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1.0 About this Manual

This manual describes the embedded Intel® Quark SoC X1000 Core. It is intended for 
use by hardware designers familiar with the principles of embedded microprocessors 
and with the Intel® Quark SoC X1000 Core architecture.

1.1 Manual Contents
Table 1 summarizes the contents of the remaining chapters and appendixes. The 
remainder of this chapter describes notation conventions and special terminology used 
throughout the manual and provides references to related documentation.

Table 1. Manual Contents (Sheet 1 of 2)

Chapter Description

Chapter 2.0, “Intel® 
Quark SoC X1000 Core 
Overview”

Provides an overview of the current embedded Intel® Quark SoC X1000 Core, 
including product features, system components, system architecture, and 
applications. This chapter also lists product frequency, voltage, and package 
offerings.

Chapter 3.0, 
“Architectural Overview”

Describes the Intel® Quark SoC X1000 Core internal architecture, with an 
overview of the processor’s functional units.

Chapter 4.0, “System 
Register Organization”

Details the Intel® Quark SoC X1000 Core register set, including the base 
architecture registers, system-level registers, debug and test registers, and Intel® 
Quark SoC X1000 Core Model Specific Registers (MSRs).

Chapter 5.0, “Real Mode 
Architecture”

When the Intel® Quark SoC X1000 Core is powered-up, it is initialized in Real 
Mode, which is described in this chapter.

Chapter 6.0, “Protected 
Mode Architecture” Describes Protected Mode, including segmentation, protection, and paging. 

Chapter 7.0, “On-Chip 
Cache”

The Intel® Quark SoC X1000 Core contains an on-chip cache, also known as L1 
cache. This chapter describes its functionality.

Chapter 8.0, “System 
Management Mode 
(SMM) Architectures”

Describes the System Management Mode architecture of the Intel® Quark SoC 
X1000 Core, including System Management Mode interrupt processing and 
programming.

Chapter 9.0, “Hardware 
Interface”

Describes the hardware interface of the Intel® Quark SoC X1000 Core, including 
signal descriptions, interrupt interfaces, write buffers, reset and initialization, and 
clock control. 

Chapter 10.0, “Bus 
Operation”

Describes the features of the processor bus, including bus cycle handling, 
interrupt and reset signals, cache control, and floating-point error control.

Chapter 11.0, 
“Debugging Support”

Describes the Intel® Quark SoC X1000 Core debugging support, including the 
breakpoint instruction, single-step trap, and debug registers.

Chapter 12.0, 
“Instruction Set 
Summary”

Describes the Intel® Quark SoC X1000 Core instruction set and the encoding of 
each field within the instructions.
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1.2 Notation Conventions
The following notations are used throughout this manual. 

# The pound symbol (#) appended to a signal name indicates that 
the signal is active low. 

Variables Variables are shown in italics. Variables must be replaced with 
correct values.

New Terms New terms are shown in italics. 

Instructions Instruction mnemonics are shown in upper case. When you are 
programming, instructions are not case-sensitive. You may use 
either upper or lower case. 

Numbers Hexadecimal numbers are represented by a string of 
hexadecimal digits followed by the character H. A zero prefix is 
added to numbers that begin with A through F. (For example, FF 
is shown as 0FFH.) Decimal and binary numbers are 
represented by their customary notations. (That is, 255 is a 
decimal number and 1111 1111 is a binary number. In some 
cases, the letter B is added for clarity.)

Units of Measure The following abbreviations are used to represent units of 
measure: 

Appendix A, “Signal 
Descriptions” Lists each Intel® Quark SoC X1000 Core signal and describes its function.

Appendix B, “Testability” Describes the testability of the Intel® Quark SoC X1000 Core, including on-chip 
cache testing, translation lookaside buffer (TLB) testing, and JTAG. 

Appendix C, “Feature 
Determination”

Documents the CPUID function, which is used to determine the Intel® Quark SoC 
X1000 Core identification and processor-specific information.

Table 1. Manual Contents (Sheet 2 of 2)

Chapter Description

A amps, amperes

mA milliamps, milliamperes

µA microamps, 
microamperes

Mbyte megabytes

Kbyte kilobytes

Gbyte gigabyte

W watts

KW kilowatts

mW milliwatts

µW microwatts

MHz megahertz

ms milliseconds

ns nanoseconds

µs microseconds
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Register Bits When the text refers to more that one bit, the range of bits is 
represented by the highest and lowest numbered bits, 
separated by a colon (example: A[15:8]). The first bit shown 
(15 in the example) is the most-significant bit and the second 
bit shown (8) is the least-significant bit.

Register Names Register names are shown in upper case. If a register name 
contains a lower case, italic character, it represents more than 
one register. For example, PnCFG represents three registers: 
P1CFG, P2CFG, and P3CFG.

Signal Names Signal names are shown in upper case. When several signals 
share a common name, an individual signal is represented by 
the signal name followed by a number, whereas the group is 
represented by the signal name followed by a variable (n). For 
example, the lower chip select signals are named CS0#, CS1#, 
CS2#, and so on; they are collectively called CSn#. A pound 
symbol (#) appended to a signal name identifies an active-low 
signal. Port pins are represented by the port abbreviation, a 
period, and the pin number (e.g., P1.0, P1.1). 

1.3 Special Terminology
The following terms have special meanings in this manual.

Assert and De-assert The terms assert and de-assert refer to the act of making a 
signal active and inactive, respectively. The active polarity 
(high/low) is defined by the signal name. Active-low signals are 
designated by the pound symbol (#) suffix; active-high signals 
have no suffix. To assert RD# is to drive it low; to assert HOLD 
is to drive it high; to de-assert RD# is to drive it high; to de-
assert HOLD is to drive it low.

DOS I/O Address Peripherals compatible with PC/AT system architecture can be 
mapped into DOS (or PC/AT) addresses 0H–03FFH. In this 
manual, DOS address and PC/AT address are synonymous.

Expanded I/O Address All peripheral registers reside at I/O addresses 0F000H–0FFFFH. 
PC/AT-compatible integrated peripherals can also be mapped 
into DOS (or PC/AT) address space (0H–03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system 
architecture can be mapped into PC/AT (or DOS) addresses 0H–
03FFH. In this manual, the terms DOS address and PC/AT 
address are synonymous.

Set and Clear The terms set and clear refer to the value of a bit or the act of 
giving it a value. If a bit is set, its value is “1”; setting a bit gives 
it a “1” value. If a bit is clear, its value is “0”; clearing a bit gives 
it a “0” value. 

µF microfarads

pF picofarads

V volts
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1.4 Related Documents
The following Intel documents contain additional information on designing systems that 
incorporate the Intel® Quark SoC X1000 Core. 

Table 2. Related Documents

Ref. Document Name Order Number

[HRM] Intel® Quark SoC X1000 Core Hardware Reference Manual 329678

[Intel Arch SDM]
Intel® 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C

325462
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2.0 Intel® Quark SoC X1000 Core Overview

The Intel® Quark Core enables a range of low-cost, high-performance embedded 
system designs capable of running applications written for the Intel architecture. The 
Intel® Quark Core integrates a 16-Kbyte unified cache and floating-point hardware on-
chip for improved performance. For further details, including the Intel® Quark Core 
feature list, see Chapter 2 in the Intel® Quark SoC X1000 Core Hardware Reference 
Manual. 

2.1 Intel® Quark Core Architecture
Figure 1 shows how the Intel® Quark Core is implemented in the Intel® Quark SoC 
X1000.  

Figure 1. Intel® Quark SoC X1000 Core used in Intel® Quark SoC X1000
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3.0 Architectural Overview

3.1 Internal Architecture
The Intel® Quark Core has a 32-bit architecture with on-chip memory management 
and cache and floating-point units. The Intel® Quark Core also supports dynamic bus 
sizing for the external data bus; that is, the bus size can be specified as 8-, 16-, or 32-
bits wide.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support 
dynamic bus sizing. Bus width is fixed at 32 bits. 

Intel® Quark Core functional units are listed below: 
• Bus Interface Unit (BIU)
• Cache Unit
• Instruction Prefetch Unit
• Instruction Decode Unit
• Control Unit
• Integer (Datapath) Unit
• Floating-Point Unit
• Segmentation Unit
• Paging Unit

For further details, see Chapter 3 in the Intel® Quark SoC X1000 Core Hardware 
Reference Manual. 

3.2 System Architecture
Intel® Quark Core System Architecture includes the following: 

• Memory Organization
• I/O Space
• Addressing Modes
• Data Types
• Interrupts

3.3 Memory Organization
Memory on the Intel® Quark SoC X1000 Core is divided up into 8-bit quantities (bytes), 
16-bit quantities (words), and 32-bit quantities (dwords). Words are stored in two 
consecutive bytes in memory with the low-order byte at the lowest address, the high 
order byte at the high address. Dwords are stored in four consecutive bytes in memory 
with the low-order byte at the lowest address, the high-order byte at the highest 
address. The address of a word or dword is the byte address of the low-order byte.
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In addition to these basic data types, the Intel® Quark SoC X1000 Core supports two 
larger units of memory: pages and segments. Memory can be divided up into one or 
more variable-length segments, which can be swapped to disk or shared between 
programs. Memory can also be organized into one or more 4-Kbyte pages. Both 
segmentation and paging can be combined, gaining the advantages of both systems. 
The Intel® Quark SoC X1000 Core supports both pages and segments in order to 
provide maximum flexibility to the system designer. Segmentation and paging are 
complementary. Segmentation is useful for organizing memory in logical modules, and 
as such is a tool for the application programmer, while pages are useful for the system 
programmer for managing the physical memory of a system.

3.3.1 Address Spaces

The Intel® Quark SoC X1000 Core has three distinct address spaces: logical, linear, and 
physical. A logical address (also known as a virtual address) consists of a selector and 
an offset. A selector is the contents of a segment register. An offset is formed by 
summing all of the addressing components (BASE, INDEX, DISPLACEMENT) discussed 
in Section 3.5.3 into an effective address. Because each task on the Intel® Quark SoC 
X1000 Core has a maximum of 16 K (214 - 1) selectors, and offsets can be 4 Gbytes 
(232 bits), this gives a total of 246 bits or 64 terabytes of logical address space per task. 
The programmer sees this virtual address space.

The segmentation unit translates the logical address space into a 32-bit linear address 
space. If the paging unit is not enabled then the 32-bit linear address corresponds to 
the physical address. The paging unit translates the linear address space into the 
physical address space. The physical address is what appears on the address pins.

The primary difference between Real Mode and Protected Mode is how the 
segmentation unit performs the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts the selector left four bits and adds 
the result to the offset to form the linear address. While in Protected Mode every 
selector has a linear base address associated with it. The linear base address is stored 
in one of two operating system tables (i.e., the Local Descriptor Table or Global 
Descriptor Table). The selector's linear base address is added to the offset to form the 
final linear address.

Figure 2 shows the relationship between the various address spaces.
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Figure 2. Address Translation

3.3.2 Segment Register Usage

The main data structure used to organize memory is the segment. On the Intel® Quark 
SoC X1000 Core, segments are variable sized blocks of linear addresses which have 
certain attributes associated with them. There are two main types of segments: code 
and data. The segments are of variable size and can be as small as 1 byte or as large 
as 4 Gbytes (232 bytes).

In order to provide compact instruction encoding, and increase Intel® Quark SoC 
X1000 Core performance, instructions do not need to explicitly specify which segment 
register is used. A default segment register is automatically chosen according to the 
rules of Table 3. In general, data references use the selector contained in the DS 
register; stack references use the SS register and Instruction fetches use the CS 
register. The contents of the Instruction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given segment register, and override the 
implicit rules listed in Table 3. The override prefixes also allow the use of the ES, FS and 
GS segment registers.

There are no restrictions regarding the overlapping of the base addresses of any 
segments. Thus, all 6 segments could have the base address set to zero and create a 
system with a 4-Gbyte linear address space. This creates a system where the virtual 
address space is the same as the linear address space. Further details of segmentation 
are discussed in Chapter 6.0, “Protected Mode Architecture.”
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3.4 I/O Space
The Intel® Quark SoC X1000 Core allows 64 K+3 bytes to be addressed within the I/O 
space. The Host Bridge propagates the Intel® Quark SoC X1000 Core I/O address 
without any translation on to the destination bus and, therefore, provides 
addressability for 64 K+3 byte locations. Note that the upper three locations can be 
accessed only during I/O address wrap-around when processor bus A16# address 
signal is asserted. A16# is asserted on the processor bus when an I/O access is made 
to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. A16# is also asserted when an I/O 
access is made to 2 bytes from address 0FFFFh. 

The I/O ports are accessed via the IN and OUT I/O instructions, with the port address 
supplied as an immediate 8-bit constant in the instruction or in the DX register. All 8- 
and 16-bit port addresses are zero extended on the upper address lines. The I/O 
instructions cause the M/IO# pin to be driven low.

I/O port addresses 00F8H through 00FFH are reserved for use by Intel. 

I/O instruction code is cacheable. 

I/O data is not cacheable. 

I/O transfers (data or code) can be bursted. 

3.5 Addressing Modes

3.5.1 Addressing Modes Overview

The Intel® Quark SoC X1000 Core provides a total of 11 addressing modes for 
instructions to specify operands. The addressing modes are optimized to allow the 
efficient execution of high-level languages such as C and FORTRAN, and they cover the 
vast majority of data references needed by high-level languages.

Table 3. Segment Register Selection Rules

Type of Memory Reference Implied (Default) 
Segment Use

Segment Override 
Prefixes Possible

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL, PUSHA 
Instructions SS None

Source of POP, POPA, POPF, IRET, RET instructions SS None

Destination of STOS, MOVS, REP STOS, REP MOVS 
Instructions (DI is Base Register) ES None

Other Data References, with Effective Address using 
Base Register of:

[EAX] DS

[EBX] DS

[ECX] DS

[EDX] DS All

[ESI] DS

[EDI] DS

[EBP] SS

[ESP] SS
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3.5.2 Register and Immediate Modes

The following two addressing modes provide for instructions that operate on register or 
immediate operands:

• Register Operand Mode: The operand is located in one of the 8-, 16- or 32-bit 
general registers.

• Immediate Operand Mode: The operand is included in the instruction as part of the 
opcode.

3.5.3 32-Bit Memory Addressing Modes

The remaining modes provide a mechanism for specifying the effective address of an 
operand. The linear address consists of two components: the segment base address 
and an effective address. The effective address is calculated by using combinations of 
the following four address elements:

• DISPLACEMENT: An 8-, or 32-bit immediate value, following the instruction.
• BASE: The contents of any general purpose register. The base registers are 

generally used by compilers to point to the start of the local variable area.
• INDEX: The contents of any general purpose register except for ESP. The index 

registers are used to access the elements of an array, or a string of characters.
• SCALE: The index register's value can be multiplied by a scale factor, either 1, 2, 4 

or 8. Scaled index mode is especially useful for accessing arrays or structures.

Combinations of these 4 components make up the 9 additional addressing modes. 
There is no performance penalty for using any of these addressing combinations, 
because the effective address calculation is pipelined with the execution of other 
instructions. The one exception is the simultaneous use of Base and Index components, 
which requires one additional clock.

As shown in Figure 3, the effective address (EA) of an operand is calculated according 
to the following formula:

EA = Base Reg + (Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as part of the instruction as an 8-, 16- 
or 32-bit displacement.

Example: INC Word PTR [500]

Register Indirect Mode: A BASE register contains the address of the operand.
Example: MOV [ECX], EDX

Based Mode: A BASE register's contents is added to a DISPLACEMENT to form the 
operand's offset.

Example: MOV ECX, [EAX+24]

Index Mode: An INDEX register’s contents is added to a DISPLACEMENT to form the 
operand's offset.

Example: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register's contents is multiplied by a scaling factor 
which is added to a DISPLACEMENT to form the operand's offset.

Example: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register is added to the contents of an 
INDEX register to form the effective address of an operand.

Example: MOV EAX, [ESI] [EBX]
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Based Scaled Index Mode: The contents of an INDEX register is multiplied by a 
SCALING factor and the result is added to the contents of a BASE register to obtain the 
operand's offset.

Example: MOV ECX, [EDX*8] [EAX]

Figure 3. Addressing Mode Calculations

Based Index Mode with Displacement: The contents of an INDEX Register and a 
BASE register's contents and a DISPLACEMENT are all summed together to form the 
operand offset.

Example: ADD EDX, [ESI] [EBP+00FFFFF0H]

Based Scaled Index Mode with Displacement: The contents of an INDEX register 
are multiplied by a SCALING factor, the result is added to the contents of a BASE 
register and a DISPLACEMENT to form the operand’s offset.

Example: MOV EAX, LOCALTABLE[EDI*4] [EBP+80]
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3.5.4 Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with older processors, the Intel® Quark SoC 
X1000 Core can execute 16-bit instructions in Real and Protected Modes. The processor 
determines the size of the instructions it is executing by examining the D bit in the CS 
segment Descriptor. If the D bit is 0 then all operand lengths and effective addresses 
are assumed to be 16 bits long. If the D bit is 1 then the default length for operands 
and addresses is 32 bits. In Real Mode the default size for operands and addresses is 
16-bits.

Regardless of the default precision of the operands or addresses, the Intel® Quark SoC 
X1000 Core is able to execute either 16- or 32-bit instructions. This is specified via the 
use of override prefixes. Two prefixes, the Operand Size Prefix and the Address Length 
Prefix, override the value of the D bit on an individual instruction basis. These prefixes 
are automatically added by Intel assemblers.

Example: The Intel® Quark SoC X1000 Core is executing in Real Mode and the 
programmer needs to access the EAX registers. The assembler code for this might be 
MOV EAX, 32-bit MEMORY OP. The Macro Assembler automatically determines that an 
Operand Size Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes to use Scaled Index addressing 
mode to access an array. The Address Length Prefix allows the use of MOV DX, 
TABLE[ESI*2]. The assembler uses an Address Length Prefix because, with D=0, the 
default addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to store a 16-bit quantity. The Operand 
Length Prefix is used to specify only a 16-bit value; MOV MEM16, DX.

The OPERAND LENGTH and Address Length Prefixes can be applied separately or in 
combination to any instruction. The Address Length Prefix does not allow addresses 
over 64 Kbytes to be accessed in Real Mode. A memory address which exceeds FFFFH 
will result in a General Protection Fault. An Address Length Prefix only allows the use of 
the additional Intel® Quark SoC X1000 Core addressing modes.

When executing 32-bit code, the Intel® Quark SoC X1000 Core uses either 8-, or 32-bit 
displacements, and any register can be used as base or index registers. When 
executing 16-bit code, the displacements are either 8, or 16 bits, and the base and 
index register are as listed in Table 4 below.

3.6 Data Types

3.6.1 Data Types

The Intel® Quark SoC X1000 Core can support a wide-variety of data types. In the 
following descriptions, the processor consists of the base architecture registers.

Table 4. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing

BASE REGISTER BX,BP Any 32-bit GP Register

INDEX REGISTER SI,DI Any 32-bit GP Register Except ESP

SCALE FACTOR none 1, 2, 4, 8

DISPLACEMENT 0, 8, 16 bits 0, 8, 32 bits
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3.6.1.1 Unsigned Data Types

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and the most significant bit is 7.

3.6.1.2 Signed Data Types 

All signed data types assume 2's complement notation. The signed data types contain 
two fields, a sign bit and a magnitude. The sign bit is the most significant bit (MSB). 
The number is negative if the sign bit is 1. If the sign bit is 0, the number is positive. 
The magnitude field consists of the remaining bits in the number. (Refer to Figure 5.)

Figure 4. Data Types
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8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity

32-bit Integer: Signed 32-bit quantity

64-bit Integer: Signed 64-bit quantity

The integer core of the Intel® Quark SoC X1000 Core only support 8-, 16- and 32-bit 
integers. See Section 3.6.1.4 for details.

3.6.1.3 BCD Data Types

The Intel® Quark SoC X1000 Core supports packed and unpacked binary coded decimal 
(BCD) data types. A packed BCD data type contains two digits per byte, the lower digit 
is in bits 3:0 and the upper digit in bits 7:4. An unpacked BCD data type contains 1 
digit per byte stored in bits 3:0.

The Intel® Quark SoC X1000 Core supports 8-bit packed and unpacked BCD data 
types. (Refer to Figure 5.)

3.6.1.4 Floating-Point Data Types

In addition to the base registers, the Intel® Quark SoC X1000 Core on-chip floating-
point unit consists of the floating-point registers. The floating-point unit data type 
contain three fields: sign, significand, and exponent. The sign field is one bit and is the 
MSB of the floating-point number. The number is negative if the sign bit is 1. If the sign 
bit is 0, the number is positive. The significand gives the significant bits of the number. 
The exponent field contains the power of 2 needed to scale the significand, see 
Figure 5.

Only the FPU supports floating-point data types.
Single Precision Real: 23-bit significand and 8-bit exponent. 32 bits total.
Double Precision Real: 52-bit significand and 11-bit exponent. 64 bits total.
Extended Precision Real: 64-bit significand and 15-bit exponent. 80 bits total.

Floating-Point Unsigned Data Types
The on-chip FPU does not support unsigned data types. (Refer to Figure 5.)

Floating-Point Signed Data Types
The on-chip FPU only supports 16-, 32- and 64-bit integers.

Floating-Point BCD Data Types
The on-chip FPU only supports 80-bit packed BCD data types.

3.6.1.5 String Data Types

A string data type is a contiguous sequence of bits, bytes, words or dwords. A string 
may contain between 1 byte and 4 Gbytes. (Refer to Figure 6.)

String data types are only supported by the CPU section of the Intel® Quark SoC X1000 
Core.

Byte String: Contiguous sequence of bytes.

Word String: Contiguous sequence of words.

Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the Intel® Quark SoC X1000 Core bit 
strings can be up to 4-gigabits long.
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3.6.1.6 ASCII Data Types

The Intel® Quark SoC X1000 Core supports ASCII (American Standard Code for 
Information Interchange) strings and can perform arithmetic operations (such as 
addition and division) on ASCII data. The Intel® Quark SoC X1000 Core can only 
operate on ASCII data; see Figure 6. 

Figure 5. Data Types
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Figure 6. String and ASCII Data Types

Figure 7. Pointer Data Types

3.6.1.7 Pointer Data Types

A pointer data type contains a value that gives the address of a piece of data. Intel® 
Quark SoC X1000 Core support the following two types of pointers (see Figure 7):

• 48-bit Pointer: 16-bit selector and 32-bit offset
• 32-bit Pointer: 32-bit offset
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3.6.2 Little Endian vs. Big Endian Data Formats

The Intel® Quark SoC X1000 Core, as well as all other members of the Intel 
architecture, use the “little-endian” method for storing data types that are larger than 
one byte. Words are stored in two consecutive bytes in memory with the low-order byte 
at the lowest address and the high order byte at the high address. Dwords are stored in 
four consecutive bytes in memory with the low-order byte at the lowest address and 
the high order byte at the highest address. The address of a word or dword data item is 
the byte address of the low-order byte.

Figure 8 illustrates the differences between the big-endian and little-endian formats for 
dwords. The 32 bits of data are shown with the low order bit numbered bit 0 and the 
high order bit numbered 32. Big-endian data is stored with the high-order bits at the 
lowest addressed byte. Little-endian data is stored with the high-order bits in the 
highest addressed byte.

The Intel® Quark SoC X1000 Core has the following two instructions that can convert 
16- or 32-bit data between the two byte orderings:

• BSWAP (byte swap) handles 4-byte values
• XCHG (exchange) handles 2-byte values

Figure 8. Big vs. Little Endian Memory Format
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3.7.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program flow, in order to handle external 
events, to report errors or exceptional conditions. The difference between interrupts 
and exceptions is that interrupts are used to handle asynchronous external events 
while exceptions handle instruction faults. Although a program can generate a software 
interrupt via an INT N instruction, the Intel® Quark SoC X1000 Core treats software 
interrupts as exceptions.

Hardware interrupts occur as the result of an external event and are classified into two 
types: maskable or non-maskable. Interrupts are serviced after the execution of the 
current instruction. After the interrupt handler is finished servicing the interrupt, 
execution proceeds with the instruction immediately after the interrupted instruction. 
Section 3.7.3 and Section 3.7.4 discuss the differences between Maskable and Non-
Maskable interrupts.
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Exceptions are classified as faults, traps, or aborts, depending on the way they are 
reported, and whether or not restart of the instruction causing the exception is 
supported. Faults are exceptions that are detected and serviced before the execution 
of the faulting instruction. A fault would occur in a virtual memory system when the 
processor referenced a page or a segment that was not present. The operating system 
would fetch the page or segment from disk, and then the Intel® Quark Core would 
restart the instruction. Traps are exceptions that are reported immediately after the 
execution of the instruction that caused the problem. User defined interrupts are 
examples of traps. Aborts are exceptions that do not permit the precise location of the 
instruction causing the exception to be determined. Aborts are used to report severe 
errors, such as a hardware error or illegal values in system tables.

Thus, when an interrupt service routine has been completed, execution proceeds from 
the instruction immediately following the interrupted instruction. On the other hand, 
the return address from an exception fault routine will always point at the instruction 
causing the exception and include any leading instruction prefixes. Table 5 and Table 6 
summarize the possible interrupts for Intel® Quark SoC X1000 Core and shows where 
the return address points.

Intel® Quark SoC X1000 Core can handle up to 256 different interrupts and/or 
exceptions. In order to service the interrupts, a table with up to 256 interrupt vectors 
must be defined. The interrupt vectors are simply pointers to the appropriate interrupt 
service routine. In Real Mode (see Chapter 5.0, “Real Mode Architecture”), the vectors 
are 4-byte quantities, a Code Segment plus a 16-bit offset; in Protected Mode, the 
interrupt vectors are 8-byte quantities, which are put in an Interrupt Descriptor Table 
(see Section 6.2.3.4, “Interrupt Descriptor Table” on page 71). Of the 256 possible 
interrupts, 32 are reserved for use by Intel, the remaining 224 are free to be used by 
the system designer.

3.7.2 Interrupt Processing

When an interrupt occurs, the following actions happen. First, the current program 
address and the Flags are saved on the stack to allow resumption of the interrupted 
program. Next, an 8-bit vector is supplied to the Intel® Quark Core which identifies the 
appropriate entry in the interrupt table. The table contains the starting address of the 
interrupt service routine. Then, the user supplied interrupt service routine is executed. 
Finally, when an IRET instruction is executed the old Intel® Quark Core state is 
restored and program execution resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Intel® Quark Core in several different 
ways: exceptions supply the interrupt vector internally; software INT instructions 
contain or imply the vector; maskable hardware interrupts supply the 8-bit vector via 
the interrupt acknowledge bus sequence. Non-maskable hardware interrupts are 
assigned to interrupt vector 2.

3.7.3 Maskable Interrupt

Maskable interrupts are the most common way used by the Intel® Quark Core to 
respond to asynchronous external hardware events. A hardware interrupt occurs when 
the INTR is pulled high and the Interrupt Flag bit (IF) is enabled. The Intel® Quark Core 
only responds to interrupts between instructions, (REPeat String instructions, have an 
“interrupt window,” between memory moves, which allows interrupts during long string 
moves). When an interrupt occurs, the Intel® Quark Core reads an 8-bit vector 
supplied by the hardware which identifies the source of the interrupt, (one of 224 user 
defined interrupts). The exact nature of the interrupt sequence is discussed in Section 
10.3.10, “Interrupt Acknowledge” on page 219. 
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The IF bit in the EFLAG registers is reset when an interrupt is being serviced. This 
effectively disables servicing additional interrupts during an interrupt service routine. 
However, the IF may be set explicitly by the interrupt handler, to allow the nesting of 
interrupts. When an IRET instruction is executed, the original state of the IF is restored.

3.7.4 Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing very high priority interrupts. A 
common example of the use of a non-maskable interrupt (NMI) would be to activate a 
power failure routine or SMI# to activate a power saving mode. When the NMI input is 
pulled high, it causes an interrupt with an internally supplied vector value of 2. Unlike a 
normal hardware interrupt, no interrupt acknowledgment sequence is performed for an 
NMI.

Table 5. Interrupt Vector Assignments

Function Interrupt 
Number

Instruction that can cause 
exception

Return Address 
Points to Faulting 

Instruction
Type

Divide Error 0 DIV, IDIV YES FAULT

Debug Exception 1 Any instruction YES TRAP†

NMI Interrupt 2 INT 2 or NMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any illegal instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8 Any instruction that can 
generate an exception ABORT

Intel Reserved 9

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code 
Fetch YES FAULT

Intel Reserved 15

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT

Intel Reserved 18–31

Two Byte Interrupt 0–255 INT n NO TRAP

†Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

Table 6. FPU Interrupt Vector Assignments

Function Interrupt 
Number

Instruction that can 
cause exception

Return Address Points to 
Faulting Instruction Type

Floating-Point Error 16 Floating-point, WAIT YES FAULT
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While executing the NMI servicing procedure, the Intel® Quark Core will not service 
further NMI requests until an interrupt return (IRET) instruction is executed or the 
processor is reset (RSM in the case of SMI#). If NMI occurs while currently servicing an 
NMI, its presence will be saved for servicing after executing the first IRET instruction. 
The IF bit is cleared at the beginning of an NMI interrupt to inhibit further INTR 
interrupts.

3.7.5 Software Interrupts

A third type of interrupt/exception for the Intel® Quark Core is the software interrupt. 
An INT n instruction causes the processor to execute the interrupt service routine 
pointed to by the nth vector in the interrupt table.

A special case of the two byte software interrupt INT n is the one byte INT 3, or 
breakpoint interrupt. By inserting this one byte instruction in a program, you can set 
breakpoints in your program as a debugging tool.

A final type of software interrupt is the single step interrupt. It is discussed in Section 
11.2, “Single-Step Trap” on page 246. 

3.7.6 Interrupt and Exception Priorities

Interrupts are externally-generated events. Maskable Interrupts (on the INTR input) 
and Non-Maskable Interrupts (on the NMI input or SMI# input) are recognized at 
instruction boundaries. When more than one interrupt or external event are both 
recognized at the same instruction boundary, the Intel® Quark Core invokes the 
highest priority routine first. (See list below.) If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then the Intel® Quark SoC X1000 Core 
will invoke the appropriate interrupt service routine.

Priority for Servicing External Events for Intel® Quark SoC X1000 Core:
1. RESET/SRESET
2. FLUSH#
3. SMI#
4. NMI
5. INTR
6. STPCLK#

Note: STPCLK# will be recognized while in an interrupt service routine or an SMM handler.

Exceptions are internally-generated events. Exceptions are detected by the Intel® 
Quark SoC X1000 Core if, in the course of executing an instruction, the Intel® Quark 
SoC X1000 Core detects a problematic condition. The Intel® Quark SoC X1000 Core 
then immediately invokes the appropriate exception service routine. The state of the 
Intel® Quark SoC X1000 Core is such that the instruction causing the exception can be 
restarted. If the exception service routine has taken care of the problematic condition, 
the instruction will execute without causing the same exception.

It is possible for a single instruction to generate several exceptions (for example, 
transferring a single operand could generate two page faults if the operand location 
spans two “not present” pages). However, only one exception is generated upon each 
attempt to execute the instruction. Each exception service routine should correct its 
corresponding exception, and restart the instruction. In this manner, exceptions are 
serviced until the instruction executes successfully.
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As the Intel® Quark SoC X1000 Core executes instructions, it follows a consistent cycle 
in checking for exceptions. Consider the case of the Intel® Quark SoC X1000 Core 
having just completed an instruction. It then performs the checks listed in Table 7 
before reaching the point where the next instruction is completed. This cycle is 
repeated as each instruction is executed, and occurs in parallel with instruction 
decoding and execution. Checking for EM, TS, or FPU error status only occurs for 
processors with on-chip Floating-Point Units.

3.7.7 Instruction Restart

The Intel® Quark SoC X1000 Core fully supports restarting all instructions after faults. 
If an exception is detected in the instruction to be executed (exception categories 4 
through 10 in Table 8), the Intel® Quark SoC X1000 Core invokes the appropriate 
exception service routine. 

The Intel® Quark SoC X1000 Core is in a state that permits restart of the instruction, 
for all cases except the following. An instruction causes a task switch to a task whose 
Task State Segment is partially “not present.” (An entirely “not present” TSS is 
restartable.) Partially present TSSs can be avoided either by keeping the TSSs of such 
tasks present in memory, or by aligning TSS segments to reside entirely within a single 
4 K page (for TSS segments of 4 Kbytes or less).

Note: Partially present task state segments can be easily avoided by proper design of the 
operating system.

Table 7. Sequence of Exception Checking

Sequence Description

1 Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or 
Data Breakpoints set in the Debug Registers).

2 Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in 
the Debug Registers for the next instruction).

3 Check for external NMI and INTR.

4 Check for Segmentation Faults that prevented fetching the entire next instruction 
(exceptions 11 or 13).

5 Check for Page Faults that prevented fetching the entire next instruction (exception 14).

6

Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and attempting to execute an instruction for Protected 
Mode only (see Section 6.5.4, “Protection and I/O Permission Bitmap” on page 109); or 
exception 13 if instruction is longer than 15 bytes, or privilege violation in Protected Mode 
(i.e., not at IOPL or at CPL=0).

7 If WAIT opcode, check if TS=1 and MP=1 (exception 7 if both are 1).

8 If opcode for Floating-Point Unit, check if EM=1 or TS=1 (exception 7 if either are 1).

9 If opcode for Floating-Point Unit (FPU), check FPU error status (exception 16 if error status is 
asserted).

10

Check in the following order for each memory reference required by the instruction:
a. Check for Segmentation Faults that prevent transferring the entire memory quantity 
(exceptions 11, 12, 13).
b. Check for Page Faults that prevent transferring the entire memory quantity (exception 
14).

Note: The order stated supports the concept of the paging mechanism being “underneath” the 
segmentation mechanism. Therefore, for any given code or data reference in memory, 
segmentation exceptions are generated before paging exceptions are generated.
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3.7.8 Double Fault

A Double Fault (exception 8) results when the Intel® Quark SoC X1000 Core attempts 
to invoke an exception service routine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception other than a Page Fault (exception 
14).

A Double Fault (exception 8) will also be generated when the Intel® Quark SoC X1000 
Core attempts to invoke the Page Fault (exception 14) service routine, and detects an 
exception other than a second Page Fault. In any functional system, the entire Page 
Fault service routine must remain “present” in memory.

When a Double Fault occurs, the Intel® Quark SoC X1000 Core invokes the exception 
service routine for exception 8.

3.7.9 Floating-Point Interrupt Vectors

Several interrupt vectors of the Intel® Quark SoC X1000 Core are used to report 
exceptional conditions while executing numeric programs in either real or protected 
mode. Table 8 shows these interrupts and their causes.

Table 8. Interrupt Vectors Used by FPU

Interrupt Number Cause of Interrupt

7

A Floating-Point instruction was encountered when EM or TS of the Intel® Quark 
SoC X1000 Core control register zero (CR0) was set. EM = 1 indicates that 
software emulation of the instruction is required. When TS is set, either a Floating-
Point or WAIT instruction causes interrupt 7. This indicates that the current FPU 
context may not belong to the current task.

13

The first word or doubleword of a numeric operand is not entirely within the limit 
of its segment. The return address pushed onto the stack of the exception handler 
points at the Floating-Point instruction that caused the exception, including any 
prefixes. The FPU has not executed this instruction; the instruction pointer and 
data pointer register refer to a previous, correctly executed instruction.

16

The previous numerics instruction caused an unmasked exception. The address of 
the faulty instruction and the address of its operand are stored in the instruction 
pointer and data pointer registers. Only Floating-Point and WAIT instructions can 
cause this interrupt. The Intel® Quark SoC X1000 Core return address pushed 
onto the stack of the exception handler points to a WAIT or Floating-Point 
instruction (including prefixes). This instruction can be restarted after clearing the 
exception condition in the FPU. The FNINIT, FNCLEX, FNSTSW, FNSTENV, and 
FNSAVE instructions can not cause this interrupt.



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 39

System Register Organization—Intel® Quark Core

4.0 System Register Organization

4.1 Register Set Overview
The Intel® Quark SoC X1000 Core register set can be split into the following 
categories:

• Base Architecture Registers
— General Purpose Registers
— Instruction Pointer 
— Flags Register 
— Segment Registers

• System-Level Registers
— Control Registers
— System Address Registers

• Debug and Test Registers

The base architecture and floating-point registers (see below) are accessible by the 
applications program. The system-level registers can only be accessed at privilege level 
0 and can only be used by system-level programs. The debug and test registers also 
can only be accessed at privilege level 0.

4.2 Floating-Point Registers
In addition to the registers listed above, the Intel® Quark SoC X1000 Core has the 
following:

• Floating-Point Registers
• Data Registers
• Tag Word
• Status Word
• Instruction and Data Pointers
• Control Word

4.3 Base Architecture Registers
Figure 9 shows the Intel® Quark SoC X1000 Core base architecture registers. The 
contents of these registers are task-specific and are automatically loaded with a new 
context upon a task switch operation.

The base architecture includes six directly accessible descriptors, each specifying a 
segment up to 4 Gbytes in size. The descriptors are indicated by the selector values 
placed in the Intel® Quark SoC X1000 Core segment registers. Various selector values 
can be loaded as a program executes.
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Note: In register descriptions, “set” means “set to 1,” and “reset” means “set to 0.”

Figure 9. Base Architecture Registers

4.3.1 General Purpose Registers

Figure 9 shows the eight 32-bit general purpose registers. These registers hold data or 
address quantities. The general purpose registers can support data operands of 1, 8, 
16 and 32 bits, and bit fields of 1 to 32 bits. Address operands of 16 and 32 bits are 
supported. The 32-bit registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP.
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The least significant 16 bits of the general purpose registers can be accessed separately 
using the 16-bit names of the registers AX, BX, CX, DX, SI, DI, BP and SP. The upper 
16 bits of the register are not changed when the lower 16 bits are accessed separately.

Finally, 8-bit operations can individually access the lower byte (bits 7:0) and the 
highest byte (bits 15:8) of the general purpose registers AX, BX, CX and DX. The 
lowest bytes are named AL, BL, CL and DL, respectively. The higher bytes are named 
AH, BH, CH and DH, respectively. The individual byte accessibility offers additional 
flexibility for data operations, but is not used for effective address calculation.

4.3.2 Instruction Pointer

The instruction pointer shown in Figure 9 is a 32-bit register named EIP. EIP holds the 
offset of the next instruction to be executed. The offset is always relative to the base of 
the code segment (CS). The lower 16 bits (bits 15:0) of the EIP contain the 16-bit 
instruction pointer named IP, which is used for 16-bit addressing.

4.3.3 Flags Register

The flags register is a 32-bit register named EFLAGS. The defined bits and bit fields 
within EFLAGS control certain operations and indicate the status of the Intel® Quark 
SoC X1000 Core. The lower 16 bits (bit 15:0) of EFLAGS contain the 16-bit register 
named FLAGS, which is most useful when executing legacy processor code. Figure 10 
shows the EFLAGS register.

EFLAGS bits 1, 3, 5, 15, and 22 to 31 are defined as “Intel Reserved.” When these bits 
are stored during interrupt processing or with a PUSHF instruction (push flags onto 
stack), a “1” is stored in bit 1 and zeros are stored in bits 3, 5, 15, and 22 to 31.

Figure 10. Flag Registers
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ID (Identification Flag, bit 21)
The ability of a program to set and clear the ID flag indicates that the processor 
supports the CPUID instruction. Refer to Chapter 12.0, “Instruction Set Summary” 
and Appendix C, “Feature Determination.”

VIP (Virtual Interrupt Pending Flag, bit 20)
The VIP flag together with the VIF enable each applications program in a multi-
tasking environment to have virtualized versions of the system's IF flag. 

VIF (Virtual Interrupt Flag, bit 19)
The VIF is a virtual image of the IF (interrupt flag) used with VIP. 

AC (Alignment Check, bit 18)
The AC bit is defined in the upper 16 bits of the register. It enables the generation 
of faults when a memory reference is to a misaligned address. Alignment faults are 
enabled when AC is set to 1. A misaligned address is a word access to an odd 
address, a dword access to an address that is not on a dword boundary, or an 
8-byte reference to an address that is not on a 64-bit word boundary. See Section 
10.1.5, “Operand Alignment” on page 192.
Alignment faults are only generated by programs running at privilege level 3. The 
AC bit setting is ignored at privilege levels 0, 1, and 2. Note that references to the 
descriptor tables (for selector loads), or the task state segment (TSS), are 
implicitly level 0 references even when the instructions causing the references are 
executed at level 3. Alignment faults are reported through interrupt 17, with an 
error code of 0. Table 9 gives the alignment required for the Intel® Quark SoC 
X1000 Core data types.

Note: Several instructions on the Intel® Quark SoC X1000 Core generate misaligned 
references, even when their memory address is aligned. For example, on the Intel® 
Quark SoC X1000 Core, the SGDT/SIDT (store global/interrupt descriptor table) 
instruction reads/writes two bytes, and then reads/writes four bytes from a “pseudo-
descriptor” at the given address. The Intel® Quark SoC X1000 Core generates 
misaligned references unless the address is on a 2 mod 4 boundary. The FSAVE and 
FRSTOR instructions (floating-point save and restore state) generate misaligned 
references for one-half of the register save/restore cycles. The Intel® Quark SoC 

Table 9. Data Type Alignment Requirements

Memory Access Alignment 
(Byte Boundary)

Word 2

Dword 4

Single Precision Real 4

Double Precision Real 8

Extended Precision Real 8

Selector 2

48-bit Segmented Pointer 4

32-bit Flat Pointer 4

32-bit Segmented Pointer 2

48-bit “Pseudo-Descriptor” 4

FSTENV/FLDENV Save Area 4/2 (On Operand Size)

FSAVE/FRSTOR Save Area 4/2 (On Operand Size)

Bit String 4
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X1000 Core does not cause any AC faults when the effective address given in the 
instruction has the proper alignment.

VM (Virtual 8086 Mode, bit 17)
The VM bit provides Virtual 8086 Mode within Protected Mode. When the VM bit is 
set while the Intel® Quark SoC X1000 Core is in Protected Mode, the Intel® Quark 
SoC X1000 Core switches to Virtual 8086 operation, handling segment loads and 
generating exception 13 faults on privileged opcodes. The VM bit can be set only in 
Protected Mode by the IRET instruction (when current privilege level = 0) and by 
task switches at any privilege level. The VM bit is unaffected by POPF. PUSHF 
always pushes a 0 in this bit, even when executing in Virtual 8086 Mode. The 
EFLAGS image pushed during interrupt processing or saved during task switches 
contains a 1 in this bit if the interrupted code was executing as a Virtual 8086 Task.

RF (Resume Flag, bit 16)
The RF flag is used in conjunction with the debug register breakpoints. It is checked 
at instruction boundaries before breakpoint processing. When RF is set, it causes 
any debug fault to be ignored on the next instruction. RF is then automatically 
reset at the successful completion of every instruction (no faults are signaled) 
except the IRET instruction, the POPF instruction, (and JMP, CALL, and INT 
instructions causing a task switch). These instructions set RF to the value specified 
by the memory image. For example, at the end of the breakpoint service routine, 
the IRET instruction can pop an EFLAG image having the RF bit set and resume the 
program's execution at the breakpoint address without generating another 
breakpoint fault on the same location.

NT (Nested Task, bit 14)
The flag applies to Protected Mode. NT is set to indicate that the execution of this 
task is within another task. When set, it indicates that the current nested task's 
Task State Segment (TSS) has a valid back link to the previous task's TSS. This bit 
is set or reset by control transfers to other tasks. The value of NT in EFLAGS is 
tested by the IRET instruction to determine whether to do an inter-task return or 
an intra-task return. A POPF or an IRET instruction affects the setting of this bit 
according to the image popped, at any privilege level.

IOPL (Input/Output Privilege Level, bits 12-13)
This two-bit field applies to Protected Mode. IOPL indicates the numerically 
maximum CPL (current privilege level) value permitted to execute I/O instructions 
without generating an exception 13 fault or consulting the I/O Permission Bitmap. 
It also indicates the maximum CPL value allowing alteration of the IF (INTR Enable 
Flag) bit when new values are popped into the EFLAG register. POPF and IRET 
instruction can alter the IOPL field when executed at CPL = 0. Task switches can 
always alter the IOPL field, when the new flag image is loaded from the incoming 
task's TSS.

OF (Overflow Flag, bit 11)
The OF bit is set when the operation results in a signed overflow. Signed overflow 
occurs when the operation resulted in carry/borrow into the sign bit (high-order 
bit) of the result but did not result in a carry/borrow out of the high-order bit, or 
vice-versa. For 8-, 16-, 32-bit operations, OF is set according to overflow at bit 7, 
15, and 31, respectively.

DF (Direction Flag, bit 10)
DF defines whether ESI and/or EDI registers post decrement or post increment 
during the string instructions. Post increment occurs when DF is reset. Post 
decrement occurs when DF is set.
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IF (INTR Enable Flag, bit 9)
The IF flag, when set, allows recognition of external interrupts signaled on the INTR 
pin. When IF is reset, external interrupts signaled on the INTR are not recognized. 
IOPL indicates the maximum CPL value allowing alteration of the IF bit when new 
values are popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)
TF controls the generation of the exception 1 trap when the processor is single-
stepping through code. When TF is set, the Intel® Quark SoC X1000 Core 
generates an exception 1 trap after the next instruction is executed. When TF is 
reset, exception 1 traps occur only as a function of the breakpoint addresses loaded 
into debug registers DR[3:0].

SF (Sign Flag, bit 7)
SF is set if the high-order bit of the result is set; otherwise, it is reset. For 8-, 16-, 
32-bit operations, SF reflects the state of bits 7, 15, and 31 respectively.

ZF (Zero Flag, bit 6)
ZF is set if all bits of the result are 0; otherwise, it is reset.

AF (Auxiliary Carry Flag, bit 4)
The Auxiliary Flag is used to simplify the addition and subtraction of packed BCD 
quantities. AF is set if the operation resulted in a carry out of bit 3 (addition) or a 
borrow into bit 3 (subtraction). Otherwise, AF is reset. AF is affected by carry out 
of, or borrow into bit 3 only, regardless of overall operand length: 8, 16 or 32 bits.

PF (Parity Flags, bit 2)
PF is set if the low-order eight bits of the operation contain an even number of “1's” 
(even parity). PF is reset if the low-order eight bits have odd parity. PF is a function 
of only the low-order eight bits, regardless of operand size.

CF (Carry Flag, bit 0)
CF is set if the operation resulted in a carry out of (addition), or a borrow into 
(subtraction) the high-order bit. Otherwise, CF is reset. For 8-, 16-, or 32-bit 
operations, CF is set according to carry/borrow at bit 7, 15, or 31, respectively.

4.3.4 Segment Registers

Six 16-bit segment registers hold segment selector values identifying the currently 
addressable memory segments. In Protected Mode, each segment may range in size 
from one byte up to the entire linear and physical address space of the machine, 4 
Gbytes (232 bytes). In Real Mode, the maximum segment size is fixed at 64 Kbytes 
(216 bytes).

The six addressable segments are defined by the segment registers CS, SS, DS, ES, FS 
and GS. The selector in CS indicates the current code segment; the selector in SS 
indicates the current stack segment; the selectors in DS, ES, FS, and GS indicate the 
current data segments.

4.3.5 Segment Descriptor Cache Registers

The segment descriptor cache registers are not programmer-visible, but it is useful to 
understand their content. A programmer-invisible descriptor cache register is 
associated with each programmer-visible segment register, as shown in Figure 11. Each 
descriptor cache register holds a 32-bit base address, a 32-bit segment limit, and the 
other necessary segment attributes.
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Figure 11. Intel® Quark SoC X1000 Core Segment Registers and Associated Descriptor 
Cache Registers

When a selector value is loaded into a segment register, the associated descriptor 
cache register is automatically updated with the correct information. In Real Mode, only 
the base address is updated directly (by shifting the selector value four bits to the left), 
because the segment maximum limit and attributes are fixed in Real Mode. In 
Protected Mode, the base address, the limit, and the attributes are all updated with the 
contents of the segment descriptor indexed by the selector.

When a memory reference occurs, the segment descriptor cache register associated 
with the segment being used is automatically involved with the memory reference. The 
32-bit segment base address becomes a component of the linear address calculation, 
the 32-bit limit is used for the limit-check operation, and the attributes are checked 
against the type of memory reference requested.

4.4 System-Level Registers
Figure 12 illustrates the system-level registers, which are the control operation of the 
on-chip cache, the on-chip floating-point unit (on the Intel® Quark SoC X1000 Core) 
and the segmentation and paging mechanisms. These registers are only accessible to 
programs running at privilege level 0, the highest privilege level.

The system-level registers include three control registers and four segmentation base 
registers. The three control registers are CR0, CR2 and CR3. CR1 is reserved for future 
Intel processors. The four segmentation base registers are the Global Descriptor Table 
Register (GDTR), the Interrupt Descriptor Table Register (IDTR), the Local Descriptor 
Table Register (LDTR) and the Task State Segment Register (TR).
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Figure 12. System-Level Registers

4.4.1 Control Registers

Figure 13 shows the Control Registers which are described in the following sections:
• Section 4.4.1.1, “Control Register 0 (CR0)” on page 47
• Section 4.4.1.2, “Control Register 1 (CR1)” on page 51
• Section 4.4.1.3, “Control Register 2 (CR2)” on page 51
• Section 4.4.1.4, “Control Register 3 (CR3)” on page 51
• Section 4.4.1.5, “Control Register 4 (CR4)” on page 51
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4.4.1.1 Control Register 0 (CR0)

CR0, shown in Figure 13, contains 10 bits for control and status purposes. The function 
of the bits in CR0 can be categorized as follows:

• Intel® Quark SoC X1000 Core Operating Modes: PG, PE (Table 10)
• On-Chip Cache Control Modes: CD, NW (Table 11)
• On-Chip Floating-Point Unit: NE, TS, EM, TS (Table 12 and Table 13). (Also applies 

for the Intel® Quark SoC X1000 Core.) 
• Alignment Check Control: AM
• Supervisor Write Protect: WP

Figure 13. Control Registers 
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The low-order 16 bits of CR0 are also known as the Machine Status Word (MSW). LMSW 
and SMSW (load and store MSW) instructions are taken as special aliases of the load 
and store CR0 operations, where only the low-order 16 bits of CR0 are involved. The 
LMSW and SMSW instructions in the Intel® Quark SoC X1000 Core operate only on the 
low-order 16 bits of CR0 and ignore the new bits. New Intel® Quark SoC X1000 Core 
operating systems should use the MOV CR0, Reg instruction.

The defined CR0 bits are described as follows.

PG (Paging Enable, bit 31)
The PG bit is used to indicate whether paging is enabled (PG=1) or disabled 
(PG=0). (See Table 10.)

CD (Cache Disable, bit 30)
The CD bit is used to enable the on-chip cache. When CD=1, the cache is not filled 
on cache misses. When CD=0, cache fills may be performed on misses. (See 
Table 11.)
The state of the CD bit, the cache enable input pin (KEN#), and the relevant page 
cache disable (PCD) bit determine whether a line read in response to a cache miss 
will be installed in the cache. A line is installed in the cache only when CD=0 and 
KEN# and PCD are both zero. The relevant PCD bit comes from either the page 
table entry, page directory entry or control register 3. Refer to Section 6.4.7, “Page 
Cacheability (PWT and PCD Bits)” on page 103.
CD is set to “1” after RESET.

NW (Not Write-Through, bit 29)
The NW bit enables on-chip cache write-throughs and write-invalidate cycles 
(NW=0).
When NW=0, all writes, including cache hits, are sent out to the pins. Invalidate 
cycles are enabled when NW=0. During an invalidate cycle, a line is removed from 
the cache if the invalidate address hits in the cache. (See Table 11.)
When NW=1, write-throughs and write-invalidate cycles are disabled. A write is not 
sent to the pins if the write hits in the cache. With NW=1 the only write cycles that 

Table 10. Intel® Quark SoC X1000 Core Operating Modes

PG PE Mode

0 0 Real Mode. 32-bit extensions available with prefixes.

0 1
Protected Mode. 32-bit extensions through both prefixes and “default” prefix setting 
associated with code segment descriptors. Also, a sub-mode is defined to support a virtual 
8086 processor within the context of the extended processor protection model.

1 0 Undefined. Loading CR0 with this combination of PG and PE bits causes a GP fault with 
error code 0.

1 1 Paged Protected Mode. All the facilities of Protected Mode, with paging enabled underneath 
segmentation.

Table 11. On-Chip Cache Control Modes

CD NW Operating Mode

1 1 Cache fills disabled, write-through and invalidates disabled.

1 0 Cache fills disabled, write-through and invalidates enabled.

0 1 INVALID. If CR0 is loaded with this configuration of bits, a GP fault with error code results.

0 0 Cache fills enabled, write-through and invalidates enabled.
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reach the external bus are cache misses. Write hits with NW=1 never update main 
memory. Invalidate cycles are ignored when NW=1.

AM (Alignment Mask, bit 18)
Enables automatic alignment checking when set; disables alignment checking when 
clear. Alignment checking is performed only when the AM flag is set, the AC flag in 
the EFLAGS register is set, CPL is 3, and the processor is operating in either 
protected or virtual-8086 mode.
Setting AM=0 prevents AC faults from occurring before the Intel® Quark SoC 
X1000 Core has created the AC interrupt service routine.

WP (Write Protect, bit 16)
When set, inhibits supervisor-level procedures from writing into read-only pages; 
when clear, allows supervisor-level procedures to write into read-only pages 
(regardless of the U/S bit setting). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems 
such as UNIX.
Refer to Section 6.4.6, “Page Level Protection (R/W, U/S Bits)” on page 102. 

Note: Refer to Table 12 and Table 13 for values and interpolation of NE, EM, TS, and MP bits, 
in addition to the sections below.

NE (Numeric Error, bit 5)
Enables the native (internal) mechanism for reporting x87 FPU errors when set; 
enables the PC-style x87 FPU error reporting mechanism when clear. When the NE 
flag is clear and the IGNNE# input is asserted, x87 FPU errors are ignored. When 
the NE flag is clear and the IGNNE# input is deasserted, an unmasked x87 FPU 
error causes the processor to assert the FERR# pin to generate an external 
interrupt and to stop instruction execution immediately before executing the next 
waiting floating-point instruction or WAIT/FWAIT instruction.
The FERR# pin is intended to drive an input to an external interrupt controller (the 
FERR# pin emulates the ERROR# pin of the Intel 287 and Intel 387 DX math 
coprocessors). The NE flag, IGNNE# pin, and FERR# pin are used with external 
logic to implement PC-style error reporting.  
Refer to Section 9.2.14, “Numeric Error Reporting (FERR#, IGNNE#)” on page 159 
and Section 10.3.14, “Floating-Point Error Handling for the Intel® Quark SoC 
X1000 Core” on page 225.
For any unmasked floating-point exceptions (UFPE), the floating-point error output 
pin (FERR#) is driven active.
For NE=0, the Intel® Quark SoC X1000 Core works in conjunction with the ignore 
numeric error input (IGNNE#) and the FERR# output pins. When a UFPE occurs and 
the IGNNE# input is inactive, the Intel® Quark SoC X1000 Core freezes 
immediately before executing the next floating-point instruction. An external 
interrupt controller supplies an interrupt vector when FERR# is driven active. The 
UFPE is ignored if IGNNE# is active and floating-point execution continues.
Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 

provides the capability to control the IGNNE# pin via a register; the default 
value of the register is 1'b0.

Note: The freeze does not take place when the next instruction is one of the control 
instructions FNCLEX, FNINIT, FNSAVE, FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, 
FNENI, FNDISI and FNSETPM. The freeze does occur when the next instruction is WAIT.

Note: For NE=1, any UFPE results in a software interrupt 16, immediately before executing 
the next non-control floating-point or WAIT instruction. The ignore numeric error input 
(IGNNE#) signal is ignored.
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TS (Task Switch, bit 3)
• Intel® Quark SoC X1000 Core TS bit:

For Intel® Quark SoC X1000 Core, the TS bit is set whenever a task switch 
operation is performed. Execution of floating-point instructions with TS=1 causes a 
Device Not Available (DNA) fault (trap vector 7). If TS=1 and MP=1 (monitor 
coprocessor in CR0), a WAIT instruction causes a DNA fault.

EM (Emulate Coprocessor, bit 2)
• Intel® Quark SoC X1000 Core EM bit:

For Intel® Quark SoC X1000 Core, the EM bit determines whether floating-point 
instructions are trapped (EM=1) or executed. If EM=1, all floating-point 
instructions cause fault 7.
If EM=0, the on-chip floating-point is used.
Note: WAIT instructions are not affected by the state of EM. (See Table 13.)

MP (Monitor Coprocessor, bit 1)
• Intel® Quark SoC X1000 Core MP bit:

For the Intel® Quark SoC X1000 Core, the MP is used in conjunction with the TS bit 
to determine whether WAIT instructions cause fault 7. (See Table 13.) The TS bit is 
set to 1 on task switches by the Intel® Quark SoC X1000 Core. Floating-point 
instructions are not affected by the state of the MP bit. It is recommended that the 
MP bit be set to one for normal processor operation.

PE (Protection Enable, bit 0)
The PE bit enables the segment based protection mechanism when PE=1 protection 
is enabled. When PE=0 the Intel® Quark SoC X1000 Core operates in Real Mode. 
(Refer to Table 10.)

Table 12. Recommended Values of the Floating-Point Related Bits for Intel® Quark SoC 
X1000 Core

CR0 Bit Intel® Quark SoC X1000 Core

EM 0

MP 1

NE 0 for DOS Systems; 1 for User-Defined Exception Handler

Table 13. Interpreting Different Combinations of EM, TS and MP Bits (Sheet 1 of 2)

CR0 Bit Instruction Type

EM TS MP Floating-Point Wait

0 0 0 Execute Execute

0 0 1 Execute Execute

0 1 0 Exception 7 Execute

0 1 1 Exception 7 Exception 7

1 0 0 Exception 7 Execute

Note: For Intel® Quark SoC X1000 Core, when MP=1 and TS=1, the processor generates a trap 7 so that 
the system software can save the floating-point status of the old task.
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4.4.1.2 Control Register 1 (CR1)

CR1 is reserved for use in future Intel processors.

4.4.1.3 Control Register 2 (CR2)

CR2, shown in Figure 13, contains the page-fault linear address (the linear address 
that caused a page fault).

4.4.1.4 Control Register 3 (CR3)

CR3, shown in Figure 13, contains the physical address of the base of the paging-
structure hierarchy and two flags (PCD and PWT). Only the most-significant bits 
(less the lower 12 bits) of the base address are specified; the lower 12 bits of the 
address are assumed to be 0. The first paging structure must thus be aligned to a 
page (4-KByte) boundary. The PCD and PWT flags control caching of that paging 
structure in the processor’s internal data caches (they do not control TLB caching of 
page-directory information).
When using the physical address extension, the CR3 register contains the base 
address of the page-directory-pointer table In IA-32e mode, the CR3 register 
contains the base address of the PML4 table.  
In the Intel® Quark SoC X1000 Core, CR3 contains two bits, page write-through 
(PWT) (bit 3) and page cache disable (PCD) (bit 4). The page table entry (PTE) and 
page directory entry (PDE) also contain PWT and PCD bits. PWT and PCD control 
page cacheability. When a page is accessed in external memory, the states of PWT 
and PCD are driven out on the PWT and PCD pins. The source of PWT and PCD can 
be CR3, the PTE or the PDE. PWT and PCD are sourced from CR3 when the PDE is 
being updated. When paging is disabled (PG = 0 in CR0), PCD and PWT are 
assumed to be 0, regardless of their state in CR3.
A task switch through a task state segment (TSS) which changes the values in CR3, 
or an explicit load into CR3 with any value, invalidates all cached page table entries 
in the translation lookaside buffer (TLB).
The page directory base address in CR3 is a physical address. The page directory 
can be paged out while its associated task is suspended, but the operating system 
must ensure that the page directory is resident in physical memory before the task 
is dispatched. The entry in the TSS for CR3 has a physical address, with no 
provision for a present bit. This means that the page directory for a task must be 
resident in physical memory. The CR3 image in a TSS must point to this area, 
before the task can be dispatched through its TSS.

4.4.1.5 Control Register 4 (CR4)

CR4, shown in Figure 14, contains a group of flags that enable several architectural 
extensions, and indicate operating system or executive support for specific processor 
capabilities. The control registers can be read and loaded (or modified) using the move 
to-or-from-control-registers forms of the MOV instruction. In protected mode, the MOV 

1 0 1 Exception 7 Execute

1 1 0 Exception 7 Execute

1 1 1 Exception 7 Exception 7

Table 13. Interpreting Different Combinations of EM, TS and MP Bits (Sheet 2 of 2)

CR0 Bit Instruction Type

EM TS MP Floating-Point Wait

Note: For Intel® Quark SoC X1000 Core, when MP=1 and TS=1, the processor generates a trap 7 so that 
the system software can save the floating-point status of the old task.
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instructions allow the control registers to be read or loaded (at privilege level 0 only). 
This restriction means that application programs or operating system procedures 
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control 
registers.  

Flags relevant to Intel® Quark SoC X1000 Core are described below. 

PSE Page Size Extension (bit 4 of CR4) 
When set, enables 4MB pages with 32-bit paging.

PAE Physical Address Extension (bit 5 of CR4) 
When set, enables paging to produce physical addresses with more than 32 bits. 
When clear, restricts physical addresses to 32 bits. PAE must be set before entering 
IA-32e mode.

SMEP SMEP-Enable Bit (bit 20 of CR4) 
Enables supervisor-mode execution prevention (SMEP) when set. 

Note: Features described in CR4 (VME, PVI, and PSE) in the CPUID Feature Flag should be 
qualified with the CPUID instruction. The CPUID instruction and CPUID Feature Flag are 
specific to particular models.  (Refer to Appendix C, “Feature Determination.”)

4.4.2 System Address Registers

Four special registers are defined to reference the tables or segments supported by the 
Intel® Quark SoC X1000 Core protection model. These tables or segments are: GDT 
(Global Descriptor Table), IDT (Interrupt Descriptor Table), LDT (Local Descriptor 
Table), TSS (Task State Segment).

The addresses of these tables and segments are stored in special registers: the System 
Address and System Segment Registers, illustrated in Figure 12. These registers are 
named GDTR, IDTR, LDTR, and TR respectively. Chapter 6.0, “Protected Mode 
Architecture” describes how to use these registers.

System Address Registers: GDTR and IDTR
The GDTR and IDTR hold the 32-bit linear-base address and 16-bit limit of the GDT 
and IDT, respectively.
Because the GDT and IDT segments are global to all tasks in the system, the GDT 
and IDT are defined by 32-bit linear addresses (subject to page translation when 
paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR
The LDTR and TR hold the 16-bit selector for the LDT descriptor and the TSS 
descriptor, respectively.
Because the LDT and TSS segments are task-specific segments, the LDT and TSS 
are defined by selector values stored in the system segment registers.

Note: A programmer-invisible segment descriptor register is associated with each system 
segment register.

Figure 14. Intel® Quark SoC X1000 Core CR4 Register
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4.5 Floating-Point Registers
Figure 15 shows the floating-point register set. The on-chip FPU contains eight data 
registers, a tag word, a control register, a status register, an instruction pointer and a 
data pointer.

4.5.1 Floating-Point Data Registers

Floating-point computations use the Intel® Quark SoC X1000 Core FPU data registers. 
These eight 80-bit registers provide the equivalent capacity of twenty 32-bit registers. 
Each of the eight data registers is divided into “fields” corresponding to the FPU’s 
extended-precision data type.

Figure 15. Floating-Point Registers

The FPU’s register set can be accessed either as a stack, with instructions operating on 
the top one or two stack elements, or as a fixed register set, with instructions operating 
on explicitly designated registers. The TOP field in the status word identifies the current 
top-of-stack register. A “push” operation decrements TOP by one and loads a value into 
the new top register. A “pop” operation stores the value from the current top register 
and then increments TOP by one. Like other Intel® Quark SoC X1000 Core stacks in 
memory, the FPU register stack grows “down” toward lower-addressed registers.

Instructions may address the data registers either implicitly or explicitly. Many 
instructions operate on the register at the TOP of the stack. These instructions implicitly 
address the register at which TOP points. Other instructions allow the programmer to 
explicitly specify which register to use. This explicit register addressing is also relative 
to TOP.
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4.5.2 Floating-Point Tag Word

The tag word marks the content of each numeric data register, as shown in Figure 16. 
Each two-bit tag represents one of the eight data registers. The principal function of 
the tag word is to optimize the FPU’s performance and stack handling by making it 
possible to distinguish between empty and non-empty register locations. It also 
enables exception handlers to check the contents of a stack location without the need 
to perform complex decoding of the actual data.

Figure 16. Floating-Point Tag Word

4.5.3 Floating-Point Status Word

The 16-bit status word reflects the overall state of the FPU. The status word is shown in 
Figure 17 and is located in the status register.

   A5151-01

Note:
The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to
determine which tag(i) field refers to logical top of stack.

Tag Values:

015

Tag (0)Tag (1)Tag (2)Tag (3)Tag (4)Tag (5)Tag (6)Tag (7)

00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal, and Unsupported Formats
11 = Empty
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Figure 17. Floating-Point Status Word
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ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 4-7 for interpretation of condition code.
Top Values:

000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
                       *
                       *
                       *
111 = Register 7 is Top of Stack

TOP

For definitions of exceptions, refer to the section entitled, "Exception Handling".

Note:
The B-bit (Busy, bit 15) is included for 8087 compatibility. The B-bit reflects the contents of the ES
bit (bit 7 of the status word).         
Bits 13-11 (TOP) point to the FPU register that is the current top-of-stack.
The four numeric condition code bits, C0-C3, are similar to the flags in EFLAGS. Instructions that
perform arithmetic operations update C0-C3 to reflect the outcome. The effects of these
instructions on the condition codes are summarized in Table 4-7 through Table 4-10.

See Table 14 for interpretation of condition code.
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Table 14. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 C0

1 X X X Incomplete Reduction:
further interaction required for complete reduction

Q1 Q0 Q2 Q MOD8

Complete Reduction:
C0, C3, and C1 contain the three

least-significant bits of the quotient

0 0 0 0

0 1 0 1

0 1 0 0 2

1 1 0 3

0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 15. Floating-Point Condition Code Interpretation

Instruction C0 (S) C3 (Z) C1 (A) C2 (C)

FPREM, FPREM1
Three least significant bits of quotient (See Table 14.) Reduction

0 = complete

Q2 Q0 Q1 or O/U# 1 = incomplete

FCOM, FCOMP, FCOMPP, FTST, 
FUCOM, FUCOMP, FUCOMPP, 
FICOM, FICOMP

Result of comparison (see Table 16) Zero or O/U# Operand is not 
comparable 

 FXAM Operand class (see Table 17) Sign or O/U# Operand class 

FCHS, FABS, FXCH, FINCTOP, 
FDECTOP, Constant loads, 
FXTRACT, FLD, FILD, FBLD, FSTP 
(ext real)

UNDEFINED Zero or O/U# UNDEFINED

FIST, FBSTP, FRNDINT, FST, FSTP, 
FADD, FMUL, FDIV, FDIVR, FSUB, 
FSUBR, FSCALE, FSQRT, FPATAN, 
F2XM1, FYL2X, FYL2XP1

UNDEFINED Roundup or O/U# UNDEFINED

FPTAN, FSIN, FCOS, FSINCOS UNDEFINED Roundup or 
O/U#, if C2 = 1

Reduction
0 = complete
1 = incomplete

FLDENV, FRSTOR Each bit loaded from memory

FINIT Clears these bits

FLDCW, FSTENV, FSTCW, FSTSW, 
FCLEX, FSAVE UNDEFINED

Notes:  
1. When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes 

between stack overflow (C1 = 1) and underflow (C1 = 0).
2. Reduction: If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is complete. 

