Intel® Omni-Path Fabric Suite
FastFabric Command Line Interface
Reference Guide

November 2015
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2015</td>
<td>1.0</td>
<td>Document has been updated for Revision 1.0.</td>
</tr>
<tr>
<td>September 2015</td>
<td>0.7</td>
<td>Document has been updated for Revision 0.7.</td>
</tr>
<tr>
<td>April 2015</td>
<td>0.5</td>
<td>Initial release of document.</td>
</tr>
</tbody>
</table>
Contents

Revision History

Preface
- Intended Audience... 9
- Documentation Set.. 9
- Documentation Conventions.. 10
- License Agreements... 10
- Technical Support.. 11

1.0 Introduction.. 12
- 1.1 Overview... 12
- 1.2 Common Tool Options... 12

2.0 Selection of Devices.. 14
- 2.1 Selection of Hosts... 14
 - 2.1.1 Host List Files... 14
 - 2.1.2 Explicit Host Names.. 15
- 2.2 Selection of Chassis.. 15
 - 2.2.1 Chassis List Files... 16
 - 2.2.2 Explicit Chassis Names.. 17
 - 2.2.3 Selection of Slots within a Chassis................................ 17
- 2.3 Selection of Switches.. 17
 - 2.3.1 Switch List Files.. 18
 - 2.3.2 Explicit Switch Names.. 19
- 2.4 Selection of Local Ports (Subnets)... 19
 - 2.4.1 Port List Files.. 20
 - 2.4.2 Explicit Ports... 21

3.0 Descriptions of Command Line Tools.. 22
- 3.1 Basic Single Host Operations... 22
 - 3.1.1 opacabletest... 22
 - 3.1.2 opacapture... 24
 - 3.1.3 opaexpandfile.. 25
 - 3.1.4 opalinkanalysis... 26
 - 3.1.5 opashowmc.. 28
 - 3.1.6 opahfirev... 29
 - 3.1.7 opaportconfig.. 30
 - 3.1.8 opaportinfo.. 33
 - 3.1.9 oparesolvehfiport.. 34
 - 3.1.10 opasorthosts.. 34
 - 3.1.11 opaverifyhosts... 35
 - 3.1.12 opaxlattopology.. 37
 - 3.1.13 opaxlattopology_cust... 40
 - 3.1.14 opa-arptbl-tuneup.. 41
 - 3.1.15 opainfo... 42
 - 3.1.16 opa-init-kernel... 43
 - 3.1.17 opapacketcapture... 43
- 3.2 Basic Setup and Administration Tools.................................... 44
Contents—Intel® Omni-Path Fabric

3.2.1 opafastfabric.. 44
3.2.2 opaconfig... 44
3.2.3 opapingall... 46
3.2.4 opasetupssh... 47
3.2.5 opacmdall... 50
3.2.6 opacaptureall... 53
3.3 File Management Tools.. 56
3.3.1 opascpall... 57
3.3.2 opauploadall... 58
3.3.3 opadownloadall... 60
3.3.4 Simplified Editing of Node-Specific Files... 61
3.3.5 Simplified Setup of Node-Generic Files... 62
3.4 Fabric Analysis Tools.. 62
3.4.1 opafabricinfo.. 62
3.4.2 opashowallports... 64
3.4.3 opareport... 66
3.4.4 opareports.. 74
3.4.5 opaxmlextract.. 76
3.4.6 opaextractperf... 79
3.4.7 opaextracterror... 79
3.4.8 opaextractstat... 80
3.4.9 opaextractstat2... 80
3.4.10 opaextractlink... 81
3.4.11 opaextractsellinks.. 81
3.4.12 opaxmllfilter... 82
3.4.13 opaxmlindent... 82
3.4.14 opaxmlgenerate... 83
3.4.15 opagentopology.. 85
3.4.16 opafindgood... 87
3.4.17 opasaquery... 90
3.4.18 opagetvf... 98
3.4.19 opagetvf_env...100
3.4.20 opagenswitches..100
3.4.21 opagenchassis..102
3.4.22 opagenesmchassis..103
3.4.23 opafequery..104
3.4.24 opasmaquery...111
3.4.25 opapaquery...115
3.4.26 opapmaquery...119
3.4.27 opaextractbadlinks...123
3.4.28 opaextractlids..124
3.4.29 opadisableports...124
3.4.30 opaenableports..126
3.4.31 opadisablehosts..127
3.4.32 opachassisadmin...127
3.4.33 opaswitchadmin...133
3.4.34 opahostadmin..139
3.4.35 Interpreting the opahostadmin, opachassisadmin, and opaswitchadmin log files..146
3.4.36 opareport Detailed Information..147
3.4.37 opacheckload...171
4.0 MPI Sample Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Overview</td>
<td>206</td>
</tr>
<tr>
<td>4.1.1 Building MPI Sample Applications</td>
<td>206</td>
</tr>
<tr>
<td>4.1.2 Running MPI Sample Applications</td>
<td>207</td>
</tr>
<tr>
<td>4.2 Latency/Bandwidth Deviation Test</td>
<td>208</td>
</tr>
<tr>
<td>4.3 OSU Tests</td>
<td>209</td>
</tr>
<tr>
<td>4.3.1 OSU Latency</td>
<td>209</td>
</tr>
<tr>
<td>4.3.2 OSU Latency2</td>
<td>210</td>
</tr>
<tr>
<td>4.3.3 OSU Latency 3</td>
<td>210</td>
</tr>
<tr>
<td>4.3.4 OSU Multi Latency3</td>
<td>210</td>
</tr>
<tr>
<td>4.3.5 OSU Bandwidth</td>
<td>211</td>
</tr>
<tr>
<td>4.3.6 OSU Bandwidth2</td>
<td>211</td>
</tr>
<tr>
<td>4.3.7 OSU Bandwidth3</td>
<td>211</td>
</tr>
<tr>
<td>4.3.8 OSU Multi Bandwidth3</td>
<td>211</td>
</tr>
<tr>
<td>4.3.9 OSU Bidirectional Bandwidth</td>
<td>212</td>
</tr>
<tr>
<td>4.3.10 OSU Bidirectional Bandwidth3</td>
<td>212</td>
</tr>
<tr>
<td>4.3.11 OSU All to All 3</td>
<td>212</td>
</tr>
<tr>
<td>4.3.12 OSU Broadcast 3</td>
<td>212</td>
</tr>
<tr>
<td>4.3.13 OSU Multiple Bandwidth/Message Rate</td>
<td>213</td>
</tr>
<tr>
<td>4.4 Latency Tests</td>
<td>214</td>
</tr>
<tr>
<td>4.4.1 Multi-Threaded Latency Test</td>
<td>214</td>
</tr>
<tr>
<td>4.4.2 Multi-Pair Latency Test</td>
<td>214</td>
</tr>
<tr>
<td>4.4.3 Broadcast Latency Test</td>
<td>214</td>
</tr>
<tr>
<td>4.4.4 One-Sided Put Latency Test</td>
<td>214</td>
</tr>
<tr>
<td>4.4.5 One-Sided Get Latency Test</td>
<td>215</td>
</tr>
<tr>
<td>4.4.6 One-Sided Accumulate Latency Test</td>
<td>215</td>
</tr>
<tr>
<td>4.5 Bandwidth Tests</td>
<td>215</td>
</tr>
<tr>
<td>4.5.1 Bidirectional Bandwidth Test</td>
<td>215</td>
</tr>
<tr>
<td>4.5.2 Multiple Bandwidth / Message Rate Test</td>
<td>215</td>
</tr>
</tbody>
</table>
5.0 Port Counters Overview

5.1 Link Integrity
5.1.1 Link Quality Indicator (LQI) ... 226
5.1.2 LocalLinkIntegrityErrors Counter ... 227
5.1.3 PortRcvErrors Counter ... 227
5.1.4 ExcessiveBufferOverrunErrors Counter .. 227
5.1.5 LinkErrorRecovery Counter .. 227
5.1.6 LinkDowned Counter .. 227

5.2 Congestion
5.2.1 PortXmitWait Counter .. 228
5.2.2 SwPortCongestion Counter ... 228
5.2.3 PortRcvFECN Counter .. 228
5.2.4 PortRcvBECN Counter ... 228
5.2.5 PortXmitTimeCong Counter .. 228
5.2.6 PortMarkFECN Counter .. 228

5.3 SMA Congestion
5.3.1 PortVLXmitWait[15] Counter ... 228
5.3.2 SwPortVLCongestion[15] Counter .. 228
5.3.3 PortVLrcvFECN[15] Counter ... 228
5.3.4 PortVLrcvBECN[15] Counter ... 228
5.3.5 PortVLXmitTimeCong[15] Counter ... 229
5.3.6 PortVLMarkFECN[15] Counter .. 229

5.4 Bubble
5.4.1 PortXmitWastedBW Counter ... 229
5.4.2 PortXmitWaitData Counter ... 229
5.4.3 PortRcvBubble Counter .. 229

5.5 Security
5.5.1 PortRcvConstraintErrors .. 230
5.5.2 PortXmitConstraintErrors ... 230

5.6 Routing
5.6.1 PortRcvSwitchRelayErrors ... 230

5.7 Other
5.7.1 PortRcvRemotePhysicalErrors ... 230
5.7.2 UncorrectableErrors Counter ... 230
5.7.3 FMConfigErrors Counter ... 230
Tables

1. Common Tool Options ... 12
2. Possible issues found in health check .changes files .. 200
3. Rank Assignment .. 213
Preface

This manual is part of the documentation set for the Intel® Omni-Path Fabric (Intel® OP Fabric), which is an end-to-end solution consisting of adapters, edge switches, director switches and fabric management and development tools.

The Intel® OP Fabric delivers a platform for the next generation of High-Performance Computing (HPC) systems that is designed to cost-effectively meet the scale, density, and reliability requirements of large-scale HPC clusters.

Both the Intel® OP Fabric and standard InfiniBand* are able to send Internet Protocol (IP) traffic over the fabric, or IPoFabric. In this document, however, it is referred to as IP over IB or IPoIB. From a software point of view, IPoFabric and IPoIB behave the same way and, in fact, use the same ib_ipoib driver to send IP traffic over the ib0 and/or ib1 ports.

Intended Audience

The intended audience for the Intel® Omni-Path (Intel® OP) document set is network administrators and other qualified personnel.

Documentation Set

The following are the list of the complete end-user publications set for the Intel® Omni-Path product. These documents can be downloaded from https://downloadcenter.intel.com/.

- Hardware Documents:
 - Intel® Omni-Path Fabric Switches Hardware Installation Guide
 - Intel® Omni-Path Fabric Switches GUI User Guide
 - Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide
 - Intel® Omni-Path Edge Switch Platform Configuration Reference Guide
 - Intel® Omni-Path Fabric Managed Switches Release Notes
 - Intel® Omni-Path Fabric Externally-Managed Switches Release Notes
 - Intel® Omni-Path Host Fabric Interface Installation Guide
 - Intel® Omni-Path Host Fabric Interface Release Notes

- Software Documents:
 - Intel® Omni-Path Fabric Software Installation Guide
 - Intel® Omni-Path Fabric Suite Fabric Manager User Guide
 - Intel® Omni-Path Fabric Suite FastFabric User Guide
 - Intel® Omni-Path Fabric Host Software User Guide
 - Intel® Omni-Path Fabric Suite Fabric Manager GUI Online Help
Documentation Conventions

This guide uses the following documentation conventions:

- **Note:** provides additional information.
- **Caution:** indicates the presence of a hazard that has the potential of causing damage to data or equipment.
- **Warning:** indicates the presence of a hazard that has the potential of causing personal injury.
- Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this guide. Links to Web sites are also shown in blue. For example:
 See License Agreements on page 10 for more information.
 For more information, visit www.intel.com.
- Text in bold font indicates user interface elements such as a menu items, buttons, check boxes, or column headings. For example:
 Click the **Start** button, point to **Programs**, point to **Accessories**, and then click **Command Prompt**.
- Text in Courier font indicates a file name, directory path, or command line text. For example:
 Enter the following command: `sh ./install.bin`
- Key names and key strokes are shown in underlined bold uppercase letters. For example:
 Press **CTRL+P** and then press the **UP ARROW** key.
- Text in *italics* indicates terms, emphasis, variables, or document titles. For example:
 For a complete listing of license agreements, refer to the *Intel® Software End User License Agreement*.

License Agreements

This software is provided under one or more license agreements. Please refer to the license agreement(s) provided with the software for specific detail. Do not install or use the software until you have carefully read and agree to the terms and conditions of the license agreement(s). By loading or using the software, you agree to the terms of the license agreement(s). If you do not wish to so agree, do not install or use the software.
Technical Support

Technical support for Intel® Omni-Path products is available 24 hours a day, 365 days a year. Please contact Intel Customer Support or visit www.intel.com for additional detail.
1.0 Introduction

This manual describes the command line interface (CLI) for the Intel® Omni-Path Fabric Suite FastFabric.

1.1 Overview

The FastFabric Toolset provides numerous powerful features, however, the rich set of capabilities can be overwhelming. This reference guide is organized for ease of use at all levels of understanding.

The Intel® FastFabric Toolset is installed in directories that are part of the standard Linux root PATH. Most of the tools are installed in /sbin. For details, refer to Intel® Omni-Path Fabric Software Installation Guide.

Some commands are only applicable when Linux® is being used and are marked with (Linux). Similarly, some commands are only applicable when used on hosts and are marked with (Host). Commands that are applicable only for switches or chassis are marked with (Switch). The remaining commands are generally applicable to all environments and are either marked with (All) or are not marked.

1.2 Common Tool Options

The following table lists CLI options that are applicable to most of the tools.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-?</td>
<td>Displays basic usage information for any of the commands. An invalid option also displays this information.</td>
</tr>
<tr>
<td>--help</td>
<td>Displays complete usage information for most of the commands.</td>
</tr>
<tr>
<td>-p</td>
<td>Runs the operation/command in parallel. This means the operation is performed simultaneously on batches of FF_MAX_PARALLEL hosts. (Default = 1000.) This option allows the overall time of an operation to be much lower. However, a side effect is that any output from the command is bursty and intermingled. Therefore, this option should be used for commands where there is no output or the output is of limited interest. For some commands (such as opascpall), this performs the operation in a quiet mode to limit output. If you want to change the number of parallel operations, export FF_MAX_PARALLEL= where # is the new number (such as 500). For more advanced operations (such as opahostadmin, opachassisadmin, and opaswitchadmin), parallel operation is the default mode. Parallel operation can also be disabled by setting FF_MAX_PARALLEL to 1.</td>
</tr>
<tr>
<td>-S</td>
<td>Prompts for password for admin on chassis or root on host. By default, Intel® Omni-Path Fabric Suite FastFabric toolset operations against Intel® Omni-Path Chassis (such as opacmdall, opacaptureall, and opachassisadmin) obtain the chassis admin password from the FF_CHASSIS_ADMIN_PASSWORD environment variable which may be directly exported or part of opafastfabric.conf. Alternatively, you can use the -S option to be interactively prompted for the chassis admin password. The password is prompted for once, and the same password is then used to log in to each chassis during the operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| For hosts, this option is only applicable to opasetupssh.
Note: All versions of Intel® Omni-Path Chassis firmware permit SSH keys to be configured within the chassis for secure password-less login. In this case, there is no need to configure a FF_CHASSIS_ADMIN_PASSWORD environment variable, and FF_CHASSIS_LOGIN_METHOD can be set to SSH. Intel recommends you set up a secure SSH password-less login using opasetupssh -C. Refer to the Intel® Omni-Path Fabric Switches GUI User Guide for more information. |
| -C | Specifies that the given operation should be performed against chassis. By default, many Intel® Omni-Path Fabric Suite FastFabric toolset operations are performed against hosts. However, selected FastFabric toolset commands (such as opacmdall, opapingall, and opacaptureall) can also operate against Intel® Omni-Path internally-managed chassis. When -C is specified, the operation is performed against chassis instead of hosts. Refer to Selection of Devices for details about the selection of chassis. |
| -h | Select which local HFI to use. |
| -p | Select which local HFI port to use. |
| -v | Produces verbose output. |
2.0 Selection of Devices

2.1 Selection of Hosts

To perform operations against a set of hosts, you can specify the hosts on which to operate using one of the following methods:

- On the command line, using the `-h` option.
- Using the environment variable `HOSTS` to specify a space-separated list of hosts. Useful when multiple commands are performed against the same small set of hosts.
- Using the `-f` option or the `HOSTS_FILE` environment variable to specify a file containing the set of hosts. Useful for groups of hosts that are used often. The file is located here: `/etc/sysconfig/opa/hosts` by default. The file must list all hosts in the cluster except the host running the FastFabric toolset itself.

Within the tools, the options are considered in the following order:

1. `-h` option
2. `HOSTS` environment variable
3. `-f` option
4. `HOSTS_FILE` environment variable
5. `/etc/sysconfig/opa/hosts` file

For example, if the `-h` option is used and the `HOSTS_FILE` environment variable is also exported, the command operates only on hosts specified using the `-h` option.

2.1.1 Host List Files

You can use the `-f` option to provide the name of a file containing the list of hosts on which to operate. The default location is `/etc/sysconfig/opa/hosts`.

It may be useful to create multiple files in `/etc/sysconfig/opa` representing different subsets of the fabric. For example:

- `/etc/sysconfig/opa/hosts-mpi` – list of MPI hosts
- `/etc/sysconfig/opa/hosts-fs` – list of file server hosts
- `/etc/sysconfig/opa/hosts` – list of all hosts except for the FastFabric toolset node
- `/etc/sysconfig/opa/allhosts` – list of all hosts including the FastFabric toolset node
Host List File Format

Sample host list file:

```
# this is a comment
192.168.0.4  # host identified by IP address
n001  # host identified by resolvable TCP/IP name
include /etc/sysconfig/opa/hosts-mpi  # included file
```

Each line of the host list file may specify a single host, a comment, or another host list file to include.

Hosts may be specified by IP address or a resolvable TCP/IP host name. Typically, host names are used for readability. Also, some FastFabric toolset commands translate the supplied host names to IPoIB hostnames, in which case names are generally easier to translate than numeric IP addresses. Typically management network hostnames are specified. However, if desired, IPoIB hostnames or IP addresses may be used to accelerate large file transfers and other operations.

Files to be included may be specified using an `include` directive followed by a file name. File names specified should generally be absolute pathnames. If relative pathnames are used, they are searched for in the current directory first, then `/etc/sysconfig/opa`.

Comments may be placed on any line by using a `#` to precede the comment. On lines with hosts or include directives, the `#` must be white space-separated from any preceding hostname, IP address, or included file name.

2.1.2 Explicit Host Names

When hosts are explicitly specified using the `-h` option or the `HOSTS` environment variable, a space-separated list of host names (or IP addresses) may be supplied. For example:

```
-h 'host1 host2 host3'
```

2.2 Selection of Chassis

Note: In this document, the term *chassis* refers to a managed switch, such as Intel® Omni-Path Switch 100SWE48Q, for example.

To perform operations against a set of chassis, you can specify the chassis on which to operate using one of the following methods:

- On the command line, using the `-H` option.
- Using the environment variable `CHASSIS` to specify a space-separated list of chassis. Useful when multiple commands are performed against the same small set of chassis.
- Using the `-F` option or the `CHASSIS_FILE` environment variable to specify a file containing the set of chassis. Useful for groups of chassis that will be used often. The file is located here: `/etc/sysconfig/opa/chassis` by default. The file must list all chassis in the cluster.

Within the tools, the options are considered in the following order:

1. `-H` option
2. CHASSIS environment variable
3. -F option
4. CHASSIS_FILE environment variable
5. /etc/sysconfig/opa/chassis file

For example, if the -H option is used and the CHASSIS_FILE environment variable is also exported, the command operates only on chassis specified by the -H option.

2.2.1 Chassis List Files

You can use the -F option to provide the name of a file containing the list of chassis on which to operate. The default is /etc/sysconfig/opa/chassis.

It may be useful to create multiple files in /etc/sysconfig/opa representing different subsets of the fabric. For example:

- /etc/sysconfig/opa/chassis-core: list of core switching chassis
- /etc/sysconfig/opa/chassis-edge: list of edge switching chassis
- /etc/sysconfig/opa/esm_chassis: list of chassis running an SM
- /etc/sysconfig/opa/chassis: list of all chassis

If a relative path is specified for the -F option, the current directory is checked first, followed by /etc/sysconfig/opa/.

Chassis List File Format

Sample chassis file:

```plaintext
# this is a comment
192.168.0.5   # chassis IP address
edge1   # chassis resolvable TCP/IP name
include /etc/sysconfig/opa/chassis-core   # included file
```

Each line of the chassis list file may specify a single chassis, a comment, or another chassis list file to include.

A chassis may be specified by chassis management network IP address or a resolvable TCP/IP name. Typically, names are used for readability.

Files to be included may be specified using an include directive followed by a file name. File names specified should be absolute path names. If relative path names are used, they are searched for in the current directory first, then /etc/sysconfig/opa.

Comments may be placed on any line using a # to precede the comment. On lines with chassis or include directives, the # must be white space-separated from any preceding name, IP address, or included file name.

The chassis file can also be generated using the opagenchassis command.
2.2.2 **Explicit Chassis Names**

When chassis are explicitly specified using the `-H` option or the `CHASSIS` environment variable, a space-separated list of names (or IP addresses) may be supplied. For example: `-H chassis1 chassis2 chassis3`.

2.2.3 **Selection of Slots within a Chassis**

Typically, operations are performed against the primary management module (MM) in the chassis. For operations such as `opacmdall`, you can specify the management module for the given chassis, if there is a redundant/secondary MM.

To perform operations against a specific subset of cards within the chassis, you can augment the chassis IP address or name within a chassis list or a chassis file with a list of slot numbers on which to operate. Use the form:

```
chassis:slot1,slot2,…
```

For example:

```
19k229:0
19k229:0,1,5
192.168.0.5:0,1,5
```

Note: No spaces can be used within the chassis name and slot list.

This format may be used whenever a chassis name or IP address is valid, such as the `-H` option, the `CHASSIS` environment variable, or chassis list files.

The slot number specified may be ignored on some operations.

Only slots containing MM may be specified with this format. Use the `chassisQuery` command to identify MM slots.

Note: For any operation, be careful that a given chassis is listed only once with all relevant slots. This prevents conflicting concurrent operations against a given chassis.

2.3 **Selection of Switches**

To perform operations against a set of externally-managed switches, you can specify the switch on which to operate using one of the following methods:

- On the command line, using the `-N` option.
- Using the environment variable `SWITCHES` to specify a space-separated list of switches. Useful when multiple commands are performed against the same small set of switches.
- Using the `-L` option or the `SWITCHES_FILE` environment variable to specify a file containing the set of switches. Useful for groups of switches that are used often. The file is located here: `/etc/sysconfig/opa/switches` by default. The file must list all switches in the cluster.

Within the tools, the options are considered in the following order:

1. `-N` option
2. **SWITCHES** environment variable

3. `-L` option

4. **SWITCHES_FILE** environment variable

5. `/etc/sysconfig/opa/switches` file

For example, if the `-N` option is used and the **SWITCHES_FILE** environment variable is also exported, the command operates only on switches specified using the `-N` option.

