 version adds additional functionality :

* Link information is exchanged between the local and remote side and results in a LinkUp
when both local and remote side are aligned.

* XOFF is used in order to allow for backpressure or Flow Control: ask remote side to stop
sending traffic (when local side e.g. is not capable of receiving the data).

* Because of the exchanges between local and remote side the protocol is now a fully
bidirectional protocol (V1 and V2 versions could be used fully unidirectional)

intel.

Introduction & Motivation

The V4 version is the version where transmit datapath is clocked with a single clock derived from the
transceiver. This simplifies the Tx statemachine and FIFO implementation and has a significant
reduction of the latency.

Additional features added in the V4 version :

- Insertion and detection of Lane Identification: each lane has its own unique identifier. If lane swap or
lane re-ordering occurs the information received in terms of lane identification allows to
automatically recreate the original data pattern. This helps in not having to worry about how the
lanes are routed in layout or how cables are connected.

- Added GENERIC parameter SIMPLEX which when set to true does not perform handshaking with the
remote side and allows SIMPLEX operation (even when using Duplex transceiver). When parameter
SIMPLEX is set to true, Linkup will be declared when LaneAligned is achieved locally.

- Simplified exchange of control characters for flow control.
- Tested interoperability with equivalent Superlite Il V4 versions on A10 and S10 GX (H-tile).
- Latency measurement is inherently part of the protocol now.

» This specific version is using 2 instances of the Superlite Il V4 demo, each with 4 lanes running at
24.78125 Gbps where one is connected to the lower lanes of both QSFP-DD modules. Using DAC or
Fiber Optic connection a full system test can be done between the 2 modules, illustrating link-up,
reset behaviour etc.

intel. =«

How to use Superlite Il V4 in Packet mode?

m By nature the Superlite Il V4 is using streaming data (Avalon® streaming interface based) so
not framed or packetized . One could however support also a framed mode (or packet

mode) by using one of the lanes to transport the packet related information (SOP, EOP, etc).

This does require an additional lane to provide the packet overhead information. This
concept has been successfully implemented on Stratix V GX (with 11 lanes) and can easily
be repeated on Stratix10 (with higher rates and including KR-FEC).

Valid Data Idla

Lane[9:0]
(640 bit X
bus)

Valid Data

Lane[10] Valid_Data
(64 bit)

AL AL

1 parallel 1 parallel
clock cycle clock cycle

intel.

5

'Superlite [V4" Concept

Ref
Clost Y =64 bit

SuperLite Il V4 Ftile Concept

_________ —_—— ——————————
| I | Single clock based on local transmit PLL |
| e | 6-283Gbps -

XOFF | a > |
| User N User |
| Data W N Links #’; Data
I TX N x y bit I I N x y bit RX I
| R superLite I | | | SuperlLite I | LinkUp > |
| UL V4 | I V4 I

T

| _vaid XRx 7' 6 —28.3 Gbps | TxRx . valid |
| User ; | | ¥ XOFF User |

Data | N Links < Data |
I Rx N x y bit | I N x y bit Tx I
I ready
|_ Single clock based on local transmit PLL | | |

Ref
Clock2

intel.

'SuperLite [V4" Concept

* Transport data from point A to point B as simple as possible multiple bidirectional serial links. Note
that the number of lanes in each direction do not have to be equal.

= \/3 version of the protocol exchanges information between local and return side (handshaking) as
well as XON/XOFF control (backpressure)

= On the transmit side data will only be written in the FIFO when the valid signal is asserted, the fifo
also can issue a backpressure signal (indicated by the ‘ready’ signal to indicate if data can be
transmitted. This is equivalent to the Avalon Streaming interface.

= When XOFF is received from the remote side, all traffic will be halted on the local side (link remains
up though).

= All the logic is clocked on one single clock (i.e. both transmit and receive core logic), this clock is the
clock derived from the transmit PLL and is basically the line rate/64.

» This implies that the combination of data valid with the locally generated clock from the local
transmit PLL is frequency locked to the clock used at the transmit side (which will typically vary in
ppm).

» Uses 64/66 Encoding in combination with scrambling.

= Multiple lanes are bonded, there is no real limit on the number of lanes that can be used, apart from
potential limitations to compile very large number of lanes. Typically 4 or 10 lanes will be used. Also
a single lane is possible.

intel.

7

'Superlite Il V4’ Concept (continued)

» The Superlite Il V4 TX module will automatically pause Tx user data if needed to insert idle
and alignment characters and will also pause Tx user data based on the “ready” received
from the Native PHY (as it is working in overspeed). So the user data needs to be able to
immediately stop sending traffic. If this is not possible one can add an additional FIFO with a
slower running write clock.

= User data is always 64 bit per lane because of the 64b66b encoding.

intel.

'SuperlLite Il V4 2x4 lanes Demo Design

= Goals:
* Demonstrate the Superlite Il V4 concept on the Intel Agilex F-Tile
» Use Intel Agilex I-Series PCle dev kit as platform for demonstration.

» Uses 2 Superlite Il V4 demo instances (each with their own packet generator and checker). One
instance (or “phy”) is connected to the QSFPDDO module (lower lanes) and the other one is connected
to the QSFPDD1 module (lower lanes)

* Full system validation can be done using either a DAC cable (various length) or Fiber Optic connection
using the 2 QSFP-DD modules.

. Lir}e rate in this demois 25.78125 Gbps per lane by default but it could run up to 28.3 by changing the
software.

* 4 lanes will be used for each phy, therefore aggregate line rate is 100 Gbps per phy
» User data width is 256-bits (64 bits per lane) per phy

 Actual throughput depends on the configured “read time” and “idle time"” parameters. In the demo the
“read time” is 1056 clock cycles and “idle time” is 7 clock cycles but these can be easily changed. The
“read time” needs to be an integer multiple of 33. The “read time” would normally be set to a higher
value like e.g. 67584 clock cycles in order to increase the efficiency.