When reduction is incomplete, the value at the top of the stack is a partial remainder, which can be used as 
input to further reduction. For FPTAN, FSIN, FCOS, and FSINCOS, the reduction bit is set if the operand at 
the top of the stack is too large. In this case, the original operand remains at the top of the stack.

3. Roundup: When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward.

4. UNDEFINED: Do not rely on finding any specific value in these bits. See Section 4.8, “Reserved Bits and 
Software Compatibility” on page 63.
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Bit 7 is the error summary (ES) status bit. The ES bit is set if any unmasked exception 
bit (bits 5:0 in the status word) is set; ES is clear otherwise. The FERR# (floating-point 
error) signal is asserted when ES is set.

Bit 6 is the stack flag (SF). This bit is used to distinguish invalid operations due to stack 
overflow or underflow. When SF is set, bit 9 (C1) distinguishes between stack overflow 
(C1=1) and underflow (C1=0).

Table 18 shows the six exception flags in bits 5:0 of the status word. Bits 5:0 are set to 
indicate that the FPU has detected an exception while executing an instruction.

The six exception flags in the status word can be individually masked by mask bits in 
the FPU control word. Table 18 lists the exception conditions, and their causes in order 
of precedence. Table 18 also shows the action taken by the FPU if the corresponding 
exception flag is masked.

An exception that is not masked by the control word causes three things to happen: the 
corresponding exception flag in the status word is set, the ES bit in the status word is 
set, and the FERR# output signal is asserted. When the Intel® Quark SoC X1000 Core 
attempts to execute another floating-point or WAIT instruction, exception 16 occurs or 
an external interrupt happens if the NE=1 in control register 0. The exception condition 
must be resolved via an interrupt service routine. The FPU saves the address of the 
floating-point instruction that caused the exception and the address of any memory 
operand required by that instruction in the instruction and data pointers. See 

Table 16. Condition Code Resulting from Comparison

Order C3 C2 C0

TOP > Operand 0 0 0

TOP < Operand 0 0 1

TOP = Operand 1 0 0

Unordered 1 1 1

Table 17. Condition Code Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 + Unsupported

0 0 0 1 + NaN

0 0 1 0 - Unsupported

0 0 1 1 - NaN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 - Normal

0 1 1 1 - Infinity

1 0 0 0 + 0

1 0 0 1 + Empty

1 0 1 0 - 0

1 0 1 1 - Empty

1 1 0 0 + Denormal

1 1 1 0 - Denormal
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Section 4.5.4.

Note that when a new value is loaded into the status word by the FLDENV (load 
environment) or FRSTOR (restore state) instruction, the value of ES (bit 7) and its 
reflection in the B bit (bit 15) are not derived from the values loaded from memory. The 
values of ES and B are dependent upon the values of the exception flags in the status 
word and their corresponding masks in the control word. If ES is set in such a case, the 
FERR# output of the Intel® Quark SoC X1000 Core is activated immediately.

4.5.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU (in the Intel® Quark SoC X1000 Core 
the arithmetic and logic unit (ALU) consists of the base architecture registers), any 
errors detected by the FPU may be reported after the ALU has executed the floating-
point instruction that caused it. To allow identification of the failing numeric instruction, 
the Intel® Quark SoC X1000 Core contains two pointer registers that supply the 
address of the failing numeric instruction and the address of its numeric memory 
operand (if appropriate).

The instruction and data pointers are provided for user-written error handlers. These 
registers are accessed by the FLDENV (load environment), FSTENV (store 
environment), FSAVE (save state) and FRSTOR (restore state) instructions. Whenever 
the Intel® Quark SoC X1000 Core decodes a new floating-point instruction, it saves the 
instruction (including any prefixes that may be present), the address of the operand (if 
present) and the opcode.

The instruction and data pointers appear in one of four formats depending on the 
operating mode of the Intel® Quark SoC X1000 Core (Protected Mode or Real Mode) 
and depending on the operand-size attribute in effect (32-bit operand or 16-bit 
operand). When the Intel® Quark SoC X1000 Core is in the Virtual-86 Mode, the Real 
Mode formats are used. Figure 18 through Figure 21 show the four formats. The 
floating-point instructions FLDENV, FSTENV, FSAVE and FRSTOR are used to transfer 
these values to and from memory. Note that the value of the data pointer is undefined 
if the prior floating-point instruction did not have a memory operand.

Note: The operand size attribute is the D bit in a segment descriptor.

Table 18. FPU Exceptions

Exception Cause Default Action (if 
exception is masked)

Invalid 
Operation

Operation on a signaling NaN, unsupported format, 
indeterminate form (0*∞, 0/0, (+∞) + (-∞), etc.), or stack 
overflow/underflow (SF is also set).

Result is a quiet NaN, 
integer indefinite, or 
BCD indefinite

Denormalized 
Operand

At least one of the operands is denormalized; i.e., it has the 
smallest exponent but a non-zero significand.

Normal processing 
continues

Zero Divisor The divisor is zero while the dividend is a non-infinite, non-zero 
number. Result is ∞

Overflow The result is too large in magnitude to fit in the specified 
format.

Result is largest finite 
value or ∞

Underflow
The true result is non-zero but too small to be represented in 
the specified format, and, when underflow exception is 
masked, denormalization causes loss of accuracy.

Result is denormalized 
or zero

Inexact Result 
(Precision)

The true result is not exactly representable in the specified 
format (e.g., 1/3); the result is rounded according to the 
rounding mode.

Normal processing 
continues
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Figure 18. Protected Mode FPU Instructions and Data Pointer Image in Memory (32-Bit 
Format)

Figure 19. Real Mode FPU Instruction and Data Pointer Image in Memory (32-Bit Format)
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Figure 20. Protected Mode FPU Instruction and Data Pointer Image in Memory (16-Bit 
Format)

Figure 21. Real Mode FPU Instruction and Data Pointer Image in Memory (16-Bit Format)
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Figure 22. FPU Control Word

4.5.5 FPU Control Word

The FPU provides several processing options that are selected by loading a control word 
from memory into the control register. Figure 22 shows the format and encoding of 
fields in the control word.

The low-order byte of the FPU control word configures the FPU error and exception 
masking. Bits 5:0 of the control word contain individual masks for each of the six 
exceptions that the FPU recognizes.

The high-order byte of the control word configures the FPU operating mode, including 
precision and rounding.

RC (Rounding Control, bits 11:10)
RC bits provide for directed rounding and true chop, as well as the unbiased round 
to nearest even mode specified in the IEEE standard. Rounding control affects only 
those instructions that perform rounding at the end of the operation (and thus can 
generate a precision exception); namely, FST, FSTP, FIST, all arithmetic instructions 
(except FPREM, FPREM1, FXTRACT, FABS and FCHS), and all transcendental 
instructions.

PC (Precision Control, bits 9:8)
PC bits can be used to set the FPU internal operating precision of the significand at 
less than the default of 64 bits (extended precision). This can be useful in providing 
compatibility with early generation arithmetic processors of smaller precision. PC 
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affects only the instructions ADD, SUB, DIV, MUL, and SQRT. For all other 
instructions, either the precision is determined by the opcode or extended precision 
is used.

4.6 Debug and Test Registers

4.6.1 Debug Registers

The programmer accessible debug registers in Table 19 provide on-chip support for 
debugging. Debug registers DR[3:0] specify the four linear breakpoints. The Debug 
control register DR7, is used to set the breakpoints and the Debug Status Register, 
DR6, displays the current state of the breakpoints. The use of the Debug registers is 
described in Chapter 11.0, “Debugging Support.”

4.6.2 Test Registers

The Intel® Quark SoC X1000 Core contains the test registers listed in Table 20. TR6 
and TR7 are used to control the testing of the translation lookaside buffer. TR3, TR4 
and TR5 are used for testing the on-chip cache. The use of the test registers is 
discussed in Appendix B, “Testability.”

4.7 Register Accessibility
There are a few differences regarding the accessibility of the registers in Real and 
Protected Mode. Table 21 summarizes these differences. See Chapter 6.0, “Protected 
Mode Architecture.”

Table 19. Debug Registers

Debug Registers

Linear Breakpoint Address 0 DR0

Linear Breakpoint Address 1 DR1

Linear Breakpoint Address 2 DR2

Linear Breakpoint Address 3 DR3

Intel Reserved, Do Not Define DR4

Intel Reserved, Do Not Define DR5

Breakpoint Status DR6

Breakpoint Control DR7

Table 20. Test Registers

Test Registers

Cache Test Data TR3

Cache Test Status TR4

Cache Test Control TR5

TLB (Translation Lookaside Buffer) Test Control TR6

TLB (Translation Lookaside Buffer) Test Status TR7
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4.7.1 FPU Register Usage

In addition to the differences listed in Table 21, Table 22 summarizes the differences for 
the on-chip FPU.

4.8 Reserved Bits and Software Compatibility 
In many register and memory layout descriptions, certain bits are marked as reserved. 
When bits are marked as reserved, it is essential for compatibility with future 
processors that software treat these bits as having a future, though unknown, effect. 
The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable.

Follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers that contain such bits. Mask out the reserved bits when testing.
• Do not depend on the states of any reserved bits when storing to memory or 

another register.

Table 21. Register Usage

Register

Use in
Real Mode

Use in
Protected Mode

Use in
Virtual 8086 Mode

Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes

Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL(1) IOPL

Control Registers Yes Yes PL = 0(2) PL = 0 No Yes

GDTR Yes Yes PL = 0 Yes No Yes

IDTR Yes Yes PL = 0 Yes No Yes

LDTR No No PL = 0 Yes No No

TR No No PL = 0 Yes No No

Debug Registers Yes Yes PL = 0 PL = 0 No No

Test Registers Yes Yes PL = 0 PL = 0 No No

Notes:
1. IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 8086 Mode.
2. PL = 0: The registers can be accessed only when the current privilege level is zero.

Table 22. FPU Register Usage Differences

Register

Use in
Real Mode

Use in
Protected Mode

Use in
Virtual 8086 Mode

Load Store Load Store Load Store

FPU Data Registers Yes Yes Yes Yes Yes Yes

FPU Control Registers Yes Yes Yes Yes Yes Yes

FPU Status Registers Yes Yes Yes Yes Yes Yes

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes

FPU Data Pointer Yes Yes Yes Yes Yes Yes
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• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in 

the documentation, if any, or reload them with values previously read from the 
same register.

Note: Avoid any software dependence upon the state of reserved bits in Intel® Quark SoC 
X1000 Core registers. Depending upon the values of reserved register bits will make 
software dependent upon the unspecified manner in which the processor handles these 
bits. Programs that depend upon reserved values risk incompatibility with future 
processors.

4.9 Intel® Quark Core Model Specific Registers (MSRs) 

The following fault conditions are honored when reading/writing to these MSRs:
• #GP(0) is raised if trying to read/write privilege level greater than 0
• #GP(0) is raised if trying to read/write in virtual-8086 mode
• #GP(0) is raised if trying to read/write unimplemented MSR
• #GP(0) is raised if trying to write to reserved bits

When bit 22 of IA32_MISC_ENABLE is set, all CPUID basic leaves above 3 are invisible. 
When bit 34 of IA32_MISC_ENABLE is set, CPUID.80000001H:EDX[20] is cleared. 
When bit 11 of IA32_EFER is set, XD feature is enabled. However, when bit 34 of 
IA32_MISC_ENABLE is set, setting bit 11 of IA32_EFER has no effect. 

Table 23. MSRs for Intel® Quark Core 1

Name Address Feature Bit definition

IA32_TSC 0x10 Time Stamp Counter This is a 64-bit counter that increments on 
core clock.

IA32_MISC_ENABLE 0x1A0 PAE/XD

[22]=BOOT_NT4
[34]=XD Disable
All other bits are reserved. Writing of 1'b1 
to reserved bits causes #GP(0) Fault. 

IA32_EFER 0xC000_0080 PAE/XD
[11] - NXE - Execute Disable bit Enable.
All other bits are reserved. Writing of 1'b1 
to reserved bits causes #GP(0) Fault.
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5.0 Real Mode Architecture

5.1 Introduction
When the Intel® Quark SoC X1000 Core is powered up or reset, it is initialized in Real 
Mode. Real Mode allows access to the 32-bit register set of the Intel® Quark SoC X1000 
Core. 

All of the Intel® Quark SoC X1000 Core instructions are available in Real Mode (except 
those instructions listed in Section 6.5.4, “Protection and I/O Permission Bitmap” on 
page 109). The default operand size in Real Mode is 16 bits. In order to use the 32-bit 
registers and addressing modes, override prefixes must be used. Also, the segment 
size on the Intel® Quark SoC X1000 Core in Real Mode is 64 Kbytes, forcing 32-bit 
effective addresses to have a value less than 0000FFFFH. The primary purpose of Real 
Mode is to enable Protected Mode operation.

Due to the addition of paging on the Intel® Quark SoC X1000 Core in Protected Mode 
and Virtual 8086 Mode, it is impossible to guarantee that repeated string instructions 
can be LOCKed. The Intel® Quark SoC X1000 Core cannot require that all pages 
holding the string be physically present in memory. Hence, a Page Fault (exception 14) 
might have to be taken during the repeated string instruction. Therefore, the LOCK 
prefix can not be supported during repeated string instructions.

Table 24 lists the only instruction forms in which the LOCK prefix is legal on the Intel® 
Quark SoC X1000 Core.

An exception 6 is generated if a LOCK prefix is placed before any instruction form or 
opcode not listed Table 24. The LOCK prefix allows indivisible read/modify/write 
operations on memory operands using the instructions Table 24. For example, even the 
ADD Reg, Mem instruction is not LOCKable, because the Mem operand is not the 
destination (and therefore no memory read/modify/operation is being performed).

On the Intel® Quark SoC X1000 Core, repeated string instructions are not LOCKable; 
therefore, it is not possible to LOCK the bus for a long period of time. Therefore, the 
LOCK prefix is not IOPL-sensitive on the Intel® Quark SoC X1000 Core. The LOCK 
prefix can be used at any privilege level, but only on the instruction forms listed in 
Table 24.

Table 24. Instruction Forms in which LOCK Prefix Is Legal

Opcode Operands (Dest, Source)

BIT Test and SET/RESET/COMPLEMENT Mem, Reg/immed.

XCHG Reg, Mem 

CHG Mem, Reg

ADD, OR, ADC, SBB, AND, SUB, XOR Mem, Reg/immed.

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg
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5.2 Memory Addressing
In Real Mode, the maximum memory size is limited to 1 Mbyte. (See Figure 23.) Thus, 
only address lines A[19:2] are active with this exception: after RESET address lines 
A[31:20] are high during CS-relative memory cycles until an intersegment jump or call 
is executed. See Section 9.5, “Reset and Initialization” on page 169.

Because paging is not allowed in Real Mode, the linear addresses are the same as the 
physical addresses. Physical addresses are formed in Real Mode by adding the contents 
of the appropriate segment register, which is shifted left by four bits to create an 
effective address. This addition results in a physical address from 00000000H to 
0010FFEFH. This is compatible with 80286 Real Mode. Because segment registers are 
shifted left by 4 bits, Real Mode segments always start on 16-byte boundaries.

All segments in Real Mode are exactly 64-Kbytes long, and may be read, written, or 
executed. The Intel® Quark SoC X1000 Core generates an exception 13 if a data 
operand or instruction fetch occurs past the end of a segment (i.e., if an operand has 
an offset greater than FFFFH, as when a word has a low byte at FFFFH and the high 
byte at 0000H).

Segments may be overlapped in Real Mode. If a segment does not use all 64 Kbytes, 
another segment can be overlaid on top of the unused portion of the previous segment. 
This allows the programmer to minimize the amount of physical memory needed for a 
program.

5.3 Reserved Locations
There are two fixed areas in memory that are reserved in Real Address Mode: the 
system initialization area and the interrupt table area. Locations 00000H through 
003FFH are reserved for interrupt vectors. Each one of the 256 possible interrupts has 
a 4-byte jump vector reserved for it. Locations FFFFFFF0H through FFFFFFFFH are 
reserved for system initialization.

Figure 23. Real Address Mode Addressing



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 67

Real Mode Architecture—Intel® Quark Core

5.4 Interrupts
Many of the exceptions discussed in Section 3.7.3, “Maskable Interrupt” on page 34 are 
not applicable to Real Mode operation, in particular exceptions 10, 11, 14, and 17, 
which do not occur in Real Mode. Other exceptions have slightly different meanings in 
Real Mode; Table 25 identifies these exceptions.

5.5 Shutdown and Halt
The HALT instruction stops program execution and prevents the Intel® Quark SoC 
X1000 Core from using the local bus until restarted via the RESUME instruction. The 
Intel® Quark SoC X1000 Core is forced out of halt by NMI, INTR with interrupts enabled 
(IF=1), or by RESET. If interrupted, the saved CS:IP points to the next instruction after 
the HLT.

As in the case of Protected Mode, the shutdown occurs when a severe error is detected 
that prevents further processing. In Real Mode, shutdown can occur under the following 
two conditions:

• An interrupt or an exception occurs (exceptions 8 or 13) and the interrupt vector is 
larger than the Interrupt Descriptor Table (i.e., there is not an interrupt handler for 
the interrupt).

• A CALL, INT or PUSH instruction attempts to wrap around the stack segment when 
SP is not even (i.e., pushing a value on the stack when SP = 0001, resulting in a 
stack segment greater than FFFFH).

An NMI input can bring the processor out of shutdown if the Interrupt Descriptor Table 
limit is large enough to contain the NMI interrupt vector (at least 0017H) and the stack 
has enough room to contain the vector and flag information (i.e., SP is greater than 
0005H). If these conditions are not met, the Intel® Quark SoC X1000 Core is unable to 
execute the NMI and executes another shutdown cycle. In this case, the Intel® Quark 
SoC X1000 Core remains in the shutdown and can only exit via the RESET input.

Table 25. Exceptions with Different Meanings in Real Mode (see Table 24)

Function Interrupt 
Number Related Instructions Return Address 

Location

Interrupt table limit too small 8 INT Vector is not within table limit Before Instruction

CS, DS, ES, FS, GS Segment 
overrun exception 13

Word memory reference beyond offset = 
FFFFH.
An attempt to execute past the end of 
CS segment.

Before Instruction

SS Segment overrun 
exception 12 Stack Reference beyond offset = FFFFH Before Instruction
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6.0 Protected Mode Architecture

The full capabilities of the Intel® Quark SoC X1000 Core are available when it operates 
in Protected Virtual Address Mode (Protected Mode). Protected Mode vastly increases 
the linear address space to four Gbytes (232 bytes) and allows the processor to run 
virtual memory programs of almost unlimited size (64 terabytes or 246 bytes). 
Protected Mode allows the use of additional instructions that support multi-tasking 
operating systems. The base architecture of the Intel® Quark SoC X1000 Core remains 
the same and the registers, instructions, and addressing modes described in the 
previous chapters are retained. The main difference between Protected Mode and Real 
Mode from a programmer’s view is the increased address space and a different 
addressing mechanism.

6.1 Addressing Mechanism
Like Real Mode, Protected Mode uses two components to form the logical address: a 
16-bit selector is used to determine the linear base address of a segment, then the 
base address is added to a 32-bit effective address to form a 32-bit linear address. The 
linear address is either used as the 32-bit physical address, or if paging is enabled, the 
paging mechanism maps the 32-bit linear address into a 32-bit physical address.

The difference between the two modes lies in calculating the base address. In Protected 
Mode the selector is used to specify an index into an operating system defined table 
(see Figure 24). The table contains the 32-bit base address of a given segment. The 
physical address is formed by adding the base address obtained from the table to the 
offset.

Paging provides an additional memory management mechanism that operates only in 
Protected Mode. Paging provides a means of managing the very large segments of the 
Intel® Quark SoC X1000 Core. As such, paging operates beneath segmentation. The 
paging mechanism translates the protected linear address that comes from the 
segmentation unit into a physical address. Figure 25 shows the complete Intel® Quark 
SoC X1000 Core addressing mechanism with paging enabled.
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6.2 Segmentation

6.2.1 Segmentation Introduction

Segmentation is one method of memory management. Segmentation provides the 
basis for protection. Segments are used to encapsulate regions of memory that have 
common attributes. For example, all of the code of a given program could be contained 
in a segment, or an operating system table may reside in a segment. All information 
about a segment is stored in an 8-byte data structure called a descriptor. All of the 
descriptors in a system are contained in tables recognized by hardware.

Figure 24. Protected Mode Addressing

Figure 25. Paging and Segmentation
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6.2.2 Terminology

The following terms are used throughout the discussion of descriptors, privilege levels 
and protection:

6.2.3 Descriptor Tables

6.2.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments that are used in a Intel® Quark SoC 
X1000 Core system (see Figure 26). There are three types of tables on the Intel® 
Quark SoC X1000 Core that hold descriptors: the Global Descriptor Table, Local 
Descriptor Table, and the Interrupt Descriptor Table. All of the tables are variable 
length memory arrays. They range in size between 8 bytes and 64 Kbytes. Each table 
can hold up to 8192 8-byte descriptors. The upper 13 bits of a selector are used as an 
index into the descriptor table. The tables have registers associated with them that 
hold the 32-bit linear base address, and the 16-bit limit of each table.

Each table has a different register associated with it: the GDTR, LDTR, and the IDTR 
(see Figure 26). The LGDT, LLDT, and LIDT instructions load the base and limit of the 
Global, Local, and Interrupt Descriptor Tables, respectively, into the appropriate 
register. The SGDT, SLDT, and SIDT store the base and limit values. These tables are 
manipulated by the operating system. Therefore, the load descriptor table instructions 
are privileged instructions.

PL: Privilege Level One of the four hierarchical privilege levels. Level 0 is the 
most privileged level and level 3 is the least privileged. 
Higher privilege levels are numerically smaller than lower 
privilege levels.

RPL: Requester 
Privilege Level

The privilege level of the original supplier of the selector. 
RPL is determined by the least two significant bits of a 
selector.

DPL: Descriptor 
Privilege Level

The least privileged level at which a task may access that 
descriptor (and the segment associated with that 
descriptor). Descriptor Privilege Level is determined by 
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current 
Privilege Level

The privilege level at which a task is currently executing, 
which equals the privilege level of the code segment being 
executed. CPL can also be determined by examining the 
lowest 2 bits of the CS register, except for conforming 
code segments.

EPL: Effective 
Privilege Level

The effective privilege level is the least privileged of the 
RPL and DPL. Because smaller privilege level values 
indicate greater privilege, EPL is the numerical maximum 
of RPL and DPL.

Task One instance of the execution of a program. Tasks are also 
referred to as processes.
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6.2.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains descriptors that are possibly available to all 
of the tasks in a system. The GDT can contain any type of segment descriptor except 
for descriptors that are used for servicing interrupts (i.e., interrupt and trap 
descriptors). Every Intel® Quark SoC X1000 Core system contains a GDT. Generally the 
GDT contains code and data segments used by the operating systems and task state 
segments, and descriptors for the LDTs in a system.

The first slot of the Global Descriptor Table corresponds to the null selector and is not 
used. The null selector defines a null pointer value.

6.2.3.3 Local Descriptor Table

LDTs contain descriptors that are associated with a given task. Generally, operating 
systems are designed so that each task has a separate LDT. The LDT may contain only 
code, data, stack, task gate, and call gate descriptors. LDTs provide a mechanism for 
isolating a given task's code and data segments from the rest of the operating system, 
while the GDT contains descriptors for segments that are common to all tasks. A 
segment cannot be accessed by a task if its segment descriptor does not exist in either 
the current LDT or the GDT. This provides both isolation and protection for a task's 
segments, while still allowing global data to be shared among tasks.

Unlike the 6-byte GDT or IDT registers which contain a base address and limit, the 
visible portion of the LDT register contains only a 16-bit selector. This selector refers to 
a Local Descriptor Table descriptor in the GDT.

6.2.3.4 Interrupt Descriptor Table

The third table needed for Intel® Quark SoC X1000 Core systems is the Interrupt 
Descriptor Table (see Figure 27). The IDT contains the descriptors that point to the 
location of up to 256 interrupt service routines. The IDT may contain only task gates, 
interrupt gates, and trap gates. The IDT should be at least 256 bytes in order to hold 
the descriptors for the 32 Intel Reserved Interrupts. Every interrupt used by a system 
must have an entry in the IDT. The IDT entries are referenced via INT instructions, 
external interrupt vectors, and exceptions (see Section 3.7, “Interrupts” on page 33).

Figure 26. Descriptor Table Registers
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Figure 27. Interrupt Descriptor Table Register Use

6.2.4 Descriptors

6.2.4.1 Descriptor Attribute Bits

The object to which the segment selector points to is called a descriptor. Descriptors 
are eight-byte quantities that contain attributes about a given region of linear address 
space (i.e., a segment). These attributes include the 32-bit base linear address of the 
segment; the 20-bit length and granularity of the segment; the protection level; read, 
write or execute privileges; the default size of the operands (16-bit or 32-bit); and the 
type of segment. All attribute information about a segment is contained in 12 bits in the 
segment descriptor. All segments on the Intel® Quark SoC X1000 Core have three 
attribute fields in common: the Present (P) bit, the Descriptor Privilege Level (DPL) bit, 
and the Segment (S) bit. The P bit is 1 if the segment is loaded in physical memory. If 
P=0, any attempt to access this segment causes a not present exception (exception 
11). The DPL is a two-bit field that specifies the protection level 0–3 associated with a 
segment.

The Intel® Quark SoC X1000 Core has two main categories of segments: system 
segments and non-system segments (for code and data). The S bit in the segment 
descriptor determines if a given segment is a system segment or a code or data 
segment. If the S bit is 1, the segment is either a code or data segment. If it is 0, the 
segment is a system segment.

6.2.4.2 Intel® Quark Core Code, Data Descriptors (S=1)

Figure 28 shows the general format of a code and data descriptor and Table 26 
illustrates how the bits in the Access Rights Byte are interpreted. The Access Rights 
Bytes are bits 31:24 associated with the segment limit.

Code and data segments have several descriptor fields in common. The accessed (A) 
bit is set whenever the processor accesses a descriptor. The A bit is used by operating 
systems to keep usage statistics on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte-granular or page-granular. Intel® Quark SoC 
X1000 Core segments can be one Mbyte long with byte granularity (G=0) or four 
Gbytes with page granularity (G=1), (i.e., 220 pages, each page 4 Kbytes long). The 
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granularity is unrelated to paging. A Intel® Quark SoC X1000 Core system can consist 
of segments with byte granularity and page granularity, whether or not paging is 
enabled.

The executable (E) bit tells if a segment is a code or data segment. A code segment 
(E=1, S=1) may be execute-only or execute/read as determined by the Read (R) bit. 
Code segments are execute-only if R=0, and execute/read if R=1. Code segments may 
never be written to.

Note: Code segments can be modified via aliases. Aliases are writeable data segments that 
occupy the same range of linear address space as the code segment.

The D bit indicates the default length for operands and effective addresses. If D=1, 32-
bit operands and 32-bit addressing modes are assumed. When D=0, 16-bit operands 
and 16-bit addressing modes are assumed. 

Another attribute of code segments is determined by the conforming (C) bit. 
Conforming segments, indicated when C=1, can be executed and shared by programs 
at different privilege levels (see Section 6.3).

Figure 28. Segment Descriptors

31 0 Byte
Address

0Segment Base 15...0 Segment Limit 15...0

Base 31...24 G D 0 AVL Limit
19...16 P

DPL
S

Type
A Base 23...16

+4

BASE Base Address of the segment

LIMIT The length of the segment

P Present Bit 1=Present, 0=Not Present

DPL Descriptor Privilege Level 0–3

S Segment Descriptor 0=System Descriptor, 1=Code or Data Segment Descriptor

TYPE Type of Segment

A Accessed Bit

G Granularity Bit 1=Segment length is page granular, 0=Segment length is byte granular

D Default Operation Size (recognized in code segment descriptors only)

1=32-bit segment, 0=16-bit segment

0 Bit must be zero (0) for compatibility with future processors

AVL Available field for user or OS

Note: In a maximum-size segment (i.e., a segment with G=1 and segment limit 19...0=FFFFFH), the 
lowest 12 bits of the segment base should be zero (i.e., segment base 11...000=000H).
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Segments identified as data segments (E=0, S=1) are used for two types of Intel® 
Quark SoC X1000 Core segments: stack and data segments. The expansion direction 
(ED) bit specifies if a segment expands downward (stack) or upward (data). If a 
segment is a stack segment, all offsets must be greater than the segment limit. On a 
data segment, all offsets must be less than or equal to the limit. In other words, stack 
segments start at the base linear address plus the maximum segment limit and grow 
down to the base linear address plus the limit. On the other hand, data segments start 
at the base linear address and expand to the base linear address plus limit.

The write W bit controls the ability to write into a segment. Data segments are read-
only if W=0. The stack segment must have W=1.

The B bit controls the size of the stack pointer register. If B=1, then PUSHes, POPs, and 
CALLs all use the 32-bit ESP register for stack references and assume an upper limit of 
FFFFFFFFH. If B=0, stack instructions all use the 16-bit SP register and assume an 
upper limit of FFFFH.

6.2.4.3 System Descriptor Formats

System segments describe information about operating system tables, tasks, and 
gates. Figure 29 shows the general format of system segment descriptors, and the 
various types of system segments. Intel® Quark SoC X1000 Core system descriptors 
contain a 32-bit base linear address and a 20-bit segment limit. 

Table 26. Access Rights Byte Definition for Code and Data Descriptions

Bit
Position Name Function

7 Present (P) P = 1
P = 0

Segment is mapped into physical memory.
No mapping to physical memory exits, base and limit 
are not used.

6–5 Descriptor Privilege
Level (DPL)  Segment privilege attribute used in privilege tests.

4 Segment
Descriptor (S)

S = 1
S = 0

Code or Data (includes stacks) segment descriptor.
System Segment Descriptor or Gate Descriptor.

If Data Segment (S = 1, E = 0)

3 Executable (E) E = 0 Descriptor type is data segment

2 Expansion
Direction (ED)

ED = 0
ED = 1

Expand up segment, offsets must be ≤ limit.
Expand down segment, offsets must be > limit.

1 Writeable (W) W = 0
W = 1

Data segment may not be written to.
Data segment may be written to.

If Code Segment (S = 1, E = 1)

3 Executable (E) E = 1 Descriptor type is code segment 

2 Conforming (C) C = 1 Code segment may only be executed when CPL ³ DPL 
and CPL remains unchanged.

1 Readable (R) R = 0
R = 1

Code segment may not be read.
Code segment may be read.

0 Accessed (A) A = 0
A = 1

Segment has not been accessed.
Segment selector has been loaded into segment 
register or used by selector test instructions.



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 75

Protected Mode Architecture—Intel® Quark Core

Figure 29. System Segment Descriptors

6.2.4.4 LDT Descriptors (S=0, TYPE=2)

LDT descriptors (S=0, TYPE=2) contain information about Local Descriptor Tables. LDTs 
contain a table of segment descriptors, unique to a particular task. Because the 
instruction to load the LDTR is only available at privilege level 0, the DPL field is 
ignored. LDT descriptors are only allowed in the Global Descriptor Table (GDT).

6.2.4.5 TSS Descriptors (S=0, TYPE=1, 3, 9, B)

A Task State Segment (TSS) descriptor contains information about the location, size, 
and privilege level of a Task State Segment (TSS). A TSS in turn is a special fixed 
format segment that contains all the state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indicate whether the task is currently 
busy (i.e., on a chain of active tasks) or the TSS is available. The Task Register (TR) 
contains the selector that points to the current Task State Segment.

6.2.4.6 Gate Descriptors (S=0, TYPE=4–7, C, F)

Gates are used to control access to entry points within the target code segment. The 
various types of gate descriptors are call gates, task gates, interrupt gates, and trap 
gates. Gates provide a level of indirection between the source and destination of the 
control transfer. This indirection allows the processor to automatically perform 
protection checks. It also allows system designers to control entry points to the 
operating system. Call gates are used to change privilege levels (see Section 6.3), task 
gates are used to perform a task switch, and interrupt and trap gates are used to 
specify interrupt service routines.

Figure 30 shows the format of the four types of gate descriptors. Call gates are 
primarily used to transfer program control to a more privileged level. The call gate 
descriptor consists of three fields: the access byte, a long pointer (selector and offset) 
that points to the start of a routine, and a word count that specifies how many 

Type Defines Type Defines

0 Invalid 8 Invalid

1 Available 80286 TSS 9 Available Intel® Quark SoC X1000 
Core TSS

2 LDT A Undefined (Intel Reserved)

3 Busy 80286 TSS B Busy Intel® Quark SoC X1000 
Core TSS

4 80286 call gate C Intel® Quark SoC X1000 Core call 
gate

5 Task Gate (for 80286, Intel® Quark SoC X1000 
Core task) D Undefined (Intel Reserved)

6 80286 interrupt gate E Intel® Quark SoC X1000 Core

31              16 0 Byte
Address

0Segment Base 15...0 Segment Limit 15...0

Base 31...24 G 0 0 0 Limit
19...16 P

DPL
0

Type
Base 23...16

+4
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parameters are to be copied from the caller's stack to the stack of the called routine. 
The word count field is only used by call gates when there is a change in the privilege 
level; other types of gates ignore the word count field.

Figure 30. Gate Descriptor Formats 

Interrupt and trap gates use the destination selector and destination offset fields of the 
gate descriptor as a pointer to the start of the interrupt or trap handler routines. The 
difference between interrupt gates and trap gates is that the interrupt gate disables 
interrupts (resets the IF bit), whereas the trap gate does not.

Task gates are used to switch tasks. Task gates may only refer to a task state segment 
(see Section 6.3.6). Therefore, only the destination selector portion of a task gate 
descriptor is used, and the destination offset is ignored.

Exception 13 is generated when a destination selector does not refer to a correct 
descriptor type, i.e., a code segment for an interrupt, trap or call gate, or a TSS for a 
task gate.

The access byte format is the same for all gate descriptors. P=1 indicates that the gate 
contents are valid. P=0 indicates the contents are not valid and causes exception 11 
when referenced. DPL is the descriptor privilege level and specifies when this descriptor 
may be used by a task (see Section 6.3). The S field, bit 4 of the access rights byte, 
must be 0 to indicate a system control descriptor. The type field specifies the descriptor 
type as indicated in Figure 30.

Gate Descriptor Fields
Name Value Description

Type 4 80286 call gate

5 Task gate (for 80286 or Intel® Quark SoC X1000 Core task)

6 80286 interrupt gate

7 80286 trap gate

C Intel® Quark SoC X1000 Core call gate

E Intel® Quark SoC X1000 Core interrupt gate

F Intel® Quark SoC X1000 Core trap gate

P 0 Descriptor contents are not valid

1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0–31—the number of
parameters to copy from caller's stack to the called procedure's stack. The parameters are 32-bit quan-
tities for Intel® Quark SoC X1000 Core gates, and 16-bit quantities for 80286 gates.

DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or

Selector to the target task state segment for task gate

DESTINATION offset Entry point within the target code segment
OFFSET 16-bit 80286

32-bit Intel® Quark SoC X1000 Core

31 24            16      8 5 0 Byte
Address

0          Selector           Offset 15...0

          Offset 31...16 P
DPL

0
Type

0 0 0

Word
Count
4...0

+4
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6.2.4.7 Selector Fields

A selector in Protected Mode has three fields: Local or Global Descriptor Table Indicator 
(TI), Descriptor Entry Index (Index), and Requester (the selector's) Privilege Level 
(RPL) as shown in Figure 31. The TI bits select one of two memory-based tables of 
descriptors (the Global Descriptor Table or the Local Descriptor Table). The Index 
selects one of 8 K descriptors in the appropriate descriptor table. The RPL bits allow 
high speed testing of the selector's privilege attributes.

6.2.4.8 Segment Descriptor Cache

In addition to the selector value, every segment register has a segment descriptor 
cache register associated with it. Whenever a segment register's contents are changed, 
the 8-byte descriptor associated with that selector is automatically loaded (cached) on 
the chip. Once loaded, all references to that segment use the cached descriptor 
information instead of re-accessing the descriptor. The contents of the descriptor cache 
are not visible to the programmer. Because descriptor caches only change when a 
segment register is changed, programs that modify the descriptor tables must reload 
the appropriate segment registers after changing a descriptor’s value.

6.2.4.9 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary depending on the mode in which the 
Intel® Quark SoC X1000 Core is operating. When operating in Real Address Mode, the 
segment base, limit, and other attributes within the segment cache registers are 
defined as shown in Figure 32. For backwards compatibility with older architecture, the 
base is set to 16 times the current selector value, the limit is fixed at 0000FFFFH, and 
the attributes are fixed to indicate that the segment is present and fully usable. In Real 
Address Mode, the internal “privilege level” is always fixed to the highest level, level 0, 
so I/O and other privileged opcodes may be executed.
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Figure 31. Example Descriptor Selection
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When operating in Protected Mode, the segment base, limit, and other attributes within 
the segment cache registers are defined as shown in Figure 33. In Protected Mode, 
each of these fields are defined according to the contents of the segment descriptor 
indexed by the selector value loaded into the segment register.

When operating in a Virtual 8086 Mode within the Protected Mode, the segment base, 
limit, and other attributes within the segment cache registers are defined as shown in 
Figure 34. For compatibility with legacy architecture, the base is set to sixteen times 
the current selector value, the limit is fixed at 0000FFFFH, and the attributes are fixed 
so as to indicate the segment is present and fully usable. The virtual program executes 
at lowest privilege level, level 3, to allow trapping of all IOPL-sensitive instructions and 
level-0-only instructions.

Figure 32. Segment Descriptor Caches for Real Address Mode (Segment Limit and 
Attributes Are Fixed)

Key:
Y = yes D = expand down
N = no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 – = does not apply to that segment cache register
U = expand up
*Except the 32-bit CS base is initialized to FFFFF000H after reset until first intersegment control transfer (i.e., 
intersegment CALL, or intersegment JMP, or INT). See Figure 34 for an example.
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Figure 33. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

Key:
Y = fixed yes
N = fixed no
d = per segment descriptor
p = per segment descriptor; descriptor must indicate “present” to avoid exception 11

(exception 12 in case of SS)
r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13

(special case for SS)
w = per segment descriptor, but descriptor must indicate “writeable” to avoid exception 13

(special case for SS)
– = does not apply to that segment cache register 
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6.3 Protection

6.3.1 Protection Concepts

The Intel® Quark SoC X1000 Core has four levels of protection that support multi-
tasking by isolating and protecting user programs from each other and the operating 
system. The privilege levels control the use of privileged instructions, I/O instructions, 
and access to segments and segment descriptors. Unlike traditional processor-based 
systems, in which this protection is achieved only through the use of complex external 
hardware and software, the Intel® Quark SoC X1000 Core provides the protection as 
part of its integrated Memory Management Unit. The Intel® Quark SoC X1000 Core 
offers an additional type of protection on a page basis, when paging is enabled. See 
Section 6.4.6.

The four-level hierarchical privilege system is illustrated in Figure 35. It is an extension 
of the user/supervisor privilege mode commonly used by minicomputers. The 
user/supervisor mode is fully supported by the Intel® Quark SoC X1000 Core paging 
mechanism. The privilege levels (PLs) are numbered 0 through 3. Level 0 is the most 
privileged or trusted level.

Figure 34. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode 
(Segment Limit and Attributes are Fixed)

Key:
Y = yes D = expand down
N = no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 – = does not apply to that segment cache register
U = expand up
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6.3.2 Rules of Privilege

The Intel® Quark SoC X1000 Core controls access to both data and procedures 
between levels of a task, according to the following rules.

• Data stored in a segment with privilege level p can be accessed only by code 
executing at a privilege level at least as privileged as p.

• A code segment/procedure with privilege level p can only be called by a task 
executing at the same or a lesser privilege level than p.

6.3.3 Privilege Levels

6.3.3.1 Task Privilege

At any point in time, a task on the Intel® Quark SoC X1000 Core always executes at 
one of the four privilege levels. The current privilege level (CPL) specifies the task’s 
privilege level. A task's CPL may be changed only by control transfers through gate 
descriptors to a code segment with a different privilege level (see Section 6.3.4). Thus, 
an application program running at PL = 3 may call an operating system routine at PL = 
1 (via a gate), which would cause the task's CPL to be set to 1 until the operating 
system routine finishes.

6.3.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL field. The RPL is the two least 
significant bits of the selector. The selector's RPL is used only to establish a less trusted 
privilege level than the current privilege level for the use of a segment. This level is 
called the task's effective privilege level (EPL). The EPL is defined as the least privileged 
(i.e., numerically larger) level of a task's CPL and a selector's RPL. Thus, if selector's 
RPL = 0 then the CPL always specifies the privilege level for making an access using the 
selector. On the other hand, if RPL = 3, a selector can only access segments at level 3 
regardless of the task's CPL. The RPL is most commonly used to verify that pointers 
passed to an operating system procedure do not access data that is of higher privilege 
than the procedure that originated the pointer. Because the originator of a selector can 
specify any RPL value, the Adjust RPL (ARPL) instruction is provided to force the RPL 
bits to the originator's CPL.

Figure 35. Four-Level Hierarchical Protection
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6.3.3.3 I/O Privilege and I/O Permission Bitmap

The I/O privilege level (IOPL, a 2-bit field in the EFLAG register) defines the least 
privileged level at which I/O instructions can be unconditionally performed. I/O 
instructions can be unconditionally performed when CPL ≥ IOPL. (The I/O instructions 
are IN, OUT, INS, OUTS, REP INS, and REP OUTS.) When CPL > IOPL and the current 
task is associated with a 286 TSS, attempted I/O instructions cause an exception 13 
fault. When CPL > IOPL and the current task is associated with a Intel® Quark SoC 
X1000 Core TSS, the I/O permission bitmap (part of a Intel® Quark SoC X1000 Core 
TSS) is consulted on whether I/O to the port is allowed; otherwise an exception 13 fault 
is generated. For diagrams of the I/O Permission Bitmap, refer to Figure 36 and 
Figure 37. For further information on how the I/O Permission Bitmap is used in 
Protected Mode or in Virtual 8086 Mode, refer to Section 6.5.4. 

The I/O privilege level (IOPL) also affects whether several other instructions can be 
executed or whether an exception 13 fault should be generated. These instructions, 
called “IOPL-sensitive” instructions, are CLI and STI. (Note that the LOCK prefix is not 
IOPL-sensitive on the Intel® Quark SoC X1000 Core.)
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Figure 36. Intel® Quark Core TSS and TSS Registers
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The IOPL also affects whether the IF (interrupts enable flag) bit can be changed by 
loading a value into the EFLAGS register. When CPL ≥ IOPL, the IF bit can be changed 
by loading a new value into the EFLAGS register. When CPL > IOPL, the IF bit cannot be 
changed by a new value POPed into (or otherwise loaded into) the EFLAGS register; the 
IF bit remains unchanged and no exception is generated.

6.3.3.4 Privilege Validation

The Intel® Quark SoC X1000 Core provides several instructions to speed pointer 
testing and help maintain system integrity by verifying that the selector value refers to 
an appropriate segment. Table 27 summarizes the selector validation procedures 
available for the Intel® Quark SoC X1000 Core.

This pointer verification prevents this common problem: An application at PL = 3 calls 
an operating systems routine at PL = 0, and then passes the operating system routine 
a “bad” pointer that corrupts a data structure belonging to the operating system. This 
problem can be avoided if the operating system routine uses the ARPL instruction to 
ensure that the RPL of the selector has no greater privilege than that of the caller.

6.3.3.5 Descriptor Access

There are two types of segment accesses: those involving code segments such as 
control transfers, and those involving data accesses. Determining the ability of a task 
to access a segment requires determining the type of segment to be accessed, the 
instruction used, the type of descriptor used, and CPL, RPL, and DPL, as described 
above.

Figure 37. Sample I/O Permission Bit Map

I/O Ports Accessible: 2-9, 12, 13, 15, 20-24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58-60, 62, 63, 96-127

Table 27. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Register
Adjust Requested Privilege Level: adjusts the RPL of the selector to 
the numeric maximum of current selector RPL value and the RPL value 
in the register. Set zero flag if selector RPL was changed.

VERR Selector VERify for Read: sets the zero flag if the segment referred to by the 
selector can be read.

VERW Selector VERify for Write: sets the zero flag if the segment referred to by the 
selector can be written.

LSL Register, Selector Load Segment Limit: reads the segment limit into the register if 
privilege rules and descriptor type allow. Set zero flag if successful.

LAR Register, Selector Load Access Rights: reads the descriptor access rights byte into the 
register if privilege rules allow. Set zero flag if successful.
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Any time an instruction loads data segment registers (DS, ES, FS, GS) the Intel® Quark 
SoC X1000 Core makes protection validation checks. Selectors loaded in the DS, ES, 
FS, GS registers must refer only to data segments or readable code segments. (The 
data access rules are specified in Section 6.3.2. The only exception to those rules is 
readable conforming code segments, that can be accessed at any privilege level.) 
Finally, the privilege validation checks are performed. The CPL is compared to the EPL, 
and if the EPL is more privileged than the CPL, an exception 13 (general protection 
fault) is generated.

The rules for the stack segment are slightly different than those for data segments. 
Instructions that load selectors into the SS must refer to data segment descriptors for 
writeable data segments. The DPL and RPL must equal the CPL. All other descriptor 
types and privilege level violations cause exception 13. A stack not present fault causes 
exception 12. Note that an exception 11 is used for a not-present code or data 
segment.

6.3.4 Privilege Level Transfers

Inter-segment control transfers occur when a selector is loaded in the CS register. In a 
typical system, most of these transfers are the result of a call or a jump to another 
routine. There are five types of control transfers, which are summarized in Table 28. 
Many of these transfers result in a privilege level transfer. Changing privilege levels is 
done only via control transfers, by using gates, task switches, and interrupt or trap 
gates.

Control transfers can only occur if the operation that loaded the selector references the 
correct descriptor type. Any violation of these descriptor usage rules causes an 
exception 13 (e.g., JMP through a call gate, or IRET from a normal subroutine call).

To provide further system security, all control transfers are also subject to the privilege 
rules.

Table 28. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types Descriptor 
Referenced

Descriptor 
Table

Intersegment within the same privilege 
level JMP, CALL, RET, IRET Code Segment GDT/LDT

Intersegment to the same or higher 
privilege level CALL Call Gate GDT/LDT

Interrupt within task may change CPL
Interrupt Instruction, 
Exception, External 
Interrupt

Trap or Interrupt 
Gate IDT

Intersegment to a lower privilege level 
(changes task CPL) 

RET, IRET(1) Code Segment GDT/LDT

CALL, JMP Task State 
Segment GDT

Task Switch 

CALL, JMP Task Gate GDT/LDT

IRET(2)
Interrupt Instruction, 
Exception, External 
Interrupt

Task Gate IDT

Notes:
1. NT (Nested Task bit of flag register) = 0
2. NT (Nested Task bit of flag register) = 1



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 87

Protected Mode Architecture—Intel® Quark Core

The privilege rules require that:
• Privilege level transitions can only occur via gates.
• JMPs can be made to a non-conforming code segment with the same privilege or to 

a conforming code segment with greater or equal privilege.
• CALLs can be made to a non-conforming code segment with the same privilege or 

via a gate to a more privileged level.
• Interrupts handled within the task obey the same privilege rules as CALLs.
• Conforming code segments are accessible by privilege levels that are the same or 

less privileged than the conforming-code segment's DPL.
• Both the requested privilege level (RPL) in the selector pointing to the gate and the 

task's CPL must be of equal or greater privilege than the gate's DPL.
• The code segment selected in the gate must be the same or more privileged than 

the task's CPL.
• Return instructions that do not switch tasks can only return control to a code 

segment with the same or less privilege.
• Task switches can be performed by a CALL, JMP, or INT that references either a 

task gate or task state segment who's DPL is less privileged or the same privilege 
as the old task's CPL.

Any control transfer that changes CPL within a task causes a change of stacks as a 
result of the privilege level change. The initial values of SS:ESP for privilege levels 0, 1, 
and 2 are retained in the task state segment (see Section 6.3.6). During a JMP or CALL 
control transfer, the new stack pointer is loaded into the SS and ESP registers and the 
previous stack pointer is pushed onto the new stack.

When returning to the original privilege level, use of the lower-privileged stack is 
restored as part of the RET or IRET instruction operation. For subroutine calls that pass 
parameters on the stack and cross privilege levels, a fixed number of words (as 
specified in the gate's word count field) are copied from the previous stack to the 
current stack. The inter-segment RET instruction with a stack adjustment value 
correctly restores the previous stack pointer upon return.

6.3.5 Call Gates

Gates provide protected, indirect CALLs. One of the major uses of gates is to provide a 
secure method of privilege transfers within a task. Because the operating system 
defines all of the gates in a system, it can ensure that all gates allow entry into a few 
trusted procedures only (such as those that allocate memory or perform I/O).

Gate descriptors follow the data access rules of privilege; that is, gates can be accessed 
by a task if the EPL is equal to or more privileged than the gate descriptor's DPL. Gates 
follow the control transfer rules of privilege and therefore may only transfer control to a 
more privileged level.

Call Gates are accessed via a CALL instruction and are syntactically identical to calling a 
normal subroutine. When an inter-level Intel® Quark SoC X1000 Core call gate is 
activated, the following actions occur.
1. Load CS:EIP from gate check for validity.
2. SS is pushed zero-extended to 32 bits.
3. ESP is pushed.
4. Copy Word Count 32-bit parameters from the old stack to the new stack.
5. Push Return address on stack.
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Interrupt gates and trap gates work in a similar fashion as the call gates, except there 
is no copying of parameters. The only difference between trap and interrupt gates is 
that control transfers through an interrupt gate disable further interrupts (i.e., the IF 
bit is set to 0), and trap gates leave the interrupt status unchanged.

6.3.6 Task Switching

An important attribute of any multi-tasking/multi-user operating system is its ability to 
switch between tasks or processes rapidly. The Intel® Quark SoC X1000 Core directly 
supports this operation by providing a task switch instruction in hardware. The Intel® 
Quark SoC X1000 Core task switch operation saves the entire state of the machine (all 
of the registers, address space, and a link to the previous task), loads a new execution 
state, performs protection checks, and commences execution in the new task, in about 
10 microseconds. Like transfer of control via gates, the task switch operation is invoked 
by executing an inter-segment JMP or CALL instruction that refers to a Task State 
Segment (TSS) or a task gate descriptor in the GDT or LDT. An INT n instruction, 
exception, trap, or external interrupt may also invoke the task switch operation if there 
is a task gate descriptor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure 36) containing the entire Intel® 
Quark SoC X1000 Core execution state whereas a task gate descriptor contains a TSS 
selector. Figure 38 shows a Intel® Quark SoC X1000 Core TSS. The limit of an Intel® 
Quark SoC X1000 Core TSS must be greater than 0064H and can be as large as 
4 Gbytes. In the additional TSS space, the operating system is free to store additional 
information, such as the reason the task is inactive, the time the task has spent 
running, and the open files belonging to the task.

Figure 38. Intel® Quark Core TSS  
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Each task must have a TSS associated with it. The current TSS is identified by a special 
register in the Intel® Quark SoC X1000 Core called the Task State Segment Register 
(TR). This register contains a selector referring to the task state segment descriptor 
that defines the current TSS. A hidden base register and limit register associated with 
TR are loaded whenever TR is loaded with a new selector. Returning from a task is 
accomplished by the IRET instruction. When IRET is executed, control is returned to the 
task that was interrupted. The currently executing task's state is saved in the TSS and 
the old task state is restored from its TSS.

Several bits in the flag register and machine status word (CR0) give information about 
the state of a task that is useful to the operating system. The Nested Task (NT) (bit 14 
in EFLAGS) controls the function of the IRET instruction. If NT = 0, the IRET instruction 
performs the regular return; when NT = 1, IRET performs a task switch operation back 
to the previous task. 

The NT bit is set or reset in the following fashion:
• When a CALL or INT instruction initiates a task switch, the new TSS is marked busy 

and the back link field of the new TSS is set to the old TSS selector. 
• The NT bit of the new task is set by CALL or INT initiated task switches. An 

interrupt that does not cause a task switch clears NT. (The NT bit is restored after 
execution of the interrupt handler.) NT may also be set or cleared by POPF or IRET 
instructions.

The Intel® Quark SoC X1000 Core task state segment is marked busy by changing the 
descriptor type field from TYPE 9H to TYPE BH. Use of a selector that references a busy 
task state segment causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a task is a virtual 8086 task. If 
VM = 1, the tasks use the Real Mode addressing mechanism. The virtual 8086 
environment is entered and exited only via a task switch (see Section 6.5).

The T bit in the Intel® Quark SoC X1000 Core TSS indicates that the processor should 
generate a debug exception when switching to a task. If T = 1, a debug exception 1 is 
generated upon entry to a new task. 

6.3.6.1 Floating-Point Task Switching 

The FPU's state is not automatically saved when a task switch occurs, because the 
incoming task may not use the FPU. The Task Switched (TS) Bit (bit 3 in the CR0) helps 
identify the FPU’s state in a multi-tasking environment. Whenever the Intel OverDrive 
processors switch tasks, they set the TS bit. The Intel OverDrive processors detect the 
first use of a processor extension instruction after a task switch and causes the 
processor extension not available exception 7. The exception handler for exception 7 
may then decide whether to save the state of the FPU. A processor extension not 
present exception (7) occurs when attempting to execute a Floating-Point or WAIT 
instruction if the Task Switched and Monitor coprocessor extension bits are both set 
(i.e., TS = 1 and MP = 1).

6.3.7 Initialization and Transition to Protected Mode

Because the Intel® Quark SoC X1000 Core begins executing in Real Mode immediately 
after RESET, it is necessary to initialize the system tables and registers with the 
appropriate values.

The GDT and IDT registers must refer to a valid GDT and IDT. The IDT should be at 
least 256-bytes long, and GDT must contain descriptors for the initial code and data 
segments. Figure 39 shows the tables and Figure 40 shows the descriptors needed for 
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a simple Protected Mode Intel® Quark SoC X1000 Core system. It has a single code 
and single data/stack segment, each four-Gbytes long, and a single privilege level, PL 
= 0.

The actual method of enabling Protected Mode is to load CR0 with the PE bit set via the 
MOV CR0, R/M instruction.

After enabling Protected Mode, the next instruction should execute an intersegment 
JMP to load the CS register and flush the instruction decode queue. The final step is to 
load all of the data segment registers with the initial selector values.

An alternate approach to entering Protected Mode that is especially appropriate for 
multi-tasking operating systems is to use the built-in task-switch to load all the 
registers. In this case, the GDT contains two TSS descriptors in addition to the code 
and data descriptors needed for the first task. The first JMP instruction in Protected 
Mode jumps to the TSS, causing a task switch and loading all of the registers with the 
values stored in the TSS. Because a task switch saves the state of the current task in a 
task state segment, the Task State Segment register should be initialized to point to a 
valid TSS descriptor.

Figure 39. Simple Protected System
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Figure 40. GDT Descriptors for Simple System

6.4 Paging

6.4.1 Paging Concepts

Paging is another type of memory management useful for virtual memory multi-tasking 
operating systems. Unlike segmentation, which modularizes programs and data into 
variable length segments, paging divides programs into multiple uniform size pages. 
Pages bear no direct relation to the logical structure of a program. Whereas segment 
selectors can be considered the logical “name” of a program module or data structure, 
a page most likely corresponds to only a portion of a module or data structure.

By taking advantage of the locality of reference displayed by most programs, only a 
small number of pages from each active task need be in memory at any moment.

6.4.2 Paging Organization

6.4.2.1 Page Mechanism

The Intel® Quark SoC X1000 Core uses two levels of tables to translate the linear 
address (from the segmentation unit) to a physical address. There are three 
components to the paging mechanism of the Intel® Quark SoC X1000 Core: the page 
directory, the page tables, and the page itself (page frame). All memory-resident 
elements of the Intel® Quark SoC X1000 Core paging mechanism are 4 Kbytes. A 
uniform size for all of the elements simplifies memory allocation and reallocation 
schemes by eliminating problems with memory fragmentation. 

6.4.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It holds the 32-bit linear address that 
caused the last page fault detected.

CR3 is the Page Directory Physical Base Address register. It contains the physical 
starting address of the page directory. The lower 12 bits of CR3 are always zero to 
ensure that the page directory is always page aligned. Loading it via a MOV CR3 reg 
instruction causes the page table entry cache to be flushed, as does a task switch 
through a TSS that changes the value of CR0 (see Section 6.4.8).
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6.4.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to 1024 page directory entries. Each 
page directory entry contains the address of the next level of tables, the Page Tables 
and information about the page table. The upper 10 bits of the linear address 
(A[31:22]) are used as an index to select the correct page directory entry.

6.4.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024 page table entries. Page table entries 
contain the starting address of the page frame and statistical information about the 
page. Address bits A[21:12] are used as an index to select one of the 1024 page table 
entries. The 20 upper-bit page frame address is concatenated with the lower 12 bits of 
the linear address to form the physical address. Page tables can be shared between 
tasks and swapped to disks.

6.4.2.5 Page Directory/Table Entries

The lower 12 bits of the page table entries and page directory entries contain statistical 
information about pages and page tables, respectively. The P (Present) bit 0 indicates 
whether a page directory or page table entry can be used in address translation. If 
P = 1 the entry can be used for address translation. If P = 0 the entry cannot be used 
for translation, and all other bits are available for use by the software. For example the 
remaining 31 bits could be used to indicate where on the disk the page is stored.

Bit 5, the Accessed (A) bit, is set by the Intel® Quark SoC X1000 Core for both types of 
entries before a read or write access occurs to an address covered by the entry. Bit 6, 
the D (Dirty) bit, is set to 1 before a write to an address covered by that page table 
entry occurs. The D bit is undefined for page directory entries. When the P, A and D bits 
are updated by the Intel® Quark SoC X1000 Core, a read-modify-write cycle is 
generated that locks the bus and prevents conflicts with other processors or 
peripherals. Software that modifies these bits should use the LOCK prefix to ensure the 
integrity of the page tables in multi-master systems.

The three bits marked OS Reserved (bits 11:9) are software-definable. OSs are free to 
use these bits for any purpose. An example of the use of the OS Reserved bits is storing 
information about page aging. By keeping track of how long a page has been in 
memory since being accessed, an operating system can implement a page replacement 
algorithm such as least recently used.

Bit 2, the User/Supervisor (U/S) bit, and bit 1, the Read/Write (R/W) bit, are used to 
provide protection attributes for individual pages. 

6.4.2.6 Paging-Mode Modifiers  

Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, 

respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, 
supervisor-mode write accesses are allowed to linear addresses with read-only access 
rights; if CR0.WP = 1, they are not. (User-mode write accesses are never allowed to 
linear addresses with read-only access rights, regardless of the value of CR0.WP.) 
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CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across 
address spaces; if CR4.PGE = 1, specified translations may be shared across address 
spaces. 

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If 
CR4.SMEP = 1, software operating in supervisor mode cannot fetch instructions from 
linear addresses that are accessible in user mode. 

IA32_EFER.NXE enables execute-disable access rights for PAE paging. If 
IA32_EFER.NXE = 1, instructions fetches can be prevented from specified linear 
addresses (even if data reads from the addresses are allowed). 

6.4.3 PAE Paging

A logical processor uses PAE paging if CR0.PG = 1 and CR4.PAE = 1

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which 
are loaded from an address in CR3. Linear address are translated using 4 hierarchies of 
in-memory paging structures, each located using one of the PDPTE registers. (This is 
different from the other paging modes, in which there is one hierarchy referenced by 
CR3.)

6.4.3.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer 
table. Table 29 illustrates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each 
PDPTE controls access to a 1-GByte region of the linear-address space. Corresponding 
to the PDPTEs, the logical processor maintains a set of four (4) internal, 
non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3.

The logical processor loads these registers from the PDPTEs in memory as part of 
certain operations:

• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4 
and the instruction is modifying any of CR0.CD, CR0.NW, CR0.PG, CR4.PAE, 
CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded from the address in 
CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the 
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are 
loaded from the address in the new CR3 value.

Table 30 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) 
and any reserved bit, the MOV to CR instruction causes a general-protection exception 
(#GP(0)) and the PDPTEs are not loaded. As shown in Table 30, bits 2:1, 8:5, and 
63:MAXPHYADDR are reserved in the PDPTEs.

Table 29. Use of CR3 with PAE Paging

Bit Position(s) Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for 
linear-address translation
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Note: On some processors, reserved bits are checked even in PDPTEs in which the P flag 
(bit 0) is 0.

6.4.3.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. 
Figure 41 illustrates the translation process when it produces a 4-KByte page; 
Figure 42 covers the case of a 2-MByte page. The following items describe the PAE 
paging process in more detail as well has how the page size is determined:

• Bits 31:30 of the linear address select a PDPTE register; this is PDPTEi, where i is 
the value of bits 31:30. Because a PDPTE register is identified using bits 31:30 of 
the linear address, it controls access to a 1-GByte region of the linear-address 
space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits 63:1, and there 
is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a 
linear address in this region causes a page-fault exception.
Note: With PAE paging, the processor does not use CR3 when translating a linear 

address (as it does the other paging modes). It does not access the PDPTEs 
in the page-directory-pointer table during linear-address translation.

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at 
the physical address specified in bits 31:12 of PDPTEi (see Table 30). A page 
directory comprises 512 64-bit entries (PDEs). A PDE is selected using the physical 
address defined as follows:
— Bits 31:12 are from PDPTEi.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to 
a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS flag 
(bit 7):

• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 31). The final 
physical address is computed as follows:
— Bits 31:21 are from the PDE.
— Bits 20:0 are from the original linear address.

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the 
physical address specified in bits 31:12 of the PDE (see Table 32). A page directory 

Table 30. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit Position(s) Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory referenced by this entry

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory referenced by this entry 

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry†

63:M Reserved (must be 0)

† M is an abbreviation for MAXPHYADDR, which is set to 32 for Intel® Quark SoC X1000 Core.
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comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address 
defined as follows:
— Bits 31:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are 0.

• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps 
a 4-KByte page (see Table 33). The final physical address is computed as follows:
— Bits 31:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the 
entry is used neither to reference another paging-structure entry nor to map a page. A 
reference using a linear address whose translation would use such a paging structure 
entry causes a page-fault exception.

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is 

reserved.
• If the PAT is not supported (as in Intel® Quark SoC X1000 Core):

— If the P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address 
is performed only if allowed by the access rights of the translation.

Figure 41. Linear-Address Translation to a 4-KByte Page using PAE Paging



Intel® Quark Core—Protected Mode Architecture

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
96 Order Number: 329679-001US

Figure 42. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 31. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit Position(s) Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this 
entry 

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page 
referenced by this entry 

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 
2-MByte page referenced by this entry 

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 
2-MByte page referenced by this entry

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by 
this entry 

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this 
entry 

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 32)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global; ignored 
otherwise

11:9 Ignored

12 (PAT) Reserved for Intel® Quark SoC X1000 Core (must be 0) 

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from 
the 2-MByte page controlled by this entry); otherwise, reserved (must be 0)
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Table 32. Format of a PAE Page-Directory Entry that References a Page Table

Bit Position(s) Contents

0 (P) Present; must be 1 to map a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this 
entry 

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region 
controlled by this entry 

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 
page table referenced by this entry

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 
page table referenced by this entry 

5 (A) Accessed; indicates whether this entry has been used for linear-address translation 

6 (D) Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 31)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from 
the 2-MByte region controlled by this entry); otherwise, reserved (must be 0)

Table 33. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit Position(s) Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this 
entry 

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page 
referenced by this entry 

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry 

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry 

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry 

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry 

7 (PAT) Reserved for Intel® Quark SoC X1000 Core (must be 0)  

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global; ignored 
otherwise

11:9 Ignored

(M–1):12 Physical address of 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 4-KByte page controlled by this entry); otherwise, reserved (must be 0)
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Figure 43 and Figure 44 show a summary of the formats of CR3 and the paging-
structure entries with PAE paging. For the paging structure entries, it identifies 
separately the format of entries that map pages, those that reference other paging 
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 
(PS) are highlighted because they determine how a paging-structure entry is used.

Figure 43. Formats of CR3 and Paging-Structure Entries in 32-bit Mode with PAE Paging 
Disabled



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 99

Protected Mode Architecture—Intel® Quark Core

Figure 44. Formats of CR3 and Paging-Structure Entries in 32-bit Mode with PAE Paging 
Enabled
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6.4.4 #GP Faults for Intel® Quark SoC X1000 Core  

Failures to load the PDPTE registers with PAE paging causes #GP fault.
• If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, it causes a 

general-protection exception (#GP(0)) and the PDPTEs are not loaded.
• If any of the PDPTE entries have P flag (bit 0) cleared and any of the reserved bits 

are set this does not cause #GP(0) fault.

#GP(0) Fault is caused when reading/writing to IA32_EFER, IA32_MISC_ENABLES 
MSRs:

• In privilege level greater than 0
• In virtual-8086 mode
• Unimplemented MSRs
• Writing to reserved bits

6.4.5 Access Rights  

There is a translation for a linear address if the processes described in Section 6.4.3.2 
completes and produces a physical address. Whether an access is permitted by a 
translation is determined by the access rights specified by the paging-structure entries 
controlling the translation; paging-mode modifiers in CR0, CR4, and the IA32_EFER 
MSR; and the mode of the access.

Note: With PAE paging, the PDPTEs do not determine access rights.

Every access to a linear address is either a supervisor-mode access or a usermode 
access. All accesses performed while the current privilege level (CPL) is less than 3 are 
supervisor-mode accesses. If CPL = 3, accesses are generally user-mode accesses. 
However, some operations implicitly access system data structures with linear 
addresses; the resulting accesses to those data structures are supervisormode 
accesses regardless of CPL. Examples of such implicit supervisor accesses include the 
following: accesses to the global descriptor table (GDT) or local descriptor table (LDT) 
to load a segment descriptor; accesses to the interrupt descriptor table (IDT) when 
delivering an interrupt or exception; and accesses to the task-state segment (TSS) as 
part of a task switch or change of CPL.

The following items detail how paging determines access rights:

For supervisor-mode accesses:
• Data reads.

Data may be read from any linear address with a valid translation.
• Data writes.

— If CR0.WP = 0, data may be written to any linear address with a valid 
translation.

— If CR0.WP = 1, data may be written to any linear address with a valid 
translation for which the R/W flag (bit 1) is 1 in every paging-structure entry 
controlling the translation.

• Instruction fetches.
— For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the value 

of CR4.SMEP:
If CR4.SMEP = 0, instructions may be fetched from any linear address with a 
valid translation.
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If CR4.SMEP = 1, instructions may be fetched from any linear address with a 
valid translation for which the U/S flag (bit 2) is 0 in at least one of the paging-
structure entries controlling the translation.

— For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights 
depend on the value of CR4.SMEP:
If CR4.SMEP = 0, instructions may be fetched from any linear address with a 
valid translation for which the XD flag (bit 63) is 0 in every paging-structure 
entry controlling the translation.
If CR4.SMEP = 1, instructions may be fetched from any linear address with a 
valid translation for which (1) the U/S flag is 0 in at least one of the paging-
structure entries controlling the translation; and (2) the XD flag is 0 in every 
paging-structure entry controlling the translation.

For user-mode accesses:
• Data reads.

