

WP-201406-1.0 Page 1

OpenCL on FPGAs for GPU Programmers

Introduction
The aim of this whitepaper is to introduce developers who have previous experience with general-

purpose computing on graphics processing units (GPUs) to parallel programming targeting Altera® field-

programmable gate arrays (FPGAs) via the Open Computing Language (OpenCL™) framework.

This paper provides a brief overview of OpenCL, highlights some of the underlying technology and

benefits behind Altera FPGAs, then focuses on how OpenCL kernels are executed on Altera FPGAs

compared to on GPUs. This paper also presents the key differences in optimization techniques for

targeting FPGAs.

Overview of OpenCL
OpenCL is an open standard framework for parallel programming that executes across heterogeneous

processors, such as GPUs and FPGAs, as well as central processing units (CPUs) and digital signal

processors (DSPs). The standard uses a subset of ISO C99 with added extensions for supporting

parallelism, and supports both data and task-based parallel programming models.

Heterogeneous Programming

The basis of the OpenCL platform model is a host connected to one or more devices, such as FPGAs and

GPUs, possibly from multiple device vendors. The host is responsible for device memory management,

transferring data to devices, queuing work for devices, and error-management.

Data Parallelism and Kernels

Data parallelism is a form of parallelism across multiple processors that is achieved when each

processor performs identical tasks on different pieces of distributed data. Data-parallel portions of an

algorithm are executed on devices as kernels, which are C functions with some restrictions and a few

language extensions. The host launches kernels across a 1D, 2D, or 3D grid of work-items to be

processed by the devices. Conceptually, work-items can be thought of as individual processing threads,

that each execute the same kernel function. Work-items have a unique index within the grid, and

typically compute different portions of the result. Work-items are grouped together into work-groups,

which are expected to execute independently from one another.

Memory Hierarchy – Global, Local, Constant, and Private

The OpenCL kernels have access to four distinct memory regions distinguished by access type and scope.

Global memory allows read-and-write access from all work-items across all work-groups. Local memory

also provides read-and-write access to work-items, however it is only visible to other work-items within

the same work-group. Constant memory is a region of read-only memory accessible to all work-items,

thus immutable during kernel execution. Lastly, private memory provides read-and-write access visible

to only individual work-items.

WP-201406-1.0 Page 2

CUDA vs. OpenCL Terminology

Developers with experience in NVIDIA’s CUDA parallel computing architecture for GPUs may notice

similarities between CUDA concepts and OpenCL, albeit with a different naming convention. Table 1

presents some equivalent CUDA terms:

Table 1: OpenCL vs CUDA Terminology

OpenCL CUDA

Work-Item Thread

Work-Group Thread Block

Multi-dimension Range (NDRange) Grid

Global / Constant Memory Global / Constant Memory

Local Memory Shared Memory

Private Memory Local Memory

Altera FPGA Architectures
FPGAs are highly configurable integrated circuits that can be customized and tailored for specific

processing needs. An FPGA is composed of large numbers of small building blocks: adaptive logic

modules (ALMs), digital signal processing (DSP) blocks, and memory blocks, woven together amongst

programmable routing switches. In addition to these FPGA fabric building blocks, additional features

may be incorporated, such as high-speed transceivers, PCI Express® (PCIe®) interfaces, multiple memory

controller interfaces, or even ARM® Cortex®-A9 processors, as part of a system on a chip (SoC) solution.

For these SoC solutions, the ARM processor can serve as the OpenCL host, driving the FPGA in a self-

contained manner.

For GPUs, kernels are compiled to a sequence of instructions that execute on fixed hardware processors.

Typically, these hardware processors are composed of cores that are specialized for different functions,

therefore some may be unused based upon kernel instruction requirements. On the other hand, kernels

on FPGAs are compiled to custom processing pipelines built up from the programmable resources on

the FPGA (for example ALMS, DSP, and memory blocks). By focusing hardware resources only on the

algorithm to be executed, FPGAs can provide better performance per watt than GPUs for certain

applications.

ALMs can be configured to implement desired logic, arithmetic, and register functions. Variable-

precision DSP blocks with hardened single-precision floating-point capabilities implement commonly

used logic and arithmetic functions in a power or performance optimized manner. Half or double

precision is also possible, with the resources in the FPGA being used to accomplish the additional

resolution. The total amount of memory blocks embedded within Altera FPGAs range from a few

hundred kilobytes to tens of MBs, offering even higher bandwidth and lower latencies. Memory

controllers allow access to larger amounts of external memory, and currently support a variety of

memory standards, such as quad-data-rate (QDR) or double-data-rate (DDR) SDRAM.