2.3.1 Switch List Files

You can use the `-L` option to provide the name of a file containing the list of switches on which to operate. The default is `/etc/sysconfig/opa/switches`.

It may be useful to create multiple files in `/etc/sysconfig/opa` representing different subsets of the fabric.

If a relative path is specified for the `-L` option or **SWITCHES_FILE** environment variable, the current directory is checked first, followed by `/etc/sysconfig/opa/`.

Switch List File Format

Sample switch list file:

```plaintext
# this is a comment
0x00117500d9000138,19k138  # Node GUID with desired Name
0x00117500d9000139,19k139  # Node GUID with desired Name
0x00117500d9000140:1:2,19k140  # Node GUID with port and Name
include /etc/sysconfig/opa/moreswitches  # included file
```

Each line of the switch list file may specify a single switch, a comment, or another switch list file to include.

Switches can be specified by node GUID, optionally followed by a colon and the `hfi:port`, optionally followed by a comma and the Node Description (nodename) to be assigned to the switch, and optionally followed by the distance value indicating the relative distance from the FastFabric node for each switch.

You can use `opagenswitches` to locate externally-managed switches in the fabric and generate a switches file. By default, `opagenswitches` provides the proper distance value relative to the FastFabric node from which it was run. Alternatively, the `opagenswitches -R` option suppresses generation of this field.

When you use `opagenswitches` in conjunction with a topology file created during fabric design, you can associate switch names in the topology file with NodeGUIDs of the actual devices. This facilitates subsequent use of `opaswitchadmin` to configure the node descriptions for all switches according to the fabric design plan.

In a typical pure fat tree topology with externally managed switches as edge switches and internally managed switches as core switches, you can also manually specify proper distance by simply specifying 1 for the distance value of the switch next to the FastFabric node. Note that in such a topology, all other Edge switches are an equal length from the FastFabric node and a missing distance value causes them to be
treated as having a distance value which is larger than any other found in the file. Therefore, the other switches would be rebooted first and the FastFabric node's switch would be rebooted last.

The GUID is used to select the switch and, on firmware update operations, the node description is written to the switch such that other FastFabric tools (such as opaquery and opareport) can provide a more easily readable name for the switch. The node description can also be updated as part of switch basic configuration.

The hfi:port may be used to specify which local port (subnet) to use to access the switch. If this is omitted, all local ports specified are checked for the switch and the first port found to be able to access the switch is used to access it. See the Intel® Omni-Path Fabric Suite FastFabric User Guide for more information about how to specify the hfi:port value.

Files to be included may be specified using an include directive followed by a file name. File names specified should be absolute path names. If relative path names are used, they are searched for within the current directory first, then /etc/sysconfig/opas.

Comments may be placed on any single line by using a # to precede the comment. On lines with chassis or include directives, the # must be white space-separated from any preceding GUID, name, or included file name.

Intel recommends that a unique node description is specified for each switch. This name should follow typical naming rules and use the characters a-z, A-Z, 0-9, and underscore. No spaces are allowed in the node description. Additionally, names should not start with a digit.

For externally-managed switches, the node GUID can be found on a label on the bottom of the switch. Alternately, the node GUIDs for switches in the fabric can be found using a command such as:

```
opaquery -t sw -o nodeguid
```

Note: The opaquery command reports all switch node GUIDs, including those of internally-managed chassis such as the Intel® Omni-Path Switch 100 Family. GUIDs for internally-managed chassis cannot be used in the switches file.

2.3.2 Explicit Switch Names

When switches are explicitly specified using the -N option or the SWITCHES environment variable, a space-separated list of GUIDs (optionally with hfi:port and/or name) may be supplied. For example: -N '0x00117500d9000138,i9k138 0x00117500d9000139,i9k139'

2.4 Selection of Local Ports (Subnets)

Many commands permit a specific set of local Intel® Omni-Path Host Fabric Interface (HFI) ports to be used for fabric access. For example, opareports, opafabricinfo, opaswitchadmin, opafabricanalysis, and opaallanalysis. The default is to use the first active port. However, for Fabric Management nodes connected to more than one subnet, you must specify the local HFI and port so that the desired subnet is analyzed.
You can specify the local ports on which to operate using one of the following methods:

- On the command line, using the \texttt{-p} option.
- Using the environment variable \texttt{PORTS} to specify a space-separated list of ports. Useful when multiple commands are performed against the same small set of ports.
- Using the \texttt{-t} option or the \texttt{PORTS_FILE} environment variable to specify a file containing the set of ports. Useful for groups of ports that are used often. The file is located here: \texttt{/etc/sysconfig/opa/ports} by default. The file must list all local ports connected to unique subnets.

Within the tools, the options are considered in the following order:
1. \texttt{-p} option
2. \texttt{PORTS} environment variable
3. \texttt{-t} option
4. \texttt{PORTS_FILE} environment variable
5. \texttt{/etc/sysconfig/opa/ports} file
6. Default of the first active port on system. (0:0 port specification)

For example, if the \texttt{-p} option is used and the \texttt{PORTS_FILE} environment variable is also exported, the command operates only on ports specified using the \texttt{-p} option.

\section*{2.4.1 Port List Files}

You can use the \texttt{-t} option or the \texttt{PORTS_FILE} environment variable to provide the name of a file containing the list of local HFI ports to use. The default is \texttt{/etc/sysconfig/opa/ports}.

It may be useful to create multiple files in \texttt{/etc/sysconfig/opa} representing different subsets of the ports. For example:

- \texttt{/etc/sysconfig/opa/ports-primary} - ports for which this node is primary
- \texttt{/etc/sysconfig/opa/ports-plane1} - port(s) for plane1 subnet
- \texttt{/etc/sysconfig/opa/ports} - list of all unique subnet ports

If a relative path is specified for the \texttt{-t} option or \texttt{PORTS_FILE} environment variable, the current directory is checked first, followed by \texttt{/etc/sysconfig/opa/}.

\textbf{Port List File Format}

\textit{Note:} Intel® Omni-Path Host Fabric Interface has 1 port.

Sample port list file:
\begin{verbatim}
this is a comment
1:1 # first port on 1st HFI
2:1 # first port on 2nd HFI
3:0 # first active port on 3rd HFI
include /etc/sysconfig/opa/ports-plane2 # included file
\end{verbatim}
Each line of the port list file may specify a single port, a comment, or include another port list file.

Ports are specified as $hfi:port$. No spaces are permitted. The first HFI is 1 and the first port is 1. The value 0 for HFI or port has special meaning. The allowed formats are:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0</td>
<td>1st active port in system</td>
</tr>
<tr>
<td>0:y</td>
<td>port y within system</td>
</tr>
<tr>
<td>x:0</td>
<td>1st active port on HFI x</td>
</tr>
<tr>
<td>x:y</td>
<td>HFI x, port y</td>
</tr>
</tbody>
</table>

Files to be included may be specified using an `include` directive followed by a file name. File names specified should be absolute pathnames. If relative pathnames are used, they are searched for within the current directory first, then `/etc/sysconfig/opa`.

Comments may be placed on any line by using a `#` to precede the comment. On lines with a port or `include` directive, the `#` must be white space-separated from any preceding port or included filename.

2.4.2 Explicit Ports

When ports are explicitly specified using the `-p` option or the `PORTS` environment variable, a space-separated list of ports may be supplied. For example: `-p '1:1 2:1'`.

...
3.0 Descriptions of Command Line Tools

This section provides a complete description of each Intel® Omni-Path Fabric Suite FastFabric Toolset command line tool and all its parameters.

3.1 Basic Single Host Operations

The tools described in this section are available on each host where the Intel® Omni-Path Fabric Host Software stack tools have been installed. The tools enable FastFabric toolset operations against cluster nodes, however, they can also be directly used on an individual host.

3.1.1 opacabletest

(Switch) Initiates or stops Cable Bit Error Rate stress tests for Intel® Omni-Path Host Fabric Interface (HFI)-to-switch links and/or ISLs.

Syntax

```
opacabletest [-C|-A] [-c file] [-f hostfile]
[-h 'hosts'] [-n numprocs] [-t portsfile]
[-p ports] [start|start_fi|start_isl|stop|stop_fi|stop_isl]
```

or

```
opacabletest --help
```

Options

- **--help** Produces full help text.
- **-C** Clears error counters.
- **-A** Forces clear of hardware error counters. Implies -C.
- **-c file** Error thresholds configuration file. Default is /etc/sysconfig/opa/opamon.si.conf file. Only used if -C or -A specified.
- **-f hostfile** File with hosts to include in HFI-to-SW test. Default is /etc/sysconfig/opa/hosts file.
- **-h hosts** List of hosts to include in HFI-SW test.
- **-n numprocs** Number of processes per host for HFI-SW test.
-t portsfile File with list of local HFI ports used to access fabrics when clearing counters. Default is /etc/sysconfig/opa/ports file.

-p ports List of local HFI ports used to access fabrics for counter clear. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0 First active port in system.
0:y Port y within system.
x:0 First active port on HFI x.
x:y HFI x, port y.

start Starts the HFI-SW and ISL tests.
start_fi Starts the HFI-SW test.
start_isl Starts the ISL test.
stop Stops the HFI-SW and ISL tests.
stop_fi Stops the HFI-SW test.
stop_isl Stops the ISL test.

The HFI-SW cable test requires that the FF_MPI_APPS_DIR is set, and it contains a pre-built copy of the mpi_apps for an appropriate message passing interface (MPI).

The ISL cable test started by this tool assumes that the master Host Subnet Manager (HSM) is running on this host. If using the Embedded Subnet Manager (ESM), or if a different host is the master HSM, the ISL cable test must be controlled by the switch CLI, or by Intel® Omni-Path Fabric Suite FastFabric on the master HSM respectively.

Examples

```
  opacabletest -A start
  opacabletest -f good -A start
  opacabletest -h 'arwen elrond' start_fi
  HOSTS='arwen elrond' opacabletest stop
  opacabletest -A
```

Environment Variables

The following environment variables are also used by this command:

HOSTS List of hosts, used if -h option not supplied.
HOSTS_FILE File containing list of hosts, used in absence of -f and -h.
PORTS List of ports, used in absence of -t and -p.
PORTS_FILE File containing list of ports, used in absence of -t and -p.
FF_MAX_PARALLEL Maximum concurrent operations.

3.1.2 opacapture

(Host) Captures critical system information into a zipped tar file. The resulting tar file should be sent to Customer Support along with any Intel® Omni-Path Fabric problem report regarding this system.

Note: The resulting host capture file can require significant amounts of space on the host. The actual size varies, but sizes can be multiple megabytes. Intel recommends ensuring that adequate disk space is available on the host system.

Syntax

opacapture [-d detail] output_tgz_file

or

opacapture --help

Options

--help Shows full help text.
-d detail Captures level of detail:

1 (Local) Obtains local information from host. Default if no options are entered.
2 (Fabric) In addition to Local, also obtains basic fabric information by queries to the SM and fabric error analysis using opareport.
3 (Fabric +FDB) In addition to Fabric, also obtains the Forwarding Database (FDB), which includes the switch forwarding tables from the SM and the server multicast membership.
4 (Analysis) In addition to Fabric+FDB, also obtains opaallanalysis results. If opaallanalysis has not yet been run, it is run as part of the capture.
Note: Detail levels 2 – 4 can be used when fabric operational problems occur. If the problem is node-specific, detail level 1 should be sufficient. Detail levels 2 – 4 require an operational Fabric Manager. Typically your support representative requests a given detail level. If a given detail level takes excessively long or fails to be gathered, try a lower detail level.

For detail levels 2 – 4, the additional information is only available on a node with Intel® Omni-Path Fabric Suite FastFabric Toolset installed. The information is gathered for every fabric specified in the `/etc/sysconfig/opa/ports` file.

`output_tgz_file` The name of a file to be created by `opacapture`. The file name specified is overwritten if it already exists. Intel recommends using the `.tgz` suffix in the file name supplied. If the filename given does not have a `.tgz` suffix, the `.tgz` suffix is added.

Examples

```
opacapture mycapture.tgz
opacapture -d 3 030127capture.tgz
```

3.1.3 `opaeexpandfile`

(Windows) Expands a Intel® Omni-Path Fabric Suite FastFabric hosts, chassis, or switches file. This tool expands and filter outs blank and commented lines. This can be useful when building other scripts that may use these files as input.

Syntax

```
opaeexpandfile file
```

or

```
opaeexpandfile --help
```

Options

`--help` Produces full help text.

`file` FastFabric file to be processed.

Example

```
opaeexpandfile allhosts
```
3.1.4 opalinkanalysis

(Switch) Encapsulates the capabilities for link analysis. Additionally, this tool includes
cable and fabric topology verification capabilities. This tool is built on top of
opareport (and its analysis capabilities), and accepts the same syntax for input
topology and snapshot files.

In addition to being able to run assorted opareport link analysis reports, and
generate human-readable output, this tool additionally analyzes the results and
appends a concise summary of issues found to the FF_RESULT_DIR/punchlist.csv
file.

Syntax

```
opalinkanalysis [-U] [-t portsfile] [-p ports]
[-T topology_input] [-X snapshot_input]
[-x snapshot_suffix] [-c file] reports ...
```

or

```
opalinkanalysis --help
```

Options

```
--help
- U
- t portsfile File with list of local HFI ports used to access fabric(s) for
analysis, default is /etc/sysconfig/opa/ports.
- p ports List of local HFI ports used to access fabric(s) for analysis.
The default is the first active port. The first HFI in the system
is 1. The first port on an HFI is 1. Uses the format hfi:port, for example:
    0:0  First active port in system.
    0:y  Port y within system.
    x:0  First active port on HFI x.
    x:y  HFI x, port y.
- T topology_input Name of a topology input file to use. Any %P markers in this
    filename are replaced with the hfi:port being operated on
    (such as 0:0 or 1:2). Default is /etc/sysconfig/opa/
```
topology.%P.xml. If NONE is specified, does not use any
topology_input files. See opareport on page 66 for more
information on topology_input files.

-X
snapshot_input
Performs analysis using data in snapshot_input.

snapshot_input must have been generated via a previous
opareport -o snapshot run. If an errors report is
specified, snapshot must have been generated with the
opareport -s option. When this option is used, only one
port may be specified to select a topology_input file
(unless -T specified). When this option is used,
clearerrors and clearhwerrors reports are not
permitted.

-x
snapshot_suffix
Creates a snapshot file per selected port. The files are created
in FF_RESULT_DIR with names of the form:
snapshotSUFFIX.HFI:PORT.xml.

-c file
Error thresholds configuration file. The default is /etc/
sysconfig/opa/opamon.si.conf.

reports
The following reports are supported:

errors
 Link error analysis.
slowlinks
 Links running slower than expected.
misconfiglinks
 Links configured to run slower than supported.
misconnlinks
 Links connected with mismatched speed
 potential.
all
 Includes all reports.
verifylinks
 Verifies links against topology input.
verifyextlinks
 Verifies links against topology input. Limit
 analysis to links external to systems.
verifyfis
 Verifies FIs against topology input.
verifysws
 Verifies switches against topology input.
verifyrtrrs
 Verifies routers against topology input.
verifynodes
 Verifies FIs, switches, and routers against
topology input.
verifysms
 Verifies SMs against topology input.
verifyall Verifies links, FIs, switches, routers, and SMs against topology input.

clearerrors Clears error counters, uses PM if available.

clearhwerrors Clears hardware error counters, bypasses PM.

clear Includes clearerrors and clearhwerrors.

A punchlist of bad links is also appended to the file: FF_RESULT_DIR/punchlist.csv

Examples

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opalinkanalysis errors</td>
</tr>
<tr>
<td>opalinkanalysis errors clearerrors</td>
</tr>
<tr>
<td>opalinkanalysis -p '1:1 2:1'</td>
</tr>
</tbody>
</table>

Environment Variables

The following environment variables are also used by this command:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTS</td>
<td>List of ports, used in absence of -t and -p.</td>
</tr>
<tr>
<td>PORTS_FILE</td>
<td>File containing list of ports, used in absence of -t and -p.</td>
</tr>
<tr>
<td>FF_TOPOLOGY_FILE</td>
<td>File containing topology_input, used in absence of -T.</td>
</tr>
</tbody>
</table>

3.1.5 opashowmc

(Windows) Displays the Intel® Omni-Path Multicast groups created for the fabric along with the Intel® Omni-Path Host Fabric Interface (HFI) ports which are a member of each multicast group. This command can be helpful when attempting to analyze or debug Intel® Omni-Path multicast usage by applications or ULPs such as IPoIB.

Syntax

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opashowmc [-v] [-t portsfile] [-p ports]</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opashowmc --help</td>
</tr>
</tbody>
</table>

Options

--help Produces full help text.
Returns verbose output and shows name of each member.

-\t portsfile
File with list of local HFI ports used to access fabric(s) for analysis.
Default is \'/etc/sysconfig/opa/ports file\'.

-\t ports
List of local HFI ports used to access fabric(s) for analysis. Default is
first active port. The first HFI in the system is 1. The first port on an
HFI is 1.

Uses the format hfi:port, for example:

0:0 First active port in system.
0:y Port y within system.
x:0 First active port on HFI x.
x:y HFI x, port y.

Examples

```
opashowmc
opashowmc -p '1:1'
opashowmc -p '1:1 2:1'
```

Environment Variables

The following environment variables are also used by this command:

PORTS
List of ports, used in absence of -t and -p.

PORTS_FILE
File containing list of ports, used in absence of -t and -p.

3.1.6 opahfirev

(Linux) Reports hardware and firmware information about the Intel® Omni-Path Host
Fabric Interface (HFI)s.

Syntax

```
opahfirev
```

Options

None.

Example

```
# opahfirev
######################
server.intel.com  - HFI 02:00.0
```
3.1.7 **opaportconfig**

(Host or Switch) Controls the configuration and state of a specified Intel® Omni-Path Host Fabric Interface (HFI) port on the local host or a remote switch.

Syntax

```
```

- **-l lid** Destination LID. Default is local port.
- **-m dest_port** Destination port. Default is port with given LID. Used to access switch ports.
- **-h hfi** HFI to send through/to. Default is first HFI.
- **-p port** Port to send through/to. Default is first port.
- **-K mkey** SM management key to access remote ports.

sub command One of the following choices:

- **enable** Enables port.
- **disable** Disables port.
- **bounce** Bounces port.
- **ledon** Turns port LED on.
- **ledoff** Turns port LED off.

Configuration options

- **-r secs** Repeats to keep the port down for the specified amount of seconds.
- **-S state** New state. Default is 0.

 0 No-op.

 1 Down.
2 Initiate.
3 Armed.
4 Active.

-P physstate New physical state. Default is 0.
 0 No-op.
 2 Polling.
 3 Disabled.

-s speed New link speeds enabled. Default is 0. To enable multiple speeds, use the sum of the desired speeds.
 0 No-op.
 2 0x0002 - 25 Gb/s.

-w width New link widths enabled. Default is 0. To enable multiple widths, use sum of desired widths.
 0 No-op.
 1 0x01 - 1x.
 2 0x02 - 2x.
 4 0x04 - 3x.
 8 0x08 - 4x.

-c LTPCRC New LTP CRCs enabled. Default is 0. To enable multiple LTP CRCs, use sum of desired LTP CRCs.
 0 No-op.
 1 0x1 - 14-bit LTP CRC mode.
 2 0x2 - 16-bit LTP CRC mode.
 4 0x4 - 48-bit LTP CRC mode.
 8 0x8 - 12/16 bits per lane LTP CRC mode.
0xF - Enable all supported.

-h and -p options permit a variety of selections:

- h 0 First port in system (default).
- h x First port on HFI x.
- h 0 -p y Port y within system.
- h x -p y HFI x, port y.

Debug Options

- v Verbose output. Additional invocations turn on debugging, openib debugging, and libibumad debugging.
- z Does not get port info first, clears most port attributes.
- L lid Sets PortInfo.LID = lid.

Examples

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opaportconfig -w 1</td>
</tr>
<tr>
<td>opaportconfig -p 1 -h 2 -w 3</td>
</tr>
</tbody>
</table>

Description

Port configuration is transient in nature. If the given host is rebooted or its Intel® Omni-Path Fabric Stack is restarted, the port reverts to its default configuration and state. Typically, the default state is to have the port enabled with all speeds and widths supported by the given HFI port.

To access switch ports using this command, the -l and -m options must be given. The -l option specifies the lid of switch port 0 (the logical management port for the switch) and -m specifies the actual switch port to access. If SMA mkeys are used, the -K option is also needed. However, the Intel® Omni-Path Fabric Suite Fabric Manager does not use SMA mkeys by default, therefore this option may not be required.

Note: The /etc/init.d/opaportconfig script is provided as an example of changing port speed every time the server boots. This script can be edited, then scheduled, using chkconfig to control link settings on any set of HFI ports.

Caution: When using this command to disable or reconfigure switch ports, if the final port in the path between the Fabric Management Node and the switch is disabled or fails to come online, then opaenableports is not able to reenable it. In this case, the switch CLI and/or a switch reboot may be needed to correct the situation.
3.1.8 **opaportinfo**

(Host or Switch) Displays configuration and state of a specified Intel® Omni-Path Host Fabric Interface (HFI) port on the local host or a remote switch.

Syntax

```
opaportinfo [-l lid [-m dest_port]]
[-h hfi] [-p port] [-K mkey] [-v]
```

- `-l lid` Destination LID. Default is local port.
- `-m dest_port` Destination port. Default is port with given LID. Useful to access switch ports.
- `-h hfi` HFI, numbered 1..n. Using 0 specifies that the `-p port` port is a system-wide port number. Default is 0.
- `-p port` Port, numbered 1..n. If `-h hfi` is 0, then `port` is a system-wide port number. Default is 1.
- `-K mkey` SM management key to access remote ports.

-h and -p options permit a variety of selections:

- `-h 0` First port in system (default).
- `-h x` First port on HFI `x`.
- `-h 0 -p y` Port `y` within system.
- `-h x -p y` HFI `x`, port `y`.

Debug Options

- `-v` Verbose output. Additional invocations (`-v -v ...`) turn on debugging, `openib` debugging, and `libibumad` debugging.

Examples

```
opaportinfo -p 1
opaportinfo -p 2 -h 2 -l 5 -m 18
```

Description

To access switch ports using this command, the `-l` and `-m` options must be given. The `-l` option specifies the LID of switch port 0 (the logical management port for the switch) and `-m` specifies the actual switch port to access. If SMA mkeys are used, the `-K` option is also needed. However, the Intel® Omni-Path Fabric Suite Fabric Manager does not use SMA mkeys by default, therefore this option may not be required.
3.1.9 oparesolvehfiport

(Host) Permits the Intel® Omni-Path Fabric Host Software style Intel® Omni-Path Host Fabric Interface (HFI) number and port number arguments to be converted to a Host Software style HFI name and physical port number. This can be useful when writing scripts that can accept FastFabric-style arguments, and interact directly with OFED commands.

Syntax

oparesolvehfiport hfi port

or

oparesolvehfiport --help

--help Produces full help text.

hfi HFI to send by. Numbered 1..n. 0 = system-wide port num. Default is first HFI.

port Port to send by. Numbered 1..n. 0 (default) is first active port.