Data may be read from any linear address with a valid translation for which the U/S 
flag (bit 2) is 1 in every paging-structure entry controlling the translation.

• Data writes.
Data may be written to any linear address with a valid translation for which both 
the R/W flag and the U/S flag are 1 in every paging-structure entry controlling the 
translation.

• Instruction fetches.
— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from 

any linear address with a valid translation for which the U/S flag is 1 in every 
paging-structure entry controlling the translation.

— For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be 
fetched from any linear address with a valid translation for which the U/S flag is 
1 and the XD flag is 0 in every paging-structure entry controlling the 
translation.

A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 6.4.8). These structures may include information 
about access rights. The processor may enforce access rights based on the TLBs and 
paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access 
rights, the processor might not use that change for a subsequent access to an affected 
linear address. 

6.4.5.1 SMEP Details for Intel® Quark SoC X1000 Core

• Functionality/implementation is same as Silvermont.
• Enabled by setting CR4.SMEP (CR4[20])= 1.
• In supervisor mode (CPL < 3), a #PF is caused by code fetch from a page whose 

mapping has the U/S bit set (CPL=3) at every level of the translation for the linear 
address. If U/S is 0 at any level, CR4.SMEP does not cause a #PF.
— (CPL==OS) & PAGE==USER & (CR0.PG==1)

• #PF: if (CR4.SMEP=1), and CPL<3 and instruction is fetched from user mode page.  
Error code = 10001b
— Page is present, Access was not a write (data read or code fetch), Access was 

in supervisor mode (CPL < 3), No reserved-bit violation, Access was an 
instruction fetch. 
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— The I/D bit of the page fault error code (bit 4) will be set when an instruction 
page faults occurs and CR4.SMEP. It may also be set in other cases.

• CR4.SMEP is zero by default: set to zero on RESET
• CPUID >3 <8000_0000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[22] 

= 1’b0.
• Requires supporting IA32_MISC_ENABLE Model Specific Register (MSR).

6.4.5.1.1 Instruction Fetches Access Rights in Supervisor Mode (CPL <3)

For 32-bit paging when IA32_EFER.NXE = 0, access rights depend on the value of 
CR4.SMEP:

• If CR4.SMEP = 0, instructions may be fetched from any linear address with a valid 
translation.

• If CR4.SMEP = 1, instructions may be fetched from any linear address with a valid 
translation for which the U/S flag (bit 2) is 0 in at least one of the paging-structure 
entries controlling the translation.

For PAE paging with IA32_EFER.NXE = 1, access rights depend on the value of 
CR4.SMEP:

• If CR4.SMEP = 0, instructions may be fetched from any linear address with a valid 
translation for which the XD flag (bit 63) is 0 in every paging-structure entry 
controlling the translation. If XD flag is set Page Fault is generated.

• If CR4.SMEP = 1, instructions may be fetched from any linear address with a valid 
translation for which the U/S flag is 0 in at least one of the paging-structure entries 
controlling the translation; and the XD flag is 0 in every paging-structure entry 
controlling the translation.

6.4.5.1.2 Instruction Fetches Access Rights in User Mode (CPL=3)

For 32-bit paging when IA32_EFER.NXE = 0, instructions may be fetched from any 
linear address with a valid translation for which the U/S flag is 1 in every paging-
structure entry controlling the translation.

For PAE paging with IA32_EFER.NXE = 1, instructions may be fetched from any linear 
address with a valid translation for which the U/S flag is 1 and the XD flag is 0 in every 
paging-structure entry controlling the translation.

6.4.6 Page Level Protection (R/W, U/S Bits)

The Intel® Quark SoC X1000 Core provides a set of protection attributes for paging 
systems. The paging mechanism distinguishes between two levels of protection: user, 
which corresponds to level 3 of the segmentation based protection; and supervisor, 
which encompasses all of the other protection levels (0, 1, 2).

The R/W and U/S bits are used in conjunction with the WP bit in the flags register 
(EFLAGS). The WP bit is used by the Intel® Quark SoC X1000 Core to protect read-only 
pages from supervisor write accesses. When WP=0, the supervisor can write to a read-
only page as defined by the U/S and R/W bits. When WP=1, supervisor access to a 
read-only page (R/W=0) causes a page fault (exception 14).

Table 34 shows the affect of the WP, U/S and R/W bits on accessing memory. When 
WP=0, the supervisor can write to pages regardless of the state of the R/W bit. When 
WP=1 and R/W=0, the supervisor cannot write to a read-only page. A user attempt to 
access a supervisor-only page (U/S=0) or to write to a read-only page causes a page 
fault (exception 14).



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 103

Protected Mode Architecture—Intel® Quark Core

The R/W and U/S bits provide protection from user access on a page-by-page basis 
because the bits are contained in the page table entry and the page directory table. 
The U/S and R/W bits in the first-level page directory table apply to all entries in the 
page table pointed to by that directory entry. The U/S and R/W bits in the second-level 
page table entry apply only to the page described by that entry. The most restrictive 
U/S and R/W bits from the page directory table and the page table entry are used to 
address a page.

Example: If the U/S and R/W bits for the page directory entry were 10 (user 
read/execute) and the U/S and R/W bits for the page table entry were 01 (no user 
access at all), the access rights for the page would be 01, the numerically smaller of 
the two.

Note: A given segment can be easily made read-only for level 0, 1, or 2 via use of segmented 
protection mechanisms.

6.4.7 Page Cacheability (PWT and PCD Bits)

See Section 7.6, “Page Cacheability” on page 119 for a detailed description of page 
cacheability and the PWT and PCD bits.

6.4.8 Translation Lookaside Buffer

The Intel® Quark SoC X1000 Core paging hardware is designed to support demand 
paged virtual memory systems. However, performance would degrade substantially if 
the Intel® Quark SoC X1000 Core were required to access two levels of tables for every 
memory reference. To solve this problem, the Intel® Quark SoC X1000 Core keeps a 
cache of the most recently accessed pages. This cache is called the Translation 
Lookaside Buffer (TLB). The TLB is a four-way set associative 32-entry page table 
cache. It automatically keeps the most commonly used page table entries in the Intel® 
Quark SoC X1000 Core. The 32-entry TLB coupled with a 4 Kbyte page size, results in 
coverage of 128 Kbytes of memory addresses. 

Figure 45 illustrates how the TLB complements the Intel® Quark SoC X1000 Core's 
paging mechanism.  

Table 34. Page Level Protection Attributes

U/S R/W WP User Access Supervisor Access

0 0 0 None Read/Write/Execute

0 1 0 None Read/Write/Execute

1 0 0 Read/Execute Read/Write/Execute

1 1 0 Read/Write/Execute Read/Write/Execute

0 0 1 None Read/Execute

0 1 1 None Read/Write/Execute

1 0 1 Read/Execute Read/Execute

1 1 1 Read/Write/Execute Read/Write/Execute
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Reading a new entry into the TLB (TLB refresh) is a two step process handled by the 
Intel® Quark SoC X1000 Core hardware. The sequence of data cycles to perform a TLB 
refresh is as follows:
1. Read the correct page directory entry, as pointed to by the page base register and 

the upper 10 bits of the linear address. The page base register is in Control 
Register 3.
Optionally, perform a locked read/write to set the accessed bit in the directory 
entry. The directory entry is read twice if the Intel® Quark SoC X1000 Core needs 
to set any of the bits in the entry. If the page directory entry changes between the 
first and second reads, the data returned for the second read is used.

2. Read the correct entry in the Page Table and place the entry in the TLB.
Optionally, perform a locked read/write to set the accessed and/or dirty bit in the 
page table entry. Again, note that the page table entry actually is read twice if the 
Intel® Quark SoC X1000 Core needs to set any of the bits in the entry. Like the 
directory entry, if the data changes between the first and second read, the data 
returned for the second read is used.

Note: The directory entry must always be read into the Intel® Quark SoC X1000 Core, 
because directory entries are never placed in the paging TLB. Page faults can be 
signaled from either the page directory read or the page table read. Page directory and 
page table entries can be placed in the Intel® Quark SoC X1000 Core on-chip cache like 
normal data.

6.4.9 Page-Fault Exceptions  

Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). 
An access to a linear address may cause page-fault exception for either of two reasons: 
(1) there is no valid translation for the linear address; or (2) there is a valid translation 
for the linear address, but its access rights do not permit the access.

As noted in Section 6.4.3.2, there is no valid translation for a linear address if the 
translation process for that address would use a paging structure entry in which the P 
flag (bit 0) is 0 or one that sets a reserved bit. If there is a valid translation for a linear 
address, its access rights are determined as specified in Section 6.4.5.

Figure 45. Translation Lookaside Buffer



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 105

Protected Mode Architecture—Intel® Quark Core

Figure 46 illustrates the error code that the processor provides on delivery of a page-
fault exception. 

The following items explain how the bits in the error code describe the nature of the 
page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no valid translation for the linear address because the P flag 
was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, 
it is 0. This flag describes the access causing the page-fault exception, not the 
access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a 
supervisor-mode access did so. This flag describes the access causing the pagefault 
exception, not the access rights specified by paging. User-mode and supervisor-
mode accesses are defined in Section 6.4.5.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a 
reserved bit was set in one of the paging-structure entries used to translate that 
address. (Because reserved bits are not checked in a paging-structure entry whose 
P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.) 
Bits reserved in the paging-structure entries are reserved for future functionality. 
Software developers should be aware that such bits may be used in the future and 
that a paging-structure entry that causes a page-fault exception on one processor 
might not do so in the future.

Figure 46. Page-Fault Error Code 
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• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction 
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE 
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the 
flag is 0. This flag describes the access causing the page-fault exception, not the 
access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to 
load the PDPTE registers with PAE paging (see Section 6.4.3.1) cause general 
protection exceptions (#GP(0)) and not page-fault exceptions.

6.4.10 Paging Operation

The paging hardware operates in the following fashion. The paging unit hardware 
receives a 32-bit linear address from the segmentation unit. The upper 20 linear 
address bits are compared with all 32 entries in the TLB to determine if there is a 
match. If there is a match (i.e., a TLB hit), then the 32-bit physical address is 
calculated and is placed on the address bus.

If the page table entry is not in the TLB, the Intel® Quark SoC X1000 Core reads the 
appropriate page directory entry. When P = 1 on the page directory entry, indicating 
that the page table is in memory, then the Intel® Quark SoC X1000 Core reads the 
appropriate page table entry and sets the Access bit. When P = 1 on the page table 
entry, indicating that the page is in memory, the Intel® Quark SoC X1000 Core updates 
the Access and Dirty bits as needed and fetches the operand. The upper 20 bits of the 
linear address, read from the page table, are stored in the TLB for future accesses. 
However, if P = 0 for either the page directory entry or the page table entry, the Intel® 
Quark SoC X1000 Core generates a page fault, exception 14.

The Intel® Quark SoC X1000 Core also generates an exception 14 page fault if the 
memory reference violated the page protection attributes such as U/S or R/W (for 
example, when trying to write to a read-only page). CR2 holds the linear address that 
caused the page fault. If a second page fault occurs while the Intel® Quark SoC X1000 
Core is attempting to enter the service routine for the first, the Intel® Quark SoC 
X1000 Core invokes the page fault handler a second time, rather than the double fault 
(exception 8) handler. Because exception 14 is classified as a fault, CS: EIP points to 
the instruction causing the page fault. The 16-bit error code pushed as part of the page 
fault handler contains status bits that indicate the cause of the page fault.

The 16-bit error code is used by the operating system to determine how to handle the 
page fault. The upper portion of Figure 47 shows the format of the page-fault error 
code and the interpretation of the bits.
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Note: Even though the bits in the error code (U/S, W/R, and P) have similar names as the bits 
in the Page Directory/Table Entries, the interpretation of the error code bits is different. 
Figure 47 indicates what type of access caused the page fault.

6.4.11 Operating System Responsibilities

The Intel® Quark SoC X1000 Core takes care of the page address translation process, 
relieving the burden from an operating system in a demand-paged system. The 
operating system is responsible for setting up the initial page tables, and handling any 
page faults. The operating system also is required to invalidate (i.e., flush) the TLB 
when any changes are made to any of the page table entries. The operating system 
must reload CR3 to cause the TLB to be flushed.

Setting up the tables requires loading CR3 with the address of the page directory, and 
allocating space for the page directory and the page tables. The primary responsibilities 
of the operating system are to implement a swapping policy and handle all of the page 
faults.

The operating system must ensure that the TLB cache matches the information in the 
paging tables. In particular, when the operating system sets the P bit of page table 
entry to zero, the TLB must be flushed. Operating systems may want to take advantage 
of the fact that CR3 is stored as part of a TSS, to give every task or group of tasks its 
own set of page tables.

6.5 Virtual 8086 Environment

6.5.1 Executing Programs

The Intel® Quark SoC X1000 Core allows the execution of application programs in both 
Real Mode and in the Virtual 8086 Mode (Virtual Mode). Of the two methods, Virtual 
8086 Mode offers the system designer the most flexibility. The Virtual 8086 Mode 
allows the execution of applications while still allowing the system designer to take full 
advantage of the Intel® Quark SoC X1000 Core protection mechanism. Figure 48 
illustrates this concept.

Figure 47. Page Fault System Information
15 3 2 1 0

U U U U U U U U U U U U U US WR P

U/S W/R Access Type

0 0 Supervisor† Read

0 1 Supervisor Write

1 0 User Read

1 1 User Write

†Descriptor table access faults with U/S = 0, even if the program is executing at level 3.

Key

• U: UNDEFINED

• U/S: The U/S bit indicates whether the access causing the fault occurred when the Intel® Quark 
SoC X1000 Core was executing in User Mode (U/S = 1) or in Supervisor mode (U/S = 0).

• W/R: The W/R bit indicates whether the access causing the fault was a Read (W/R = 0) or a 
Write (W/R = 1).

• P: The P bit indicates whether a page fault was caused by a not-present page (P = 0), or by a 
page level protection violation (P = 1).
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6.5.2 Virtual 8086 Mode Addressing Mechanism

One of the major differences between Real and Protected Modes is how the segment 
selectors are interpreted. When the Intel® Quark SoC X1000 Core is executing in 
Virtual 8086 Mode, the segment registers are used in an identical fashion to Real Mode. 
The contents of the segment register are shifted left four bits and added to the offset to 
form the segment base linear address.

The Intel® Quark SoC X1000 Core allows the operating system to specify which 
programs use Real Mode and which programs use Protected Mode addressing. Through 
the use of paging, the one megabyte address space of the Virtual Mode task can be 
mapped to anywhere in the 4-Gbyte linear address space of the Intel® Quark SoC 
X1000 Core. Like Real Mode, Virtual Mode effective addresses (i.e., segment offsets) 
that exceed 64 Kbyte cause an exception 13. However, these restrictions should not 
prove to be important, because most tasks running in Virtual 8086 Mode are legacy 
application programs.

6.5.3 Paging in Virtual Mode

The paging hardware allows the concurrent running of multiple Virtual Mode tasks, and 
provides protection and operating system isolation. Although it is not strictly necessary 
to have the paging hardware enabled to run Virtual Mode tasks, it is needed in order to 
run multiple Virtual Mode tasks or to relocate the address space of a Virtual Mode task 
to physical address space greater than one Mbyte.

Figure 48. Virtual 8086 Environment Memory Management
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The paging hardware allows the 20-bit linear address produced by a Virtual Mode 
program to be divided into up to 256 pages. Each one of the pages can be located 
anywhere within the maximum 4-Gbyte physical address space of the Intel® Quark 
SoC X1000 Core. In addition, because CR3 (the Page Directory Base Register) is loaded 
by a task switch, each Virtual Mode task can use a different mapping scheme to map 
pages to different physical locations. Finally, the paging hardware allows the sharing of 
the operating system code between multiple applications. Figure 48 shows how the 
Intel® Quark SoC X1000 Core paging hardware enables multiple programs to run under 
a virtual memory demand paged system.

6.5.4 Protection and I/O Permission Bitmap

All Virtual 8086 Mode programs execute at privilege level 3, the level of least privilege. 
As such, Virtual 8086 Mode programs are subject to all of the protection checks defined 
in Protected Mode. (This is different from Real Mode, which implicitly is executing at 
privilege level 0, the level of greatest privilege.) Thus, an attempt to execute a 
privileged instruction when in Virtual 8086 Mode causes an exception 13 fault.

The following are privileged instructions that can be executed only at Privilege Level 0. 
Therefore, attempting to execute these instructions in Virtual 8086 Mode (or anytime 
CPL > 0) causes an exception 13 fault:

LIDT; MOV DRn,reg; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn;
CLTS;
HLT;

Several instructions, particularly those applying to the multi-tasking model and 
protection model, are available only in Protected Mode. Therefore, attempting to 
execute the following instructions in Real Mode or in Virtual 8086 Mode generates an 
exception 6 fault:

LTR;  STR;
LLDT; SLDT;
LAR;  VERR;
LSL;  VERW;
ARPL.

The instructions that are IOPL-sensitive in Protected Mode are:

IN;    STI;
OUT;   CLI;
INS;
OUTS;
REP INS;
REP OUTS;

In Virtual 8086 Mode, a slightly different set of instructions are made IOPL-sensitive. 
The following instructions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF; CLI;
POPF;  IRET

The PUSHF, POPF, and IRET instructions are IOPL-sensitive in Virtual 8086 Mode only. 
This provision allows the IF flag (interrupt enable flag) to be virtualized to the Virtual 
8086 Mode program. The INT n software interrupt instruction is also IOPL-sensitive in 
Virtual 8086 Mode. Note, however, that the INT 3 (opcode 0CCH), INTO, and BOUND 
instructions are not IOPL-sensitive in Virtual 8086 Mode (they are not IOPL sensitive in 
Protected Mode either).



Intel® Quark Core—Protected Mode Architecture

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
110 Order Number: 329679-001US

Note that the I/O instructions (IN, OUT, INS, OUTS, REP INS, and REP OUTS) are not 
IOPL-sensitive in Virtual 8086 Mode. Rather, the I/O instructions become automatically 
sensitive to the I/O permission bitmap contained in the Intel® Quark SoC X1000 Core 
Task State Segment. The I/O permission bitmap, automatically used by the Intel® 
Quark SoC X1000 Core in Virtual 8086 Mode, is illustrated by Figure 36 and Figure 37.

The I/O Permission Bitmap can be viewed as a 0–64 Kbit string, which begins in 
memory at offset Bit_Map_Offset in the current TSS. Bit_Map_Offset must be ≤ DFFFH 
so the entire bit map and the byte FFH that follows the bit map are all at offsets ≤ 
FFFFH from the TSS base. The 16-bit pointer Bit_Map_Offset (15:0) is found in the 
word beginning at offset 66H (102 decimal) from the TSS base, as shown in Figure 36.

Each bit in the I/O permission bitmap corresponds to a single byte-wide I/O port, as 
illustrated in Figure 36. If a bit is 0, I/O to the corresponding byte-wide port can occur 
without generating an exception. Otherwise the I/O instruction causes an exception 13 
fault. Because every byte-wide I/O port must be protectable, all bits corresponding to a 
word-wide or dword-wide port must be 0 for the word-wide or dword-wide I/O to be 
permitted. If all the referenced bits are 0, the I/O is allowed. If any referenced bits are 
1, the attempted I/O causes an exception 13 fault.

Due to the use of a pointer to the base of the I/O permission bitmap, the bitmap may 
be located anywhere within the TSS, or may be ignored completely by pointing the 
Bit_Map_Offset (15:0) beyond the limit of the TSS segment. In the same manner, by 
adjusting the TSS limit to truncate the bitmap, only a small portion of the 64 Kbyte I/O 
space need have an associated map bit. This eliminates the commitment of 8 Kbyte of 
memory when a complete bitmap is not required.

Example of Bitmap for I/O Ports 0–255: Setting the TSS limit to {bit_Map_Offset 
+ 31 + 1} (see note below) allows a 32-byte bitmap for the I/O ports 0–255, plus a 
terminator byte of all ones (see note below). This allows the I/O bitmap to control I/O 
permission to I/O port 0–255, but causes an exception 13 fault on attempted I/O to 
any I/O port 80256 through 65,565.

Note: Beyond the last byte of I/O mapping information in the I/O permission bitmap, there 
must be a byte containing all ones. The byte of all ones must be within the limit of the 
Intel® Quark SoC X1000 Core TSS segment (see Figure 36).

6.5.5 Interrupt Handling

Interrupts in Virtual 8086 Mode are handled in a unique way. When running in Virtual 
Mode, all interrupts and exceptions involve a privilege change back to the host Intel® 
Quark SoC X1000 Core operating system. The Intel® Quark SoC X1000 Core operating 
system determines if the interrupt comes from a protected mode application or from a 
Virtual Mode program by examining the VM bit in the EFLAGS image stored on the 
stack.

When a Virtual Mode program is interrupted and execution passes to the interrupt 
routine at level 0, the VM bit is cleared. However, the VM bit is still set in the EFLAG 
image on the stack.

The Intel® Quark SoC X1000 Core operating system in turn handles the exception or 
interrupt and then returns control to the program. The Intel® Quark SoC X1000 Core 
operating system may choose to let the operating system handle the interrupt or it may 
emulate the function of the interrupt handler. For example, many operating system 
calls are accessed by PUSHing parameters on the stack, and then executing an INT n 
instruction. If the IOPL is set to 0, then all INT n instructions are intercepted by the 
Intel® Quark SoC X1000 Core operating system. The Intel® Quark SoC X1000 Core 
operating system could emulate the operating system's call. Figure 49 shows how the 
Intel® Quark SoC X1000 Core operating system could intercept an operating system's 
call to “Open a File.”



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 111

Protected Mode Architecture—Intel® Quark Core

An Intel® Quark SoC X1000 Core operating system can provide a Virtual 8086 
environment that is totally transparent to the application software by intercepting and 
then emulating the legacy operating system's calls, and intercepting IN and OUT 
instructions.

6.5.6 Entering and Leaving Virtual 8086 Mode

A Intel® Quark SoC X1000 Core is executing in Protected Mode can be switched to 
Virtual 8086 Mode by executing an IRET instruction (at CPL=0), or task switch (at any 
CPL) to a Intel® Quark SoC X1000 Core task whose TSS has a FLAGS image containing 
a 1 in the VM bit position. That is, one way to enter Virtual 8086 Mode is to switch to a 
task with a Intel® Quark SoC X1000 Core TSS that has a 1 in the VM bit in the EFLAGS 
image. The other way is to execute a 32-bit IRET instruction at privilege level 0, where 
the stack has a 1 in the VM bit in the EFLAGS image. POPF does not affect the VM bit, 
even if the Intel® Quark SoC X1000 Core is in Protected Mode or level 0, and so cannot 
be used to enter Virtual 8086 Mode. PUSHF always pushes a 0 in the VM bit, even if the 
Intel® Quark SoC X1000 Core is in Virtual 8086 Mode, so that a program cannot tell 
whether it is executing in Real Mode or in Virtual 8086 Mode.

Figure 49. Virtual 8086 Environment Interrupt and Call Handling
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The VM bit can be set by executing an IRET instruction only at privilege level 0, or by 
any instruction or interrupt that causes a task switch in Protected Mode (with VM=1 in 
the new FLAGS image). The UM bit can be cleared only by an interrupt or exception in 
Virtual 8086 Mode. IRET and POPF instructions executed in Real Mode or Virtual 8086 
Mode do not change the value in the VM bit.

The transition out of Virtual 8086 Mode to Protected Mode occurs only on receipt of an 
interrupt or exception (such as due to a sensitive instruction). In Virtual 8086 Mode, all 
interrupts and exceptions vector through the Protected Mode IDT, and enter an 
interrupt handler in protected Intel® Quark SoC X1000 Core mode. That is, as part of 
interrupt processing, the VM bit is cleared.

Because the matching IRET must occur from level 0, if an interrupt or trap gate is used 
to field an interrupt or exception out of Virtual 8086 Mode, the Gate must perform an 
inter-level interrupt only to level 0. Interrupt or trap gates through conforming 
segments, or through segments with DPL>0, raise a GP fault with the CS selector as 
the error code.

6.5.6.1 Task Switches to and from Virtual 8086 Mode

Tasks that can execute in Virtual 8086 Mode must be described by a TSS with the new 
Intel® Quark SoC X1000 Core format (TYPE 9 or 11 descriptor).

A task switch out of Virtual 8086 Mode operates exactly the same as any other task 
switch out of a task with a Intel® Quark SoC X1000 Core TSS. The programmer visible 
state, including the FLAGS register with the VM bit set to 1, is stored in the TSS.

The segment registers in the TSS contain legacy segment base values rather than 
selectors.

A task switch into a task described by a Intel® Quark SoC X1000 Core TSS has an 
additional check to determine if the incoming task should be resumed in Virtual 8086 
Mode. Before loading the segment register images from a Intel® Quark SoC X1000 
Core TSS, the FLAGS image is loaded, so that the segment registers are loaded from 
the TSS image as legacy segment base values. The task is now ready to resume in 
Virtual 8086 Mode.

6.5.6.2 Transitions Through Trap and Interrupt Gates, and IRET

A task switch is one way to enter or exit Virtual 8086 Mode. The other method is to exit 
through a trap or interrupt gate as part of handling an interrupt, and to enter as part of 
executing an IRET instruction. The transition out must use a Intel® Quark SoC X1000 
Core trap gate (Type 14) or Intel® Quark SoC X1000 Core interrupt gate (Type 15), 
which must point to a non-conforming level 0 segment (DPL=0) in order to permit the 
trap handler to IRET back to the Virtual 8086 program. The gate must point to a non-
conforming level 0 segment to perform a level switch to level 0 so the matching IRET 
can change the VM bit. The action taken for a Intel® Quark SoC X1000 Core trap or 
interrupt gate if an interrupt occurs while the task is executing in Virtual 8086 Mode is 
given by the following sequence:
1. Save the FLAGS register in a temp to push later. Turn off the VM and TF bits and, if 

the interrupt is serviced by an Interrupt Gate, turn off the IF bit also.
2. Interrupt and trap gates must perform a level switch from level 3 (where the VM86 

program executes) to level 0 (so IRET can return). This process involves a stack 
switch to the stack given in the TSS for privilege level 0. Save the Virtual 8086 
Mode SS and ESP registers to push in a later step. The segment register load of SS 
is done as a Protected Mode segment load, because the VM bit was turned off in 
step 1.
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3. Push the legacy segment register values onto the new stack, in the order: GS, FS, 
DS, ES. These are pushed as 32-bit quantities, with undefined values in the upper 
16 bits. Then, load these four registers with null selectors (0).

4. Push the old stack pointer onto the new stack by pushing the SS register (as 
32-bits, high bits undefined), then pushing the 32-bit ESP register saved above.

5. Push the 32-bit FLAGS register saved in step 1.
6. Push the old instruction pointer onto the new stack by pushing the CS register (as 

32-bits, high bits undefined), then pushing the 32-bit EIP register.
7. Load the new CS:EIP value from the interrupt gate, and begin execution of the 

interrupt routine in Protected Mode.

The transition out of Virtual 8086 Mode performs a level change and stack switch, in 
addition to changing back to Protected Mode. In addition, all of the legacy segment 
register images are stored on the stack (behind the SS:ESP image), and then loaded 
with null (0) selectors before entering the interrupt handler. This permits the handler to 
safely save and restore the DS, ES, FS, and GS registers. This is needed so that 
interrupt handlers that do not care about the mode of the interrupted program can use 
the same prolog and epilog code for state saving (i.e., push all registers in prolog, pop 
all in epilog), regardless of whether or not a “native” mode or Virtual 8086 Mode 
program was interrupted. Restoring null selectors to these registers before executing 
the IRET instruction does not cause a trap in the interrupt handler. Interrupt routines 
that obtain values from the segment registers or return values to segment registers 
have to obtain/return them from the register images pushed onto the new stack. They 
need to know the mode of the interrupted program in order to know where to 
find/return segment registers, and also to know how to interpret segment register 
values.
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7.0 On-Chip Cache

The Intel® Quark SoC X1000 Core processor has a 16-Kbyte cache, as discussed in 
Section 7.1.1. The cache is software-transparent to maintain binary compatibility with 
previous generations of the Intel Architecture.

The on-chip cache is designed for maximum flexibility and performance. The cache has 
several operating modes, offering flexibility during program execution and debugging. 
Memory areas can be defined as non-cacheable by software and external hardware. 
Protocols for cache line invalidations and cache replacement are implemented in 
hardware, easing system design.

7.1 Cache Organization
The on-chip cache is a unified code and data cache; that is, the cache is used for both 
instruction and data accesses and acts on physical addresses.

The cache organization is 4-way set associative and each line is 16 bytes wide. The 16 
Kbytes of cache memory are logically organized as 256 sets, each containing four lines.

The cache memory is physically split into four 4-Kbyte blocks, each containing 256 lines 
(see Figure 50). There are 256 21-bit tags associated with each 4-Kbyte block. There is 
a valid bit for each line in the cache. Each line in the cache is either valid or not valid; 
there are no provisions for partially valid lines.

Figure 50. On-Chip Cache Physical Organization
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The Write-Back Enhanced Intel® Quark SoC X1000 Core supports two modes of 
operation with respect to internal cache configurations: Standard Bus Mode (write-
through cache) and Enhanced Bus Mode (write-back cache). See Section 7.1.1 and 
other write-back enhanced sections below for write-back cache information.

7.1.1 Write-Back Enhanced Intel® Quark SoC X1000 Core Cache

The Write-Back Enhanced Intel® Quark SoC X1000 Core implements a unified cache, 
with a total cache size of 16 Kbytes. The processor's on-chip cache supports a modified 
MESI (modified / exclusive / shared / invalid) write-back cache consistency protocol.

The Write-Back Enhanced Intel® Quark SoC X1000 Core internal cache is configurable 
as write-back or write-through on a line-by-line basis, provided the cache is enabled for 
write-back operation. The cache is enabled for write-back operation by driving the 
WB/WT# pin to a high state for at least two clocks before and two clocks after the 
falling edge of RESET. Cache write-back and invalidations can be initiated by hardware 
or software. Protocols for cache consistency and line replacement are implemented in 
hardware to ease system design.

Once the cache configuration is selected, the Write-Back Enhanced Intel® Quark SoC 
X1000 Core continues to operate in the selected configuration and can be changed to a 
different configuration only by starting the RESET process again. Asserting SRESET 
does not change the operating mode of the processor. WB/WT# has an internal pull 
down; when WB/WT# is unconnected, the processor is in Standard Bus Mode, i.e., the 
on-chip cache is write-through. Table 35 lists the two modes of operation and the 
differences between the two modes.

Unless specifically noted, the following sections apply to the Write-Back Enhanced 
Intel® Quark SoC X1000 Core in Standard Bus Mode (write-through cache).

Table 35. Write-Back Enhanced Intel® Quark SoC X1000 Core WB/WT# Initialization

State of 
WB/WT# at 

Falling Edge of 
RESET 

Effect on Intel® Quark SoC X1000 Core Operation

WB/WT# = LOW

Processor is in Standard Bus Mode (write-through cache)
1. When FLUSH# is asserted, the internal cache is invalidated in one system CLK.
2. No Special FLUSH# acknowledge cycles appear on the bus after the assertion of 
FLUSH#.
3. All write-back specific inputs are ignored (INV, WB/WT#).
4. SRESET does not clear the SMBASE register. It behaves much like a RESET 
(invalidating the on-chip cache and resetting the CR0 register, for example). SRESET is 
not an interrupt.

WB/WT# = 
HIGH

Processor is in Enhanced Bus Mode (Write-Back Cache) 
1. Write backs are performed when a cache flush is requested (via the FLUSH# pin or 
the WBINVD instruction). The system must watch for the FLUSH# special cycles to 
determine the end of the flush.
2. The special FLUSH# acknowledge cycles appear on the bus after the assertion of 
the FLUSH# and after all the cache write backs (if any) are completed on the bus.
3. WB/WT# is sampled on a line-by-line basis to determine the state of a line to be 
allocated in the cache (as a write through (S state) or as write back (E state)).
4. The WB/WT# and INV inputs are no longer ignored. HITM# and CACHE# are 
driven during appropriate bus cycles.
5. PLOCK# is always driven inactive.
6. SRESET is an interrupt. SRESET does not reset the SMBASE register or flush the 
on-chip cache. The CR0 register gets the same values as after RESET, with the 
exception of the CD and NW bits. These two bits retain their previous status. See 
Section 9.2.17.4, “Soft Reset (SRESET)” on page 163 and Table 41 for details on 
SRESET for enhanced bus (write-back) mode.
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7.2 Cache Control
Control of the cache is provided by the CD and NW bits in CR0. CD enables and disables 
the cache. NW controls memory write-throughs and invalidates.

The CD and NW bits define four operating modes of the on-chip cache, as given in 
Table 36. These modes provide flexibility in how the on-chip cache is used.

CD=1, NW=1
The cache is completely disabled by setting CD=1 and NW=1 and then flushing the 
cache. This mode may be useful for debugging programs in which it is important to 
see all memory cycles at the pins. Writes that hit in the cache do not appear on the 
external bus.
It is possible to use the on-chip cache as fast static RAM by “pre-loading” certain 
memory areas into the cache and then setting CD=1 and NW=1. Pre-loading can 
be done by careful choice of memory references with the cache turned on or by 
using of the testability functions (see Section B.1, “On-Chip Cache Testing” on 
page 296). When the cache is turned off, the memory mapped by the cache is 
“frozen” into the cache because fills and invalidates are disabled.

CD=1, NW=0
Cache fills are disabled but write-throughs and invalidates are enabled. This mode 
is the same as if the KEN# pin was strapped high, disabling cache fills. Write-
throughs and invalidates still may occur to keep the cache valid. This mode is 
useful when the software must disable the cache for a short period of time, and 
then re-enable it without flushing the original contents.

CD=0, NW=1
Invalid. When CR0 is loaded with this bit configuration, a General Protection fault 
with an error code of 0 occurs.

CD=0, NW=0
This is the normal operating mode.

Completely disabling the cache is a two-step process. First, CD and NW must be set to 
1, and then the cache must be flushed. When the cache is not flushed, cache hits on 
reads still occur and data is read from the cache.

7.2.1 Write-Back Enhanced Intel® Quark SoC X1000 Core Cache 
Control and Operating Modes

The Write-Back Enhanced Intel® Quark SoC X1000 Core retains the use of CR0.CD and 
CR0.NW when the 1,1 state forces a cache-off condition after RESET and the 0,0 state 
is the normal run state. Table 37 defines these control bits when the cache is enabled 
for write-back operation. The values in Table 37 are also valid when the cache is in 
write-back mode and some lines are in a write-through state.

Table 36. Cache Operating Modes

CD NW Operating Mode

1 1 Cache fills disabled, write-through and invalidates disabled.

1 0 Cache fills disabled, write-through and invalidates enabled.

0 1 INVALID. When CR0 is loaded with this configuration of bits, a GP fault with error code of 
0 is raised.

0 0 Cache fills enabled, write-through and invalidates enabled.
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CD=1, NW=1
The 1,1 state is best used when no lines are allocated, which occurs naturally after 
RESET (but not SRESET), but must be forced (e.g., by the WBINVD instruction) 
when entered during normal operation. In these cases, the Write-Back Enhanced 
Intel® Quark SoC X1000 Core operates as if it had no cache at all.
When the 1,1 state is exited, lines that are allocated as write-back are written back 
upon a snoop hit or replacement cycle. Lines that were allocated as write-through 
(and later modified while in the 1,1 state) never appear on the bus.

CD=1, NW=0
The only difference between this state and the normal 0,0 “run” state is that new 
line fills (and the line replacements that result from capacity limitations) do not 
occur. This causes the contents of the cache to be locked in, unless lines are 
invalidated using snoops.

7.3 Cache Line Fills
Any area of memory can be cached in the Intel® Quark SoC X1000 Core. Non-
cacheable portions of memory can be defined by the external system or by software. 
The external system can inform the Intel® Quark SoC X1000 Core that a memory 
address is non-cacheable by returning the KEN# pin inactive during a memory access. 
(Refer to Section 10.3.3, “Cacheable Cycles” on page 201.) Software can prevent 
certain pages from being cached by setting the PCD bit in the page table entry.

A read request can be generated from program operation or by an instruction pre-
fetch. The data is supplied from the on-chip cache when a cache hit occurs on the read 
address. When the address is not in the cache, a read request for the data is generated 
on the external bus.

When the read request is to a cacheable portion of memory, the Intel® Quark SoC 
X1000 Core initiates a cache line fill. During a line fill a 16-byte line is read into the 
Intel® Quark SoC X1000 Core. Cache line fills are generated only for read misses. Write 
misses never cause a line in the internal cache to be allocated. When a cache hit occurs 
on a write, the line is updated. Cache line fills can be performed over 8- and 16-bit 
buses using the dynamic bus sizing feature. Refer to Section 10.1.2, “Dynamic Data 
Bus Sizing” on page 186 and Section 10.3.3, “Cacheable Cycles” on page 201 for 
further information. 

Table 37. Write-Back Enhanced Intel® Quark SoC X1000 Core Write-Back Cache 
Operating Modes

CR0, CD, NW Read Hit Read Miss WRITE HIT 
(See Note)

Write 
Miss Snoops

1,1
(state after reset) read cache read bus (no fill) write cache

(no write-through) write bus not 
accepted

1,0 read cache read bus (no fill) write cache, write bus if S write bus normal 
operation

0,1 This is a fault-protected disallowed state. A GP(0) occurs when an attempt is made to 
load CR0 with this state.

0,0
(state DURING 
normal operation) 

read cache read bus, line fill write cache, write bus if S write bus normal 
operation

Note: Normal MESI state transitions occur on write hits in all legal states.
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7.4 Cache Line Invalidations
The Intel® Quark SoC X1000 Core contains both a hardware and software mechanism 
for invalidating internal cache lines. Cache line invalidations are needed to keep the 
cache contents consistent with external memory. Refer to Section 10.3.8, “Invalidate 
Cycles” on page 213 for further information.

7.4.1 Write-Back Enhanced Intel® Quark SoC X1000 Core Snoop 
Cycles and Write-Back Mode Invalidation

In Enhanced Bus Mode, the Write-Back Enhanced Intel® Quark SoC X1000 Core 
performs invalidations differently. Snoop cycles are initiated by the system to 
determine whether a line is present in the cache, and what the state is. Snoop cycles 
may be classified further as Inquire cycles or Invalidate cycles. When another bus 
master initiates a memory read cycle, inquire cycles are driven to the Write-Back 
Enhanced Intel® Quark SoC X1000 Core to determine whether the processor cache 
contains the latest data. When the snooped line is in the Write-Back Enhanced Intel® 
Quark SoC X1000 Core’s cache and the line contains the most recent information, the 
processor must schedule a write back of the data. Inquire cycles are driven with INV = 
‘0’. Invalidate cycles are driven to the Write-Back Enhanced Intel® Quark SoC X1000 
Core when the other bus master initiates a memory write cycle to determine whether 
the Write-Back Enhanced Intel® Quark SoC X1000 Core cache contains the snooped 
line. The invalidate cycles are driven with INV = ‘1’, so that when the snooped line is in 
the on-chip cache, the line is invalidated. Snoop cycles are described in detail in Section 
10.3, “Bus Functional Description” on page 196. 

The Write-Back Enhanced Intel® Quark SoC X1000 Core has control mechanisms 
(including snooping) for writing back the modified lines and invalidating the cache. 
There are special bus cycles associated with write-backs and with invalidation. All of the 
Write-Back Enhanced Intel® Quark SoC X1000 Core’s special cycles require 
acknowledgment by RDY# or BRDY#. During the special cycles, the addresses shown in 
Table 38 are driven onto the address bus and the data bus is left undefined.

7.5 Cache Replacement
Before a line is placed in its internal cache, the Intel® Quark SoC X1000 Core checks 
whether there is a non-valid line in the set; that line is replaced first. When all four 
lines in the set are valid, a pseudo least-recently-used mechanism is used to determine 
which line should be replaced.

A valid bit is associated with each line in the cache. Before a line is placed in a set, the 
four valid bits are checked to see whether there is a non-valid line that can be replaced. 
When a non-valid line is found, that line is marked for replacement.

The four lines in the set are labeled l0, l1, l2, and l3. The order in which the valid bits 
are checked during an invalidation is l0, l1, l2 and l3. All valid bits are cleared when the 
processor is reset or when the cache is flushed.
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The pseudo LRU mechanism works in the following manner: When a line must be 
replaced, the cache first selects which of lines 11:10 and 13:12 was least recently 
used. Then the cache determines which of the two lines was least recently used and 
mark it for replacement. This decision tree is shown in Figure 51. 

Figure 51. On-Chip Cache Replacement Strategy

7.6 Page Cacheability
Two bits for cache control, PWT and PCD, are defined in the page table and page 
directory entries. The states of these bits are driven out on the PWT and PCD pins 
during memory access cycles.

The PWT bit controls the write policy for second-level caches used with the Intel® 
Quark SoC X1000 Core. Setting PWT=1 defines a write-through policy for the current 
page while PWT=0 defines the possibility of write-back. The state of PWT is ignored 
internally by the Intel® Quark SoC X1000 Core for on-chip cache in write through 
mode.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally 
AND’ed with the KEN# signal to control cacheability on a cycle-by-cycle basis (see 
Figure 52). PCD=0 enables caching while PCD=1 forbids it. Note that cache fills are 
enabled when PCD=0 AND KEN#=0. This logical AND is implemented physically with a 
NOR gate.

Table 38. Encoding of the Special Cycles for Write-Back Cache

Cycle Name M/IO#  D/C#  W/R# BE[3:0]# A[4:2]

Write-Back† 0 0 1 0111 000

First Flush Ack Cycle† 0 0 1 0111 001

Flush† 0 0 1 1101 000

Second Flush Ack Cycle† 0 0 1 1101 001

Shutdown 0 0 1 1110 000

HALT 0 0 1 1011 000

Stop Grant Ack Cycle 0 0  1 1011 100

† Write-Back Enhanced Intel® Quark SoC X1000 Core only. FLUSH differs for Standard Mode. 
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The state of the PCD bit in the page table entry is driven on the PCD pin when a page in 
external memory is accessed. The state of the PCD pin informs the external system of 
the cacheability of the requested information. The external system then returns KEN#, 
telling the Intel® Quark SoC X1000 Core whether the area is cacheable. The Intel® 
Quark SoC X1000 Core initiates a cache line fill when PCD and KEN# indicate that the 
requested information is cacheable.

The PCD bit is OR’ed with the CD (cache disable) bit in control register 0 to determine 
the state of the PCD pin. When CD=1, the Intel® Quark SoC X1000 Core forces the PCD 
pin HIGH. When CD=0, the PCD pin is driven with the value for the page table 
entry/directory (see Figure 52).

The PWT and PCD bits for a bus cycle are obtained from CR3, the page directory or 
page table entry. These bits are assumed to be zero during Real Mode, whenever 
paging is disabled, or for cycles that bypass paging (I/O references, interrupt 
acknowledge cycles, and HALT cycles).

When paging is enabled, the bits from the page table entry are cached in the TLB, and 
are driven when the page mapped by the TLB entry is referenced. For normal memory 
cycles, PWT and PCD are taken from the page table entry. During TLB refresh cycles in 
which the page table and directory entries are read, the PWT and PCD bits must be 
obtained elsewhere. During page table updates the bits are obtained from the page 
directory. When the page directory is updated, these bits are obtained from CR3. PCD 
and PWT bits are initialized to zero at reset, but can be modified by level 0 software.
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Figure 52. Page Cacheability

7.6.1 Write-Back Enhanced Intel® Quark SoC X1000 Core and 
Processor Page Cacheability

In Write-Back Enhanced Intel® Quark SoC X1000 Core-based systems, both the 
processor and the system hardware must determine the cacheability and the 
configuration (write-back or write-through) on a line-by-line basis. The system 
hardware's cacheability is determined by KEN# and the configuration by WB/WT#. The 
processor's indication of cacheability is determined by PCD and the configuration by 
PWT. The PWT bit controls the write policy for the second-level caches used with the 
Write-Back Enhanced Intel® Quark SoC X1000 Core. Setting PWT to 1 defines a write-
through policy for the current page, while clearing PWT to 0 defines a write-back policy 
for the current page.
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7.7 Cache Flushing
The on-chip cache can be flushed by external hardware or by software instructions. 
Flushing the cache clears all valid bits for all lines in the cache. The cache is flushed 
when external hardware asserts the FLUSH# pin.

The FLUSH# pin must to be asserted for one clock when driven synchronously or for 
two clocks when driven asynchronously. FLUSH# is asynchronous, but setup and hold 
times must be met for recognition in a particular cycle. FLUSH# should be deasserted 
before the cache flush is complete. Failure to deassert the pin causes execution to stop 
as the processor repeatedly flushes the cache. When external hardware activates 
FLUSH# in response to an I/O write, FLUSH# must be asserted for at least two clocks 
prior to ready being returned for the I/O write. This ensures that the flush completes 
before the processor begins execution of the instruction following the OUT instruction.

The instructions INVD and WBINVD cause the on-chip cache to be flushed. External 
caches connected to the Intel® Quark SoC X1000 Core are signaled to flush their 
contents when these instructions are executed.

WBINVD also cause an external write-back cache to write back dirty lines before 
flushing its contents. The external cache is signaled using the bus cycle definition pins 
and the byte enables. Refer to Section 9.2.5, “Bus Cycle Definition” on page 152 for the 
bus cycle definition pins and Section 10.3.11, “Special Bus Cycles” on page 220 for 
special bus cycles. 

The results of the INVD and WBINVD instructions are identical for the operation of the 
non-write-back enhanced Intel® Quark SoC X1000 Core on-chip cache because the 
cache is write-through.

7.7.1 Write-Back Enhanced Intel® Quark SoC X1000 Core Cache 
Flushing

The on-chip cache can be flushed by external hardware or by software instructions.

Flushing the cache through hardware is accomplished by asserting the FLUSH# pin. 
This causes the cache to write back all modified lines in the cache and mark the state 
bits invalid. The first flush acknowledge cycle is driven by the Write-Back Enhanced 
Intel® Quark SoC X1000 Core, followed by the second flush acknowledge cycle after all 
write-backs and invalidations are complete. The two special cycles are issued even 
when there are no dirty lines to write back.

The INVD and WBINVD instructions cause the on-chip cache to be invalidated. WBINVD 
causes the modified lines in the internal cache to be written back, and all lines to be 
marked invalid. After execution of the WBINVD instruction, the write-back and flush 
special cycles are driven to indicate to external cache that it should write back and 
invalidate its contents. These two special cycles are issued even when there are no 
dirty lines to be written back. INVD causes all lines in the cache to be invalidated, so 
modified lines in the cache are not written back. The Flush special cycle is driven after 
the INVD instruction is executed to indicate to any external cache that it should 
invalidate its contents. Care should be taken when using the INVD instruction to avoid 
creating cache consistency problems. 

Note: It is recommended to use the WBINVD instruction instead of the INVD instruction when 
the on-chip cache is configured in write-back mode. 

The assertion of RESET invalidates the entire cache without writing back the modified 
lines. No special cycles are issued after the invalidation is complete.
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Snoop cycles with invalidation (INV=1) cause the Write-Back Enhanced Intel® Quark 
SoC X1000 Core to invalidate an individual cache line. When the snooped line is a 
modified line, then the processor schedules a write-back cycle. Inquire cycles with no-
invalidation cause the Write-Back Enhanced Intel® Quark SoC X1000 Core only to 
write-back the line, when the inquired line is in M-state, and not invalidate the line.

SRESET, STPCLK#, INTR, NMI and SMI# are recognized and latched, but not serviced 
during the full-cache, modified-line write-backs, caused either by the WBINVD 
instruction or by FLUSH#. However, BOFF#, AHOLD and HOLD are recognized during 
the full-cache, modified-line write-backs.

7.8 Write-Back Enhanced Intel® Quark SoC X1000 Core Write-
Back Cache Architecture
This section describes additional features pertaining to the write-back mode of the 
Write-Back Enhanced Intel® Quark SoC X1000 Core.

7.8.1 Write-Back Cache Coherency Protocol

The Write-Back Enhanced Intel® Quark SoC X1000 Core cache protocol supports a 
cache line in one of the following four states:

• The line is valid and defined as write-back during allocation (E-state)
• The line is valid and defined as write-through during allocation (S-state)
• The line has been modified (M-state)
• The line is invalid (I-state)

These four states are the M (Modified line), E (write-back line), S (write-through line) 
and I (Invalid line) states, and the protocol is referred to as the “Modified MESI 
protocol.” A definition of the states is given below:

M - Modified: An M-state line is modified (different from main memory) and 
can be accessed (read/written to) without sending a cycle out 
on the bus.

E - Exclusive: An E-state line is a ‘write-back’ line, but the line is not modified 
(i.e., it is consistent with main memory). An E-state line can be 
accessed (read/written to) without generating a bus cycle and a 
write to an E-state line causes the line to become modified.

S - Shared: An S-state line is a ‘write-through’ line, and is consistent with 
main memory. A read hit to an S-state line does not generate 
bus activity, but a write hit to an S-state line generates a write-
through cycle on the bus. A write to an S-state line updates the 
cache and the main memory.

I - Invalid: This state indicates that the line is not in the cache. A read to 
this line is a miss and may cause the Write-Back Enhanced 
Intel® Quark SoC X1000 Core to execute a line fill (i.e., fetch the 
whole line into the cache from main memory). A write to an 
invalid line causes the Write-Back Enhanced Intel® Quark SoC 
X1000 Core to execute a write-through cycle on the bus.

Every line in the Write-Back Enhanced Intel® Quark SoC X1000 Core cache is assigned 
a state that depends on both Write-Back Enhanced Intel® Quark SoC X1000 Core-
generated activities and activities generated by the system hardware. As the Write-
Back Enhanced Intel® Quark SoC X1000 Core is targeted for uniprocessor systems, a 
subset of MESI protocol, namely MEI, is used to maintain cache coherency.
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With the modified MESI protocol it is assumed that in a uniprocessor system, lines are 
defined as write-back or write-through at allocation time. This property associated with 
a line is never altered. The lines allocated as write-through go to S-state and remain in 
S-state. A cache line that is allocated as write-back never enters the S-state. The 
WB/WT# pin is sampled during line allocation and is used strictly to characterize a line 
as write-back or write-through.

State Transition Tables

State transitions are caused by processor-generated transactions (memory 
reads/writes) and by a set of external input signals and internally-generated variables. 
The Write-Back Enhanced Intel® Quark SoC X1000 Core also drives certain pins as a 
consequence of the cache consistency protocol.

Read Cycles

Table 39 shows the state transitions for lines in the cache during unlocked read cycles.

Write Cycles

The state transitions of cache lines during Write-Back Enhanced Intel® Quark SoC 
X1000 Core-generated write cycles are described in Table 40.

Table 39. Cache State Transitions for Write-Back Enhanced Intel® Quark SoC X1000 
Core-Initiated Unlocked Read Cycles

Present 
State Pin Activity Next State Description

M n/a M Read hit; data is provided to processor core by cache. 
No bus cycle is generated.

E n/a E Read hit; data is provided to processor core by cache. 
No bus cycle is generated.

S n/a S Read hit; Data is provided to the processor by the 
cache. No bus cycle is generated.

I

CACHE# low
AND

KEN# low
AND

WB/WT# high
AND

PWT low

E Data item does not exist in cache (MISS). 

I

CACHE# low
AND

KEN# low
AND

(WB/WT# low
OR PWT high)

S Same as previous read miss case except that WB/WT# 
is sampled low with first BRDY# or PWT is high.

I
CACHE# high

OR
KEN# high

I
KEN# pin inactive; the line is not intended to be 
cached in the Write-Back Enhanced Intel® Quark SoC 
X1000 Core.

Notes:
1. Locked accesses to the cache cause the accessed line to transition to the Invalid state.
2. PCD can also be used by the processor to determine the cacheability, but using the CACHE# pin is 

recommended. The transition from I to E or S states (based on WB/WT#) occurs only when KEN# is 
sampled low one clock prior to the first BRDY# and then one clock prior to the last BRDY#, and the 
cycle is transformed into a line fill cycle. When KEN# is sampled high, the line is not cached and 
remains in the I state.
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Note that even though memory writes are buffered while I/O writes are not, these 
writes appear at the pins in the same order as they were generated by the processor. 
Write-back cycles caused by the replacement of M-state lines are buffered, while write 
backs due to snoop hit to M-state lines are not buffered.

Cache Consistency Cycles (Snoop Cycles)

The purpose of snoop cycles is to check whether the address being presented by 
another bus master is contained within the cache of the Write-Back Enhanced Intel® 
Quark SoC X1000 Core. Snoop cycles may be initiated with or without an invalidation 
request (INV = 1 or 0). When a snoop cycle is initiated with INV = 0 (usually during 
memory read cycles by another master), it is referred to as an inquire cycle. When a 
snoop cycle is initiated with INV = 1 (usually during memory write cycles), it is referred 
to as an invalidate cycle. When the address hits a modified line in the cache, HITM# is 
asserted and the modified line is written back to the bus. Table 41 describes state 
transitions for snoop cycles.

7.8.2 Detecting On-Chip Write-Back Cache of the Write-Back 
Enhanced Intel® Quark SoC X1000 Core 

The Write-Back Enhanced Intel® Quark SoC X1000 Core write-back policy for the on-
chip cache can be detected by software or hardware. The software mechanism uses the 
CPUID instruction. (See Section C.1, “CPUID Instruction” on page 309 for details.) The 
hardware mechanism uses a write-back related output signal from the processor.

Table 40. Cache State Transitions for Write-Back Enhanced Intel® Quark SoC X1000 
Core-Initiated Write Cycles

Present 
State

Pin 
Activity

Next 
State Description

M n/a M Write hit; update cache. No bus cycle generated to update memory.

E n/a M Write hit; update cache only. No bus cycle generated; line is now 
modified.

S n/a S

Write hit; cache updated with write data item. A write-through cycle 
is generated on the bus to update memory. Subsequent writes to E-
state or M-state lines are held up until this write through cycle is 
completed.

I n/a I
Write miss; a write-through cycle is generated on the bus to update 
external memory. No allocation is done. Subsequent writes to the E 
or M lines are blocked until the write miss is completed.

Table 41. Cache State Transitions During Snoop Cycles

Present 
State

Next 
State

INV=1

Next 
State 

INV=0
Description

M I E Snoop hit to a modified line indicated by HITM# low. The state of the 
line changes to E provided INV = 0 and changes to I when INV = 1.

E I E
Snoop hit, no bus cycle generated. State remains unaltered when 
INV = 0, and changes to I when INV = 1. There is no external 
indication of this snoop hit.

S I S
Snoop hit, no bus cycle generated. State remains unaltered when 
INV = 0, and changes to I when INV = 1. There is no external 
indication of this snoop hit.

I I I Address not in cache.
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A software mechanism to determine whether a processor has write-back support for 
the on-chip cache should drive the WB/WT# pin to ‘1’ during RESET. This pin is sampled 
by the processor during the falling edge of RESET. Execute the CPUID instruction, which 
returns the model number in the EAX register, EAX[7:4]. When the model number 
returned is 7 (identifying the presence of a Write-Back Enhanced Intel® Quark SoC 
X1000 Core) and the family number is 4, the on-chip cache supports the write-back 
policy. When the model number returned is in the range 0 through 6 or 8, the on-chip 
cache supports the write-through policy only.

The following pseudo code/steps give an example of the initialization BIOS that can 
detect the presence of the write-back on-chip cache:

• Boot address cold start
• Load segment registers and null IDTR
• Execute CPUID instruction and determine the family ID and model ID.
• Compare the family ID to 4 and the Model ID to the values listed in Table 103.

The hardware mechanism for detecting the presence of write-back cache uses the 
HITM# signal. For the Write-Back Enhanced Intel® Quark SoC X1000 Core, this signal 
is driven inactive (high) during RESET. The chipset can sample this output on the falling 
edge of RESET. When HITM# is sampled high on the falling edge of RESET, the 
processor supports on-chip write-back cache configuration. For those processors that 
do not support internal write-back caching, this signal is an INC, and this output is not 
driven.
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8.0 System Management Mode (SMM) Architectures

8.1 SMM Overview
The Intel® Quark SoC X1000 Core supports four modes: Real, Virtual-86, Protected, 
and System Management Mode (SMM). As an operating mode, SMM has a distinct 
processor environment, interface and hardware/software features.

SMM provides system designers with a means of adding new software-controlled 
features to computer products that operate transparently to the operating system and 
software applications. SMM is intended for use only by system firmware, not by 
applications software or general purpose systems software.

The SMM architectural extension consists of the following elements:
1. System Management Interrupt (SMI#) hardware interface.
2. Dedicated and secure memory space (SMRAM) for SMI# handler code and 

processor state (context) data with a status signal (SMIACT#) for to decoding 
access to that memory space. (The SMBASE address is relocatable and can also be 
relocated to non-cacheable address space.)

3. Resume (RSM) instruction, for exiting the System Management Mode.
4. Special Features such as I/O-Restart, for transparent power management of I/O 

peripherals, and Auto HALT Restart.

8.2 Terminology
The following terms are used throughout the discussion of System Management Mode.

SMM System Management Mode. This is the operating environment 
that the processor (system) enters when the System 
Management Interrupt is being serviced.

SMI# System Management Interrupt. This is part of the SMM 
interface. When SMI# is asserted (low) it causes the processor 
to invoke SMM. The SMI# pin is the only means of entering 
SMM.

SMM Handler System Management Mode handler. This is the code that is 
executed when the processor is in SMM. An example application 
that this code might implement is a power management control 
or a system control function.

RSM Resume instruction. This instruction is used by the SMM handler 
to exit SMM and return to the operating system or application 
process that was interrupted.

SMRAM Physical memory dedicated to SMM. The SMM handler code and 
related data reside in this memory. This memory is also used by 
the processor to store its context before executing the SMM 
handler. The operating system and applications do not have 
access to this memory space.
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SMBASE Control register that contains the address of the SMRAM space.

Context The processor state just before the processor invokes SMM. The 
context normally consists of the processor registers that fully 
represent the processor state.

Context Switch The process of either saving or restoring the context. The SMM 
discussion refers to the context switch as the process of 
saving/restoring the context while invoking/exiting SMM, 
respectively.

8.3 System Management Interrupt Processing
The system interrupts the normal program execution and invokes SMM by generating a 
System Management Interrupt (SMI#) to the processor. The processor services the 
SMI# by executing the following sequence (see Figure 53):
1. The processor asserts SMIACT#, indicating to the system that it should enable the 

SMRAM.
2. The processor saves its state (context) to SMRAM, starting at default address 

location 3FFFFH, proceeding downward in a stack-like fashion.
3. The processor switches to the System Management Mode processor environment (a 

pseudo-real mode).

Figure 53. Basic SMI# Interrupt Service

4. The processor then jumps to the default absolute address of 38000H in SMRAM to 
execute the SMI# handler. This SMI# handler performs the system management 
activities.

5. The SMI# handler then executes the RSM instruction (which restores the 
processors context from SMRAM), de-asserts the SMIACT# signal, and then returns 
control to the previously interrupted program execution.

Note: The above sequence is valid for the default SMBASE value only. See the following 
sections for a description of the SMBASE register and SMBASE relocation. 
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The System Management Interrupt hardware interface consists of the SMI# interrupt 
request input and the SMIACT# output the system uses to decode the SMRAM.

Figure 54. Basic SMI# Hardware Interface

8.3.1 System Management Interrupt (SMI#)

SMI# is a falling-edge triggered, non-maskable interrupt request signal. SMI# is an 
asynchronous signal, but setup and hold times t20 and t21 must be met in order to 
guarantee recognition on a specific clock. The SMI# input need not remain active until 
the interrupt is actually serviced. The SMI# input must remain active for a single clock 
if the required setup and hold times are met. SMI# also works correctly if it is held 
active for an arbitrary number of clocks.

The SMI# input must be held inactive for at least four external clocks after it is 
asserted to reset the edge triggered logic. A subsequent SMI# might not be recognized 
if the SMI# input is not held inactive for at least four clocks after being asserted.

SMI#, like NMI, is not affected by the IF bit in the EFLAGS register and is recognized on 
an instruction boundary. An SMI# does not break locked bus cycles. The SMI# has a 
higher priority than NMI and is not masked during an NMI. In order for SMI# to be 
recognized with respect to SRESET, SMI# should not be asserted until two (2) clocks 
after SRESET becomes inactive.

After the SMI# interrupt is recognized, the SMI# signal is masked internally until the 
RSM instruction is executed and the interrupt service routine is complete. Masking the 
SMI# prevents recursive SMI# calls. SMI# must be deasserted for at least four clocks 
to reset the edge triggered logic. If another SMI# occurs while the SMI# is masked, the 
pending SMI# is recognized and executed on the next instruction boundary after the 
current SMI# completes. This instruction boundary occurs before execution of the next 
instruction in the interrupted application code, resulting in back-to-back SMM handlers. 
Only one SMI# can be pending while SMI# is masked.

The SMI# signal is synchronized internally and must be asserted at least three CLK 
periods prior to asserting the RDY# signal in order to guarantee recognition on a 
specific instruction boundary. This is important for servicing an I/O trap with an SMI# 
handler (see Figure 55).

8.3.2 SMI# Active (SMIACT#)

SMIACT# indicates that the processor is operating in System Management Mode. The 
processor asserts SMIACT# in response to an SMI# interrupt request on the SMI# pin. 
SMIACT# is driven active after the processor has completed all pending write cycles 
(including emptying the write buffers), and before the first access to SMRAM, when the 
processor saves (writes) its state (or context) to SMRAM. SMIACT# remains active until 
the last access to SMRAM when the processor restores (reads) its state from SMRAM. 
SMIACT# does not float in response to HOLD. SMIACT# is used by the system logic to 
decode SMRAM (see Figure 56).

CPU }SMI Interface
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The number of CLKs required to complete the SMM state save and restore is dependent 
on-system memory performance. The values listed in Table 42 assume zero wait-state 
memory writes (two CLK cycles), 2-1-1-1 burst read cycles, and zero wait-state non-
burst reads (2 CLK cycles). Additionally, it is assumed that the data read during the 
SMM state restore sequence is not cacheable.

Figure 55. SMI# Timing for Servicing an I/O Trap

Figure 56 can be used for latency calculations. 

Figure 56. Intel® Quark SoC X1000 Core SMIACT# Timing

8.3.3 SMRAM

The Intel® Quark SoC X1000 Core uses the SMRAM space for state save and state 
restore operations during an SMI# and RSM. The SMI# handler, which also resides in 
SMRAM, uses the SMRAM space to store code, data and stacks. In addition, the SMI# 
handler can use the SMRAM for system management information such as the system 
configuration, configuration of a powered-down device, and system design-specific 
information.
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The processor asserts the SMIACT# output to indicate to the memory controller that it 
is operating in System Management Mode. The system logic should ensure that only 
the processor has access to this area. Alternate bus masters or DMA devices that try to 
access the SMRAM space when SMIACT# is active should be directed to system RAM in 
the respective area.

The system logic is minimally required to decode the physical memory address range 
from 38000H-3FFFFH as SMRAM area. The processor saves its state to the state save 
area from 3FFFFH downward to 3FE00H. After saving its state the processor jumps to 
the address location 38000H to begin executing the SMI# handler. The system logic 
can choose to decode a larger area of SMRAM as needed. The size of this SMRAM can 
be between 32 Kbytes and 4 Gbytes.

The system logic should provide a manual method for switching the SMRAM into 
system memory space when the processor is not in SMM. This enables initialization of 
the SMRAM space (i.e., loading SMI# handler) before executing the SMI# handler 
during SMM (see Figure 57).

8.3.3.1 SMRAM State Save Map

When the SMI# is recognized on an instruction boundary, the processor core first sets 
SMIACT# low, indicating to the system logic that accesses are now being made to the 
system-defined SMRAM areas. The processor then writes its state to the state save 
area in the SMRAM. The state save area starts at CS Base + [8000H + 7FFFH]. The 
default CS Base is 30000H; therefore the default state save area is at 3FFFFH. In this 
case, the CS Base can also be referred to as the SMBASE.

If SMBASE relocation is enabled, then the SMRAM addresses can change. The following 
formula is used to determine the relocated addresses where the context is saved. The 
context resides at CS Base + [8000H + Register Offset], where the default initial CS 
Base is 30000H and the Register Offset is listed in the SMRAM state save map 
(Table 42). Reserved spaces are used to accommodate new registers in future 
processors. The state save area starts at 7FFFH and continues downward in a stack-like 
fashion.

Some of the registers in the SMRAM state save area may be read and changed by the 
SMI# handler, with the changed values restored to the processor registers by the RSM 
instruction. Some register images are read-only, and must not be modified (modifying 
these registers results in unpredictable behavior). The values stored in reserved areas 
may change in future processors. An SMM handler should not rely on any values stored 
in a reserved area.
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Figure 57. Redirecting System Memory Addresses to SMRAM

The following registers are saved and restored (in reserved areas of the state save), 
but are not visible to the system software programmer: CR1, CR2, and CR4, hidden 
descriptor registers for CS, DS, ES, FS, GS, and SS.

If an SMI# request is issued for the purpose of powering down the processor, the 
values of all reserved locations in the SMM state save must be saved to non-volatile 
memory.

The following registers are not automatically saved and restored by SMI# and RSM: 
DR5:0, TR7:3, and the FPU registers STn, FCS, FSW, tag word, FP instruction pointer, 
FP opcode, and operand pointer.

For all SMI# requests except for suspend/resume, these registers do not have to be 
saved because their contents do not change. However, during a power down 
suspend/resume, a resume reset clears these registers to their default values. In this 
case, the suspend SMI# handler should read these registers directly to save them and 
restore them during the power up resume. Anytime the SMI# handler changes these 
registers in the processor, it must also save and restore them.

Table 42. SMRAM State Save Map (Sheet 1 of 2)

Register Offset Register Writeable?2

7FFC CR0 NO

7FF8 CR3 NO

7FF4 EFLAGS YES

7FF0 EIP YES

7FEC EDI YES

7FE8 ESI YES

7FE4 EBP YES

Notes:
1. Upper two bytes are reserved.
2. Modifying a value that is marked as not writeable results in 

unpredictable behavior.
3. Words are stored in two consecutive bytes in memory with 

the low-order byte at the lowest address and the high-order 
byte at the high address.
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8.3.4 Exit From SMM

The RSM instruction is only available to the SMI# handler. The opcode of the instruction 
is 0FAAH. Execution of this instruction while the processor is executing outside of SMM 
causes an invalid opcode error. The last instruction of the SMI# handler is the RSM 
instruction.

The RSM instruction restores the state save image from SMRAM back to the processor, 
then returns control back to the interrupted program execution. There are three SMM 
features that can be enabled by writing to control “slots” in the SMRAM state save area.

7FE0  ESP YES

7FDC  EBX YES

7FD8  EDX YES

7FD4  ECX YES

7FD0  EAX YES

7FCC  DR6 NO

7FC8  DR7 NO

7FC4  TR1 NO

7FC0 LDTR1 NO

7FBC  GS1 NO

7FB8  FS1 NO

7FB4  DS1 NO

7FB0  SS1 NO

7FAC CS1 NO

7FA8 ES1 NO

7FA7–7F98 Reserved NO

7F94 IDT Base NO

7F93–7F8C Reserved NO

7F88 GDT Base NO

7F87-7F04 Reserved NO

7F02 Auto HALT Restart Slot (Word)3 YES

7F00 I/O Trap Restart Slot (Word)3 YES

7EFC SMM Revision Identifier (Dword)3 NO

7EF8 SMBASE Slot (Dword)3 YES

7EF7–7E00 Reserved NO

Table 42. SMRAM State Save Map (Sheet 2 of 2)

Register Offset Register Writeable?2

Notes:
1. Upper two bytes are reserved.
2. Modifying a value that is marked as not writeable results in 

unpredictable behavior.
3. Words are stored in two consecutive bytes in memory with 

the low-order byte at the lowest address and the high-order 
byte at the high address.
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Auto HALT Restart. It is possible for the SMI# request to interrupt the HALT state. 
The SMI# handler can tell the RSM instruction to return control to the HALT instruction 
or to return control to the instruction following the HALT instruction by appropriately 
setting the Auto HALT Restart slot. The default operation is to restart the HALT 
instruction.