WP-201406-1.0 Page 3

Executing OpenCL Programs on Altera FPGAs
The key difference between kernel execution on GPUs versus FPGAs is how parallelism is handled. GPUs

are “single-instruction, multiple-data” (SIMD) devices – groups of processing elements perform the

same operation on their own individual work-items. On the other hand, FPGAs exploit pipeline

parallelism – different stages of the instructions are applied to different work-items concurrently.

Figure 1 above illustrates the difference between these two methods; using a simplified example

involving six work-items (1-6) executing a kernel with five stages (A-E), with the SIMD approach handling

three work items at a time. In this example, both parallelization methods finish in the same amount of

total time, however the throughputs are slightly different; if additional work-items are to be processed,

the SIMD parallelism approach would continue to complete three work items every 5 cycles, whereas

the pipeline parallelism approach would average competition of one work item each cycle.

Figure 1: Comparison of SIMD Parallelism Versus Pipeline Parallelism

1
A

2
A

3
A

1
B

2
B

3
B

1
C

2
C

3
C

1
D

2
D

3
D

1
E

2
E

3
E

1 Clock Cycle 2 3 4 5 6 7 8 9

SIMD
Parallelism

(GPU)

Pipeline
Parallelism

(FPGA)

1
A

1
B

1
C

1
D

1
E

2
A

2
B

2
C

2
D

2
E

3
A

3
B

3
C

3
D

3
E

4
A

4
B

4
C

4
D

4
E

4
A

5
A

6
A

4
B

5
B

6
B

4
C

5
C

6
C

4
D

5
D

6
D

4
E

5
E

6
E

10

0 5
A

5
B

5
C

5
D

5
E

6
A

6
B

6
C

6
D

6
E

WP-201406-1.0 Page 4

The difference in parallelization strategies employed by GPUs and FPGAs can be mapped directly back to

the underlying hardware. GPUs consist of hundreds of simple processing “cores”, which can each handle

their own work-items. A number of GPU cores execute the same instruction in lock-step with one

another as a SIMD unit of fixed size (sometimes called a wavefront or warp). On an FPGA, each OpenCL

kernel is compiled to a custom circuit. The operations within the kernel are implemented using the

ALMs and DSPs, forming sub-circuits that are wired together according to the data flow of the algorithm.

Load/store units allow access to global, local, and constant memory. Figure 2 illustrates circuit synthesis

for a simple OpenCL kernel. As a result, all algorithmic operations of the kernel are allocated dedicated

hardware resources on the FPGA, prior to kernel execution. During execution, work-items step through

each stage of the kernel one at a time, however due to the fact that each stage has dedicated hardware,

multiple work-items may be passing through the circuit at any given moment, thus yielding pipeline

parallelism.

One consequence of the different parallelization methods is how branching is handled. When branching

occurs on a GPU, it is still necessary for all work-items within the same SIMD unit to correctly execute

the various branches. However, because the SIMD unit as a whole operates on a single instruction at a

time, all code-paths taken by the individual work-items must be executed one after another, with

individual work-items disabled or enabled based upon how they evaluated the branching condition. As a

result, encountering a branching condition with N options could potentially result in execution time

equal to the sum of execution times for all N options (for N up to the SIMD width). Branching is less of

an issue on FPGAs because all code-paths are already established in hardware. All branch options can be

executed concurrently or even computed speculatively in some cases to allow overlap with branch

condition computation. Figure 3 illustrates a simple example of how branching is handled for the two

different parallelization methods. Each of the three work items execute the same first stage (A), but

then branch and execute the next three stages conditionally (B,C, and D).

kernel void Add(global float *a,

 global float *b,

 global float *c)

{

 /* Collect unique work-item ID */

 int i = get_global_id(0);

 c[i] = a[i] + b[i];

}

Figure 2: Simplified Example of FPGA Circuit Synthesis from OpenCL Kernel

Load

a[i]

Load

b[i]

a[i] + b[i]

Store

c[i]

WP-201406-1.0 Page 5

Key Differences in Optimizing OpenCL for FPGAs
While optimization on GPUs mainly involves modifying code to effectively utilize the fixed underlying

hardware, the configurable nature of FPGAs presents a different set of challenges.

Throughput vs. Resource Usage Tradeoffs
Given that OpenCL kernels are compiled to hardware circuits of fixed size, it may mean that a lot of

remaining FPGA resources are not used. One method for improving performance on FPGAs is to create

multiple copies of the kernel pipelines. Pipelines can execute independently from one another, and

performance can scale linearly with the number of copies. Replication is handled in Altera OpenCL by

setting the num_compute_units kernel attribute.