-h and -p options permit a variety of selections:

-h 0 -p 0 First active port in system.

-h x -p 0 First active port on HFI x.

-h 0 -p y Port y within system (no matter which ports are active).

-h x -p y HFI x, port y

Examples

oparesolvehfiport 0 1
Output:
 hfi_0:1

3.1.10 opasorthosts

Sorts its standard input in a typical host name order and sorts to standard output. Hosts are sorted alphabetically (case-insensitively) by any alpha-numeric prefix, and then sorted numerically by any numeric suffix. Host names may end in a numeric field which may optionally have leading zeros. Unlike a pure alphabetic sort, this command results in intuitive sequencing of host names such as: host1, host2, host10

This command does not remove duplicates; any duplicates are listed in adjacent lines.

Use this command to build mpi_hosts input files for applications or cable tests that place hosts in order by name.
Syntax

opasorthosts < hostlist > output_file

or

opasorthosts --help

Options

--help Produces full help text.

hostlist List of host names.

output_file Sorted list output.

opasorthosts < host.xml > Sorted_host

Standard Input

opasorthosts
 osd04
 osd1
 compute20
 compute3
 mgmt1
 mgmt2
 login

Standard Output

compute3
 compute20
 login
 mgmt1
 mgmt2
 osd1
 osd04

3.1.11 opaverifyhosts

Performs single node verification. The actual verification is performed using
FF_HOSTVERIFY (/root/hostverify.sh). A sample file is provided
in /opt/opa/samples/hostverify.sh. You can review and edit the sample file to
set appropriate configuration and performance expectations and select which tests to
run by default. See /opt/opa/samples/hostverify.sh for more information.

Syntax

opaverifyhosts [-kc] [-f hostfile] [-u upload_file] [-d upload_dir]
 [-h hosts] [-T timelimit] [test ...]
or

```
opaverifyhosts --help
```

Options

```
--help
  Produces full help text.

-k
  At start and end of verification, kills any existing hostverify or
  xhpl jobs on the hosts.

-c
  Copies hostverify.sh to hosts first, useful if you have edited it.

-f hostfile
  File with hosts in cluster. Default is /etc/sysconfig/opa/
  hosts.

-h hosts
  List of hosts to ping.

-u upload_file
  Filenameto upload hostverify.res to after verification to allow
  backup and review of the detailed results for each node. The
  default upload destination file is hostverify.res. If -u '' is
  specified, no upload occurs.

-d upload_dir
  Directory to upload result from each host to. Default is uploads.

-T timelimit
  Time limit in seconds for host to complete tests. Default is 300
  seconds (5 minutes).

```
test
 One or more specific tests to run. (See /opt/opa/samples/
 hostverify.sh for a list of available tests.) This verifies basic
 node configuration and performance by running /root/
 hostverify.sh on all specified hosts. Prior to using the test option, edit
 /opt/opa/samples/hostverify.sh to set proper expectations for node
 configuration and performance. Then be sure to use the -c option
 on first run for a given node so that /opt/opa/samples/
 hostverify.sh gets copied to each node as /root/
 hostverify.sh.

```

A summary of results is appended to FF_RESULT_DIR/verifyhosts.res. A punch
list of failures is also appended to FF_RESULT_DIR/punchlist.csv. Only failures
are shown on stdout.

**Examples**

```
opaverifyhosts -c
opaverifyhosts -h 'arwen elrond'
HOSTS='arwen elrond' opaverifyhosts
```

Environment

HOSTS List of hosts, used if -h option not supplied.

HOSTS_FILE File containing list of hosts, used in absence of -f and -h.

UPLOADS_DIR Directory to upload to, used in absence of -d.

FF_MAX_PARALLEL Maximum concurrent operations.

3.1.12 opaxlattopology

Generates a topology XML file of a cluster using topology.xlsx, linksum_swd06.csv, and linksum_swd06.csv as input. The topology file can be used to bring up and verify the cluster.

Syntax

```
opaxlattopology [-d level -v level -i level -c char -K -?] [source [dest]]
```

Options

- **-d level** Output detail level. Default = 0. Levels are additive.
  
  By default, the top level is always produced. Switch, rack, and rack group topology files can be added to the output by choosing the appropriate level. If the output at the group or rack level is specified, then group or rack names must be provided in the spreadsheet. Detailed output can be specified in any combination. A directory for each topology XML file is created hierarchically, with group directories (if specified) at the highest level, followed by rack and switch directories (if specified).

  1 Intel® Omni-Path Edge Switch 100 Family topology files.
  2 Rack topology files.
  4 Rack group topology files.


  0 No output.
  1 Progress output.
  2 Reserved.
  4 Time stamps.
  8 Reserved.
-i level
Output indent level. Range = 0 - 15. Default = 0.

-c char
NodeDesc concatenation character. Used when creating NodeDesc values
(that is, Name to Name-2, Name to HFI-1, and so on). A space is used by
default, but another character, such as underscore, can be specified.

-K
Does not clean temporary files. Prevents temporary files in each topology
directory from being removed. Temporary files contain CSV formatted lists
of links, HFI’s, and switches used to create a topology XML file. Temporary
files are not typically needed after a topology file is created, however they
are used for creating linksum_swd06.csv and linksum_swd24.csv
files, or can be retained for subsequent inspection or processing.

Notes: The linksum_swd06.csv and linksum_swd24.csv files are
provided as stand-alone source files. However, they can be
recreated (or modified) from the spreadsheet, if needed, by
performing the following steps:
1. Save each of the following from the topology.xlsx file as
individual .csv files:
   - Internal SWD06 Links tab as linksum_swd06.csv
   - Internal SWD24 Links tab as linksum_swd24.csv
   - Fabric Links tab as topology.csv
2. For each saved topology.csv file, run the script with the -K
   option.
3. Upon completion of the script, save the top level linksum.csv
   file as linksum_swd06.csv or linksum_swd24.csv as
   appropriate.

-?
Prints this output.

Description
topology.xlsx provides a standard format for representing each external link in a
cluster. Each link contains **Source, Destination**, and **Cable** fields with one link per
row of the spreadsheet. The cells cannot contain commas. **Source** and **Destination**
fields each have the following columns:
- Rack Group
- Rack
- Name (primary name)
- Name-2 (secondary name)
- Port (number)
- Type (port)
The **Cable** fields have the following columns:
- Label
- Length
- Details

The Rack Group and Rack names are individually optional. If either column is completely empty, it is ignored. The first row must have a value. If the Rack Group or Rack field is empty on any row, the script defaults the value in that field to the closest previous value. Name and Name-2 provide the name of the node which is output as the NodeDesc using the following information:

<table>
<thead>
<tr>
<th>NodeType</th>
<th>Name or Name-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Hostname or hostdetails</td>
</tr>
<tr>
<td>Edge Switch</td>
<td>Switchname</td>
</tr>
<tr>
<td>Core Leaf</td>
<td>Corename or Lnnn</td>
</tr>
<tr>
<td>Core Spine</td>
<td>Corename or Snnn (used only in internal core switch links)</td>
</tr>
</tbody>
</table>

For hosts, Name-2 is optional and is output as NodeDetails in the topology XML file. Also HFI-1 is appended to Name (see -c option). For core leaves (and spines), Name and Name-2 are concatenated (see -c option).

Port contains the port number. If the Port field is empty on a host node, the script defaults to 1.

Type contains the node type. The first row must have a value. If the Type field is empty on any row, the script defaults the value to the closest previous value. The type values are:

<table>
<thead>
<tr>
<th>NodeType</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>FI</td>
</tr>
<tr>
<td>Edge Switch</td>
<td>SW</td>
</tr>
<tr>
<td>Core Leaf</td>
<td>CL</td>
</tr>
<tr>
<td>Core Spine</td>
<td>CS   (used only in internal core switch links)</td>
</tr>
</tbody>
</table>

Cable values are optional and have no special syntax. If the cable information is present, it appears in the topology XML file as CableLabel, CableLength, and CableDetails respectively. CableLength can optionally be used to document more precise cable length information than is available through a CableInfo query (CableInfo length fields have at best a 1 meter granularity). Note, however, that topology CableLength is informational and is not validated against CableInfo length information.

The opaxlattopology script reads the topology, linksum_swd06, and linksum_swd24 CSV files. The topology.csv file is created from the topology.xlsx spreadsheet by saving the Fabric Links tab as a .CSV file to
Inspect the topology.csv file to ensure that each row contains the correct and same number of comma separators. Any extraneous entries in the spreadsheet can cause the CSV output to have extra fields.

The script outputs one or more topology files starting with topology.0:0.xml. Input files must be present in the same directory from which the script operates.

Example

```bash
opaxlattopology
reads default input 'topology.csv' and creates default
output 'topology.0:0.xml'
```

opaxlattopology fabric_2.csv

# reads input 'fabric_2.csv' and creates default output

See topology.xlsx for examples of links between HFI and Edge SW (rows 4-7), HFI and Core SW (rows 8-11), and Edge SW and Core SW (rows 12-15).

### 3.1.13 opaxlattopology_cust

Customizable script for documenting cluster topology. Provides an alternative to the standard script (see opaxlattopology on page 37). Edit the sample topology_cust.xlsx to represent each external link in a cluster, then modify opaxlattopology_cust to translate the alternate CSV form to the standard CSV form used by opaxlattopology.

Syntax

```
opaxlattopology_cust -t topology_prime [-s topology_second] -T topology_out
[-v level] [-i level] [-c char] [-K] [-?]
```

Options

- **-t topology_prime** Primary topology CSV input file. Specifies the primary CSV input file and must be present.
- **-s topology_second** Secondary topology CSV input file. Specifies a secondary CSV input file. Appended to the primary for processing.
- **-T topology_out** Topology CSV output file. Specifies the CSV output file name and must be specified.
- **-v level** Verbose level. Range = 0 - 8, default = 2.
  
  0  No output.
  
  1  Progress output.
  
  2  Reserved.
  
  4  Time stamps.
Reserved.

-i level  
Screen output indent level. Range = 0 - 15, default = 0.

-c char  
Concatenation character, used for Cable Label values. A space is used by default, but another character, such as underscore, can be specified.

-K  
Does not clean temporary files. Prevents temporary files from being removed. Temporary files contain CSV data used during processing. Temporary files are not needed after the standard-format CSV file is created, but they can be retained for subsequent inspection or processing.

-?  
Prints this output.

Description

Each link contains source, destination, and cable fields with one link per row of the spreadsheet. Link fields must not contain commas. Source and Destination fields are each a concatenation of name and port information in the following forms. Names not of the form ib or C are assumed to be host names.

<table>
<thead>
<tr>
<th>Node Type</th>
<th>Source/Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>host(N) where N is a host number.</td>
</tr>
<tr>
<td>Edge Switch</td>
<td>ib(Np)N where N is a switch/port number.</td>
</tr>
<tr>
<td>Core Leaf</td>
<td>Cn(Lnnp)n where N/n is a host/switch/port number.</td>
</tr>
</tbody>
</table>

Cable values, CableLength, and CableDetails are optional and have no special syntax. If present, they are placed in the standard-format CSV file exactly as they appear. CableLabel is created automatically by opaxlattopology_cust as the concatenation of Source and Destination (see -c option).

Rack Group and Rack are not supported in topology_cust.xlsx. Therefore, opaxlattopology_cust leaves these fields empty in the standard-format CSV file.

3.1.14 opa-arptbl-tuneup

Syntax

opa-arptbl-tuneup [start | stop | restart | force-reload | status]

Options

start
stop
restart
force-reload
status

3.1.15 opainfo

Syntax

```
opainfo [-h hfi] [-p port] [-o type] [-g] [-d detail] [-v [-v]...]
```

- **-h hfi**  
  HFI, numbered 1..n. Using 0 specifies that the `-p port` port is a system-wide port number. Default is 0.

- **-p port**  
  Port, numbered 1..n. If `-h hfi` is 0, then `port` is a system-wide port number. Default is 1.

- **-o type**  
  Specifies output type. Can be used more than once. Default is brief summary of portinfo, counters, and cableinfo. Options include:

  - **info**  
    Outputs detailed portinfo.

  - **stats**  
    Outputs detailed port counters.

- **-g**  
  Output is displayed in line-by-line format. Default = summary format.

- **-d detail**  
  Output detail level. Range = 0 - n. CableInfo only. Default = 0.

**-h and -p options permit a variety of selections:**

- **-h 0**  
  All ports on all HFIs (default).

- **-h 0 -p 0**  
  First active port in system.

- **-h x**  
  All active ports on HFI x.

- **-h x -p 0**  
  First active port on HFI x.

- **-h 0 -p y**  
  Port y within system (no matter which ports are active).

- **-h x -p y**  
  HFI x, port y
Debug Options

-v  Verbose output. Additional invocations (-v -v ...) turn on debugging, openib debugging, and libibumad debugging.

3.1.16 opa-init-kernel

This script initializes the OPA extensions to the RDMA stack. It is typically run by the system at boot time and is not intended to be run by hand.

Syntax

opa-init-kernel [--help]

3.1.17 opapacketcapture

Syntax


Options

-h  Produces full help text.

-o outfile  Output file for captured packets. Default is packetDump.pcap

-d devfile  Device file for capturing packets. Default is /dev/hfi1_diagpkt0

-f filterfile  File used for filtering. If absent, no filtering is done.

-t triggerfile  File used for triggering a stop capture. If absent, normal triggering is performed.

-l triggerlag  Number of packets to collect after trigger condition is met, before dumping data and exiting. Default = 10.

-a alarm  Number of seconds for alarm trigger to dump capture and exit.

-p packets  Number of packets for alarm trigger to dump capture and exit.

-s maxblocks  Number of blocks to allocate for ring buffer. Value is in Millions. Default = 2 which corresponds to 128 MiB because 1 block = 64 Bytes.

-v  Produces verbose output.

-D  Increases debugging level. Use Debug Level 1+ to show level settings.
# Basic Setup and Administration Tools

The tools described in this section are available on a node that has Intel® Omni-Path Fabric Suite installed.

## 3.2.1 opafastfabric

(Switch and Host) Starts the top-level Intel® Omni-Path Fabric Suite FastFabric Text User Interface (TUI) menu to enable setup and configuration. Refer to Intel® Omni-Path Fabric Suite FastFabric User Guide for additional details.

### Syntax

```
opafastfabric
```

### Options

None.

### Example

```
#opafastfabric
Intel FastFabric OPA Tools
Version: X.X.X.X.X
1) Chassis Setup/Admin
2) Externally Managed Switch Setup/Admin
3) Host Setup
4) Host Verification/Admin
5) Fabric Monitoring
X) Exit
```

## 3.2.2 opaconfig

(Switch and Host) Configures the Intel® Omni-Path Fabric Suite FastFabric.

### Syntax

```
[--user_queries|--no_user_queries] [--answer keyword=value]
```

or

```
opaconfig -C
```

or

```
opaconfig -V
```

### Options

No option Starts the Intel® OPA Software TUI.
--help

Produces full help text.

-r root

Specifies alternate root directory; default is /. 

-v

Verbose logging.

-vv

Very verbose debug logging.

-u

Uninstalls all ULPs and drivers with default options.

-s

Enables autostart for all installed drivers.

-e comp

Uninstalls the given component with default options. This option can appear more than once on the command line.

-E comp

Enables autostart of a given component. This option can appear with -D or more than once on the command line.

-D comp

Disables autostart of given component. This option can appear with -E or more than once on the command line.

-C

Outputs list of supported components.

 Supported components include:
  opa_stack ibacm
  mpi_selector intel_hfi oftools opa_stack_dev
  fastfa bric delta_ipoib opafm mvapich2
  openmpi gasnet openshmem mvapich2 gcc_hfi
  mvapic h2_pgi_hfi mvapich2_intel_hfi
  openmpi_gcc_hfi openmpi_pgi_hfi
  openmpi_intel_hfi delta_mpisrc delta_debug

 Supported component name aliases include:
  opa ipoib
  mpi mpisrc opadev

-V

Outputs version.

--user_queries

Permits non-root users to query the fabric (default).

--no_user_queries

Prohibits non-root users from querying the fabric.

--answer

Provides an answer to a question that may occur during the operation. Answers to questions not asked are ignored. Invalid answers result in prompting for interactive installs, or using default options for non-interactive installs. Default options retain existing configuration files.

Possible questions (keyword=value):

UserQueries  Allow non-root users to access the UMAD interface?
Note: Allowing access to UMAD device files may present a security risk. However, this allows tools such as opasaquery and opaportinfo to be used by non-root users.

Example

```bash
$ opaconfig
Intel OPA x.x.x.x Software

 1) Show Installed Software
 2) Reconfigure OFED IP over IB
 3) Reconfigure Driver Autostart
 4) Generate Supporting Information for Problem Report
 5) FastFabric (Host/Chassis/Switch Setup/Admin)
 6) Uninstall Software

X) Exit
```

### 3.2.3 opapingall

**All** Pings a group of hosts or chassis to verify that they are powered on and accessible through TCP/IP ping.

**Syntax**

```bash
opapingall [-C -p] [-f hostfile] [-F chassisfile] [-h 'hosts'] [-H 'chassis']
```

**Options**

- **-C**
  - Performs a ping against a chassis. The default is hosts.
- **-p**
  - Pings all hosts/chassis in parallel.
- **-f hostfile**
  - File with hosts in cluster, default is `/etc/sysconfig/opa/hosts`.
- **-F chassisfile**
  - File with chassis in cluster, default is `/etc/sysconfig/opa/chassis`.
- **-h hosts**
  - List of hosts to ping.
- **-H chassis**
  - List of chassis to ping.
**Example**

```
opapingall
opapingall -h 'arwen elrond'
HOSTS='arwen elrond' opapingall
opapingall -C
```

**Note:**
This command pings all hosts/chassis found in the specified host/chassis file. The use of the `-C` option merely selects the default file and/or environment variable to use. For this command, it is valid to use a file that lists both hosts and chassis.

```
opapingall -C -H 'chassis1 chassis2'
CHASSIS='chassis1 chassis2' opapingall -C
```

**Environment Variables**

- **HOSTS**: List of hosts, used if `-h` option not supplied.
- **CHASSIS**: List of chassis, used if `-H` option not supplied.
- **HOSTS_FILE**: File containing list of hosts, used in absence of `-f` and `-h`.
- **CHASSIS_FILE**: File containing list of chassis, used in absence of `-F` and `-H`.
- **FF_MAX_PARALLEL**: When `-p` option is used, maximum concurrent operations are performed.

### 3.2.4 opasetupssh

*(Linux or Switch)* Creates SSH keys and configures them on all hosts or chassis so the system can use SSH and SCP into all other hosts or chassis without a password prompt. Typically, during cluster setup this tool enables the root user on the Management Node to log into the other hosts (as root) or chassis (as admin) using password-less SSH.

**Syntax**

```
opasetupssh [-C|p|U] [-f hostfile] [-F chassisfile]
[-h 'hosts'] [-H 'chassis'] [-i ipoib_suffix]
[-u user] [-S] [-R|P]
```

**Options**

- **--help**: Produces full help text.
- **-C**: Performs operation against chassis. Default is hosts.
-p Performs operation against all chassis or hosts in parallel.

-U Performs connect only (to enter in local hosts, known hosts). When run in this mode, the -S option is ignored.

-f hostfile File with hosts in cluster. Default is /etc/sysconfig/opa/hosts file.

-F chassisfile File with chassis in cluster. Default is /etc/sysconfig/opa/chassis file.

-h hosts List of hosts to set up.

-H chassis List of chassis to set up.

-i ipoib_suffix Suffix to apply to host names to create IPoIB host names. Default is -ib.

-u user User on remote system to allow this user to SSH to. Default is current user code for host(s) and admin for chassis.

-S Securely prompts for password for user on remote system.

-R Skips setup of SSH to local host.

-P Skips ping of host (for SSH to devices on Internet with ping firewalled).

**Operations on Hosts**

```
opasetupssh -S -i''
opasetupssh -U
opasetupssh -h 'arwen elrond' -U
HOSTS='arwen elrond' opasetupssh -U
```

**Operations on Chassis**

```
opasetupssh -C
opasetupssh -C -H 'chassis1 chassis2'
CHASSIS='chassis1 chassis2' opasetupssh -C
```

**Environment Variables**

The following environment variables are also used by this command:

- **HOSTS_FILE** File containing list of hosts, used in absence of -f and -h. See discussion on Selection of Hosts.

- **CHASSIS_FILE** File containing list of chassis, used in absence of -F and -H. See discussion on Selection of Chassis.
HOSTS
List of hosts, used if `-h` option not supplied. See discussion on Selection of Hosts.

CHASSIS
List of chassis, used if `-C` is used and `-H` and `-F` options not supplied. See discussion on Selection of Chassis.

FF_MAX_PARALLEL
When `-p` option is used, maximum concurrent operations.

FF_IPOIB_SUFFIX
Suffix to append to hostname to create IPoIB hostname. Used in absence of `-i`.

FF_CHASSIS_LOGIN_METHOD
How to log into chassis. Can be Telnet or SSH.

FF_CHASSIS_ADMIN_PASSWORD
Password for admin on all chassis. Used in absence of `-S` option.

Description

`opasetupssh` provides an easy way to create SSH keys and distribute them to the hosts or chassis in the cluster. Many of the FastFabric tools (as well as many versions of MPI) require that SSH is set up for password-less operation. Therefore, `opasetupssh` is an important setup step.

This tool also sets up SSH to the local host and the local host's IPoIB name. This capability is required by selected FastFabric Toolset commands and may be used by some applications (such as MPI).

`opasetupssh` has two modes of operation. The mode is selected by the presence or absence of the `-U` option. Typically, `opasetupssh` is first run without the `-U` option, then it may later be run with the `-U` option.

Host Initial Key Exchange
When run without the `-U` option, `opasetupssh` performs the initial key exchange and enables password-less SSH and SCP. The preferred way to use `opasetupssh` for initial key exchange is with the `-S` option. This requires that all hosts are configured with the same password for the specified "user" (typically root). In this mode, the password is prompted for once and then SSH and SCP are used in conjunction with that password to complete the setup for the hosts. This mode also avoids the need to set up `rsh/rcp/rlogin` (which can be a security risk).

`opasetupssh` configures password-less SSH/SCP for both the management network and IPoIB. Typically, the management network is used for FastFabric Toolset operations while IPoIB is used for MPI and other applications.
During initial cluster installation, where the Intel® Omni-Path Fabric software is not yet installed on all the hosts, IPoIB is not yet running. In this situation, use the -i option with an empty string as follows:

```
opasetupssh -i ''
```

This causes the last part of the setup of SSH for IPoIB to be skipped.

**Refreshing Local Systems Known Hosts**

If aspects of the host have changed, such as IP addresses, MAC addresses, software installation, or server OS reinstallation, you can refresh the local host's SSH known_hosts file by running opasetupssh with the -U option. This option does not transfer the keys, but instead connects to each host (management network and IPoIB) to refresh the SSH keys. Existing entries for the specified hosts are replaced within the local known_hosts file. When run in this mode, the -S option is ignored. This mode assumes SSH has previously been set up for the hosts, as such no files are transferred to the specified hosts and no passwords should be required.

Typically after completing the installation and booting of Intel® Omni-Path Fabric software, opasetupssh must be rerun with the -U option to update the known_hosts file.

**Chassis Initial Key Exchange**

When run without the -U option, opasetupssh performs the initial key exchange and enables password-less SSH and SCP. For chassis, the key exchange uses SCP and the chassis CLI. During this command you log into the chassis using the configured mechanism for chassis login.

The preferred way to use opasetupssh for initial key exchange is with the -S option. This requires that all chassis are configured with the same password for admin. In this mode, you are prompted for the password once and then the FF_CHASSIS_LOGIN_METHOD and SCP are used in conjunction with that password to complete the setup for the chassis. This method also avoids the need to setup the chassis password in /etc/sysconfig/opa/opafastfabric.conf (which can be a security risk).

For chassis, the -i option is ignored.

**Chassis Refreshing Local Systems Known Hosts**

If aspects of the chassis have changed, such as IP addresses or MAC addresses, you can refresh the local host's SSH known_hosts file by running opasetupssh with the -U option. This option does not transfer the keys, but instead connects to each chassis to refresh the SSH keys. Existing entries for the specified chassis are replaced within the local known_hosts file. When run in this mode, the -S option is ignored. This mode assumes SSH has previously been set up for the chassis, because no files are transferred to the specified hosts and no passwords are required.

**3.2.5 opacmdall**

**(Linux and Switch)** Executes a command on all hosts or Intel® Omni-Path Chassis. This powerful command can be used for configuring servers or chassis, verifying that they are running, starting and stopping host processes, and other tasks.
**Note:** `opacmdall` depends on the Linux® convention that utilities return 0 for success and >0 for failure. If `opacmdall` is used to execute a non-standard utility like `diff` or a program that uses custom exit codes, then `opacmdall` may erroneously report "Command execution FAILED" when it encounters a non-zero exit code. However, command output is still returned normally and the error may be safely ignored.

**Syntax**

```
opacmdall [-Cpq] [-f hostfile] [-F chassisfile]
[-h hosts] [-H chassis] [-u user] [-S]
[-m marker] [-T timelimit] [-P] cmd
```

or

```
opacmdall --help
```

**Options**

- **--help**
  Produces full help text.

- **-C**
  Performs command against chassis. Default is hosts.

- **-p**
  Runs command in parallel on all hosts/chassis.

- **-q**
  Quiet mode, do not show command to execute.

- **-f hostfile**
  File with hosts in cluster. Default is `/etc/sysconfig/opa/hosts` file.

- **-F chassisfile**
  File with chassis in cluster. Default is `/etc/sysconfig/opa/chassis` file.

- **-h host**
  List of hosts to execute command on.

- **-H chassis**
  List of chassis to execute command on.

- **-u user**
  The user to perform the command as:
  - For hosts, the default is current user code.
  - For chassis, the default is `admin`.

- **-S**
  Securely prompts for password for user on chassis.

- **-m marker**
  Marker for end of chassis command output. If omitted, defaults to chassis command prompt. This may be a regular expression.

- **-T timelimit**
  Time limit in seconds when running host commands. Default is -1 (infinite).

- **-P**
  Outputs the hostname/chassis name as prefix to each output line. This can make script processing of output easier.
### Operations on Host

- `opacmdall date`
- `opacmdall 'uname -a'`
- `opacmdall -h 'elrond arwen' date`
- `HOSTS='elrond arwen' opacmdall date`

### Operations on Chassis

- `opacmdall -C 'ismPortStats -noprompt'`
- `opacmdall -C -H 'chassis1 chassis2' ismPortStats -noprompt'`
- `CHASSIS='chassis1 chassis2' opacmdall ismPortStats -noprompt'`

### Environment Variables

The following environment variables are also used by this command:

- **HOSTS**
  - List of hosts, used if `-h` option not supplied. See discussion on Selection of Devices on page 14.

- **CHASSIS**
  - List of chassis, used if `-C` is used and `-H` and `-F` options not supplied. See discussion on Selection of Devices on page 14.

- **HOSTS_FILE**
  - File containing list of hosts, used in absence of `-f` and `-h`. See discussion on Selection of Devices on page 14.

- **CHASSIS_FILE**
  - File containing list of chassis, used in absence of `-F` and `-H`. See discussion on Selection of Devices on page 14.

- **FF_MAX_PARALLEL**
  - When `-p` option is used, maximum concurrent operations are performed.

- **FF_SERIALIZE_OUTPUT**
  - Serialize output of parallel operations (yes or no).

- **FF_CHASSIS_LOGIN_METHOD**
  - How to log into chassis. Can be Telnet or SSH.

- **FF_CHASSIS_ADMIN_PASSWORD**
  - Password for admin on all chassis. Used in absence of `-S` option.

### Notes

All commands performed with `opacmdall` must be non-interactive in nature. `opacmdall` waits for the command to complete before proceeding. For example, when running host commands such as `rm`, the `-i` option (interactively prompt before removal) should not be used. (Note that this option is sometimes part of a standard bash alias list.) Similarly, when running chassis commands such as `fwUpdateChassis`, the `-reboot` option should not be used because this option causes an immediate reboot and therefore the command never returns. Also, the chassis command `reboot` should not be executed using `opacmdall`. Instead, use the `opachassisadmin reboot` command to reboot one or more chassis. For further
information about individual chassis CLI commands, consult the *Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide*. For further information about Linux operating system commands, consult Linux man pages.

When performing `opacmdall` against hosts, internally SSH is used. The command `opacmdall` requires that password-less SSH be set up between the host running the Intel® Omni-Path Fabric Suite FastFabric Toolset and the hosts `opacmdall` is operating against. The `opasetupssh` FastFabric tool can aid in setting up password-less SSH.

When performing `opacmdall` against a set of chassis, all chassis must be configured with the same admin password. Alternatively, the `opasetupssh` FastFabric tool can be used to set up password-less SSH to the chassis.

When performing operations against chassis, Intel recommends that you set up SSH keys (see `opasetupssh`). If SSH keys are not set up, Intel recommends that you use the `−S` option, to avoid keeping the password in configuration files.

### 3.2.6 opacaptureall

**(Chassis and Host)** Captures supporting information for a problem report from all hosts or Intel® Omni-Path Chassis and uploads to this system.

- **For Hosts**
  
  When a host `opacaptureall` is performed, `opacapture` is run to create the specified capture file within `~root` on each host (with the `.tgz` suffix added as needed). The files are uploaded and unpacked into a matching directory name within `upload_dir/hostname/` on the local system. The default file name is `hostcapture`.

- **For Chassis**
  
  When a chassis `opacaptureall` is performed, `opacapture` is run on each chassis and its output is saved to `upload_dir/chassisname/file` on the local system. The default file name is `chassiscapture`.

For both host and chassis capture, the uploaded captures are combined into a `.tgz` file with the file name specified and the suffix `.all.tgz` added.

**Syntax**

```
[-H 'chassis'] [-t portsfile] [-d upload_dir] [-S] [-D detail_level] [file]
```

or

```
opacaptureall --help
```

**Options**

- `--help` Produces full help text.
- `-C` Performs capture against chassis. Default is `hosts`.
-p Performs capture upload in parallel on all host/chassis. For a host capture, this only affects the upload phase.

-f hostfile File with hosts in cluster. Default is /etc/sysconfig/opa/hosts file.

-F chassisfile File containing a list of chassis in the cluster. Default is /etc/sysconfig/opa/chassis file.

-h hosts List of hosts on which to perform a capture.

-H chassis List of chassis on which to perform a capture.

-t portsfile File with list of local HFI ports used to access fabric(s) for switch access, default is /etc/sysconfig/opa/ports file.

-d upload_dir Directory to upload to, default is uploads. If not specified, the environment variable UPLOADS_DIR is used. If that is not exported, the default (.uploads) is used.

-S Securely prompts for password for administrator on a chassis.

-D detail_level Level of detail of the capture passed to host opacapture. (Only used for host captures; ignored for chassis captures.)

1 Local. Obtains local information from each host.

2 Fabric. In addition to Local, also obtains basic fabric information by queries to the SM and fabric error analysis using opareport.

3 Fabric+FDB. In addition to Fabric, also obtains the Forwarding Database (FDB), which includes the switch forwarding tables from the SM.

4 Analysis. In addition to Fabric+FDB, also obtainsopaallanalysis results. If opaallanalysis has not yet been run, it is run as part of the capture.

Note: Detail levels 2-4 can be used when fabric operational problems occur. If the problem is node-specific, detail level 1 should be sufficient. Detail levels 2-4 require an operational Intel® Omni-Path Fabric Suite Fabric Manager. Typically your support representative requests a given detail level. If a given detail level takes excessively long or fails to be gathered, try a lower detail level.

For detail levels 2-4, the additional information is only gathered on the node running the opacaptureall command. The information is gathered for every fabric specified in the /etc/sysconfig/opa/ports file.
file  Name for capture file. The suffix .tgz is appended if it is not specified in the name.

Examples

Host Capture Examples

opacaptureall

Creates a hostcapture directory in upload_dir/hostname/ for each host in /etc/sysconfig/opa/hosts file, then creates hostcapture.all.tgz.

opacaptureall mycapture

Creates a mycapture directory in upload_dir/hostname/ for each host in /etc/sysconfig/opa/hosts file, then creates mycapture.all.tgz.

opacaptureall -h 'arwen elrond' 030127capture

Gets the list of hosts from arwen elrond file and creates 030127capture.tgz file.

Chassis Capture Examples

opacaptureall -C

Creates a chassiscapture file in upload_dir/chassisname/ for each chassis in /etc/sysconfig/opa/chassis file, then creates chassiscapture.all.tgz.

opacaptureall -C mycapture

Creates a mycapture.tgz file in upload_dir/chassisname/ for each chassis in /etc/sysconfig/opa/chassis file, then creates mycapture.all.tgz.

opacaptureall -C -H 'chassis1 chassis2' 030127capture

Captures from chassis1 and chassis2, and creates 030127capture.tgz file.

Environment Variables

The following environment variables are also used by this command:

HOSTS  List of hosts, used if -h option not supplied. See discussion on Selection of Devices on page 14.

CHASSIS  List of chassis, used if -C is used and -h option is not supplied. See discussion on Selection of Devices on page 14.
HOSTS_FILE
File containing a list of hosts, used in the absence of \(-f\) and \(-h\). See discussion on Selection of Devices on page 14.

CHASSIS_FILE
File containing a list of chassis, used in the absence of \(-F\) and \(-H\). See discussion on Selection of Devices on page 14.

UPLOADS_DIR
Directory to upload to, used in the absence of \(-d\).

FF_MAX_PARALLEL
When \(-p\) option is used, maximum concurrent operations are performed.

FF_CHASSIS_LOGIN_METHOD
How to log into chassis. Can be Telnet or SSH.

FF_CHASSIS_ADMIN_PASSWORD
Password for administrator on all chassis. Used in absence of \(-S\) option.

More Information

When performing opacaptureall against hosts, internally SSH is used. The command opacaptureall requires that password-less SSH be set up between the host running Intel® Omni-Path Fabric Suite FastFabric Toolset and the hosts opacaptureall is operating against. The opasetupssh command can aid in setting up password-less SSH.

When performing operations against chassis, set up of SSH keys is recommended (see opasetupssh on page 47). If SSH keys are not set up, all chassis must be configured with the same admin password and use of the \(-S\) option is recommended. The \(-S\) option avoids the need to keep the password in configuration files.

Note:
The resulting host capture files can require significant amounts of space on the Intel® Omni-Path Fabric Suite FastFabric Toolset host. Actual size varies, but sizes can be multiple megabytes per host. Intel recommends that you ensure adequate space is available on the Intel® Omni-Path Fabric Suite Fast Fabric Toolset system. In many cases, it may not be necessary to run opacaptureall against all hosts or chassis; instead, a representative subset may be sufficient. Consult with your support representative for further information.

3.3 File Management Tools

The tools described in this section aid in copying files to and from large groups of nodes in the fabric. Internally, these tools make use of SCP.

The tools require that password-less SSH/SCP is set up between the host running the FastFabric Toolset and the hosts that are being transferred to and from. Use opasetupssh to set up password-less SSH/SCP.
3.3.1 opascpall

(Linux) Copies files or directories from the current system to multiple hosts in the fabric. When copying large directory trees, use the \(-t\) option to improve performance. This option tars and compresses the tree, transfers the resulting compressed tarball to each node, and untars it on each node.

Use this tool for copying data files, operating system files, or applications to all the hosts (or a subset of hosts) within the fabric.

**Note:** This tool can only copy from this system to a group of systems in the cluster. To copy from hosts in the cluster to this host, use opauploadall.

*user@* style syntax cannot be used when specifying filenames.

**Syntax**

```plaintext
opascpall [-p] [-r] [-f hostfile] [-h 'hosts'] [-u user] source_file ... dest_file
opascpall -t [-p] [-f hostfile] [-h 'hosts'] [-u user] [source_dir [dest_dir]]
```

or

```plaintext
opascpall --help
```

**Options**

- **--help** Produces full help text.
- **-p** Performs copy in parallel on all hosts.
- **-r** Performs recursive copy of directories.
- **-t** Performs optimized recursive copy of directories using tar. \(dest\_dir\) is optional. If \(dest\_dir\) is not specified, it defaults to the current directory name. If both \(source\_dir\) and \(dest\_dir\) are omitted, they both default to the current directory name.
- **-h hosts** List of hosts to copy to.
- **-f hostfile** File with hosts in cluster. Default is \(/etc/sysconfig/opa/hostsfile\).
- **-u user** User to perform copy to. Default is current user code.
- **source_file** Name of files to copy from this system, relative to the current directory. Multiple files may be listed.
- **source_dir** Name of directory to copy from this system, relative to the current directory.
**dest_file** or **dest_dir**

Name of the file or directory on the destination system to copy to, relative to the home directory of the specified user. An absolute path name may be specified.

**Example**

```
copy a single file
opascpall MPI-PMB /root/MPI-PMB
efficiently copy an entire directory tree
opascpall -t -p /opt/opa/src/mpi_apps /opt/opa/src/mpi_apps
copy a group of files
opascpall a b c /root/tools/
copy to an explicitly specified set of hosts
opascpall -h 'arwen elrond' a b c /root/tools
HOSTS='arwen elrond' opascpall a b c /root/tools
```

**Environment Variables**

The following environment variables are also used by this command:

- **HOSTS**
  
  List of hosts; used if `-h` option not supplied. See discussion on Selection of Devices on page 14.

- **HOSTS_FILE**
  
  File containing list of hosts; used in absence of `-f` and `-h`. See discussion on Selection of Devices on page 14.

- **FF_MAX_PARALLEL**
  
  When the `-p` option is used, maximum concurrent operations are performed.

### 3.3.2 opauploadall

*(Linux)* Copies one or more files from a group of hosts to this system. Since the file name is the same on each host, a separate directory on this system is created for each host and the file is copied to it. This is a convenient way to upload log files or configuration files for review. This tool can also be used in conjunction with opadownloadall to upload a host specific configuration file, edit it for each host, and download the new version to all the hosts.

**Note:**

To copy files from this host to hosts in the cluster, use opascpall or opadownloadall.

**user@** style syntax cannot be used when specifying filenames.

**Syntax**

```
opascpall [-rp] [-f hostfile] [-d upload_dir]
[-h 'hosts'] [-u user] source_file ...
dest_file
```

or

```
opascpall --help
```
Options

--help
Produces full help text.

-p
Performs copy in parallel on all hosts.

-r
Performs recursive upload of directories.

-f hostfile
File with hosts in cluster. Default is /etc/sysconfig/opa/hosts file.

-h hosts
List of hosts to upload from.

-u user
User to perform copy to. Default is current user code.

-d upload_dir
Directory to upload to. Default is uploads. If not specified, the environment variable UPLOADS_DIR is used. If that is not exported, the default, /uploads, is used.

source_file
Name of files to copy to this system, relative to the current directory. Multiple files may be listed.

dest_file
Name of the file or directory on this system to copy to. It is relative to upload_dir/HOSTNAME.

A local directory within upload_dir/ is created for each host. Each uploaded file is copied to upload_dir/HOSTNAME/ dest_file within the local system. If more than one source file is specified, dest_file is treated as a directory name.

Example

```
upload two files from 2 hosts
opauploadall -h 'arwen elrond' capture.tgz /etc/init.d/ipoib.cfg .
upload two files from all hosts
opauploadall -p capture.tgz /etc/init.d/ipoib.cfg .
upload network config files from all hosts
opauploadall capture.tgz /etc/init.d/ipoib.cfg pre-install
```

Environment Variables

The following environment variables are also used by this command:

HOSTS
List of hosts; used if -h option not supplied. See discussion on Selection of Devices on page 14.

HOSTS_FILE
File containing list of hosts; used in absence of -f and -h. See discussion on Selection of Devices on page 14.

UPLOADS_DIR
Directory to upload to, used in absence of -d.
FF_MAX_PARALLEL When the \(-p\) option is used, maximum concurrent operations are performed.

### 3.3.3 opadownloadall

**(Linux)** Copies one or more files to a group of hosts from a system. Since the file contents to copy may be different for each host, a separate directory on this system is used for the source files for each host. This can also be used in conjunction with opauploadall to upload a host-specific configuration file, edit it for each host, and download the new version to all the hosts.

**Note:** The tool opadownloadall can only copy from this system to a group of hosts in the cluster. To copy files from hosts in the cluster to this host, use opauploadall.

#### Syntax

```
opadownloadall [-rp] [-f hostfile] [-d download_dir]
[-h 'HOSTS'] [-u user] source_file ... dest_file
```

or

```
opadownloadall --help
```

#### Options

- **--help** Produces full help text.
- **-p** Performs copy in parallel on all hosts.
- **-r** Performs recursive download of directories.
- **-f hostfile** File with hosts in cluster. The default is `/etc/sysconfig/opa/hosts`.
- **-d download_dir** Directory to download files from. The default is `downloads`. If not specified, the environment variable `DOWNLOADS_DIR` is used. If that is not exported, the default is used.
- **-h HOSTS** List of hosts to download files to.
- **-u user** User to perform the copy. The default is the current user code.

**Note:** The `user@` style syntax cannot be used in the arguments to opadownloadall.
source_file

The name of files to copy from the system. Multiple files may be listed. The option source_file is relative to download_dir/hostname. A local directory within download_dir/hostname must exist for each host being downloaded to. Each downloaded file is copied from download_dir/hostname/source_file.

dest_file

The name of the file or directory on the destination hosts to copy to.

If more than one source file is specified, dest_file is treated as a directory name. The given directory must already exist on the destination host. The copy fails for hosts where the directory does not exist.

Example

```
opadownloadall -h 'arwen elrond' irqbalance vncservers /etc/sysconfig
Copies two files to 2 hosts
opadownloadall -p irqbalance vncservers /etc/sysconfig
Copies two files to all hosts
```

Environment Variables

The following environment variables are also used by this command:

```
HOSTS
List of hosts; used if -h option not supplied. See discussion on Selection of Devices on page 14.

HOSTS_FILE
File containing list of hosts; used in absence of -f and -h. See discussion on Selection of Devices on page 14.

FF_MAX_PARALLEL
When the -p option is used, maximum concurrent operations are performed.

DOWNLOADS_DIR
Directory to download from, used in absence of -d.
```

3.3.4 Simplified Editing of Node-Specific Files

( Linux )

The combination of opauploadall and opadownloadall provide a powerful yet simple to use mechanism for reviewing or editing node-specific files without the need to log in to each node.

For example, assume the file /etc/sysconfig/network-scripts/ifcfg-ib1 needs to be reviewed and edited for each host. This file typically contains the IP configuration information for IPoIB and may contain a unique IP address per host. Perform the following steps:

1. To upload the file from all the hosts, use the command: uploadall /etc/sysconfig/network-scripts/ifcfg-ib1 ifcfg-ib1
2. Edit the uploaded files with an editor, such as vi with the command: vi uploads/*/ifcfg-ib1
3. If the file was changed for some or all of the hosts, it can then be downloaded to all the hosts with the command:

```
opadownloadall -d uploads ifcfg-ib1 /etc/sysconfig/network-scripts/ifcfg-ib1
```

Alternatively, you can download the file to a subset of hosts using the `-h` option or by creating an alternate host list file:

```
opadownloadall -d uploads -h 'host1 host32' ifcfg-ib1 /etc/sysconfig/network-scripts/ifcfg-ib1
```

**Note:** When downloading to a subset of hosts, make sure that only the hosts uploaded from are specified.

### 3.3.5 Simplified Setup of Node-Generic Files

*(Linux)* *opascpall* can provide a powerful yet simple to use mechanism for transferring generic files to all nodes.

For example, assume all nodes in the cluster use the same DNS server and TCP/IP name resolution. Perform the following steps:

1. Create an appropriate local file with the desired information. For example: `vi resolv.conf`
2. Copy the file to all hosts with the command: `opascpall resolv.conf /etc/resolv.conf`

### 3.4 Fabric Analysis Tools

The tools in this section provide analysis of the fabric.

#### 3.4.1 opafabricinfo

Provides a brief summary of the components in the fabric, using the first active port on the given local host to perform its analysis. *opafabricinfo* is supplied in both:

- **Intel® Omni-Path Fabric Suite FastFabric Toolset**
  - In this situation, the command can manage more than one fabric (subnet).
- **FastFabric Tools**
  - In this situation, the command performs analysis against the first active port on the system only. It takes no options and uses no environment variables.

*opafabricinfo* can be very useful as a quick assessment of the fabric state. It can be run against a known good fabric to identify its components and then later run to see if anything has changed about the fabric configuration or state.

For more extensive fabric analysis, use *opareport* on page 66 and *opareports* on page 74. Also see *opatop* in the *Intel® Omni-Path Fabric Suite FastFabric User Guide*.

**Syntax**

```
opafabricinfo [-t portsfile] [-p ports]
```
Options

--help  Produces full help text.

-t portsfile  File with list of local HFI ports used to access fabric(s) for analysis. Default is /etc/sysconfig/opa/ports file.

-p ports  List of local HFI ports used to access fabric(s) for analysis. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0  First active port in system.
0:y  Port y within system.

x:0  First active port on HFI x.

x:y  HFI x, port y.

Environment Variables

The following environment variables are also used by this command:

PORTS  List of ports, used in absence of -t and -p.

PORTS_FILE  File containing list of ports, used in absence of -t and -p.

For simple fabrics, the Intel® Omni-Path Fabric Suite FastFabric Toolset host is connected to a single fabric. By default, the first active port on the FastFabric Toolset host is used to analyze the fabric. However, in more complex fabrics, the FastFabric Toolset host may be connected to more than one fabric or subnet. In this case, you can specify the ports or HIFs to use with one of the following methods:

- On the command line using the -p option.
- In a file specified using the -t option.
- Through the environment variables PORTS or PORTS_FILE.
- Using the ports_file configuration option in opafastfabric.conf.

If the specified port does not exist or is empty, the first active port on the local system is used. In more complex configurations, you must specify the exact ports to use for all fabrics to be analyzed.

For more information, refer to Selection of Devices on page 14.
Example