I/O Trap Restart. If the SMI# interrupt was generated on an I/O access to a 
powered-down device, the SMI# handler can tell the RSM instruction to re-execute that 
I/O instruction by setting the I/O Trap Restart slot.

SMBASE Relocation. The system can relocate the SMRAM by setting the SMBASE 
Relocation slot in the state save area. The RSM instruction sets the SMBASE in the 
processor based on the value in the SMBASE Relocation slot. The SMBASE must be 32-
Kbyte aligned.

For further details on these SMM features, see Section 8.5. 

If the processor detects invalid state information, it enters the shutdown state. This 
happens only in the following situations:

• The value stored in the SMBASE slot is not a 32-Kbyte aligned address.
• A reserved bit of CR4 is set to 1.
• A combination of bits in CR0 is illegal; namely, (PG=1 and PE=0) or (NW=1 and 

CD=0).

In shutdown mode, the processor stops executing instructions until an NMI interrupt is 
received or reset initialization is invoked. The processor generates a special bus cycle to 
indicate it has entered shutdown mode.

Note: INTR and SMI# also brings the processor out of a shutdown that is encountered due to 
invalid state information from SMM execution. Make sure that INTR and SMI# are not 
asserted if SMM routines are written such that a shutdown occurs.

8.4 System Management Mode Programming Model

8.4.1 Entering System Management Mode

SMM is one of the major operating modes, on a level with Protected Mode, Real Mode 
or Virtual-86 Mode. Figure 58 shows how the processor can enter SMM from any of the 
three modes and then return.
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Figure 58. Transition to and from System Management Mode

The external signal SMI# causes the processor to switch to SMM. The RSM instruction 
exits SMM. SMM is transparent to applications programs and operating systems 
because of the following:

• The only way to enter SMM is via a type of non-maskable interrupt triggered by an 
external signal.

• The processor begins executing SMM code from a separate address space, called 
system management RAM (SMRAM).

• Upon entry into SMM, the processor saves the register state of the interrupted 
program in a part of SMRAM called the SMM context save space.

• All interrupts normally handled by the operating system or by applications are 
disabled upon entry into SMM.

• A special instruction, RSM, restores processor registers from the SMM context save 
space and returns control to the interrupted program.

SMM is similar to Real Mode in that there are no privilege levels or address mapping. An 
SMM program can execute all I/O and other system instructions and can address up to 
4 Gbytes of memory.

8.4.2 Processor Environment

When an SMI# signal is recognized on an instruction execution boundary, the processor 
waits for all stores to complete, including emptying of the write buffers. The final write 
cycle is complete when the system returns RDY# or BRDY#. The processor then drives 
SMIACT# active, saves its register state to SMRAM space, and begins to execute the 
SMM handler.

SMI# has greater priority than debug exceptions and external interrupts. This means 
that if more than one of these conditions occur at an instruction boundary, only the 
SMI# processing occurs, not a debug exception or external interrupt. Subsequent 
SMI# requests are not acknowledged while the processor is in SMM. The first SMI# 
interrupt request that occurs while the processor is in SMM is latched and serviced 
when the processor exits SMM with the RSM instruction. The processor latches only one 
SMI# while it is in SMM.
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When the processor invokes SMM, the processor core registers are initialized as shown 
in Table 43.

The following is a summary of the key features in the SMM environment:
1. Real Mode style address calculation.
2. 4-Gbyte limit checking.
3. IF flag is cleared.
4. NMI is disabled.
5. TF flag in EFLAGS is cleared; single step traps are disabled.
6. DR7 is cleared, except for bits 12 and 13; debug traps are disabled. 
7. The RSM instruction no longer generates an invalid opcode error.
8. Default 16-bit opcode, register and stack use.

All bus arbitration (HOLD, AHOLD, BOFF#) inputs and bus sizing (BS8#, BS16#) inputs 
operate normally while the processor is in SMM.

8.4.2.1 Write-Back Enhanced Intel® Quark SoC X1000 Core Environment

When the Write-Back Enhanced Intel® Quark SoC X1000 Core is in Enhanced Bus 
Mode, SMI# has greater priority than debug exceptions and external interrupts, except 
for FLUSH# and SRESET (see Section 3.7.6).

8.4.3 Executing System Management Mode Handler

The processor begins execution of the SMM handler at offset 8000H in the CS segment. 
The CS Base is initially 30000H. However, the CS Base can be changed by using the 
SMM Base relocation feature.

When the SMM handler is invoked, the processors PE and PG bits in CR0 are reset to 0. 
The processor is in an environment similar to Real mode, but without the 64-Kbyte limit 
checking. However, the default operand size and the default address size are set to 16 
bits.

Table 43. SMM Initial Processor Core Register Settings

Register  Contents

General Purpose Registers  Unpredictable

EFLAGS  00000002H

EIP  00008000H

CS Selector  3000H

CS Base  SMM Base 
(default 30000H)

DS, ES, FS, GS, SS 
Selectors  0000H

DS, ES, FS, GS, SS Bases  000000000H

DS, ES, FS, GS, SS Limits  0FFFFFFFFH

CR0
 Bits 0,2,3 & 31 cleared 

(PE, EM, TS & PG); others 
are unmodified

DR6  Unpredictable

DR7  00000000H
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The EM bit is cleared so that no exceptions are generated. (If the SMM was entered 
from Protected Mode, the Real Mode interrupt and exception support is not available.) 
The SMI# handler should not use floating-point unit instructions until the FPU is 
properly detected (within the SMI# handler) and the exception support is initialized.

Because the segment bases (other than CS) are cleared to 0 and the segment limits 
are set to 4 Gbytes, the address space may be treated as a single flat 4-Gbyte linear 
space that is unsegmented. The processor is still in Real Mode and when a segment 
selector is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded 
into the segment base cache. The limits and attributes are not modified.

In SMM, the processor can access or jump anywhere within the 4-Gbyte logical address 
space. The processor can also indirectly access or perform a near jump anywhere 
within the 4-Gbyte logical address space.

8.4.3.1 Exceptions and Interrupts within System Management Mode

When the processor enters SMM, it disables INTR interrupts, debug and single-step 
traps by clearing the EFLAGS, DR6 and DR7 registers. This prevents a debug 
application from accidentally breaking into an SMM handler. This is necessary because 
the SMM handler operates from a distinct address space (SMRAM), and hence, the 
debug trap does not represent the normal system memory space.

If an SMM handler wishes to use the debug trap feature of the processor to debug SMM 
handler code, it must first ensure that an SMM-compliant debug handler is available. 
The SMM handler must also ensure DR3:0 is saved to be restored later. The debug 
registers DR3:0 and DR7 must then be initialized with the appropriate values.

If the processor wishes to use the single step feature of the processor, it must ensure 
that an SMM compliant single step handler is available and then set the trap flag in the 
EFLAGS register.

If the system design requires the processor to respond to hardware INTR requests 
while in SMM, it must ensure that an SMM compliant interrupt handler is available and 
then set the interrupt flag in the EFLAGS register (using the STI instruction). Software 
interrupts are not blocked upon entry to SMM, and the system software designer must 
provide an SMM compliant interrupt handler before attempting to execute any software 
interrupt instructions. Note that in SMM mode, the interrupt vector table has the same 
properties and location as the Real Mode vector table.

NMI interrupts are blocked upon entry to the SMM handler. If an NMI request occurs 
during the SMM handler, it is latched and serviced after the processor exits SMM. Only 
one NMI request is latched during the SMM handler. If an NMI request is pending when 
the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence.

Although NMI requests are blocked when the processor enters SMM, they may be 
enabled through software by executing an IRET instruction. If the SMM handler 
requires the use of NMI interrupts, it should invoke a dummy interrupt service routine 
for the purpose of executing an IRET instruction. Once an IRET instruction is executed, 
NMI interrupt requests are serviced in the same “Real Mode” manner in which they are 
handled outside of SMM.
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8.5 SMM Features

8.5.1 SMM Revision Identifier

The SMM revision identifier is used to indicate the version of SMM and the SMM 
extensions supported by the processor. The SMM revision identifier is written during 
SMM entry and can be examined in SMRAM space at register offset 7EFCH. The lower 
word of the SMM revision identifier refers to the version of the base SMM architecture. 
The upper word of the SMM revision identifier refers to the extensions available (see 
Figure 59).

Figure 59. SMM Revision Identifier

Bit 16 of the SMM revision identifier is used to indicate to the SMM handler that this 
processor supports the SMM I/O trap extension. If this bit is high, then the processor 
supports the SMM I/O trap extension. If this bit is low, then this processor does not 
support I/O trapping using the I/O trap slot mechanism (see Table 44).

Bit 17 of this slot indicates whether the processor supports relocation of the SMM jump 
vector and the SMRAM base address (see Table 44).

The Intel® Quark SoC X1000 Core supports I/O trap restart and SMBASE relocation 
features.

8.5.2 Auto Halt Restart

The Auto HALT restart slot at register offset (word location) 7F02H in SMRAM indicates 
to the SMM handler that the SMI# interrupted the processor during a HALT state (bit 0 
of slot 7F02H is set to 1 if the previous instruction was a HALT). If the SMI# does not 
interrupt the processor in a HALT state, then the SMI# microcode sets bit 0 of the Auto 
HALT Restart slot to a value of 0. If the previous instruction was a HALT, the SMM 
handler can choose to either set or reset bit 0. If this bit is set to 1, the RSM microcode 
execution forces the processor to re-enter the HALT state. If this bit is set to 0 when 
the RSM instruction is executed, the processor continues execution starting with the 
instruction just after the interrupted HALT instruction. Note that if the interrupted 
instruction was not a HALT instruction (bit 0 is set to 0 in the Auto HALT restart slot 
upon SMM entry), setting bit 0 to 1 causes unpredictable behavior when the RSM 

Table 44. Bit Values for SMM Revision Identifier

Bits Value Comments

16  0 Processor does not support I/O trap restart

16  1 Processor supports I/O trap restart

17  0 Processor does not support SMBASE relocation

17  1 Processor supports SMBASE relocation

Intel Reserved

17 16

SMM Revision Level
I/O Trap with Restart

SMBASE Relocation

Register Offset
7EFCH
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instruction is executed (see Figure 60 and Table 45).

Figure 60. Auto HALT Restart

If the HALT instruction is restarted, the processor generates a memory access to fetch 
the HALT instruction (if it is not in the internal cache) and executes a HALT bus cycle.

8.5.3 I/O Instruction Restart

The I/O instruction restart slot (register offset 7F00H in SMRAM) gives the SMM handler 
the option of causing the RSM instruction to automatically re-execute the interrupted 
I/O instruction. When the RSM instruction is executed, if the I/O instruction restart slot 
contains the value 0FFH, then the processor automatically re-executes the I/O 
instruction that the SMI# trapped. If the I/O instruction restart slot contains the value 
00H when the RSM instruction is executed, then the processor does not re-execute the 
I/O instruction. The processor automatically initializes the I/O instruction restart slot to 
00H during SMM entry. The I/O instruction restart slot should be written only when the 
processor has generated an SMI# on an I/O instruction boundary. Processor operation 
is unpredictable when the I/O instruction restart slot is set when the processor is 
servicing an SMI# that originated on a non-I/O instruction boundary (see Figure 61 
and Table 46).

Figure 61. I/O Instruction Restart

Table 45. Bit Values for Auto HALT Restart

Value of 
Bit 0 at 
Entry

Value of 
Bit 0 at 

Exit
Comments

0  0 Returns to next instruction in interrupted 
program.

0  1 Unpredictable.

1  0 Returns to next instruction after HALT.

1  1 Returns to HALT state.

Intel Reserved
Register Offset
7F02H

1 0

Auto HALT
Restart

15

Register Offset
7F00H

0

I/O Instruction
Restart Slot

15
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If the system executes back-to-back SMI# requests, the second SMM handler must not 
set the I/O instruction restart slot (see Section 8.6.6).

8.5.4 SMM Base Relocation

The Intel® Quark SoC X1000 Core provides a control register, SMBASE. The address 
space used as SMRAM can be modified by changing the SMBASE register before exiting 
an SMI# handler routine. SMBASE can be changed to any 32-Kbyte aligned value 
(values that are not 32-Kbyte aligned cause the processor to enter the shutdown state 
when executing the RSM instruction). SMBASE is set to the default value of 30000H on 
RESET, but is not changed on SRESET. If the SMBASE register is changed during an 
SMM handler, all subsequent SMI# requests initiate a state save at the new SMBASE 
(see Figure 62).

Figure 62. SMM Base Location

The SMBASE slot in the SMM state save area is used to indicate and change the SMI# 
jump vector location and the SMRAM save area. When bit 17 of the SMM revision 
identifier is set, then this feature exists and the SMRAM base and jump vector are as 
indicated by the SMM base slot. During the execution of the RSM instruction, the 
processor reads this slot and initializes the processor to use the new SMBASE during 
the next SMI#. During an SMI#, the processor performs a context save to the new 
SMRAM area pointed to by the SMBASE, stores the current SMBASE in the SMM Base 
slot (offset 7EF8H), and then start execution of the new jump vector based on the 
current SMBASE.

The SMBASE must be a 32-Kbyte aligned, 32-bit integer that indicates a base address 
for the SMRAM context save area and the SMI# jump vector. For example when the 
processor first powers up, the minimum SMRAM area is from 38000H-3FFFFH. The 
default SMBASE is 30000H. Hence the starting address of the jump vector is calculated 
by:

SMBASE + 8000H

While the starting address for the SMRAM state save area is calculated by:
SMM Base + [8000H + 7FFFH]

Hence, when this feature is enabled, the SMRAM register map is addressed according 
to the above formulas (see Figure 63).

Table 46. I/O Instruction Restart Value

Value at Entry  Value at Exit Comments

00H  00H Do not restart trapped I/O instruction

00H  0FFH Restart trapped I/O instruction

Register Offset
7EF8H

0

SMM Base

31
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To change the SMRAM base address and SMM jump vector location, the SMM handler 
should modify the SMBASE slot. Upon executing an RSM instruction, the processor 
reads the SMBASE slot and stores it internally. Upon recognition of the next SMI# 
request, the processor uses the new SMBASE slot for the SMRAM dump and SMI# jump 
vector.

If the modified SMBASE slot does not contain a 32-Kbyte aligned value, the RSM 
microcode causes the processor to enter the shutdown state.

Figure 63. SMRAM Usage

8.6 SMM System Design Considerations

8.6.1 SMRAM Interface

The hardware designed to control the SMRAM space must follow these guidelines:
1. A provision should be made to allow for initialization of SMRAM space during 

system boot up. This initialization of SMRAM space must happen before the first 
occurrence of an SMI# interrupt. Initializing the SMRAM space must include 
installation of an SMM handler, and may include installation of related data 
structures necessary for particular SMM applications. The memory controller 
providing the interface to the SMRAM should provide a means for the initialization 
code to manually open the SMRAM space.

2. A minimum initial SMRAM address space of 38000H-3FFFFH should be decoded by 
the memory controller.

3. Alternate bus masters (such as DMA controllers) should not be allowed to access 
SMRAM space. Only the processor, either through SMI# or during initialization, 
should be allowed access to SMRAM.

4. In order to implement a zero-volt suspend function, the system must have access 
to all of normal system memory from within an SMM handler routine. If the SMRAM 
is going to overlay normal system memory, there must be a method of accessing 
any system memory located underneath SMRAM.

There are two potential schemes for locating the SMRAM: either overlaid to an address 
space on top of normal system memory, or placed in a distinct address space (see 
Figure 64). When SMRAM is overlaid on top of normal system memory, the processor 
output signal SMIACT# must be used to distinguish SMRAM from main system memory. 
Additionally, if the overlaid normal memory is cacheable, both the processor internal 
cache and any second-level caches must be empty before the first read of an SMM 
handler routine. If the SMM memory is cacheable, the caches must be empty before 
the first read of normal memory following an SMM handler routine. This is done by 
flushing the caches, and is required to maintain cache coherency. When the default 
SMRAM location is used, SMRAM is overlaid on top of system main memory (at 38000H 
through 3FFFFH).

Start of State Slave

SMM Handler Entry

SMBASE

SMBASE + 8000H

SMBASE + 8000H
+ 7FFFH

SMRAM
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If SMRAM is located in its own distinct memory space, that can be completely decoded 
using only the processor address signals, it is said to be non-overlaid. In this case, 
there are no new requirements for maintaining cache coherency.

Figure 64. SMRAM Location

8.6.2 Cache Flushes

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support 
second-level cache. 

The processor does not unconditionally flush its cache before entering SMM (this option 
is left to the system designer). If SMRAM is shadowed in a cacheable memory area that 
is visible to the application or operating system, it is necessary for the system to empty 
both the processor cache and any second-level cache before entering SMM. That is, if 
SMRAM is in the same physical address location as the normal cacheable memory 
space, then an SMM read may hit the cache, which would contain normal memory 
space code/data. If the SMM memory is cacheable, the normal read cycles after SMM 
may hit the cache, which may contain SMM code/data. In this case the cache should be 
empty before the first memory read cycle during SMM and before the first normal cycle 
after exiting SMM (see Figure 65).

SMRAM

Normal

Memory
Shadowed Region

Normal

Memory

Normal

Memory

Non-overlaid
(no need to
flush caches)

Overlaid
(caches must

be flushed)

SMRAM
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Figure 65. FLUSH# Mechanism during SMM

The FLUSH# and KEN# signals can be used to ensure cache coherency when switching 
between normal and SMM modes. Cache flushing during SMM entry is accomplished by 
asserting the FLUSH# pin when SMI# is driven active. Cache flushing during SMM exit 
is accomplished by asserting the FLUSH# pin after the SMIACT# pin is deasserted 
(within one CLK). To guarantee this behavior, the constraints on setup and hold timings 
on the interaction of FLUSH# and SMIACT# as specified for a processor should be 
followed.

If the SMRAM area is overlaid over normal memory and if the system designer does not 
want to flush the caches upon leaving SMM, then references to the SMRAM area should 
not be cached. It is the obligation of the system designer to ensure that the KEN# pin 
is sampled inactive during all references to the SMRAM area. Figure 66 and Figure 67 
illustrate a cached and non-cached SMM using FLUSH# and KEN#.

Figure 66. Cached SMM
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Figure 67. Non-Cached SMM

8.6.2.1 Write-Back Enhanced Intel® Quark SoC X1000 Core System 
Management Mode and Cache Flushing

Regardless of the on-chip cache mode (i.e., write-through or write-back) it is 
recommended that SMRAM be non-overlaid. This provides the greatest freedom for 
caching both SMRAM and normal memory, provides a simplified memory controller 
design, and eliminates the performance penalty of flushing.

In general, cache flushing is not required when the SMRAM and normal memory are not 
overlaid. Table 47 gives the cache flushing requirements for entering and exiting SMM, 
when the SMRAM is not overlaid with normal memory space. 

SMRAM can not be cached as write-back lines. If SMRAM is cached, it should be cached 
only as write-through lines. This is because dirty lines can not be written back to 
SMRAM upon exit from SMM. The de-assertion of SMIACT# signals that the processor is 
exiting SMM, and is used to assert FLUSH#. By the time the write back of dirty lines 
occurs, SMIACT# would already be inactive, so the SMRAM could no longer be decoded. 
When the SMRAM is cached as write-through, this problem does not occur. 

Coherency requirements must be met when normal memory is cached in write-back 
mode. In this case, the snoop and replacement write-backs that occur during SMM 
must go to normal memory, even though SMIACT# is active. This requirement is 
compatible with SMM security requirements, because these write backs can not decode 
the SMRAM, and the memory system must be able to handle this situation properly.
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Table 47. Cache Flushing (Non-Overlaid SMRAM)

Normal Memory 
Cacheable SMRAM Cacheable FLUSH Entering SMM

No No No

No WT No

WT No No

WB No No, but Snoop WBs must go to Normal 
Memory Space.

WT WT No

WB WT No, but Snoop and Replacement WBs 
must go to normal memory space.



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 145

System Management Mode (SMM) Architectures—Intel® Quark Core

If SMRAM is overlaid with normal memory space, additional system design features are 
needed to ensure that cache coherency is maintained. Table 48 lists the cache flushing 
requirements for entering and exiting the SMM when the SMRAM is overlaid with 
normal memory space.

If SMI# and FLUSH# are asserted together, the Write-Back Enhanced Intel® Quark SoC 
X1000 Core guarantees that FLUSH# is recognized first, followed by the SMI#. If the 
cache is configured in the write-back mode, the modified lines are written back to the 
normal user space, followed by the two special cycles. The SMI# is then recognized and 
the transition to SMM occurs, as shown in Figure 68.

Cache flushing during SMM exit is accomplished by asserting the FLUSH# pin after the 
SMIACT# pin is deasserted (within 1 CLK). To guarantee this behavior, follow the 
constraints on setup and hold timings for the interaction of FLUSH# and SMIACT# as 
specified for the Write-Back Enhanced Intel® Quark SoC X1000 Core.

The WBINVD instruction should not be used to flush the cache when exiting SMM. 
Instead, the FLUSH# pin should be asserted after the SMIACT# pin is deasserted 
(within one CLK). The cache coherency requirements associated with SMM and write-
through vs. write-back caches also apply to second-level cache control designs. The 
appropriate second-level cache flushing also is required upon entering and exiting the 
SMM.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support 
second-level cache. 

Figure 68. Write-Back Enhanced Intel® Quark SoC X1000 Core Cache Flushing for 
Overlaid SMRAM upon Entry and Exit of Cached SMM

Table 48. Cache Flushing (Overlaid SMRAM)

Normal Memory 
Cacheable SMRAM Cacheable FLUSH Entering 

SMM
FLUSH Exiting 

SMM

No No No No

No WT No Yes
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WT or WB WT Yes Yes
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8.6.2.2 Snoop During SMM

Snoops cycles are allowed during SMM. However, because the SMRAM is always cached 
as a write-through, there can never be a snoop hit to a modified line in the SMRAM 
address space. Consequently, if there is a snoop hit to a modified line, it corresponds to 
the normal address space. In this case, even though SMIACT# is asserted, the memory 
controller must drive the snoop write-back cycle to the normal memory space and not 
to the SMRAM address space.

If the overlaid normal memory is cacheable, FLUSH# must be asserted when entering 
SMM, causing all modified lines of normal memory to be written back. As a result, there 
cannot be a snoop hit to a modified line in the cacheable normal memory space that is 
overlaid with the SMRAM space. 

If the overlaid normal memory is not cacheable, no flushing is necessary when entering 
SMM. If normal memory is not overlaid with SMRAM, no flushing is required upon 
entering SMM and it is possible that a snoop can hit a modified line cached from 
anywhere in normal memory space while the processor is in SMM.

8.6.3 A20M# Pin and SMBASE Relocation

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not use the 
A20M# pin; it is tied to 1'b1.

Systems based on a PC-compatible architecture contain a feature that enables the 
processor address bit A20 to be forced to 0. This limits physical memory to a maximum 
of 1 Mbyte, and is provided to ensure compatibility with those programs that relied on 
the physical address wrap around functionality of the 8088 processor. The A20M# pin 
on Intel® Quark SoC X1000 Core provides this function. When A20M# is active, all 
external bus cycles drive A20M# low, and all internal cache accesses are performed 
with A20M# low.

The A20M# pin is recognized while the processor is in SMM. The functionality of the 
A20M# input must be recognized in the following two instances:
1. If the SMM handler needs to access system memory space above 1 Mbyte (for 

example, when saving memory to disk for a zero-volt suspend), the A20M# pin 
must be deasserted before the memory above 1 Mbyte is addressed.

2. If SMRAM has been relocated to address space above 1 Mbyte, and A20M# is active 
upon entering SMM, the processor attempts to access SMRAM at the relocated 
address, but with A20 low. This could cause the system to crash, because there 
would be no valid SMM interrupt handler at the accessed location.

In order to account for the above two situations, the system designer must ensure that 
A20M# is deasserted on entry to SMM. A20M# must be driven inactive before the first 
cycle of the SMM state save, and must be returned to its original level after the last 
cycle of the SMM state restore. This can be done by blocking the assertion of A20M# 
when SMIACT# is active.

8.6.4 Processor Reset During SMM

The system designer should take into account the following restrictions while 
implementing the processor RESET logic:
1. When running software written for the 80286 processor, an SRESET is used to 

switch the processor from Protected Mode to Real Mode. Note that SRESET has a 
higher interrupt priority than SMIACT#. When the processor is in SMM, the SRESET 
to the processor during SMM should be blocked until the processor exits SMM. 
SRESET must be blocked starting from the time SMI# is driven active and ending at 
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least 20 CLK cycles after SMIACT# is de-asserted. Be careful not to block the global 
system RESET, which may be necessary to recover from a system crash.

2. During execution of the RSM instruction to exit SMM, there is a small time window 
between the de-assertion of SMIACT# and the completion of the RSM microcode. If 
SRESET is asserted during this window, it is possible that the SMRAM space will be 
violated. The system designer must guarantee that SRESET is blocked until at least 
20 processor clock cycles after SMIACT# has been driven inactive.

3. Any request for a processor SRESET for the purpose of switching the processor 
from Protected Mode to Real Mode must be acknowledged after the processor has 
exited SMM. In order to maintain software transparency, the system logic must 
latch any SRESET signals that are blocked during SMM.

8.6.5 SMM and Second-Level Write Buffers

Before the Intel® Quark SoC X1000 Core enters SMM, it empties its internal write 
buffers. This is necessary so that the data in the write buffers is written to normal 
memory space, not SMM space. Once the processor is ready to begin writing an SMM 
state save to SMRAM, it asserts SMIACT#. SMIACT# may be driven active by the 
processor before the system memory controller has had an opportunity to empty the 
second-level write buffers.

To prevent the data from these second level write buffers from being written to the 
wrong location, the system memory controller must direct the memory write cycles to 
either SMM space or normal memory space. This can be accomplished by saving the 
status of SMIACT# along with the address for each word in the write buffers.

8.6.6 Nested SMI#s and I/O Restart

Special care must be taken when executing an SMM handler for the purpose of 
restarting an I/O instruction. When the processor executes a RSM instruction with the 
I/O restart slot set, the restored EIP is modified to point to the instruction immediately 
preceding the SMI# request, so that the I/O instruction can be re-executed. If a new 
SMI# request is received while the processor is executing an SMM handler, the 
processor services this SMI# request before restarting the original I/O instruction. If 
the I/O restart slot is set when the processor executes the RSM instruction for the 
second SMM handler, the RSM microcode decrements the restored EIP again. EI, 
therefore, points to an address different than the originally interrupted instruction, and 
the processor begins execution of the interrupted application code at an incorrect entry 
point.

To prevent this problem, the SMM handler routine must not set the I/O restart slot 
during the second of two consecutive SMM handlers.

8.7 SMM Software Considerations

8.7.1 SMM Code Considerations

The default operand size and the default address size are 16 bits; however, operand-
size override and address-size override prefixes can be used as needed to directly 
access data anywhere within the 4-Gbyte logical address space.

With operand-size override prefixes, the SMM handler can use jumps, calls, and returns 
to transfer control to any location within the 4-Gbyte space. Note, however, the 
following restrictions:

• Any control transfer that does not have an operand-size override prefix truncates 
EIP to 16 low-order bits.
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• Due to the Real Mode style of base-address formation, a far jump or call cannot 
transfer control to a segment with a base address of more than 20 bits (one 
Mbyte).

8.7.2 Exception Handling

Upon entry into SMM, external interrupts that require handlers are disabled (the IF bit 
in the EFLAGS is cleared). This is necessary because, while the processor is in SMM, it 
is running in a separate memory space. Consequently the vectors stored in the 
interrupt descriptor table (IDT) for the prior mode are not applicable. Before allowing 
exception handling (or software interrupts), the SMM program must initialize new 
interrupt and exception vectors. The interrupt vector table for SMM has the same 
format as for Real Mode. Until the interrupt vector table is correctly initialized, the SMM 
handler must not generate an exception (or software interrupt). Even though hardware 
interrupts are disabled, exceptions and software interrupts can occur. Only a correctly 
written SMM handler can prevent internal exceptions. When new exception vectors are 
initialized, internal exceptions can be serviced. The following restrictions apply:
1. Due to the Real Mode style of base address formation, an interrupt or exception 

cannot transfer control to a segment with a base address of more that 20 bits.
2. An interrupt or exception cannot transfer control to a segment offset of more than 

16 bits (64 Kbytes).
3. If exceptions or interrupts are allowed to occur, only the low order 16 bits of the 

return address (EIP) are pushed onto the stack. If the offset of the interrupted 
procedure is greater than 64 Kbytes, it is not possible for the interrupt/exception 
handler to return control to that procedure. (One work-around could be to perform 
software adjustment of the return address on the stack.)

4. The SMBASE relocation feature affects the way the processor returns from an 
interrupt or exception during an SMI# handler.

8.7.3 Halt During SMM

HALT should not be executed during SMM, unless interrupts have been enabled (see 
Section 8.7.2). Interrupts are disabled in SMM. INTR, NMI, and SMI# are the only 
events that take the processor out of HALT.

8.7.4 Relocating SMRAM to an Address Above One Megabyte

Within SMM (or Real Mode), the segment base registers can be updated only by 
changing the segment register. The segment registers contain only 16 bits, which 
allows only 20 bits to be used for a segment base address (the segment register is 
shifted left four bits to determine the segment base address). If SMRAM is relocated to 
an address above one megabyte, the segment registers can no longer be initialized to 
point to SMRAM.

These areas can be accessed by using address override prefixes to generate an offset 
to the correct address. For example, if the SMBASE has been relocated immediately 
below 16 Mbytes, the DS and ES registers are still initialized to 0000 0000H. We can 
still access data in SMRAM by using 32-bit displacement registers:

mov esi,00FFxxxxH;64K segment
;immediately
;below 16 M

mov ax,ds:[esi]
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9.0 Hardware Interface

9.1 Introduction
The Intel® Quark SoC X1000 Core has separate parallel buses for addresses and data. 
The bidirectional data bus is 32 bits wide. The address bus consists of two components: 
30 address lines (A[31:2]) and 4-byte enable lines (BE[3:0]#). The address lines form 
the upper 30 bits of the address and the byte enables select individual bytes within a 
4-byte location. The address lines are bidirectional for use in cache line invalidations 
(see Figure 69).

The Intel® Quark SoC X1000 Core’s burst bus mechanism enables high-speed cache 
fills from external memory. Burst cycles can strobe data into the processor at a rate of 
one item every clock. Non-burst cycles have a maximum rate of one item every two 
clocks. Burst cycles are not limited to cache fills: all read bus cycles requiring more 
than a single data cycle can be burst.

During bus hold, the Intel® Quark SoC X1000 Core relinquishes control of the local bus 
by floating its address, data, and control lines. The Intel® Quark SoC X1000 Core has 
an address hold (AHOLD) feature in addition to bus hold. During address hold, only the 
address bus is floated; the data and control buses can remain active. Address hold is 
used for cache line invalidations.

This section provides a brief description of the Intel® Quark SoC X1000 Core input and 
output signals arranged by functional groups. The # symbol at the end of a signal name 
indicates that the active or asserted state occurs when the signal is at a low voltage. 
When # is not present after the signal name, the signal is active at a high voltage level. 
The term “ready” is used to indicate that the cycle is terminated with RDY# or BRDY#.

This chapter and Chapter 10.0, “Bus Operation,” describe bus cycles and data cycles. A 
bus cycle is at least two-clocks long and begins with ADS# active in the first clock, and 
RDY# and/or BRDY# are active in the last clock. Data is transferred to or from the 
Intel® Quark SoC X1000 Core during a data cycle. A bus cycle contains one or more 
data cycles.
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9.2 Signal Descriptions

9.2.1 Clock (CLK)

CLK provides the fundamental timing and the internal operating frequency for the 
Intel® Quark SoC X1000 Core. All external timing parameters are specified with respect 
to the rising edge of CLK.

9.2.2 Address Bus (A[31:2], BE[3:0]#)

A[31:2] and BE[3:0]# form the address bus and provide physical memory and I/O port 
addresses. The Intel® Quark SoC X1000 Core is capable of addressing 4 gigabytes of 
physical memory space (00000000H through FFFFFFFFH), and 64 Kbytes of I/O 

Figure 69. Functional Signal Groupings 
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address space (00000000H through 0000FFFFH). A[31:2] identify addresses to a 4-
byte location. BE[3:0]# identify which bytes within the 4-byte location are involved in 
the current transfer.

Addresses are driven back into the Intel® Quark SoC X1000 Core over A[31:4] during 
cache line invalidations. The address lines are active high. When used as inputs into the 
processor, A[31:4] must meet the setup and hold times t22 and t23. A[31:2] are not 
driven during bus or address hold.

The byte enable outputs, BE[3:0]#, determine which bytes must be driven valid for 
read and write cycles to external memory.

• BE3# applies to D[31:24]
• BE2# applies to D[23:16]
• BE1# applies to D[15:8]
• BE0# applies to D[7:0]

BE[3:0]# can be decoded to generate A0, A1 and BHE# signals used in 8- and 16-bit 
systems (see Table 64 in Chapter 10.0, “Bus Operation”). BE[3:0]# are active low and 
are not driven during bus hold.

9.2.3 Data Lines (D[31:0])

The bidirectional lines D[31:0] form the data bus for the Intel® Quark SoC X1000 Core. 
D[7:0] define the least significant byte and D[31:24] the most significant byte. Data 
transfers to 8- or 16-bit devices are enabled using the data bus sizing feature, which is 
controlled by the BS8# or BS16# input signals. D[31:0] are active high. For reads, 
D[31:0] must meet the setup and hold times t22 and t23. D[31:0] are not driven during 
read cycles and bus hold.

9.2.4 Parity

9.2.4.1 Data Parity Input/Outputs (DP[3:0])

DP[3:0] are the data parity pins for the processor. There is one pin for each byte of the 
data bus. Even parity is generated or checked by the parity generators/checkers. Even 
parity means that there are an even number of high inputs on the eight corresponding 
data bus pins and parity pin.

Data parity is generated on all write data cycles with the same timing as the data 
driven by the Intel® Quark SoC X1000 Core. Even parity information must be driven 
back to the Intel® Quark SoC X1000 Core on these pins with the same timing as read 
information to ensure that the correct parity check status is indicated by the Intel® 
Quark SoC X1000 Core.

The values read on these pins do not affect program execution. It is the responsibility 
of the system to take appropriate actions if a parity error occurs.

Input signals on DP[3:0] must meet setup and hold times t22 and t23 for proper 
operation.

9.2.4.2 Parity Status Output (PCHK#)

Parity status is driven on the PCHK# pin, and a parity error is indicated by this pin 
being low. For read operations, PCHK# is driven the clock after ready to indicate the 
parity status for the data sampled at the end of the previous clock. Parity is checked 
during code reads, memory reads and I/O reads. Parity is not checked during interrupt 
acknowledge cycles. PCHK# only checks the parity status for enabled bytes as 
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indicated by the byte enable and bus size signals. It is valid only in the clock 
immediately after read data is returned to the Intel® Quark SoC X1000 Core. At all 
other times, it is inactive (high). PCHK# is never floated.

Driving PCHK# is the only effect that bad input parity has on the Intel® Quark SoC 
X1000 Core. The Intel® Quark SoC X1000 Core does not vector to a bus error interrupt 
when bad data parity is returned. In systems that do not employ parity, PCHK# can be 
ignored. In systems not using parity, DP[3:0] should be connected to VCC through a 
pull-up resistor.

9.2.5 Bus Cycle Definition

9.2.5.1 M/IO#, D/C#, W/R# Outputs

M/IO#, D/C# and W/R# are the primary bus cycle definition signals. They are driven 
valid as the ADS# signal is asserted. M/IO# distinguishes between memory and I/O 
cycles, D/C# distinguishes between data and control cycles and W/R# distinguishes 
between write and read cycles.

Table 49 shows bus cycle definitions as a function of M/IO#, D/C# and W/R#. 

Special bus cycles are discussed in Section 10.3.11. 

9.2.5.2 Bus Lock Output (LOCK#)

LOCK# indicates that the Intel® Quark SoC X1000 Core is running a read-modify-write 
cycle in which the external bus must not be relinquished between the read and write 
cycles. Read-modify-write cycles are used to implement memory-based semaphores. 
Multiple reads or writes can be locked.

When LOCK# is asserted, the current bus cycle is locked and the Intel® Quark SoC 
X1000 Core should be allowed exclusive access to the system bus. LOCK# goes active 
in the first clock of the first locked bus cycle and goes inactive after ready is returned 
indicating the last locked bus cycle.

The Intel® Quark SoC X1000 Core does not acknowledge bus hold when LOCK# is 
asserted (although it does allow an address hold). LOCK# is active low and is floated 
during bus hold. Locked read cycles are not transformed into cache fill cycles if KEN# is 
returned active. Refer to Section 10.3.7 for a detailed discussion of locked bus cycles.

Table 49. ADS# Initiated Bus Cycle Definitions

M/IO# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 I/O Read

0 1 1 I/O Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write
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9.2.5.3 Pseudo-Lock Output (PLOCK#)

The pseudo-lock feature allows atomic reads and writes of memory operands greater 
than 32 bits. These operands require more than one cycle to transfer. The Intel® Quark 
SoC X1000 Core asserts PLOCK# during segment table descriptor reads (64 bits) and 
cache line fills (128 bits).

When PLOCK# is asserted, no other master is given control of the bus between cycles. 
A bus hold request (HOLD) is not acknowledged during pseudo-locked reads and 
writes, with one exception. During non-cacheable non-burst code prefetches, HOLD is 
recognized on memory cycle boundaries even though PLOCK# is asserted. The Intel® 
Quark SoC X1000 Core drives PLOCK# active until the addresses for the last bus cycle 
of the transaction have been driven, regardless of whether BRDY# or RDY# are 
returned.

A pseudo-locked transfer is meaningful only if the memory operand is aligned and if it 
is completely contained within a single cache line.

Because PLOCK# is a function of the bus size and KEN# inputs, PLOCK# should be 
sampled only in the clock ready is returned. PLOCK# is active low and is not driven 
during bus hold (see Section 10.3.7).

9.2.5.4 PLOCK# Floating-Point Considerations

For processors with an on-chip FPU, the following must be noted for PLOCK# operation. 
A 64-bit floating-point number must be aligned to an 8-byte boundary to guarantee an 
atomic access. Normally, PLOCK# and BLAST# are inverses of each other. However, 
during the first cycle of a 64-bit floating-point write, both PLOCK# and BLAST# are 
asserted. Intel® Quark SoC X1000 Core with on-chip FPUs also assert PLOCK# during 
floating-point long reads and writes (64 bits), segmentable description reads (64 bits), 
and code line fills (128 bits).

9.2.6 Bus Control

The bus control signals allow the Intel® Quark SoC X1000 Core to indicate when a bus 
cycle has begun, and allow other system hardware to control burst cycles, data bus 
width, and bus cycle termination.

9.2.6.1 Address Status Output (ADS#)

The ADS# output indicates that the address and bus cycle definition signals are valid. 
This signal goes active in the first clock of a bus cycle and goes inactive in the second 
and subsequent clocks of the cycle. ADS# is also inactive when the bus is idle.

ADS# is used by the external bus circuitry as the indication that the Intel® Quark SoC 
X1000 Core has started a bus cycle. The external circuit must sample the bus cycle 
definition pins on the next rising edge of the clock after ADS# is driven active.

ADS# is active low and is not driven during bus hold.

9.2.6.2 Non-Burst Ready Input (RDY#)

RDY# indicates that the current bus cycle is complete. In response to a read, RDY# 
indicates that the external system has presented valid data on the data pins. In 
response to a write request, RDY# indicates that the external system has accepted the 
Intel® Quark SoC X1000 Core data. RDY# is ignored when the bus is idle and at the 
end of the first clock of the bus cycle. Because RDY# is sampled during address hold, 
data can be returned to the processor when AHOLD is active.
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RDY# is active low, and is not provided with an internal pull-up resistor. This input must 
satisfy setup and hold times t16 and t17 for proper chip operation.

9.2.7 Burst Control

9.2.7.1 Burst Ready Input (BRDY#)

BRDY# performs the same function during a burst cycle that RDY# performs during a 
non-burst cycle. BRDY# indicates that the external system has presented valid data on 
the data pins in response to a read or that the external system has accepted the Intel® 
Quark SoC X1000 Core data in response to a write. BRDY# is ignored when the bus is 
idle and at the end of the first clock in a bus cycle.

During a burst cycle, BRDY# is sampled each clock. If it is active, the data presented 
on the data bus pins is strobed into the Intel® Quark SoC X1000 Core. ADS# is 
negated during the second through last data cycles in the burst, but address lines 
A[3:2] and the byte enables change to reflect the next data item expected by the 
Intel® Quark SoC X1000 Core.

If RDY# is returned simultaneously with BRDY#, BRDY# is ignored and the burst cycle 
is prematurely aborted. An additional complete bus cycle is initiated after an aborted 
burst cycle if the cache line fill was not complete. BRDY# is treated as a normal ready 
for the last data cycle in a burst transfer or for non-burstable cycles (see Section 10.3.2 
for burst cycle timing).

BRDY# is active low and is provided with a small internal pull-up resistor. BRDY# must 
satisfy the setup and hold times t16 and t17.

9.2.7.2 Burst Last Output (BLAST#)

BLAST# indicates that the next time BRDY# is returned it will be treated as a normal 
RDY#, terminating the line fill or other multiple-data-cycle transfer. BLAST# is active 
for all bus cycles regardless of whether they are cacheable or not. This pin is active low 
and is not driven during bus hold.

9.2.8 Interrupt Signals

The interrupt signals can interrupt or suspend execution of the processor’s instruction 
stream.

9.2.8.1 Reset Input (RESET)

The RESET input must be used at power-up to initialize the processor. RESET forces the 
processor to begin execution at a known state. The processor cannot begin execution of 
instructions until at least 1 ms after VCC and CLK reach their proper DC and AC 
specifications. The RESET pin should remain active during this time to ensure proper 
processor operation. However, for warm boot-ups RESET should remain active for at 
least 15 CLK periods. RESET is active high. RESET is asynchronous but must meet 
setup and hold times t20 and t21 for recognition in any specific clock.

RESET returns SMBASE to the default value of 30000H. If SMBASE relocation is not 
used, RESET can be used as the only reset (see Chapter 8.0, “System Management 
Mode (SMM) Architectures”).

The Intel® Quark SoC X1000 Core is placed in the Power Down Mode if RESERVED# is 
sampled active at the falling edge of RESET.
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9.2.8.2 Soft Reset Input (SRESET)

The SRESET (soft reset) input has the same functions as RESET, but does not change 
the SMBASE, and RESERVED# is not sampled on the falling edge of SRESET. If the 
system uses SMBASE relocation, the soft resets should be handled using the SRESET 
input. SRESET should not be used for the cold boot-up power-on reset.

The SRESET input pin is provided to save the status of SMBASE during a mode change. 
SRESET leaves the location of SMBASE intact while resetting other units, including the 
on-chip cache. See Section 9.2.17.4 for Write-Back Enhanced Intel® Quark SoC X1000 
Core differences for SRESET. For compatibility, the system should use SRESET to flush 
the on-chip cache. The FLUSH# input pin should be used to flush the on-chip cache. 
SRESET should not be used to initiate test modes.

9.2.8.3 System Management Interrupt Request Input (SMI#)

SMI# is the system management mode interrupt request signal. The SMI# request is 
acknowledged by the SMIACT# signal. After the SMI# interrupt is recognized, the 
SMI# signal is masked internally until the RSM instruction is executed and the interrupt 
service routine is complete. SMI# is falling-edge sensitive after internal 
synchronization.

The SMI# input must be held inactive for at least four clocks after it is asserted to reset 
the edge triggered logic. SMI# is provided with a pull-up resistor to maintain 
compatibility with designs that do not use this feature. SMI# is an asynchronous signal, 
but setup and hold times t20 and t21 must be met in order to guarantee recognition on a 
specific clock.

9.2.8.4 System Management Mode Active Output (SMIACT#)

SMIACT# indicates that the processor is operating in System Management Mode. The 
processor asserts SMIACT# in response to an SMI interrupt request on the SMI# pin. 
SMIACT# is driven active after the processor has completed all pending write cycles 
(including emptying the write buffers), and before the first access to SMRAM, in which 
the processor saves (writes) its state (or context) to SMRAM. SMIACT# remains active 
until the last access to SMRAM when the processor restores (reads) its state from 
SMRAM. The SMIACT# signal does not float in response to HOLD. The SMIACT# signal 
is used by the system logic to decode SMRAM.

9.2.8.5 Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been generated. Interrupt processing is 
initiated when the IF flag is active in the EFLAGS register.

The Intel® Quark SoC X1000 Core generates two locked interrupt acknowledge bus 
cycles in response to asserting the INTR pin. An 8-bit interrupt number is latched from 
an external interrupt controller at the end of the second interrupt acknowledge cycle. 
INTR must remain active until the interrupt acknowledges have been performed to 
assure program interruption. Refer to Section 10.3.10 for a detailed discussion of 
interrupt acknowledge cycles.

The INTR pin is active high and is not provided with an internal pull-down resistor. INTR 
is asynchronous, but the INTR setup and hold times t20 and t21 must be met to assure 
recognition on any specific clock.
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9.2.8.6 Non-maskable Interrupt Request Input (NMI)

NMI is the non-maskable interrupt request signal. Asserting NMI causes an interrupt 
with an internally supplied vector value of 2. External interrupt acknowledge cycles are 
not generated because the NMI interrupt vector is internally generated. When NMI 
processing begins, the NMI signal is masked internally until the IRET instruction is 
executed.

NMI is rising edge sensitive after internal synchronization. NMI must be held low for at 
least four CLK periods before this rising edge for proper operation. NMI is not provided 
with an internal pull-down resistor. NMI is asynchronous but setup and hold times, t20 
and t21 must be met to assure recognition on any specific clock.

9.2.8.7 Stop Clock Interrupt Request Input (STPCLK#)

The Intel® Quark SoC X1000 Core provides an interrupt mechanism, STPCLK#, that 
allows system hardware to control the processor’s power consumption. The STPCLK# 
signal can be asserted to stop the internal clock (output of the PLL) to the processor 
core in a controlled manner. This low-power state is called the Stop Grant state. In 
addition, the STPCLK# interrupt allows the system to change the input frequency 
within the specified range or completely stop the CLK input frequency (input to the 
PLL). If the CLK input is completely stopped, the processor enters into the Stop Clock 
state—the lowest power state. If the frequency is changed or stopped, the Intel® 
Quark SoC X1000 Core does not return to the Stop Grant state until the CLK input has 
been running at a constant frequency for the time period necessary to stabilize the PLL 
(minimum of 1 ms). 

The Intel® Quark SoC X1000 Core generates a Stop Grant bus cycle in response to the 
STPCLK# interrupt request. STPCLK# is active low and is provided with an internal pull-
up resistor. STPCLK# is an asynchronous signal, but must remain active until the 
processor issues the Stop Grant bus cycle (see Section 10.3.11.3).

9.2.9 Bus Arbitration Signals

This section describes the mechanism by which the processor relinquishes control of its 
local bus when the local bus is requested by another bus master.

9.2.9.1 Bus Request Output (BREQ)

The Intel® Quark SoC X1000 Core asserts BREQ when a bus cycle is pending internally. 
Thus, BREQ is always asserted in the first clock of a bus cycle, along with ADS#. If the 
Intel® Quark SoC X1000 Core currently is not driving the bus (due to HOLD, AHOLD, or 
BOFF#), BREQ is asserted in the same clock that ADS# would have been asserted if the 
Intel® Quark SoC X1000 Core were driving the bus. After the first clock of the bus 
cycle, BREQ may change state. It is asserted if additional cycles are necessary to 
complete a transfer (via BS8#, BS16#, KEN#), or if more cycles are pending internally. 
However, if no additional cycles are necessary to complete the current transfer, BREQ 
can be negated before ready comes back for the current cycle. External logic can use 
the BREQ signal to arbitrate among multiple processors. This pin is driven regardless of 
the state of bus hold or address hold. BREQ is active high and is never floated. During a 
hold state, internal events may cause BREQ to be de-asserted prior to any bus cycles.

9.2.9.2 Bus Hold Request Input (HOLD)

HOLD allows another bus master complete control of the Intel® Quark SoC X1000 Core 
bus. The Intel® Quark SoC X1000 Core responds to an active HOLD signal by asserting 
HLDA and placing most of its output and input/output pins in a high impedance state 
(floated) after completing its current bus cycle, burst cycle, or sequence of locked 
cycles. In addition, if the Intel® Quark SoC X1000 Core receives a HOLD request while 
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performing a code fetch, and that cycle is backed off (BOFF#), the Intel® Quark SoC 
X1000 Core will recognize HOLD before restarting the cycle. The code fetch can be non-
cacheable or cacheable and non-burst or burst. The BREQ, HLDA, PCHK# and FERR# 
pins are not floated during bus hold. The Intel® Quark SoC X1000 Core maintains its 
bus in this state until the HOLD is de-asserted. Refer to Section 10.3.9 for timing 
diagrams for bus hold cycles and HOLD request acknowledge during BOFF#.

The Intel® Quark SoC X1000 Core recognizes HOLD during reset. Pull-up resistors are 
not provided for the outputs that are floated in response to HOLD. HOLD is active high 
and is not provided with an internal pull-down resistor. HOLD must satisfy setup and 
hold times t18 and t19 for proper chip operation.

9.2.9.3 Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the Intel® Quark SoC X1000 Core has given the bus to another 
local bus master. HLDA goes active in response to a hold request presented on the 
HOLD pin. HLDA is driven active in the same clock in which the Intel® Quark SoC 
X1000 Core floats its bus.

HLDA is driven inactive when leaving bus hold, and the Intel® Quark SoC X1000 Core 
resumes driving the bus. The Intel® Quark SoC X1000 Core does not cease internal 
activity during bus hold because the internal cache satisfies the majority of bus 
requests. HLDA is active high and remains driven during bus hold.

9.2.9.4 Backoff Input (BOFF#)

Asserting the BOFF# input forces the Intel® Quark SoC X1000 Core to release control 
of its bus in the next clock. The pins floated are exactly the same as those floated in 
response to HOLD. The response to BOFF# differs from the response to HOLD in two 
ways: First, the bus is floated immediately in response to BOFF#, whereas the Intel® 
Quark SoC X1000 Core completes the current bus cycle before floating its bus in 
response to HOLD. Second the Intel® Quark SoC X1000 Core does not assert HLDA in 
response to BOFF#.

The Intel® Quark SoC X1000 Core remains in bus hold until BOFF# is negated. Upon 
negation, the Intel® Quark SoC X1000 Core restarts the bus cycle that was aborted 
when BOFF# was asserted. To the internal execution engine the effect of BOFF# is the 
same as inserting a few wait states to the original cycle. Refer to Section 10.3.12 for a 
description of bus cycle restart.

Any data returned to the Intel® Quark SoC X1000 Core while BOFF# is asserted is 
ignored. BOFF# has higher priority than RDY# or BRDY#. If both BOFF# and ready are 
returned in the same clock, BOFF# takes effect. If BOFF# is asserted while the bus is 
idle, the Intel® Quark SoC X1000 Core floats its bus in the next clock. BOFF# is active 
low and must meet setup and hold times t18 and t19 for proper chip operation.

9.2.10 Cache Invalidation

The AHOLD and EADS# inputs are used during cache invalidation cycles. AHOLD 
conditions the Intel® Quark SoC X1000 Core address lines, A[31:4], to accept an 
address input. EADS# indicates that an external address is actually valid on the 
address inputs. Activating EADS# causes the Intel® Quark SoC X1000 Core to read the 
external address bus and perform an internal cache invalidation cycle to the address 
indicated. Refer to Section 10.3.8 for cache invalidation cycle timing.
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9.2.10.1 Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows another bus master access to the Intel® 
Quark SoC X1000 Core address bus for performing an internal cache invalidation cycle. 
Asserting AHOLD forces the Intel® Quark SoC X1000 Core to stop driving its address 
bus in the next clock. While AHOLD is active only the address bus is floated, the 
remainder of the bus can remain active. For example, data can be returned for a 
previously specified bus cycle when AHOLD is active. The Intel® Quark SoC X1000 Core 
does not initiate another bus cycle during address hold. Because the Intel® Quark SoC 
X1000 Core floats its bus immediately in response to AHOLD, an address hold 
acknowledge is not required. If AHOLD is asserted while a bus cycle is in progress and 
no readies are returned during the time AHOLD is asserted, the Intel® Quark SoC 
X1000 Core re-drives the same address (that it originally sent out) once AHOLD is 
negated.

AHOLD is recognized during reset. Because the entire cache is invalidated by reset, any 
invalidation cycles run during reset is unnecessary. AHOLD is active high and is 
provided with a small internal pull-down resistor. It must satisfy the setup and hold 
times t18 and t19 for proper chip operation. AHOLD also determines whether or not the 
built-in self-test features of the Intel® Quark SoC X1000 Core are exercised on 
assertion of RESET. 

9.2.10.2 External Address Valid Input (EADS#)

EADS# indicates that a valid external address has been driven onto the Intel® Quark 
SoC X1000 Core address pins. This address is used to perform an internal cache 
invalidation cycle. The external address is checked with the current cache contents. If 
the specified address matches an area in the cache, that area is immediately 
invalidated.

An invalidation cycle can be run by asserting EADS# regardless of the state of AHOLD, 
HOLD and BOFF#. EADS# is active low and is provided with an internal pull-up resistor. 
EADS# must satisfy the setup and hold times t12 and t13 for proper chip operation.

9.2.11 Cache Control

9.2.11.1 Cache Enable Input (KEN#)

KEN# is the cache enable pin. KEN# is used to determine whether the data being 
returned by the current cycle is cacheable. When KEN# is active and the Intel® Quark 
SoC X1000 Core generates a cycle that can be cached (most read cycles), the cycle is 
transformed into a cache line fill cycle.

A cache line is 16 bytes long. During the first cycle of a cache line fill, the byte-enable 
pins should be ignored and data should be returned as if all four byte enables were 
asserted. The Intel® Quark SoC X1000 Core runs between 4 and 16 contiguous bus 
cycles to fill the line depending on the bus data width selected by BS8# and BS16#. 
Refer to Section 10.3.3 for a description of cache line fill cycles.

The KEN# input is active low and is provided with a small internal pull-up resistor. It 
must satisfy the setup and hold times t14 and t15 for proper chip operation.

9.2.11.2 Cache Flush Input (FLUSH#)

The FLUSH# input forces the Intel® Quark SoC X1000 Core to flush its entire internal 
cache. FLUSH# is active low and must be asserted for one clock only. FLUSH# is 
asynchronous but setup and hold times t20 and t21 must be met for recognition on any 
specific clock.
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FLUSH# also determines whether or not the three-state test mode of the Intel® Quark 
SoC X1000 Core is invoked on assertion of RESET (see Section B.3, “Intel® Quark SoC 
X1000 Core JTAG” on page 304).

9.2.12 Page Cacheability (PWT, PCD)

The PWT and PCD output signals correspond to two user attribute bits in the page table 
entry. When paging is enabled, PWT and PCD correspond to bits 3 and 4 of the page 
table entry, respectively. For cycles that are not paged when paging is enabled (for 
example I/O cycles) PWT and PCD correspond to bits 3 and 4 in Control Register 3. 
When paging is disabled, the Intel® Quark SoC X1000 Core ignores the PCD and PWT 
bits and assumes they are zero for the purpose of caching and driving PCD and PWT.

PCD is masked by the CD (cache disable) bit in Control Register 0 (CR0). When CD=1 
(cache line fills disabled) the Intel® Quark SoC X1000 Core forces PCD high. When 
CD=0, PCD is driven with the value of the page table entry/directory.

The purpose of PCD is to provide a cacheable/non-cacheable indication on a page by 
page basis. The Intel® Quark SoC X1000 Core does not perform a cache fill to any page 
in which bit 4 of the page table entry is set. PWT corresponds to the write-back bit and 
can be used by an external cache to provide this functionality. PCD and PWT bits are 
assigned a value of zero during Real Mode and when paging is disabled. Refer to 
Section 7.6 for a discussion of non-cacheable pages.

PCD and PWT have the same timing as the cycle definition pins (M/IO#, D/C#, W/R#). 
PCD and PWT are active high and are not driven during bus hold.

Note: The PWT and PCD bits function differently in the write-back mode of the Write-Back 
Enhanced Intel® Quark SoC X1000 Cores (see Section 7.6.1, “Write-Back Enhanced 
Intel® Quark SoC X1000 Core and Processor Page Cacheability” on page 121).

9.2.13 RESERVED#

The RESERVED# input detects the presence of an in-circuit emulator, then powers 
down the core, and three-states all outputs of the original processor, so that the 
original processor consumes very low current. This state is known as Reserved Power 
Down Mode. RESERVED# is active low and sampled at all times, including after power-
up and during reset.

9.2.14 Numeric Error Reporting (FERR#, IGNNE#)

To allow PC-type floating-point error reporting, Intel® Quark SoC X1000 Core provides 
two pins, FERR# and IGNNE#.

9.2.14.1 Floating-Point Error Output (FERR#)

The processor asserts FERR# when an unmasked floating-point error is encountered. 
FERR# can be used by external logic for PC-type floating-point error reporting. FERR# 
is active low and is not floated during bus hold. 

In some cases, FERR# is asserted when the next floating-point instruction is 
encountered. In other cases, it is asserted before the next floating-point instruction is 
encountered, depending on the execution state of the instruction that caused the 
exception.

The following class of floating-point exceptions assert FERR# at the time the exception 
occurs (i.e., before encountering the next floating-point instruction):
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1. The stack fault, invalid operation, and denormal exceptions on all transcendental 
instructions, integer arithmetic instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, 
FBLD, and FBSTP.

2. Any exceptions on store instructions (including integer store instructions).

The following class of floating-point exceptions assert FERR# only after encountering 
the next floating-point instruction:
1. Exceptions other than on all transcendental instructions, integer arithmetic 

instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP.
2. Any exception on all basic arithmetic, load, compare, and control instructions (i.e., 

all other instructions).

In the event of a pending unmasked floating-point exception the FNINIT, FNCLEX, 
FNSTENV, FNSAVE, FNSTSW and FNSTCW instructions assert the FERR# pin. Shortly 
after the assertion of the pin, an interrupt window is opened during which the processor 
samples and services interrupts, if any. If no interrupts are sampled within this window, 
the processor then executes these instructions with the pending unmasked exception. 
However, for the FNCLEX, FNINIT, FNSTENV and FNSAVE instructions, the FERR# pin is 
de-asserted to enable the execution of these instructions. 

9.2.14.2 Ignore Numeric Error Input (IGNNE#)

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 provides the 
capability to control the IGNNE# pin via a register; the default value of the register is 
1'b0.

When IGNNE# is asserted and FERR# is still activated, Intel® Quark SoC X1000 Core 
ignores numeric errors and continue executing non-control floating-point instructions. 
When IGNNE# is not asserted and a pending unmasked numeric exception exists 
(SW.ES=1), the Intel® Quark SoC X1000 Core behaves as follows:

When the Intel® Quark SoC X1000 Core encounters the floating-point instructions 
FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW or FNSTCW, the processor asserts the 
FERR# pin. Subsequently, the processor opens an interrupt sampling window. The 
interrupts are checked and serviced during this window. If no interrupts are sampled 
within this window the processor then executes these instructions in spite of the 
pending unmasked exception. 

When the Intel® Quark SoC X1000 Core encounters any floating-point instruction other 
than FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW or FNSTCW, the processor stops 
execution, asserts the FERR# pin, and waits for an external interrupt.

IGNNE# has no effect when the NE bit in control register 0 is set.

The IGNNE# input is active low and provided with a small internal pull-up resistor. This 
input is asynchronous, but must meet setup and hold times t20 and t21 to ensure 
recognition on any specific clock.

9.2.15 Bus Size Control (BS16#, BS8#)

The BS16# and BS8# inputs allow external 16- and 8-bit buses to be supported with a 
small number of external components. The Intel® Quark SoC X1000 Core samples 
these pins every clock. The bus size is determined by the value sampled in the clock 
before ready. When asserting BS16# or BS8#, only 16 or 8 bits of the data bus must 
be valid. If both BS16# and BS8# are asserted, an 8-bit bus width is selected.

When BS16# or BS8# are asserted, the Intel® Quark SoC X1000 Core converts a 
larger data request to the appropriate number of smaller transfers. The byte enables 
are also modified appropriately for the bus size selected.
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BS16# and BS8# are active low and are provided with small internal pull-up resistors. 
BS16# and BS8# must satisfy the setup and hold times t14 and t15 for proper chip 
operation.

9.2.16 Address Bit 20 Mask (A20M#)

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not use the 
A20M# pin; it is tied to 1'b1.

Asserting the A20M# input causes the Intel® Quark SoC X1000 Core to mask physical 
address bit 20 before performing a lookup in the internal cache and before driving a 
memory cycle to the outside world. When A20M# is asserted, the Intel® Quark SoC 
X1000 Core emulates the 1-Mbyte address wraparound. A20M# is active low and must 
be asserted only when the processor is in Real Mode. A20M# is not defined in Protected 
Mode. A20M# is asynchronous but should meet setup and hold times t20 and t21 for 
recognition in any specific clock. For correct operation of the chip, A20M# should not be 
active at the falling edge of RESET.

A20M# exhibits a minimum 4 clock latency, from time of assertion to masking of the 
A20 bit. A20M# is ignored during cache invalidation cycles. I/O writes require A20M# 
to be asserted a minimum of 2 clocks prior to RDY being returned for the I/O write. This 
ensures recognition of the address mask before the Intel® Quark SoC X1000 Core 
begins executing the instruction following OUT. If A20M# is asserted after the ADS# of 
a data cycle, the A20 address signal is not masked during this cycle but is masked in 
the next cycle. During a prefetch (cacheable or not), if A20M# is asserted after the first 
ADS#, A20 is not masked for the duration of the prefetch even if BS16# or BS8# is 
asserted.

9.2.17 Write-Back Enhanced Intel® Quark SoC X1000 Core Signals and 
Other Enhanced Bus Features

This section describes the pins that interface with the system to support the Enhanced 
Bus mode/write-back cache features at system level.

9.2.17.1 Cacheability (CACHE#)

The CACHE# output indicates the internal cacheability on read cycles and a burst write-
back on write cycles. CACHE# is asserted for cacheable reads, cacheable code fetches 
and write-backs. It is driven inactive for non-cacheable reads, special cycles, I/O cycles 
and write-through cycles. This is different from the PCD (page cache disable) pin. The 
operational differences between CACHE# and PCD are listed in Table 50. See Table 51 
for operational differences between CACHE# and other Intel® Quark SoC X1000 Core 
signals.

Table 50. Differences between CACHE# and PCD (Sheet 1 of 2)

Bus Operation CACHE# PCD

All reads (1) same as PCD(3) same as PCD(3)

Replacement write-back low low

Notes:
1. Includes line fills and non-cacheable reads. During locked read cycles CACHE# is inactive. The non-

cacheable reads may or may not be burst.
2. Due to the non-allocate on write policy, this includes both cacheable and non-cacheable writes. PCD 

distinguishes between the two, but CACHE# does not.
3. This behavior is the same as the existing specification of the Intel® Quark SoC X1000 Core in write-

through mode.
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9.2.17.2 Cache Flush (FLUSH#)

FLUSH# is an existing pin that operates differently if the processor is configured for 
Enhanced Bus mode (write-back) operation. In Enhanced Bus mode, FLUSH# is treated 
as an interrupt and acts similarly to the WBINVD instruction. It is sampled at each 
clock, but is recognized only on an instruction boundary. Pending writes are completed 
before FLUSH# is serviced, and all prefetching is stopped. Depending on the number of 
modified lines in the cache, the flush could take up to a minimum of 1280 bus clocks or 
2560 processor clocks and a maximum of 5000+ bus clocks to scan the cache, perform 
the write backs, invalidate the cache and run two special cycles. After all modified lines 
are written back to memory, two special bus cycles, the first flush ACK cycle and the 
second flush ACK cycle, are issued, in that order. These cycles differ from the special 
cycles issued after WBINVD only in that address line 2 = 1. SRESET, STPCLK#, INTR, 
NMI and SMI# are not recognized during a flush write-back, whereas BOFF#, AHOLD 
and HOLD are recognized.

FLUSH# may be asserted just for a single clock or may be retained asserted, but 
should be de-asserted at or prior to the RDY# returned from the first flush ACK special 
bus cycle. If asserted during INVD or WBINVD, FLUSH# is recognized. If asserted 
simultaneously with SMI#, then SMI# is recognized after FLUSH# is serviced.

FLUSH# may be driven at any time. If driven during SRESET, it must be held for one 
clock after SRESET is de-asserted to be recognized. 

9.2.17.3 Hit/Miss to a Modified Line (HITM#)

HITM# is a cache coherency protocol pin that is driven only in Enhanced Bus mode. 
When a snoop cycle is generated (with INV = 0 or INV = 1), HITM# indicates whether 
the processor contains the snooped line in the M-state. HITM# asserted indicates that 
the line will be written back in total, unless the processor is already generating a 
replacement write-back of the same line. 

HITM# is valid on the bus two system clocks after EADS# is asserted on the bus. If 
asserted, HITM# remains asserted until the last RDY# or BRDY# of the snoop write-
back cycle is returned. It is de-asserted before the next ADS# (see Table 52).

Snoop-forced write-back low low

S-state write-through high same as PCD(3)

I-state write-through (2) high same as PCD(3)

Table 50. Differences between CACHE# and PCD (Sheet 2 of 2)

Notes:
1. Includes line fills and non-cacheable reads. During locked read cycles CACHE# is inactive. The non-

cacheable reads may or may not be burst.
2. Due to the non-allocate on write policy, this includes both cacheable and non-cacheable writes. PCD 

distinguishes between the two, but CACHE# does not.
3. This behavior is the same as the existing specification of the Intel® Quark SoC X1000 Core in write-

through mode.

Table 51. CACHE# vs. Other Intel® Quark Core Signals

Pin Symbol Relation To This Signal

ADS# CACHE# is driven to valid state with ADS#.

RDY#, BRDY# CACHE# is de-asserted with the first RDY# or BRDY#.

HLDA, BOFF# CACHE# floats under these signals.

KEN# The combination of CACHE# and KEN# determines if a read miss is converted into a 
cache line fill.
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9.2.17.4 Soft Reset (SRESET)

When in Enhanced Bus mode, SRESET has the following differences: SRESET, unlike 
RESET, does not cause the AHOLD, A20M#, FLUSH#, RESERVED#, and WB/WT# pins 
to be sampled (i.e., special test modes and on-chip cache configuration cannot be 
accessed with SRESET.)

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not use the 
A20M# pin; it is tied to 1'b1.

On SRESET, the internal SMRAM base register retains its previous value and the 
processor does not flush, write-back or disable the internal cache. CR0.CD and CR0.NW 
retain previous values, CR0.4 is set to 1, and the remaining bits are cleared. Because 
SRESET is treated as an interrupt, it is possible to have a bus cycle while SRESET is 
asserted. A bus cycle could be due to an on-going instruction, emptying the write 
buffers of the processor, or snoop write-back cycles if there is a snoop hit to an M-state 
line while SRESET is asserted. 