» Actual throughput is measured in the design by measuring the data_valid received in combination with
the clock.

intel.

Goals (continued)

= Goals:

* The user data is generated based on the line_rate/64 Mhz clock generated by the Native
PHY . As it receives backpressures from the Superlite IV Tx module the data will be halted
at specific times.

* To create the 256 bit user data in each phy a combination of different counterpatterns
and prbspatterns are used across the 4 lanes of each phy

—Through NDME Transceiver Toolkit support is automatically available.
—Use Nios Il processor as controller/monitor.

—The RAM in the QSYS is programmed with the latest software, so one can directly connect
to the system using JTAG and run the software.

—Reports errorcount and calculates BER based on the received data.

—Includes Testbench

intel.

10

‘Superlite Il V4’ Resources (one phy)

= Superlite Il V4 Ftile TxRx Module Resources 4 lanes at 25.78125 Gbps targeting Intel Agilex
~ 13700 ALUT's

~ 12450 ALM'’s

~ 25500 Dedicated logic registers

27 M20K (for the receive and transmit buffers)

* 19008 Block Memory bits

* Note that the amount of resources is higher than normal because a soft gearbox implementation has to be used as the PHY direct IP does not support
the gearbox function yet in this mode (should be supported by the PHY direct IP in a later Intel® Quartus® Prime Software release)

Instance Entity ALMs needed [=A-B+C] ALMs used for memory Combinational ALUTs Dedicated Logic Registers Block Memory Bits M20Ks
~ M superliteii_txrx_module_inst superliteii_txrx_module 12459.0 (81.3) 160.0 (0.0) 13665 (36) 25329 (311) 19008 27
P Reset_Synchro_inst1 reset_synchro 2.0(2.0) 0.0 (0.0) 1(1) 4(4) 0 0
P Reset Synchro_inst2 reset_synchro 1.5 (1.5) 0.0 (0.0) 0(0) 4(4) 0 0
P Rx_Path_inst Rx_Path_Deskew 116.4 (116.4) 0.0 (0.0) 181 (181) 107 (107) 0 o
y B Tx_Ratematcher_Control_inst Tx_Ratermnatcher_Control | 194.9 (179.5) 0.0 (0.0) 3521(326) 352 (323) 2048 7
- EIE txrx_pcs_64b66b_inst txrx_pcs_64b66b 12062.8 (3.6) 160.0 (0.0) 13095 (12) 24551 (8) 16960 20

intel.

Data
Generator

PC with
USB-Blaster

Data
Verifier

Superlite 11 V4 TXRX Ftile Module

Datain_ready

XOFF

Datain

Datain_valid

Idle &

DataClock

TxCoreClock

Alignment
Insertion
+ TXFIFO
Control

Tx_clkout

DataOut

N*64
DataOut_Valid

LinkUp

Phy Mgmt Interface

RxPath_
Deskew

(402 83203125 Mhz)

1 Ctrl_out_Aligned[N-1]

<

Data_out_Aligned
64 [(N*64)-1 ..(N-1)*64]

<
1

Ctrl_out_Aligned[0]

Data_out_Aligned
64 [63..0]

Native Phy
PMA Direct
(Bonded)
TXRX
(25.78125 Gbps)

N channels
(64 Bit PMA/PCS Int.)

intel.

12

tXrx_pcs 64b66b’ with soft Gearbox Detailed blockdiagram

Refclk
(datarate/x)

tx_data_in_valid
tx_ctrlenable[(N-1)..0] —/——Z—)

tx_data_in[(N*64)-1 .0] ——— /£ N

tx_clkout Tx._clkout2[0]
(dive4)
x_fifo_rd_en[N-1] Tx_coreclkin[N-1..0] TXIN-1..0]
rx_ctridetect
[(N*8)-1..(N-1)*8]
F-Tile
64 [(N*sr;()_;jatzg u1t)*64 Phy Direct N
o P x
- - Using XCVR clocking Upto 28.3
rx_valid[N-1] Gbps
(NRZ or
PAM4)
rx_clkout = tx_'clkout
]
rx_fifo_rd_en[O

<

rx_ctridetect[7..0]
<'| rx_dataout RX[N-1..0]

64 [63..0]
rx_valid[0]

rx_coreclk_in[N-1..0]
rx_clkout2[0] (div64)

intel.

Tx Path

= A datastream is generated at a clock of 402.83203125 Mhz @ 256 bits when Dataln_ready is high. The
datapattern is a combination of 4 60-bit Prbs-23 (each with their own starting value) and one 16-bit
counterpattern.

* The 16-bit counterpattern is spread across the 16 lanes, 4 bits per lane. This is to make sure any deskew
on the lanes would be immediately spotted.

= Since idle +alignment characters have to be inserted at regular intervals and because of the overclocking
the pcs is generating periodic tx_pcs ready pulses the data stream will be halted at regular intervals. This is
indicated by the Superlite IV TX module by the Dataln_ready signal.

= Single biterrors can be inserted using inserterror input. As there is one PRBSGenerator per virtual lane, the
biterror insert will produce 4 bit-errors at a time.

» This data is presented to the Superlite Il V4 TxRx Module

» The data is written into the TxFifo (single clocked fifo) using the 402.83 Mhz as clock and using the
Dataln_Valid as write-enable.

» The read_enable is pulsed at the same pace as the write-enable.
» |f no valid data is present idle characters will be sent.

intel.

Tx Path (continued)

* The 64b66 encoding is very straightforward : bits 65..64 are set to “10" for control data and
“01" for data (so neutral disparity)

=" |n terms of idle character, a value of “1C1C...1CBC" is being used. The alignment character is
sent as the last control character. The lower 16 bits of this control word (at the alignment
position) encodes the status of the link in addition to the alignment indication.