```
opafabricinfo
opafabricinfo -p '1:1 2:1'
```

Output example

```
opafabricinfo
Fabric 0:0 Information:
SM: hds1fnb6241 hfii_0 Guid: 0x0011750101575ffe State: Master
Number of HFI: 8
Number of Switches: 1
Number of Links: 8
Number of HFI Links: 8 (Internal: 0 External: 8)
Number of ISLs: 0 (Internal: 0 External: 0)
Number of Degraded Links: 0 (HFI Links: 0 ISLs: 0)
Number of Omitted Links: 0 (HFI Links: 0 ISLs: 0)
```

3.4.2 opashowallports

(Switch and Host) Displays basic port state and statistics for all host nodes, chassis, or externally-managed switches.

Note: opareport and opareports are more powerful Intel® Omni-Path Fabric Suite FastFabric commands. For general fabric analysis, use opareport or opareports with options such as -o errors and -o slowlinks to perform an efficient analysis of link speeds and errors.

Syntax

```
opashowallports [-C] [-f hostfile] [-F chassisfile] [-h 'hosts'] [-H 'chassis'] [-S]
or

opashowallports --help
```

Options

- `--help` Produces full help text.
- `-C` Performs operation against chassis. Default = host.
- `-f hostfile` File with list of hosts in cluster. Default is /etc/sysconfig/opa/hosts file.
- `-F chassisfile` File with list of chassis in cluster. Default is /etc/sysconfig/opa/chassis file.
- `-h hosts` List of hosts for which to show ports.
- `-H chassis` List of chassis for which to show ports.
-S Securely prompts for password for admin on chassis.

Environment Variables

The following environment variables are also used by this command:

HOSTS List of hosts, used if -h option not supplied. See discussion on Selection of Hosts.

CHASSIS List of chassis, used if -C is used and -H and -F options not supplied. See discussion on Selection of Chassis.

HOSTS_FILE File containing list of hosts, used in absence of -f and -h. See discussion on Selection of Hosts.

CHASSIS_FILE File containing list of chassis, used in absence of -F and -H. See discussion on Selection of Chassis.

FF_CHASSIS_LOGIN_METHOD How to log into chassis. Can be Telnet or SSH.

FF_CHASSIS_ADMIN_PASSWORD Password for admin on all chassis. Used in absence of -S option.

Example

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opashowallports</td>
</tr>
<tr>
<td>opashowallports -h 'elrond arwen'</td>
</tr>
<tr>
<td>HOSTS='elrond arwen' opashowallports</td>
</tr>
<tr>
<td>opashowallports -C</td>
</tr>
<tr>
<td>opashowallports -H 'chassis1 chassis2'</td>
</tr>
<tr>
<td>CHASSIS='chassis1 chassis2' opashowallports</td>
</tr>
</tbody>
</table>

Notes

When performing opashowallports against hosts, internally SSH is used. The command opashowallports requires that password-less SSH be set up between the host running the Intel® Omni-Path Fabric Suite FastFabric Toolset and the hosts opashowallports is operating against. The opasetupssh FastFabric tool can aid in setting up password-less SSH.

When performing operations against chassis, Intel recommends that you set up SSH keys (see opasetupssh). If SSH keys are not set up, Intel recommends that you use the -S option, to avoid keeping the password in configuration files.

When performing opashowallports against externally-managed switches, a node with Intel® Omni-Path Fabric Suite FastFabric Toolset installed is required. Typically, this is the node from which opashowallports is being run.
3.4.3 opareport

(All) Provides powerful fabric analysis and reporting capabilities. Must be run on a host connected to the Intel® Omni-Path Fabric with the Intel® Omni-Path Fabric Suite FastFabric Toolset installed.

Syntax

```
opareport [-v] [-q] [-h hfi] [-p port]
[-X snapshot_input] [-T topology_input] [-s] [-r] [-V]
[-F point] [-S point] [-D point] [-Q]
```

or

```
opareport --help
```

Options

```
--help
-v/--verbose
-q/--quiet
-h hfi
-p port
-o/--output report
-d/--detail detail
-P/--persist
-H/--hard
-N/--noname
-x/--xml
-X/--infile snapshot_input
```

- **--help** Produces full help text.
- **-v/--verbose** Returns verbose output.
- **-q/--quiet** Disables progress reports.
- **-h hfi** HFI, numbered 1..n. Using 0 specifies that the -p port is a system-wide port number. Default is 0.
- **-p port** Port, numbered 1..n. If -h hfi is 0 then port is a system-wide port number. Default is 1.
- **-o/--output report** Report type for output. Refer to Report Types on page 68 for details.
- **-d/--detail detail** Level of detail 0-9 for output. Default is 2.
- **-P/--persist** Includes data persistent across reboots.
- **-H/--hard** Includes permanent hardware data.
- **-N/--noname** Omits node and IOC names.
- **-x/--xml** Produces output in XML.
- **-X/--infile snapshot_input** Generates a report using the data in the snapshot_input file. snapshot_input must have been generated during a previous -o snapshot run. When used, the -s, -i, -C, and -a options are ignored. Not permitted with -o route and -F route. '-' may be used as the snapshot_input to specify stdin.
-T/--topology

topology_input

Uses topology_input file to augment and verify fabric information. When used, various reports can be augmented with information not available electronically (such as cable labels and lengths). ‘-’ may be used to specify stdin.

-s/--stats

Gets performance statistics for all ports.

-i/--interval seconds

Obtains performance statistics over interval seconds, clears all statistics, waits interval seconds, then generates report. Implies -s option.

-C/--clear

Clears performance statistics for all ports. Only statistics with error thresholds are cleared. A clear occurs after generating the report.

-a/--clearall

Clears all performance statistics for all ports.

-m/--smadirect

Accesses fabric information directly from SMA.

-K/--mkey mkey

SMA M_Key for direct SMA query. Default is 0.

-M/--pmadirect

Accesses performance statistics using direct PMA.

-A/--allports

Gets PortInfo for down switch ports. Uses direct SMA to get this data. If used with -M, also gets PMA stats for down-switch ports.

-c/--config file

Error thresholds configuration file. Default is /etc/sysconfig/opa/opamon.conf file.

-L/--limit

Limits operation to exact specified focus with -F for port error counters check (-o errors) and port counters clear (-C or -i). Normally, the neighbor of each selected port is also checked/cleared. Does not affect other reports.

-F/--focus point

Focus area for report. Used for all reports except route to limit scope of report. Refer to Point Syntax on page 70 for details.

-S/--src point

Source for trace route, default is local port. Refer to Point Syntax on page 70 for details.

-D/--dest point

Destination for trace route. Refer to Point Syntax on page 70 for details.

-Q/--quietfocus

Excludes focus description from report.
-h and -p options permit a variety of selections:

- **h 0**  First active port in system (default).
- **h 0 -p 0**  First active port in system.
- **h x**  First active port on HFI x.
- **h x -p 0**  First active port on HFI x.
- **h 0 -p y**  Port y within system (no matter which ports are active).
- **h x -p y**  HFI x, port y.

**Snapshot-Specific Options**

- **-r/--routes**  Gets routing tables for all switches.
- **-V/--vltables**  Gets QOS VL-related tables for all ports.

**Report Types**

- **comps**  Summary of all systems and SMs in fabric.
- **brcomps**  Brief summary of all systems and SMs in fabric.
- **nodes**  Summary of all node types and SMs in fabric.
- **brnodes**  Brief summary of all node types and SMs in fabric.
- **ious**  Summary of all IO units in the fabric.
- **lids**  Summary of all LIDs in the fabric.
- **links**  Summary of all links.
- **extlinks**  Summary of links external to systems.
- **slowlinks**  Summary of links running slower than expected.
- **slowconfiglinks**  Summary of links configured to run slower than supported, includes slowlinks.
- **slowconnlinks**  Summary of links connected with mismatched speed potential, includes slowconfiglinks.
- **misconfiglinks**  Summary of links configured to run slower than supported.
- **misconnlinks**  Summary of links connected with mismatched speed potential.
errors
Summary of links whose errors exceed counts in the configuration file.

otherports
Summary of ports not connected to the fabric.

linear
Summary of linear forwarding data base (FDB) for each switch.

mcast
Summary of multicast FDB for each switch in the fabric.

portusage
Summary of ports referenced in linear FDB for each switch, broken down by NodeType of DLID.

pathusage
Summary of number of FI to FI paths routed through each switch port.

treepathusage
Analysis of number of FI to FI paths routed through each switch port for a FAT tree.

portgroups
Summary of adaptive routing port groups for each switch.

quarantinednodes
Summary of quarantined nodes.

validateroutes
Validates all routes in the fabric.

validatepgs
Validates all port groups in the fabric.

validatecreditloops
Validates topology configuration of the fabric to identify any existing credit loops.

tfinfo
Summary of virtual fabric (vFabric) information.

vfmemeber
Summary of vFabric membership information.

verifyfis
Compares fabric (or snapshot) FIs to supplied topology and identifies differences and omissions.

verifyysws
Compares fabric (or snapshot) switches to supplied topology and identifies differences and omissions.

verifynodes
Returns verifyfis and verifyysws reports.

verifyyms
Compares fabric (or snapshot) SMs to supplied topology and identifies differences and omissions.

verifylinks
Compares fabric (or snapshot) links to supplied topology and identifies differences and omissions.

verifyextlinks
Compares fabric (or snapshot) links to supplied topology and identifies differences and omissions. Limits analysis to links external to systems.
verifyall Returns verifyfis, verifysws, verifysms, and verifylinks reports.

all Returns comps, nodes, ious, links, extlinks, slowconnlinks, and errors reports.

route Traces route between -S and -D points.

bfrctrl Reports Buffer Control Tables for all ports.

snapshot Outputs snapshot of the fabric state for later use as snapshot_input. This implies -x. May not be combined with other reports. When selected, -F, -P, -H, and -N options are ignored.

topology Outputs the topology of the fabric for later use as topology_input. This implies -x. May not be combined with other reports.

none No report, useful to clear statistics.

Point Syntax

gid: value value is numeric port GID of form: subnet:guid.

lid: value value is numeric LID.

lid:value:node value is numeric LID, selects entire node with given LID.

lid:value:port:value2 value is numeric LID of node, value2 is port number.

portguid: value value is numeric port GUID.

nodeguid: value value is numeric node GUID.

nodeguid:value1:port: value2 value1 is numeric node GUID, value2 is port number.

iocguid: value value is numeric IOC GUID.

iocguid:value1:port:value2 value1 is numeric IOC GUID, value2 is port number.

systemguid: value value is numeric system image GUID.

systemguid:value1:port:value2 value1 is the numeric system image GUID, value2 is port number.
<table>
<thead>
<tr>
<th>Command</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ioc:</td>
<td>value</td>
<td>IOC Profile ID String (IOC Name).</td>
</tr>
<tr>
<td>ioc:value1:port:value2</td>
<td>value1</td>
<td>IOC Profile ID String (IOC Name), value2 is port number.</td>
</tr>
<tr>
<td>iocpat:</td>
<td>value</td>
<td>value is global pattern for IOC Profile ID String (IOC Name).</td>
</tr>
<tr>
<td>iocpat:value1:port:value2</td>
<td>value1</td>
<td>global pattern for IOC Profile ID String (IOC Name), value2 is port number.</td>
</tr>
<tr>
<td>iotype:</td>
<td>value</td>
<td>IOC type (VNIC or SRP).</td>
</tr>
<tr>
<td>iotype:value1:port:value2</td>
<td>value1</td>
<td>IOC type (VNIC or SRP), value2 is port number.</td>
</tr>
<tr>
<td>node:</td>
<td>value</td>
<td>node description (node name).</td>
</tr>
<tr>
<td>node:value1:port:value2</td>
<td>value1</td>
<td>node description (node name), value2 is port number.</td>
</tr>
<tr>
<td>nodepat:</td>
<td>value</td>
<td>global pattern for node description (node name).</td>
</tr>
<tr>
<td>nodepat:value1:port:value2</td>
<td>value1</td>
<td>global pattern for the node description (node name), value2 is port number.</td>
</tr>
<tr>
<td>nodedetpat:</td>
<td>value</td>
<td>global pattern for node details.</td>
</tr>
<tr>
<td>nodedetpat:value1:port:value2</td>
<td>value1</td>
<td>global pattern for the node details, value2 is port number.</td>
</tr>
<tr>
<td>nodetype:</td>
<td>value</td>
<td>node type (SW, FI, or RT).</td>
</tr>
<tr>
<td>nodetype:value1:port:value2</td>
<td>value1</td>
<td>node type (SW, FI, or RT), value2 is port number.</td>
</tr>
<tr>
<td>rate:</td>
<td>value</td>
<td>string for rate (25g, 50g, 75g, 100g), omits switch mgmt port 0.</td>
</tr>
<tr>
<td>portstate:</td>
<td>value</td>
<td>string for state (init, armed, active).</td>
</tr>
<tr>
<td>portphysstate:</td>
<td>value</td>
<td>string for PHYs state (polling, disabled, training, linkup, recovery, offline, test).</td>
</tr>
<tr>
<td>mtucap:</td>
<td>value</td>
<td>MTU size (2048, 4096, 8192, 10240), omits switch mgmt port 0.</td>
</tr>
</tbody>
</table>
labelpat: value
is a global pattern for cable label.

lengthpat: value
is a global pattern for cable length.

cabledetpat: value
is a global pattern for cable details.

cabinflenpat: value
is a global pattern for cable info length.

cabinfvennamepat: value
is a global pattern for cable info vendor name.

cabinfvenpnpat: value
is a global pattern for cable info vendor part number.

cabinfvenrevpat: value
is a global pattern for cable info vendor revision.

cabinfvensnpat: value
is a global pattern for cable info vendor serial number.

linkdetpat: value
is a global pattern for link details.

portdetpat: value
is a global pattern for port details.

sm
Master subnet manager (SM).

smdetpat: value
is a global pattern for SM details.

route: point1: point2
All ports along the routes between the two given points.

linkqual: value
Ports with a link quality equal to value.

linkqualLE: value
Ports with a link quality less than or equal to value.

linkqualGE: value
Ports with a link quality greater than or equal to value.

Examples

`opareport` can generate hundreds of different reports. Commonly generated reports include the following:

```
opareport -o comps -d 3
opareport -o errors -o slowlinks
opareport -o nodes -F nodeguid:0x001175009800447b:port:1
opareport -o nodes -F nodeguid:0x001175009800447b
opareport -o nodes -F 'node:duster hf11_0'
```
opareport -o nodes -F 'nodedetpat:compute:*'
opareport -o nodes -F 'nodedetpat:compute*:port:1'
opareport -o nodes -F nodetype:FI
opareport -o nodes -F nodetype:FI:port:1
opareport -o nodes -F lid:1
opareport -o nodes -F lid:1:node
opareport -o nodes -F lid:1:port:2
opareport -o nodes -F gid:0xfe80000000000000:0x00017500a000447b
opareport -o nodes -F systemguid:0x0001175009800447b
opareport -o nodes -F port:1
opareport -o nodes -F iocguid:0x001175009800447b
opareport -o nodes -F iocguid:0x001175009800447b:port:2
opareport -o nodes -F 'ioc:Chassis 0x001175005000010C, Slot 2, IOC 1'
opareport -o nodes -F 'ioc:Chassis 0x001175005000010C, Slot 2, IOC 1:port:2'
opareport -o nodes -F 'iocpat:* Slot 2'*
opareport -o nodes -F 'iocpat:* Slot 2*:port:2'
opareport -o nodes -F ioctype:VNIC
opareport -o nodes -F ioctype:VNIC:port:2
opareport -o extlinks -F rate:5g
opareport -o extlinks -F portstate:armed
opareport -o extlinks -F portphysstate:linkup
opareport -o extlinks -F 'labelpat:S1345'*
opareport -o extlinks -F 'lengthpat:11m'
opareport -o extlinks -F 'cabledetpat:* gore*'
opareport -o extlinks -F 'linkdetpat:* core ISL*'
opareport -o extlinks -F 'portdetpat:* mgmt*'
opareport -o links -F mtucap:2048
opareport -o nodes -F sm
opareport -o nodes -F 'smdetpat:primary'*
opareport -o nodes -F 'route:node:duster hfi1_0:node:cuda hfi1_0'
opareport -o nodes -F 'route:node:duster hfi1_0:port:1:node:cuda hfi1_0:port:2'
opareport -s -o snapshot > file
opareport -o topology > topology.xml
opareport -o errors -X file

Other Information

opareport also supports operation with the Fabric Manager Performance Manager (PM)/Performance Manager Agent (PMA). When opareport detects the presence of a PMA, it automatically issues any required PortCounter queries and clears to the PMA to access the PMs running totals. If a PMA is not detected, then opareport directly accesses the PMAs on all the nodes. The -M option can force access to the PMA even if a PMA is present.

opareport takes advantage of these interfaces to obtain extensive information about the fabric from the subnet manager and the end nodes. Using this information, opareport is able to cross-reference it and produce analysis greatly beyond what any single subnet manager request could provide. As such, it exceeds the capabilities previously available in tools such as opasaquery and opafabricinfo.

opareport obtains and displays 64-bit data movement counters from the Fabric Manager PM/PA or directly from the fabric using the -M option. Snapshots generated by this version of opareport, in conjunction with the -s option, may report value out of range errors when used as input to older versions of opareport. However, the thresholds specified in opamon.conf and other input configuration files continue to only support 32-bit values for data movement counter thresholds.

opareport internally cross-references all this information so its output can be in user-friendly form. Reports include GUIDs, LIDs, and names for components. Obviously, these reports are easiest to read if the end user has taken the time to provide unique names for all the components in the fabric (node names and IOC names). All Intel components support this capability. For hosts, the node names are
automatically assigned based on the network host name of the server. For switches and line cards, the names can be assigned using the element managers for each component.

Each run of opareport obtains up-to-date information from the fabric. At the start of the run opareport takes a few seconds to obtain all the fabric data, then it is output to stdout. The reports are sorted by GUIDs and other permanent information so they can be rerun in the future and produce output in the same order even if components have been rebooted. This is useful for comparison using simple tools like diff. opareport permits multiple reports to be requested for a single run (for example, one of each report type).

By default, opareport uses the first active port on the local system. However, if the Management Node is connected to more than one fabric (for example, a subnet), the Intel® Omni-Path Host Fabric Interface (HFI) and port may be specified to select the fabric to analyze.

For additional information, refer to opareport Detailed Information.

### 3.4.4 opareports

(opareports) opareports is a front end to opareport that provides many of the same options and capabilities. It can also run a report against multiple fabrics or subnets (for example, local host HFI ports). opareports can use an input file to augment the reports using additional details from the topology_input file.

**Syntax**

```
opareports [-t portsfile] [-p ports] [opareport arguments] [-T topology_input]
```

or

```
opareports --help
```

**Options**

--help

Produces full help text.

-t portsfile

File with list of local HFI ports used to access fabric for analysis. Default is /etc/sysconfig/opa/ports file.

-p ports

List of local HFI ports used to access fabric for counter clear. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

```
0:0 First active port in system.
0:y Port y within system.
```
x:0  First active port on HFI x.

x:y  HFI x, port y.

opareport arguments

Any of the other opareport arguments. The -h and -X options are not available. Note that the meaning of -p is different for opareports than opareport. When run against multiple fabrics, the -x and -o snapshot options are not available.

Note: When run against multiple fabrics, the -F option is applied to all fabrics. See opareport for more information.

-T topology_input

Name of a topology input file to use. The filename may have %P as a marker which is replaced with the hfi:port being operated on, such as 0:0 or 1:2. The default filename is specified by FF_TOPOLOGY_FILE as /etc/sysconfig/opa/topology.%P.xml. If -T NONE is specified, no topology input file is used.

Example

```
opareports
opareports -p '1:1 2:1'
```

Environment Variables

The following environment variables are also used by this command:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTS</td>
<td>List of ports, used in absence of -t and -p.</td>
</tr>
<tr>
<td>PORTS_FILE</td>
<td>File containing list of ports, used in absence of -t and -p.</td>
</tr>
<tr>
<td>FF_TOPOLOGY_FILE</td>
<td>File containing topology_input (may have %P marker in filename), used in absence of -T.</td>
</tr>
</tbody>
</table>

Details

For simple fabrics, the Intel® Omni-Path Fabric Suite FastFabric Toolset host is connected to a single fabric. By default, the first active port on the FastFabric Toolset host is used to analyze the fabric.

However, in more complex fabrics, the FastFabric Toolset host may be connected to more than one fabric or subnet. In this case, you can specify the ports or HFIIs to use with one of the following methods:

- On the command line using the -p option.
- In a file specified using the -t option.
• Through the environment variables PORTS or PORTS_FILE.
• Using the ports_file configuration option in /etc/sysconfig/opa/opafastfabric.conf.

If the specified port does not exist or is empty, the first active port on the local system is used. In more complex configurations, you must specify the exact ports to use for all fabrics to be analyzed. For more information, refer to Selection of Devices on page 14.

You can specify the topology_input file to be used with one of the following methods:
• On the command line using the -T option.
• In a file specified through the environment variable FF_TOPOLOGY_FILE.
• Using the ff_topology_file configuration option in opafastfabric.conf.

If the specified file does not exist, no topology_input file is used. Alternately the filename can be specified as NONE to prevent use of an input file.

For additional information, refer to opareport and opareport Detailed Information.

3.4.5 opaxmlextract

(=Linux) Extracts element values from XML input and outputs the data in CSV format. opaxmlextract is intended to be used with opareport, to parse and filter its XML output, and to allow the filtered output to be imported into other tools such as spreadsheets and customer-written scripts. opaxmlextract can also be used with any well-formed XML stream to extract element values into a delimited format.

Five sample scripts are available as prototypes for customized scripts. They combine various calls to opareport with a call to opaxmlextract with commonly used parameters.

Syntax

```
opaxmlextract [-v] [--help] [-d delimiter] [-e extract_element]
[-s suppress_element] [-X input_file] [-P param_file]
```

or

```
opaxmlextract --help
```

Options

--help

Produces full help text.

-e/--extract extract_element

Name of the XML element to extract. Elements can be nested in any order, but are output in the order specified. Elements can be specified multiple times, with a different attribute name or attribute value. An optional attribute (or attribute and value) can also be specified with elements:
-e element
- e element:attrName
- e element:attrName:attrValue

-s/--suppress suppress_element
Name of the XML element to suppress. Can be used multiple times (in any order). Supports the same syntax as -e.

-d/--delimit delimiter
Uses delimiter (single character or string) as the delimiter between element names and element values. Default is semicolon.

-X/--infile input_file
Parses input XML from input_file instead of stdin.

-P/--pfile param_file
Uses input command line options (parameters) from param_file.

-H/--noheader
Does not output element name header record.

-v/--verbose
Produces verbose output. Includes output progress reports during extraction and output prepended wildcard characters on element names in output header record.

Example
Here is a simple example of opareport output filtered by opaxmlextract:

```
>opareport -o comps -s -x | opaxmlextract -d \
-e NodeDesc -e SystemImageGUID
-e NumPorts -s Neighbor