In some instances, it may be better to incur some performance penalties by reducing the resources

required for a single pipeline so that additional copies can fit onto the FPGA. One method to reduce

resources is to cut back on the number of circuit-expensive operators, such as the cosine function;

possibly computing the required values on the host and passing them into the FPGA as parameters to

the kernel instead.

Figure 3: Compare branching behavior - SIMD vs. pipeline parallelism

1
A

2
A

3
A

1
B1

2
B2

3
B3

1
C1

2
C2

3
C3

1
D1

2
D2

3
D3

1 Clock Cycle 2 3 4 5 6 7 8 9

SIMD
Parallelism

(GPU)

Pipeline
Parallelism

(FPGA)

1
A

1
B1,2,3

1

C1,2,3

1

D1,2,3

2
A

2

B1,2,3

2

C1,2,3

2

D1,2,3

3
A

3

B1,2,3

3

C1,2,3

3

D1,2,3

10

0

IDLE

IDLE

IDLE

IDLE

WP-201406-1.0 Page 6

 Conversely, if additional FPGA resources are still available, performance may be improved by investing

additional resources on the pipeline. One example of this would be to unroll for loops. The removal of

loop counter or loop testing logic is a benefit shared on both GPUs and FPGAs, however the added

benefit on FPGAs is that throughput can be increased. Figure 4 illustrates that each work-item

accumulates four values then writes to output. In the loop version, one adder is used and throughput is

roughly 0.25 work-items per clock cycle. In the unrolled version, four adders are used, however one

work-item can complete per clock cycle. Altera OpenCL for FPGAs facilitates loop unrolling via the

#pragma unroll directive, and works for loops of known size as well as loop with data-dependent trip

counts.

A different method of utilizing resources similar to replication is kernel vectorization. Whereas

replication makes N exact copies of the kernel pipeline, kernel vectorization maintains a single pipeline

where each work-item then does N times as much work. By dealing with larger units of work, kernel

vectorization can even reduce the number of loads and stores (each load / store is larger). Kernel

vectorization is essentially SIMD parallelization on an FPGA!

Loop Entry

Accumulate (id * i)

/* Loop version */

 int sum = 0;

 int id = get_global_id(0);

█ for (int i = 0; i < 4; i++)

█ sum += id * i;

█ output[id] = sum;

/* Unrolled version */

 int sum = 0;

 int id = get_global_id(0);

█ sum += id * 0;

█ sum += id * 1;

█ sum += id * 2;

█ sum += id * 3;

█ output[id] = sum;

Store output

Accumulate (id * 0)

Accumulate (id * 1)

Accumulate (id * 2)

Accumulate (id * 3)

Store output

Figure 4: Loop Unrolling Example

WP-201406-1.0 Page 7

Attempting to find ideal settings for replication, vectorization and loop unrolling can be a challenging

task, however the Altera OpenCL compiler can optimize these settings via its resource-driven optimizer,

which explores multiple design points and chooses the highest performance design.

Memory / Input-Output Subsystems
Unlike GPUs, which provide access to homogenous global (external) memory, Altera FPGAs can support

heterogeneous memory interfaces with a variety of external memory types – DDR3 synchronous

dynamic random access memory (SDRAM), DDR2 SDRAM, DDR SDRAM, and QDR II static random access

memory (SRAM). Multiple memory interfaces may be configured on a single FPGA board, therefore it is

important to direct which interface should be used for individual buffers, which can be done via

attributes. When dealing with multiple memory banks, data is normally interleaved between banks,

however certain applications may see improved performance by manually guiding which bank buffers

should reside on.

Another optimization possible on Altera FPGAs not currently present on GPUs is to take advantage of

I/O channels and kernel channels (OpenCL 2.0 pipes). Kernel channels allow kernels to transfer data to

one another via a first-in-first-out (FIFO) buffer, without the need for host interaction. Traditionally,

GPU kernels that want to pass data to one another may do so by issuing reads and writes to global

memory combined with some method of synchronization. Performance and power efficiency gains are

achieved by the removal of these intermediate reads and writes. Altera FPGAs also extend the idea of

kernel channels even further to allow I/O interfaces (I/O pipes), which allow kernels to access directly

from a streaming interface without host interactions, known as IO channels. Effectively the host

configures the data pipeline and then steps out of the data path. Figure 5 illustrates a kernel being

executed on three sets of data coming from an I/O source. Significant time savings are possible because

the FPGA communicates directly with the I/O source, and no longer needs the host to serve as a middle-

man.