= |f no local alignment has been found : the last control word sentis “.7C7C"

= |f local word alignment has been found : the last control word sentis “.FD7C"
= |f XOFF is being sent to the remote side : the last control word sentis “.5C7C"
= Lane Alignment coding (B<i> is the byte)

B7 B6 B5 B4 B3 B2 B1 BO

Lane Identity Latency CountTx 7C 7C 7C 7C FD/5C/7C 7C

intel.

Tx Path (continued)

» [n order to make sure there is DC balance and enough transitions present on the serial links
a selfsynchronizing scrambler is used (the same as being used in T0GbE). The scrambler will
scramble only the 64 databits (the framing bits on bits [65..64] are not scrambled since they
are required for the framing. The polynomial used for the scrambleris 1 + xA39 + x"58
according to the IEEE.

» The resulting 66-bit is sent to a buffer where it is being read by a gearbox implemented in
soft where the gearbox converts it from 66-bit to 64-bits and sent it to the PHY direct IP.

* In the PHY direct IP the 64-bit is serialized (using 64-bit serializer) and sent out as serial
datastreams (25.8 Gbps per lane).

intel. s

Rx Path

= After deserialization of the data the 64-bit data is passed to a gearbox (using the recovered
clock). The output from the gearbox is then written into an elastic FIFO where the readclock
is the tx_clkout, from this point all Rx data is clocked on the same clock domain as the tx
clock.

* The resuling 66 bits data per lane from the elastic FIFO is then presented to the 64b66b
decoder module (through the rx_buffer) which will periodically assign bitslips until correct
frame alignment has been achieved.

= This is all happening on all lanes at the same time and everything is clocked based on the
single clock out derived from the transmitter (the overspeed clock at datarate/64).

» The rx_buffers are used for the deskew.

intel. 7

Rx Path (continued)

= Based on the position of the alignment word, the delay for each lane is measured, the
statemachine inside the Rx_path_deskew module will use the information of that measured
delay to control a special Rx FIFO signal “rx_fifo_rd_en” to all rx_buffers to deskew all the
lanes.

= Once lane alignment is achieved the 256-bit reconstructed data based on the received Lane
|dentification in addition with a data valid signal will be sent to the data verifier.

= Here PRBS and counterverification will take place and single biterrors will be counted.

= Prbslocked is asserted when 128 consecutive valid Prbs-23 60-bit words have been
received on each of the lanes and de-asserted when 128 consecutive non-valid Prbs-23 60-
bit words have been received.

= Countlocked is asserted when 128 consecutive valid 16-bit counter words have been
received on the parts of the lanes they were received.

» There are 4 60 bit PRBS Verifiers (one for every lane) and 1 16-bit CountVerifiers to validate
the 256 bit data.b

intel.

18

Rx Path (continued)

» The V3 version adds an additional Rx State machine to the logic to determine the local Rx
state and it depends on the incoming “alignment” control word

= |[f last control word received is “...FD7C" it means the remote side has reached
Wordalignment, if local side also has reached wordalignment this results in Linkup to be
asserted, indicating that both sides are up and running. This can be used as the trigger to
sent data across e.g.

= |f last control word received is “...5C7C" it means an XOFF has been received from the
remote side, this will be forwarded to the local transmitter to stop generating traffic on the
local side.

= (See Flow chart on next slide for more details)

intel.

19

Control Characters used in combination with XOFF

Local
Remote
7C7C =
T0 : Not aligned 7| 70" Not Aligned
< 7C7C
FD7C o
T1: Lane Aligned, sent FD7C FD7C T1': LaneAligned, sent FD7C
»i
FD7C
A L
DataOIlzt \I/';TIZEJE FD7C T2': Linkup + Dataout_Valid =1
) = i
XOFF =1 »!
T4 : Link Up oL7c
DataOut_Valid=1 FD7C T4': XOFF remote received, Stop Traffic
Send XOFF |«
5C7C
T5" . lid =
DataOut_VaIid =0 < FD7C T5: Dataln_Valid =0
< XOFF =1
76" —= T6: Dataln_Valid = 0
D'ataOut_Valld =0 P 5C7C Send XOFF_
XOFF Remote Received, Stop Traffic |«
7 —= T7": Dataln_Valid = 0
DataOut_VaIid =0 5C7C) i .
Datain_Valid=0 [« A

intel. 2

F-Tile Phy Direct IP (Common Datapath)

'~ General

Mumber of system copies:

'~ Common Datapath Options

FIA type:

FGT FMA configuration rules:
Mumber of PMA lanes:
Datapath clocking mode:
System PLL frequency:

PMA mode:

FA modulation type:

PMA data rate:

FMA parallel clock frequency:

FPMA width:

FGT

Basic

PMA

Duplex

MRZ

25781.25

8056640625

32

[| Enable RX de-skew when availahle

[| Provide separate interface for each PMA

MHz

Mhbps

MHz

intel.

21

F-Tile Phy Direct IP (Tx Datapath Options

[~ TX PMA Interface

TAFGT PLL fractional mode reference clock frequency; (156.25

TA PMA interface FIFO mode: ‘Phase compensation
[] Enable te_pmaif_fifo_sempty port
[] Enahle te_pmaif_fifo_pempty port
[] Enahle te_pmaif_fifo_pfull port
[= TX Core Interface
[* TX Core Interface FIFO
[]Enable custom cadence generation ports and logic
[]Enahble t_cadence_slow_clk_locked port
TX care Interface FIFO Maode: ‘Phase compensation ‘v‘
TA tile Interface FIFC Mode: ‘Phase compensation ‘v‘
Enable TX double width transfer
T core interface FIFO partially full threshold: |1 0 |
T core interface FIFO partially empty threshold: |2 |
[~ TX FGT PMA
[] Enable Gray coding
[] Enakle p ing
FRES generator mode: disable |v|
[] Enable fgt_tx_beacon port
[TXFGT PLL Settings
Output frequency: 12890.625000 MHz
WCO frequency: 12890.625000 MHz
[]Enakle TXFGT PLL cascade mode
Enable TXFGT PLL fractional mode
TXFGT PLL integer mode reference clock frequency: | | MHz
| MHz

[]Enahle Core PLL mode

intel.