NodeDesc;SystemImageGUID;NumPorts
mindy2 HFI-1;0x0002c9020025a67b;2
MT25408 ConnectX Mellanox Technologies;0x0002c9030000079b;2
cuda;0x001175009800413e;2
duster;0x001175009800447b;2
stewie HFI-1;0x001175009800470b70;2
i9k159 Spine 1, Chip B;0x00117500da00159;24
i9k159 Spine 2, Chip B;0x00117500da00159;24
i9k159 Spine 1, Chip A;;
i9k159 Spine 2, Chip A;;
```

Details
opaxmlextract is a flexible and powerful tool to process an XML stream. The tool:

- Requires no specific element names to be present in the XML.
- Assumes no hierarchical relationship between elements.
- Allows extracted element values to be output in any order.
- Allows an element’s value to be extracted only in the context of another specified element.
- Allows extraction to be suppressed during the scope of specified elements.
opaxmlextract takes the XML input stream from either stdin or a specified input file. opaxmlextract does not use or require a connection to a fabric.

opaxmlextract works from two lists of elements supplied as command line or input parameters. The first is a list of elements whose values are to be extracted, called extraction elements. The second is a list of elements for which extraction is to be suppressed, called suppression elements. When an extraction element is encountered and extraction is not suppressed, the value of the element is extracted for later output in an extraction record. An extraction record contains a value for all extraction elements, including those which have a null value.

When a suppression element is encountered, then no extraction is performed during the extent of that element, from start through end. Suppression is maintained for elements specified inside the suppression element, including elements which may happen to match extraction elements. Suppression can be used to prevent extraction in sections of XML that are present, but not of current interest. For example, NodeDesc or NodeGUID inside a Neighbor specification of opareport.

During operation, opaxmlextract outputs an extraction record under the following conditions:

- One or more extraction elements containing a non-null value go out of scope (that is, the element containing the extraction elements is ended) and a record containing the element values has not already been output.
- A new and different value is specified for an extraction element and an extraction record containing the previous value has not already been output.

Element names (extraction or suppression) can be made context-sensitive with an enclosing element name using the syntax element1.element2. In this case, element2 is extracted (or extraction is suppressed) only when element2 is enclosed by element1.

The syntax also allows ‘*’ to be specified as a wildcard. In this case, *.element3 specifies element3 enclosed by any element or sequence of elements (for example, element1.element3 or element1.element2.element3). Similarly, element1.*.element3 specifies element3 enclosed by element1 with any number of (but at least 1) intermediate elements.

opaxmlextract prepends any entered element name not containing a ‘*’ (anywhere) with ‘*.’, matching the element regardless of the enclosing elements.

**Note:** Any element names that include a wildcard should be quoted to the shell attempting to wildcard match against filenames.

At the beginning of operation, opaxmlextract, by default, outputs a delimited header record containing the names of the extraction elements. The order of the names is the same as specified on the command line and is the same order as that of the extraction record. Output of the header record can be disabled with the −H option. By default, element names are shown as they were entered on the command line. The −v option causes element names to be output as they are used during extraction, with any prepended wildcard characters.
Options (parameters) to opaxmlextract can be specified on the command line, with a parameter file, or using both methods. A parameter file is specified with -P param_file. When a parameter file specification is encountered on the command line, option processing on the command line is suspended, the parameter file is read and processed entirely, and then command line processing is resumed.

Option syntax within a parameter file is the same as on the command line. Multiple parameter file specifications can be made, on the command line or within other parameter files. At each point that a parameter file is specified, current option processing is suspended while the parameter file is processed, then resumed. Options are processed in the order they are encountered on the command line or in parameter files. A parameter file can be up to 8192 bytes in size and may contain up to 512 parameters.

3.4.6 opaextractperf

Provides a report of all the performance counters in a format easily imported to Excel for further analysis. It generates a detailed opareport component summary report and pipes the result to opaxmlextract, extracting element values for NodeDesc, SystemImageGUID, PortNum, and all the performance counters. Extraction is performed only from the Systems portion of the report, which does not contain Neighbor information (the Neighbor and SMs portions are suppressed).

Syntax

The implementation of the script is as follows:

```bash
opareport -o comps -s -x -d 10 | opaxmlextract -d \; -e NodeDesc -e SystemImageGUID -e PortNum -e XmitDataMB -e XmitData -e XmitPkts -e RcvDataMB -e RcvData -e RcvPkts -e SymbolErrors -e LinkErrorRecovery -e LinkDowned -e PortRcvErrors -e PortRcvRemotePhysicalErrors -e PortRcvSwitchRelayErrors -e PortXmitDiscards -e PortXmitConstraintErrors -e PortRcvConstraintErrors -e LocalLinkIntegrityErrors -e ExcessiveBufferOverrunErrors -e VLIDropped -s Neighbor -s SMs
```

3.4.7 opaextracterror

Produces a CSV file listing all or some of the errors in the current fabric. opaextracterror.sh is a front end to the opareport tool. The output from this tool can be imported into a spreadsheet or parsed by other scripts.

Syntax

```bash
opaextracterror [--help] [opareport options]
```

Options

--help Produces full help text.

opareport options Options are passed to opareport. See opareport for the full set of options.
Examples

```
List all the link errors in the fabric:
opaxtracterror.sh

List all the link errors related to a switch named "OmniPth00117501ffffffff":
opaxtracterror.sh -F "node:OmniPth00117501ffffffff"

List all the link errors for end-nodes:
opaxtracterror.sh -F "nodetype:FI"

List all the link errors on the 2nd HFI's fabric of a multi-plane fabric:
opaxtracterror.sh -h 2
```

3.4.8 opaextractstat

Perform an error analysis of a fabric and provides augmented information from a topology_input file. The report provides cable information as well as symbol error counts.

**opaextractstat** generates a detailed opareport errors report that also has a topology input file (see opareport on page 66 for more information about topology files). The report is piped to opaxmlextract which extracts values for Link, Cable and Port. (The port element names are context-sensitive.) Note that opaxmlextract generates two extraction records for each link (one for each port on the link); therefore, opaextractstat merges the two records into a single record and removes redundant link and cable information.

**opaextractstat** contains a while read loop that reads the CSV line-by-line, uses cut to remove redundant information, and outputs the data on a common line.

**Syntax**

The portion of the script that calls opareport and opaxmlextract follows:

```
opareport -x -d 10 -s -o errors -T $@ | opaxmlextract -d \;
-e Rate -e MTU -e LinkDetails -e CableLength -e CableLabel
-e CableDetails -e Port.NodeDesc -e Port.PortNum -e SymbolErrors.Value
```

3.4.9 opaextractstat2

Perform an error analysis of a fabric and provides augmented information from a topology_input file. The report is similar to opaextractstat, with the addition of extracting all error counters. Error counter names are context-sensitive.

**Syntax**

The portion of the script that calls opareport and opaxmlextract follows:

```
opareport -x -d 10 -s -o errors -T $@ | opaxmlextract -d \;
-e Rate -e MTU -e Internal -e LinkDetails -e CableLength -e CableLabel
-e CableDetails -e Port.NodeGUID -e Port.PortGUID -e Port.PortNum
-e Port.PortType -e Port.NodeDesc -e Port.PortDetails
-e PortRcvPkts.Value -e SymbolErrors.Value -e LinkErrorRecovery.Value
-e LinkDowned.Value -e PortRcvErrors.Value
```
3.4.10  **opaextractlink**  

Produces a CSV file listing all or some of the links in the fabric. `opaextractlink.sh` is a front end to the `opareport` tool. The output from this tool can be imported into a spreadsheet or parsed by other scripts.

**Syntax**

```bash
opaextractlink [--help] [opareport options]
```

**Options**

--help  
Produces full help text.

**Examples**

```bash
List all the links in the fabric:
opaextractlink.sh

List all the links to a switch named "OmniPth00117501ffffffff":
opaextractlink.sh -F "node:OmniPth00117501ffffffff"

List all the links to end-nodes:
opaextractlink.sh -F "nodetype:FI"

List all the links on the 2nd HFI's fabric of a multi-plane fabric:
opaextractlink.sh -h 2
```

3.4.11  **opaextractsellinks**  

Produces a CSV file listing all or some of the links in the fabric. `opaextractsellinks.sh` is a front end to the `opareport` tool. The output from this tool can be imported into a spreadsheet or parsed by other scripts.

**Syntax**

```bash
opaextractsellinks [--help] [opareport options]
```

**Options**

--help  
Produces full help text.

**Examples**

```bash
List all the links in the fabric:
opareport.sh

List all the links to a switch named "OmniPth00117501ffffffff":
opareport.sh -F "node:OmniPth00117501ffffffff"

List all the links to end-nodes:
opareport.sh -F "nodetype:FI"

List all the links on the 2nd HFI's fabric of a multi-plane fabric:
opareport.sh -h 2
```
Examples

- List all the links in the fabric:
  opaextractsellinks.sh

- List all the links to a switch named "OmniPth00117501ffffffff":
  opaextractsellinks.sh -F "node:OmniPth00117501ffffffff"

- List all the connections to end-nodes:
  opaextractsellinks.sh -F "nodetype:FI"

- List all the links on the 2nd HFI's fabric of a multi-plane fabric:
  opaextractsellinks.sh -h 2

3.4.12 opaxmlfilter

Processes an XML file and removes all specified XML tags. The remaining tags are output and indentation can also be reformatted. opaxmlfilter is the opposite of opaxmlextract.

Syntax

```
opaxmlfilter [-t|-k] [-l] [-i indent] [-s element]
 [-P param_file] [input_file]
```

Options

- `-t` Trims leading and trailing whitespace in tag contents.
- `-k` In tags with purely whitespace that contain newlines, keep newlines as-is. Default is to format as an empty list.
- `-l` Adds comments with line numbers after each end tag. This can make comparison of resulting files easier since original line numbers are available.
- `-i indent` Sets indentation to use per level. Default is 4.
- `-s element` Name of the XML element to suppress. Can be used multiple times (in any order).
- `-P param_file` Uses input command line options (parameters) from param_file.
- `input_file` XML file to read. Default is stdin.

3.4.13 opaxmlindent

(Linux) Takes well-formed XML as input, filters out comments, and generates a uniformly-indented equivalent XML file. Use opaxmlindent to reformat files for easier reading and review, also to reformat a file for easy comparison with diff.
Syntax

opaxmlindent [-t|-k] [-i indent] [input_file]

Options

-t Trims leading and trailing whitespace in tag contents.

-k In tags with purely whitespace that contain newlines, keep newlines as-is. Default is to format as an empty list.

-i indent Sets indentation to use per level. Default is 4.

input_file XML file to read. Default is stdin.

3.4.14 opaxmlgenerate

(***Linux***) Takes comma-separated-values (CSV) data as input and generates sequences of XML containing user-specified element names and element values within start and end tag specifications. Use this tool to create an XML representation of fabric data from its CSV form.

Syntax


Options

-g/--generate element Generates value for element using value in next field from the input file. Can be used multiple times on the command line. Values are assigned to elements in order.

-h/--header element Name of the XML element that is the enclosing header start tag.

-e/--end element Name of the XML element that is the enclosing header end tag.

-d/--delimit delimiter Specifies the delimiter character that separates values in the input file. Default is semicolon.

-i/--indent number Number of spaces to indent each level of XML output. Default is 0.

-X/--infile input_file File to read delimited input data from. One record per line with fields in each record separated by the specified delimiter.

-P/--pfile param_file Uses input command line options (parameters) from param_file.
-v/--verbose

Produces verbose output. Includes output progress reports during extraction.

Details

opaxmlgenerate takes the CSV data from an input file. It generates fragments of XML, and in combination with a script, can be used to generate complete XML sequences. opaxmlgenerate does not use nor require a connection to an Intel® Omni-Path Fabric.

opaxmlgenerate reads CSV element values and applies element (tag) names to those values. The element names are supplied as command line options to the tool and constitute a template that is applied to the input.

Element names on the command line are of three (3) types, distinguished by their command line option – Generate, Header, and Header_End. The Header and Header_End types together constitute enclosing element types. Enclosing elements do not contain a value, but serve to separate and organize Generate elements.

Generate elements, along with a value from the CSV input file, cause XML in the form of \(<\text{element\_name}>value</\text{element\_name}>\) to be generated. Generate elements are normally the majority of the XML output since they specify elements containing the input values. Header elements cause an XML header start tag of the form: \(<\text{element\_name}>\) to be generated. Header_End elements cause an XML header end tag of the form \(</\text{element\_name}>\) to be generated. Output of enclosing elements is controlled entirely by the placement of those element types on the command line. opaxmlgenerate does not check for matching start and end tags or proper nesting of tags.

Options (parameters) to opaxmlgenerate can be specified on the command line, with a parameter file, or both. A parameter file is specified with \(-P\) param_file. When a parameter file specification is encountered on the command line, option processing on the command line is suspended, the parameter file is read and processed entirely, and then command line processing is resumed. Option syntax within a parameter file is the same as on the command line. Multiple parameter file specifications can be made, on the command line or within other parameter files. At each point that a parameter file is specified, current option processing is suspended while the parameter file is processed, then resumed. Options are processed in the order they are encountered on the command line or in parameter files. A parameter file can be up to 8192 bytes in size and may contain up to 512 parameters.

Using opaxmlgenerate to create topology input files

opaxmlgenerate can be used to create scripts to translate from user-specific format into the opareport topology_input file format. opaxmlgenerate itself works against a CSV style file with one line per record. Given such a file it can produce hierarchical XML output of arbitrary complexity and depth.

The typical flow for a script which translates from a user-specific format into opareport topology_input would be:

- As needed, reorganize the data into link and node data CSV files, in a sequencing similar to that used by opareport topology_input. One link record per line in one temporary file, one node record per line in another temporary file and one SM per line in a third temporary file.
• The script must directly output the boilerplate for XML version, etc.
• `opaxmlgenerate` can be used to output the Link section of the `topology_input`, using the link record temporary file.
• `opaxmlgenerate` can be used to output the Node sections of the `topology_input` using the node record temporary file. If desired, there could be separate node record temporary files for HFIs, Switches, and Routers.
• `opaxmlgenerate` can be used to output the SM section of the `topology_input`, if desired.
• The script must directly output the closing XML tags to complete the `topology_input` file.

3.4.15 `opagentopology`

Generates sample topology verification XML. Provides an example of using `opaxmlgenerate` and is a prototype for customization.

Uses CSV input files `opatopology_links.txt`, `opatopology_FIs.txt`, and `opatopology_SWs.txt` to generate LinkSummary, Node FIs, and Node SWs information respectively. These files are samples of what might be produced as part of translating a user custom file format into temporary intermediate CSV files.

LinkSummary information includes Link, Cable, and Port information. Note that `opagentopology` (not `opaxmlgenerate`) generates the XML version string as well as the `<Topology>` and `<LinkSummary>` lines. Also note that the indent level is at the default value of zero (0). The portions of the script that call `opaxmlgenerate` follow:

```bash
opaxmlgenerate -X /opt/opa/samples/opatopology_1.txt -d \; -h Link -g Rate -g Rate_Int -g MTU -g LinkDetails -h Cable -g CableLength -g CableLabel -g CableDetails -e Cable -h Port -g NodeGUID -g PortNum -g NodeDesc -g PortGUID -g NodeType -g NodeType_Int -g PortDetails -e Port -e Link
```

```
25g;2048;0;IO Server Link;11m;S4567;cable model 456;0x0002c90200200e04;1;bender HFI-1;0x0002c90200200e04;FI;Some info about port;0x0011750007000df6;7;Switch 1234 Leaf 4;;SW;
```

```
25g;0;;;;0x0002c90200200e04;0;Switch 2345 Leaf 5;;SW;
```

Note: The following example exceeds the available width of the page. For readability, a blank line is shown between lines to make it clear where the line ends. In an actual link file, no blank lines are used.
opatopology_FIs.txt
This file can be found in /opt/opa/samples/. For brevity, this sample shows only two nodes.

0x0002c9020020e004;bender HFI-1;More details about node
0x0002c9020025a678;mindy2 HFI-1;Node details

opatopology_SWs.txt
This file can be found in /opt/opa/samples/. For brevity, this sample shows only two nodes.

0x0011750007000df6;Switch 1234 Leaf 4;
0x0011750007000e6d;Switch 2345 Leaf 5;

opatopology_SMs.txt
This file can be found in /opt/opa/samples/. For brevity, this sample shows only one node.

0x0002c9020025a678;1;mindy2 HFI-1;0x0011750007000e6d;FI;details about SM

Example

When run against the supplied topology input files, opagentopology produces:

```xml
<?xml version="1.0" encoding="utf-8" ?>
<Topology>
<LinkSummary>
<Link>
 <Rate>25g</Rate>
 <MTU>2048</MTU>
 <Internal>0</Internal>
 <LinkDetails>IO Server Link</LinkDetails>
 <Cable>
 <CableLength>11m</CableLength>
 <CableLabel>S4567</CableLabel>
 <CableDetails>cable model 456</CableDetails>
 </Cable>
 <Port>
 <NodeGUID>0x0002c9020020e004</NodeGUID>
 <PortNum>1</PortNum>
 <NodeDesc>bender HFI-1</NodeDesc>
 <PortGUID>0x0002c9020020e004</PortGUID>
 <NodeType>FI</NodeType>
 <PortDetails>Some info about port</PortDetails>
 </Port>
</Link>
<Link>
 <Rate>25g</Rate>
 <Internal>0</Internal>
 <Cable>
</Cable>
</Link>
</LinkSummary>
</Topology>
```
3.4.16 opafindgood

Checks for hosts that are able to be pinged, accessed via SSH, and active on the Intel® Omni-Path Fabric. Produces a list of good hosts meeting all criteria. Typically used to identify good hosts to undergo further testing and benchmarking during initial cluster staging and startup.

The resulting good file lists each good host exactly once and can be used as input to create mpi_hosts files for running mpi_apps and the HFI-SW cable test. The files alive, running, active, good, and bad are created in the selected directory listing hosts passing each criteria.

This command assumes the Node Description for each host is based on the hostname -s output in conjunction with an optional hfi1 # suffix. When using a /etc/sysconfig/opa/hosts file that lists the hostnames, this assumption may not be correct.
This command automatically generates the file `FF_RESULT_DIR/punchlist.csv`. This file provides a concise summary of the bad hosts found. This can be imported into Excel directly as a *.csv file. Alternatively, it can be cut/pasted into Excel, and the **Data/Text to Columns** toolbar can be used to separate the information into multiple columns at the semicolons.

A sample generated output is:

```markdown
opafindgood
3 hosts will be checked
2 hosts are pingable (alive)
2 hosts are ssh'able (running)
2 total hosts have FIs active on one or more fabrics (active)
1 hosts are alive, running, active (good)
2 hosts are bad (bad)
Bad hosts have been added to /root/punchlist.csv
cat /root/punchlist.csv
2015/10/04 11:33:22;phs1fnivd13u07n1 hfi1_0 p1 phs1swivd13u06 p16;Link errors
2015/10/07 10:21:05;phs1swivd13u06;Switch not found in SA DB
2015/10/09 14:36:48;phs1fnivd13u07n4;Doesn't ping
2015/10/09 14:36:48;phs1fnivd13u07n3;No active port
```

For a given run, a line is generated for each failing host. Hosts are reported exactly once for a given run. Therefore, a host that does not ping is NOT listed as can't ssh nor No active port. There may be cases where ports could be active for hosts that do not ping, especially if Ethernet host names are used for the ping test. However, the lack of ping often implies there are other fundamental issues, such as PXE boot or inability to access DNS or DHCP to get proper host name and IP address. Therefore, reporting hosts that do not ping is typically of limited value.

Note that **opafindgood** queries the SA for NodeDescriptions to determine hosts with active ports. As such, ports may be active for hosts that cannot be accessed via SSH or pinged.

**Syntax**

```
opafindgood [-R|-A|-Q] [-d dir] [-f hostfile] [-h 'hosts'] [-t portsfile]
[-p ports] [-T timelimit]
```

or

```
opafindgood --help
```

**Options**

- **--help** Produces full help text.
- **-R** Skips the running test (SSH). Recommended if password-less SSH is not set up.
- **-A** Skips the active test. Recommended if Intel® Omni-Path Fabric software or fabric is not up.
- **-Q** Skips the quarantine test. Recommended if Intel® Omni-Path Fabric software or fabric is not up.
-d dir Directory in which to create alive, active, running, good, and bad files. Default is /etc/sysconfig/opa directory.

-f hostfile File with hosts in cluster. Default is /etc/sysconfig/opa/hosts directory.

-h hosts List of hosts to ping.

-t portsfile File with list of local HFI ports used to access fabric(s) for analysis. Default is /etc/sysconfig/opa/ports file.

-p ports List of local HFI ports used to access fabric(s) for analysis. The default is the first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0 First active port in system.

0:y Port y within system.

x:0 First active port on HFI x.

x:y HFI x, port y.

-T timelimit Time limit in seconds for host to respond to SSH. Default = 20 seconds.

**Environment Variables**

The following environment variables are also used by this command:

HOSTS List of hosts, used if -h option not supplied.

HOSTS_FILE File containing list of hosts, used in absence of -f and -h.

PORTS List of ports, used in absence of -t and -p.

PORTS_FILE File containing list of ports, used in absence of -t and -p.

FF_MAX_PARALLEL Maximum concurrent operations.

**Examples**

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opafindgood</td>
</tr>
<tr>
<td>opafindgood -f allhosts</td>
</tr>
<tr>
<td>opafindgood -h 'arwen elrond'</td>
</tr>
<tr>
<td>HOSTS='arwen elrond' opafindgood</td>
</tr>
<tr>
<td>HOSTS_FILE=allhosts opafindgood</td>
</tr>
<tr>
<td>opafindgood -p '1:1 2:1'</td>
</tr>
</tbody>
</table>
3.4.17 opasaquery

(All) Performs various queries of the subnet manager/subnet agent and provides
detailed fabric information.

opareport and opareports can provide a more powerful tool, however, in some
cases opasaquery is preferred, especially when dealing with virtual fabrics, service
records, and multicast.

The command opasaquery is installed on all hosts as part of the Intel® Omni-Path
Fabric Host Software, but it is also included in Intel® Omni-Path Fabric Suite
FastFabric Toolset.

By default, opasaquery uses the first active port on the local system. However, if the
Fabric Management Node is connected to more than one fabric (for example, a
subnet), the Intel® Omni-Path Host Fabric Interface (HFI) and port may be specified
to select the fabric whose SA is to be queried.

Syntax

[-s guid] [-n guid] [-g guid] [-k pkey] [-i vfIndex] [-S serviceId]
[-L sl] [-u gid] [-m gid] [-d name] [-P 'guid guid'] [-G 'gid gid']
[-a 'sguid...dguid...'] [-A 'sgid...dgid...']

or

opasaquery --help

--help

Produces full help text.

-v/--verbose

Returns verbose output. A second

invocation activates openib debugging, a

third invocation activates libibumad

debugging.

-I/--IB

Issues query in legacy InfiniBand* format.

-h/--hfi hfi

HFI, numbered 1..n. Using 0 specifies

that the -p port port is a system-wide

port number. Default is 0.

-p/--port port

Port, numbered 1..n. If -h hfi is 0, then

port is a system-wide port number.
Default is 1.

-o/--output type

Output type for query (default is node).
See Output Types for details.

-l/--lid lid

Query a specific LID.
-t/--type node_type  Query by node type. See Node Types for details.
-s/--sysguid system_image_guid  Query by system image GUID.
-n/--nodeguid node_guid  Query by node GUID.
-g/--portguid port_guid  Query by port GUID.
-k/--pkey pkey  Query a specific PKey.
-l/--vfindex vfindex  Query a specific vfindex.
-S/--serviceId serviceId  Query a specific service ID.
-L/--SL SL  Query by service level.
-u/--portgid port_gid  Query by port GID. See GIDs for details.
-m/--mcgid multicast_gid  Query by multicast GID. See GIDs for details.
-d/--desc node_description  Query by node name/description.
-P/--guidpair guid guid  Query by a pair of port GUIDs.
-G/--gidpair gid gid  Query by a pair of GIDs. See GIDs for details.
-a/--guidlist sguid ...;dguid ...  Query by a list of port GUIDs.
-A/--gidlist sgid ...;dgid ...  Query by a list of GIDs. See GIDs for details.

-h and -p options permit a variety of selections:

- h 0  First active port in system (default).
- h 0 -p 0  First active port in system.
- h x  First active port on HFI x.
- h x -p 0  First active port on HFI x.
- h 0 -p y  Port y within system (no matter which ports are active).
- h x -p y  HFI x, port y.
**Node Types**

- `fi`: Fabric Interface
- `sw`: Switch

**GIDs**

Specify a 64-bit subnet and 64-bit interface ID in the form: `subnet:interface`

For example:

```
0xfe80000000000000:0x00117500a0000380
```

**Output Types**

- `classportinfo`: classportinfo of the SA.
- `systemguid`: List of system image GUIDs.
- `nodeguid`: List of node GUIDs.
- `portguid`: List of port GUIDs.
- `lid`: List of LIDs.
- `desc`: List of node descriptions/names.
- `path`: List of path records.
- `node`: List of node records.
- `portinfo`: List of port info records.
- `sminfo`: List of SM info records.
- `swinfo`: List of switch info records.
- `link`: List of link records.
- `scsc`: List of SC to SC mapping table records.
- `slsc`: List of SL to SC mapping table records.
- `scsl`: List of SC to SL mapping table records.
- `scvlt`: List of SC to VLT table records.
- `scvlnt`: List of SC to VLnt table records.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlarb</td>
<td>List of VL arbitration table records.</td>
</tr>
<tr>
<td>pkey</td>
<td>List of PKey table records.</td>
</tr>
<tr>
<td>service</td>
<td>List of service records.</td>
</tr>
<tr>
<td>mcmember</td>
<td>List of multicast member records.</td>
</tr>
<tr>
<td>inform</td>
<td>List of inform info records.</td>
</tr>
<tr>
<td>linfdb</td>
<td>List of switch linear forwarding database (FDB) records.</td>
</tr>
<tr>
<td>ranfdb</td>
<td>List of switch random FDB records.</td>
</tr>
<tr>
<td>mcfdb</td>
<td>List of switch multicast FDB records.</td>
</tr>
<tr>
<td>trace</td>
<td>List of trace records.</td>
</tr>
<tr>
<td>vfinfo</td>
<td>List of vFabrics.</td>
</tr>
<tr>
<td>vinfo</td>
<td>List of vFabrics in CSV format.</td>
</tr>
<tr>
<td>vinfocsv</td>
<td>List of vFabrics in CSV format with enums.</td>
</tr>
<tr>
<td>quarantine</td>
<td>List of quarantined nodes.</td>
</tr>
<tr>
<td>coningfo</td>
<td>List of Congestion Info Records.</td>
</tr>
<tr>
<td>swcongset</td>
<td>List of Switch Congestion Settings.</td>
</tr>
<tr>
<td>hficonset</td>
<td>List of HFI Congestion Settings.</td>
</tr>
<tr>
<td>hficoncon</td>
<td>List of HFI Congestion Control Settings.</td>
</tr>
<tr>
<td>bfrctrl</td>
<td>List of buffer control tables.</td>
</tr>
<tr>
<td>cableinfo</td>
<td>List of Cable Info records.</td>
</tr>
<tr>
<td>portgroup</td>
<td>List of AR Port Group records.</td>
</tr>
<tr>
<td>portgroupfdb</td>
<td>List of AR Port Group FWD records.</td>
</tr>
</tbody>
</table>

The `vinfo` and `vinfo`v2 output formats are designed to make it easier to script `vfinfo` queries. One line is output per vFabric of the form:

```
name:index:pkey:sl:mtu:rate
```
The only difference between these two formats is how the MTU and rate are output. `vfinfocsv` outputs MTU and rate in human/text format, such as 2048 and 40g. `vfinfocsv2` outputs MTU and rate as the IBTA enumerations defined for the SMA protocol, such as 4 and 7. The `opagetvf` command can be a useful tool which is based on this capability of `opasquery`.

**Example**

```bash
opasquery -o desc -t f1
get list of node description records for HFIs
opasquery -o portinfo -l 2
get list of port info records for lid 2
opasquery -o pkey
get list of PKey table records
opasquery -o vlarb
get list of VL arbitration records
opasquery -o swinfo
get list of switch info records
opasquery -o slsc
get list of SL to SC mapping table records
opasquery -o scsl
get list of SC to SL mapping table records
```

**Input Options vs. Output Permitted**

The following list shows the input (assorted query by options) and outputs (-o) that are permitted.

**Note:** In this release, the combinations displayed in **bold** are currently not available. This includes the path-given input of node description, node type, system image GUID, node GUID, and port GUID list.

<table>
<thead>
<tr>
<th>None</th>
<th><code>o</code> output permitted</th>
<th><code>o</code> output not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>systemguid, nodeguid, portguid, lid, desc, path, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, vinfo, vfinfocsv, vfinfocsv2, vswinfo</td>
<td>trace</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>-t</code> node_type</td>
<td><code>o</code> output permitted</td>
<td>systemguid, nodeguid, portguid, lid, link, desc, path, node</td>
</tr>
</tbody>
</table>
-o output not permitted
portinfo, sminfo, swinfo, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, trace, vinfo, vinfocsv, vinfocsv2, vswinfo

-1 lid
-o output permitted
systemguid, nodeguid, portguid, lid, desc, path, node, portinfo, swinfo, slvl, vlarb, pkey, guids, service, mcmember, linfdb, ranfdb, mcfdb, vswinfo

-o output not permitted
sminfo, link, inform, trace, vinfo, vinfocsv, vinfocsv2

-k pkey
-o output permitted
mcmember, path, vinfo, vinfocsv, vinfocsv2

-o output not permitted
systemimageguid, nodeguid, portguid, lid, desc, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, vswinfo

-i vfindex
-o output permitted
vinfo, vinfocsv, vinfocsv2

-o output not permitted
systemimageguid, nodeguid, portguid, lid, desc, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, vswinfo

-s system_image_guid
-o output permitted
systemguid, nodeguid, portguid, lid, desc, path, node
Intel® Omni-Path Fabric—Descriptions of Command Line Tools

- **-o output not permitted**
  - portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, trace, vfinfo, vfinfocsv, vfinfocsv2, vswinfo

- **-n node_guid**
  - **-o output permitted**
    - systemguid, nodeguid, portguid, lid, desc, path, node

- **-g port_guid**
  - **-o output permitted**
    - systemguid, nodeguid, portguid, lid, desc, path, node, service, mcmember, inform, trace

- **-u port_gid**
  - **-o output permitted**
    - path, service, mcmember, inform, trace

- **-m multicast_gid**
  - **-o output permitted**
    - mcmember, vfinfo, vfinfocsv, vfinfocsv2
-o output not permitted  systemguid, nodeguid, portguid, lid, desc, path, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, inform, linfdb, ranfdb, mcfdb, trace, vswinfo

-d name

-o output permitted  systemguid, nodeguid, portguid, lid, desc, path, node

-0 output not permitted  trace

-P port_guid_pair

-0 output permitted  path, trace

-0 output not permitted  systemguid, nodeguid, portguid, lid, desc, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, vswinfo

-S serviceId

-0 output permitted  path, vfinfo, vfinfocsv, vfinfocsv2

-0 output not permitted  systemimageguid, nodeguid, portguid, lid, desc, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey, guids, service, mcmember, inform, linfdb, ranfdb, mcfdb, vswinfo

-L SL

-0 output permitted  path, vfinfo, vfinfocsv, vfinfocsv2

-0 output not permitted  systemimageguid, nodeguid, portguid, lid, desc, node, portinfo, sminfo, swinfo, link, slvl, vlarb, pkey,
opagetvf

Used for scripting application use of vFabrics, such as for mpirun parameters. You can query by VF Name, VF Index, Service ID, MGID, PKey, or SL. Fetches the Virtual Fabric info in a delimited format. Returns exactly one matching VF. When multiple VFs match the query, it prefers non-default VFs in which the calling server is a full member. If multiple choices remain, it returns the one with the lowest VF Index. Uses the same algorithm as the Distributed SA Plug-in (DSAP).
The tool can be used with additional scripts to help set PKey, SL, MTU, and Rate when running MPI jobs. Internally, this tool is based on the `opasaquery -o vfinfocsv` command.

**Syntax**

```
opagetvf [-h hfi] [-p port] [-e]
[-d vfname|-S serviceId|-m mcgid|-i vfIndex]
-k pkey|-L sl]
```

or

```
opagetvf --help
```

**Options**

```
--help Produces full help text.
-h hfi HFI to send by. Default is first HFI.
-p port Port to send by, default is first active port.
-e Output MTU and rate as enum values. 0 = unspecified.
-d vfname Queries by VirtualFabric Name.
-S serviceId Queries by Application ServiceId.
-m gid Queries by Application Multicast GID.
-i vfindex Queries by VirtualFabric Index.
-k pkey Queries by VirtualFabric PKey.
-L SL Queries by VirtualFabric SL.
```

**Examples**

```
opagetvf -d 'Compute'
opagetvf -h 2 -p 2 -d 'Compute'
```

**Sample Outputs**

The output is of the form: `name:index:pkey:sl:mtu:rate` as shown in the following example.

```
opagetvf -d Default
Default:0:0xffff:0:unlimited:unlimited
```
3.4.19 opagetvf_env

Provides opagetvf_func and opagetvf2_func shell functions that query the parameters of a vFabric. Also exports values that indicate the PKEY, SL, MTU, and RATE associated with the vFabric. This script is designed to be sourced into bash scripts.

A usage example is provided in /opt/opa/src/mpi_apps/ofed.openmpi.params

3.4.20 opagenswitches

Analyzes the present fabric and produces a list of Externally Managed switches in the required format for the /etc/sysconfig/opa/switches file.

Syntax


or

opagenswitches --help

Options

--help

Produces full help text.

-t portsfile

File with list of local HFI ports used to access fabric(s) for analysis. Default is /etc/sysconfig/opa/ports file.

-p ports

List of local HFI ports used to access fabrics for counter clear. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0 First active port in system.
0:y Port y within system.

x:0 First active port on HFI x.

x:y HFI x, port y.

-R

Does not attempt to get routes for computation of distance.

-s

Updates/resolves switch names using topology XML data.

-L switches_file

Specifies the name of a pre-existing switches_file to be used as input in conjunction with a topology file. When specified, the file is used instead of switches data obtained
from the actual fabric. The updated switches data is output to
stdout (common to all opagenswitches operations). Does not
generate switches data; must also use -s option.

-o output_file  Writes switches data to output_file. Default is stdout.

-T topology_file  Specifies topology_file to use. May contain '%P'. Must also
use -s.

Link data in the topology file is compared to actual fabric link
data (obtained by opareport -o links or opareport -X
snapshot -o links). The data is also matched to a list of
switch node GUIDs and the switch NodeDesc values are
generated. This list is then applied to the switches data to
update NodeDesc values. The comparison of topology link data
to actual fabric link data starts with the host names. The host
names in the actual fabric must match those in the topology
file for the comparison to succeed. However, the comparison
logic allows for some mismatches, which could be due to
swapped or missing cables. Switch NodeDesc values are
matched to GUIDs based on which switch has the greater
number of matching links.

-X snapshot_file  Uses snapshot_file XML for fabric link information.

-v level  Verbose level. Default = 0. Values include:

  0  No output.
  1  Progress output.
  2  Reserved.
  4  Time stamps.
  8  Reserved.

-K  Does not clean temporary files. Temporary files are CSV format
and contain lists of links used during script operation. The files
are not normally needed after execution, but they can be
retained for subsequent inspection or processing.

Environment

PORTS  List of ports, used in absence of -t and -p.

PORTS_FILE  File containing list of ports, used in absence of -t and -p.

FF_TOPOLOGY_FILE  File containing topology XML data, used in absence of -T.
Examples

opagenswitches
opagenswitches -p '1:1 2:1'
opagenswitches -o switches
opagenswitches -s -o switches
opagenswitches -L switches -s -o switches
opagenswitches -L switches -s -T topology.%P.xml
opagenswitches -L switches -s -T topology.%P.xml -X snapshot.%P.xml

3.4.21 opagenchassis

Generates a list of IPv4, IPv6, and/or TCP names in a format acceptable for inclusion in the /etc/sysconfig/opa/chassis file.

Syntax

opagenchassis [-t portsfile] [-p ports]

or

opagenchassis --help

Options

--help  Produces full help text.

-t portsfile  File with list of local HFI ports used to access fabric for analysis.
Default is /etc/sysconfig/opa/ports file.

-p ports  List of local HFI ports used to access fabrics for counter clear.
Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0  First active port in system.
0:y  Port y within system.
x:0  First active port on HFI x.
x:y  HFI x, port y.

Environment

PORTS  List of ports, used in absence of -t and -p.

PORTS_FILE  File containing list of ports, used in absence of -t and -p.
Examples

opagenchassis
opagenchassis -p '1:1 2:1'
opagenchassis >> /etc/sysconfig/opa/chassis

Or while editing the file, use a vi command to include its output, such as:

: r! opagenchassis

3.4.22 opagenesmchassis

Generates a list of chassis IPv4 and IPv6 addresses and/or TCP names where the
Embedded Subnet Manager (ESM) is running, in a format acceptable for inclusion in
the /etc/sysconfig/opa/esm_chassis file. This tool uses opagenchassis
output to iterate through all the chassis.

Syntax

opagenesmchassis [-u user] [-S] [-t portsfile] [-p ports]

or

opagenesmchassis --help

Options

--help           Produces full help text.

-u user          User to perform command as. For chassis, the default is admin.

-S               Securely prompts for password for user on chassis.

-t portsfile     File with a list of local HFI ports used to access fabric(s) for analysis.
                 Default is /etc/sysconfig/opa/ports

-p ports         List of local HFI ports used to access fabric(s). Default is first active
                 port. The first HFI in the system is 1. The first port on an HFI is 1.
                 Uses the format hfi:port, for example:

                 0:0  First active port in system.

                 0:y  Port y within system.

                 x:0  First active port on HFI x.

                 x:y  HFI x, port y.
Environment

FF_CHASSIS_ADMIN_PASSWORD Password for chassis, used in absence of -S.
PORTS List of ports, used in absence of -t and -p.
PORTS_FILE File containing list of ports, used in absence of -t and -p.

Examples

opagenesmchassis
opagenesmchassis -S -p '1:1 2:1'

Alternatively, while editing the file, use a vi command to include the output such as:

:r! opagenesmchassis

3.4.23 opafequery

(AII) Used for testing or debugging performance administration (PA) operations to the Fabric Executive (FE). This tool performs custom PA client/server queries. The output formats and arguments are very similar to opapaquery.

Syntax

opafequery [-v] [-a ipAddr | -h hostName] [-E] [-T paramsfile] -o type [SA options | PA options]

General Options

-v/--verbose Verbose output.
-a/--ipAddr ipAddr IP address of node running the FE.
-h/--hostName hostName Host name of node running the FE.
-o/--output output Output type. See SA Output Types and PA Output Types for details.
-E/--feEsm ESMName ESM FE name.
-T/--sslParmsFile filename SSL/TLS parameters XML file. Default = /etc/sysconfig/opa/opaff.xml

SA Specific Options

-I/--IB Issues query in legacy InfiniBand* format.
-l/--lid lid
Queries a specific LID.

-k/--pkey pkey
Queries a specific pkey.

-I/--vfindex vfindex
Queries a specific vfindex.

-S/--serviceId serviceId
Queries a specific service ID.

-L/--SL SL
Queries by service level.

-t/--type type
Queries by node type.

-s/--sysguid guid
Queries by system image GUID.

-n/--nodeguid guid
Queries by node GUID.

-p/--portguid guid
Queries by port GUID.

-u/--portgid gid
Queries by port GID.

-m/--mcgid gid
Queries by multicast GID.

-d/--desc name
Queries by node name/description.

-P/--guidpair 'guid guid'
Queries by a pair of port GUIDs.

-G/--gidpair 'gid gid'
Queries by a pair of GIDs.

-B/--guidlist 'sguid ...;dguid ...'
Queries by a list of port GUIDs.

-A/--gidlist 'sgid ...;dgid ...'
Queries by a list of GIDs.

-x/--sourcegid gid
Specifies a source GID for certain queries.

---PA Specific Options---

-g/--groupName groupName
Group name for groupInfo query.

-L/--lid lid
LID of node for portCounters query.

-N/--portNumber
Port number for portCounters query.

-f/--delta
Delta flag for portCounters query. Values include: 0 or 1.

-U/--userCntrs
User-controlled counters flag for portCounters query.
-e/--select

32-bit select flag for clearing port counters select bits. 0 is least significant (rightmost):

0  XmitData
1  RcvData
2  XmitPkts
3  RcvPkts
4  MulticastXmitPkts
5  MulticastRcvPkts
6  XmitWait
7  CongDiscards
8  RcvFECN
9  RcvBECN
10 XmitTimeCong
11 XmitWastedBW
12 XmitWaitData
13 RcvBubble
14 MarkFECN
15 RcvConstraintErrors
16 RcvSwitchRelayErrors
17 XmitDiscards
18 XmitConstraintErrors
19 RcvRemotePhysicalErrors
20 LocalLinkIntegrityErrors
21 RcvErrors
22 ExcessiveBufferOverruns
23 FMConfigErrors
24 LinkErrorRecovery
25 LinkDowned
26 UncorrectableErrors

-\(--focus focus\) Focus select value for getting focus ports. Values include:

0x00020001  Sorted by utilization - highest first.
0x00020082  Sorted by packet rate - highest first.
0x00020101  Sorted by utilization - lowest first.
0x00030001  Sorted by integrity errors - highest first.
0x00030002  Sorted by congestion errors - highest first.
0x00030003  Sorted by SMA congestion errors - highest first.
0x00030004  Sorted by bubble errors - highest first.
0x00030005  Sorted by security errors - highest first.
0x00030006  Sorted by routing errors - highest first.

-\(--start\) Start of window for focus ports - should always be 0.

-\(--range range\) Size of window for focus ports list.

-\(--imgNum\) 64-bit image number. May be used with groupInfo, groupConfig, portCounters (delta) outputs.

-\(--imgOff\) Image offset. May be used with groupInfo, groupConfig, portCounters (delta) outputs.

-\(--moveImgNum\) 64-bit image number. Used with moveFreeze output to move a freeze image.

-\(--moveImgOff\) Image offset. May be used with moveFreeze output to move a freeze image.

-\(--vfName\) VF name for vfInfo query.

**SA Output Types**

Output types include:
saclassPortInfo  Class port info.
systemguid     List of system image GUIDs.
nodeguid       List of node GUIDs.
portguid       List of port GUIDs.
lid            List of LIDs.
desc           List of node descriptions/names.
path           List of path records.
node           List of node records.
portinfo       List of port info records.
sminfo         List of SM info records.
swinfo         List of switch info records.
link           List of link records.
scsc           List of SC to SC mapping table records.
slsc           List of SL to SC mapping table records.
sclsl          List of SC to SL mapping table records.
sclvt          List of SC to VLt table records.
sclvlnl        List of SC to VLnt table records.
vlarb          List of VL arbitration table records.
pkey           List of PKey table records.
service        List of service records.
mcmember       List of multicast member records.
inform         List of inform info records.
linfdb         List of switch linear forwarding database (FDB) records.
rangfdb        List of switch random FDB records.
mcfdb          List of switch multicast FDB records.
trace List of trace records.
vfinfo List of vFabrics.
vinfocsv List of vFabrics in CSV format.
vinfocsv2 List of vFabrics in CSV format with enums.
fabricinfo Summary of fabric devices.
quarantine List of quarantined nodes.
conginfo List of Congestion Info Records.
swcongset List of Switch Congestion Settings.
hficonset List of HFI Congestion Settings.
hficoncon List of HFI Congestion Control Settings.
bfrctrl List of buffer control tables.
cableinfo List of Cable Info records.
portgroup List of AR Port Group records.
portgroupfdb List of AR Port Group FWD records.

**PA Output Types**

paclassPortInfo Class port info.
groupList List of PA groups.
groupInfo Summary statistics of a PA group. Requires -g option for
groupName.
groupConfig Configuration of a PA group. Requires -g option for
groupName.
portCounters Port counters of fabric port. Requires -l lid and -N port
options. Optionally, use the -f delta option.
clrPortCounters Clears port counters of fabric port. Requires -l lid, -N
port, and -e select options.
clrAllPortCounters Clears all port counters in fabric.
pmConfig Retrieves PM configuration information.
freezeImage  Creates freeze frame for image ID. Requires -b imgNum.
releaseImage  Releases freeze frame for image ID. Requires -b imgNum.
renewImage  Renews lease for freeze frame for image ID. Requires -b imgNum.
movFreeze  Moves freeze frame from image ID to new image ID. Requires -b imgNum and -F moveImgNum.
focusPorts  Gets sorted list of ports using utilization or error values (from group buckets).
imageInfo  Gets information about a PA image (timestamps and other details). Requires -b imgNum.

vfList  List of virtual fabrics.

vfInfo  Summary statistics of a virtual fabric. Requires -V vfName option.

vfConfig  Configuration of a virtual fabric. Requires -V vfName option.

vfPortCounters  Port counters of fabric port. Requires -V vfName, -l lid, and -N port options. Optionally, use the -f delta option.

vfFocusPorts  Gets sorted list of virtual fabric ports using utilization or error values (from VF buckets). Requires -V vfName option.

clrVfPortCounters  Clears VF port counters of fabric port. Requires -l lid, -N port, -e select, and -V vfName options.

**Examples**