Note: For both Standard Bus mode and Enhanced Bus mode:
• SMI# must be blocked during SRESET. It must also be blocked for a minimum of 

two clocks after SRESET is de-asserted. 
• SRESET must be blocked during SMI#. It must also be blocked for a minimum of 20 

clocks after SMIACT# is de-asserted.

9.2.17.5 Invalidation Request (INV)

INV is a cache coherency protocol pin that is used only in Enhanced Bus mode. It is 
sampled by the processor on EADS#-driven snoop cycles. It is necessary to assert this 
pin to simulate the Standard mode processor invalidate cycle on write-through-only 
lines. INV also invalidates the write-back lines. However, when the snooped line is in 
the M-state, the line is written back and then invalidated.

INV is sampled when EADS# is asserted. When INV is not asserted with EADS#, the 
snoop cycle has no effect on a write-through-only line or on a line allocated as write-
back but not yet modified. If the line is write-back and modified, it is written back to 
memory but is not de-allocated (invalidated) from the internal cache. The address of 
the snooped cache line is provided on the address bus (see Table 53).

Table 52. HITM# vs. Other Intel® Quark Core Signals

Pin Symbol Relation To This Signal

EADS# HITM# is asserted due to an EADS#-driven snoop, provided the snooped line is in the 
M-state in the cache.

HLDA, BOFF# HITM# does not float under these signals.

ADS#, CACHE# The beginning of a snoop write-back cycle is identified by the assertion of ADS#, 
CACHE#, and HITM#.

Table 53. INV vs. Other Intel® Quark Core Signals

Pin Symbol Relation To This Signal

EADS# EADS# determines when INV is sampled.

A[31:4] The address of the snooped cache line is provided on these pins.
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9.2.17.6 Write-Back/Write-Through (WB/WT#)

WB/WT# enables Enhanced Bus mode (write-back cache). It also allows the system to 
define a cached line as write-through or write-back.

WB/WT# is sampled at the falling edge of RESET to determine if Enhanced Bus mode is 
enabled (WB/WT# must be driven for two clocks before and two clocks after RESET to 
be recognized by the processor). If sampled low or floated, the Write-Back Enhanced 
Intel® Quark SoC X1000 Core operates in Standard mode. For write-through only 
operation, (i.e. Standard mode), WB/WT# does not need to be connected. 

In Enhanced Bus mode, WB/WT# allows the system hardware to force any allocated 
line to be treated as write-through or write-back. As with cacheability, both the 
processor and the external system must agree that a line may be treated as write-back 
for the internal cache to be allocated as write-back. The default is always write-
through. The processor's indication of write-back vs. write-through is from the PWT 
pin, in which function and timing are the same as in the Standard mode of the Intel® 
Quark SoC X1000 Core.

To define write-back or write-through configuration of a line, WB/WT# is sampled in the 
same clock in which the first RDY# or BRDY# is returned during a line fill (allocation) 
cycle (see Table 54).

9.2.17.7 Pseudo-Lock Output (PLOCK#)

In the Enhanced Bus mode, PLOCK# is always driven inactive. In this mode, a 64-bit 
data read (caused by an FP operand access or a segment descriptor read) is treated as 
a multiple cycle read request, which may be a burst or a non-burst access based on 
whether BRDY# or RDY# is returned by the system. Because only write-back cycles 
(caused by snoop write-back or replacement write-back) are burstable, a 64-bit write is 
driven out as two non-burst bus cycles. BLAST# is asserted during both writes. Refer to 
Section 10.3 for details on pseudo-locked bus cycles. 

9.2.18 Test Signals

The following test signals are available on the Intel® Quark SoC X1000 Core.

9.2.18.1 Test Clock (TCK)

TCK is an input to the Intel® Quark SoC X1000 Core and provides the clocking function 
required by JTAG. TCK is used to clock state information and data into and out of the 
component. State select information and data are clocked into the component on the 
rising edge of TCK on TMS and TDI, respectively. Data is clocked out of the part on the 
falling edge of TCK on TDO.

Table 54. WB/WT# vs. Other Intel® Quark Core Signals

Pin Symbol Relation to This Signal

RDY#, BRDY# WB/WT# is sampled with the first RDY# or BRDY#.

PWT The combination of WB/WT# and PWT determine whether the Write-Back Enhanced 
Intel® Quark SoC X1000 Core treats the line as WB.

PCD, CACHE#, 
KEN#

The state of WB/WT# does not matter if PCD, CACHE# or KEN# define the line to be 
non-cacheable.

W/R# WB/WT# is significant only on read fill cycles.

RESET WB/WT# is sampled on the falling edge of RESET to define the cache configuration.
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In addition to using TCK as a free running clock, it may be stopped in a low, O, state, 
indefinitely as described in IEEE 1149.1. While TCK is stopped in the low state, the 
JTAG latches retain their state.

TCK is a clock signal and is used as a reference for sampling other JTAG signals. On the 
rising edge of TCK, TMS and TDI are sampled. On the falling edge of TCK, TDO is 
driven.

9.2.18.2 Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Test Access Port) to select the operation of the test 
logic, as described in Section B.3.1.

To guarantee deterministic behavior of the TAP controller, TMS is provided with an 
internal pull-up resistor. If JTAG is not used, TMS may be tied high or left unconnected. 
TMS is sampled on the rising edge of TCK. TMS is used to select the internal TAP states 
required to load JTAG instructions to data on TDI. For proper initialization of the JTAG 
logic, TMS should be driven high, “1,” for at least four TCK cycles following the rising 
edge of RESET.

9.2.18.3 Test Data Input (TDI)

TDI is the serial input used to shift JTAG instructions and data into the component. The 
shifting of instructions and data occurs during the SHIFT-IR and SHIFT-DR TAP 
controller states, respectively. These states are selected using the TMS signal, as 
described in Section B.3.1, “Test Access Port (TAP) Controller” on page 304.

An internal pull-up resistor is provided on TDI to ensure a known logic state if an open 
circuit occurs on the TDI path. Note that when “1” is continuously shifted into the 
instruction register, the BYPASS instruction is selected. TDI is sampled on the rising 
edge of TCK, during the SHIFT-IR and the SHIFT-DR states. During all other TAP 
controller states, TDI is a “don't care.” TDI is sampled only when TMS and TCK have 
been used to select the SHIFT-IR or SHIFT-DR states in the TAP controller. For proper 
initialization of JTAG logic, TDI should be driven high for at least four TCK cycles 
following the rising edge of RESET.

9.2.18.4 Test Data Output (TDO)

TDO is the serial output used to shift JTAG instructions and data out of the component. 
The shifting of instructions and data occurs during the SHIFT-IR and SHIFT-DR TAP 
controller states, respectively. These states are selected using the TMS signal, as 
described in Section B.3.1, “Test Access Port (TAP) Controller” on page 304. When not 
in SHIFT-IR or SHIFT-DR states, TDO is driven to a high impedance state to allow 
connecting TDO to different devices in parallel. TDO is driven on the falling edge of TCK 
during the SHIFT-IR and SHIFT-DR TAP controller states. At all other times TDO is 
driven to the high impedance state. TDO is only driven when TMS and TCK have been 
used to select the SHIFT-IR or SHIFT-DR states in the TAP controller.

9.3 Interrupt and Non-Maskable Interrupt Interface
The Intel® Quark SoC X1000 Core provides four asynchronous interrupt inputs: INTR 
(interrupt request), NMI (non-maskable interrupt), SMI# (system management 
interrupt) and STPCLK# (stop clock interrupt). This section describes the hardware 
interface between the instruction execution unit and the pins. For a description of the 
algorithmic response to interrupts, refer to Section 3.7. For interrupt timings refer to 
Section 10.3.10.
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9.3.1 Interrupt Logic

The Intel® Quark SoC X1000 Core contains a two-clock synchronizer on the interrupt 
line. An interrupt request reaches the internal instruction execution unit two clocks 
after the INTR pin is asserted if proper setup is provided to the first stage of the 
synchronizer.

There is no special logic in the interrupt path other than the synchronizer. The INTR 
signal is level sensitive and must remain active for the instruction execution unit to 
recognize it. The interrupt is not serviced by the Intel® Quark SoC X1000 Core if the 
INTR signal does not remain active.

The instruction execution unit looks at the state of the synchronized interrupt signal at 
specific clocks during the execution of instructions (if interrupts are enabled). These 
specific clocks are at instruction boundaries, or iteration boundaries in the case of 
string move instructions. Interrupts are accepted at these boundaries only.

An interrupt must be presented to the Intel® Quark SoC X1000 Core INTR pin three 
clocks before the end of an instruction for the interrupt to be acknowledged. Presenting 
the interrupt three clocks before the end of an instruction allows the interrupt to pass 
through the two-clock synchronizer, leaving one clock to prevent the initiation of the 
next sequential instruction and begin interrupt service. If the interrupt is not received 
in time to prevent the next instruction, it will be accepted at the end of the next 
instruction, assuming INTR is still held active. 

The longest latency between when an interrupt request is presented on the INTR pin 
and when the interrupt service begins is determined as follows:

longest instruction used + the two clocks for synchronization + one clock 
required to vector into the interrupt service microcode.

9.3.2 NMI Logic

The NMI pin has a synchronizer much like that used on the INTR line. The NMI logic is 
otherwise different from that of the maskable interrupt.

NMI is edge triggered, as opposed to the level triggered INTR signal. The rising edge of 
the NMI signal is used to generate the interrupt request. The NMI input need not 
remain active until the interrupt is actually serviced. The NMI pin must remain active 
only for a single clock if the required setup and hold times are met. NMI operates 
properly if it is held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four clocks after it is asserted to reset 
the edge triggered logic. A subsequent NMI may not be generated if the NMI is not held 
inactive for at least four clocks after being asserted.

The NMI input is internally masked when the NMI routine is entered. The NMI input 
remains masked until an IRET (return from interrupt) instruction is executed. Masking 
the NMI signal prevents recursive NMI calls. If another NMI occurs while the NMI is 
masked off, the pending NMI is executed after the current NMI is done. Only one NMI 
can be pending while NMI is masked.

9.3.3 SMI# Logic

SMI# is edge triggered like NMI, but the interrupt request is generated on the falling-
edge. SMI# is an asynchronous signal, but must meet setup and hold times t20 and t21 
in order to guarantee recognition on a specific clock. The SMI# input need not remain 
active until the interrupt is actually serviced. The SMI# input only needs to remain 
active for a single clock if the required setup and hold times are met. SMI# also works 
correctly if it is held active for an arbitrary number of clocks.
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The SMI# input must be held inactive for at least four clocks after it is asserted to reset 
the edge triggered logic. A subsequent SMI# might not be recognized if the SMI# input 
is not held inactive for at least four clocks after being asserted.

SMI#, like NMI, is not affected by the IF bit in the EFLAGS register and is recognized on 
an instruction boundary. An SMI# does not break locked bus cycles. SMI# has a higher 
priority than NMI and is not masked during an NMI.

After the SMI# interrupt is recognized, the SMI# signal is masked internally until the 
RSM instruction is executed and the interrupt service routine is complete. Masking the 
SMI# prevents recursive SMI# calls. The SMI# input must be de-asserted for at least 
four clocks to reset the edge triggered logic. If another SMI# occurs while the SMI# is 
masked, the pending SMI# is recognized and executed on the next instruction 
boundary after the current SMI# completes. This instruction boundary occurs before 
execution of the next instruction in the interrupted application code, resulting in back-
to-back SMM handlers. Only one SMI# can be pending while SMI# is masked.

The SMI# signal is synchronized internally and should be asserted at least three CLK 
periods prior to asserting the RDY# signal to guarantee recognition on a specific 
instruction boundary. This is important for servicing an I/O trap with an SMI# handler.

9.3.4 STPCLK# Logic

STPCLK# is level triggered and active low. STPCLK# is an asynchronous signal, but 
must remain active until the processor issues the Stop Grant bus cycle. STPCLK# may 
be de-asserted at any time after the processor generates the Stop Grant bus cycle. 
When the processor enters the Stop Grant state, the internal pull-up resistor of 
STPCLK#, CLKMUL (for Intel® Quark SoC X1000 Core), and RESERVED# are disabled 
to reduce processor power consumption. The STPCLK# input must be driven high (not 
floated) in order to exit the Stop Grant state. After RDY# or BRDY# is returned active 
for the Stop Grant bus cycle, STPCLK# must be de-asserted for a minimum of five 
clocks before being asserted again.

When the processor recognizes a STPCLK# interrupt, the processor stops execution on 
the next instruction boundary (unless superseded by a higher priority interrupt) stops 
the prefetch unit, empties all internal pipelines and the write buffers, generates a Stop 
Grant bus cycle, and stops the internal clock. At this point, the processor is in the Stop 
Grant state.

The processor cannot respond to a STPCLK# request from an HLDA state because it 
cannot empty the write buffers and, therefore, cannot generate a Stop Grant cycle.

The rising edge of STPCLK# tells the processor that it can return to program execution 
at the instruction following the interrupted instruction.

Unlike the normal interrupts, INTR and NMI, the STPCLK# interrupt does not initiate 
acknowledge cycles or interrupt table reads. The STPCLK# order of priority among 
external interrupts is shown in Section 3.7.6.

9.4 Write Buffers
The Intel® Quark SoC X1000 Core contains four write buffers to enhance the 
performance of consecutive writes to memory. The buffers can be filled at a rate of one 
write per clock until all buffers are filled.

When all four buffers are empty and the bus is idle, a write request propagates directly 
to the external bus, bypassing the write buffers. If the bus is not available at the time 
the write is generated internally, the write is placed in the write buffers and propagates 
to the bus as soon as the bus becomes available. The write is stored in the on-chip 
cache immediately if the write is a cache hit.
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Writes are driven onto the external bus in the same order in which they are received by 
the write buffers. Under certain conditions, a memory read can go onto the external 
bus before the memory writes pending in the buffer, even though the writes occurred 
earlier in the program execution.

A memory read is reordered in front of all writes in the buffers only under the following 
conditions: If all writes pending in the buffers are cache hits and the read is a cache 
miss. Under these conditions, the Intel® Quark SoC X1000 Core does not read from an 
external memory location that needs to be updated by one of the pending writes.

Reordering of a read with the writes pending in the buffers can only occur once before 
all the buffers are emptied. Reordering read once maintains cache consistency. 
Consider the following example: The processor writes to location X. Location X is in the 
internal cache, so it is updated there immediately. However, the bus is busy, so the 
write out to main memory is buffered (see Figure 70). Under these conditions, any 
reads to location X are cache hits and the most up-to-date data is read.

Figure 70. Reordering of a Reads with Write Buffers

The next instruction causes a read to location Y. Location Y is not in the cache (a cache 
miss). Because the write in the write buffer is a cache hit, the read is reordered. When 
location Y is read, it is put into the cache. The possibility exists that location Y will 
replace location X in the cache. If this is true, location X would no longer be cached 
(see Figure 71).

Figure 71. Reordering of a Reads with Write Buffers

Cache consistency has been maintained up to this point. If a subsequent read is to 
location X (now a cache miss) and it was reordered in front of the buffered write to 
location X, stale data would be read. This is why only one read is allowed to be 
reordered. Once a read is reordered, all writes in the write buffer are flagged as cache 
misses to ensure that no more reads are reordered. Because one of the conditions to 
reorder a read is that all writes in the write buffer must be cache hits, no further 
reordering is allowed until all flagged writes propagate to the bus. Similarly, if an 
invalidation cycle is run, all entries in the write buffer are flagged as cache misses.

In multiple processor systems and/or systems using DMA techniques such as bus 
snooping, locked semaphores should be used to maintain cache consistency.
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9.4.1 Write Buffers and I/O Cycles

Input/Output (I/O) cycles must be handled in a different manner by the write buffers.

I/O reads are never reordered in front of buffered memory writes. This ensures that the 
Intel® Quark SoC X1000 Core updates all memory locations before reading status from 
an I/O device.

The Intel® Quark SoC X1000 Core never buffers single I/O writes. When processing an 
OUT instruction, internal execution stops until the I/O write completes on the external 
bus. This allows time for the external system to drive an invalidate into the Intel® 
Quark SoC X1000 Core or to mask interrupts before the processor progresses to the 
instruction following OUT. REP OUTS instructions are buffered.

A read cycle must be generated explicitly to a non-cacheable location in memory to 
guarantee that a read bus cycle is performed. This read is not allowed to proceed to the 
bus until after the I/O write has completed because I/O writes are not buffered. The 
I/O device has time to recover to accept another write during the read cycle.

9.4.2 Write Buffers on Locked Bus Cycles

Locked bus cycles are used for read-modify-write accesses to memory. During a read-
modify-write access, a memory base variable is read, modified and then written back to 
the same memory location. It is important that no other bus cycles, generated by other 
bus masters or by the Intel® Quark SoC X1000 Core itself, be allowed on the external 
bus between the read and write portion of the locked sequence.

During a locked read cycle, the Intel® Quark SoC X1000 Core always accesses external 
memory; it does not look for the location in the on-chip cache. For write cycles, data is 
written to the internal cache (if cache hit) and the external memory. All data pending in 
the Intel® Quark SoC X1000 Core's write buffers is written to memory before a locked 
cycle is allowed to proceed to the external bus.

The Intel® Quark SoC X1000 Core asserts LOCK# after the write buffers are emptied 
during a locked bus cycle. With LOCK# asserted, the processor reads the data, 
operates on the data, and places the results in a write buffer. The contents of the write 
buffer are then written to external memory. LOCK# becomes inactive after the write 
part of the locked cycle.

9.5 Reset and Initialization
The Intel® Quark SoC X1000 Core has a built in self test (BIST) that can be run during 
reset. BIST is invoked when the AHOLD pin is asserted for one clock before and de-
asserted one clock after RESET is de-asserted. RESET must be active for 15 clocks with 
or without BIST being enabled. To ensure proper results, neither FLUSH# nor SRESET 
can be asserted while BIST is executing.  

The Intel® Quark SoC X1000 Core registers have the values shown in Table 55 after 
RESET is performed. The EAX register contains information on the success or failure of 
the BIST if the self test is executed. The DX register always contains a component 
identifier at the conclusion of RESET. The upper byte of DX (DH) contains 04 and the 
lower byte (DL) contains the revision identifier (see Table 56).

RESET forces the Intel® Quark SoC X1000 Core to terminate all execution and local bus 
activity. No instruction or bus activity occurs as long as RESET is active.

All entries in the cache are invalidated by RESET.
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9.5.1 Floating-Point Register Values

In addition to the register values listed above, Intel® Quark SoC X1000 Core has the 
floating-point register values shown in Table 57.

If the BIST is performed, the floating-point registers are initialized as if the 
FINIT/FNINIT (initialize processor) instruction were executed. If the BIST is not 
executed, the floating-point registers are unchanged.

The Intel® Quark SoC X1000 Core starts executing instructions at location FFFFFFF0H 
after RESET. When the first Inter Segment Jump or Call is executed, address lines 
A[31:20] drop low for CS-relative memory cycles, and the Intel® Quark SoC X1000 
Core executes instructions only in the lower 1 Mbyte of physical memory. This allows 
the system designer to use ROM at the top of physical memory to initialize the system 
and take care of RESETs.

Table 55. Register Values after Reset

Register Initial Value
(BIST)

Initial Value
(No BIST)

EAX Zero (Pass) Undefined

ECX Undefined Undefined

EDX 0400 + Revision ID 0400 + Revision ID

EBX Undefined Undefined

ESP Undefined Undefined

EBP Undefined Undefined

ESI Undefined Undefined

EDI Undefined Undefined

EFLAGS 00000002h 00000002h

EIP 0FFF0h 0FFF0h

ES 0000h 0000h

CS F000h F000h

SS 0000h 0000h

DS 0000h 0000h

FS 0000h 0000h

GS 0000h 0000h

IDTR Base = 0,
Limit = 3FFh

Base = 0,
Limit = 3FFh

CR0 60000010h 60000010h

DR7 00000000h 00000000h

Table 56. Floating-Point Values after Reset (Sheet 1 of 2)

Register Initial Value
(BIST)

Initial Value
(No BIST)

CW 037Fh Unchanged

SW 0000h Unchanged

TW FFFFh Unchanged

FIP 00000000h Unchanged
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9.5.2 Pin State During Reset

The Intel® Quark SoC X1000 Core recognizes and can respond to HOLD, AHOLD, and 
BOFF# requests regardless of the state of RESET. Thus, even though the processor is in 
reset, it can float its bus in response to any of these requests.

While in reset, the Intel® Quark SoC X1000 Core bus is in the state shown in Figure 72 
if the HOLD, AHOLD and BOFF# requests are inactive. Note that the address (A[31:2], 
BE[3:0]#) and cycle definition (M/IO#, D/C#, W/R#) pins are undefined from the time 
reset is asserted until the start of the first bus cycle. All undefined pins (except FERR#) 
assume known values at the beginning of the first bus cycle. The first bus cycle is 
always a code fetch to address FFFFFFF0H.

FEA 00000000h Unchanged

FCS 0000h Unchanged

FDS 0000h Unchanged

FOP 000h Unchanged

FSTACK Undefined Unchanged

Table 56. Floating-Point Values after Reset (Sheet 2 of 2)
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Figure 72. Pin States During RESET
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9.5.2.1 Controlling the CLK Signal in the Processor during Power On

Intel does not specify the power on requirements of the Intel® Quark SoC X1000 Core 
allowable CLK input during the power on sequence. Clocking the processor before VCC 
reaches its normal operating level can cause unpredictable results on Intel® Quark SoC 
X1000 Core. The information in this section reflects what Intel considers a good clock 
design.

Intel strongly recommends that system designers ensure that a clock signal is not 
presented to the Intel® Quark SoC X1000 Core until VCC has stabilized at its normal 
operating level. This design recommendation can easily be met by gating the clock 
signal with a POWERGOOD signal. The POWERGOOD signal should reflect the status of 
VCC at the Intel® Quark SoC X1000 Core (which may be different from the power 
supply status in designs that provide power to the processor using a voltage regulator 
or converter).

Most clock synthesizers and some clock oscillators contain on-board gating logic. If 
external gating logic is implemented, it should be done on the original clock signal 
output from the clock oscillator/synthesizer. Gating the clock to the processor 
independently of the clock to the rest of the motherboard causes clock skew, which 
may violate processor or chipset timing requirements. If the clock signal to the 
motherboard is enabled with a POWERGOOD signal, verify that the motherboard logic 
does not require a clock input prior to this POWERGOOD signal. Some chipsets also 
gate the clock to the processor only after a POWERGOOD signal, which inherently 
meets the requirements of this design. Designs should implement the design as 
described in this section to maintain maximum flexibility with all Intel® Quark SoC 
X1000 Core steppings.

9.5.2.2 FERR# Pin State During Reset for Intel® Quark SoC X1000 Core

FERR# reflects the state of the ES (error summary status) bit in the floating-point unit 
status word. The ES bit is initialized when the floating-point unit state is initialized. The 
floating-point unit's status word register can be initialized by BIST or by executing the 
FINIT/FNINIT instruction. Thus, after reset and before executing the first FINIT or 
FNINIT instruction, the values of the FERR# and the numeric status word register bits 

Notes to Figure 72:
1. RESET is an asynchronous input. t20 must be met only to guarantee recognition on a specific clock 

edge.
2. When A20M# is driven synchronously, it must be driven high (inactive) for the CLK edge prior to 

the falling edge of RESET to ensure proper operation. A20M# setup and hold times must be met.
Intel® Quark Core on Intel® Quark SoC X1000 does not use the A20M# pin; it is tied to 1'b1.

3. When A20M# is driven asynchronously, it should be driven low (active) for two CLKs prior to and 
two CLKs after the falling edge of RESET to ensure proper operation.
Intel® Quark Core on Intel® Quark SoC X1000 does not use the A20M# pin; it is tied to 1'b1.

4. When FLUSH# is driven synchronously, it must be driven low (high) for the CLK edge prior to the 
falling edge of RESET to invoke the three-state Output Test Mode. All outputs are guaranteed 
three-stated within 10 CLKs of RESET being de-asserted. FLUSH# setup and hold times must be 
met.

5. When FLUSH# is driven asynchronously, it must be driven low (active) for two CLKs prior to and 
two CLKs after the falling edge of RESET to invoke the three-state Output Test Mode. All outputs 
are guaranteed three-stated within 10 CLKs of RESET being de-asserted.

6. AHOLD should be driven high (active) for the CLK edge prior to the falling edge of RESET to invoke 
the Built-in Self Test (BIST). AHOLD setup and hold times must be met.

7. Hold is recognized normally during RESET. On power-up, HLDA is indeterminate until RESET is 
recognized by the processor.

8. 15 CLKs RESET pulse width for warm resets. Power-up resets require RESET to be asserted for at 
least 1 ms after VCC and CLK are stable.

9. WB/WT# should be driven high for at least one CLK before the falling edge of RESET and at least 
one CLK after the falling edge of RESET to enable the Enhanced Bus mode. Standard Bus mode is 
enabled if WB/WT# is sampled low or left floating at the falling edge of RESET.

10. The system may sample HITM# to detect the presence of the Enhanced Bus mode. If HITM# is 
high for one CLK after RESET is inactive, Enhanced Bus mode is present.
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7:0 depend on whether or not BIST is performed. Table 57 shows the state of FERR# 
signal after reset and before the execution of the FINIT/FNINIT instruction.

After the first FINIT or FNINIT instruction, FERR# and the FPU status word register bits 
(7:0) are inactive, irrespective of the Built-In Self-Test (BIST).

9.5.2.3 Power Down Mode (In-circuit Emulator Support)

The Power Down mode on the Intel® Quark SoC X1000 Core, when initiated by the 
Reserved# signal, reduces the power consumption of the Intel® Quark SoC X1000 
Core, as well as forces all of its output signals to be three-stated. The RERSERVED# pin 
on the Intel® Quark SoC X1000 Core is used for enabling the Power Down mode.

When the RESERVED# pin is driven active upon power-up, the Intel® Quark SoC X1000 
Core's bus is floated immediately. The Intel® Quark SoC X1000 Core enters Power 
Down mode when the RESERVED# pin is sampled asserted in the clock before the 
falling edge of RESET. The RESERVED# pin has no effect on the power down status, 
except during this edge. The Intel® Quark SoC X1000 Core then remains in the Power 
Down mode until the next time the RESET signal is activated. For warm resets, with the 
upgrade processor in the system, the Intel® Quark SoC X1000 Core remains three-
stated and re-enters the Power Down mode once RESET is de-asserted. Similarly for 
power-up resets, if the upgrade processor is not taken out of the system, the Intel® 
Quark SoC X1000 Core three-states its outputs upon sensing the RESERVED# pin 
active and enters the Power Down Mode after the falling edge of RESET.

9.6 Clock Control
The Intel® Quark SoC X1000 Core provides an interrupt mechanism (STPCLK#) that 
allows system hardware to control the power consumption of the processor by stopping 
the internal clock (output of the PLL) to the processor core in a controlled manner. This 
low-power state is called the Stop Grant state. In addition, the STPCLK# interrupt 
allows the system to change the input frequency within the specified range or 
completely stop the CLK input frequency (an input to the PLL). If the CLK input is 
stopped completely, the processor enters into the Stop Clock state—the lowest power 
state.

See Section 9.6.4.2 and Section 9.6.4.3, for a detailed description of the Stop Grant 
and Stop Clock states, respectively.

9.6.1 Stop Grant Bus Cycles

A special Stop Grant bus cycle is driven to the bus after the processor recognizes the 
STPCLK# interrupt. The definition of this bus cycle is the same as the HALT cycle 
definition for the standard Intel® Quark SoC X1000 Core, with the exception that the 
Stop Grant bus cycle drives the value 0000 0010H on the address pins. The system 
hardware must acknowledge this cycle by returning RDY# or BRDY#. The processor 
does not enter the Stop Grant state until either RDY# or BRDY# has been returned.

The Stop Grant bus cycle is defined as follows:

Table 57. FERR# Pin State after Reset and before FP Instructions

BIST Performed FERR# Pin FPU Status Word Register Bits 7:0

YES Inactive (High) Inactive (Low)

NO Undefined (Low or High) Undefined (Low or High)
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M/IO# = 0, D/C# = 0, W/R# = 1, address bus = 0000 0010H (A4 = 1), BE3:0# = 
1011, data bus = undefined

The latency between a STPCLK# request and the Stop Grant bus cycle depends on the 
current instruction, the amount of data in the processor write buffers, and the system 
memory performance (see Figure 73).

Figure 73. Stop Clock Protocol

9.6.2 Pin State During Stop Grant

During the Stop Grant state, most output and input/output signals of the processor 
maintain their previous condition (the level they held when entering the Stop Grant 
state). The data and data parity signals are three-stated. In response to HOLD being 
driven active during the Stop Grant state (when the CLK input is running), the 
processor generates HLDA and three-states all output and input/output signals that are 
three-stated during the HOLD/HLDA state. After HOLD is de-asserted, all signals return 
to their prior state before the HOLD/HLDA sequence.

In order to achieve the lowest possible power consumption during the Stop Grant state, 
the system designer must ensure that the input signals with pull-up resistors are not 
driven low and the input signals with pull-down resistors are not driven high.  

All inputs except the data bus pins must be driven to the power supply rails to ensure 
the lowest possible current consumption during Stop Grant or Stop Clock states. For 
compatibility with future processors, data pins should be driven low to achieve the 
lowest possible power consumption. Pull-down resistors/bus keepers are needed to 
minimize leakage current.

If HOLD is asserted during the Stop Grant state, all pins that are normally floated 
during HLDA are still floated by the processor. The floated pins should be driven to a 
low level (see Table 58).

CLK

STPCLK#

ADDR

RDY#

Stop Grant Bus Cycle

TSU THD

Table 58. Pin State during Stop Grant Bus State (Sheet 1 of 2)

Signal Type State

A[3:2]  O Previous state

A[31:4]  I/O Previous state

D[31:0]  I/O Floated

BE[3:0]#  O Previous state
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9.6.3 Write-Back Enhanced Intel® Quark SoC X1000 Core Pin States 
During Stop Grant State

During the Stop Grant state, most output signals of the processor maintain their 
previous condition, which is the level they held when entering the Stop Grant state. The 
data bus and data parity signals also maintain their previous state. In response to 
HOLD being driven active during the Stop Grant state when the CLK input is running, 
the Write-Back Enhanced Intel® Quark SoC X1000 Core generates HLDA and three-
states all output and input/output signals that are three-stated during the HOLD/HLDA 
state. After HOLD is de-asserted, all signals return to the state they were in prior to the 
HOLD/HLDA sequence.

All inputs should be driven to the power supply rails to ensure the lowest possible 
current consumption during the Stop Grant or Stop Clock states (see Table 59).

DP[3:0]  I/O Floated

W/R#, D/C#, M/IO#  O Previous state

ADS#  O Inactive

LOCK#, PLOCK#  O Inactive

BREQ  O Previous state

HLDA  O As per HOLD

BLAST#  O Previous state

FERR#  O Previous state

PCD, PWT  O Previous state

PCHK#  O Previous state

PWT, PCD  O Previous state

SMIACT#  O Previous state

Table 58. Pin State during Stop Grant Bus State (Sheet 2 of 2)

Signal Type State

Table 59. Write-Back Enhanced Intel® Quark SoC X1000 Core Pin States 
during Stop Grant Bus Cycle (Sheet 1 of 2)

Signal Type State

A[3:2] O Previous state

A[31:4] I/O Previous state

D[31:0] I/O Previous state

BE[3:0]# O Previous state

DP[3:0] I/O Previous state

W/R#, D/C#, M/IO# O Previous state

ADS# O Inactive (high)

LOCK#, PLOCK# O Inactive (high)

BREQ O Previous state

HLDA O As per HOLD

Notes:
1. For the case of snoop cycles (via EADS#) during Stop Grant state, both HITM# 

and CACHE# may go active depending on the snoop hit in the internal cache.
2. During Stop Grant state, AHOLD, HOLD, BOFF# and EADS# are serviced normally.
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The Write-Back Enhanced Intel® Quark SoC X1000 Core has bus keepers features. The 
data bus and data parity pins have bus keepers that maintain the previous state while 
in the Stop Grant state. External resistors are no longer required, which prevents 
excess current during the Stop Grant state. (If external resistors are present, they 
should be strong enough to “flip” the bus hold circuitry and eliminate potential DC 
paths. Alternately, “weak” resistors may be added to prevent excessive current flow.) 

In order to obtain the lowest possible power consumption during the Stop Grant state, 
system designers must ensure that the input signals with pull-up resistors are not 
driven low, and the input signals with pull-down resistors are not driven high.

9.6.4 Clock Control State Diagram

The following state descriptions and diagram show the state transitions during a Stop 
Clock cycle for the Intel® Quark SoC X1000 Core. (Refer to Figure 74 for a Stop Clock 
state diagram.) Refer to Section 9.6.5 for Write-Back Enhanced Intel® Quark SoC 
X1000 Core Clock Control State specifics.

9.6.4.1 Normal State

This is the normal operating state of the processor.

9.6.4.2 Stop Grant State

The Stop Grant state provides a fast wake-up state that can be entered by simply 
asserting the external STPCLK# interrupt pin. Once the Stop Grant bus cycle has been 
placed on the bus, and either RDY# or BRDY# is returned, the processor is in this state 
(depending on the CLK input frequency). The processor returns to the normal execution 
state approximately 10–20 clock periods after STPCLK# has been de-asserted.

While in the Stop Grant state, the pull-up resistors on STPCLK#, CLKMUL (for the 
Intel® Quark SoC X1000 Core) and RESERVED# are disabled internally. The system 
must continue to drive these inputs to the state they were in immediately before the 
processor entered the Stop Grant state. For minimum processor power consumption, 
all other input pins should be driven to their inactive level while the processor is in the 
Stop Grant state.

A RESET or SRESET brings the processor from the Stop Grant state to the Normal 
state. The processor recognizes the inputs required for cache invalidations (HOLD, 
AHOLD, BOFF# and EADS#), as explained later in this section. The processor does not 
recognize any other inputs while in the Stop Grant state. Input signals to the processor 

BLAST# O Previous state

FERR# O Previous state

PCHK# O Previous state

PWT, PCD O Previous state

CACHE# O Inactive(1) (high)

HITM# O Inactive(1) (high)

SMIACT# O Previous state

Table 59. Write-Back Enhanced Intel® Quark SoC X1000 Core Pin States 
during Stop Grant Bus Cycle (Sheet 2 of 2)

Signal Type State

Notes:
1. For the case of snoop cycles (via EADS#) during Stop Grant state, both HITM# 

and CACHE# may go active depending on the snoop hit in the internal cache.
2. During Stop Grant state, AHOLD, HOLD, BOFF# and EADS# are serviced normally.



Intel® Quark Core—Hardware Interface

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
178 Order Number: 329679-001US

are not recognized until one CLK after STPCLK# is de-asserted (see Figure 75).

While in the Stop Grant state, the processor does not recognize transitions on the 
interrupt signals (SMI#, NMI, and INTR). Driving an active edge on either SMI# or NMI 
does not guarantee recognition and service of the interrupt request following exit from 
the Stop Grant state. However, if one of the interrupt signals (SMI#, NMI, or INTR) is 
driven active while the processor is in the Stop Grant state, and held active for at least 
one CLK after STPCLK# is de-asserted, the corresponding interrupt is serviced. The 
Intel® Quark SoC X1000 Core requires INTR to be held active until the processor issues 
an interrupt acknowledge cycle in order to guarantee recognition (see Figure 75).

When the processor is in the Stop Grant state, the system can stop or change the CLK 
input. When the CLK input to the processor is stopped or changed, the Intel® Quark 
SoC X1000 Core requires the CLK input to be held at a constant frequency for a 
minimum of 1 ms before de-asserting STPCLK#. This 1-ms time period is necessary so 
that the PLL can stabilize, and it must be met before the processor returns to the Stop 
Grant state.

Figure 74. Intel® Quark SoC X1000 Core Stop Clock State Machine

The Intel® Quark SoC X1000 Core generates a Stop Grant bus cycle only when entering 
that state from the Normal or the Auto HALT Power Down state. When the Intel® Quark 
SoC X1000 Core enters the Stop Grant state from the Stop Clock state or the Stop 
Clock Snoop state, the processor does not generate a Stop Grant bus cycle.
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9.6.4.3 Stop Clock State

Stop Clock state is entered from the Stop Grant state by stopping the CLK input (either 
logic high or logic low). None of the processor input signals should change state while 
the CLK input is stopped. Any transition on an input signal (with the exception of INTR, 
NMI and SMI#) before the processor has returned to the Stop Grant state results in 
unpredictable behavior. If INTR is driven active while the CLK input is stopped, and held 
active until the processor issues an interrupt acknowledge bus cycle, it is serviced in 
the normal manner. The system design must ensure that the processor is in the correct 
state prior to asserting cache invalidation or interrupt signals to the processor.

Figure 75. Recognition of Inputs when Exiting Stop Grant State

The processor returns to the Stop Grant state after the CLK input has been running at a 
constant frequency for a period of time equal to the PLL startup latency (see 
Section 9.6.4.2). The CLK input can be restarted to any frequency between the 
minimum and maximum frequency listed in the AC timing specifications.

9.6.4.4 Auto HALT Power Down State

The execution of a HALT instruction also causes the processor to automatically enter 
the Auto HALT Power Down state. The processor issues a normal HALT bus cycle before 
entering this state. The processor transitions to the Normal state on the occurrence of 
INTR, NMI, SMI#, RESET, or SRESET.

The system can generate a STPCLK# while the processor is in the Auto HALT Power 
Down state. The processor generates a Stop Grant bus cycle when it enters the Stop 
Grant state from the HALT state.

When the system de-asserts the STPCLK# interrupt, the processor returns execution to 
the HALT state. The processor generates a new HALT bus cycle when it re-enters the 
HALT state from the Stop Grant state.

9.6.4.5 Stop Clock Snoop State (Cache Invalidations)

When the processor is in the Stop Grant state or the Auto HALT Power Down state, the 
processor recognizes HOLD, AHOLD, BOFF# and EADS# for cache invalidation. When 
the system asserts HOLD, AHOLD, or BOFF#, the processor floats the bus accordingly. 
When the system then asserts EADS#, the processor transparently enters the Stop 
Clock Snoop state and powers up for one full core clock in order to perform the 
required cache snoop cycle. It then re-freezes the clock to the processor core and 
returns to the previous state. The processor does not generate a bus cycle when it 
returns to the previous state.
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TSU THD
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A FLUSH# event during the Stop Grant state or the Auto HALT Power Down state is 
latched and acted upon by asserting the internal FLUSH# signal for one clock upon re-
entering the Normal state.

9.6.4.6 Auto Idle Power Down State

When the processor is known to be truly idle and waiting for RDY# or BRDY# from a 
memory or I/O bus cycle read, the Intel® Quark SoC X1000 Core reduces its core clock 
rate to equal that of the external CLK frequency without affecting performance. When 
RDY# or BRDY# is asserted, the processor returns to clocking the core at the specified 
multiplier of the external CLK frequency. This functionality is transparent to software 
and external hardware.

9.6.5 Write-Back Enhanced Intel® Quark SoC X1000 Core Clock 
Control State Diagram

Figure 76 shows the state transitions during Stop Clock for the Write-Back Enhanced 
Intel® Quark SoC X1000 Core.

9.6.5.1 Normal State

This is the normal operating state of the processor. When the processor is executing 
program/instruction and the STPCLK# pin is not asserted, the processor is said to be in 
its Normal state.
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Figure 76. Write-Back Enhanced Intel® Quark SoC X1000 Core Stop Clock State Machine 
(Enhanced 
Bus Configuration)

9.6.5.2 Stop Grant State

For minimum processor power consumption, all other input pins should be driven to 
their inactive level while the processor is in the Stop Grant state except for the data 
bus, data parity, WB/WT# and INV pins. WB/WT# should be driven low and INV should 
be driven high.

In both the Standard mode and Enhanced mode, the following conditions exist: 
• A RESET, SRESET or de-assertion of STPCLK# brings the processor from the Stop 

Grant state to the Normal state.
• While in the Stop Grant state, the processor does not recognize transitions on the 

interrupt signals (SMI#, NMI, and INTR). This means SMI#, NMI, and INTR are not 
Stop Break events. The external logic should de-assert STPCLK# before issuing 
interrupts, or if an interrupt is asserted it should be kept asserted for at least one 
clock after STPCLK# is removed. (Note that the Write-Back Enhanced Intel® Quark 
SoC X1000 Core requires that INTR be held active until the processor issues an 
interrupt acknowledge cycle in order to guarantee recognition).

• FLUSH# is not a Stop Break event. But if FLUSH# is asserted during the Stop Grant 
state, it is latched by the Write-Back Enhanced Intel® Quark SoC X1000 Core and 
serviced later when STPCLK# is de-asserted.

4. Auto HALT Power Down State

CLK Running

ICC approximately 100 µA

1. Normal State

Normal Execution

HALT

INTR, NMI, SMI#,
RESET, SRESET
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Clock Running
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STPCLK# de-asserted
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Clock Powerup
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Internal Powerdown

CLK Stopped
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STOP CLK
START CLK

+ PLL STARTUP LATENCY
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Stop Grant
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Halt Bus Cycle Generated

6. Auto HALT Power Down
    Flush State
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Write back: Write-back, Invalidation,
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Write through: Cache Invalidation
Write back: Write, Invalidation

generated
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• The processor latches and responds to the inputs BOFF#, EADS#, AHOLD, and 
HOLD. The processor does not recognize any other inputs while in the Stop Grant 
state except FLUSH#. Other input signals to the processor are not recognized until 
the CLK following the CLK in which STPCLK# is de-asserted (see Figure 76).

• The processor generates a Stop Grant bus cycle only when entering that state from 
the Normal or the Auto HALT Power Down state. The Stop Grant bus cycle is not 
generated when the processor enters the Stop Grant state from the Stop Clock 
state or the Stop Clock Snoop state.

• The processor does not enter the Stop Grant state until all the pending writes are 
completed, all pending interrupts are serviced, and the processor is idle.

9.6.5.3 Stop Clock State

The Stop Clock state is the lowest power consumption mode of the Intel® Quark SoC 
X1000 Core, because it allows removal of the external clock. It also has the longest 
latency for returning to normal state. The Stop Clock state is entered from the Stop 
Grant state by stopping the CLK input. In the Stop Clock state, total processor power 
consumption drops to 100 A, which is approximately 200–250 times lower than the 
Stop Grant state. None of the processor input signals should change state while the 
CLK input is stopped. Any transition on an input signal before the processor has 
returned to the Stop Grant state results in unpredictable behavior. If INTR is driven 
active, it must remain active until the processor issues an interrupt acknowledge cycle.

In the Stop Clock state, the processor is dormant. It does not respond to transitions on 
any of the input pins, including snoops, flushes and interrupts. It is recommended that 
this mode only be entered if the processor cache is coherent with main memory and 
the processor is not processing interrupts. If this mode is entered with a dirty cache, no 
alternate master cycles can be allowed while the processor is in the Stop Clock state. 

The processor returns to the Stop Grant state after the CLK input has been running at a 
constant frequency for a period of time equal to the PLL startup latency. The CLK input 
can be restarted to any frequency between the minimum and maximum frequency 
listed in the AC timing specifications.

In Enhanced Bus mode, if the processor is taken into the Stop Clock state with a dirty 
cache, alternate bus master cycles are not allowed while the processor remains in the 
Stop Clock state. In order to take the processor into the Stop Clock state with a clean 
cache, the cache must be flushed. During the time the cache is being flushed, the 
system must block interrupts to the processor. With all interrupts other than STPCLK# 
blocked, the processor does not write into the cache during the time from the 
completion of the flush and time it enters the Stop Grant state. This is necessary for 
the cache to be coherent. To ensure cache coherency, the system should drive KEN# 
inactive from the time the flush starts until the Stop Grant cycle is issued. The system 
can then put the processor in the Stop Clock state by stopping the clock.

If the processor is already in the Stop Grant state and entering the Stop Clock state is 
desired, the system must de-assert STPCLK# before flushing the cache in order to 
ensure cache coherency. The five-clock de-assertion specification for STPCLK# must 
also be met before the above sequence can occur.

9.6.5.4 Auto HALT Power Down State

Upon execution of a HALT instruction, the processor automatically enters a low power 
state called the Auto HALT Power Down state. The processor issues a normal HALT bus 
cycle when entering this state. Because interrupts are HALT break events, the 
processor transitions to the Normal state on the occurrence of INTR, NMI, SMI# or 
RESET (SRESET is also a HALT break event). If a FLUSH# occurs while the processor is 
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in this state, the FLUSH# is serviced by transitioning to the Stop Clock Flush state. 
After the FLUSH# is completed, the processor returns to the Auto HALT Power Down 
state. 

The system can generate a STPCLK# while the processor is in the Auto HALT Power 
Down state. The processor then generates a Stop Grant bus cycle and enters the Stop 
Grant state from the Auto HALT Power Down state. When the system de-asserts the 
STPCLK# interrupt, the processor returns to the Auto HALT Power Down state. The 
processor does not generate a new HALT bus cycle when it re-enters the Auto HALT 
Power Down state from the Stop Grant state.

9.6.6 Stop Clock Snoop State (Cache Invalidations)

When the processor is in the Stop Grant state or the Auto HALT Power Down state, the 
processor recognizes HOLD, AHOLD, BOFF#, and EADS# for cache invalidation. When 
the system asserts HOLD, AHOLD, or BOFF#, the processor floats the bus accordingly. 
When the system asserts EADS#, the processor transparently enters the Stop Clock 
Snoop state and powers up in order to perform the required cache snoop cycle and 
write-back cycles. It then refreezes the CLK to the processor core and returns to the 
previous state (i.e., either the Stop Grant state or the Auto HALT Power Down state). 
The processor does not generate a bus cycle when it returns to the previous state.

9.6.6.1 Auto HALT Power Down Flush State (Cache Flush) for the Write-Back 
Enhanced Intel® Quark SoC X1000 Core

When the Write-Back Enhanced Intel® Quark SoC X1000 Core is in either Standard or 
Enhanced Bus mode, and a FLUSH# event occurs during Auto HALT Power Down state, 
the processor transitions to the Auto HALT Power Down Flush state. If the on-chip 
cache is configured as a write-back cache, the CLK to the processor core is turned on 
until all the dirty lines are written back, the cache is invalidated, and the two flush 
acknowledge cycles are completed. If the on-chip cache is configured as a write-
through cache, the CLK to the processor core is turned on until the cache is invalidated. 
The processor then refreezes the CLK and returns to the previous state (i.e., the Auto 
HALT Power Down state). Auto HALT Power Down Flush state is entered only from the 
Auto HALT Power Down state and not from the Stop Grant state. 
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10.0 Bus Operation

When the internal cache of the Write-Back Enhanced Intel® Quark SoC X1000 Core is 
configured in write-through mode, the processor bus operates in Standard Bus mode. 
However, when the internal cache of the Write-Back Enhanced Intel® Quark SoC X1000 
Core is configured in write-back mode, the bus then operates in the Enhanced Bus 
mode, which is described in Section 10.4. 

10.1 Data Transfer Mechanism
All data transfers occur as a result of one or more bus cycles. Logical data operands of 
byte, word and doubleword lengths may be transferred without restrictions on physical 
address alignment. Data may be accessed at any byte boundary but two or three cycles 
may be required for unaligned data transfers. See Section 10.1.2 and Section 10.1.5 
for details. 

The Intel® Quark SoC X1000 Core address signals are split into two components. High-
order address bits are provided by the address lines, A[31:2]. The byte enables, 
BE[3:0]#, form the low-order address and provide linear selects for the four bytes of 
the 32-bit address bus.

The byte enable outputs are asserted when their associated data bus bytes are 
involved with the present bus cycle, as listed in Table 60. Byte enable patterns that 
have a deasserted byte enable separating two or three asserted byte enables never 
occur (see Table 64). All other byte enable patterns are possible.

Address bits A0 and A1 of the physical operand's base address can be created when 
necessary. Use of the byte enables to create A0 and A1 is shown in Table 61. The byte 
enables can also be decoded to generate BLE# (byte low enable) and BHE# (byte high 
enable). These signals are needed to address 16-bit memory systems. (See 
Section 10.1.3.)

10.1.1 Memory and I/O Spaces

Bus cycles may access physical memory space or I/O space. Peripheral devices in the 
system can be either memory-mapped, I/O-mapped, or both. Physical memory 
addresses range from 00000000H to FFFFFFFFH (4 gigabytes). I/O addresses range 
from 00000000H to 0000FFFFH (64 Kbytes) for programmed I/O. (See Figure 77.)

Table 60. Byte Enables and Associated Data and Operand Bytes

Byte Enable Signal Associated Data Bus Signals

BE0# D[7:0] (byte 0–least significant)

BE1# D[15:8] (byte 1)

BE2# D[23:16] (byte 2)

BE3# D[31:24] (byte 3–most significant)
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Figure 77. Physical Memory and I/O Spaces

10.1.1.1 Memory and I/O Space Organization

The Intel® Quark SoC X1000 Core datapath to memory and input/output (I/O) spaces 
can be 8, 16, or 32 bits wide. The byte enable signals, BE[3:0]#, allow byte granularity 
when addressing any memory or I/O structure, whether 8, 16, or 32 bits wide.

The Intel® Quark SoC X1000 Core includes bus control pins, BS16# and BS8#, which 
allow direct connection to 16- and 8-bit memories and I/O devices. Cycles of 32-, 16- 
and 8-bits may occur in any sequence, since the BS8# and BS16# signals are sampled 
during each bus cycle.

Memory and I/O spaces that are 32-bit wide are organized as arrays of four bytes each. 
Each four bytes consists of four individually addressable bytes at consecutive byte 
addresses (see Figure 78). The lowest addressed byte is associated with data signals 
D[7:0]; the highest-addressed byte with D[31:24]. Each 4 bytes begin at an address 
that is divisible by four.

Table 61. Generating A[31:0] from BE[3:0]# and A[31:A2]

Intel® Quark SoC X1000 Core Address Signals

Physical Address BE3# BE2# BE1# BE0#

A31 ... A2 A1 A0     

A31 ... A2 0 0 X X X 0

A31 ... A2 0 1 X X 0 1

A31 ... A2 1 0 X 0 1 1

A31 ... A2 1 1 0 1 1 1

Physical

Memory

4 Gbyte

Not
Accessible

64 Kbyte

{Accessible
Programmed
I/O Space

0000FFFFH

00000000H00000000H

Physical Memory
Space

I/O Space

FFFFFFFFH

Not
Accessible
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Figure 78. Physical Memory and I/O Space Organization

16-bit memories are organized as arrays of two bytes each. Each two bytes begins at 
addresses divisible by two. The byte enables BE[3:0]#, must be decoded to A1, BLE# 
and BHE# to address 16-bit memories. 

To address 8-bit memories, the two low order address bits A0 and A1 must be decoded 
from BE[3:0]#. The same logic can be used for 8- and 16-bit memories, because the 
decoding logic for BLE# and A0 are the same. (See Section 10.1.3)

10.1.2 Dynamic Data Bus Sizing

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support 
dynamic data bus sizing. Bus width is fixed at 32 bits.

Dynamic data bus sizing is a feature that allows processor connection to 32-, 16- or 8-
bit buses for memory or I/O. The Intel® Quark SoC X1000 Core can access all three 
bus sizes. Transfers to or from 32-, 16- or 8-bit devices are supported by dynamically 
determining the bus width during each bus cycle. Address decoding circuitry may 
assert BS16# for 16-bit devices or BS8# for 8-bit devices during each bus cycle. BS8# 
and BS16# must be deasserted when addressing 32-bit devices. An 8-bit bus width is 
selected if both BS16# and BS8# are asserted.

BS16# and BS8# force the Intel® Quark SoC X1000 Core to run additional bus cycles 
to complete requests larger than 16 or 8 bits. A 32-bit transfer is converted into two 
16-bit transfers (or 3 transfers if the data is misaligned) when BS16# is asserted. 
Asserting BS8# converts a 32-bit transfer into four 8-bit transfers.

Extra cycles forced by BS16# or BS8# should be viewed as independent bus cycles. 
BS16# or BS8# must be asserted during each of the extra cycles unless the addressed 
device has the ability to change the number of bytes it can return between cycles.

The Intel® Quark SoC X1000 Core drives the byte enables appropriately during extra 
cycles forced by BS8# and BS16#. A[31:2] does not change if accesses are to a 32-bit 
aligned area. Table 62 shows the set of byte enables that is generated on the next cycle 
for each of the valid possibilities of the byte enables on the current cycle.

The Intel® Quark SoC X1000 Core requires that data bytes be driven on the addressed 
data pins. The simplest example of this function is a 32-bit aligned, BS16# read. When 
the Intel® Quark SoC X1000 Core reads the two high order bytes, they must be driven 
on the data bus pins D[31:16]. The Intel® Quark SoC X1000 Core expects the two low 
order bytes on D[15:0]. 

32-Bit Wide Organization

FFFFFFFFH FFFFFFFCH

16-Bit Wide Organization

FFFFFFFFH FFFFFFFEH

00000001H 00000000H

{ { { {

BE3# BE2# BE1# BE0#

{ {

BHE# BLE#

00000003H 00000000H
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The external system must contain buffers to enable the Intel® Quark SoC X1000 Core 
to read and write data on the appropriate data bus pins. Table 63 shows the data bus 
lines to which the Intel® Quark SoC X1000 Core expects data to be returned for each 
valid combination of byte enables and bus sizing options.

Valid data is only driven onto data bus pins corresponding to asserted byte enables 
during write cycles. Other pins in the data bus are driven but they contain no valid 
data. The Intel® Quark SoC X1000 Core does not duplicate write data onto parts of the 
data bus for which the corresponding byte enable is deasserted.

10.1.3 Interfacing with 8-, 16-, and 32-Bit Memories

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 supports 32-bit 
data mode only.

Table 62. Next Byte Enable Values for BSx# Cycles

Current Next with Next with BS16#

BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0#

1 1 1 0 N N N N N N N N

1 1 0 0 1 1 0 1 N N N N

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 1 N N N N N N N N

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 N N N N N N N N

0 0 1 1 0 1 1 1 N N N N

0 1 1 1 N N N N N N N N

Note: “N” means that another bus cycle is not required to satisfy the request.

Table 63. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BE0# w/o BS8#/BS16# w BS8# w BS16#

1 1 1 0 D[7:0] D[7:0] D[7:0]

1 1 0 0 D[15:0] D[7:0] D[15:0]

1 0 0 0 D[23:0] D[7:0] D[15:0]

0 0 0 0 D[31:0] D[7:0] D[15:0]

1 1 0 1 D[15:8] D[15:8] D[15:8]

1 0 0 1 D[23:8] D[15:8] D[15:8]

0 0 0 1 D[31:8] D[15:8] D[15:8]

1 0 1 1 D[23:16] D[23:16] D[23:16]

0 0 1 1 D[31:16] D[23:16] D[31:16]

0 1 1 1 D[31:24] D[31:24] D[31:24]



Intel® Quark Core—Bus Operation

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
188 Order Number: 329679-001US

In 32-bit physical memories, such as the one shown in Figure 79, each 4-byte word 
begins at a byte address that is a multiple of four. A[31:2] are used as a 4-byte word 
select. BE[3:0]# select individual bytes within the 4-byte word. BS8# and BS16# are 
deasserted for all bus cycles involving the 32-bit array.

For 16- and 8-bit memories, byte swapping logic is required for routing data to the 
appropriate data lines and logic is required for generating BHE#, BLE# and A1. In 
systems where mixed memory widths are used, extra address decoding logic is 
necessary to assert BS16# or BS8#.

Figure 79. Intel® Quark SoC X1000 Core with 32-Bit Memory 

Figure 80 shows the Intel® Quark SoC X1000 Core address bus interface to 32-, 16- 
and 8-bit memories. To address 16-bit memories the byte enables must be decoded to 
produce A1, BHE# and BLE# (A0). For 8-bit wide memories the byte enables must be 
decoded to produce A0 and A1. The same byte select logic can be used in 16- and 8-bit 
systems, because BLE# is exactly the same as A0 (see Table 64).

Figure 80. Addressing 16- and 8-Bit Memories

BE[3:0]# can be decoded as shown in Table 64. The byte select logic necessary to 
generate BHE# and BLE# is shown in Figure 81.

Intel® Quark
Core

32-Bit
Memory

Data Bus (D[31:0])32

Address Bus
(BE[3:0]#, A[31:2])

BS8# BS16#

“HIGH” “HIGH”

Intel® Quark
Core

BS16#BS8#

Address Bus (A[31:2], BE[3:0]#)

A[31:2]

BE[3:0]#

BHE#, BLE#, A1

A0 (BLE#), A1
A[31:2] 8-Bit Memory

16-Bit Memory

32-Bit Memory

Byte
Select Logic

Address
Decode
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Table 64. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices

Intel® Quark SoC X1000 Core 8-, 16-Bit Bus Signals
Comments

BE3# BE2# BE1# BE0# A13 BHE#2 BLE# (A0)1

1† 1† 1† 1† x x x x–no asserted bytes

1 1 1 0 0 1 0  

1 1 0 1 0 0 1  

1 1 0 0 0 0 0  

1 0 1 1 1 1 0  

1† 0† 1† 0† x x x x–not contiguous bytes

1 0 0 1 0 0 1  

1 0 0 0 0 0 0  

0 1 1 1 1 0 1  

0† 1† 1† 0† x x x x–not contiguous bytes

0† 1† 0† 1† x x x x–not contiguous bytes

0† 1† 0† 0† x x x x–not contiguous bytes

0 1 1 1 0 0  

0† 0† 1† 0† x x x x–not contiguous bytes

0 0 0 1 0 0 1  

0 0 0 0 0 0 0  

Notes:
1. BLE# asserted when D[7:0] of 16-bit bus is asserted.
2. BHE# asserted when D[15:8] of 16-bit bus is asserted.
3. A1 low for all even words; A1 high for all odd words.

KEY:
x = don't care
† = non-occurring pattern of byte enables; either none are asserted or the pattern has byte enables

asserted for non-contiguous bytes
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Combinations of BE[3:0]# that never occur are those in which two or three asserted 
byte enables are separated by one or more deasserted byte enables. These 
combinations are “don't care” conditions in the decoder. A decoder can use the non-
occurring BE[3:0]# combinations to its best advantage.

Figure 82 shows a Intel® Quark SoC X1000 Core data bus interface to 16- and 8-bit 
wide memories. External byte swapping logic is needed on the data lines so that data is 
supplied to and received from the Intel® Quark SoC X1000 Core on the correct data 
pins (see Table 63).

Figure 81. Logic to Generate A1, BHE# and BLE# for 16-Bit Buses
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Figure 82. Data Bus Interface to 16- and 8-Bit Memories

10.1.4 Dynamic Bus Sizing during Cache Line Files

BS8# and BS16# can be driven during cache line fills. The Intel® Quark SoC X1000 
Core generates enough 8- or 16-bit cycles to fill the cache line. This can be up to 
sixteen 8-bit cycles.

The external system should assume that all byte enables are asserted for the first cycle 
of a cache line fill. The Intel® Quark SoC X1000 Core generates proper byte enables for 
subsequent cycles in the line fill. Table 65 shows the appropriate A0 (BLE#), A1 and 
BHE# for the various combinations of the Intel® Quark SoC X1000 Core byte enables 
on both the first and subsequent cycles of the cache line fill. The “†” marks all 
combinations of byte enables that are generated by the Intel® Quark SoC X1000 Core 
during a cache line fill.

Intel® Quark
Core

BS16#

BS8#

Address
Decode

32-Bit
Memory

16-Bit Memory

8-Bit Memory
Byte Swap
Logic

Byte Swap
Logic

16

8

8

8

8

8

D[7:0]

D[15:8]
D[23:16]

D[31:24]

(A[31:2], BE[3:0]#)

Table 65. Generating A0, A1 and BHE# from the Intel® Quark SoC X1000 Core Byte 
Enables (Sheet 1 of 2)

 BE3#  BE2#  BE1#  BE0#
First Cache Fill Cycle Any Other Cycle

A0 A1 BHE# A0 A1 BHE#

1  1 1 0 0 0 0 0 0 1

1  1 0 0 0 0 0 0 0 0

1  0 0 0 0 0 0 0 0 0

†0  0 0 0 0 0 0 0 0 0

1  1 0 1 0 0 0 1 0 0

1  0 0 1 0 0 0 1 0 0

†0  0 0 1 0 0 0 1 0 0

1  0 1 1 0 0 0 0 1 1



Intel® Quark Core—Bus Operation

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
192 Order Number: 329679-001US

10.1.5 Operand Alignment

Physical 4-byte words begin at addresses that are multiples of four. It is possible to 
transfer a logical operand that spans more than one physical 4-byte word of memory or 
I/O at the expense of extra cycles. Examples are 4-byte operands beginning at 
addresses that are not evenly divisible by 4, or 2-byte words split between two physical 
4-byte words. These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when multiple bus cycles are required. 
Table 66 describes the transfer cycles generated for all combinations of logical operand 
lengths, alignment, and data bus sizing. When multiple cycles are required to transfer a 
multibyte logical operand, the highest-order bytes are transferred first. For example, 
when the processor executes a 4-byte unaligned read beginning at byte location 11 in 
the 4-byte aligned space, the three high-order bytes are read in the first bus cycle. The 
low byte is read in a subsequent bus cycle.

The function of unaligned transfers with dynamic bus sizing is not obvious. When the 
external systems asserts BS16# or BS8#, forcing extra cycles, low-order bytes or 
words are transferred first (opposite to the example above). When the Intel® Quark 
SoC X1000 Core requests a 4-byte read and the external system asserts BS16#, the 
lower two bytes are read first followed by the upper two bytes.

†0  0 1 1 0 0 0 0 1 0

†0  1 1 1 0 0 0 1 1 0

KEY:
† =a non-occurring pattern of Byte Enables; either none are asserted or the pattern has byte
 enables asserted for non-contiguous bytes

Table 65. Generating A0, A1 and BHE# from the Intel® Quark SoC X1000 Core Byte 
Enables (Sheet 2 of 2)

 BE3#  BE2#  BE1#  BE0#
First Cache Fill Cycle Any Other Cycle

A0 A1 BHE# A0 A1 BHE#

Table 66. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

1 2 4

Physical Byte Address in 
Memory (Low Order Bits) xx 00 01 10 11 00 01 10 11

Transfer Cycles over 32-Bit 
Bus b w w w hb

lb d hb
l3

hw
lw

h3
lb

Transfer Cycles over 16-Bit 
Bus
(† = BS#16 asserted)

b w lb †
hb † w hb

lb
lw †
hw †

hb
lb †

mw †

hw
lw

mw †
hb †
lb

Transfer Cycles over 8-Bit 
Bus
(‡ = BS8# Asserted)

b lb ‡
hb ‡

lb ‡
hb‡

lb ‡
hb ‡

hb
lb

lb ‡
mlb ‡
mhb ‡
hb ‡

hb
lb ‡

mlb ‡
mhb ‡

mhb ‡
hb ‡
lb ‡

mlb ‡

mlb ‡
mhb ‡
hb ‡
lb

KEY:

b = byte transferh = high-order portion4-Byte Operand
w = 2-byte transferl = low-order portion
3 = 3-byte transferm = mid-order portion
d = 4-byte transfer

lb  mlb mhb hb

↑ byte with 
lowest address

↑byte with 
highest 
address
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In the unaligned transfer described above, the processor requested three bytes on the 
first cycle. When the external system asserts BS16# during this 3-byte transfer, the 
lower word is transferred first followed by the upper byte. In the final cycle, the lower 
byte of the 4-byte operand is transferred, as shown in the 32-bit example above.

10.2 Bus Arbitration Logic 
Bus arbitration logic is needed with multiple bus masters. Hardware implementations 
range from single-master designs to those with multiple masters and DMA devices. 

Figure 83 shows a simple system in which only one master controls the bus and 
accesses the memory and I/O devices. Here, no arbitration is required.

Figure 83. Single Master Intel® Quark Core System

Figure 84 shows a single processor and a DMA device. Here, arbitration is required to 
determine whether the processor, which acts as a master most of the time, or a DMA 
controller has control of the bus. When the DMA wants control of the bus, it asserts the 
HOLD request to the processor. The processor then responds with a HLDA output when 
it is ready to relinquish bus control to the DMA device. Once the DMA device completes 
its bus activity cycles, it negates the HOLD signal to relinquish the bus and return 
control to the processor. 
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Figure 84. Single Intel® Quark Core with DMA

Figure 85 shows more than one primary bus master and two secondary masters, and 
the arbitration logic is more complex. The arbitration logic resolves bus contention by 
ensuring that all device requests are serviced one at a time using either a fixed or a 
rotating scheme. The arbitration logic then passes information to the Intel® Quark SoC 
X1000 Core, which ultimately releases the bus. The arbitration logic receives bus 
control status information via the HOLD and HLDA signals and relays it to the 
requesting devices.
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Figure 85. Single Intel® Quark Core with Multiple Secondary Masters

As systems become more complex and include multiple bus masters, hardware must be 
added to arbitrate and assign the management of bus time to each master. The second 
master may be a DMA controller that requires bus time to perform memory transfers or 
it may be a second processor that requires the bus to perform memory or I/O cycles. 
Any of these devices may act as a bus master. The arbitration logic must assign only 
one bus master at a time so that there is no contention between devices when 
accessing main memory.

The arbitration logic may be implemented in several different ways. The first technique 
is to “round-robin” or to “time slice” each master. Each master is given a block of time 
on the bus to match their priority and need for the bus.

Another method of arbitration is to assign the bus to a master when the bus is needed. 
Assigning the bus requires the arbitration logic to sample the BREQ or HOLD outputs 
from the potential masters and to assign the bus to the requestor. A priority scheme 
must be included to handle cases where more than one device is requesting the bus. 
The arbitration logic must assert HOLD to the device that must relinquish the bus. Once 
HLDA is asserted by all of these devices, the arbitration logic may assert HLDA or 
BACK# to the device requesting the bus. The requestor remains the bus master until 
another device needs the bus.

These two arbitration techniques can be combined to create a more elaborate 
arbitration scheme that is driven by a device that needs the bus but guarantees that 
every device gets time on the bus. It is important that an arbitration scheme be 
selected to best fit the needs of each system's implementation.
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The Intel® Quark SoC X1000 Core asserts BREQ when it requires control of the bus. 
BREQ notifies the arbitration logic that the processor has pending bus activity and 
requests the bus. When its HOLD input is inactive and its HLDA signal is deasserted, 
the Intel® Quark SoC X1000 Core can acquire the bus. Otherwise if HOLD is asserted, 
then the Intel® Quark SoC X1000 Core has to wait for HOLD to be deasserted before 
acquiring the bus. If the Intel® Quark SoC X1000 Core does not have the bus, then its 
address, data, and status pins are 3-stated. However, the processor can execute 
instructions out of the internal cache or instruction queue, and does not need control of 
the bus to remain active. 

The address buses shown in Figure 84 and Figure 85 are bidirectional to allow cache 
invalidations to the processors during memory writes on the bus. 

10.3 Bus Functional Description
The Intel® Quark SoC X1000 Core supports a wide variety of bus transfers to meet the 
needs of high performance systems. Bus transfers can be single cycle or multiple cycle, 
burst or non-burst, cacheable or non-cacheable, 8-, 16- or 32-bit, and pseudo-locked. 
Cache invalidation cycles and locked cycles provide support for multiprocessor systems.