22

F-Tile Phy Direct IP (Tx Datapath Options cont.)

[+ TX Clock Options

Selected te_clkout clock source:
Frequency of te_clkout:

Enable t_clkout2 port
Selected b_clkout? clock source:
b_clkoutZ clock div by
Freguency of b_clkout2:

[| Enable t¢_clkout_hioint port
[] Enable t¢_clkout2_hioint port

Selected t_coreclkin clock network:

Selected b_coreclkin? clock netwaork:

Lser Clockd

380.625

‘Word Clock

2

402.83201

Dedicated Clock

Dedicated Clock

MHz

MHz

intel.

23

F-Tile Phy Direct IP (Rx Datapath Options)

[~ RX Core Interface FIFO

R core interface FIFO mode: ‘Phase compensation |v‘

Enable R¥ double width transfer

R core interface FIFO partially full threshold: ‘1 i |

R core interface FIFO partially empty threshold: ‘2 |

[] Enable r_fifo_full port

[] Enahble rx_fifo_empty port
[] Enakle re_fifo_pfull port

[] Enable re_fifo_pempty port
[] Enakle rx_fifo_rd_en port
[] Enakle _pcs_fifo_full port

[] Enahble re_pcs_fifo_empty port

[* RXFGT CDR Settings

Qutput frequency: 12890625000 MHz
WZO frequency; 12890625000 MHz
RXFGT CDR calculated reference frequency: 322265625 MHz
CDR lock mode: auto |v|

[]Enable fgt_rx_set_locktoref port

[] Enable fgt_r_cdr_freeze port

[* RX User Clock Setting
Enable R¥ user clock

R¥ userclock div by: 33

intel. 2

F-Tile Phy Direct IP (Rx Datapath Options cont.)

[~ RX Clock Options

Selected n_cllkout clock source:
Frequency of n_clikout:

Enable re_clkout? port
Selected no_clkout2 clock source:
r_clkout2 clock div by

Frequency of n_clkout2:

Selected n_coreclkin clock networl:

[] Enable re_clkout_hiint port

[| Enable re_clkout2_hioint port

User Clock!

390.625

Waord Clock

2

402.832031

Dedicated Clock

MHz

MH=z

intel.

25

F-Tile Phy Direct IP (Avalon Memory-Mapped Interface)

(" TX Datapath Options | RX Datapath Options | RS-FEC | Avalon Memory-Mapped Interface |* Example Design

|'-' Datapath Avalon Memory-Mapped Interface
Enahle datapath Avalon interface

[| Enable Direct PHY soft CSR
[| Enable readdatavalid port on datapath Avalon interface
[| Enable separate Avalon interface per fracture

Enable Debug Endpoint on datapath Avalon interface

|' PMA Avalon Memory-Mapped Interface
Enable PMA Avalon interface

[| Enable readdatavalid port on PMA Avalon interface
[] Enable separate Avalon interface per PMA

Enable Debug Endpoint on PMA Avalon interface

intel. 2

Link Register Set

» The design is using a custom .gsys component that can be parameterized. The component is called “Link
Register Set” (using link_reg set hw.tcl) and is available in the default group section of the Qsys library.

» This component can be parameterized to the number of links, the number of LANES per Link and the

number of PHY instances per link you want to instantiate in your design and makes the generation of the
Qsys system much more streamlined.

= As in this design 2 Link’s with each one PHY direct IP is being and each link has 4 lanes you end up with the
configuration below (see screenshot)

» For every Link that you use in your design it will generate a number of registers (to control/readout the
measured clocks) as well as all the required AVMM reconfiguration interfaces for the Native PHY (which is

for every PHY instance: T AVMM for the transceiver configuration interface and 1 AVMM for the PDP
(Parallel Datapath configuration interface).

= For the AVMM interfaces the Link Register set is calling another custom component : “reconfig_mgmt”
(reconfig_mgmt_hw.tcl)

Y e @ Link Register Set
Project link_reg_set
W New Component... [* Parameters
® reconfig_magmt S
¢ Hnks: :
¢ LinkRegister Set NUMBER_OF _LANES: |4
o= System

AVMM_PER_FPHY:

—

intel.

27

Timing Closure (Setup)

= The design is fully constraint without any timing violations. Note that in this design multiple
clocks are being used (because of the soft gearbox implementation)

= Compiled for AGIBO27R29ATE2VRO

SelpISUTmmEny

Show: |Visible - | Q, =<Filter>>
Clock Slack End Point TNS = Failing End Points =~ Worst-Case Operating Conditions

1 Generate Superlite_Il_Instances[0lins...ect_inst|directphy f O|rx_clkout2|ch11 0.267 0.000 o} Slow vid2 100C Model

2 Generate_Superlite_Il_Instances[1].inst...rect_inst|directphy f 0|t _clkout2|ch19 0.400 0.000 o Slow vid2 100C Model

3 Generate_Superlite_Il_Instances[0linst...rect_inst|directphy _f O|tx_clkout2|ch11 0.401 0.000 o Slow vid2 100C Model

4 Generate_Superlite_Il_Instances[1].ins...ect_inst|directphy_f O|rx_clkout2|ch19 0.547 0.000 o Slow vid2b 100C Model

5 altera_int_osc_clk 1.644 0.000 o Slow vid2 100C Model

6 clock divider inst|intelclketrl Ofclkdiv_inst|clock div2 2118 0.000 (o] Slow vid2b 100C Model

7 src_divided_osc_clk 4.084 0.000 o Slow vid2b 100C Model

& altera reserved tck 12.269 0.000 (o] Slow vid2 100C Model

intel.