WP-201406-1.0 Page 8

Single Work-Item Execution (OpenCL Tasks)
SIMD-based parallel processing is ideal for dealing with loops where there are no dependencies across

iterations of the loop - usually parallelization can occur by simply mapping work-items to individual loop

iterations. In most real-world applications, data-dependencies are inherent to the structure of the

algorithm, and cannot be removed easily. Traditionally, GPU programmers must rely on relatively

complicated constructs involving resources shared by work-items in a work group along with

synchronization primitives in order to express computations correctly. Alternatively, GPU programmers

could choose to have the data-dependent section of work handled by only a single work-item (also

called an OpenCL task), however this hampers parallelization and overall performance due to the

idleness of other processing cores. Pipeline-parallel devices such as FPGAs have less of an issue dealing

with single work-items – single work-items are actually the unit of work in the pipeline anyways! In fact,

parallel pipelines can achieve additional performance by pipelining iterations of a loop containing loop

carried dependencies – launching the next iteration as soon as loop dependencies have been

completed. This scheduling is handled primarily by the compiler; however loop pipelining performance

can also be improved by software developer in a number of ways – removing some dependencies,

simplifying dependence complexity and relaxing dependence. Removing dependencies, for example by

using simple access patterns results in faster launch times for the next iteration. Similar results occur

when avoiding expensive operations when computing loop-carried values. Relaxing dependence

increases the number of iterations between generation and use of a value, which means that the

immediate next iteration can be launched sooner. Setting the kernel attribute “task” informs the Altera

OpenCL compiler that the kernel will only run with a single work item. Figure 6 illustrates a simple

example of loop-pipelining.

Figure 5: Example Highlighting I/O Channel Benefits

Load
GPU1

1 2 3 4 5 6 7 8 9

Setup I/O
Channels

10

0

Launch1

Kernel1

Read1

Read
GPU1

Write1

Load
GPU2

Launch2

Kernel2

Read2

Read
GPU2

Write2

Kernel1

Read /
Write1

Kernel2

Read /
Write2

Kernel3

Read /
Write3

Launch

11

0

12

Load
GPU3

Launch3

Kernel3

Read3

Read
GPU3

Write3

Host

GPU

I/O

Time

Host

FPGA

I/O

WP-201406-1.0 Page 9

Development Process Differences
Kernel development for FPGAs is slightly different than traditional GPU development in that the

hardware is created for the specific functions being implemented. FPGA circuit synthesis is a

computationally-intensive task, and consumes much more time than compiling kernels into a series of

instructions to be executed on a GPU. To reduce development time and more closely resemble the

traditional software friendly environment, the recommended approach for FPGA kernel development is

to work in stages – syntax debugging, functional debugging, application debugging, and final

performance tuning. Each stage is simply a modification of a compiler attribute. During syntax

debugging, the Altera compiler simply ensures proper OpenCL code syntax. For functional debugging,

the OpenCL kernels are run on an x86 based host to rapidly verify functional correctness of the kernel.

During application debugging, an optimization report is produced, providing information about

throughput, memory transaction efficiency, as well as potential pipeline stalls. This feedback can be

used to modify the kernel accordingly to tune for performance at the functional level, but also on a

virtual FPGA fabric that will show how changes in the code will improve performance when the FPGA is

actually built. During final performance tuning phase, a fully optimized FPGA circuit is generated and

the profiler can be run to get detailed reports on kernel performance.

Table 2: FPGA Development Stages

Stage Time Execution Device

Syntax Debugging Seconds None

Functional Debugging Seconds Emulated kernels on x86 host

Application Debugging Minutes Virtual FPGA fabric

Summation code:

sum = 0;

FOR (x = 0; x < 4; x++)

{

 █ sum += x; // loop-carried dependency

 █ output[x] = SUM;

}

1 Clock Cycle 2 3 4 5 6 7 8

Sum
0

Out
0

Sum
1

Out
1

Sum
2

Out
2

Sum
3

Out
3

Sum
0

Out
0

Sum
1

Out
1

Sum
2

Out
2

Sum
3

Out
3

GPU

FPGA

Figure 6: Loop Pipelining Example, Both Devices Executing One Work-Item

WP-201406-1.0 Page 10

Final Performance Tuning Hours Optimized circuit on FPGA with profiler

Conclusions
OpenCL is a parallel programming framework that is currently supported by devices, such as GPUs,

CPUs, and FPGAs. Kernels are code-portable across different platforms, but not performance-portable,

meaning that the same code will execute on various devices, however the underlying parallelism

mechanism and hardware features must be taken into consideration when attempting to optimize

performance. Of course, since the FPGA creates a custom hardware implementation, code is completely

portable between different FPGA families and generations without any modifications or new

optimization requirements. Understanding the differences between SIMD parallelism and pipeline

parallelism, and taking advantage of FPGA features, such as heterogeneous memory support, channels,

and loop pipelining are keys to unlocking high performance-per-watt solutions.