This section explains basic non-cacheable, non-burst single cycle transfers. It also 
details multiple cycle transfers and introduces the burst mode. Cacheability is 
introduced in Section 10.3.3. The remaining sections describe locked, pseudo-locked, 
invalidate, bus hold, and interrupt cycles.

Bus cycles and data cycles are discussed in this section. A bus cycle is at least two 
clocks long and begins with ADS# asserted in the first clock and RDY# or BRDY# 
asserted in the last clock. Data is transferred to or from the Intel® Quark SoC X1000 
Core during a data cycle. A bus cycle contains one or more data cycles.

Refer to Section 10.3.13 for a description of the bus states shown in the timing 
diagrams.

10.3.1 Non-Cacheable Non-Burst Single Cycles

10.3.1.1 No Wait States

The fastest non-burst bus cycle that the Intel® Quark SoC X1000 Core supports is two 
clocks. These cycles are called 2-2 cycles because reads and writes take two cycles 
each. The first “2” refers to reads and the second “2” to writes. If a wait state needs to 
be added to the write, the cycle is called “2-3.”

Basic two-clock read and write cycles are shown in Figure 86. The Intel® Quark SoC 
X1000 Core initiates a cycle by asserting the address status signal (ADS#) at the rising 
edge of the first clock. The ADS# output indicates that a valid bus cycle definition and 
address is available on the cycle definition lines and address bus.
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Figure 86. Basic 2-2 Bus Cycle

The non-burst ready input (RDY#) is asserted by the external system in the second 
clock. RDY# indicates that the external system has presented valid data on the data 
pins in response to a read or the external system has accepted data in response to a 
write.

The Intel® Quark SoC X1000 Core samples RDY# at the end of the second clock. The 
cycle is complete if RDY# is asserted (LOW) when sampled. Note that RDY# is ignored 
at the end of the first clock of the bus cycle.

The burst last signal (BLAST#) is asserted (LOW) by the Intel® Quark SoC X1000 Core 
during the second clock of the first cycle in all bus transfers illustrated in Figure 86. 
This indicates that each transfer is complete after a single cycle. The Intel® Quark SoC 
X1000 Core asserts BLAST# in the last cycle, “T2”, of a bus transfer.

The timing of the parity check output (PCHK#) is shown in Figure 86. The Intel® Quark 
SoC X1000 Core drives the PCHK# output one clock after RDY# or BRDY# terminates a 
read cycle. PCHK# indicates the parity status for the data sampled at the end of the 
previous clock. The PCHK# signal can be used by the external system. The Intel® 
Quark SoC X1000 Core does nothing in response to the PCHK# output.

10.3.1.2 Inserting Wait States

The external system can insert wait states into the basic 2-2 cycle by deasserting RDY# 
at the end of the second clock. RDY# must be deasserted to insert a wait state. 
Figure 87 illustrates a simple non-burst, non-cacheable signal with one wait state 
added. Any number of wait states can be added to an Intel® Quark SoC X1000 Core 
bus cycle by maintaining RDY# deasserted.
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Figure 87. Basic 3-3 Bus Cycle

The burst ready input (BRDY#) must be deasserted on all clock edges where RDY# is 
deasserted for proper operation of these simple non-burst cycles.

10.3.2 Multiple and Burst Cycle Bus Transfers

Multiple cycle bus transfers can be caused by internal requests from the Intel® Quark 
SoC X1000 Core or by the external memory system. An internal request for a 128-bit 
pre-fetch requires more than one cycle. Internal requests for unaligned data may also 
require multiple bus cycles. A cache line fill requires multiple cycles to complete.

The external system can cause a multiple cycle transfer when it can only supply 8- or 
16-bits per cycle.

Only multiple cycle transfers caused by internal requests are considered in this section. 
Cacheable cycles and 8- and 16-bit transfers are covered in Section 10.3.3 and 
Section 10.3.5.

An internal request by the Intel® Quark SoC X1000 Core for a 64-bit floating-point load 
must take more than one internal cycle.

10.3.2.1 Burst Cycles

The Intel® Quark SoC X1000 Core can accept burst cycles for any bus requests that 
require more than a single data cycle. During burst cycles, a new data item is strobed 
into the Intel® Quark SoC X1000 Core every clock rather than every other clock as in 
non-burst cycles. The fastest burst cycle requires two clocks for the first data item, with 
subsequent data items returned every clock.

The Intel® Quark SoC X1000 Core is capable of bursting a maximum of 32 bits during a 
write. Burst writes can only occur if BS8# or BS16# is asserted. For example, the 
Intel® Quark SoC X1000 Core can burst write four 8-bit operands or two 16-bit 
operands in a single burst cycle. But the Intel® Quark SoC X1000 Core cannot burst 
multiple 32-bit writes in a single burst cycle.
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Burst cycles begin with the Intel® Quark SoC X1000 Core driving out an address and 
asserting ADS# in the same manner as non-burst cycles. The Intel® Quark SoC X1000 
Core indicates that it is willing to perform a burst cycle by holding the burst last signal 
(BLAST#) deasserted in the second clock of the cycle. The external system indicates its 
willingness to do a burst cycle by asserting the burst ready signal (BRDY#).

The addresses of the data items in a burst cycle all fall within the same 16-byte aligned 
area (corresponding to an internal Intel® Quark SoC X1000 Core cache line). A 16-byte 
aligned area begins at location XXXXXXX0 and ends at location XXXXXXXF. During a 
burst cycle, only BE[3:0]#, A2, and A3 may change. A[31:4], M/IO#, D/C#, and W/R# 
remain stable throughout a burst. Given the first address in a burst, external hardware 
can easily calculate the address of subsequent transfers in advance. An external 
memory system can be designed to quickly fill the Intel® Quark SoC X1000 Core 
internal cache lines.

Burst cycles are not limited to cache line fills. Any multiple cycle read request by the 
Intel® Quark SoC X1000 Core can be converted into a burst cycle. The Intel® Quark 
SoC X1000 Core only bursts the number of bytes needed to complete a transfer. For 
example, the Intel® Quark SoC X1000 Core bursts eight bytes for a 64-bit floating-
point non-cacheable read.

The external system converts a multiple cycle request into a burst cycle by asserting 
BRDY# rather than RDY# (non-burst ready) in the first cycle of a transfer. For cycles 
that cannot be burst, such as interrupt acknowledge and halt, BRDY# has the same 
effect as RDY#. BRDY# is ignored if both BRDY# and RDY# are asserted in the same 
clock. Memory areas and peripheral devices that cannot perform bursting must 
terminate cycles with RDY#.

10.3.2.2 Terminating Multiple and Burst Cycle Transfers

The Intel® Quark SoC X1000 Core deasserts BLAST# for all but the last cycle in a 
multiple cycle transfer. BLAST# is deasserted in the first cycle to inform the external 
system that the transfer could take additional cycles. BLAST# is asserted in the last 
cycle of the transfer to indicate that the next time BRDY# or RDY# is asserted the 
transfer is complete.

BLAST# is not valid in the first clock of a bus cycle. It should be sampled only in the 
second and subsequent clocks when RDY# or BRDY# is asserted.

The number of cycles in a transfer is a function of several factors including the number 
of bytes the Intel® Quark SoC X1000 Core needs to complete an internal request (1, 2, 
4, 8, or 16), the state of the bus size inputs (BS8# and BS16#), the state of the cache 
enable input (KEN#) and the alignment of the data to be transferred.

When the Intel® Quark SoC X1000 Core initiates a request, it knows how many bytes 
are transferred and if the data is aligned. The external system must indicate whether 
the data is cacheable (if the transfer is a read) and the width of the bus by returning 
the state of the KEN#, BS8# and BS16# inputs one clock before RDY# or BRDY# is 
asserted. The Intel® Quark SoC X1000 Core determines how many cycles a transfer 
will take based on its internal information and inputs from the external system.

BLAST# is not valid in the first clock of a bus cycle because the Intel® Quark SoC 
X1000 Core cannot determine the number of cycles a transfer will take until the 
external system asserts KEN#, BS8# and BS16#. BLAST# should only be sampled in 
the second T2 state and subsequent T2 states of a cycle when the external system 
asserts RDY# or BRDY#.

The system may terminate a burst cycle by asserting RDY# instead of BRDY#. BLAST# 
remains deasserted until the last transfer. However, any transfers required to complete 
a cache line fill follow the burst order; for example, if burst order was 4, 0, C, 8 and 
RDY# was asserted after 0, the next transfers are from C and 8.
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10.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers

Figure 88 illustrates a two-cycle, non-burst, non-cacheable read. This transfer is simply 
a sequence of two single cycle transfers. The Intel® Quark SoC X1000 Core indicates to 
the external system that this is a multiple cycle transfer by deasserting BLAST# during 
the second clock of the first cycle. The external system asserts RDY# to indicate that it 
will not burst the data. The external system also indicates that the data is not 
cacheable by deasserting KEN# one clock before it asserts RDY#. When the Intel® 
Quark SoC X1000 Core samples RDY# asserted, it ignores BRDY#.

Figure 88. Non-Cacheable, Non-Burst, Multiple-Cycle Transfers

Each cycle in the transfer begins when ADS# is asserted and the cycle is complete 
when the external system asserts RDY#.

The Intel® Quark SoC X1000 Core indicates the last cycle of the transfer by asserting 
BLAST#. The next RDY# asserted by the external system terminates the transfer.

10.3.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle request into a burst cycle by asserting 
BRDY# rather than RDY# in the first cycle of the transfer. This is illustrated in 
Figure 89.

There are several features to note in the burst read. ADS# is asserted only during the 
first cycle of the transfer. RDY# must be deasserted when BRDY# is asserted.

BLAST# behaves exactly as it does in the non-burst read. BLAST# is deasserted in the 
second clock of the first cycle of the transfer, indicating more cycles to follow. In the 
last cycle, BLAST# is asserted, prompting the external memory system to end the 
burst after asserting the next BRDY#.
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Figure 89. Non-Cacheable Burst Cycle

10.3.3 Cacheable Cycles

Any memory read can become a cache fill operation. The external memory system can 
allow a read request to fill a cache line by asserting KEN# one clock before RDY# or 
BRDY# during the first cycle of the transfer on the external bus. Once KEN# is asserted 
and the remaining three requirements described below are met, the Intel® Quark SoC 
X1000 Core fetches an entire cache line regardless of the state of KEN#. KEN# must be 
asserted in the last cycle of the transfer for the data to be written into the internal 
cache. The Intel® Quark SoC X1000 Core converts only memory reads or prefetches 
into a cache fill.

KEN# is ignored during write or I/O cycles. Memory writes are stored only in the on-
chip cache if there is a cache hit. I/O space is never cached in the internal cache.

To transform a read or a prefetch into a cache line fill, the following conditions must be 
met:
1. The KEN# pin must be asserted one clock prior to RDY# or BRDY# being asserted 

for the first data cycle.
2. The cycle must be of a type that can be internally cached. (Locked reads, I/O 

reads, and interrupt acknowledge cycles are never cached.)
3. The page table entry must have the page cache disable bit (PCD) set to 0. To cache 

a page table entry, the page directory must have PCD=0. To cache reads or 
prefetches when paging is disabled, or to cache the page directory entry, control 
register 3 (CR3) must have PCD=0.

4. The cache disable (CD) bit in control register 0 (CR0) must be clear.

External hardware can determine when the Intel® Quark SoC X1000 Core has 
transformed a read or prefetch into a cache fill by examining the KEN#, M/IO#, D/C#, 
W/R#, LOCK#, and PCD pins. These pins convey to the system the outcome of 
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conditions 1–3 in the above list. In addition, the Intel® Quark SoC X1000 Core drives 
PCD high whenever the CD bit in CR0 is set, so that external hardware can evaluate 
condition 4.

Cacheable cycles can be burst or non-burst.

10.3.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte enables should be ignored. In a 
non-cacheable memory read, the byte enables indicate the bytes actually required by 
the memory or code fetch.

The Intel® Quark SoC X1000 Core expects to receive valid data on its entire bus (32 
bits) in the first cycle of a cache line fill. Data should be returned with the assumption 
that all the byte enable pins are asserted. However if BS8# is asserted, only one byte 
should be returned on data lines D[7:0]. Similarly if BS16# is asserted, two bytes 
should be returned on D[15:0].

The Intel® Quark SoC X1000 Core generates the addresses and byte enables for all 
subsequent cycles in the line fill. The order in which data is read during a line fill 
depends on the address of the first item read. Byte ordering is discussed in 
Section 10.3.4.

10.3.3.2 Non-Burst Cacheable Cycles

Figure 90 shows a non-burst cacheable cycle. The cycle becomes a cache fill when the 
Intel® Quark SoC X1000 Core samples KEN# asserted at the end of the first clock. The 
Intel® Quark SoC X1000 Core deasserts BLAST# in the second clock in response to 
KEN#. BLAST# is deasserted because a cache fill requires three additional cycles to 
complete. BLAST# remains deasserted until the last transfer in the cache line fill. KEN# 
must be asserted in the last cycle of the transfer for the data to be written into the 
internal cache. 

Note that this cycle would be a single bus cycle if KEN# was not sampled asserted at 
the end of the first clock. The subsequent three reads would not have happened since a 
cache fill was not requested.

The BLAST# output is invalid in the first clock of a cycle. BLAST# may be asserted 
during the first clock due to earlier inputs. Ignore BLAST# until the second clock.

During the first cycle of the cache line fill the external system should treat the byte 
enables as if they are all asserted. In subsequent cycles in the burst, the Intel® Quark 
SoC X1000 Core drives the address lines and byte enables. (See Section 10.3.4.2.)
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Figure 90. Non-Burst, Cacheable Cycles

10.3.3.3 Burst Cacheable Cycles

Figure 91 illustrates a burst mode cache fill. As in Figure 90, the transfer becomes a 
cache line fill when the external system asserts KEN# at the end of the first clock in the 
cycle.

The external system informs the Intel® Quark SoC X1000 Core that it will burst the line 
in by asserting BRDY# at the end of the first cycle in the transfer.

Note that during a burst cycle, ADS# is only driven with the first address.
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Figure 91. Burst Cacheable Cycle

10.3.3.4 Effect of Changing KEN# during a Cache Line Fill

KEN# can change multiple times as long as it arrives at its final value in the clock 
before RDY# or BRDY# is asserted. This is illustrated in Figure 92. Note that the timing 
of BLAST# follows that of KEN# by one clock. The Intel® Quark SoC X1000 Core 
samples KEN# every clock and uses the value returned in the clock before BRDY# or 
RDY# to determine if a bus cycle would be a cache line fill. Similarly, it uses the value 
of KEN# in the last cycle before early RDY# to load the line just retrieved from memory 
into the cache. KEN# is sampled every clock and it must satisfy setup and hold times.

KEN# can also change multiple times before a burst cycle, as long as it arrives at its 
final value one clock before BRDY# or RDY# is asserted.
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Figure 92. Effect of Changing KEN#

10.3.4 Burst Mode Details

10.3.4.1 Adding Wait States to Burst Cycles

Burst cycles need not return data on every clock. The Intel® Quark SoC X1000 Core 
strobes data into the chip only when either RDY# or BRDY# is asserted. Deasserting 
BRDY# and RDY# adds a wait state to the transfer. A burst cycle where two clocks are 
required for every burst item is shown in Figure 93.
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Figure 93. Slow Burst Cycle

10.3.4.2 Burst and Cache Line Fill Order

The burst order used by the Intel® Quark SoC X1000 Core is shown in Table 67. This 
burst order is followed by any burst cycle (cache or not), cache line fill (burst or not) or 
code prefetch.

The Intel® Quark SoC X1000 Core presents each request for data in an order 
determined by the first address in the transfer. For example, if the first address was 
104 the next three addresses in the burst will be 100, 10C and 108. An example of 
burst address sequencing is shown in Figure 94.
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Table 67. Burst Order (Both Read and Write Bursts)

First Address Second Address Third Address Fourth Address

0 4 8 C

4 0 C 8

8 C 0 4

C 8 4 0
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Figure 94. Burst Cycle Showing Order of Addresses

The sequences shown in Table 67 accommodate systems with 64-bit buses as well as 
systems with 32-bit data buses. The sequence applies to all bursts, regardless of 
whether the purpose of the burst is to fill a cache line, perform a 64-bit read, or 
perform a pre-fetch. If either BS8# or BS16# is asserted, the Intel® Quark SoC X1000 
Core completes the transfer of the current 32-bit word before progressing to the next 
32-bit word. For example, a BS16# burst to address 4 has the following order: 
4-6-0-2-C-E-8-A.

10.3.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond with burst cycles in the order 
defined in Table 67. To support these systems, the Intel® Quark SoC X1000 Core allows 
a burst cycle to be interrupted at any time. The Intel® Quark SoC X1000 Core 
automatically generates another normal bus cycle after being interrupted to complete 
the data transfer. This is called an interrupted burst cycle. The external system can 
respond to an interrupted burst cycle with another burst cycle.

The external system can interrupt a burst cycle by asserting RDY# instead of BRDY#. 
RDY# can be asserted after any number of data cycles terminated with BRDY#.

An example of an interrupted burst cycle is shown in Figure 95. The Intel® Quark SoC 
X1000 Core immediately asserts ADS# to initiate a new bus cycle after RDY# is 
asserted. BLAST# is deasserted one clock after ADS# begins the second bus cycle, 
indicating that the transfer is not complete.
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Figure 95. Interrupted Burst Cycle

KEN# need not be asserted in the first data cycle of the second part of the transfer 
shown in Figure 96. The cycle had been converted to a cache fill in the first part of the 
transfer and the Intel® Quark SoC X1000 Core expects the cache fill to be completed. 
Note that the first half and second half of the transfer in Figure 95 are both two-cycle 
burst transfers.

The order in which the Intel® Quark SoC X1000 Core requests operands during an 
interrupted burst transfer is shown by Table 66. Mixing RDY# and BRDY# does not 
change the order in which operand addresses are requested by the Intel® Quark SoC 
X1000 Core.

An example of the order in which the Intel® Quark SoC X1000 Core requests operands 
during a cycle in which the external system mixes RDY# and BRDY# is shown in 
Figure 96. The Intel® Quark SoC X1000 Core initially requests a transfer beginning at 
location 104. The transfer becomes a cache line fill when the external system asserts 
KEN#. The first cycle of the cache fill transfers the contents of location 104 and is 
terminated with RDY#. The Intel® Quark SoC X1000 Core drives out a new request (by 
asserting ADS#) to address 100. If the external system terminates the second cycle 
with BRDY#, the Intel® Quark SoC X1000 Core next requests/expects address 10C. 
The correct order is determined by the first cycle in the transfer, which may not be the 
first cycle in the burst if the system mixes RDY# with BRDY#.
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Figure 96. Interrupted Burst Cycle with Non-Obvious Order of Addresses

10.3.5 8- and 16-Bit Cycles

The Intel® Quark SoC X1000 Core supports both 16- and 8-bit external buses through 
the BS16# and BS8# inputs. BS16# and BS8# allow the external system to specify, on 
a cycle-by-cycle basis, whether the addressed component can supply 8, 16 or 32 bits. 
BS16# and BS8# can be used in burst cycles as well as non-burst cycles. If both 
BS16# and BS8# are asserted for any bus cycle, the Intel® Quark SoC X1000 Core 
responds as if only BS8# is asserted.

The timing of BS16# and BS8# is the same as that of KEN#. BS16# and BS8# must be 
asserted before the first RDY# or BRDY# is asserted. Asserting BS16# and BS8# can 
force the Intel® Quark SoC X1000 Core to run additional cycles to complete what would 
have been only a single 32-bit cycle. BS8# and BS16# may change the state of 
BLAST# when they force subsequent cycles from the transfer.

Figure 97 shows an example in which BS8# forces the Intel® Quark SoC X1000 Core to 
run two extra cycles to complete a transfer. The Intel® Quark SoC X1000 Core issues a 
request for 24 bits of information. The external system asserts BS8#, indicating that 
only eight bits of data can be supplied per cycle. The Intel® Quark SoC X1000 Core 
issues two extra cycles to complete the transfer.
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Figure 97. 8-Bit Bus Size Cycle

Extra cycles forced by BS16# and BS8# signals should be viewed as independent bus 
cycles. BS16# and BS8# should be asserted for each additional cycle unless the 
addressed device can change the number of bytes it can return between cycles. The 
Intel® Quark SoC X1000 Core deasserts BLAST# until the last cycle before the transfer 
is complete.

Refer to Section 10.1.2 for the sequencing of addresses when BS8# or BS16# are 
asserted.

During burst cycles, BS8# and BS16# operate in the same manner as during non-burst 
cycles. For example, a single non-cacheable read could be transferred by the Intel® 
Quark SoC X1000 Core as four 8-bit burst data cycles. Similarly, a single 32-bit write 
could be written as four 8-bit burst data cycles. An example of a burst write is shown in 
Figure 98. Burst writes can only occur if BS8# or BS16# is asserted.
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Figure 98. Burst Write as a Result of BS8# or BS16#

10.3.6 Locked Cycles

Locked cycles are generated in software for any instruction that performs a read-
modify-write operation. During a read-modify-write operation, the Intel® Quark SoC 
X1000 Core can read and modify a variable in external memory and ensure that the 
variable is not accessed between the read and write.

Locked cycles are automatically generated during certain bus transfers. The XCHG 
(exchange) instruction generates a locked cycle when one of its operands is memory-
based. Locked cycles are generated when a segment or page table entry is updated and 
during interrupt acknowledge cycles. Locked cycles are also generated when the LOCK 
instruction prefix is used with selected instructions.

Locked cycles are implemented in hardware with the LOCK# pin. When LOCK# is 
asserted, the Intel® Quark SoC X1000 Core is performing a read-modify-write 
operation and the external bus should not be relinquished until the cycle is complete. 
Multiple reads or writes can be locked. A locked cycle is shown in Figure 99. LOCK# is 
asserted with the address and bus definition pins at the beginning of the first read cycle 
and remains asserted until RDY# is asserted for the last write cycle. For unaligned 32-
bit read-modify-write operations, the LOCK# remains asserted for the entire duration 
of the multiple cycle. It deasserts when RDY# is asserted for the last write cycle.

When LOCK# is asserted, the Intel® Quark SoC X1000 Core recognizes address hold 
and backoff but does not recognize bus hold. It is left to the external system to 
properly arbitrate a central bus when the Intel® Quark SoC X1000 Core generates 
LOCK#.
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Figure 99. Locked Bus Cycle

10.3.7 Pseudo-Locked Cycles

Pseudo-locked cycles assure that no other master is given control of the bus during 
operand transfers that take more than one bus cycle.

For the Intel® Quark SoC X1000 Core, examples include 64-bit description loads and 
cache line fills.

Pseudo-locked transfers are indicated by the PLOCK# pin. The memory operands must 
be aligned for correct operation of a pseudo-locked cycle.

PLOCK# need not be examined during burst reads. A 64-bit aligned operand can be 
retrieved in one burst (note that this is only valid in systems that do not interrupt 
bursts).

The system must examine PLOCK# during 64-bit writes since the Intel® Quark SoC 
X1000 Core cannot burst write more than 32 bits. However, burst can be used within 
each 32-bit write cycle if BS8# or BS16# is asserted. BLAST is de-asserted in response 
to BS8# or BS16#. A 64-bit write is driven out as two non-burst bus cycles. BLAST# is 
asserted during both 32-bit writes, because a burst is not possible. PLOCK# is asserted 
during the first write to indicate that another write follows. This behavior is shown in 
Figure 100.

The first cycle of a 64-bit floating-point write is the only case in which both PLOCK# 
and BLAST# are asserted. Normally PLOCK# and BLAST# are the inverse of each other.

During all of the cycles in which PLOCK# is asserted, HOLD is not acknowledged until 
the cycle completes. This results in a large HOLD latency, especially when BS8# or 
BS16# is asserted. To reduce the HOLD latency during these cycles, windows are 
available between transfers to allow HOLD to be acknowledged during non-cacheable 
code prefetches. PLOCK# is asserted because BLAST# is deasserted, but PLOCK# is 
ignored and HOLD is recognized during the prefetch.
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PLOCK# can change several times during a cycle, settling to its final value in the clock 
in which RDY# is asserted.

10.3.7.1 Floating-Point Read and Write Cycles

For Intel® Quark SoC X1000 Core, 64-bit floating-point read and write cycles are also 
examples of operand transfers that take more than one bus cycle.

Figure 100. Pseudo Lock Timing

10.3.8 Invalidate Cycles

Invalidate cycles keep the Intel® Quark SoC X1000 Core internal cache contents 
consistent with external memory. The Intel® Quark SoC X1000 Core contains a 
mechanism for monitoring writes by other devices to external memory. When the 
Intel® Quark SoC X1000 Core finds a write to a section of external memory contained 
in its internal cache, the Intel® Quark SoC X1000 Core's internal copy is invalidated.

Invalidations use two pins, address hold request (AHOLD) and valid external address 
(EADS#). There are two steps in an invalidation cycle. First, the external system 
asserts the AHOLD input forcing the Intel® Quark SoC X1000 Core to immediately 
relinquish its address bus. Next, the external system asserts EADS#, indicating that a 
valid address is on the Intel® Quark SoC X1000 Core address bus. Figure 101 shows 
the fastest possible invalidation cycle. The Intel® Quark SoC X1000 Core recognizes 
AHOLD on one CLK edge and floats the address bus in response. To allow the address 
bus to float and avoid contention, EADS# and the invalidation address should not be 
driven until the following CLK edge. The Intel® Quark SoC X1000 Core reads the 
address over its address lines. If the Intel® Quark SoC X1000 Core finds this address in 
its internal cache, the cache entry is invalidated. Note that the Intel® Quark SoC X1000 
Core address bus is input/output.
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Figure 101. Fast Internal Cache Invalidation Cycle

Figure 102. Typical Internal Cache Invalidation Cycle
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10.3.8.1 Rate of Invalidate Cycles

The Intel® Quark SoC X1000 Core can accept one invalidate per clock except in the last 
clock of a line fill. One invalidate per clock is possible as long as EADS# is deasserted in 
ONE or BOTH of the following cases:
1. In the clock in which RDY# or BRDY# is asserted for the last time.
2. In the clock following the clock in which RDY# or BRDY# is asserted for the last 

time.

This definition allows two system designs. Simple designs can restrict invalidates to one 
every other clock. The simple design need not track bus activity. Alternatively, systems 
can request one invalidate per clock provided that the bus is monitored.

10.3.8.2 Running Invalidate Cycles Concurrently with Line Fills

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support 
second-level cache. 

Precautions are necessary to avoid caching stale data in the Intel® Quark SoC X1000 
Core cache in a system with a second-level cache. An example of a system with a 
second-level cache is shown in Figure 103.

An external device can write to main memory over the system bus while the Intel® 
Quark SoC X1000 Core is retrieving data from the second-level cache. The Intel® 
Quark SoC X1000 Core must invalidate a line in its internal cache if the external device 
is writing to a main memory address that is also contained in the Intel® Quark SoC 
X1000 Core cache.

A potential problem exists if the external device is writing to an address in external 
memory, and at the same time the Intel® Quark SoC X1000 Core is reading data from 
the same address in the second-level cache. The system must force an invalidation 
cycle to invalidate the data that the Intel® Quark SoC X1000 Core has requested during 
the line fill.
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Figure 103. System with Second-Level Cache

If the system asserts EADS# before the first data in the line fill is returned to the Intel® 
Quark SoC X1000 Core, the system must return data consistent with the new data in 
the external memory upon resumption of the line fill after the invalidation cycle. This is 
illustrated by the asserted EADS# signal labeled “1” in Figure 104.

If the system asserts EADS# at the same time or after the first data in the line fill is 
returned (in the same clock that the first RDY# or BRDY# is asserted or any 
subsequent clock in the line fill) the data is read into the Intel® Quark SoC X1000 Core 
input buffers but it is not stored in the on-chip cache. This is illustrated by asserted 
EADS# signal labeled “2” in Figure 104. The stale data is used to satisfy the request 
that initiated the cache fill cycle.
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Figure 104. Cache Invalidation Cycle Concurrent with Line Fill

10.3.9 Bus Hold

The Intel® Quark SoC X1000 Core provides a bus hold, hold acknowledge protocol 
using the bus hold request (HOLD) and bus hold acknowledge (HLDA) pins. Asserting 
the HOLD input indicates that another bus master has requested control of the Intel® 
Quark SoC X1000 Core bus. The Intel® Quark SoC X1000 Core responds by floating its 
bus and asserting HLDA when the current bus cycle, or sequence of locked cycles, is 
complete. An example of a HOLD/HLDA transaction is shown in Figure 105. The Intel® 
Quark SoC X1000 Core can respond to HOLD by floating its bus and asserting HLDA 
while RESET is asserted.
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Figure 105. HOLD/HLDA Cycles

Note that HOLD is recognized during un-aligned writes (less than or equal to 32 bits) 
with BLAST# being asserted for each write. For a write greater than 32-bits or an un-
aligned write, HOLD# recognition is prevented by PLOCK# getting asserted. However, 
HOLD is recognized during non-cacheable, non-burstable code prefetches even though 
PLOCK# is asserted.

For cacheable and non-burst or burst cycles, HOLD is acknowledged during backoff only 
if HOLD and BOFF# are asserted during an active bus cycle (after ADS# asserted) and 
before the first RDY# or BRDY# has been asserted (see Figure 106). The order in which 
HOLD and BOFF# are asserted is unimportant (as long as both are asserted prior to the 
first RDY#/BRDY# asserted by the system). Figure 106 shows the case where HOLD is 
asserted first; HOLD could be asserted simultaneously or after BOFF# and still be 
acknowledged.

The pins floated during bus hold are: BE[3:0]#, PCD, PWT, W/R#, D/C#, M/O#, 
LOCK#, PLOCK#, ADS#, BLAST#, D[31:0], A[31:2], and DP[3:0].
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Figure 106. HOLD Request Acknowledged during BOFF#

10.3.10 Interrupt Acknowledge

The Intel® Quark SoC X1000 Core generates interrupt acknowledge cycles in response 
to maskable interrupt requests that are generated on the interrupt request input 
(INTR) pin. Interrupt acknowledge cycles have a unique cycle type generated on the 
cycle type pins.

An example of an interrupt acknowledge transaction is shown in Figure 107. Interrupt 
acknowledge cycles are generated in locked pairs. Data returned during the first cycle 
is ignored. The interrupt vector is returned during the second cycle on the lower 8 bits 
of the data bus. The Intel® Quark SoC X1000 Core has 256 possible interrupt vectors.

The state of A2 distinguishes the first and second interrupt acknowledge cycles. The 
byte address driven during the first interrupt acknowledge cycle is 4 (A[31:3] low, A2 
high, BE[3:1]# high, and BE0# low). The address driven during the second interrupt 
acknowledge cycle is 0 (A[31:2] low, BE[3:1]# high, BE0# low).

Each of the interrupt acknowledge cycles is terminated when the external system 
asserts RDY# or BRDY#. Wait states can be added by holding RDY# or BRDY# 
deasserted. The Intel® Quark SoC X1000 Core automatically generates four idle clocks 
between the first and second cycles to allow for 8259A recovery time.
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Figure 107. Interrupt Acknowledge Cycles

10.3.11 Special Bus Cycles

The Intel® Quark SoC X1000 Core provides special bus cycles to indicate that certain 
instructions have been executed, or certain conditions have occurred internally. The 
special bus cycles are identified by the status of the pins shown in Table 68.

During these cycles the address bus is driven low while the data bus is undefined.

Two of the special cycles indicate halt or shutdown. Another special cycle is generated 
when the Intel® Quark SoC X1000 Core executes an INVD (invalidate data cache) 
instruction and could be used to flush an external cache. The Write Back cycle is 
generated when the Intel® Quark SoC X1000 Core executes the WBINVD (write-back 
invalidate data cache) instruction and could be used to synchronize an external write-
back cache.

The external hardware must acknowledge these special bus cycles by asserting RDY# 
or BRDY#.

10.3.11.1 HALT Indication Cycle

The Intel® Quark SoC X1000 Core halts as a result of executing a HALT instruction. A 
HALT indication cycle is performed to signal that the processor has entered into the 
HALT state. The HALT indication cycle is identified by the bus definition signals in 
special bus cycle state and by a byte address of 2. BE0# and BE2# are the only signals 
that distinguish HALT indication from shutdown indication, which drives an address of 
0. During the HALT cycle, undefined data is driven on D[31:0]. The HALT indication 
cycle must be acknowledged by RDY# asserted.

A halted Intel® Quark SoC X1000 Core resumes execution when INTR (if interrupts are 
enabled), NMI, or RESET is asserted.
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10.3.11.2 Shutdown Indication Cycle

The Intel® Quark SoC X1000 Core shuts down as a result of a protection fault while 
attempting to process a double fault. A shutdown indication cycle is performed to 
indicate that the processor has entered a shutdown state. The shutdown indication 
cycle is identified by the bus definition signals in special bus cycle state and a byte 
address of 0.

10.3.11.3 Stop Grant Indication Cycle

A special Stop Grant bus cycle is driven to the bus after the processor recognizes the 
STPCLK# interrupt. The definition of this bus cycle is the same as the HALT cycle 
definition for the Intel® Quark SoC X1000 Core, with the exception that the Stop Grant 
bus cycle drives the value 0000 0010H on the address pins. The system hardware must 
acknowledge this cycle by asserting RDY# or BRDY#. The processor does not enter the 
Stop Grant state until either RDY# or BRDY# has been asserted. (See Figure 108.)

The Stop Grant Bus Cycle is defined as follows:

M/IO# = 0, D/C# = 0, W/R# = 1, Address Bus = 0000 0010H (A4 = 1), BE[3:0]# = 
1011, Data bus = undefined.

The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on 
the current instruction, the amount of data in the processor write buffers, and the 
system memory performance.

Figure 108. Stop Grant Bus Cycle

Table 68. Special Bus Cycle Encoding

Cycle Name M/IO# D/C# W/R# BE[3:0]# A4-A2

Write-Back† 0 0 1 0111 000

First Flush Ack Cycle† 0 0 1 0111 001

Flush† 0 0 1 1101 000

Second Flush Ack Cycle† 0 0 1 1101 001

Shutdown 0 0 1 1110 000

HALT 0 0 1 1011 000

Stop Grant Ack Cycle 0 0 1 1011 100

† These cycles are specific to the Write-Back Enhanced Intel® Quark SoC X1000 Core. 
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10.3.12 Bus Cycle Restart

In a multi-master system, another bus master may require the use of the bus to enable 
the Intel® Quark SoC X1000 Core to complete its current bus request. In this situation, 
the Intel® Quark SoC X1000 Core must restart its bus cycle after the other bus master 
has completed its bus transaction.

A bus cycle may be restarted if the external system asserts the backoff (BOFF#) input. 
The Intel® Quark SoC X1000 Core samples the BOFF# pin every clock cycle. When 
BOFF# is asserted, the Intel® Quark SoC X1000 Core floats its address, data, and 
status pins in the next clock (see Figure 109 and Figure 110). Any bus cycle in progress 
when BOFF# is asserted is aborted and any data returned to the processor is ignored. 
The pins that are floated in response to BOFF# are the same as those that are floated 
in response to HOLD. HLDA is not generated in response to BOFF#. BOFF# has higher 
priority than RDY# or BRDY#. If either RDY# or BRDY# are asserted in the same clock 
as BOFF#, BOFF# takes effect.

Figure 109. Restarted Read Cycle
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Figure 110. Restarted Write Cycle

The device asserting BOFF# is free to run cycles while the Intel® Quark SoC X1000 
Core bus is in its high impedance state. If backoff is requested after the Intel® Quark 
SoC X1000 Core has started a cycle, the new master should wait for memory to assert 
RDY# or BRDY# before assuming control of the bus. Waiting for RDY# or BRDY# 
provides a handshake to ensure that the memory system is ready to accept a new 
cycle. If the bus is idle when BOFF# is asserted, the new master can start its cycle two 
clocks after issuing BOFF#.

The external memory can view BOFF# in the same manner as BLAST#. Asserting 
BOFF# tells the external memory system that the current cycle is the last cycle in a 
transfer.

The bus remains in the high impedance state until BOFF# is deasserted. Upon 
negation, the Intel® Quark SoC X1000 Core restarts its bus cycle by driving out the 
address and status and asserting ADS#. The bus cycle then continues as usual.

Asserting BOFF# during a burst, BS8#, or BS16# cycle forces the Intel® Quark SoC 
X1000 Core to ignore data returned for that cycle only. Data from previous cycles is still 
valid. For example, if BOFF# is asserted on the third BRDY# of a burst, the Intel® 
Quark SoC X1000 Core assumes the data returned with the first and second BRDY# is 
correct and restarts the burst beginning with the third item. The same rule applies to 
transfers broken into multiple cycles by BS8# or BS16#.

Asserting BOFF# in the same clock as ADS# causes the Intel® Quark SoC X1000 Core 
to float its bus in the next clock and leave ADS# floating low. Because ADS# is floating 
low, a peripheral may think that a new bus cycle has begun even though the cycle was 
aborted. There are two possible solutions to this problem. The first is to have all 
devices recognize this condition and ignore ADS# until RDY# is asserted. The second 
approach is to use a “two clock” backoff: in the first clock AHOLD is asserted, and in the 
second clock BOFF# is asserted. This guarantees that ADS# is not floating low. This is 
necessary only in systems where BOFF# may be asserted in the same clock as ADS#.
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10.3.13 Bus States

A bus state diagram is shown in Figure 111. A description of the signals used in the 
diagram is given in Table 69.

Figure 111. Bus State Diagram
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† HOLD is only factored into this state transition if Tb was 
entered while a non-cacheable. non-burst, code prefetch was 
in progress. Otherwise, ignore HOLD.

Table 69. Bus State Description

State Means

Ti Bus is idle. Address and status signals may be driven to undefined values, or the bus may be 
floated to a high impedance state.

T1 First clock cycle of a bus cycle. Valid address and status are driven and ADS# is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is 
expected if the cycle is a read. RDY# and BRDY# are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS# is asserted.

Tb Second and subsequent clock cycles of an aborted bus cycle.
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10.3.14 Floating-Point Error Handling for the Intel® Quark SoC X1000 
Core

The Intel® Quark SoC X1000 Core provides two options for reporting floating-point 
errors. The simplest method is to raise interrupt 16 whenever an unmasked floating-
point error occurs. This option may be enabled by setting the NE bit in control register 
0 (CR0).

The Intel® Quark SoC X1000 Core also provides the option of allowing external 
hardware to determine how floating-point errors are reported. This option is necessary 
for compatibility with the error reporting scheme used in DOS-based systems. The NE 
bit must be cleared in CR0 to enable user-defined error reporting. User-defined error 
reporting is the default condition because the NE bit is cleared on reset.

Two pins, floating-point error (FERR#, an output) and ignore numeric error (IGNNE#, 
an input) are provided to direct the actions of hardware if user-defined error reporting 
is used. The Intel® Quark SoC X1000 Core asserts the FERR# output to indicate that a 
floating-point error has occurred. 

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 provides the 
capability to control the IGNNE# pin via a register; the default value of the register is 
1'b0.

In some cases FERR# is asserted when the next floating-point instruction is 
encountered, and in other cases it is asserted before the next floating-point instruction 
is encountered, depending upon the execution state of the instruction causing the 
exception.

10.3.14.1 Floating-Point Exceptions

The following class of floating-point exceptions drive FERR# at the time the exception 
occurs (i.e., before encountering the next floating-point instruction).
1. The stack fault, invalid operation, and denormal exceptions on all transcendental 

instructions, integer arithmetic instructions, FSQRT, FSEALE, FPREM(1), FXTRACT, 
FBLD, and FBSTP.

2. Any exceptions on store instructions (including integer store instructions).

The following class of floating-point exceptions drive FERR# only after encountering the 
next floating-point instruction.
1. Exceptions other than on all transcendental instructions, integer arithmetic 

instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP.
2. Any exception on all basic arithmetic, load, compare, and control instructions (i.e., 

all other instructions).

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 provides the 
capability to control the IGNNE# pin via a register; the default value of the register is 
1'b0.

IGNNE# is an input to the Intel® Quark SoC X1000 Core. When the NE bit in CR0 is 
cleared, and IGNNE# is asserted, the Intel® Quark SoC X1000 Core ignores user 
floating-point errors and continue executing floating-point instructions. When IGNNE# 
is deasserted, the IGNNE# is an input to these processors that freeze on floating-point 
instructions that get errors (except for the control instructions FNCLEX, FNINIT, 
FNSAVE, FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI and FNSETPM). 
IGNNE# may be asynchronous to the Intel® Quark SoC X1000 Core clock.
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In systems with user-defined error reporting, the FERR# pin is connected to the 
interrupt controller. When an unmasked floating-point error occurs, an interrupt is 
raised. If IGNNE# is high at the time of this interrupt, the Intel® Quark SoC X1000 
Core freezes (disallowing execution of a subsequent floating-point instruction) until the 
interrupt handler is invoked. By driving the IGNNE# pin low (when clearing the 
interrupt request), the interrupt handler can allow execution of a floating-point 
instruction, within the interrupt handler, before the error condition is cleared (by 
FNCLEX, FNINIT, FNSAVE or FNSTENV). If execution of a non-control floating-point 
instruction, within the floating-point interrupt handler, is not needed, the IGNNE# pin 
can be tied high.

10.3.15 Intel® Quark SoC X1000 Core Floating-Point Error Handling in 
AT-Compatible Systems

The Intel® Quark SoC X1000 Core provides special features to allow the 
implementation of an AT-compatible numerics error reporting scheme. These features 
DO NOT replace the external circuit. Logic is still required that decodes the OUT F0 
instruction and latches the FERR# signal. The use of these features is described below.

• The NE bit in the Machine Status Register
• The IGNNE# pin

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 
provides the capability to control the IGNNE# pin via a register; the default 
value of the register is 1'b0.

• The FERR# pin

The NE bit determines the action taken by the Intel® Quark SoC X1000 Core when a 
numerics error is detected. When set, this bit signals that non-DOS compatible error 
handling is implemented. In this mode the Intel® Quark SoC X1000 Core takes a 
software exception (16) if a numerics error is detected.

If the NE bit is reset, the Intel® Quark SoC X1000 Core uses the IGNNE# pin to allow 
an external circuit to control the time at which non-control numerics instructions are 
allowed to execute. Note that floating-point control instructions such as FNINIT and 
FNSAVE can be executed during a floating-point error condition regardless of the state 
of IGNNE#.

10.4 Enhanced Bus Mode Operation for the Write-Back 
Enhanced Intel® Quark SoC X1000 Core

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 supports 
enhanced bus mode only (standard bus mode is not supported). 

The Intel® Quark SoC X1000 Core operates in Standard Bus (write-through) mode. 
However, when the internal cache is configured in write-back mode, the processor bus 
operates in the Enhanced Bus mode. This section describes how the bus operation 
changes for the Enhanced Bus mode when the internal cache is configured in write-
back mode.

10.4.1 Summary of Bus Differences

Differences between the Enhanced Bus and Standard Bus modes are summarized as:
1. Burst write capability is extended to four doubleword burst cycles (for write-back 

cycles only).
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2. Four signals: INV, WB/WT#, HITM#, and CACHE#, support the write-back 
operation of the internal cache. 

3. The SRESET signal does not write back, invalidate, or disable the cache. Special 
test modes are also not initiated through SRESET.

4. The FLUSH# signal behaves the same as the WBINVD instruction. Upon assertion, 
FLUSH# writes back all modified lines, invalidates the cache, and issues two special 
bus cycles.

5. The PLOCK# signal remains deasserted.

10.4.2 Burst Cycles

Figure 112 shows a basic burst read cycle of the Write-Back Enhanced Intel® Quark 
SoC X1000 Core. In the Enhanced Bus mode, both PCD and CACHE# are asserted if the 
cycle is internally cacheable. The Write-Back Enhanced Intel® Quark SoC X1000 Core 
samples KEN# in the clock before the first BRDY#. If KEN# is asserted by the system, 
this cycle is transformed into a multiple-transfer cycle. With each data item returned 
from external memory, the data is “cached” only if KEN# is asserted again in the clock 
before the last BRDY# signal. Data is sampled only in the clock in which BRDY# is 
asserted. If the data is not sent to the processor every clock, it causes a “slow burst” 
cycle.

Figure 112. Basic Burst Read Cycle

10.4.2.1 Non-Cacheable Burst Operation

When CACHE# is asserted on a read cycle, the processor follows with BLAST# high 
when KEN# is asserted. However, the converse is not true. The Write-Back Enhanced 
Intel® Quark SoC X1000 Core may elect to read burst data that are identified as non-
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cacheable by either CACHE# or KEN#. In this case, BLAST# is also high in the same 
cycle as the first BRDY# (in clock four). To improve performance, the memory 
controller should try to complete the cycle as a burst cycle.

The assertion of CACHE# on a write cycle signifies a replacement or snoop write-back 
cycle. These cycles consist of four doubleword transfers (either bursts or non-burst). 
The signals KEN# and WB/WT# are not sampled during write-back cycles because the 
processor does not attempt to redefine the cacheability of the line.

10.4.2.2 Burst Cycle Signal Protocol

The signals from ADS# through BLAST#, which are shown in Figure 112, have the 
same function and timing in both Standard Bus and Enhanced Bus modes. Burst cycles 
can be up to 16-bytes long (four aligned doublewords) and can start with any one of 
the four doublewords. The sequence of the addresses is determined by the first address 
and the sequence follows the order shown in Table 67. The burst order for reads is the 
same as the burst order for writes. (See Section 10.3.4.2.)

An attempted line fill caused by a read miss is indicated by the assertion of CACHE# 
and W/R#. For a line fill to occur, the system must assert KEN# twice: one clock prior 
to the first BRDY# and one clock prior to last BRDY#. It takes only one deassertion of 
KEN# to mark the line as non-cacheable. A write-back cycle of a cache line, due to 
replacement or snoop, is indicated by the assertion of CACHE# low and W/R# high. 
KEN# has no effect during write-back cycles. CACHE# is valid from the assertion of 
ADS# through the clock in which the first RDY# or BRDY# is asserted. CACHE# is 
deasserted at all other times. PCD behaves the same in Enhanced Bus mode as in 
Standard Bus mode, except that it is low during write-back cycles. 

The Write-Back Enhanced Intel® Quark SoC X1000 Core samples WB/WT# once, in the 
same clock as the first BRDY#. This sampled value of WB/WT# is combined with PWT 
to bring the line into the internal cache, either as a write-back line or write-through 
line.

10.4.3 Cache Consistency Cycles

The system performs snooping to maintain cache consistency. Snoop cycles can be 
performed under AHOLD, BOFF#, or HOLD, as described in Table 70.

The snoop cycle begins by checking whether a particular cache line has been “cached” 
and invalidates the line based on the state of the INV pin. If the Write-Back Enhanced 
Intel® Quark SoC X1000 Core is configured in Enhanced Bus mode, the system must 
drive INV high to invalidate a particular cache line. The Write-Back Enhanced Intel® 
Quark SoC X1000 Core does not have an output pin to indicate a snoop hit to an S-
state line or an E-state line. However, the Write-Back Enhanced Intel® Quark SoC 

Table 70. Snoop Cycles under AHOLD, BOFF#, or HOLD

AHOLD

Floats the address bus. ADS# is asserted under AHOLD only to initiate a snoop write-back cycle. 
An ongoing burst cycle is completed under AHOLD. For non-burst cycles, a specific non-burst 
transfer (ADS#-RDY# transfer) is completed under AHOLD and fractured before the next 
assertion of ADS#. A snoop write-back cycle is reordered ahead of a fractured non-burst cycle 
and the non-burst cycle is completed only after the snoop write-back cycle is completed, 
provided there are no other snoop write-back cycles scheduled.

BOFF#
Overrides AHOLD and takes effect in the next clock. On-going bus cycles will stop in the clock 
following the assertion of BOFF# and resume when BOFF# is de-asserted. The snoop write-back 
cycle begins after BOFF# is de-asserted followed by the backed-off cycle.

HOLD

HOLD is acknowledged only between bus cycles, except for a non-cacheable, non-burst code 
prefetch cycle. In a non-cacheable, non-burst code prefetch cycle, HOLD is acknowledged after 
the system asserts RDY#. Once HOLD is asserted, the processor blocks all bus activities until 
the system releases the bus (by de-asserting HOLD).
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X1000 Core invalidates the line if the system snoop hits an S-state, E-state, or M-state 
line, provided INV was driven high during snooping. If INV is driven low during a snoop 
cycle, a modified line is written back to memory and remains in the cache as a write-
back line; a write-through line also remains in the cache as a write-through line.

After asserting AHOLD or BOFF#, the external bus master driving the snoop cycle must 
wait for two clocks before driving the snoop address and asserting EADS#. If snooping 
is done under HOLD, the master performing the snoop must wait for at least one clock 
cycle before driving the snoop addresses and asserting EADS#. INV should be driven 
low during read operations to minimize invalidations, and INV should be driven high to 
invalidate a cache line during write operations. The Write-Back Enhanced Intel® Quark 
SoC X1000 Core asserts HITM# if the cycle hits a modified line in the cache. This 
output signal becomes valid two clock periods after EADS# is valid on the bus. HITM# 
remains asserted until the modified line is written back and remains asserted until the 
RDY# or BRDY# of the snoop cycle is asserted. Snoop operations could interrupt an 
ongoing bus operation in both the Standard Bus and Enhanced Bus modes. 

The Write-Back Enhanced Intel® Quark SoC X1000 Core can accept EADS# in every 
clock period while in Standard Bus mode. In Enhanced Bus mode, the Write-Back 
Enhanced Intel® Quark SoC X1000 Core can accept EADS# every other clock period or 
until a snoop hits an M-state line.

The Write-Back Enhanced Intel® Quark SoC X1000 Core does not accept any further 
snoop cycles inputs until the previous snoop write-back operation is completed. 

All write-back cycles adhere to the burst address sequence of 0-4-8-C. The CACHE#, 
PWT, and PCD output pins are asserted and the KEN# and WB/WT# input pins are 
ignored. Write-back cycles can be either burst or non-burst. All write-back operations 
write 16 bytes of data to memory corresponding to the modified line that hit during the 
snoop. 

Note: The Write-Back Enhanced Intel® Quark SoC X1000 Core accepts BS8# and BS16# line-
fill cycles, but not on replacement or snoop-forced write-back cycles.

10.4.3.1 Snoop Collision with a Current Cache Line Operation

The system can also perform snooping concurrent with a cache access and may collide 
with a current cache bus cycle. Table 71 lists some scenarios and the results of a snoop 
operation colliding with an on-going cache fill or replacement cycle.
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10.4.3.2 Snoop under AHOLD

Snooping under AHOLD begins by asserting AHOLD to force the Write-Back Enhanced 
Intel® Quark SoC X1000 Core to float the address bus, as shown in Figure 113. The 
ADS# for the write-back cycle is guaranteed to occur no sooner than the second clock 
following the assertion of HITM# (i.e., there is a dead clock between the assertion of 
HITM# and the first ADS# of the snoop write-back cycle). 

When a line is written back, KEN#, WB/WT#, BS8#, and BS16# are ignored, and PWT 
and PCD are always low during write-back cycles. 

Table 71. Various Scenarios of a Snoop Write-Back Cycle Colliding with an On-Going 
Cache Fill or Replacement Cycle

Arbi-
tration 
Control

Snoop to the Line 
That Is Being 

Filled 

Snoop to a 
Different Line than 

the Line Being 
Filled 

Snoop to the Line 
That Is Being 

Replaced 

Snoop to a Different 
Line than the Line 

Being Replaced

AHOLD

Read all line fill data 
into cache line 
buffer.
Update cache only if 
snoop occurred with 
INV = 0
No write-back cycle 
because the line has 
not been modified 
yet.

Complete fill if the 
cycle is burst. Start 
snoop write-back. 
If the cycle is non-
burst, the snoop 
write-back is 
reordered ahead of 
the line fill.
After the snoop write-
back cycle is 
completed, continue 
with line fill.

Complete replacement 
write-back if the cycle 
is burst. Processor 
does not initiate a 
snoop write-back, but 
asserts HITM# until 
the replacement write-
back is completed.
If the replacement 
cycle is non-burst, the 
snoop write-back is 
re-ordered ahead of 
the replacement write-
back cycle. The 
processor does not 
continue with the 
replacement write-
back cycle.

Complete replacement 
write-back if it is a burst 
cycle. Initiate snoop 
write-back. 
If the replacement 
write-back is a non-
burst cycle, the snoop 
write-back cycle is re-
ordered in front of the 
replacement cycle. After 
the snoop write-back, 
the replacement write-
back is continued from 
the interrupt point.

BOFF#

Stop reading line fill 
data
Wait for BOFF# to 
be deasserted. 
Continue read from 
backed off point
Update cache only if 
snoop occurred with 
INV = '0'.

Stop fill
Wait for BOFF# to be 
deasserted.
Do snoop write-back
Continue fill from 
interrupt point.

Stop replacement 
write-back
Wait for BOFF# to be 
deasserted.
Initiate snoop write-
back
Processor does not 
continue replacement 
write-back.

Stop replacement write-
back
Wait for BOFF# to be 
de-asserted
Initiate snoop write-
back
Continue replacement 
write-back from point of 
interrupt.

HOLD

HOLD is not acknowledged until the current bus cycle (i.e., the line operation) is completed, 
except for a non-cacheable, non-burst code prefetch cycle. Consequently there can be no 
collision with the snoop cycles using HOLD, except as mentioned earlier. In this case the snoop 
write-back is re-ordered ahead of an on-going non-burst, non-cached code prefetch cycle. After 
the write-back cycle is completed, the code prefetch cycle continues from the point of interrupt.
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Figure 113. Snoop Cycle Invalidating a Modified Line

The next ADS# for a new cycle can occur immediately after the last RDY# or BRDY# of 
the write-back cycle. The Write-Back Enhanced Intel® Quark SoC X1000 Core does not 
guarantee a dead clock between cycles unless the second cycle is a snoop-forced write-
back cycle. This allows snoop-forced write-backs to be backed off (BOFF#) when 
snooping under AHOLD.

HITM# is guaranteed to remain asserted until the RDY# or BRDY# signals 
corresponding to the last doubleword of the write-back cycle is returned. HITM# is de-
asserted from the clock edge in which the last BRDY# or RDY# for the snoop write-
back cycle is asserted. The write-back cycle could be a burst or non-burst cycle. In 
either case, 16 bytes of data corresponding to the modified line that has a snoop hit is 
written back.

10.4.3.2.1 Snoop under AHOLD Overlaying a Line-Fill Cycle

The assertion of AHOLD during a line fill is allowed on the Write-Back Enhanced Intel® 
Quark SoC X1000 Core. In this case, when a snoop cycle is overlaid by an on-going 
line-fill cycle, the chipset must generate the burst addresses internally for the line fill to 
complete, because the address bus has the valid snoop address. The write-back mode 
is more complex compared to the write-through mode because of the possibility of a 
line being written back. Figure 114 shows a snoop cycle overlaying a line-fill cycle, 
when the snooped line is not the same as the line being filled.
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In Figure 114, the snoop to an M-state line causes a snoop write-back cycle. The Write-
Back Enhanced Intel® Quark SoC X1000 Core asserts HITM# two clocks after the 
EADS#, but delays the snoop write-back cycle until the line fill is completed, because 
the line fill shown in Figure 114 is a burst cycle. In this figure, AHOLD is asserted one 
clock after ADS#. In the clock after AHOLD is asserted, the Write-Back Enhanced 
Intel® Quark SoC X1000 Core floats the address bus (not the Byte Enables). Hence, 
the memory controller must determine burst addresses in this period. The chipset must 
comprehend the special ordering required by all burst sequences of the Write-Back 
Enhanced Intel® Quark SoC X1000 Core. HITM# is guaranteed to remain asserted until 
the write-back cycle completes.

If AHOLD continues to be asserted over the forced write-back cycle, the memory 
controller also must supply the write-back addresses to the memory. The Write-Back 
Enhanced Intel® Quark SoC X1000 Core always runs the write-back with an address 
sequence of 0-4-8-C.

In general, if the snoop cycle overlays any burst cycle (not necessarily a line-fill cycle) 
the snoop write-back is delayed because of the on-going burst cycle. First, the burst 
cycle goes to completion and only then does the snoop write-back cycle start.

Figure 114. Snoop Cycle Overlaying a Line-Fill Cycle
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10.4.3.2.2 AHOLD Snoop Overlaying a Non-Burst Cycle

When AHOLD overlays a non-burst cycle, snooping is based on the completion of the 
current non-burst transfer (ADS#-RDY# transfer). Figure 115 shows a snoop cycle 
under AHOLD overlaying a non-burst line-fill cycle. HITM# is asserted two clocks after 
EADS#, and the non-burst cycle is fractured after the RDY# for a specific single 
transfer is asserted. The snoop write-back cycle is re-ordered ahead of an ongoing non-
burst cycle. After the write-back cycle is completed, the fractured non-burst cycle 
continues. The snoop write-back ALWAYS precedes the completion of a fractured cycle, 
regardless of the point at which AHOLD is de-asserted, and AHOLD must be de-
asserted before the fractured non-burst cycle can complete.

Figure 115. Snoop Cycle Overlaying a Non-Burst Cycle

10.4.3.2.3 AHOLD Snoop to the Same Line that is being Filled

A system snoop does not cause a write-back cycle to occur if the snoop hits a line while 
the line is being filled. The processor does not allow a line to be modified until the fill is 
completed (and a snoop only produces a write-back cycle for a modified line). Although 
a snoop to a line that is being filled does not produce a write-back cycle, the snoop still 
has an effect based on the following rules:
1. The processor always snoops the line being filled.
2. In all cases, the processor uses the operand that triggered the line fill.
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3. If the snoop occurs when INV = “1”, the processor never updates the cache with 
the fill data.

4. If the snoop occurs when INV = “0”, the processor loads the line into the internal 
cache.

10.4.3.3 Snoop During Replacement Write-Back

If the cache contains valid data during a line fill, one of the cache lines may be replaced 
as determined by the Least Recently Used (LRU) algorithm. Refer to Chapter 7.0, “On-
Chip Cache” for a detailed discussion of the LRU algorithm. If the line being replaced is 
modified, this line is written back to maintain cache coherency. When a replacement 
write-back cycle is in progress, it might be necessary to snoop the line that is being 
written back (see Figure 116).

Figure 116. Snoop to the Line that is Being Replaced

If the replacement write-back cycle is burst and there is a snoop hit to the same line as 
the line that is being replaced, the on-going replacement cycle runs to completion. 
HITM# is asserted until the line is written back and the snoop write-back is not 
initiated. In this case, the replacement write-back is converted to the snoop write-back, 
and HITM# is asserted and de-asserted without a specific ADS# to initiate the write-
back cycle. 
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If there is a snoop hit to a different line from the line being replaced, and if the 
replacement write-back cycle is burst, the replacement cycle goes to completion. Only 
then is the snoop write-back cycle initiated.

If the replacement write-back cycle is a non-burst cycle, and if there is a snoop hit to 
the same line as the line being replaced, it fractures the replacement write-back cycle 
after RDY# is asserted for the current non-burst transfer. The snoop write-back cycle is 
reordered in front of the fractured replacement write-back cycle and is completed 
under HITM#. However, after AHOLD is deasserted, the replacement write-back cycle is 
not completed. 

If there is a snoop hit to a line that is different from the one being replaced, the non-
burst replacement write-back cycle is fractured, and the snoop write-back cycle is 
reordered ahead of the replacement write-back cycle. After the snoop write-back is 
completed, the replacement write-back cycle continues.

10.4.3.4 Snoop under BOFF# 

BOFF# is capable of fracturing any transfer, burst or non-burst. The output pins (see 
Table 67 and Table 71) of the Write-Back Enhanced Intel® Quark SoC X1000 Core are 
floated in the clock period following the assertion of BOFF#. If the system snoop hits a 
modified line using BOFF#, the snoop write-back cycle is reordered ahead of the 
current cycle. BOFF# must be de-asserted for the processor to perform a snoop write-
back cycle and resume the fractured cycle. The fractured cycle resumes with a new 
ADS# and begins with the first uncompleted transfer. Snoops are permitted under 
BOFF#, but write-back cycles are not started until BOFF# is de-asserted. Consequently, 
multiple snoop cycles can occur under a continuously asserted BOFF#, but only up to 
the first asserted HITM#.

10.4.3.4.1 Snoop under BOFF# during Cache Line Fill

As shown in Figure 117, BOFF# fractures the second transfer of a non-burst cache line-
fill cycle. The system begins snooping by driving EADS# and INV in clock six. The 
assertion of HITM# in clock eight indicates that the snoop cycle hit a modified line and 
the cache line is written back to memory. The assertion of HITM# in clock eight and 
CACHE# and ADS# in clock ten identifies the beginning of the snoop write-back cycle. 
ADS# is guaranteed to be asserted no sooner than two clock periods after the assertion 
of HITM#. Write-back cycles always use the four-doubleword address sequence of 0-4-
8-C (burst or non-burst). The snoop write-back cycle begins upon the de-assertion of 
BOFF# with HITM# asserted throughout the duration of the snoop write-back cycle.

If the snoop cycle hits a line that is different from the line being filled, the cache line fill 
resumes after the snoop write-back cycle completes, as shown in Figure 117. 
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Figure 117. Snoop under BOFF# during a Cache Line-Fill Cycle

An ADS# is always issued when a cycle resumes after being fractured by BOFF#. The 
address of the fractured data transfer is reissued under this ADS#, and CACHE# is not 
issued unless the fractured operation resumes from the first transfer (e.g., first 
doubleword). If the system asserts BOFF# and RDY# simultaneously, as shown in clock 
four on Figure 117, BOFF# dominates and RDY# is ignored. Consequently, the Write-
Back Enhanced Intel® Quark SoC X1000 Core accepts only up to the x4h doubleword, 
and the line fill resumes with the x0h doubleword. ADS# initiates the resumption of the 
line-fill operation in clock period 15. HITM# is de-asserted in the clock period following 
the clock period in which the last RDY# or BRDY# of the write-back cycle is asserted. 
Hence, HITM# is guaranteed to be de-asserted before the ADS# of the next cycle.

Figure 117 also shows the system asserting RDY# to indicate a non-burst line-fill cycle. 
Burst cache line-fill cycles behave similarly to non-burst cache line-fill cycles when 
snooping using BOFF#. If the system snoop hits the same line as the line being filled 
(burst or non-burst), the Write-Back Enhanced Intel® Quark SoC X1000 Core does not 
assert HITM# and does not issue a snoop write-back cycle, because the line was not 
modified, and the line fill resumes upon the de-assertion of BOFF#. However, the line 
fill is cached only if INV is driven low during the snoop cycle. 
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10.4.3.4.2 Snoop under BOFF# during Replacement Write-Back

If the system snoop under BOFF# hits the line that is currently being replaced (burst or 
non-burst), the entire line is written back as a snoop write-back line, and the 
replacement write-back cycle is not continued. However, if the system snoop hits a 
different line than the one currently being replaced, the replacement write-back cycle 
continues after the snoop write-back cycle has been completed. Figure 118 shows a 
system snoop hit to the same line as the one being replaced (non-burst).

Figure 118. Snoop under BOFF# to the Line that is Being Replaced

10.4.3.5 Snoop under HOLD

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support 
the HOLD mechanism.

HOLD can only fracture a non-cacheable, non-burst code prefetch cycle. For all other 
cycles, the Write-Back Enhanced Intel® Quark SoC X1000 Core does not assert HLDA 
until the entire current cycle is completed. If the system snoop hits a modified line 
under HLDA during a non-cacheable, non-burstable code prefetch, the snoop write-
back cycle is reordered ahead of the fractured cycle. The fractured non-cacheable, non-
burst code prefetch resumes with an ADS# and begins with the first uncompleted 
transfer. Snoops are permitted under HLDA, but write-back cycles do not occur until 
HOLD is de-asserted. Consequently, multiple snoop cycles are permitted under a 
continuously asserted HLDA only up to the first asserted HITM#.
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10.4.3.5.1 Snoop under HOLD during Cache Line Fill

As shown in Figure 119, HOLD (asserted in clock two) does not fracture the burst cache 
line-fill cycle until the line fill is completed (in clock five). Upon completing the line fill in 
clock five, the Write-Back Enhanced Intel® Quark SoC X1000 Core asserts HLDA and 
the system begins snooping by driving EADS# and INV in the following clock period. 
The assertion of HITM# in clock nine indicates that the snoop cycle has hit a modified 
line and the cache line is written back to memory. The assertion of HITM# in clock nine 
and CACHE# and ADS# in clock 11 identifies the beginning of the snoop write-back 
cycle. The snoop write-back cycle begins upon the de-assertion of HOLD, and HITM# is 
asserted throughout the duration of the snoop write-back cycle.

Figure 119. Snoop under HOLD during Line Fill

If HOLD is asserted during a non-cacheable, non-burst code prefetch cycle, as shown in 
Figure 120, the Write-Back Enhanced Intel® Quark SoC X1000 Core issues HLDA in 
clock seven (which is the clock period in which the next RDY# is asserted). If the 
system snoop hits a modified line, the snoop write-back cycle begins after HOLD is 
released. After the snoop write-back cycle is completed, an ADS# is issued and the 
code prefetch cycle resumes. 
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Figure 120. Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch

10.4.3.6 Snoop under HOLD during Replacement Write-Back

Collision of snoop cycles under a HOLD during the replacement write-back cycle can 
never occur, because HLDA is asserted only after the replacement write-back cycle 
(burst or non-burst) is completed. 

10.4.4 Locked Cycles

In both Standard and Enhanced Bus modes, the Write-Back Enhanced Intel® Quark 
SoC X1000 Core architecture supports atomic memory access. A programmer can 
modify the contents of a memory variable and be assured that the variable is not 
accessed by another bus master between the read of the variable and the update of 
that variable. This function is provided for instructions that contain a LOCK prefix, and 
also for instructions that implicitly perform locked read modify write cycles. In 
hardware, the LOCK function is implemented through the LOCK# pin, which indicates 

242202-157

CLK

HOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor

W/R#

0 4 8 C

INV

RDY#

BRDY#

HLDA

C0 4 8

Prefetch Cycle Write Back Cycle Prefetch
Cont.

†

†



Intel® Quark Core—Bus Operation

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
240 Order Number: 329679-001US

to the system that the processor is performing this sequence of cycles, and that the 
processor should be allowed atomic access for the location accessed during the first 
locked cycle. 

A locked operation is a combination of one or more read cycles followed by one or more 
write cycles with the LOCK# pin asserted. Before a locked read cycle is run, the 
processor first determines if the corresponding line is in the cache. If the line is present 
in the cache, and is in an E or S state, it is invalidated. If the line is in the M state, the 
processor does a write-back and then invalidates the line. A locked cycle to an M, S, or 
E state line is always forced out to the bus. If the operand is misaligned across cache 
lines, the processor could potentially run two write back cycles before starting the first 
locked read. In this case the sequence of bus cycles is: write back, write back, locked 
read, locked read, locked write and the final locked write. Note that although a total of 
six cycles are generated, the LOCK# pin is asserted only during the last four cycles, as 
shown in Figure 121.

LOCK# is not deasserted if AHOLD is asserted in the middle of a locked cycle. LOCK# 
remains asserted even if there is a snoop write-back during a locked cycle. LOCK# is 
floated if BOFF# is asserted in the middle of a locked cycle. However, it is driven LOW 
again when the cycle restarts after BOFF#. Locked read cycles are never transformed 
into line fills, even if KEN# is asserted. If there are back-to-back locked cycles, the 
Write-Back Enhanced Intel® Quark SoC X1000 Core does not insert a dead clock 
between these two cycles. HOLD is recognized if there are two back-to-back locked 
cycles, and LOCK# floats when HLDA is asserted.