28

Timing Closure (Hold)

» The design is fully constraint without any timing violations

= Compiled for AGIBO27R29ATE2VRO

Hold Surmmeany

Show: |‘u’I5Ihle - | | Q, <<Filter>>
Clock Slack End Point TNS Failing End Points Worst-Case Operating Conditions

1 | clock_divider_inst|intelclkctrl_O|clkdiv_inst|clock_diva 0.009 0.000 (v} Fast vid2 100C Model

2 Generate Superlite_|l_Instances[0l.ins...ect_inst|directphy_f O|rx_clkout2|ch11 0.028 0.000 (o] Fast vidZa 100C Model

3 Generate Superlite Il Instances[0linst..rect_inst|directphy f 0|tx_clkout2|ch11 0.033 0.000 (v} Fast vid2 100C Model

4 Generate Superlite_|Il_Instances[1].inst...rect_inst|direciphy_f O|tx_clkout2|ch19 0.033 0.000 o Fast vid2 100C Model

5 altera_int_osc _clk 0.043 0.000 (o] Fast vid2 100C Model

6 Generate Superlite Il Instances[1].ins..ect_inst]directphy f O|rx_clkout2|ch18 0.052 0.000 (v} Fast vid2 100C Model

7 altera_reserved ftck 0.053 0.000 0 Fast vidZa 100C Model

8 src_divided osc_clk 0.062 0.000 (o] Fast vid2 100C Model

intel.

29

Native Phy Debug Master Endpoint Interface

" [n addition to the AVMM interface the Native PHY also enable the Native Phy Debug Master
Endpoint interface which can also be accessed through the Qsys system due to the
addition of the jtag_debug _module.

= Access to the Native Phy Debug Master Endpoint interface can be done through System
Console totally in parallel while the Nios controller(s) are being used.

* The Native Phy Debug Master Endpoint interface can be used for advanced debugging and
reporting (see further).

» The major advantage of having the Native Phy Debug Master Endpoint interface is that it
allows to run directly the Universal Toolkit (see further).

intel.

30

Nios Il Control & Monitoring

The Nios Il controller is used to control and monitor the design using the Nios Il terminal.
= Display status signals for each of the channels

Tile/Quad information

Encoding (PAM4/NRZ and gray and/or 1/1+D encoding)
Link Up

DatalLocked (combination of the PrbsLocked and Countlocked)
LaneAligned

Effective Datarate

Latency (only when looped back on its own)

Lock Alarm

Freq Locked

Tx_ready/Rx_ready

Serial Loop + Reverse Parallel Loop

Channel Type

Connection Type

Rx/Tx Polarity Inversion

Number of biterrors.

= Displays the bitrate based on measured reference clock frequency

= Displays also the recovered clock frequency (of lane O only). Note that if lane O has no connection or is not in serial
loopback the measured recovered clock frequency is a random number as the CDR is not locked to anything.

intel. =

Nios Il Control & Monitoring (continued)

= Control Serial Loopback on all lanes and per phy

= Control Reverse Parallel Loopback on all lanes and per phy

* Error insertion : Soft Biterror (which results in one error per virtual link)
= Displays the number of biterrors and the BER.

= Reads out and print out PMA settings for all channels

= Control Invert Tx and Rx Polarity on all lanes and per phy

= PMA tuning : Allows to find the optimum Transmit PMA settings (VOD, Pre-emphasis) using
PMA sweep function.

= Stress Tests : 9 different stress tests are available (see dedicated slide) including latency
measurement

= Displays the time the test has been running on the Transceiver Block.

intel. =2

Nios Il Control & Monitoring (to be added)

» Measures the temperatures of the core (supported) and the transceiver tile (to be added)

* Dumps [2C information of connected modules and cables like Vendor, part number, cable
length, temperature of the module. (due to a hardware issue on the PCle devkit (ES Version)
the 12C interface does not work for some modules, so this functionality is disabled for
software compiled for the PCle devkit)

= Allows to dump the |2C page Lower page and Page 00h registers of the selected
module/cable (not available for the PCle Devkit ES version)

intel. =

Nios 2 Output in Nios || SDK Shell

|Hardware Rewvision
|Clocking of PHY's
|FGT Firmware version
| Software Build Date

(s =]

|RefClock M
|[Line r [

| Number O
|Aggregate rate
|Selected Chann
|Number of Phy's
| Total Aggrega

| sel d Phy

[g]

(]

(only valid with loopback (int or
(only valid with loopback (int or

intel. 3

Test with QSFP-DD 2.5 Meter cable connected between PHYO

And PHY

PDlaFity
Polarity

Ud+d_uCF d
Dat ck
Errorcount

PDD

kottom

& -

=

[ax e

|' .l [an]

& i

-

[un s B e = I N]

fd

PDD1 bottom

CDHH:_tlun T\pH

LinkUp
Datalo

o FquUPHFI

_out Frequency

1 CluCF F

& i

[

&

=

& 3

A

[l

&

[

o
J'
C‘
[
oI &

& i

1
=

ka3
T =]

I
I
I
|
I
I
I
NRZ |
I
I
I
|
I
I
I

intel.

35

Temperature measurement

S5DM Temperature

= @ Temperature
e 1 Temperature
g 2 Temperature

3 Temperature

intel. 3

Available commands

1
Change T
Control T
ol

Toggle
Dump

Direct in
including 1

CTRL-C (this will automatically create output.log file

Enter Choi

intel.