Figure 121. Locked Cycles (Back-to-Back)
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10.4.4.1 Snoop/Lock Collision

If there is a snoop cycle overlaying a locked cycle, the snoop write-back cycle fractures 
the locked cycle. As shown in Figure 122, after the read portion of the locked cycle is 
completed, the snoop write-back starts under HITM#. After the write-back is 
completed, the locked cycle continues. But during all this time (including the write-back 
cycle), the LOCK# signal remains asserted.

Because HOLD is not acknowledged if LOCK# is asserted, snoop-lock collisions are 
restricted to AHOLD and BOFF# snooping.

Figure 122. Snoop Cycle Overlaying a Locked Cycle

10.4.5 Flush Operation

The Write-Back Enhanced Intel® Quark SoC X1000 Core executes a flush operation 
when the FLUSH# pin is asserted, and no outstanding bus cycles, such as a line fill or 
write back, are being processed. In the Enhanced Bus mode, the processor first writes 
back all the modified lines to external memory. After the write-back is completed, two 
special cycles are generated, indicating to the external system that the write-back is 
done. All lines in the internal cache are invalidated after all the write-back cycles are 
done. Depending on the number of modified lines in the cache, the flush could take a 
minimum of 1280 bus clocks (2560 processor clocks) and up to a maximum of 5000+ 
bus clocks to scan the cache, perform the write backs, invalidate the cache, and run the 
flush acknowledge cycles. FLUSH# is implemented as an interrupt in the Enhanced Bus 
mode, and is recognized only on an instruction boundary. Write-back system designs 
should look for the flush acknowledge cycles to recognize the end of the flush 
operation. Figure 123 shows the flush operation of the Write-Back Enhanced Intel® 
Quark SoC X1000 Core when configured in the Enhanced Bus mode. 
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If the processor is in Standard Bus mode, the processor does not issue special 
acknowledge cycles in response to the FLUSH# input, although the internal cache is 
invalidated. The invalidation of the cache in this case, takes only two bus clocks.

Figure 123. Flush Cycle

10.4.6 Pseudo Locked Cycles

In Enhanced Bus mode, PLOCK# is always deasserted for both burst and non-burst 
cycles. Hence, it is possible for other bus masters to gain control of the bus during 
operand transfers that take more than one bus cycle. A 64-bit aligned operand can be 
read in one burst cycle or two non-burst cycles if BS8# and BS16# are not asserted. 
Figure 124 shows a 64-bit floating-point operand or Segment Descriptor read cycle, 
which is burst by the system asserting BRDY#. 

10.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles

AHOLD can fracture a 64-bit transfer if it is a non-burst cycle. If the 64-bit cycle is 
burst, as shown in Figure 124, the entire transfer goes to completion and only then 
does the snoop write-back cycle start.
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Figure 124. Snoop under AHOLD Overlaying Pseudo-Locked Cycle

10.4.6.2 Snoop under HOLD during Pseudo-Locked Cycles

As shown in Figure 125, HOLD does not fracture the 64-bit burst transfer. The Write-
Back Enhanced Intel® Quark SoC X1000 Core does not issue HLDA until clock four. 
After the 64-bit transfer is completed, the Write-Back Enhanced Intel® Quark SoC 
X1000 Core writes back the modified line to memory (if snoop hits a modified line). If 
the 64-bit transfer is non-burst, the Write-Back Enhanced Intel® Quark SoC X1000 
Core can issue HLDA in between bus cycles for a 64-bit transfer.
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Figure 125. Snoop under HOLD Overlaying Pseudo-Locked Cycle

10.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

BOFF# is capable of fracturing any bus operation. In Figure 126, BOFF# fractured a 
current 64-bit read cycle in clock four. If there is a snoop hit under BOFF#, the snoop 
write-back operation begins after BOFF# is deasserted. The 64-bit write cycle resumes 
after the snoop write-back operation completes.
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Figure 126. Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

CLK

AHOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor†

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

Write Back Cycle†

242202-163



Intel® Quark Core—Debugging Support

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
246 Order Number: 329679-001US

11.0 Debugging Support

The Intel® Quark SoC X1000 Core provides several features that simplify the 
debugging process. The three categories of on-chip debugging aids are:
1. Code execution breakpoint opcode (0CCH)
2. Single-step capability provided by the TF bit in the Flag register
3. Code and data breakpoint capability provided by the Debug Registers DR[3:0], 

DR6, and DR7

11.1 Breakpoint Instruction
A single-byte opcode breakpoint instruction is available for use by software debuggers. 
The breakpoint opcode, 0CCH, generates an exception 3 trap when executed. In typical 
use, a debugger program “plants” the breakpoint instruction at all desired code 
execution breakpoints. The single-byte breakpoint opcode is an alias for the two-byte 
general software interrupt instruction INT n, where n=3. The only difference between 
INT 3 (0CCh) and INT n is that INT 3 is never IOPL-sensitive, whereas INT n is IOPL-
sensitive in Protected Mode and Virtual 8086 Mode.

11.2 Single-Step Trap
When the single-step flag (TF, bit 8) in the EFLAG register is set at the end of an 
instruction, a single-step exception occurs. The single-step exception is auto vectored 
to exception number 1. Precisely, exception 1 occurs as a trap after the instruction 
following the instruction that set TF. In typical practice, a debugger sets the TF bit of a 
flag register image on the debugger's stack. Typically, it then transfers control to the 
user program and loads the flag image with a signal instruction, the IRET instruction. 
The single-step trap occurs after executing one instruction of the user program.

Because exception 1 occurs as a trap (that is, it occurs after the instruction has 
executed), the CS:EIP pushed onto the debugger's stack points to the next unexecuted 
instruction of the program being debugged. Therefore, by ending with an IRET 
instruction, an exception 1 handler can efficiently support single-stepping through a 
user program.

11.3 Debug Registers
The Debug Registers are an advanced debugging feature of the Intel® Quark SoC 
X1000 Core. They allow data access breakpoints and code execution breakpoints. 
Because the breakpoints are indicated by on-chip registers, an instruction execution 
breakpoint can be placed in ROM code or in code shared by several tasks, neither of 
which can be supported by the INT3 breakpoint opcode.

The Intel® Quark SoC X1000 Core contains six Debug Registers, providing the ability to 
specify up to four distinct breakpoint addresses, breakpoint control options, and read 
breakpoint status. Initially after reset, breakpoints are in the disabled state. Therefore, 
no breakpoints occur unless the debug registers are programmed. Breakpoints set up 
in the Debug Registers are auto-vectored to exception number 1.



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 247

Debugging Support—Intel® Quark Core

11.3.1 Linear Address Breakpoint Registers (DR[3:0])

Up to four breakpoint addresses can be specified by writing to Debug Registers 
DR[3:0], shown in Figure 72. The breakpoint addresses specified are 32-bit linear 
addresses. Intel® Quark SoC X1000 Core hardware continuously compares the linear 
breakpoint addresses in DR[3:0] with the linear addresses generated by executing 
software (a linear address is the result of computing the effective address and adding 
the 32-bit segment base address). Note that when paging is not enabled, the linear 
address equals the physical address. If paging is enabled, the linear address is 
translated to a physical 32-bit address by the on-chip paging unit. Regardless of 
whether paging is enabled or not, however, the breakpoint registers hold linear 
addresses.

11.3.2 Debug Control Register (DR7)

A Debug Control Register, DR7 shown in Figure 72, allows several debug control 
functions, such as enabling the breakpoints and setting up other control options for the 
breakpoints. The fields within the Debug Control Register, DR7, are as follows:

LENi (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four breakpoints. LEN specifies the length of the 
associated breakpoint field. The choices for data breakpoints are: 1 byte, 2 bytes, and 
4 bytes. Instruction execution breakpoints must have a length of 1 (LENi = 00). 
Encoding of the LENi field is as described in Table 73.

The LENi field controls the size of breakpoint field i by controlling whether all low-order 
linear address bits in the breakpoint address register are used to detect the breakpoint 
event. Therefore, all breakpoint fields are aligned: 2-byte breakpoint fields begin on 
word boundaries, and 4-byte breakpoint fields begin on dword boundaries.

Figure 127 is an example of various size breakpoint fields. Assume the breakpoint 
linear address in DR2 is 00000005H. In that situation, Figure 127 indicates the region 
of the breakpoint field for lengths of 1, 2, or 4 bytes.

Table 72. Debug Registers

31 16 15 0

Breakpoint 0 Linear Address DR0

Breakpoint 1 Linear Address DR1

Breakpoint 2 Linear Address DR2

Breakpoint 3 Linear Address DR3

Intel Reserved. Do not define. DR4
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RWi (memory access qualifier bits)

A 2-bit RW field exists for each of the four breakpoints. The 2-bit RW field specifies the 
type of usage that must occur to activate the associated breakpoint.

RW encoding 00 is used to set up an instruction execution breakpoint. RW encodings 01 
or 11 are used to set up write-only or read/write data breakpoints.

Table 73. LENi Encoding

LENi 
Encoding

Breakpoint 
Field Width

Usage of Least Significant Bits in Breakpoint Address 
Register i, (i=0-3)

00 1 byte All 32-bits used to specify a single-byte breakpoint field.

01 2 bytes A[31:1] used to specify a two-byte, word-aligned breakpoint 
field. A0 in Breakpoint Address Register is not used.

10 Undefined—do not use 
this encoding

11 4 bytes A[31:1] used to specify a four-byte, dword-aligned breakpoint 
field. A0 and A1 in Breakpoint Address Register are not used.

Figure 127. Size Breakpoint Fields

DR2 = 00000005H; LEN2 = 00B

31 0

00000008H

BKPT FLD2 00000004H

00000000H

DR2 = 00000005H; LEN2 = 01B

31 0

00000008H

BKPTFLD2 00000004H

00000000H

DR2 = 00000005H; LEN2 = 11B

31 0

00000008H

BKPTFLD2

Table 74. RW Encoding

RW Encoding Usage Causing Breakpoint

00  Instruction execution only

01  Data writes only

10  Undefined–do not use this encoding

11  Data reads and writes only
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Note that instruction execution breakpoints are taken as faults (i.e., before the 
instruction executes), but data breakpoints are taken as traps (i.e., after the data 
transfer takes place).

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear address into DRi (i = 0–3). For 
data breakpoints, RWi can equal 01 (write-only) or 11 (write/read). LEN can equal 00, 
01, or 11.

When a data access entirely or partly falls within the data breakpoint field, the data 
breakpoint condition has occurred, and if the breakpoint is enabled, an exception 1 trap 
occurs.

Using LENi and RWi to Set Instruction Execution Breakpoint i

An instruction execution breakpoint can be set up by writing the address of the 
beginning of the instruction (including prefixes if any) into DRi (i = 0–3). RWi must 
equal 00 and LEN must equal 00 for instruction execution breakpoints.

When the instruction beginning at the breakpoint address is about to be executed, the 
instruction execution breakpoint condition has occurred, and if the breakpoint is 
enabled, an exception 1 fault occurs before the instruction is executed.

Note that an instruction execution breakpoint address must be equal to the beginning 
byte address of an instruction (including prefixes) for the instruction execution 
breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can be accessed only in Real Mode or at privilege level 0 in 
Protected Mode. The GD bit, when set, provides extra protection against any Debug 
Register access even in Real Mode or at privilege level 0 in Protected Mode. This 
additional protection feature is provided to guarantee that a software debugger can 
have full control over the Debug Register resources when required. The GD bit, when 
set, causes an exception 1 fault when an instruction attempts to read or write any 
Debug Register. The GD bit is automatically cleared when the exception 1 handler is 
invoked, allowing the exception 1 handler free access to the debug registers.

GE and LE (Exact data breakpoint match, global and local)

The Intel® Quark SoC X1000 Core always does exact data breakpoint matching, 
regardless of GE/LE bit settings. Any data breakpoint trap is reported exactly after 
completion of the instruction that caused the operand transfer. Exact reporting is 
provided by forcing the Intel® Quark SoC X1000 Core execution unit to wait for 
completion of data operand transfers before beginning execution of the next 
instruction.

When the Intel® Quark SoC X1000 Core performs a task switch, the LE bit is cleared. 
Thus, the LE bit supports fast task switching out of tasks that have enabled the exact 
data breakpoint match for their task-local breakpoints. The LE bit is cleared by the 
Intel® Quark SoC X1000 Core during a task switch to avoid having exact data 
breakpoint match enabled in the new task. Note that exact data breakpoint match must 
be re-enabled under software control.

The Intel® Quark SoC X1000 Core GE bit is unaffected during a task switch. The GE bit 
supports exact data breakpoint match that remains enabled during all tasks executing 
in the system.

Note that instruction execution breakpoints are always reported exactly.
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Gi and Li (breakpoint enable, global and local)

When either Gi or Li is set, then the associated breakpoint (as defined by the linear 
address in DRi, the length in LENi and the usage criteria in RWi) is enabled. When 
either Gi or Li is set, and the Intel® Quark SoC X1000 Core detects the ith breakpoint 
condition, the exception 1 handler is invoked.

When the Intel® Quark SoC X1000 Core performs a task switch to a new Task State 
Segment (TSS), all Li bits are cleared. Thus, the Li bits support fast task switching out 
of tasks that use some task-local breakpoint registers. The Li bits are cleared by the 
Intel® Quark SoC X1000 Core during a task switch to avoid spurious exceptions in the 
new task. Note that the breakpoints must be re-enabled under software control.

All Intel® Quark SoC X1000 Core Gi bits are unaffected during a task switch. The Gi bits 
support breakpoints that are active in all tasks executing in the system.

11.3.3 Debug Status Register (DR6)

A Debug Status Register (DR6 shown in Figure 72) allows the exception 1 handler to 
easily determine why it was invoked. Note that the exception 1 handler can be invoked 
as a result of one of several events:

• DR0 Breakpoint fault/trap
• DR1 Breakpoint fault/trap
• XDR2 Breakpoint fault/trap
• XDR3 Breakpoint fault/trap
• XSingle-step (TF) trap
• XTask switch trap
• XFault due to attempted debug register access when GD=1

The Debug Status Register contains single-bit flags for each of the possible events that 
invoke exception 1. Note below that some of these events are faults (exception taken 
before the instruction is executed), whereas other events are traps (exception taken 
after the debug events occurred).

The flags in DR6 are set by hardware but never cleared by hardware. Exception 1 
handler software should clear DR6 before returning to the user program to avoid future 
confusion in identifying the source of exception 1.

The fields within the Debug Status Register, DR6, are as follows:

Bi (debug fault/trap due to breakpoint 0–3)

Four breakpoint indicator flags, B[3:0], correspond one-to-one with the breakpoint 
registers in DR[3:0]. A flag Bi is set when the condition described by DRi, LENi, and 
RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected, the Intel® Quark SoC X1000 Core 
invokes the exception 1 handler. The exception is handled as a fault when an 
instruction execution breakpoint occurs, or as a trap if a data breakpoint occurs.

Note: A flag Bi is set whenever the hardware detects a match condition on enabled breakpoint 
i. When a match is detected on at least one enabled breakpoint i, the hardware 
immediately sets all Bi bits that correspond to breakpoint conditions matching at that 
instant, whether enabled or not. Although the exception 1 handler may see that 
multiple Bi bits are set, only those set Bi bits that correspond to enabled breakpoints (Li 
or Gi set) are true indications of why the exception 1 handler was invoked.
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BD (debug fault due to attempted register access when GD bit set)

This bit is set when the exception 1 handler is invoked due to an instruction that 
attempts to read or write to the debug registers when the GD bit was set. If such an 
event occurs, then the GD bit is automatically cleared when the exception 1 handler is 
invoked, allowing the handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set when the exception 1 handler is invoked due to the TF bit in the flag 
register being set (for single-stepping).

BT (debug trap due to task switch)

This bit is set when the exception 1 handler was invoked due to a task switch that 
occurs on a task having a Intel® Quark SoC X1000 Core TSS with the T bit set. Note 
the task switch into the new task occurs normally, but before the first instruction of the 
task is executed, the exception 1 handler is invoked. With respect to the task switch 
operation, the operation is considered to be a trap.

11.3.4 Use of Resume Flag (RF) in Flag Register

The Resume Flag (RF) in the flag word can suppress an instruction execution 
breakpoint when the exception 1 handler returns to a user program at a user address 
that is also an instruction execution breakpoint.
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12.0 Instruction Set Summary

This chapter describes the entire encoding structure and provides definitions of all 
fields occurring within the Intel® Quark SoC X1000 Core instructions. 

Section 12.2.5, “Intel® Quark SoC X1000 Core Instructions” on page 263 provides 
product-specific details. 

• Detailed information on the CPUID instructions can be found in Appendix C, 
“Feature Determination.” 

12.1 Instruction Set
The Intel® Quark SoC X1000 Core instruction set can be divided into the following 
categories of operations:

• Data Transfer
• Arithmetic
• Shift/Rotate
• String Manipulation
• Bit Manipulation
• Control Transfer
• High Level Language Support
• Operating System Support
• Processor Control

All Intel® Quark SoC X1000 Core instructions operate on either 0, 1, 2 or 3 operands; 
where an operand resides in a register, in the instruction itself, or in memory. Most 
zero-operand instructions (e.g., CLI, STI) take only one byte. One-operand instructions 
generally are two bytes long. The average instruction is 3.2-bytes long. Because the 
Intel® Quark SoC X1000 Core has a 32-byte instruction queue, an average of 10 
instructions are prefetched. The use of two operands permits the following types of 
common instructions:

• Register to register
• Memory to register
• Memory to memory
• Immediate to register
• Register to memory
• Immediate to memory

The operands can be 8-, 16-, or 32-bits long. As a general rule, when executing 32-bit 
code, operands are 8 or 32 bits; when executing  16-bit code, operands are 8 or 16 
bits. Prefixes can be added to all instructions to override the default length of the 
operands (i.e., to use 32-bit operands for 16-bit code, or 16-bit operands for 32-bit 
code).
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12.1.1 Floating-Point Instructions

In addition to the instructions listed above, the Intel® Quark SoC X1000 Core has 
floating-point instructions and Floating-Point Control instructions. Note that all 
Floating-Point Unit instruction mnemonics begin with an F.

12.2 Instruction Encoding

12.2.1 Overview

All instruction encodings are subsets of the general instruction format shown in 
Figure 128. Instructions consist of one or two primary opcode bytes, possibly an 
address specifier consisting of the “mod r/m” byte and “scaled index” byte, a 
displacement if required, and an immediate data field if required.

Within the primary opcode or opcodes, smaller encoding fields may be defined. These 
fields vary according to the class of operation. The fields define such information as 
direction of the operation, size of the displacements, register encoding, or sign 
extension.

Almost all instructions referring to an operand in memory have an addressing mode 
byte following the primary opcode byte(s). This byte, the mod r/m byte, specifies the 
address mode to be used. Certain encodings of the mod r/m byte indicate a second 
addressing byte, the scale-index-base byte, that follows the mod r/m byte to fully 
specify the addressing mode.

Addressing modes can include a displacement immediately following the mod r/m byte 
or scaled index byte. When a displacement exists, the possible sizes are 8, 16, or 32 
bits.

When the instruction specifies an immediate operand, the it follows any displacement 
bytes. The immediate operand, when specified, is always the last field of the 
instruction.

Figure 128 illustrates several of the fields that can appear in an instruction, such as the 
mod field and the r/m field, but the figure does not show all fields. Several smaller 
fields also appear in certain instructions, sometimes within the opcode bytes 
themselves. Table 75 is a complete list of all fields appearing in the Intel® Quark SoC 
X1000 Core instruction set. Following Table 75 are detailed tables for each field.

Figure 128. General Instruction Format  
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12.2.2 32-Bit Extensions of the Instruction Set

With the Intel® Quark SoC X1000 Core, the instruction set is extended in two 
orthogonal directions: 32-bit forms of all 16-bit instructions support the 32-bit data 
types and 32-bit addressing modes are available for all instructions referencing 
memory. This orthogonal instruction set extension is accomplished having a Default (D) 
bit in the code segment descriptor, and by having two prefixes to the instruction set.

Whether the instruction defaults to operations of 16 bits or 32 bits depends on the 
setting of the D bit in the code segment descriptor, which gives the default length 
(either 32 bits or 16 bits) for both operands and effective addresses when executing 
that code segment. In Real Address Mode or Virtual 8086 Mode, no code segment 
descriptors are used, but the Intel® Quark SoC X1000 Core assumes a D value of 0 
when operating in those modes (for 16-bit default sizes).

Two prefixes, the Operand Size Prefix and the Effective Address Size Prefix, allow 
overriding individually the Default selection of operand size and effective address size. 
These prefixes may precede any opcode bytes and affect only the instruction they 
precede. If necessary, one or both of the prefixes may be placed before the opcode 
bytes. The Operand Size Prefix and the Effective Address Prefix toggle the operand size 
or the effective address size, respectively, to the value “opposite” the Default setting. 
For example, when the default operand size is for 32-bit data operations, the presence 
of the Operand Size Prefix toggles the instruction to 16-bit data operation. When the 
default effective address size is 16 bits, the presence of the Effective Address Size 
prefix toggles the instruction to use 32-bit effective address computations.

These 32-bit extensions are available in all Intel® Quark SoC X1000 Core modes, 
including Real Address Mode or Virtual 8086 Mode. In these modes the default is 
always 16 bits, so prefixes are needed to specify 32-bit operands or addresses. For 
instructions with more than one prefix, the order of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit and 16-bit operands do not affect the 
contents of the high-order bits of the extended registers.

Table 75. Fields within Intel® Quark Core Instructions

Field 
Name Description Number of 

Bits

w Specifies whether data is byte or full size (full size is either 16 or 32 bits) 1

d Specifies direction of data operation 1

s Specifies whether an immediate data field must be sign-extended 1

reg General register specifier 3

mod 
r/m Address mode specifier (effective address can be a general register) 2 for mod;

3 for r/m

ss Scale factor for scaled index address mode 2

index General register to be used as index register 3

base General register to be used as base register 3

sreg2 Segment register specifier for CS, SS, DS, ES 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS 3

tttn For conditional instructions, specifies a condition asserted or a condition negated 4

Note: Table 89 through Table 93 show encoding of individual instructions.
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12.2.3 Encoding of Integer Instruction Fields

Within the instruction are several fields that indicate register selection, addressing 
mode and so on. The exact encodings of these fields are defined in this section.

12.2.3.1 Encoding of Operand Length (w) Field

For any given instruction that performs a data operation, the instruction executes as a 
32-bit operation or a 16-bit operation. Within the constraints of the operation size, the 
w field encodes the operand size as either one byte or the full operation size, as shown 
in Table 76.

12.2.3.2 Encoding of the General Register (reg) Field

The general register is specified by the reg field, which may appear in the primary 
opcode bytes, as the reg field of the “mod r/m” byte, or as the r/m field of the “mod 
r/m” byte.

Table 76. Encoding of Operand Length (w) Field

w Field Operand Size during 16-Bit Data 
Operations

Operand Size during 32-Bit Data 
Operations

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table 77. Encoding of reg Field when the (w) Field is Not Present in Instruction

reg Field Register Selected during 16-Bit 
Data Operations

Register Selected during 32-Bit 
Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI
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12.2.3.3 Encoding of the Segment Register (sreg) Field

The sreg field in certain instructions is a 2-bit field allowing one of the four segment 
registers to be specified. The sreg field in other instructions is a 3-bit field, allowing the 
Intel® Quark SoC X1000 Core FS and GS segment registers to be specified.

Table 78. Encoding of reg Field when the (w) Field is Present in Instruction

Register Specified by reg Field during 16-Bit Data Operations:

reg
Function of w Field

(when w = 0) (when w = 1)

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Register Specified by reg Field during 32-Bit Data Operations

reg
Function of w Field

(when w = 0) (when w = 1)

000 AL EAX

001 CL ECX

010 DL EDX

011 BL EBX

100 AH ESP

101 CH EBP

110 DH ESI

111 BH EDI

Table 79. 2-Bit sreg2 Field

2-bit sreg2 Field Segment Register Selected

00 ES

01 CS

10 SS

11 DS
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12.2.3.4 Encoding of Address Mode

Except for special instructions, such as PUSH or POP, where the addressing mode is 
pre-determined, the addressing mode for the current instruction is specified by 
addressing bytes following the primary opcode. The primary addressing byte is the 
“mod r/m” byte, and a second byte of addressing information, the “s-i-b” (scale-index-
base) byte, can be specified.

The s-i-b (scale-index-base byte) byte is specified when using 32-bit addressing mode 
and the “mod r/m” byte has r/m = 100 and mod = 00, 01 or 10. When the sib byte is 
present, the 32-bit addressing mode is a function of the mod, ss, index, and base 
fields.

The primary addressing byte, the “mod r/m” byte, also contains three bits (shown as 
TTT in Figure 128) sometimes used as an extension of the primary opcode. The three 
bits, however, may also be used as a register field (reg).

When calculating an effective address, either 16-bit addressing or 32-bit addressing is 
used. 16-bit addressing uses 16-bit address components to calculate the effective 
address, and 32-bit addressing uses 32-bit address components to calculate the 
effective address. When 16-bit addressing is used, the “mod r/m” byte is interpreted as 
a 16-bit addressing mode specifier. When 32-bit addressing is used, the “mod r/m” 
byte is interpreted as a 32-bit addressing mode specifier.

The following tables define encodings of all 16-bit and 32-bit addressing modes.

Table 80. 3-Bit sreg3 Field

3-bit sreg3 Field Segment Register Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 do not use

111 do not use
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Table 81. Encoding of 16-Bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address

00 000 DS:[BX+SI] 10 000 DS:[BX+SI+d16]

00 001 DS:[BX+DI] 10 001 DS:[BX+DI+d16]

00 010 SS:[BP+SI] 10 010 SS:[BP+SI+d16]

00 011 SS:[BP+DI] 10 011 SS:[BP+DI+d16]

00 100 DS:[SI] 10 100 DS:[SI+d16]

00 101 DS:[DI] 10 101 DS:[DI+d16]

00 110 DS:d16 10 110 SS:[BP+d16]

00 111 DS:[BX] 10 111 DS:[BX+d16]

01 000 DS:[BX+SI+d8] 11 000 register–see below

01 001 DS:[BX+DI+d8] 11 001 register–see below

01 010 SS:[BP+SI+d8] 11 010 register–see below

01 011 SS:[BP+DI+d8] 11 011 register–see below

01 100 DS:[SI+d8] 11 100 register–see below

01 101 DS:[DI+d8] 11 101 register–see below

01 110 SS:[BP+d8] 11 110 register–see below

01 111 DS:[BX+d8] 11 111 register–see below

Register Specified by r/m during
16-Bit Data Operations

Register Specified by r/m during
32-Bit Data Operations

mod r/m
Function of w Field

mod r/m
Function of w Field

(when w=0) (when w =1) (when w=0) (when w =1)

11 000 AL AX 11 000 AL EAX

11 001 CL CX 11 001 CL ECX

11 010 DL DX 11 010 DL EDX

11 011 BL BX 11 011 BL EBX

11 100 AH SP 11 100 AH ESP

11 101 CH BP 11 101 CH EBP

11 110 DH SI 11 110 DH ESI

11 111 BH DI 11 111 BH EDI
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Table 82. Encoding of 32-Bit Address Mode with “mod r/m” Byte 
(No “s-i-b” Byte Present)

mod r/m Effective Address mod r/m Effective Address

00 000 DS:[EAX] 10 000 DS:[EAX+d32]

00 001 DS:[ECX] 10 001 DS:[ECX+d32]

00 010 DS:[EDX] 10 010 DS:[EDX+d32]

00 011 DS:[EBX] 10 011 DS:[EBX+d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:d32 10 101 SS:[EBP+d32]

00 110 DS:[ESI] 10 110 DS:[ESI+d32]

00 111 DS:[EDI] 10 111 DS:[EDI+d32]

01 000 DS:[EAX+d8] 11 000 register–see below

01 001 DS:[ECX+d8] 11 001 register–see below

01 010 DS:[EDX+d8] 11 010 register–see below

01 011 DS:[EBX+d8] 11 011 register–see below

01 100 s-i-b is present 11 100 register–see below

01 101 SS:[EBP+d8] 11 101 register–see below

01 110 DS:[ESI+d8] 11 110 register–see below

01 111 DS:[EDI+d8] 11 111  register–see below

Register Specified by reg or r/m
during 16-Bit Data Operations:

Register Specified by reg or r/m
during 32-Bit Data Operations:

mod r/m
Function of w field

mod r/m
Function of w field

(when w=0) (when w=1) (when w=0) (when w=1)

11 000 AL AX 11 000 AL EAX

11 001 CL CX 11 001 CL ECX

11 010 DL DX 11 010 DL EDX

11 011 BL BX 11 011 BL EBX

11 100 AH SP 11 100 AH ESP

11 101 CH BP 11 101 CH EBP

11 110 DH SI 11 110 DH ESI

11 111 BH DI 11 111 BH EDI
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12.2.3.5 Encoding of Operation Direction (d) Field

In many two-operand instructions the d field is present to indicate which operand is 
considered the source and which is the destination.

Table 83. Encoding of 32-Bit Address Mode (“mod r/m” Byte and “s-i-b” Byte Present)

mod base Effective Address ss Scale Factor

00 000 DS:[EAX+(scaled index)] 00 x1

00 001 DS:[ECX+(scaled index)] 01 x2

00 010 DS:[EDX+(scaled index)] 10 x4

00 011 DS:[EBX+(scaled index)] 11 x8

00 100 SS:[ESP+(scaled index)]  Index Index Register

00 101 DS:[d32+(scaled index)] 000 EAX

00 110 DS:[ESI+(scaled index)] 001 ECX

00 111 DS:[EDI+(scaled index)] 010 EDX

01 000 DS:[EAX+(scaled index)+d8] 011 EBX

01 001 DS:[ECX+(scaled index)+d8] 100 no index reg†

01 010 DS:[EDX+(scaled index)+d8] 101 EBP

01 011 DS:[EBX+(scaled index)+d8] 110 ESI

01 100 SS:[ESP+(scaled index)+d8] 111 EDI

01 101 SS:[EBP+(scaled index)+d8]

Note: When index field is 100, indicating “no index 
register,” then ss field MUST equal 00. When 
index is 100 and ss does not equal 00, the 
effective address is undefined.

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

Note: Mod field in “mod r/m” byte; ss, index, 
base fields in “s-i-b” byte.

Table 84. Encoding of Operation Direction (d) Field

d Direction of Operation

0 Register/Memory ← Register “reg” Field Indicates Source Operand; “mod r/m” or 
“mod ss index base” Indicates Destination Operand

1 Register ← Register/Memory “reg” Field Indicates Destination Operand; “mod 
r/m” or “mod ss index base” Indicates Source Operand
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12.2.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immediate data fields. The s field has an 
effect only when the size of the immediate data is 8 bits and is being placed in a 16-bit 
or 32-bit destination.

12.2.3.7 Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and set on condition), tttn is 
encoded with n, indicating to use the condition (n=0) or its negation (n=1), and ttt, 
indicating the condition to test.

12.2.3.8 Encoding of Control or Debug or Test Register (eee) Field

This field is used for loading and storing the Control, Debug and Test registers.

Table 85. Encoding of Sign-Extend (s) Field

s Effect on Immediate Data 8 Effect on Immediate Data 16 | 32

0 None None

1 Sign-Extend Data 8 to Fill 16-bit or 
32-bit Destination None

Table 86. Encoding of Conditional Test (tttn) Field

Mnemonic Condition tttn

O Overflow 0000

NO No Overflow 0001

B/NAE Below/Not Above or Equal 0010

NB/AE Not Below/Above or Equal 0011

E/Z Equal/Zero 0100

NE/NZ Not Equal/Not Zero 0101

BE/NA Below or Equal/Not Above 0110

NBE/A Not Below or Equal/Above 0111

S Sign 1000

NS Not Sign 1001

P/PE Parity/Parity Even 1010

NP/PO Not Parity/Parity Odd 1011

L/NGE Less Than/Not Greater or Equal 1100

NL/GE Not Less Than/Greater or Equal 1101

LE/NG Less Than or Equal/Greater Than 1110

NLE/G Not Less or Equal/Greater Than 1111
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12.2.4 Encoding of Floating-Point Instruction Fields

Instructions for the FPU assume one of the five forms shown in Table 88. In all cases, 
instructions are at least two bytes long and begin with the bit pattern 11011B.

The mod (Mode field) and r/m (Register/Memory specifier) have the same 
interpretation as the corresponding fields of the integer instructions.

The s-i-b (Scale Index Base) byte and disp (displacement) are optionally present in 
instructions that have mod and r/m fields. Their presence depends on the values of 
mod and r/m, as for integer instructions.

Table 87. Encoding of Control or Debug or Test Register (eee) Field

eee Code TTReg Name

When Interpreted as Control Register Field:

000 CR0

010 CR2

011 CR3

When Interpreted as Debug Register Field:

000 DR0

001 DR1

010 DR2

011 DR3

110 DR6

111 DR7

When Interpreted as Test Register Field:

011 TR3

100 TR4

101 TR5

110 TR6

111 TR7

Note: Do not use any other encoding



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 263

Instruction Set Summary—Intel® Quark Core

12.2.5 Intel® Quark SoC X1000 Core Instructions 

The  instructions below were added to the Intel® Quark SoC X1000 Core (in microcode 
and in hardware for RDTSC).  

 

12.2.5.1 CMPXCHG8B - Compare and Exchange Bytes

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size is 
128 bits) with the operand (destination operand). If the values are equal, the 64-bit 
value in ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination operand. 
Otherwise, the value in the destination operand is loaded into EDX:EAX (or RDX:RAX). 
The destination operand is an 8-byte memory location (or 16-byte memory location if 
operand size is 128 bits). For the EDX:EAX and ECX:EBX register pairs, EDX and ECX 
contain the high-order 32 bits and EAX and EBX contain the loworder 32 bits of a 64-bit 
value. For the RDX:RAX and RCX:RBX register pairs, RDX and RCX contain the high-
order 64 bits and RAX and RBX contain the low-order 64 bits of a 128-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed 
atomically. To simplify the interface to the processor’s bus, the destination operand 
receives a write cycle without regard to the result of the comparison. The destination 
operand is written back if the comparison fails; otherwise, the source operand is 
written into the destination. (The processor never produces a locked read without also 
producing a locked write.)

Table 88. Encoding of Floating-Point Instruction Fields

Instruction
Optional

Fields
 First Byte Second Byte

1  11011 OPA 1 mod 1 OPB r/m s-i-b disp

2  11011 MF OPA mod OPB r/m s-i-b disp

3  11011 d P OPA 1 1 OPB ST(i)

4  11011 0 0 1 1 1 1 OP

5  11011 0 1 1 1 1 1 OP

 15–11 10 9 8 7 6 5 4    3    2    1    0

Table Key:

OP = Instruction opcode, 
possibly split into two fields OPA 
and OPB
MF = Memory Format

00–32-bit real
01–32-bit integer
10–64-bit real
11–16-bit integer

P = Pop
0–Do not pop stack
1–Pop stack after operation

d = Destination
0–Destination is ST(0)
1–Destination is ST(i)

R XOR d=0–Destination (op) 
Source
R XOR d=1–Source (op) 
Destination
ST(i)=Register stack element i

000 = Stack top
001 = Second stack element
111 = Eighth stack element

CMPXCHG8B CoMPare and eXCHanGe 8 Bytes

RDMSR ReaD from Model-Specific Register

RDTSC ReaD Time Stamp Counter

WRMSR WRite to Model-Specific Register
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In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes 
operation to 128 bits. Note that CMPXCHG16B requires that the destination (memory) 
operand be 16-byte aligned.

12.2.5.2 RDMSR

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX 
register into registers EDX:EAX. (On processors that support the Intel 64 architecture, 
the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the high-
order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. (On 
processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX 
and RDX are cleared.) If fewer than 64 bits are implemented in the MSR being read, 
the values returned to EDX:EAX in unimplemented bit locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode; 
otherwise, a general protection exception #GP(0) will be generated. Specifying a 
reserved or unimplemented MSR address in ECX will also cause a general protection 
exception.

The MSRs control functions for testability, execution tracing, performance-monitoring, 
and machine check errors. Note that each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported 
(CPUID.01H:EDX[5] = 1) before using this instruction.

12.2.5.3 RDTSC

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the 
EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the MSR 
and the EAX register is loaded with the low-order 32 bits. (On processors that support 
the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)

The processor monotonically increments the time-stamp counter MSR every clock cycle 
and resets it to 0 whenever the processor is reset. 

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in register 
CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag is clear, 
the RDTSC instruction can be executed at any privilege level; when the flag is set, the 
instruction can only be executed at privilege level 0. (When in real-address mode, the 
RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when executing 
at privilege level 0.

12.2.5.4 WRMSR

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) 
specified in the ECX register. The contents of the EDX register are copied to high-order 
32 bits of the selected MSR and the contents of the EAX register are copied to low-
order 32 bits of the MSR. Undefined or reserved bits in an MSR should be set to values 
previously read.
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This instruction must be executed at privilege level 0 or in real-address mode; 
otherwise, a general protection exception #GP(0) is generated. Specifying a reserved 
or unimplemented MSR address in ECX will also cause a general protection exception. 
The processor will also generate a general protection exception if software attempts to 
write to bits in a reserved MSR.

MSRs control functions for testability, execution tracing, performance-monitoring and 
machine check errors. Note that each processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction.

The CPUID instruction should be used to determine whether MSRs are supported 
(CPUID.01H:EDX[5] = 1) before using this instruction.

12.3 Clock Count Summary
To calculate elapsed time for an instruction, multiply the instruction clock count, as 
listed in Table 89 through Table 93, by the processor core clock period.

12.3.1 Instruction Clock Count Assumptions

The Intel® Quark SoC X1000 Core instruction core clock count tables give clock counts 
assuming data and instruction accesses hit in the cache. The combined instruction and 
data cache hit rate is greater than 90%.

A cache miss forces the Intel® Quark SoC X1000 Core to run an external bus cycle. The 
32-bit burst bus is defined as r-b-w, where:

r = The number of bus clocks in the first cycle of a burst read or the 
number of clocks per data cycle in a non-burst read.

b = The number of bus clocks for the second and subsequent cycles 
in a burst read.

w = The number of bus clocks for a write.

The clock counts in the cache miss penalty column assume a 2-1-2 bus. For slower 
buses add r-2 clocks to the cache miss penalty for the first dword accessed. Other 
factors also affect instruction clock counts.

Instruction Clock Count Assumptions
1. The external bus is available for reads or writes at all times; otherwise, add bus 

clocks to reads until the bus is available.
2. Accesses are aligned. Add three core clocks to each misaligned access.
3. Cache fills complete before subsequent accesses to the same line. When a read 

misses the cache during a cache fill due to a previous read or pre-fetch, the read 
must wait for the cache fill to complete. When a read or write accesses a cache line 
still being filled, it must wait for the fill to complete.

4. When an effective address is calculated, the base register is not the destination 
register of the preceding instruction. When the base register is the destination 
register of the preceding instruction, add 1 to the core clock counts shown. Back-
to-back PUSH and POP instructions are not affected by this rule.

5. An effective address calculation uses one base register and does not use an index 
register. However, when the effective address calculation uses an index register, 
one core clock may be added to the clock count shown.

6. The target of a jump is in the cache. If not, add r clocks for accessing the 
destination instruction of a jump. When the destination instruction is not 
completely contained in the first dword read, add a maximum of 3b bus clocks. 
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When the destination instruction is not completely contained in the first 16 byte 
burst, add a maximum of r+3b bus clocks.

7. If no write buffer delay occurs, w bus clocks are added only when all write buffers 
are full.

8. Displacement and immediate must not be used together. If displacement and 
immediate are used together, one core clock may be added to the core clock count 
shown.

9. No invalidate cycles. Add a delay of one bus clock for each invalidate cycle if the 
invalidate cycle contends for the internal cache/external bus when the Intel® Quark 
SoC X1000 Core needs to use it.

10. Page translation hits in TLB. A TLB miss adds 13, 21 or 28 bus clocks + 1 possible 
core clock to the instruction depending on whether the Accessed and/or Dirty bit in 
neither, one, or both of the page entries must be set in memory. This assumes that 
neither page entry is in the data cache and a page fault does not occur on the 
address translation.

11. No exceptions are detected during instruction execution. Refer to Table 91 for extra 
clocks when an interrupt is detected.

12. Instructions that read multiple consecutive data items (i.e., task switch, POPA, 
etc.) and miss the cache are assumed to start the first access on a 16-byte 
boundary. If not, an extra cache line fill may be necessary, which may add up to 
(r+3b) bus clocks to the cache miss penalty.
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Table 89. Clock Count Summary (Sheet 1 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

INTEGER OPERATIONS

MOV = Move:

reg1 to reg2 1000 100w : 11 reg1 reg2 1

reg2 to reg1 1000 101w : 11 reg1 reg2 1

memory to reg 1000 100w : mod reg r/m 1 2

Immediate to reg 1100 011w : 11000 reg : immediate data 1

or 1011W reg : immediate data 1

Immediate to Memory 1100 01w : mod 000 r/m : displacement
immediate 1

Memory to Accumulator 1010 000w : full displacement 1 2

Accumulator to Memory 1010 001w : full displacement 1

MOVSX/MOVZX = Move with Sign/Zero Extension

reg2 to reg1 0000 1111 : 1011 z11w : 11 reg1 reg2 3

memory to reg 0000 1111 : 1011 z11w : mod reg r/m 3 2

z instruction
0 MOVZX
1 MOVSX

PUSH = Push

reg 1111 1111 : 11 110 reg 4

or 01010 reg 1

memory 1111 1111 : mod 110 r/m 4 1 1

immediate 0110 10s0 : immediate data 1

PUSHA = Push All 0110 0000 11

POP = Pop

reg 1000 1111 : 11 000 reg 4 1

or 01011 reg 1 2

memory 1000 1111 : mod 000 r/m 5 2 1

POPA = Pop All 0110 0001 9 7/15 16/32

XCHG = Exchange

reg1 with reg2 1000 011w : 11 reg1 reg2 3 2

Accumulator with reg 10010 reg 3 2

Memory with reg 1000 011w : mod reg r/m 5 2

NOP = No Operation 1001 0000 1

Note: See Table 92 for notes and abbreviations for items in this table.
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LEA = Load EA to Register 1000 1101 : mod reg r/m

no index register 1

with index register 2

Instruction
ADD = Add
ADC = Add with Carry
AND = Logical AND
OR = Logical OR
SUB = Subtract
SBB = Subtract with Borrow
XOR = Logical Exclusive OR

TTT
000
010
100
001
101
011
110

reg1 to reg2 00TT T00w : 11 reg1 reg2 1

reg2 to reg1 00TT T01w : 11 reg1 reg2 1

memory to register 00TT T01w : mod reg r/m 2 2

register to memory 00TT T00w : mod reg r/m 3 6/2 U/L

immediate to register 1000 00sw : 11 TTT reg : immediate 
register 1

immediate to
Accumulator 00TT T10w : immediate data 1

immediate to memory 1000 00sw : mod TTT r/m : immediate 
data 3 6/2 U/L

Instruction
INC = Increment
DEC = Decrement

TTT
000
001

reg 1111 111w : 11 TTT reg 1

or 01TTT reg 1

memory 1111 111w : mod TTT r/m 3 6/2 U/L

Instruction
NOT = Logical Complement
NEG = Negate

TTT
010
011

reg 1111 011w : 11 TTT reg 1

memory 1111 011w : mod TTT r/m 3 6/2 U/L

CMP = Compare

reg1 with reg2 0011 100w : 11 reg1 reg2 1

reg2 with reg1 0011 101w : 11 reg1 reg2 1

memory with register 0011 100w : mod reg r/m 2 2

register with memory 0011 101w : mod reg r/m 2 2

immediate with register 1000 00sw : 11 111 reg : immediate data 1

immediate with acc. 0011 110w : immediate data 1

immediate with memory 1000 00sw : mod 111 r/m : immediate 
data 2 2

Table 89. Clock Count Summary (Sheet 2 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

Note: See Table 92 for notes and abbreviations for items in this table.
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TEST = Logical Compare

reg1 and reg2 1000 010w : 11 reg1 reg2 1

memory and register 1000 010w : mod reg r/m 2 2

immediate and register 1111 011w : 11 000 reg : immediate data 1

immediate and acc. 1010100w : immediate data 1

immediate and memory 1111 011w : mod 000 r/m : immediate 
data 2 2

MUL = Multiply (unsigned)

acc. with register 1111 011w : 11 100 reg

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

MN/MX,3
MN/MX,3
MN/MX,3

acc. with memory 1111 011w : mod 100 r/m

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

1
1
1

MN/MX,3
MN/MX,3
MN/MX,3

IMUL = Integer Multiply (unsigned)

acc. with register 1111 011w : 11 101 reg

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

MN/MX,3
MN/MX,3
MN/MX,3

acc. with memory 1111 011w : mod 101 r/m

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

MN/MX,3
MN/MX,3
MN/MX,3

reg1 with reg2 0000 1111 : 10101111 : 11 reg1 reg2

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

MN/MX,3
MN/MX,3
MN/MX,3

register with memory 0000 1111 : 10101111 : mod reg r/m

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

1
1
1

MN/MX,3
MN/MX,3
MN/MX,3

reg1 with imm. to reg2 0110 10s1 : 11 reg1 reg2 : immediate 
data

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

MN/MX,3
MN/MX,3
MN/MX,3

mem. with imm. to reg. 0110 10s1 : mod reg r/m : immediate 
data

Multiplier-Byte
Word
Dword

13/18
13/26
13/42

MN/MX,3
MN/MX,3
MN/MX,3

Table 89. Clock Count Summary (Sheet 3 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

Note: See Table 92 for notes and abbreviations for items in this table.
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IMUL = Integer Multiply (signed)

acc. with register 1111 011w : 11 101 reg

Multiplier-Byte
Word
Dword

5/5
5/6
6/12

MN/MX,3
MN/MX,3
MN/MX,3

acc. with memory 1111 011w : mod 1 01 r/m

Multiplier-Byte
Word
Dword

5/5
5/6
6/12

MN/MX,3
MN/MX,3
MN/MX,3

reg1 with reg2 0000 1111 : 1010 1111 : 11 reg1 reg2

Multiplier-Byte
Word
Dword

5/5
5/6
6/12

MN/MX,3
MN/MX,3
MN/MX,3

register with memory 0000 1111 : 1010 1111 : mod reg r/m

Multiplier-Byte
Word
Dword

5/5
5/6
6/12

MN/MX,3
MN/MX,3
MN/MX,3

reg1 with imm. to reg2 0110 10s1 : 11 reg1 reg2 : immediate 
data

Multiplier-Byte
Word
Dword

5/5
5/6
6/12

MN/MX,3
MN/MX,3
MN/MX,3

mem. with imm. to reg. 0110 10s1 : mod reg r/m : immediate 
data

Multiplier-Byte
Word
Dword

5/5
5/6
6/12

MN/MX,3
MN/MX,3
MN/MX,3

DIV = Divide (unsigned)

acc. by register 1111 011w : 1111 0 reg

Divisor-Byte
Word
Dword

16
24
40

acc. by memory 1111 011w : mod 11 0 r/m

Divisor-Byte
Word
Dword

16
24
40

IDIV = Integer Divide 
(signed)

acc. by register 1111 011w : 1111 1 reg

Divisor-Byte
Word
Dword

19
27
43

acc. by memory 1111 011w : mod 11 1 r/m

Divisor-Byte
Word
Dword

20
28
44

CBW = Convert Byte to 
Word 1001 1000 3

Table 89. Clock Count Summary (Sheet 4 of 13)

Instruction Format Cache 
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Penalty 
if 
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Notes

Note: See Table 92 for notes and abbreviations for items in this table.



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 271

Instruction Set Summary—Intel® Quark Core

CWD = Convert Word to 
Dword 1001 1001 3

Instruction
ROL = Rotate Left
ROR = Rotate Right
RCL = Rotate Through Carry 
Left
RDR = Rotate Through Carry 
Right
SHL/SAL = Shift Logical/ 
Arithmetic Left
SHR = Shift Logical Right
SAR = Shift Arithmetic Right

TTT
000
001
010

011

100

101
111

Not Through Carry (ROL, ROR, SAR, SHL, and SHR)

reg by 1 1101 000w : 11 TTT reg 3

memory by 1 1101 000w : mod TTT r/m 4 6

reg by CL 1101 001w : 11 TTT reg 3

memory by CL 1101 001w : mod TTT r/m 4 6

reg by immediate count 1100 000w : 11 TTT reg : imm. 8-bit data 2

mem by immediate count 1100 000w : mod TTT r/m : imm. 8-bit 
data 4 6

Through Carry (RCL and RCR)

reg by 1 1101 000w : 11 TTT reg 3

memory by 1 1101 000w : mod TTT r/m 4 6

reg by CL 1101 001w : 11 TTT reg 8/30 MN/MX,4

memory by CL 1101 001w : mod TTT r/m 9/31 MN/MX,5

reg by immediate count 1100 000w : 11 TTT reg : imm. 8-bit data 8/30 MN/MX,4

mem by immediate count 1100 000w : mod TTT r/m : imm. 8-bit 
data 9/31 MN/MX,5

Instruction
SHLD = Shift Left Double
SHRD = Shift Right Double

TTT
100
101

register with immediate 0000 1111 : 10TT T100 : 11 reg2 reg1
 : imm. 8-bit data 2

memory with immediate 0000 1111 : 10TT T100 : mod reg r/m
 : imm. 8-bit data 3 6

register by CL 0000 1111 : 10TT T101 : 11 reg2 reg1 3

memory by CL 0000 1111 : 10TT T101 : mod reg r/m 4 5

BSWAP = Byte Swap 0000 1111 : 11001 reg 1

XADD = Exchange and Add

reg1, reg2 0000 1111 : 1100 000w : 11 reg2 reg1 3

memory, reg 0000 1111 : 1100 000w : mod reg r/m 4 6/2 U/L

CMPXCHG = Compare and Exchange

reg1, reg2 0000 1111 : 1011 000w : 11 reg2 reg1 6

memory, reg 0000 1111 : 1011 000w : mod reg r/m 7/10 2 6

Table 89. Clock Count Summary (Sheet 5 of 13)
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Notes

Note: See Table 92 for notes and abbreviations for items in this table.
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CONTROL TRANSFER (within segment)

Note: Times are jump taken/not taken

JCCCC = Jump on cccc

8-bit displacementt 0111 tttn : 8-bit disp. 3/1 T/NT,23

full displacement 0000 1111 : 1000 tttn : full displacement 3/1 T/NT,23

Note: Times are jump taken/not taken

SETCCCC = Set Byte on cccc (Times are cccc true/false)

reg 0000 1111 : 1001 tttn : 11 000 reg 4/3

memory 0000 1111 : 1001 tttn : mod 0000 r/m 3/4

Mnemonic cccc
O
NO
B/NAE
NB/AE
E/Z
NE/NZ
BE/NA
NBE/A
S
NS
P/PE
NP/PO
L/NGE
NL/GE 
LE/NG
NLE/G

Condition tttn
Overflow 0000
No Overflow 0001
Below/Not Above or Equal 0010
Not Below/Above or Equal 0011
Equal Zero 0100
Not Equal/Not Zero 0101
Below or Equal/Not Above 0110
Not Below or Equal/Above 0111
Sign 1000
Not Sign 1001
Parity/Parity Even 1010
Not Parity/Parity Odd 1011
Less Than/Not Greater or Equal 1100
Not Less Than/Greater or Equal 1101
Less Than or Equal/Greater Than 1110
Not Less Than or 
   Equal/Greater Than 1111

LOOP = LOOP CX Times 1110 0010 : 8-bit disp. 7/6 L/NL,23

LOOPZ/LOOPE = Loop with Zero/Equal

1110 0001 : 8-bit disp. 9/6 L/NL,23

LOOPNZ/LOOPNE = Loop While Not Zero

1110 0000 : 8-bit disp. 9/6 L/NL,23

JCXZ = Jump on CX Zero 1110 0011 : 8-bit disp. 8/5 T/NT,23

JECXZ = Jump on ECX Zero 1110 0011 : 8-bit disp. 8/5 T/NT,23

(Address Size Prefix Differentiates JCXZ for JECXZ)

JMP = Unconditional Jump (within segment)

Short 1110 1011 : 8-bit disp. 3 7,23

Direct 1110 1001 : full displacement 3 7,23

Register Indirect 1111 1111 : 11 100 reg 5 7,23

Memory Indirect 1111 1111 : mod 100 r/m 5 5 7

CALL = Call (within segment)

Direct 1110 1000 : full displacement 3 7,23

Register Indirect 1111 1111 : 11 010 reg 5 7,23

Memory Indirect 1111 1111 : mod 010 reg 5 5 7

Table 89. Clock Count Summary (Sheet 6 of 13)
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Note: See Table 92 for notes and abbreviations for items in this table.
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RET = Return from CALL (within segment)

1100 0011 5 5

Adding Immediate to SP 1100 0010 : 16-bit disp. 5 5

ENTER = Enter Procedure 1100 1000 : 16-bit disp., 8-bit level

Level = 0
Level = 1
Level (L) > 1

14
17

17+3L 8

LEAVE = Leave Procedure 1100 1001 5 1

MULTIPLE-SEGMENT INSTRUCTIONS

MOV = Move

reg. to segment reg. 1000 1110 : 11 sreg3 reg 3/9 0/3 RV/P,9

memory to segment reg. 1000 1110 : mod sreg3 r/m 3/9 2/5 RV/P,9

segment reg. to reg. 1000 1100 : 11 sreg3 reg 3

segment reg. to memory 1000 1100 : mod sreg3 r/m 3

PUSH = Push

segment reg.
(ES, CS, SS, or DS) 000sreg 2110 3

segment reg. (FS or GS) 0000 1111 : 10 sreg3001 3

POP = Pop

segment reg.
(ES, CS, SS, or DS) 000sreg 2111 3/0 2/5 RV/P,9

segment reg. (FS or GS) 0000 1111 : 10 sreg3001 3/9 2/5 RV/P,9

LDS = Load Pointer to DS 1100 0101 : mod reg r/m 6/12 7/10 RV/P,9

LES = Load Pointer to ES 1100 0100 : mod reg r/m 6/12 7/10 RV/P,9

LFS = Load Pointer to FS 0000 1111 : 1011 0100 : mod reg r/m 6/12 7/10 RV/P,9

LGS = Load Pointer to GS 0000 1111 : 1011 0101 : mod reg r/m 6/12 7/10 RV/P,9

LSS = Load Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m 6/12 7/10 RV/P,9

CALL = Call

Direct intersegment 1001 1010 : unsigned full offset, selector 18 2 R,7,22

to same level
thru Gate to same level
to inner level, no parameters
to inner level, x parameters (d) words
to TSS
thru Task Gate

20
35
69

77+4X
37+TS
38+TS

3
6
17

17+n
3
3

P,9
P,9
P,9

P,11,9
P,10,9
P,10,9,

Indirect intersegment 1111 1111 : mod 011 r/m 17 8 R,7

to same level
thru Gate to same level
to inner level, no parameters
to inner level, x parameters (d) words
to TSS
thru Task Gate

20
35
69

77+4X
37+TS
38+TS

10
13
24

24+n
10
10

P,9
P,9
P,9

P,11,9
P,10,9
P,10,9,

Table 89. Clock Count Summary (Sheet 7 of 13)
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RET = Return from CALL

intersegment 1100 1010 13 8 R,7

to same level
to outet lever

17
35

9
12

P,9
P,9

intersegment adding
imm. to SP 1100 1010 : 16-bit disp. 14 8 R,7

to same level
to outer level

18
36

9
12

P,9
P,9

JMP = Unconditional Jump

Direct intersegment 1110 1010 : unsigned full offset, selector 17 2 R,7,22

to same level
thru Call Gate to same level
thru TSS
thru Task Gate

19
32

42+TS
43+TS

3
6
3
3

P,9
P,9

P,10,9
P,10,9,

Indirect intersegment 1111 1111 : mod 011 r/m 13 9 R,7,9

to same level
thru Call Gate to same level
thru TSS
thru Task Gate

18
31

41+TS
42+TS

10
13
10
10

P,9
P,9

P,10,9
P,10,9,

BIT MANIPULATION

BT = Test Bit

register, immediate 0000 1111 : 1011 1010 : 11 100 reg : 
imm. 8-bit data 3

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : 
imm. 8-bit data 3 1

reg1, reg2 0000 1111 : 1010 0011 : 11 reg2 reg1 3

memory, reg 0000 1111 : 1010 0011 : mod reg r/m 8 2

Instruction
BTS = Test Bit and Set
BTR = Test Bit and Reset
BTC = Test Bit and 
Complement

TTT
101
110

111

register, immediate 0000 1111 : 1011 1010 : 11  TTT  reg
imm. 8-bit data 6

memory, immediate 0000 1111 : 1011 1010 : mod   TTT  r/m
imm. 8-bit data 8 U/L

reg1, reg2 0000 1111 : 10TT T011 : 1 1  reg2  reg1 6

memory, reg 0000 1111 : 10TT T011 : mod   reg  r/m 13 U/L

BSF = Scan Bit Forward

reg1, reg2 0000 1111 : 1011 1100 : 11 reg2 reg1 6/42 MN/MX,
12

memory, reg 0000 1111 : 1011 1100 : mod reg r/m 7/43 2 MN/MX, 15

BSR = Scan Bit Reverse

reg1, reg2 0000 1111 : 1011 1101 : 11 reg2 reg1 6/103 MN/MX, 14

memory, reg 0000 1111 : 1011 1101 : mod reg r/m 7/104 1 MN/MX, 15

Table 89. Clock Count Summary (Sheet 8 of 13)
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STRING INSTRUCTIONS

CMPS = Compare Byte Word 1010 011w 8 6 16

LODS = Load Byte/Word to 
AL/AX/EAX 1010 111w 5 2

MOVS = Move Byte/Word 1010 010w 7 2 16

SCAS = Scan Byte/Word 1010 111w 6 2

STOS = Store Byte/Word 
from AL/AX/EX 1010 101w 5

XLAT = Translate String 1101 0111 4 2

REPEATED STRING INSTRUCTIONS
Repeated by Count in CX or ECX (C=Count in CX or ECX)

REPE CMPS = Compare 
String

(Find Non-match)
1111 0011 : 1010 011w

C = 0
C > 0

5
7+7c 16, 17

REPNE CMPS = Compare 
String

(Find Match)
1111 0010 : 1010 011w

C = 0
C > 0

5
7+7c 16, 17

REP LODS = Load String 1111 0010 : 1010 110w

C = 0
C > 0

5
7+4c 16, 18

REP MOVS = Move String 1111 0010 : 1010 010w

C = 0
C = 1
C > 1

5
13

12+3c
1 16

16,19

REPE SCAS = Scan String
(Find Non-AL/AX/EAX) 1111 0011 : 1010 111w

C = 0
C > 0

5
7+5c 20

REPNE SCAS = Scan String
(Find AL/AX/EAX) 1111 0010 : 1010 111w

C = 0
C > 0

5
7+5c 20

REP STOS = Store String 1111 0010 : 1010 101w

C = 0
C > 0

5
7+4c

FLAG CONTROL

CLC = Clear Carry Flag 1111 1000 2

STC = Set Carry Flag 1111 1001 2

CMC = Complement Carry 
Flag 1111 0101 2

CLD = Clear Direction Flag 1111 1100 2

Table 89. Clock Count Summary (Sheet 9 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

Note: See Table 92 for notes and abbreviations for items in this table.



Intel® Quark Core—Instruction Set Summary

Intel® Quark SoC X1000 Core
Developer’s Manual October 2013
276 Order Number: 329679-001US

STD = Set Direction Flag 1111 1101 2

CLI = Clear Interrupt Enable 
Flag 1111 1010 5

STI = Set Interrupt Enable 
Flag 1111 1011 5

LAHF = Load AH into Flag 1001 1111 3

SAHF = Store AH into Flag 1001 1110 2

PUSHF = Push Flags 1001 1100 4/3 RV/P

POFF = Pop Flags 1001 1101 9/6 RV/P

DECIMAL ARITHMETIC

AAA = ASCII Adjust to Add 0011 0111 3

AAS = ASCII Adjust for 
Subtract 0011 1111 3

AAM = ASCII Adjust for 
Multiply 1101 0100 : 0000 1010 15

AAD = ASCII Adjust for 
Divide 1101 0101 : 0000 1010 14

DAA = Decimal Adjust for 
Add 0010 0111 2

DAS = Decimal Adjust for 
Subtract 0010 1111 2

PROCESSOR CONTROL INSTRUCTIONS

HLT = Halt 1111 0100 4

MOV = Move To and From Control/Debug/Test Registers

CR0 from register 0000 1111 : 0010 0010 : 11 000 reg 17 2

CR2/CR3 from register 0000 1111 : 0010 0010 : 11 eee reg 4

Reg from CR0-3 0000 1111 : 0010 0000 : 11 eee reg 4

DR0-3 from register 0000 1111 : 0010 0011 : 11 eee reg 10

DR6-7 from register 0000 1111 : 0010 0011 : 11 eee reg 10

Register from DR6-7 0000 1111 : 0010 0001 : 11 eee reg 9

Register from DR0-3 0000 1111 : 0010 0001 : 11 eee reg 9

TR3 from register 0000 1111 : 0010 0110 : 11 011 reg 4

TR4-7 from register 0000 1111 : 0010 0110 : 11 eee reg 4

Register from TR3 0000 1111 : 0010 0100 : 11 011 reg 3

Register from TR4-7 0000 1111 : 0010 0100 : 11 eee reg 4

CPUID = CPU Identification 0000 1111 : 1010 0010

EAX = 1
EAX = 0, >1

14
9

CLTS = Clear Task Switched 
Flag 0000 1111 : 0000 0110 7 2

Table 89. Clock Count Summary (Sheet 10 of 13)
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INVD = Invalidate Data 
Cache 0000 1111 : 0000 1000 4

WBINVD = Write-Back and 
Invalidate Data Cache 0000 1111 : 0000 1001 5

INVLPG = Invalidate TLB Entry

INVLPG memory 0000 1111 : 0000 0001 : mod 111 r/m 12/11 H/NH

PREFIX BYTES

Address Size Prefix 0110 0111 1

LOCK = Bus Lock Prefix 1111 0000 1

Operand Size Prefix 0110 0110 1

Segment Override Prefix

CS: 0010 1110 1

DS: 0011 1110 1

ES: 0010 0110 1

FS: 0110 0100 1

GS: 0110 0101 1

SS: 0011 0110 1

PROTECTION CONTROL

ARPL = Adjust Requested Privilege Level

From register 0110 0011 : 11 reg1 reg2 9

From memory 0110 0011 : mod reg r/m 9

LAR = Load Access Rights

From register 0000 1111 : 0000 0010 : 11 reg1 reg2 11 3

From memory 0000 1111 : 0000 0010 : mod reg r/m 11 5

LGDT = Load Global Descriptor

Table register 0000 1111 : 0000 0001 : mod 010 r/m 12 5

LIDT = Load Interrupt Descriptor

Table register 0000 1111 : 0000 0001 : mod 011 r/m 12 5

LLDT = Load Local Descriptor

Table register from reg. 0000 1111 : 0000 0000 : 11 010 reg 11 3

Table register from mem. 0000 1111 : 0000 0000 : mod 010 r/m 11 6

LMSW = Load Machine Status Word

From register 0000 1111 : 0000 0001 : 11 110 reg 13

From memory 0000 1111 : 0000 0001 : mod 110 r/m 13 1

LSL = Load Segment Limit

From register 0000 1111 : 0000 0011 : 11 reg1 reg2 10 3

From memory 0000 1111 : 0000 0011 : mod reg r/m 10 6

Table 89. Clock Count Summary (Sheet 11 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

Note: See Table 92 for notes and abbreviations for items in this table.
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LTR = Load Task Register

From register 0000 1111 : 0000 0000 : 11 011 reg 20

From memory 0000 1111 : 0000 0000 : mod 011 r/m 20

SGDT = Store Global Descriptor Table

0000 1111 : 0000 0001 : mod 000 r/m 10

SIDT = Store Interrupt Descriptor Table

0000 1111 : 0000 0001 : mod 001 r/m 2

SLDT = Store Local Descriptor Table

To register 0000 1111 : 0000 0000 : 11 000 reg 2

To memory 0000 1111 : 0000 0001 : mod 000 r/m 3

SMSW = Store Machine Status Word

To register 0000 1111 : 0000 0001 : 11 000 reg 2

To memory 0000 1111 : 0000 0001 : mod 100 r/m 3

STR = Store Task Register

To register 0000 1111 : 0000 0000 : 11 001 r/m 2

To memory 0000 1111 : 0000 0000 : mod 001 r/m 3

VERR = Verify Read Access

Register 0000 1111 : 0000 0000 : 11 100 r/m 11 3

Memory 0000 1111 : 0000 0000 : mod 100 r/m 11 7

VERW = Verify Write Access

To register 0000 1111 : 0000 0000 : 11 101 r/m 11 3

To memory 0000 1111 : 0000 0000 : mod 101 r/m 11 7

INTERRUPT INSTRUCTIONS

INTn = Interrupt Type n 1100 1101 : type INT+4/0 RV/P, 21

INT3 = Interrupt Type 3 1100 1100 INT+0 21

INTO = Interrupt 4 if Overflow Flag Set

1100 1110

Taken
Not Taken

INT+2
3

21
21

BOUND = Interrupt 5 if Detect Value Out Range

0110 0010 : mod reg r/m

If in range
If out of range

7
INT+24

7
7

21
21

IRET = Interrupt Return 1100 1111

Real Mode/Virtual Mode
Protected Mode

To same level
To outer level
To nested task
(EFLAGS.NT=1)

15

20
36

TS+32

8

11
19
4

9
9

9,10

Table 89. Clock Count Summary (Sheet 12 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

Note: See Table 92 for notes and abbreviations for items in this table.
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RSM = Exit System  Management Mode

0000 1111 : 1010 1010

SMBASE Relocation
Auto HALT Restart
I/O Trap Restart

452
456
465

External Interrupt INT+11 21

NMI = Non-Maskable Interrupt INT+3 21

Page Fault INT+24 21

VM86 Exceptions
CLK
STI
INTn
PUSHF
POPF
IRET
IN

Fixed Port
Variable Port

OUT
Fixed Port
Variable Port

INS
OUTS
REP INS
REPOUTS

INT+8
INT+8
INT+9
INT+9
INT+8
INT+9

INT+50
INT+51

INT+50
INT+51
INT+50
INT+50
INT+51
INT+51

21
21

21
21

21
21

21
21
21
21
21
21

Table 89. Clock Count Summary (Sheet 13 of 13)

Instruction Format Cache 
Hit

Penalty 
if 

Cache 
Miss

Notes

Note: See Table 92 for notes and abbreviations for items in this table.

Table 90. Task Switch Clock Counts

Method
Value for TS

Cache Hit Miss Penalty

VM/Intel® Quark SoC X1000 Core/286 TSS to Intel® Quark SoC 
X1000 Core TSS 162 55

VM/Intel® Quark SoC X1000 Core/286 TSS to 286 TSS 144 31

Note: See Table 92 for definitions and notes for items in this table.

Table 91. Interrupt Clock Counts (Sheet 1 of 2)

Method
Value for INT

Cache Hit Miss Penalty Notes

Real Mode 26 2
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Protected Mode
Interrupt/Trap gate, same level
Interrupt/Trap gate, different level
Task Gate

44
71

37 + TS

6
17
3

9
9

9, 10

Virtual Mode
Interrupt/Trap gate, different level
Task Gate 

82
37 + TS

17
3 10

Note: See Table 92 for definitions and notes for items in this table.