Stress Tests

Option ‘L’ provides a submenu to perform the following “stress tests”

T
(]

d PHY and check it sta
¥ and check if both PHY's come up properly (requires connection between the PHY's)
cted PHY and chet
¢ reconfiguration interface and the PDP interf
1y until the link is up on all lanes of the &
- iz up on that Channel
e pull plu“ 1n using Tx mute Lpflnn on local phy and verify if r } ¥ comes up properly
5 l but spe cally when used in combination with SiPh which tak Co come up

H: Hs
T
(]

He
T
(]

£r
£r
£r
£r

T
(]

i
to

T T
o O e O o |

T
]

intel. 3

Measuring Latency

= Stress test ‘9’ is measuring the maximum latency across 1000 resets and provides a
histogram of this maximum latency being measured.

= As can be seen maximum latency is on average 94 parallel clock cycles whichis ~ 233 ns at

Yy
a line rate of 25.78125 Gbps. (This is with external loopback on 4 of the physical lanes)
using QSFP-DD electrical loopback.

Number o
Number o
Number o

Maximum Latency is equal to 93 parallel clocks is

Maximum Latency is equal to 94 parallel clocks is :
cases Maximum Latency is equal to 95 parallel clocks 1s

intel.

39

Show PMA settings (option ‘e’) using 2.5 meter DAC cable

phy 1

Channel

FaT Quad
FaT Lane
Transceiver Type
Line Encoding
tx_ready
r®_ready
rx_fregqlocked_lms
Serial Loop
Reverse Parallel
Main Tap
Pre Tap 2 Lewvel
Pre Tap 1 Lewel
Post Tap 1 Level
RXEQ HF_BOOST
RXEQ VGA_GAIN
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP
RXEQ DFE_TAP1@
RXEQ DFE_TAP11
RXEQ DFE_TAP12
RXEQ DFE_TAP13
RXEQ DFE_TAP14
RXEQ DFE_TAP15S
RXEQ DFE_TAP16
FOM
V@A
CTLE

(ms)} (only LSB portion) Convergence time
Rx Flow State

Transceiver Type
Line Encoding
tx_ready

r¥_ready
r¥_freqlocked_1lms
Serial Loop
Reverse Parallel
Main Tap

S B s S]

(51}
(%1}
[x1])
(X1}
w
L
[¥ 1]
[¥¥)

RXEQ HF_BOOST
RXEQ_VGA_GAIN
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ_DFE_TAP
RXEQ _DFE_TAP
RXEQ_DFE_TAP18@
RXEQ DFE_TAP11
RXEQ_DFE_TAP12
RXEQ DFE_TAP13

fadd

U W~ N e i o S Y I S WA R AW WA = s R~ W LW i
! i
P Bt b =l = @M s R R RS S SN SN S S

i
=
i
=
i
=
i
1
N 1 P P2
TR I~ I~ I P I S T W S I S T W T S i w T I~ T Wy O B I T <~ T]

i
=]

L=y N I R O W I O W~ T = T S S T - W I W o O TR O R B O

i

|
i

IR W

i
i
i
=
s WY B P P E R W I o« B WY e~ Y w O i < TR 5 IR I~ T T S
i
=i
L= T I S T B o I R B T S R T I I I Y R I I
i

|

WS s W P R
i

O TR s VRN I WY X]
]

RXEQ DFE_TAPLS
RXEQ _DFE_TAP16

a8
@
5
8
5
@
@
@
8
4
7
3 =
3
1
3
3
3
1
2
1
i
3
1
2

MR
o =
RS ORI L
o R R YT A By e Y WY I UV O R R R S L - I I I R I~
|
=R RS L
WA L

=

Convergence time
Rx Flow State

fary

=
=Sl e L

[== Y]
=

(ms) (only LSB portion)

ca

weep PMA function (electrical loopback) (option ‘U’

=3

Vertical
Count

1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
i
1
1
1
1
i
1
1
1
1
i
1
1
1
1
1
1

Lo T IO I N T I O O O O T I T N O O I O I I

intel.

Continuous Update of Errorcount statistics (option ‘c))

Ch @ BER related statistics
Enter to stop the loop

sLockAlarm, BER, Errorcount ,ErrorCount (3),Errorcount(float),Incremental Errorcount
a

L)
5
[s

o
]
[I

5
5

[5%]
e
e

[ax]
[nn]
[an]

intel. <

Readout of the 12C information (not available on the PCle devkit ES-

Version)

= Every time a status update is done all QSFP-DD modules will be checked if anything is
plugged in and if this is the case the |2C information will be readout.

= See screenshot below showing various module and cables connected in the system.

» Information provided is Vendor, Part Number, temperature for modules and cable length
for QSFP-DD cables or QSFP cables.

= One can dump the entire I2C Lower Page and Page OOh using option {’

QSFPDD@ plugged in Vendor : Molex Part : 2815911616 QSFP-DD Passive Cable with length 1.88 m

QSFPDD1 plugged in Vendor : Molex Part : 28159116186 QSFP-DD Passive Cable with length 1.88 m

intel.

43

Board setup

= Make connections to the QSFPDDO and QSFPDD1 (using loopback modules, DAC cable,
optical modules etc.

= Connect micro-USB Cable to J8 in order to use onboard USB-Blaster |l.

= Power on the board

= All designs so far use the default clock frequency of 156.25 Mhz. Not required to use clock
control GUI to change clocks.

» Download ‘Devkit_ Demo.sof’ to the AGIBO27R29ATE2VRO device using Qll 21.4
programmer

intel.