Table 91. Interrupt Clock Counts (Sheet 2 of 2)

Method
Value for INT

Cache Hit Miss Penalty Notes

Table 92. Notes and Abbreviations (for Table 89 through Table 91)  (Sheet 1 of 2)

The following abbreviations are used in Table 89 through Table 91:

Abbreviation
16/32
U/L

MN/MX
L/NL
RV/P

R
P

T/NT
H/NH

Definition
16/32 bit modes
unlocked/locked
minimum/maximum
loop/no loop
real and virtual mode/protected mode
real mode
protected mode
taken/not taken
hit/no hit

The following notes refer to Table 89 through Table 91. 
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1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case.
3. Clocks= 10 + max(log2(|m|),n)
4. Clocks = {quotient(count/operand length)}*7+9

= 8 if count ≤ operand length (8/16/32)
5. Clocks = {quotient(count/operand length)}*7+9

= 9 if count ≤ operand length (8/16/32)
6. Equal/not equal cases (penalty is the same regardless of lock)
7. Assuming that addresses for memory read (for indirection), stack puch/pop and branch fall in different 
cache sets.
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.
9. Add 11 clocks for each unaccessed descriptor load.
10. Refer to task switch clock counts table for value of TS.
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes.

For notes 12-13:b=0-3, non-zero byte number); (i=0-1, non-zero nibble number); (n=0-3, non-bit number in 
nibble);
12. Clocks = 8 + 4 (b+1) + 3(i+1) + 3(n+1)

= 6 if second operand = 0
13. Clocks = 9 + 4 (b+1) + 3(i+1) + 3(n+1)

= 7 if second operand = 0

For notes 14-15:(n=bit position 0-31)
14. Clocks = 7 + 3(32-n)

= 6 if second operand = 0
15. Clocks = 8 + 3(32-n)

= 7 if second operand = 0

16. Assuming that the two string addresses fall in different cache sets.
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
19. Cache miss penalty: add 4 clocks for every 16 bytes moved (1 clock for the first operation and 3 for the 
second).
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned (2 clocks each for first and second 
operations).
21. Refer to interrupt clock counts table for value of INT.
22. Clock count includes one clock for using both displacement and immediate.
23. Refer to assumption 6 in the case of a cache miss.
24. Virtual Mode Extensions are disabled.
25. Protected Virtual Interrupts are disabled.

Table 92. Notes and Abbreviations (for Table 89 through Table 91)  (Sheet 2 of 2)

Table 93. I/O Instructions Clock Count Summary (Sheet 1 of 2)

Instruction Format Real 
Mode

Protected 
Mode

(CPL≤IOPL)

Protected 
Mode

(CPL>IOPL)

Virtual 
86 

Mode
Notes

IN = Input from:

Fixed Port 1110 010w : port number 14 9 29 27

Variable Port 1110 110w 14 8 28 27

OUT = Output to:

Fixed Port 1110 011w : port number 16 11 31 29

Notes:
1. Two clock cache miss penalty in all cases.
2. c = count in CX or ECX.
3. Cache miss penalty in all modes: Add two clocks for every 16 bytes. Entire penalty on second 

operation.
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Variable Port 1110 110w 16 10 30 29

INS = Input Byte/Word from DX Port

0110 110w 17 10 32 30

OUTS = Output Byte/Word to DX Port

0110 111w 17 10 32 30 1

REP INS = Input String

1111 0010 : 0110 110w 16+8c 10+8c 30+8c 29+8c 2

REP OUTS = Output String

1111 0010 : 0110 111w 17+5c 11+5c 31+5c 30+5c 3

Table 93. I/O Instructions Clock Count Summary (Sheet 2 of 2)

Instruction Format Real 
Mode

Protected 
Mode

(CPL≤IOPL)

Protected 
Mode

(CPL>IOPL)

Virtual 
86 

Mode
Notes

Notes:
1. Two clock cache miss penalty in all cases.
2. c = count in CX or ECX.
3. Cache miss penalty in all modes: Add two clocks for every 16 bytes. Entire penalty on second 

operation.
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Table 94. Floating-Point Clock Count Summary  (Sheet 1 of 8)

Instruction Format

Cache Hit
Avg (Lower 

Range... 
Upper 

Range)

Penalty 
if 

Cache 
Miss

Concurrent 
Execution

Avg (Lower 
Range- Upper 

Range)

Notes

DATA TRANSFER

FLD = Real Load to ST(0)

32-bit memory 11011 001 : mod 000 r/m : s-i-b/disp. 3 2

64-bit memory 11011 101 : mod 000 r/m : s-i-b/disp. 3 3

80-bit memory 11011 011 : mod 101 r/m : s-i-b/disp. 6 4

ST(i) 11011 001 : 11000  ST(i) 4

FILD = Integer Load to ST(0)

16-bit memory 11011 111 : mod 000 r/m : s-i-b/disp. 14.5(13-16) 2 4

32-bit memory 11011 011 : mod 000 r/m : s-i-b/disp. 11.5(9-12) 2 4(2-4)

64-bit memory 11011 111 : mod 101 r/m : s-i-b/disp. 16.8(10-18) 3 7.8(2-8)

FBLD = BCD Load to ST(0)

11011 111 : mod 100 r/m : s-i-b/disp. 75(70-103) 4 7.7(2-8)

FST = Store Real from ST(0)

32-bit memory 11011 011 : mod 010 r/m : s-i-b/disp. 7 1

64-bit memory 11011 101 : mod 010 r/m : s-i-b/disp. 8 2

ST(i) 11011 101 : 11001  ST(i) 3

FSTP = Store Real from ST(0) and Pop

32-bit memory 11011 011 : mod 011 r/m : s-i-b/disp. 7 1

64-bit memory 11011 101 : mod 011 r/m : s-i-b/disp. 8 2

80-bit memory 11011 011 : mod 111 r/m : s-i-b/disp. 6

ST(i) 11011 101 : 11001  ST(i) 3

FIST = Store Integer from ST(0)

16-bit memory 11011 111 : mod 010 r/m : s-i-b/disp. 33.4(29-34)

32-bit memory 11011 011 : mod 010 r/m : s-i-b/disp. 32.4(28-34)

FISTP = Store Integer from ST(0) and Pop

16-bit memory 11011 111 : mod 011 r/m : s-i-b/disp. 33.4(29-34)

32-bit memory 11011 011 : mod 011 r/m : s-i-b/disp. 33.4(29-34)

64-bit memory 11011 111 : mod 111 r/m : s-i-b/disp. 33.4(29-34)

FBSTP = Store BCD from ST(0) and Pop

11011 111 : mod 110 r/m : s-i-b/disp. 175(172-176)

Notes:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. If there is a numeric error pending from a previous instruction, add 18 clocks.
6. The INT pin is polled several times while this function is executing to ensure short interrupt latency.
7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).
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FXCH = Exchange ST(0) and ST(i)

11011 001 : 11001 ST(i) 4

COMPARISON INSTRUCTIONS

FCOM = Compare ST(0) with Real

32-bit memory 11011 000 : mod 010 r/m : s-i-b/disp. 4 2 1

64-bit memory 11011 100 : mod 010 r/m : s-i-b/disp. 4 3 1

ST(i) 11011 000 : 11010 ST(i) 4

FCOMP = Compare ST(0) with Real and Pop

32-bit memory 11011 000 : mod 011 r/m : s-i-b/disp. 4 2 1

64-bit memory 11011 100 : mod 011 r/m : s-i-b/disp. 4 3 1

ST(i) 11011 000 : 11011 ST(i) 4 1

FCOMPP = Compare ST(0) with ST(1) and Pop Twice

11011 110 : 1101 1001 5 1

FICOM = Compare ST(0) with Integer

16-bit memory 11011 110 : mod 010 r/m : s-i-b/disp. 18(16-20) 2 1

32-bit memory 11011 010 : mod 010 r/m : s-i-b/disp. 16.5(15-17) 2 1

FICOMP = Compare ST(0) with Integer

16-bit memory 11011 110 : mod 011 r/m : s-i-b/disp. 18(16-20) 2 1

32-bit memory 11011 010 : mod 011 r/m : s-i-b/disp. 16.5(15-17) 2 1

FTST = Compare ST(0) with 0.0

11011 011 : 1110 0100 4 1

FUCOM = Unordered compare ST(0) with ST(i)

11011 101 : 11100 ST(i) 4 1

FUCOMP = Unordered compare ST(0) with ST(i) and Pop

11011 101 : 11101 ST(i) 4 1

FUCOMPP = Unordered compare ST(0) with ST(1) and Pop 
Twice

11011 101 : 11101 1001 5 1

FXAM = Examine ST(0)

11011 001 : 1110 0101 8

Table 94. Floating-Point Clock Count Summary  (Sheet 2 of 8)

Instruction Format

Cache Hit
Avg (Lower 

Range... 
Upper 

Range)

Penalty 
if 

Cache 
Miss

Concurrent 
Execution

Avg (Lower 
Range- Upper 

Range)

Notes

Notes:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. If there is a numeric error pending from a previous instruction, add 18 clocks.
6. The INT pin is polled several times while this function is executing to ensure short interrupt latency.
7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).
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CONSTANTS

FLDZ = Load +0.0 Into ST(0)

11011 001 : 1110 1110 : 4

FLD1 = Load +1.0 Into ST(0)

11011 001 : 1110 1000 : 4

FLDP1 = Load p Into ST(0)

11011 001 : 1110 1011 : 8 2

FLDL2T = Load log2(10) Into ST(0)

11011 001 : 1110 1001 : 8 2

FLDL2E = Load log2(e) Into ST(0)

11011 001 : 1110 1010 : 8 2

FLDLG2 = Load log10(2) Into ST(0)

11011 001 : 1110 1100 : 8 2

FLDLN2 = Load loge(2) Into ST(0)

11011 001 : 1110 1101 : 8 2

ARITHMETIC

FADD = Add Real with ST(0)

ST(0)←ST(0) + 32-bit memory

11011 000 : mod 000 r/m : s-i-b/disp. 10(8-20) 2 7(5-17)

ST(0)←ST(0) + 64-bit memory

11011 100 : mod 000 r/m : s-i-b/disp. 10(8-20) 3 7(5-17)

ST(d)←ST(0) + ST(i)

11011 d00 : 11000 ST(i) 10(8-20) 7(5-17)

FADDP = Add real with ST(0) and Pop  (ST(i)← ST(0) 
+ST(i))

11011 110 : 11000 ST(i) : 10(8-20) 7(5-17)

Table 94. Floating-Point Clock Count Summary  (Sheet 3 of 8)

Instruction Format

Cache Hit
Avg (Lower 

Range... 
Upper 

Range)

Penalty 
if 

Cache 
Miss

Concurrent 
Execution

Avg (Lower 
Range- Upper 

Range)

Notes

Notes:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. If there is a numeric error pending from a previous instruction, add 18 clocks.
6. The INT pin is polled several times while this function is executing to ensure short interrupt latency.
7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).
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FSUB = Subtract Real from ST(0)

ST(0)←ST(0) – 32-bit memory

11011 000 : mod 100 r/m : s-i-b/disp. 10(8-20) 2 7(5-17)

ST(0)←ST(0) – 64-bit memory

11011 100 : mod 100 r/m : s-i-b/disp. 10(8-20) 3 7(5-17)

ST(d)←ST(0) – ST(i)

11011 d00 : 11001 ST(i) 10(8-20) 7(5-17)

FSUBP = Subtract real from ST(0) and Pop (ST(i)← ST(0) -
ST(i))

11011 110 : 11001 ST(i) 10(8-20) 7(5-17)

FSUBR = Subtract Real reversed (Subtract ST(0) from Real)

ST(0)←32-bit memory – ST(0) 

11011 000 : mod 101 r/m : s-i-b/disp. 10(8-20) 2 7(5-17)

ST(0)←64-bit memory – ST(0)

 11011 100 : mod 101 r/m : s-i-b/disp. 10(8-20) 3 7(5-17)

ST(d)←ST(i) – ST(0) 

11011 d00 : 11001 ST(i) 10(8-20) 7(5-17)

FSUBRP = Subtract Real reversed and Pop (ST(i)← ST(i) -
ST(0))

11011 110 : 11100 ST(i) 10(8-20) 7(5-17)

FMUL = Multiply Real with ST(0)

ST(0)←ST(0) X 32-bit memory

11011 000 : mod 001 r/m : s-i-b/disp. 11 2 8

ST(0)←ST(0) X 64-bit memory

11011 100 : mod 001 r/m : s-i-b/disp. 14 3 11

ST(d)←ST(0) X ST(i)

11011 d00 : 11001 ST(i) 16 13

FMULP = Multiply ST(0) with ST(i) and Pop (ST(i)← ST(0) 
XST(i))

11011 110 : 11001 ST(i) 16 13

Table 94. Floating-Point Clock Count Summary  (Sheet 4 of 8)

Instruction Format

Cache Hit
Avg (Lower 

Range... 
Upper 

Range)

Penalty 
if 

Cache 
Miss

Concurrent 
Execution

Avg (Lower 
Range- Upper 

Range)

Notes

Notes:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. If there is a numeric error pending from a previous instruction, add 18 clocks.
6. The INT pin is polled several times while this function is executing to ensure short interrupt latency.
7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).
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FDIV = Divide ST(0) by Real

ST(0)←ST(0)/ 32-bit memory

11011 000 : mod 110 r/m : s-i-b/disp. 73 2 70 3

ST(0)←ST(0)/ 64-bit memory

11011 100 : mod 110 r/m : s-i-b/disp. 73 3 70 3

ST(d)←ST(0)/ ST(i)

11011 d00 : 11111 ST(i) 73 70 3

FDIVP = Divide ST(0) by ST(i) and Pop (ST(i)← ST(0)/ 
ST(i))

11011 110 : 11111 ST(i) 73 70 3

FDIVR = Divide real reversed (Real/ST(0))

ST(0)← 32-bit memory/ ST(0)

11011 000 : mod 111 r/m : s-i-b/disp. 73 2 70 3

ST(0)← 64-bit memory/ ST(0)

11011 100 : mod 111 r/m : s-i-b/disp. 73 3 70 3

ST(d)← ST(i)/ ST(0)

11011 d00 : 11110 ST(i) 73 70 3

FDIVRP = Divide real reversed and Pop (ST(i)← ST(i)/ 
ST(0))

11011 110 : 11110 ST(i) 73 70 3

FIADD = Add Integer to ST(0)

ST(0)←ST(0) + 16-bit memory

11011 110 : mod 000 r/m : s-i-b/disp. 24(20-35) 2 7(5-17)

ST(0)←ST(0) + 32-bit memory

11011 010 : mod 000 r/m : s-i-b/disp. 22.5(19-32) 2 7(5-17)

FISUB = Subtract Integer from ST(0)

ST(0)←ST(0) – 16-bit memory

11011 110 : mod 100 r/m : s-i-b/disp. 24(20-35) 2 7(5-17)

ST(0)←ST(0) – 32-bit memory

11011 010 : mod 100 r/m : s-i-b/disp. 22.5(19-32) 2 7(5-17)

Table 94. Floating-Point Clock Count Summary  (Sheet 5 of 8)

Instruction Format

Cache Hit
Avg (Lower 

Range... 
Upper 

Range)

Penalty 
if 

Cache 
Miss

Concurrent 
Execution

Avg (Lower 
Range- Upper 

Range)

Notes

Notes:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. If there is a numeric error pending from a previous instruction, add 18 clocks.
6. The INT pin is polled several times while this function is executing to ensure short interrupt latency.
7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).
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FISUBR = Integer Subtract Reversed

ST(0)←16-bit memory-ST(0)

11011 110 : mod 101 r/m : s-i-b/disp. 24(20-35) 2 7(5-17)

ST(0)←32-bit memory-ST(0)

11011 010 : mod 101 r/m : s-i-b/disp. 22.5(19-32) 2 7(5-17)

FIMUL = Multiply Integer with ST(0)

ST(0)←ST(0) X 16-bit memory

11011 110 : mod 101 r/m : s-i-b/disp. 25(23-27) 2 8

ST(0)←ST(0) X 32-bit memory

11011 010 : mod 001 r/m : s-i-b/disp. 23.5(19-32) 2 8

FIDIV = Integer Divide

ST(0)←ST(0)/ 16-bit memory

11011 110 : mod 110 r/m : s-i-b/disp. 87(85-89) 2 70 3

ST(0)←ST(0)/ 32-bit memory

11011 010 : mod 110 r/m : s-i-b/disp. 85.5(84-86) 2 70 3

FIDVR = Integer Divide Reversed

ST(0)←16-bit memory/ST(0)

11011 110 : mod 111 r/m : s-i-b/disp. 87(85-89) 2 70 3

ST(0)←32-bit memory/ST(0)

11011 010 : mod 111 r/m : s-i-b/disp. 85.5(84-86) 2 70 3

FSQRT = Square Root

11011 001 : 1111 1010 85.5(83-87) 70

FSCALE = Scale ST(0) by ST(1)

11011 001 : 1111 1101 31(30-32) 2

FXTRACT = Extract Components of ST(0)

11011 001 : 1111 0100 19(16-20) 4(2-4)

FPREM = Partial Reminder

11011 001 : 1111 1000 84(70-138) 2(2-8)

FPREM1 = Partial Reminder (IEEE)

11011 001 : 1111 0101 94.5(72-167) 5.5(2-18)

FRNDINT = Round ST(0) to Integer

11011 001 : 1111 1100 29.1(21-30) 7.4(2-8)

Table 94. Floating-Point Clock Count Summary  (Sheet 6 of 8)
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3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. If there is a numeric error pending from a previous instruction, add 18 clocks.
6. The INT pin is polled several times while this function is executing to ensure short interrupt latency.
7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).
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FABS = Absolute value of ST(0)

11011 001 : 1110 0001 3

FCHS = Change Sign of ST(0)

11011 001 : 1110 0000 6

TRANSCENDENTAL

FCOS = Cosine of ST(0)

11011 001 : 1111 1111 241(193-279) 2 6,7

FPTAN = Partial Tangent of ST(0)

11011 001 : 1111 0010 244(200-273) 70 6,7

FPATAN = Partial Arctangent

11011 001 : 1111 0011 289(218-303) 5(2-17) 6

FSIN = Sine of ST(0)

11011 001 : 1111 1110 241(193-279) 2 6,7

FSINCOS = Sine and Cosine of ST(0)

11011 001 : 1111 1011 291(243-329) 2 6,7

F2XM1 = 2ST(0)-1

11011 001 : 1111 0000 242(140-279) 2 6

FYL2X = ST(1) x log2(ST(0))

11011 001 : 1111 0001 311(196-329) 13 6

FYL2XP1 = ST(1) x log2(ST(0) + 1.0)

11011 001 : 1111 1001 313(171-326) 13 6

PROCESSOR CONTROL

FINIT = Initialize FPU

11011 001 : 1110 0011 17 4

FSTSW AX = Store status word into AX

11011 111 : 1110 0000 3 5

FSTSW = Store status word into memory

11011 101 : mod 111 r/m : s-i-b/disp. 3 5

FLDCW = Load control word

11011 001 : mod 101 r/m : s-i-b/disp. 4 2

FSTCW = Store control word

11011 001 : mod 111 r/m : s-i-b/disp. 3 5
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FCLEX = Clear exceptions

11011 011 : 1110 0010 7 4

FSTENV = Store environment

11011 011 : mod 110 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address
Real and Virtual Modes 32-bit address
Protected Mode 16-bit address
Protected Mode 32-bit address

67
67
56
56

4
4
4
4

FLDENV = Load Environment

11011 011 : mod 100 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address
Real and Virtual Modes 32-bit address
Protected Mode 16-bit address
Protected Mode 32-bit address

44
44
34
34

2
2
2
2

FSAVE = Save State

11011 101 : mod 110 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address
Real and Virtual Modes 32-bit address
Protected Mode 16-bit address
Protected Mode 32-bit address

154
154
143
143

4
4
4
4

FRSTOR = Restore State

11011 101 : mod 100 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address
Real and Virtual Modes 32-bit address
Protected Mode 16-bit address
Protected Mode 32-bit address

131
131
120
120

23
27
23
27

FINCSTP = Increment Stack Pointer

11011 001 : 1111 0111 3

FDECSTP = Decrement Stack Pointer

11011 001 : 1111 0110 3

FFREE = Free ST(i)

11011 101 : 11000 ST(i) 3

FNOP = No Operations

11011 101 : 1101 0000 3

WAIT = Wait until FPU ready (min/max)
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7. If ABS(operand) is greater than π/4 then add n clocks, where n=(operand/(π/4)).



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 291

Signal Descriptions—Intel® Quark Core

Appendix A Signal Descriptions

For pin diagrams and pin locations, refer to the individual processor datasheets.

Table 95. Intel® Quark SoC X1000 Core Pin Descriptions (Sheet 1 of 5)

Symbol Type Name and Function

CLK I Clock provides the fundamental timing and the internal operating frequency for the Intel® Quark Core. 
All external timing parameters are specified with respect to the rising edge of CLK.

ADDRESS BUS

A[31:4], 
A[3:2]

I/O
O

The Address Lines A[31:2], together with the byte enables signals BE[3:0]#, define the physical area of 
memory or input/output space accessed. Address lines A[31:4] are used to drive addresses to the 
processor to perform cache line invalidations. Input signals must meet setup and hold times t22 and t23. 
A[31:2] are not driven during bus or address hold.

BE[3:0]# O

The Byte Enable signals indicate active bytes during read and write cycles. During the first cycle of a 
cache fill, the external system should assume that all byte enables are active. BE3# applies to D[31:24], 
BE2# applies to D[23:16], BE1# applies to D[15:8] and BE0# applies to D[7:0]. BE[3:0]# are active low 
and are not driven during bus hold.

DATA BUS

D[31:0] I/O
The Data Lines D[7:0] define the least significant byte of the data bus and lines D[31:24] define the 
most significant byte of the data bus. These signals must meet setup and hold times t22 and t23 for 
proper operation on reads. These pins are driven during the second and subsequent clocks of write cycles.

DATA PARITY

DP[3:0] I/O

One Data Parity pin exists for each byte of the data bus. Data parity is generated on all write data cycles 
with the same timing as the data driven by the Intel® Quark Core. Even parity information must be driven 
back into the processor on the data parity pins with the same timing as read information to ensure that 
the correct parity check status is indicated by the Intel® Quark Core. The signals read on these pins do 
not affect program execution.
Input signals must meet setup and hold times t22 and t23. DP[3:0] should be connected to VCC through 
a pull-up resistor in systems that do not use parity. DP[3:0] are active high and are driven during the 
second and subsequent clocks of write cycles.

M/IO#
D/C#
W/R#

O
O
O

The Memory/Input-Output, Data/Control and Write/Read lines are the primary bus definition 
signals. These signals are driven valid as the ADS# signal is asserted.

M/IO# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 I/O Read

0 1 1 I/O Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the address bus. Refer to 
Section 10.3.11, “Special Bus Cycles” on page 220” for details.
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LOCK# O

The Bus Lock pin indicates that the current bus cycle is locked. The Intel® Quark Core does not allow a 
bus hold when LOCK# is asserted (but address holds are allowed). LOCK# goes active in the first clock of 
the first locked bus cycle and goes inactive after the last clock of the last locked bus cycle. The last locked 
cycle ends when ready is asserted. LOCK# is active low and is not driven during bus hold. Locked read 
cycles are not transformed into cache fill cycles when KEN# is asserted.

PLOCK# O

The Pseudo-Lock pin indicates that the current bus transaction requires more than one bus cycle to 
complete. For the Intel® Quark Core, examples of such operations are segment table descriptor reads (64 
bits) and cache line fills (128 bits). For Intel® Quark Cores with an on-chip Floating-Point Unit, floating-
point long reads and writes (64 bits) also require more than one bus cycle to complete.
The Intel® Quark Core asserts PLOCK# until the addresses for the last bus cycle of the transaction have 
been driven, regardless of whether RDY# or BRDY# have been asserted. 
Normally PLOCK# and BLAST# are the inverse of each other. However, during the first bus cycle of a 64-
bit floating-point write (for Intel® Quark Cores with on-chip Floating-Point Unit) both PLOCK# and 
BLAST# are asserted.
PLOCK# is a function of the BS8#, BS16# and KEN# inputs. PLOCK# should be sampled only in the clock 
in which ready is asserted. PLOCK# is active low and is not driven during bus hold.

BUS CONTROL

ADS# O
The Address Status output indicates that a valid bus cycle definition and address are available on the 
cycle definition lines and address bus. ADS# is driven active in the same clock in which the addresses are 
driven. ADS# is active low and is not driven during bus hold.

RDY# I

The Non-burst Ready input indicates that the current bus cycle is complete. RDY# indicates that the 
external system has presented valid data on the data pins in response to a read or that the external 
system has accepted data from the Intel® Quark Core in response to a write. RDY# is ignored when the 
bus is idle and at the end of the first clock of the bus cycle.
RDY# is active during address hold. Data can be returned to the processor while AHOLD is active.
RDY# is active low, and is not provided with an internal pull-up resistor. RDY# must satisfy setup and hold 
times t16 and t17 for proper chip operation.

BURST CONTROL

BRDY# I

The Burst Ready input performs the same function during a burst cycle that RDY# performs during a 
non-burst cycle. BRDY# indicates that the external system has presented valid data in response to a read 
or that the external system has accepted data in response to a write. BRDY# is ignored when the bus is 
idle and at the end of the first clock in a bus cycle.
BRDY# is sampled in the second and subsequent clocks of a burst cycle. The data presented on the data 
bus is strobed into the processor when BRDY# is sampled asserted. When RDY# is asserted 
simultaneously with BRDY#, BRDY# is ignored and the burst cycle is prematurely aborted.
BRDY# is active low and is provided with a small pull-up resistor. BRDY# must satisfy the setup and hold 
times t16 and t17.

BLAST# O
The Burst Last signal indicates that the next time BRDY# is asserted, the burst bus cycle is complete. 
BLAST# is active for both burst and non-burst bus cycles. BLAST# is active low and is not driven during 
bus hold.

INTERRUPTS

RESET I

The Reset input forces the Intel® Quark Core to begin execution at a known state. The processor cannot 
begin execution of instructions until at least 1 ms after VCC and CLK have reached their proper DC and AC 
specifications. The RESET pin should remain active during this time to ensure proper processor operation. 
RESET is active high. RESET is asynchronous but must meet setup and hold times t20 and t21 for 
recognition in any specific clock.

INTR I

The Maskable Interrupt indicates that an external interrupt has been generated. When the internal 
interrupt flag is set in EFLAGS, active interrupt processing is initiated. The Intel® Quark Core generates 
two locked interrupt acknowledge bus cycles in response to the INTR pin being asserted. INTR must 
remain active until the interrupt acknowledges have been performed to ensure that the interrupt is 
recognized.
INTR is active high and is not provided with an internal pull-down resistor. INTR is asynchronous, but 
must meet setup and hold times t20 and t21 for recognition in any specific clock.

NMI I

The Non-Maskable Interrupt request signal indicates that an external non-maskable interrupt has been 
generated. NMI is rising edge sensitive. NMI must be held low for at least four CLK periods before this 
rising edge. NMI is not provided with an internal pull-down resistor. NMI is asynchronous, but must meet 
setup and hold times t20 and t21 for recognition in any specific clock.

Table 95. Intel® Quark SoC X1000 Core Pin Descriptions (Sheet 2 of 5)
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SRESET I

The Soft Reset pin duplicates all the functionality of the RESET pin with the following two exceptions:
1. The SMBASE register retains its previous value.
2. When UP# (I) is asserted, SRESET does not have an effect on the host processor.
For soft resets, SRESET should remain active for at least 15 CLK periods. SRESET is active high. SRESET 
is asynchronous but must meet setup and hold times t20 and t21 for recognition in any specific clock.

SMI# I

The System Management Interrupt input is used to invoke System Management Mode (SMM). SMI# is 
a falling edge triggered signal that forces the processor into SMM at the completion of the current 
instruction. SMI# is recognized on an instruction boundary and at each iteration for repeat string 
instructions. SMI# does not break LOCKed bus cycles and cannot interrupt a currently executing SMM. 
The processor latches the falling edge of one pending SMI# signal while the processor is executing an 
existing SMI#. The nested SMI# is not recognized until after the execution of a Resume (RSM) 
instruction.

SMIACT# O
The System Management Interrupt Active is an active low output, indicating that the processor is 
operating in SMM. It is asserted when the processor begins to execute the SMI# state save sequence and 
remains asserted (low) until the processor executes the last state restore cycle out of SMRAM.

STPCLK# I

The Stop Clock Request input signal indicates that a request has been made to turn off the CLK input. 
When the processor recognizes a STPCLK#, the processor stops execution on the next instruction 
boundary, unless superseded by a higher priority interrupt, empties all internal pipelines and the write 
buffers, and generates a Stop Grant acknowledge bus cycle. STPCLK# is active low and is provided with 
an internal pull-up resistor. 
STPCLK# is an asynchronous signal, but must remain active until the processor issues the Stop Grant bus 
cycle. STPCLK# may be deasserted at any time after the processor has issued the Stop Grant bus cycle.

BUS ARBITRATION

BREQ O
The Bus Request signal indicates that the Intel® Quark Core has internally generated a bus request. 
BREQ is generated whether or not the Intel® Quark Core is driving the bus. BREQ is active high and is 
never floated.

HOLD I

The Bus Hold request allows another bus master complete control of the processor bus. In response to 
HOLD going active, the Intel® Quark Core floats most of its output and input/output pins. HLDA is 
asserted after completing the current bus cycle, burst cycle or sequence of locked cycles. The Intel® 
Quark Core remains in this state until HOLD is deasserted. HOLD is active high and is not provided with 
an internal pull-down resistor. HOLD must satisfy setup and hold times t18 and t19 for proper operation.

HLDA O

Hold Acknowledge goes active in response to a hold request presented on the HOLD pin. HLDA 
indicates that the Intel® Quark Core has given the bus to another local bus master. HLDA is driven active 
in the same clock in which the Intel® Quark Core floats its bus. HLDA is driven inactive when leaving bus 
hold. HLDA is active high and remains driven during bus hold.

BOFF# I

The Backoff input forces the Intel® Quark Core to float its bus in the next clock. The processor floats all 
pins normally floated during bus hold but HLDA is not asserted in response to BOFF#. BOFF# has higher 
priority than RDY# or BRDY#; when both are asserted in the same clock, BOFF# takes effect. The 
processor remains in bus hold until BOFF# is negated. If a bus cycle was in progress when BOFF# was 
asserted, the cycle is restarted. BOFF# is active low and must meet setup and hold times t18 and t19 for 
proper operation.

CACHE INVALIDATION

AHOLD I

The Address Hold request allows another bus master access to the processor's address bus for a cache 
invalidation cycle. The Intel® Quark Core stops driving its address bus in the clock following AHOLD going 
active. Only the address bus is floated during address hold, the remainder of the bus remains active. 
AHOLD is active high and is provided with a small internal pull-down resistor. For proper operation AHOLD 
must meet setup and hold times t18 and t19.

EADS# I

This signal indicates that a valid External Address has been driven onto the Intel® Quark Core address 
pins. This address is used to perform an internal cache invalidation cycle. EADS# is active low and is 
provided with an internal pull-up resistor. EADS# must satisfy setup and hold times t12 and t13 for 
proper operation.

CACHE CONTROL

KEN# I

The Cache Enable pin is used to determine whether the current cycle is cacheable. When the Intel® 
Quark Core generates a cycle that can be cached and KEN# is active one clock before RDY# or BRDY# 
during the first transfer of the cycle, the cycle becomes a cache line fill cycle. Asserting KEN# one clock 
before RDY# during the last read in the cache line fill causes the line to be placed in the on-chip cache. 
KEN# is active low and is provided with a small internal pull-up resistor. KEN# must satisfy setup and 
hold times t14 and t15 for proper operation.

Table 95. Intel® Quark SoC X1000 Core Pin Descriptions (Sheet 3 of 5)
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FLUSH# I
The Cache Flush input forces the Intel® Quark Core to flush its entire internal cache. FLUSH# is active 
low and need only be asserted for one clock. FLUSH# is asynchronous but setup and hold times t20 and 
t21 must be met for recognition in any specific clock.

PAGE CACHEABILITY

PWT
PCD

O
O

The Page Write-Through and Page Cache Disable pins reflect the state of the page attribute bits, PWT 
and PCD, in the page table entry, page directory entry or control register 3 (CR3) when paging is enabled. 
When paging is disabled, the processor ignores the PCD and PWT bits and assumes they are zero for the 
purpose of caching and driving PCD and PWT pins. PWT and PCD have the same timing as the cycle 
definition pins (M/IO#, D/C#, and W/R#). PWT and PCD are active high and are not driven during bus 
hold. PCD is masked by the cache disable bit (CD) in Control Register 0.

BUS SIZE CONTROL

BS16#
BS8#

I
I

The Bus Size 16 and Bus Size 8 pins (bus sizing pins) cause the Intel® Quark Core to run multiple bus 
cycles to complete a request from devices that cannot provide or accept 32 bits of data in a single cycle. 
The bus sizing pins are sampled every clock. The state of these pins in the clock before ready is used by 
the Intel® Quark Core to determine the bus size. These signals are active low and are provided with 
internal pull-up resistors. These inputs must satisfy setup and hold times t14 and t15 for proper 
operation.

ADDRESS MASK

A20M# I

Note: Intel® Quark Core on Intel® Quark SoC X1000 does not use the A20M# pin; it is tied to 1'b1.
When the Address Bit 20 Mask pin is asserted, the Intel® Quark Core masks physical address bit 20 
(A20) before performing a lookup to the internal cache or driving a memory cycle on the bus. A20M# 
emulates the address wraparound at one Mbyte. A20M# is active low and should be asserted only when 
the processor is in Real Mode. This pin is asynchronous but should meet setup and hold times t20 and t21 
for recognition in any specific clock. For proper operation, A20M# should be sampled high at the falling 
edge of RESET.

TEST ACCESS PORT

TCK I

Test Clock is an input to the Intel® Quark Core and provides the clocking function required by the JTAG 
feature. TCK is used to clock state information and data into component on the rising edge of TCK on TMS 
and TDI, respectively. Data is clocked out of the part on the falling edge of TCK and TDO. TCK is provided 
with an internal pull-up resistor.

TDI I
Test Data Input is the serial input used to shift JTAG instructions and data into component. TDI is 
sampled on the rising edge of TCK, during the SHIFT-IR and SHIFT-DR TAP controller states. During all 
other tap controller states, TDI is a “don't care.” TDI is provided with an internal pull-up resistor.

TDO O
Test Data Output is the serial output used to shift JTAG instructions and data out of the component. 
TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP controller states. At all 
other times TDO is driven to the high impedance state.

TMS I
Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to select the operation of the test logic. 
TMS is sampled on the rising edge of TCK. To guarantee deterministic behavior of the TAP controller TMS 
is provided with an internal pull-up resistor.

PERFORMANCE UPGRADE SUPPORT

Reserved# I
The Reserved input detects the presence of the in-circuit emulator, then powers down the core, and 
three-states all outputs of the original processor, so that the original processor consumes very low 
current. Reserved# is active low and sampled at all times, including after power-up and during reset.

NUMERIC ERROR REPORTING

FERR# O
The Floating-Point Error pin is driven active when a floating-point error occurs. FERR# is included for 
compatibility with systems using DOS type floating-point error reporting. FERR# does not go active when 
FP errors are masked in FPU register. FERR# is active low, and is not floated during bus hold.

IGNNE# I

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 provides the capability to 
control the IGNNE# pin via a register; the default value of the register is 1'b0.

When the Ignore Numeric Error pin is asserted the processor ignores a numeric error and continue 
executing non-control floating-point instructions, but FERR# is still activated by the processor. When 
IGNNE# is deasserted, the processor freezes on a non-control floating-point instruction, when a previous 
floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 is 
set. IGNNE# is active low and is provided with a small internal pull-up resistor. IGNNE# is asynchronous 
but setup and hold times t20 and t21 must be met to insure recognition on any specific clock.
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WRITE-BACK ENHANCED Intel® Quark Core SIGNAL PINS

CACHE# O
The CACHE# output indicates internal cacheability on read cycles and burst write-back on write cycles. 
CACHE# is asserted for cacheable reads, cacheable code fetches and write-backs. It is driven inactive for 
non-cacheable reads, I/O cycles, special cycles, and write-through cycles.

FLUSH# I

Cache Flush# is an existing pin that operates differently when the processor is configured as Enhanced 
Bus mode (write-back). FLUSH# causes the processor to write back all modified lines and flush 
(invalidate) the cache. FLUSH# is asynchronous, but must meet setup and hold times t20 and t21 for 
recognition in any specific clock.

HITM# O

The Hit/Miss to a Modified Line pin is a cache coherency protocol pin that is driven only in Enhanced 
Bus mode. When a snoop cycle is run, HITM# indicates that the processor contains the snooped line and 
that the line has been modified. Assertion of HITM# implies that the line is written back in its entirety, 
unless the processor is already in the process of doing a replacement write-back of the same line. 

INV I

The Invalidation Request pin is a cache coherency protocol pin that is used only in Enhanced Bus 
mode. It is sampled by the processor on EADS#-driven snoop cycles. It is necessary to assert this pin to 
get the effect of the processor invalidate cycle on write-through-only lines. INV also invalidates the write-
back lines. However, when the snooped line is modified, the line is written back and then invalidated. INV 
must satisfy setup and hold times t12 and t13 for proper operation.

PLOCK# O

In the Enhanced bus mode, Pseudo-Lock Output is always driven inactive. In this mode, a 64-bit data 
read (caused by an FP operand access or a segment descriptor read) is treated as a multiple cycle read 
request, which may be a burst or a non-burst access based on whether BRDY# or RDY# is asserted by 
the system. Because only write-back cycles (caused by Snoop write-back or replacement write-back) are 
write burstable, a 64-bit write is driven out as two non-burst bus cycles. BLAST# is asserted during both 
writes. Refer to the Bus Functional Description section 10.3 for details on Pseudo-Locked bus cycles. 

SRESET I

For the Write-Back Enhanced Intel® Quark Cores, Soft Reset operates similar to other Intel® Quark 
Cores. On SRESET, the internal SMRAM base register retains its previous value, does not flush, write-back 
or disable the internal cache. Because SRESET is treated as an interrupt, it is possible to have a bus cycle 
while SRESET is asserted. SRESET is serviced only on an instruction boundary. SRESET is asynchronous 
but must meet setup and hold times t20 and t21 for recognition in any specific clock.

WB/WT# I

The Write-Back/Write-Through pin enables Enhanced Bus mode (write-back cache). It also defines a 
cached line as write-through or write-back. For cache configuration, WB/WT# must be valid during RESET 
and be active for at least two clocks before and two clocks after RESET is deasserted. To define write-back 
or write-through configuration of a line, WB/WT# is sampled in the same clock as the first RDY# or 
BRDY# is asserted during a line fill (allocation) cycle.
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Appendix B Testability

This appendix contains the following subsections: 
• Section B.1, “On-Chip Cache Testing” on page 296
• Section B.2, “Translation Lookaside Buffer (TLB) Testing” on page 300
• Section B.3, “Intel® Quark SoC X1000 Core JTAG” on page 304

B.1 On-Chip Cache Testing
The on-chip cache testability hooks are designed to be accessible for assembly 
language testing of the cache.

The Intel® Quark SoC X1000 Core contains a cache fill buffer and a cache read buffer. 
For testability writes, data must be written to the cache fill buffer before it can be 
written to a location in the cache. Data must be read from a cache location into the 
cache read buffer before the processor can access the data. The cache fill and cache 
read buffer are both 128 bits wide.

B.1.1 Cache Testing Registers TR3, TR4 and TR5

Figure 129 shows the three cache testing registers: Cache Data Test Register (TR3), 
Cache Status Test Register (TR4), and Cache Control Test Register (TR5). External 
access to these registers is provided through MOV reg, TREG and MOV TREG, reg 
instructions.

Figure 129. Intel® Quark SoC X1000 Core Cache Test Registers
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Cache Data Test Register: TR3

The cache fill buffer and the cache read buffer can only be accessed through TR3. Data 
to be written to the cache fill buffer must first be written to TR3. Data read from the 
cache read buffer must be loaded into TR3.

TR3 is 32 bits wide while the cache fill and read buffers are 128 bits wide. 32 bits of 
data must be written to TR3 four times to fill the cache fill buffer. 32 bits of data must 
be read from TR3 four times to empty the cache read buffer. The entry select bits in 
TR5 determine which 32 bits of data TR3 will access in the buffers.

Cache Status Test Register: TR4

TR4 handles tag, LRU and valid bit information during cache tests. TR4 must be loaded 
with a tag and a valid bit before a write to the cache. After a read from a cache entry, 
TR4 contains the tag and valid bit from that entry, and the LRU bits and four valid bits 
from the accessed set. 

Cache Control Test Register: TR5

TR5 specifies the testability operation to be performed and the set and entry to be 
accessed. The set select field determines the set to be accessed. Note that the Intel® 
Quark SoC X1000 Core has an 8-bit set select field and 256 sets. 

The function of the two entry select bits depends on the state of the control bits. When 
the fill or read buffers are being accessed, the entry select bits point to the 32-bit 
location in the buffer being accessed. When a cache location is specified, the entry 
select bits point to one of the four entries in a set (refer to Table 96).

Five testability functions can be performed on the cache. The two control bits in TR5 
specify the operation to be executed. The five operations are:
1. Write cache fill buffer
2. Perform a cache testability write
3. Perform a cache testability read
4. Read the cache read buffer
5. Perform a cache flush

Table 96 shows the encoding of the two control bits in TR5 for the cache testability 
functions. Table 96 also shows the functionality of the entry and set select bits for each 
control operation.

The cache tests attempt to use as much of the normal operating circuitry as possible. 
Therefore, when cache tests are being performed, the cache must be disabled (i.e.,the 
CD and NW bits in control register 0 (CR0) must be set to 1 to disable the cache). See 
Chapter 7.0, “On-Chip Cache.” for more information.

B.1.2 Cache Testability Write

A testability write to the cache is a two step process. First the cache fill buffer must be 
loaded with 128 bits of data and TR4 loaded with the tag and valid bit. Next the 
contents of the fill buffer are written to a cache location.

Loading the fill buffer is accomplished by first writing to the entry select bits in TR5 and 
setting the control bits in TR5 to 00. The entry select bits identify one of four 32-bit 
locations in the cache fill buffer to put 32 bits of data. Following the write to TR5, TR3 is 
written with 32 bits of data which are immediately placed in the cache fill buffer. Writing 
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to TR3 initiates the write to the cache fill buffer. The cache fill buffer is loaded with 128 
bits of data by writing to TR5 and TR3 four times using a different entry select location 
each time.

TR4 must be loaded with the tag and valid bit (bit 10 in TR4) before the contents of the 
fill buffer are written to a cache location. The Intel® Quark SoC X1000 Core has a 20-
bit tag in TR4. 

The contents of the cache fill buffer are written to a cache location by writing TR5 with 
a control field of 01 along with the set select and entry select fields. The set select and 
entry select field indicate the location in the cache to be written. The normal cache LRU 
update circuitry updates the internal LRU bits for the selected set.

Note that a cache testability write can only be done when the cache is disabled for 
replaces (the CD bit is control register 0 is reset to 1). Care must be taken when 
directly writing to entries in the cache. When the entry is set to overlap an area of 
memory that is being used in external memory, that cache entry could inadvertently be 
used instead of the external memory. This is exactly the type of operation that one 
would desire if the cache were to be used as a high speed RAM. Also, a memory 
reference (or any external bus cycle) should not occur in between the move to TR4 and 
the move to TR5, in order to avoid having the value in TR4 change due to the memory 
reference.

B.1.3 Cache Testability Read

A cache testability read is a two step process. First the contents of the cache location 
are read into the cache read buffer. Next the data is examined by reading it out of the 
read buffer.

Reading the contents of a cache location into the cache read buffer is initiated by 
writing TR5 with the control bits set to 10 and the desired set select and two-bit entry 
select. The Intel® Quark SoC X1000 Core has an eight-bit select field. In response to 
the write to TR5, TR4 is loaded with the 21-bit tag field and the single valid bit from the 
cache entry read. TR4 is also loaded with the three LRU bits and four valid bits 
corresponding to the cache set that was accessed. The cache read buffer is filled with 
the 128-bit value which was found in the data array at the specified location.

The contents of the read buffer are examined by performing four reads of TR3. Before 
reading TR3 the entry select bits in TR5 must loaded to indicate which of the four 32-bit 
words in the read buffer to transfer into TR3 and the control bits in TR5 must be loaded 
with 00. The register read of TR3 initiates the transfer of the 32-bit value from the read 
buffer to the specified general purpose register.

Note that it is very important that the entire 128-bit quantity from the read buffer and 
also the information from TR4 be read before any memory references are allowed to 
occur. When memory operations are allowed to happen, the contents of the read buffer 

Table 96. Cache Control Bit Encoding and Effect of Control Bits on Entry Select and Set 
Select Functionality

Control Bits

Bit 1      Bit 0 Operation Entry Select Bits Function Set Select Bits

0 0 Enable: Fill Buffer Write
Read Buffer Read

Select 32-bit location in 
fill/read buffer —

0 1 Perform Cache Write Select an entry in set Select a set to write to

1 0 Perform Cache Read Select an entry in set Select a set to read from

1 1 Perform Cache Flush — —
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will be corrupted. This is because the testability operations use hardware that is used in 
normal memory accesses for the Intel® Quark SoC X1000 Core whether the cache is 
enabled or not.

B.1.4 Flush Cache

The control bits in TR5 must be written with 11 to flush the cache. None of the other 
bits in TR5 have any meaning when 11 is written to the control bits. Flushing the cache 
resets the LRU bits and the valid bits to 0, but does not change the cache tag or data 
arrays.

When the cache is flushed by writing to TR5 the special bus cycle indicating a cache 
flush to the external system is not run (see Section 10.3.11). For normal operation, the 
cache should be flushed with the instruction INVD (Invalidate Data Cache) instruction 
or the WBINVD (Write-back and Invalidate Data Cache) instruction.

B.1.5 Additional Cache Testing Features for Write-Back Enhanced 
Intel® Quark SoC X1000 Core

When in Enhanced Bus (Write-Back) mode, the Write-Back Enhanced Intel® Quark SoC 
X1000 Core cache testing is a superset of the Standard Bus (Write-Through) mode. The 
additional cache testing features are summarized below.

There are two state bits per cache line (VH and VL) instead of one (V). The assignment 
of VH and VL state bits is shown in Table 97. 

The state assignments have been chosen so that VH is identical to the V-state of the 
Intel® Quark SoC X1000 Core, when the Write-Back Enhanced Intel® Quark SoC X1000 
Core is in Standard Bus mode and where only S and I states are possible.

There are no changes to TR3 between the Standard Bus mode and the Enhanced Bus 
mode. The TR4 definition remains the same in Standard Bus mode. The changes to TR4 
in Enhanced Bus mode are shown in Figure 130.

In Enhanced Bus mode, the cache line state bits of all four lines of the set are no longer 
available, which eliminates the possibility of a conflicting definition of state bits for the 
selected entry. The entry's state bits are moved to positions 0 and 1.

TR5 is also the same in Standard Bus mode. A minor change to TR5 in Enhanced Bus 
mode is illustrated in Figure 131.

In Enhanced Bus mode, control bit TR5.SLF (bit 13) is added to allow 1,1 of TR5.CTL 
(bits 1:0) to perform two different kinds of cache flushes. When SLF=0, CTL=1,1 
performs a single clock invalidate of all lines in the cache, which does not write-back 
M-state lines. When SLF=1, the specific line addressed is written back (IF in M-State) 
and invalidated. The state of SLF is significant only when CTL=1,1.

Table 97. State Bit Assignments for the Write-Back Enhanced Intel® Quark SoC X1000 
Core

State VH, VL

M 1, 1

E 0, 1

S 1, 0

I 0, 0
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Figure 130. TR4 Definition for Standard and Enhanced Bus Modes for the Write-Back 
Enhanced Intel® Quark SoC X1000 Core

Figure 131. TR5 Definition for Standard and Enhanced Bus Modes for the Write-Back 
Enhanced Intel® Quark SoC X1000 Core

B.2 Translation Lookaside Buffer (TLB) Testing
The Intel® Quark SoC X1000 Core TLB testability hooks are designed to be accessible 
for assembly language testing of the TLB.

B.2.1 Translation Lookaside Buffer Organization

The Intel® Quark SoC X1000 Core TLB is 4-way set associative and has space for 32 
entries. The TLB is logically split into three blocks shown in Figure 132.

The data block is physically split into four arrays, each with space for eight entries. An 
entry in the data block is 22 bits wide containing a 20-bit physical address and two bits 
for the page attributes. The page attributes are the PCD (page cache disable) bit and 
the PWT (page write-through) bit. Refer to Section 7.6 for a discussion of the PCD and 
PWT bits.

The tag block is also split into four arrays, one for each of the data arrays. A tag entry 
is 21 bits wide containing a 17-bit linear address and four protection bits. The 
protection bits are valid (V), user/supervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities used in the pseudo least recently 
used (LRU) replacement algorithm. These bits are called the LRU bits. Unlike the on-
chip cache, the TLB replaces a valid line even when there is an invalid line in a set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Standard 
Mode

TR4

V LRU VALID
(SET)

r

Enhanced 
Mode

TR4

r LRU V

TAG

TAG r
H

V
L

Bus

Bus r

r

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Standard 
Mode

TR5

Enhanced
Mode

TR5

S
Set Addr

reserved

reserved L
F

r

Set Addr

ENT CTL Bus

ENT CTL Bus



Intel® Quark SoC X1000 Core
October 2013 Developer’s Manual
Order Number: 329679-001US 301

Testability—Intel® Quark Core

B.2.2 TLB Test Registers TR6 and TR7

The two TLB test registers are shown in Figure 133. TR6 is the command test register 
and TR7 is the data test register. External access to these registers is provided through 
MOV reg,TREG and MOV TREG,reg instructions.

B.2.2.1 Command Test Register: TR6

TR6 contains the tag information and control information used in a TLB test. Loading 
TR6 with tag and control information initiates a TLB write or lookup test.

TR6 contains three bit fields, a 20-bit linear address (bits 31:12), seven bits for the TLB 
tag protection bits (bits 11:5) and one bit (bit 0) to define the type of operation to be 
performed on the TLB.

The 20-bit linear address forms the tag information used in the TLB access. The lower 
three bits of the linear address select which of the eight sets are accessed. The upper 
17 bits of the linear address form the tag stored in the tag array.

Figure 132. TLB Organization
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Figure 133. TLB Test Registers

The seven TLB tag protection bits are described below.
V: The valid bit for this TLB entry
D,D#: The dirty bit for/from the TLB entry
U,U#: The user/supervisor bit for/from the TLB entry
W,W#: The read/write bit for/from the TLB entry

Two bits are used to represent the D, U/S and R/W bits in the TLB tag to permit the 
option of a forced miss or hit during a TLB lookup operation. The forced miss or hit 
occurs regardless of the state of the actual bit in the TLB. The meaning of these pairs of 
bits is given in Table 98.

The operation bit in TR6 determines whether the TLB test operation is a write or a 
lookup. The function of the operation bit is given in Table 99.
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Table 98. Meaning of a Pair of TR6 Protection Bits

TR6 Protection Bit 
(B)

TR6 Protection Bit# 
(B#)

Meaning on
TLB Write Operation

Meaning on
TLB Lookup Operation

0  0 Undefined Miss any TLB TAG Bit B

0  1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0

1  0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1

1  1 Undefined Match any TLB TAG Bit B

Table 99. TR6 Operation Bit Encoding

TR6 Bit 0 TLB Operation to Be Performed

0 TLB Write

1 TLB Lookup
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B.2.2.2 Data Test Register: TR7

TR7 contains the information stored or read from the data block during a TLB test 
operation. Before a TLB test write, TR7 contains the physical address and the page 
attribute bits to be stored in the entry. After a TLB test lookup hit, TR7 contains the 
physical address, page attributes, LRU bits and entry location from the access.

TR7 contains a 20-bit physical address (bits 31:12), PLD bit (bit 11), PWT bit (bit 10), 
and three bits for the LRU bits (bits 9:7). The LRU bits in TR7 are only used during a 
TLB lookup test. The functionality of TR7 bit 4 differs for TLB writes and lookups. The 
encoding of bit 4 is defined in Table 100 and Table 101. Finally, TR7 contains two bits 
(bits 3:2) to specify a TLB replacement pointer or the location of a TLB hit.

A replacement pointer is used during a TLB write. The pointer indicates which of the 
four entries in an accessed set is to be written. The replacement pointer can be 
specified to be the internal LRU bits or bits 3:2 in TR7. The source of the replacement 
pointer is specified by TR7 bit 4. The encoding of bit 4 during a write is given by 
Table 100.

Note that both testability writes and lookups affect the state of the internal LRU bits 
regardless of the replacement pointer used. All TLB write operations (testability or 
normal operation) cause the written entry to become the most recently used. For 
example, during a testability write with the replacement pointer specified by TR7 bits 
3:2, the indicated entry is written and that entry becomes the most recently used as 
specified by the internal LRU bits.

There are two TLB testing operations: write entries into the TLB, and perform TLB 
lookups. 

Note that any time one TLB set contains the same linear address in more than one of 
its entries, looking up that linear address gives unpredictable results. Therefore a single 
linear address should not be written to one TLB set more than once.

B.2.3 TLB Write Test

To perform a TLB write TR7 must be loaded followed by a TR6 load. The register 
operations must be performed in this order because the TLB operation is triggered by 
the write to TR6.

TR7 is loaded with a 20-bit physical address and values for PCD and PWT to be written 
to the data portion of the TLB. In addition, bit 4 of TR7 must be loaded to indicate 
whether to use TR7 bits 3-2 or the internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRU bits in TR7 are not used in a write test.

Table 100. Encoding of Bit 4 of TR7 on Writes

TR7 Bit 4 Replacement Pointer Used on TLB Write

0 Pseudo-LRU Replacement Pointer

1 Data Test Register Bits 3:2

Table 101. Encoding of Bit 4 of TR7 on Lookups

TR7 Bit 4 Meaning after TLB Lookup Operation

0 TLB Lookup Resulted in a Miss

1 TLB Lookup Resulted in a Hit
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TR6 must be written to initiate the TLB write operation. Bit 0 in TR6 must be reset to 
zero to indicate a TLB write. The 20-bit linear address and the seven page protection 
bits must also be written in TR6 to specify the tag portion of the TLB entry. Note that 
the three least significant bits of the linear address specify which of the eight sets in 
the data block is loaded with the physical address data. Thus only 17 of the linear 
address bits are stored in the tag array.

B.2.4 TLB Lookup Test

To perform a TLB lookup it is only necessary to write the proper tags and control 
information into TR6. Bit 0 in TR6 must be set to 1 to indicate a TLB lookup. TR6 must 
be loaded with a 20-bit linear address and the seven protection bits. To force misses 
and matches of the individual protection bits on TLB lookups, set the seven protection 
bits as specified in Table 98.

A TLB lookup operation is initiated by the write to TR6. TR7 indicates the result of the 
lookup operation following the write to TR6. The hit/miss indication can be found in TR7 
bit 4 (see Table 101).

TR7 contains the following information if bit 4 indicates that the lookup test resulted in 
a hit. 
Bits 3:2 specify the set in which the match occurred. The 22 most significant bits in TR7 
contain the physical address and page attributes contained in the entry. Bits 9:7 
contain the LRU bits associated with the accessed set. The state of the LRU bits is does 
not reflect their being updated for the current lookup.

When bit 4 in TR7 indicates that the lookup test resulted in a miss, the remaining bits in 
TR7 are undefined.

Again it should be noted that a TLB testability lookup operation affects the state of the 
LRU bits. The LRU bits are updated if a hit occurs. The entry which was hit becomes the 
most recently used.

B.3 Intel® Quark SoC X1000 Core JTAG
The Intel® Quark SoC X1000 Core provides additional testability features compatible 
with the IEEE Standard Test Access Port.

B.3.1 Test Access Port (TAP) Controller

The TAP controller is a synchronous, finite state machine. It controls the sequence of 
operations of the test logic. The TAP controller changes state only in response to the 
following events:
1. A rising edge of TCK
2. Power-up

The value of the test mode state (TMS) input signal at a rising edge of TCK controls the 
sequence of the state changes. The state diagram for the TAP controller is shown in 
Figure 134. Test designers must consider the operation of the state machine in order to 
design the correct sequence of values to drive on TMS.
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B.3.1.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal operation of the device can 
continue unhindered. This is achieved by initializing the instruction register such that 
the IDCODE instruction is loaded. No matter what the original state of the controller, 
the controller enters Test-Logic-Reset state when the TMS input is held high (1) for at 
least five rising edges of TCK. The controller remains in this state while TMS is high. 
The TAP controller is also forced to enter this state at power-up.

B.3.1.2 Run-Test/Idle State

A controller state between scan operations. Once in this state, the controller remains in 
this state as long as TMS is held low. For instruction not causing functions to execute 
during this state, no activity occurs in the test logic. The instruction register and all test 
data registers retain their previous state. When TMS is high and a rising edge is applied 
to TCK, the controller moves to the Select-DR state.

B.3.1.3 Select-DR-Scan State

This is a temporary controller state. The test data register selected by the current 
instruction retains its previous state. If TMS is held low and a rising edge is applied to 
TCK when in this state, the controller moves into the Capture-DR state, and a scan 
sequence for the selected test data register is initiated. If TMS is held high and a rising 
edge is applied to TCK, the controller moves to the Select-IR-Scan state. The 
instruction does not change in this state.

Figure 134. TAP Controller State Diagram
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B.3.1.4 Capture-DR State

In this state, the JTAG register captures input pin data if the current instruction is 
EXTEST or SAMPLE/PRELOAD. The other test data registers, which do not have parallel 
input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the 
controller enters the Exit1-DR state if TMS is high or the Shift-DR state if TMS is low.

B.3.1.5 Shift-DR State

In this controller state, the test data register connected between TDI and TDO as a 
result of the current instruction shifts data one stage toward its serial output on each 
rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the 
controller enters the Exit1-DR state if TMS is high or remains in the Shift-DR state if 
TMS is low.

B.3.1.6 Exit1-DR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied 
to TCK causes the controller to enter the Update-DR state, which terminates the 
scanning process. If TMS is held low and a rising edge is applied to TCK, the controller 
enters the Pause-DR state.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

B.3.1.7 Pause-DR State

The pause state allows the test controller to temporarily halt the shifting of data 
through the test data register in the serial path between TDI and TDO. An example of 
using this state could be to allow a tester to reload its pin memory from disk during 
application of a long test sequence.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

The controller remains in this state as long as TMS is low. When TMS goes high and a 
rising edge is applied to TCK, the controller moves to the Exit2-DR state.

B.3.1.8 Exit2-DR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied 
to TCK causes the controller to enter the Update-DR state, which terminates the 
scanning process. If TMS is held low and a rising edge is applied to TCK, the controller 
enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.
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B.3.1.9 Update-DR State

The JTAG register is provided with a latched parallel output to prevent changes at the 
parallel output while data is shifted in response to the EXTEST and SAMPLE/PRELOAD 
instructions. When the TAP controller is in this state and the JTAG register is selected, 
data is latched onto the parallel output of this register from the shift-register path on 
the falling edge of TCK. The data held at the latched parallel output does not change 
other than in this state.

All test data registers selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

B.3.1.10 Select-IR-Scan State

This is a temporary controller state. The test data register selected by the current 
instruction retains its previous value. If TMS is held low and a rising edge is applied to 
TCK when in this state, the controller moves into the Capture-IR state, and a scan 
sequence for the instruction register is initiated. If TMS is held high and a rising edge is 
applied to TCK, the controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

B.3.1.11 Capture-IR State

In this controller state the shift register contained in the instruction register loads the 
fixed value “0001” on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state. When the controller is in 
this state and a rising edge is applied to TCK, the controller enters the Exit1-IR state if 
TMS is held high, or the Shift-IR state if TMS is held low.

B.3.1.12 Shift-IR State

In this state the shift register contained in the instruction register is connected between 
TDI and TDO and shifts data one stage towards its serial output on each rising edge of 
TCK.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-IR state if TMS is held high, or remains in the Shift-IR state if TMS is 
held low.

B.3.1.13 Exit1-IR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied 
to TCK causes the controller to enter the Update-IR state, which terminates the 
scanning process. If TMS is held low and a rising edge is applied to TCK, the controller 
enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

B.3.1.14 Pause-IR State

The pause state allows the test controller to temporarily halt the shifting of data 
through the instruction register.
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The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

The controller remains in this state as long as TMS is low. When TMS goes high and a 
rising edge is applied to TCK, the controller moves to the Exit2-IR state.

B.3.1.15 Exit2-IR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied 
to TCK causes the controller to enter the Update-IR state, which terminates the 
scanning process. If TMS is held low and a rising edge is applied to TCK, the controller 
enters the Shift-IR state.

The test data register selected by the current instruction retains its previous value 
during this state. The instruction does not change in this state.

B.3.1.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output 
from the shift-register path on the falling edge of TCK. Once the new instruction has 
been latched, it becomes the current instruction.

Test data registers selected by the new current instruction retain the previous value.

B.3.2 TAP Controller Initialization

The TAP controller is automatically initialized when a device is powered up. In addition, 
the TAP controller can be initialized by applying a high signal level on the TMS input for 
five TCK periods.
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Appendix C Feature Determination

C.1 CPUID Instruction
CPUID instruction returns processor identification and feature information in the EAX, 
EBX, ECX, and EDX registers. The instruction's output values are dependent on the 
contents of the EAX register upon execution. Table 102 summarizes the information 
returned depending on the initial value loaded into EAX register. 

CPUID returns 0 for leaves greater than 0x02 but less than 0x07 (the highest basic 
leaf) as stated in the [Intel Arch SDM]: "If a value entered for CPUID.EAX is less than 
or equal to the maximum input value and the leaf is not supported on the processor 
then 0 is returned in all registers." 

Furthermore, CPUID returns values corresponding to leaf 0x01 for all other EAX values 
not listed in the table, as stated in the [Intel Arch SDM]: "If a value entered for 
CPUID.EAX is higher than the maximum input value for basic or extended function for 
that processor then the data for the highest basic information leaf is returned."  

Note that zeroes are currently returned for the Processor Brand String (leaf 
0x8000002-0x80000004).

Table 102. CPUID with PAE/XD/SMEP features implemented (Sheet 1 of 2)

EAX value Register Return value Information provided about the processor

0x2
EAX 
EBX,ECX,EDX

0x00000001
0x0

No cache information to report

0x3-0x6
EAX,EBX, 
ECX,EDX

0x0

0x7†& ECX=0 EAX 0x1 Maximum number of supported leaf 7 sub-leaves

EBX 0x80 or 0x0 Bit 7: SMEP (Returns if SMEP is enabled)

ECX,EDX 0x0

0x7 & ECX!=0 EAX=EBX=ECX=EDX=All 0's

0X80000000 EAX 0x80000008 Maximum input value for extended function CPUID leaf

EBX,ECX,EDX 0x0

0X80000001 EAX,EBX,ECX 0x0

EDX 0x100000
Bit 20: execute disable bit available if the 
IA32_MISC_ENABLES[34]=0; If IA32_MISC_ENABLES[34]=1 
EDX[20]=1'b0

† When the value of Limit CPUID Maxval (bit 22 of IA32_MISC_ENABLE) is set to 1, all basic leaves above 3 should be 
invisible. In this case, leaf 7 returns all zeros. 
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The Intel® Quark SoC X1000 Core implements the CPUID instruction to make 
information available to the system software about the family, model, and stepping of 
the processor. Support of this instruction is indicated by the ability of system software 
to write and read the bit in position EFLAGS.21, referred to as the EFLAGS.ID bit. The 
actual state of the EFLAGS.ID bit is irrelevant to the hardware. This bit is reset to zero 
upon device reset (RESET and SRESET) for compatibility with legacy processor designs.

0x80000002-
0x80000007

EAX,EBX,
ECX,EDX

0x0

0x80000008 EAX 0x2020
Bit 7-0: physical address width
Bit 15-8: linear address bits

EBX,ECX,EDX 0x0

Table 102. CPUID with PAE/XD/SMEP features implemented (Sheet 2 of 2)

EAX value Register Return value Information provided about the processor

† When the value of Limit CPUID Maxval (bit 22 of IA32_MISC_ENABLE) is set to 1, all basic leaves above 3 should be 
invisible. In this case, leaf 7 returns all zeros. 

Table 103. Intel® Quark SoC X1000 CPUID

Initial EAX Value Basic CPUID Information; 
Return Value Description

0x0;  
When IA32_MISC_ENABLES 
[22]=1

EAX=0x2;
EBX "Genu"
ECX "ntel"
EDX "ntel"

0x1

EAX = 590 Family ID = 0x5, Model = 0x9, Stepping ID = 0x0

ECX=All 0's

EBX 

[7:0] = Brand Index = All 0's.
[15:8] = 8'b0000_0010; CLFLUSH line size;
[23:16] = 8'b0000_0001;
Max. no.of addressable ID's for logical processors in this physical 
package.

EDX =  Value depends on 
the RTL Knob

[0] = FPU on-chip
[1] = Virtual 8086 Mode enhancements.
[3] = PSE = Page Size Exntension; Large Pages of size 4MB are 
supported, including CR4.PSE
[4] = TSC = Time Stamp Counter; RDTSC instruction is supported, 
including CR4.TSD for controlling privilege.
[5] = MSR = Model Specific Register RDMSR/WRMSR Instructions
[6] = PAE = Physical Address Extension
[8] = CMXCHG8B Instruction Support
[9] = APIC = APIC on Chip
[13] = PGE = Page Global Bit
[31] = PBE = Pending Break Event

0x80000000
EAX=0x80000008;
EBX=ECX=EDX=All 0's

When CPUID executes with EAX set to 80000000H, the processor 
returns the highest value the processor recognizes for returning 
extended processor information. The value is returned in the EAX 
register.

0x8000_0001
EDX[31:0] = 0x000100000;
EAX=EBX=ECX=0

When PAE is enabled.

0x8000_0008 EAX[31:0] = 0x00002020 EAX[7:0] = Physical Address Bits;0x20h; EAX[15:8] = Virtual 
Address Bits; 0x20h
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Refer to the Intel application note, Intel Processor Identification with the CPUID 
Instruction, for more details: 
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuid-
instruction-note.html link  

C.2 Intel® Quark SoC X1000 Stepping
The Intel® Quark SoC X1000 stepping is identified by both:

• Processor ‘Family/Model/Stepping’ returned by the CPUID instruction. This will 
always return 0x590 for Intel® Quark SoC X1000. 

• Revision ID register of the Host Bridge, located at D0:F0. Reads of the register will 
reflect the stepping.

§ §

Table 104. Component Identification

Vendor ID1 Device ID2 Revision ID3 Stepping 

8086h 0958h 00h A0h

Notes:
1. Vendor ID corresponds to bits 15-0 of the Vendor ID Register located at offset 00-01h in the PCI 

configuration space of the device.
2. Device ID corresponds to bits 15-0 of the Device ID Register located at offset 02-03h in the PCI 

configuration space of the device.
3. Revision ID corresponds to bits 7-0 of the Revision ID Register located at offset 08h in the PCI 

configuration space of the device.

http://www.intel.com/content/www/us/en/processors/processor-identification-cpuid-instruction-note.html
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