Running the software on Windows10

This is when you want to run the software provided as .elf file (part of the deliverable) Do the following :

1. Starta Nios Il command Shell (can be found in the Intel® Quartus® Prime Software installation (e.g.
C:\quartus 21 4\nios2eds) and go to the directory where the .elf and run1.bsh files are located.

2. Since 21.4 Nios Il terminal is using WSL, a quick way to go to the selected directory is to copy the
complete path using windows explorer and in the Nios 21.4 terminal you type cd "$(wslpath “ =>
then you paste the path you copied (using right mouse click) => and end with typing ")"

e.g. cd "$(wslpath "C:\ALTERA\Reference Designs\SUPERLITEII\Agilex_F-
Tile\Agilex_PCie_Kit Superlitell V4 2x4\software\app\Agilex xCh")*

3. Since the Intel Quartus archive is restored in windows the files need to be converted from Dos to
Linux. To do so either use “dos2unix —k *" or run the provided .bsh file “./convert.bsh” (note option -k
keeps the original date of the file intact).

4. Type In The Following Command: “./run1.bsh” This will set the JtagSpeed to 16M ,download the .elf
file and start the downloaded Nios Il code inside the main program memory.

intel. =+

Rebuilding the software on Windows 10

In order to rebuild the software follow the below steps (using Qll 21.4 or later):
= Starta Nios Il 27.4 Command Shell

1. go to the ../software/app/Agilex xCh directory (which is part of the archive) using the
method descriped on the previous slide

2. Run the bash file ./convert.bsh (this will also convert the files in the bsp folder)

3. Run./create-this-app .This will compile the system libraries (in the bsp folder), compile
the software code (main.c and a number of other .c files in this case) and produce a
Nios Il executable.

= |f you make any changes to the software you need to rebuild by typing “make” in the
Nios Il 271.4 shell (after having created the software a first time)

= Torun the software : type In The Following Command : “./run1.bsh” This will set the
JtagSpeed to 16M and download the Nios Il code to the FPGA and open the terminal.

intel.

46

Running the software on Linux

This is when you want to run the software provided as .elf file (part of the deliverable) Do the following:

1.

Start a konsole with enough memory (e.g. “arc submit -i node/"memory>=128000" --
konsole”)

Make sure all restored files are unix files and are executable (use “./convert.bsh”)
Open an acds shell (e.g. “arc shell acds/21.4")

Start a Nios Command Shell (e.g.
“Ip/psg/swip/releases/acds/21.4/67/linux64/nios2eds/nios2_command_shell.*”) One can
figure out the path using “which quartus” while being in the acds shell

Download the .elf file using command “nios2-download -r-c 1 -d 1 -i "0" -g Agilex_xCh.elf”
Note that this assumes the device is connected to USB-Cable with index 1. If another index is
used, change accordingly.

Next use “nios2-terminal -c 1 -d 1 -i "0" |[tee output.log” to run the software from program
memory.

intel. «#

Rebuilding the software on Linux

In order to rebuild the software follow the below steps (using Qll 271.4 or later):
E Start a Nios Il 21.4 Command Shell using the steps on the previous slide
go to the ../software/app/Agilex xCh directory (which is part of the archive)
2. Runthe bash file ./convert.bsh (should already have been done)

3. Run./create-this-app .This will compile the system libraries (in the bsp folder), compile the

software code (main.c and a number of other .c files in this case) and produce a Nios |l
executable.

If you make any changes to the software you need to rebuild by typing “make” in the Nios 11 21.4
shell (after having created the software a first time)

To run the software :

1.Download the .elf file using command “nios2-download -r -c 1 -d 1 -i "0" -g Agilex_xCh.elf". Note
that this assumes the device is connected to USB-Cable with index 1. If another index is used,
change accordingly.

2.Next use “nios2-terminal -c 1 -d 1 -i "0" [tee output.log” to run the software from program
memory.

intel.

Using Transceiver Toolkit (need patch on top of 21.4)

= To start the Transceiver Toolkit simply start it from the Tools Menu in the Intel Quartus
Prime Software (with the project loaded). This will automatically detect the design and start
up the Transceiver Toolkit which allows you to run further tests in optimizing the PMA
settings, do autosweeps etc.

= Make sure to stop all traffic running in TTK and close the TTK before going back to the
Nios terminal to continue with the design (If the hard PRBS generator and checker have
been enabled during testing those channels will show errors (which is normal). Using option
'q’ these errors can be cleared

intel.

49

Signaltap Il Debug Example

» The design contains a number of signaltap instances

= Signaltap Il acquisition can be done simultaneously with Nios Il control.

intel. s

How to run a simulation using Questasim/Modelsim (1/4)

1. Open the project using Intel Quartus Prime Software and in directory
<restored project>/simulation/mentor (DO NOT USE THE ORIGINAL PROJECT AFTER RESTORING
THE ARCHIVE), the simulation has its own project

2. Make sure the IP settings are set correctly (see slide (3/4). IP settings are not fully governed by .gsf
only, hence the additional check to be done to make sure they are correctly set

3. Press “Logic Generation” (see screenshot below) (this generates the __tiles files which are mandatory
for the simulation) and also regenerates all |p files and spd files required for the simulation.

Compilation Flow: [
P Compile Design
P IP Generation 00:00:39
> Support-Logic Generation n
P Design Analysis

0%
0%

> Logic Generation

4. From the Intel Quartus Prime Software Menu Start Tools => Generate Simulator Setup Script for IP...

G Window Help

Generate Sirmulator Setup Script for IP...

intel. &

How to run a simulation using Questasim/Modelsim (2/4)

5. In the window that pops-up, remove the mentor in the path name so that you get

<restored project>/simulation/

» Make sure “use top-level entity names from Intel Quartus Prime Software project” is not

selected (in 21.4 this is already remove as an option)

nn Generate Simulator Setup Script for [P

v Use relative paths whenever possible

Use top-level entity names from Quartus project

oK Cancel

Help

>

Output directory: [ie Kit Superlitell V4 2x4 Lanes/simulation/ | ...

intel.

52

How to run a simulation using Questasim/Modelsim (3/4

[

=" Settings - prbstest_top

Category:

General
é Files

@ Libraries

~ | ¥ P Settings

:* IP Catalog Search Locations
Ed Design Templates
b QF Operating Settings and Conditions
4 voltage
B Temperature
r::l Comnpilation Process Settings
2% EDA Tool Settings
= P Compiler Settings
S WHDL Input
i Verilog HOL Input
,;..; Default Parameters
Za HyperFlex
@~ Design Assistant Rule Settings
o Timing Analyzer
- "é Assembler
Programming Files
@ signal Tap Logic Analyzer
ﬁ Logic Analyzer Interface
- Power Analyzer Settings

Thermal

- O

Device/Board...

IP Settings

Specify settings for creating and managing IP files.

*

Maximum Platform Designer memory usage: | Default * | MB

Mote: Select or enter a value smaller than the available free memory. Selecting a value that is too low or too high may result in instability of IP-
related functionality.

IP generation HOL preference: Verilog =

IP regeneration policy

To control when the IP Generation stage regenerates synthesis or simulation files for IP cores in the project, select from the options below

e Always regenerate design files for IP cores

Never regenerate design files for IP cores

Note: The Intel Quartus Prime Analysis and Synthesis process never generates or regenerates the simulation files for IP cores.

IP Simulation

V| Generate IP simulation model when generating IP

Select the simulators for which simulation scripts will be generated. If no simulator is selected, simulation scripts will be generated for all

simulators.

v ModelSim Riviera-Pro VCS-MX VCS Xcelium

Parallel IP generation

V| Enable parallel generation of Intel FPGA IPs in all projects

When enable, the number of processors derives from the settings in the Compilation Process Settings panel (Assignments/Settings

menu).

OK Cancel Apply Help

intel.

53

How to run a simulation using Questasim/Modelsim (4/4)

5.

Go to the simulation/mentor folder and launch questasim e.g. using the following
command arc submit -i questasim/2020.4 questasim_sver-lic priority=100 -- "vsim -i -64"*

6. Type “sim.do” => this will do the entire simulation.
7. In case modifications are made to the source files you can rerun the simulation using

“resim.do”

intel. s

Deliverables

" Intel® Quartus® 21.4 B67 archive which contains the demo design files, the software source
files, files required to run the simulation

* The testbenches and project files required for simulation can be found after restoring the
archive: <restored project>/simulation/mentor

= The software source files can be found after restoring the archive in the
<restored project>/software/app and <restored project>/software/bsp folders/

= SOF File
» Devkit_demo.elf File (Software)

= Readme.txt file

intel. s

Status & Revision

= \/21.4: January 10t 2022

» Modified RTL implementation to use the same control and status bits as the SuperlitelV demo
design so that the same main.c file used for all other designs (PRBS (with and without FEC),
Superlite IV and Superlite Il can be used).

=\/21.4: November 29t 2021
= nitial release of the design

= Successfully tested with 2.5 meter DAC cable and electrical loopback

intel. 55

	Intel® Agilex® I-Series F-Tile Superlite II Demo designs �Supporting Documentation�V1.0�
	Introduction & Motivation
	Introduction & Motivation
	Introduction & Motivation
	How to use Superlite II V4 in Packet mode?
	‘Superlite II V4’ Concept
	‘SuperLite II V4’ Concept
	‘Superlite II V4’ Concept (continued)
	‘SuperLite II V4 2x4 lanes Demo Design
	Goals (continued)
	‘Superlite II V4’ Resources (one phy)
	Slide Number 12
	‘txrx_pcs_64b66b’ with soft Gearbox Detailed blockdiagram
	Tx Path
	Tx Path (continued)
	Tx Path (continued)
	Rx Path
	Rx Path (continued)
	Rx Path (continued)
	Control Characters used in combination with XOFF
	F-Tile Phy Direct IP (Common Datapath)
	F-Tile Phy Direct IP (Tx Datapath Options)
	F-Tile Phy Direct IP (Tx Datapath Options cont.)
	F-Tile Phy Direct IP (Rx Datapath Options)
	F-Tile Phy Direct IP (Rx Datapath Options cont.)
	F-Tile Phy Direct IP (Avalon Memory-Mapped Interface)
	Link Register Set
	Timing Closure (Setup)
	Timing Closure (Hold)
	Native Phy Debug Master Endpoint Interface�
	Nios II Control & Monitoring
	Nios II Control & Monitoring (continued)
	Nios II Control & Monitoring (to be added)
	Nios 2 Output in Nios II SDK Shell �
	Test with QSFP-DD 2.5 Meter cable connected between PHY0 And PHY1
	Temperature measurement
	Available commands
	Stress Tests
	Measuring Latency
	Show PMA settings (option ‘e’) using 2.5 meter DAC cable
	Sweep PMA function (electrical loopback) (option ‘u’)
	Continuous Update of Errorcount statistics (option ‘c’)
	Readout of the I2C information (not available on the PCIe devkit ES-version)
	Board setup
	Running the software on Windows10
	Rebuilding the software on Windows 10
	Running the software on Linux
	Rebuilding the software on Linux
	Using Transceiver Toolkit (need patch on top of 21.4)
	Signaltap II Debug Example
	How to run a simulation using Questasim/Modelsim (1/4)
	How to run a simulation using Questasim/Modelsim (2/4)
	How to run a simulation using Questasim/Modelsim (3/4)
	How to run a simulation using Questasim/Modelsim (4/4)
	Deliverables
	Status & Revision
	Slide Number 57