```
opafequery -o classPortInfo
opafequery -h stewie -o classPortInfo
opafequery -a 172.21.2.155 -o classPortInfo
opafequery -o portList
opafequery -o groupInfo -g All
opafequery -o groupConfig -g All
opafequery -h stewie -o groupInfo -g All
opafequery -a 172.21.2.155 -o groupInfo -g All
opafequery -o portCounters -l 1 -P 1 -d 1
opafequery -o portCounters -l 1 -P 1 -d 1 -n 0x20000000d02 -O 1
opafequery -o pmConfig
opafequery -o freezeImage -n 0x20000000d02
opafequery -o releaseImage -n 0xd01
opafequery -o renewImage -n 0xd01
opafequery -o moveFreeze -n 0xd01 -m 0x20000000d02 -M -2
opafequery -o focusPorts -g All -f 0x00030001 -S 0 -r 20
opafequery -o imageInfo -n 0x20000000d02
```
3.4.24 opasmaquery

(All) Performs Intel® Omni-Path Architecture-defined SMA queries and displays the resulting response. Each query is issued directly to the SMA and does not involve SM interaction.

Syntax

```
```

or

```
opasmaquery --help
```

--help Produces full help text.

**Standard Options**

- **-v** Returns verbose output. Can be specified more than once for additional openib and libibumad debugging.

- **-d detail** Output detail level for cableinfo only. Range = 0 - n. Default = 2. An upper limit for detail level is not enforced. After a maximum amount of output is reached, a larger detail value has no effect.

- **-g** Displays line-by-line format. Default is summary format.

- **-l lid** Destination LID. Default is local port.

- **-h hfi** HFI, numbered 1..n. Using 0 specifies that the -p port port is a system-wide port number. Default is 0.

- **-p port** Port, numbered 1..n. If -h hfi is 0, then port is a system-width port number. Default is 1.

- **-K mkey** SM management key to access remote ports.

- **-o otype** Output type. Default is nodeinfo.

Valid output types are:

- **bfrctrl** Buffer control tables.
  
  ```
 [-m dest_port] [-m port1, port2]
  ```

- **cableinfo** Cable information.
  
  ```
 [-d detail] [-m dest_port] [-b block[,count]]
  ```
conginfo             Congestion information.
desc or nodedesc    Node descriptions/names.
hficongcon          HFI congestion control settings.
                     [-b block[,count]] [-f flid]
hficonglog          HFI congestion logs.
                     [-b block[,count]]
hficongset          HFI congestion settings.
linfdb               Switch linear forwarding database (FDB) tables.
                     [-b block[,count]] [-f flid]
mcfdb                Switch multicast FDB tables.
                     [-m dest_port] [-b block[,count]] [-f flid]
portgroup            Adaptive Routing port groups.
                     [-b block[,count]]
portgroupfdb         Adaptive Routing port group FWD tables.
                     [-b block[,count]] [-f flid]
nodeaggr             Node information and node descriptions.
node or nodeinfo     Node information.
                     [-m dest_port]
portinfo             Port information.
                     [-m dest_port]
pstateinfo           Switch port state information.
                     [-m dest_port] [-m port1,port2]
pkey                 P-Key tables.
                     [-m dest_port] [-b block[,count]]
slsc                 SL to SC mapping tables.
scsl                 SC to SL mapping tables.
SC to SC mapping tables.

[-m dest_port] [-m port1, port2]

SC to VLT tables.

[-m dest_port] [-m port1, port2]

SC to VLnt tables.

[-m dest_port] [-m port1, port2]

SM information.

Node information and switch information.

Switch congestion logs.

[-b block[,count]]

Switch congestion settings.

Switch information.

Switch congestion settings.

[-b block[,count]]

VL arbitration tables.

[-m dest_port]

IB node information.

LED information.

[-m dest_port]

-h and -p options permit a variety of selections:

-h 0 First active port in system (default).

-h 0 -p 0 First active port in system.

-h x First active port on HFI x.

-h x -p 0 First active port on HFI x.

-h 0 -p y Port y within system (no matter which ports are active).
-h x -p y  HFI x, port y

otype options vary by report

-m port    Port in destination device to query.
-m port1,port2  For some reports, a range of ports between port1 and port2.
                 For others, this describes an inport/outport pair.
-f flid     LID to look up in forwarding table to select which LFT or MFT
             block to display. Default is to show entire table.
-b block[,count]  Block number of either GUIDs, pkey, or RANFDB, and the
                 number of blocks to display. Default is to show entire table.

For example:

-b block  Displays all of block block of a larger table.
-b block,count  Displays count blocks of data starting
                with block block.
-b, count   Displays count blocks of data starting
            with block 0.

Examples

opasmaquery -o nodedesc -l 6
# get nodedesc via lid routed
opasmaquery -o nodedesc 1 3
# get nodedesc via directed route (2 dr hops)
opasmaquery -o nodeinfo -l 1 2 3
# get nodeinfo via a combination of lid routed and directed route (1 dr hop)
opasmaquery -o portinfo
# get local port info
opasmaquery -o portinfo -l 6 -m 1
# get port info of port 1 of lid 6
opasmaquery -o pkey -l 2 3
# get pkey table entries starting (lid routed to lid 2, then 1 dr hop to port 3
opasmaquery -o slvl -l 6
# get slvl of CA at lid 6
opasmaquery -o vlarb -l 6
# get vlarb table entries from lid 6
opasmaquery -o swinfo -l 2
# get switch info
opasmaquery -o sminfo -l 1
# get SM info
opasmaquery -o slsc -l 3
# get sl2sc table entries from lid 3
opasmaquery -o scsl -l 3
# get sc2sl table entries from lid 3
**3.4.25 opapaquery**

(All) Performs various queries of the performance management (PM)/performance administration (PA) agent and provides details about fabric performance. Refer to the *Intel® Omni-Path Fabric Suite Fabric Manager User Guide* for a description of the operation and client services of the PM/PA.

opapaquery’s operation is dependent on an Intel® Omni-Path Fabric Suite Fabric Manager version 6.0 or greater running as master SM/PM in the fabric.

By default, opapaquery uses the first active port on the local system. However, if the Fabric Management Node is connected to more than one fabric (for example, a subnet), the HFI and port may be specified to select the fabric whose PA is to be queried.

**Syntax**

```
opapaquery [-v] [-h hfi] [-p port] -o type [-g groupName] [-l nodeLid]
 [-P portNumber] [-d delta] [-s select] [-f focus] [-S start]
 [-r range] [-n imgNum] [-O imgOff] [-m moveImgNum] [-M moveImgOff]
 [-V vfName]
```

- **-v/---verbose**  
  Verbose output.

- **-h/---hfi hfi**  
  HFI, numbered 1..n. Using 0 specifies that the -p port port is a system-wide port number. (Default is 0.)

- **-p/---port port**  
  Port, numbered 1..n. If -h hfi is 0, then port is a system-wide port number. (Default is 1.)

- **-o/---output type**  
  Output type, default is groupList. See Output Types on page 118.

- **-g/---groupName groupName**  
  Group name for groupInfo query.

- **-l/---lid lid**  
  LID of node for portCounters query.

- **-P/---portNumber portNumber**  
  Port number for portCounters query.

- **-d/---delta delta**  
  Delta flag for portCounters query - 0 or 1.

- **-s/---select select**  
  32-bit select flag for clearing port counters.

Select bits for clrPortCounters. 0 is least significant (rightmost).

*clrPortCounters bit descriptions:*

- 31 - XmitData
- 30 - RcvData
• 29 - XmitPkts
• 28 - RcvPkts
• 27 - MulticastXmitPkts
• 26 - MulticastRcvPkts
• 25 - XmitWait
• 24 - CongDiscards
• 23 - RcvFECN
• 22 - RcvBECN
• 21 - XmitTimeCong
• 20 - XmitWastedBW
• 19 - XmitWaitData
• 18 - RcvBubble
• 17 - MarkFECN
• 16 - RcvConstraintErrors
• 15 - RcvSwitchRelayErrors
• 14 - XmitDiscards
• 13 - XmitConstraintErrors
• 12 - RcvRemotePhysicalErrors
• 11 - LocalLinkIntegrityErrors
• 10 - RcvErrors
• 09 - ExcessiveBufferOverruns
• 08 - FMConfigErrors
• 07 - LinkErrorRecovery
• 06 - LinkDowned
• 05 - UncorrectableErrors
• 4-0 - reserved

Select bits for clrVfPortCounters. 0 is least significant (rightmost).

clrVfPortCounters bit descriptions:
• 31 - VLXmitData
• 30 - VLRcvData
• 29 - VLXmitPkts
• 28 - VLRcvPkts
• 27 - VLXmitDiscards
• 26 - VLCongDiscards
• 25 - VLXmitWait
• 24 - VLRcvFECN
23 - VLRcvBECN
22 - VLXmitTimeCong
21 - VLXmitWastedBW
20 - VLXmitWaitData
19 - VLRcvBubble
18 - VLMarkFECN
17-0 - reserved

-f/--focus focus
Focus select value for getting focus ports.

focus select values:

0x00020001  Sorted by utilization - highest first.
0x00020081  Sorted by packet rate - highest first.
0x00020101  Sorted by utilization - lowest first.
0x00030001  Sorted by integrity errors - highest first.
0x00030002  Sorted by SMA congestion errors - highest first.
0x00030003  Sorted by congestion errors - highest first.
0x00030004  Sorted by security errors - highest first.
0x00030005  Sorted by routing errors - highest first.
0x00030006  Sorted by adaptive routing - highest first.

-S/--start start
Start of window for focus ports, should always be 0.

-r/--range range
Size of window for focus ports list.

-n/--imgNum imgNum
64-bit image number. Can be used with groupInfo, groupConfig, portCounters (delta).

-O/--imgOff imgOff
Image offset. Can be used with groupInfo, groupConfig, portCounters (delta).

-m/--moveImgNum moveImgNum
64-bit image number. Used with moveFreeze to move a freeze image.

-M/--moveImgOff moveImgOff
Image offset. Can be used with moveFreeze to move a freeze image.
-V/--vfName vfName  VF name for vfInfo query.

-h and -p options permit a variety of selections:

- h 0  First active port in system (default).
- h 0 -p 0  First active port in system.
- h x  First active port on HFI x.
- h x -p 0  First active port on HFI x.
- h 0 -p y  Port y within system (no matter which ports are active).
- h x -p y  HFI x, port y.

Output Types

classPortInfo  Class port info.
groupList  List of PA groups.
groupInfo  Summary statistics of a PA group. Requires -g option for groupName.
groupConfig  Configuration of a PA group. Requires -g option for groupName.
portCounters  Port counters of fabric port. Requires -l lid and -P port options, -d delta is optional.
clrPortCounters  Clears port counters of fabric port. Requires -l lid and -P port, and -s select options.
clrAllPortCounters  Clears all port counters in fabric.
pmConfig  Retrieves PM configuration information.
freezeImage  Creates freeze frame for image ID. Requires -n imgNum.
releaseImage  Releases freeze frame for image ID. Requires -n imgNum.
renewImage  Renews lease for freeze frame for image ID. Requires -n imgNum.
moveFreeze  Moves freeze frame from image ID to new image ID. Requires -n imgNum and -m moveImgNum.
focusPorts  Gets sorted list of ports using utilization or error values (from group buckets).

imageInfo  Gets configuration of a PA image (timestamps, etc.). Requires \(-n\) \(imgNum\).

vfList  List of virtual fabrics.

vfInfo  Summary statistics of a virtual fabric. Requires \(-V\) option for \(vfName\).

vfConfig  Configuration of a virtual fabric. Requires \(-V\) option for \(vfName\).

vfPortCounters  Port counters of fabric port. Requires \(-V\) \(vfName\), \(-l\) \(lid\) and \(-P\) \(port\) options, \(-d\) \(delta\) is optional.

vfFocusPorts  Gets sorted list of virtual fabric ports using utilization or error values (from VF buckets). Requires \(-V\) \(vfname\).

clrVfPortCounters  Clears VF port counters of fabric port. Requires \(-l\) \(lid\), \(-P\) \(port\), \(-s\) \(select\), and \(-V\) \(vfname\) options.

**Examples**

```
opapaquery -o classPortInfo
opapaquery -o groupList
opapaquery -o groupInfo -g All
opapaquery -o groupConfig -g All
opapaquery -o portCounters -l 1 -P 1 -d 1
opapaquery -o portCounters -l 1 -P 1 -d 1 -n 0x200000000d02 -O 1
opapaquery -o clrPortCounters -l 1 -P 1 -s 0xC0000000
 # clears XmitData & RcvData
opapaquery -o clrAllPortCounters -s 0xC0000000
 # clears XmitData & RcvData on all ports
opapaquery -o PMConfig
opapaquery -o freezeImage -n 0x200000000d02
opapaquery -o releaseImage -n 0xd01
opapaquery -o renewImage -n 0xd01
opapaquery -o moveFreeze -n 0xd01 -m 0x200000000d02 -M -2
opapaquery -o focusPorts -g All -f 0x00300001 -s 0 -r 20
opapaquery -o imageInfo -n 0x200000000d02
opapaquery -o vfList
opapaquery -o vfInfo -V Default
opapaquery -o vfConfig -V Default
opapaquery -o vfPortCounters -l 1 -P 1 -d 1 -V Default
opapaquery -o clrVfPortCounters -l 1 -P 1 -s 0xC0000000
 # clears VLXmitData & VLRcvData
opapaquery -o vFocusPorts -V Default -f 0x00300001 -s 0 -r 20
```

### 3.4.26 opapaquery

**(All)** Performs individual PMA queries against a specific LID. It is very useful in displaying port runtime information.
Syntax

```
[-m port] [-n mask] [-e mask] [-w mask]
```

- **-v**  
  Verbose output. Can be specified more than once for additional openib debugging and libibumad debugging.

- **-s sl**  
  Specifies different service level. Default is 0.

- **-l lid**  
  Destination LID. Default is local port.

- **-h hfi**  
  HFI, numbered 1..n. Using 0 specifies that the -p port is a system-wide port number. Default is 0.

- **-p port**  
  Port, numbered 1..n. If -h hfi is 0, then port is a system-wide port number. Default is first active port.

- **-o otype**  
  Output type. Default is getportstatus.

Valid output types are:

- **classportinfo**  
  List of port info records.

- **getportstatus**  
  List of port status records.
  
  ```
 [-m port] [-w vl mask]
  ```

- **clearportstatus**  
  Clears the port status.
  
  ```
 [-n port mask] [-e counter mask] [-w vl mask]
  ```

- **getdatacounters**  
  List of data counters.
  
  ```
 [-n port mask] [-w vl mask]
  ```

- **geterrorcounters**  
  List of error counters.
  
  ```
 [-n port mask] [-w vl mask]
  ```

- **geterrorinfo**  
  List of error info.
  
  ```
 [-n port mask]
  ```

- **clearerrorinfo**  
  Clears the error info.
  
  ```
 [-n port mask] [-e counter mask]
  ```
-h and -p options permit a variety of selections:

- **-h 0**  
  First active port in system (default).

- **-h 0 -p 0**  
  First active port in system.

- **-h x**  
  First active port on HFI x.

- **-h x -p 0**  
  First active port on HFI x.

- **-h 0 -p y**  
  Port y within system (no matter which ports are active).

- **-h x -p y**  
  HFI x, port y.

**otype options vary by report**

- **-m port**  
  Port in destination device to query/clear. Required when using -l option for all but -o classportinfo.

- **-n mask**  
  Port mask, in hexadecimal. Bits represent ports 63-0. For example: 0x2 for port 1, 0x6 for ports 1, 2.

- **-e mask**  
  Counter/error select mask, in hexadecimal. Bit positions are in the following list. Default is all bits set (0xffffffff0).

  0x80000000  
  For Counters: Xmit Data
  For Error Info: Rcv Error Info

  0x40000000  
  For Counters: Rcv Data
  For Error Info: Excessive Buffer Overrun

  0x20000000  
  For Counters: Xmit Pkts
  For Error Info: Xmit Const Error Info

  0x10000000  
  For Counters: Rcv Pkts
  For Error Info: Rcv Const Error Info

  0x08000000  
  For Counters: Multicast Xmit Pkts
  For Error Info: Rcv Switch Relay Error Info

  0x04000000  
  For Counters: Multicast Rcv Pkts
  For Error Info: Uncorrectable Error Info

  0x02000000  
  For Counters: Xmit Wait
  For Error Info: FM Config Error Info
0x01000000 For Counters: Congestion Discards
0x00800000 For Counters: Rcv FECN
0x00400000 For Counters: Rcv BECN
0x00200000 For Counters: Xmit Time Cong.
0x00100000 For Counters: Xmit Time Wasted BW
0x00080000 For Counters: Xmit Time Wait Data
0x00040000 For Counters: Rcv Bubble
0x00020000 For Counters: Mark FECN
0x00010000 For Counters: Rcv Constraint Errors
0x00008000 For Counters: Rcv Switch Relay
0x00004000 For Counters: Xmit Discards
0x00002000 For Counters: Xmt Constraint Errors
0x00001000 For Counters: Rcv Rmt Phys. Errors
0x00000800 For Counters: Local Link Integrity
0x00000400 For Counters: Rcv Errors
0x00000200 For Counters: Exc. Buffer Overrun
0x00000100 For Counters: FM Config Errors
0x00000080 For Counters: Link Error Recovery
0x00000040 For Counters: Link Error Downed
0x00000020 For Counters: Uncorrectable Errors

-w mask Virtual Lane Select Mask, in hexadecimal. Bits represent VL number 31-0. For example, 0x1 for VL 0, 0x3 for VL 0,1. Default is none.

Examples

opapmaquery -o classportinfo
# get PMA classportinfo
opapmaquery -o getportstatus
# get data and error counts, local port
opapmaquery -o getdatacounters -n 0x2
# get data counts, local port 1
opapmaquery -o geterrorcounters -n 0x2
### Additional Examples

For device at LID 6, get data counters on ports 1-6, inclusive of VL 0 data:

```bash
opapmaquery -o getdatacounters -l 6 -n 0x7e -w 0x1
```

For device at LID 6, on port 1, clear only error counters:

```bash
opapmaquery -o clearportstatus -l 6 -n 0x2 -e 0x1ffff
```

For device at LID 6, on ports 1, clear uncorrectable error info:

```bash
opapmaquery -o clearerrorinfo -l 6 -n 0x2 -e 0x04000000
```

#### 3.4.27 opaextractbadlinks

Produces a CSV file listing all or some of the links that exceed `opareport -o error` thresholds. `opaextractbadlinks.sh` is a front end to the `opareport` tool. The output from this tool can be imported into a spreadsheet or parsed by other scripts.

**Syntax**

```bash
opaextractbadlinks [--help] [opareport options]
```

or

```bash
opaextractbadlinks --help
```

**Options**

`opareport options` Options are passed to `opareport`. See `opareport` for the full set of options.

**Examples**

```bash
List all the bad links in the fabric:
opapmaquery.sh
```

```bash
List all the bad links to a switch named "OmniPth00117501ffffffff":
opaextractbadlinks.sh -F "node:OmniPth00117501ffffffff"
```

```bash
List all the bad links to end-nodes:
opapmaquery.sh -F "nodetype:FI"
```

```bash
List all the bad links on the 2nd HFI's fabric of a multi-plane fabric:
opapmaquery.sh -h 2
```
3.4.28 opaextractlids

Produces a CSV file listing all or some of the LIDs in the fabric. `opaextractlids.sh` is a front end to the `opareport` tool. The output from this tool can be imported into a spreadsheet or parsed by other scripts.

**Syntax**

```
opaextractlids [--help] [opareport options]
```

**Options**

--help Produces full help text.

`opareport options` Options are passed to `opareport`. See `opareport` for the full set of options.

**Examples**

```bash
List all the lids in the fabric:
opaextractlids.sh

List all the lids of end-nodes:
opaextractlids.sh -F "nodetype:FI"

List all the lids on the 2nd HFI's fabric of a multi-plane fabric:
opaextractlids.sh -h 2
```

3.4.29 opadisableports

(UNIX) Accepts a CSV file listing links to disable. For each HFI-SW link, the switch side of the link is disabled. For each SW-SW link, the side of the link with the lower LID (typically, the side closest to the SM) is disabled. This approach generally permits a future `opaenableports` operation to re-enable the port once the issue is corrected or ready to be retested. When using the `-R` option, this tool does not look at the routes, it disables the switch ports with the lower value LID. The list of disabled ports is tracked in `/etc/sysconfig/opa/disabled*.csv`.

**Syntax**

```
opadisableports [-R] [-t portsfile] [-p ports] [reason] < disable.csv
```

or

```
opadisableports --help
```

**Options**

--help Produces full help text.
-R  Does not attempt to get routes for computation of distance. Instead, disables switch port with lower LID assuming that it is closer to this node.

-t  File with list of local HFI ports used to access fabric(s) for operation. Default is /etc/sysconfig/opa/ports.

-p  List of local HFI ports used to access fabric(s) for analysis. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0  First active port in system.
0:y  Port y within system.
x:0  First active port on HFI x.
xy  HFI x, port y.

reason  Optional text describing why ports are being disabled. If used, text is saved at the end of any new lines in the disabled file. For ports already in the disabled file, this is ignored.

disable.csv  File listing the links to disable. The list is of the form: NodeGUID; PortNum; NodeType; NodeDesc; NodeGUID; PortNum; NodeType; NodeDesc; Reason

For each listed link, the switch port with the lower LID (closer to the SM) is disabled. The reason field is optional. The reason field and any additional fields provided are saved in the disabled file. An input file such as this can be generated by using opaextractbadlinks or opaextractsellinks.

Environment

The following environment variables are also used by this command:

PORTS  List of ports, used in absence of -t and -p.

PORTS_FILE  File containing list of ports, used in absence of -t and -p.

Examples

- opadisableports 'bad cable' < disable.csv
- opadisableports -p '1:1 2:1' 'dead servers' < disable.csv
3.4.30 **opaenableports**

**Linux** Accepts a disabled ports input file and re-enables the specified ports. The input file can be /etc/sysconfig/op/opa/disabled*.csv or a user-created subset of such a file. After enabling the port, it is removed from /etc/sysconfig/op/opa/disabled*.csv.

**Syntax**

opaenableports [-t portsfile] [-p ports] < disabled.csv

or

opaenableports --help

**Options**

--help Produces full help text.

-t portsfile File with list of local HFI ports used to access fabric for operation. Default is /etc/sysconfig/op/opa/ports file.

-p ports List of local HFI ports used to access fabric for analysis. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0 First active port in system.

0:y Port y within system.

x:0 First active port on HFI x.

x:y HFI x, port y.

disable.csv File listing the ports to enable. The list is of the form: NodeGUID;PortNum;NodeDesc.

An input file like this is generated in /etc/sysconfig/op/opa/disabled* by opadisableports.

**Examples**

opaenableports < disabled.csv
opaenableports -p '1:1 2:1' < disabled.csv

**Environment**

The following environment variables are also used by this command:
PORTS List of ports, used in absence of -t and -p.

PORTS_FILE File containing list of ports, used in absence of -t and -p.

3.4.31 opadisablehosts

(Linux) Searches for a set of hosts in the fabric and disables their corresponding switch port.

**Syntax**

```
opadisablehosts [-h hfi] [-p port] reason host ...
```

or

```
opadisablehosts --help
```

**Options**

---help Produces full help text.

-h hfi HFI to send through. The default is the first HFI.

-p port Port to send through. The default is the first active port.

reason Text describing the reason hosts are being disabled. reason is saved at the end of any new lines in disabled file. For ports already in disabled file, this is ignored.

**Examples**

```
opadisablehosts 'bad DRAM' compute001 compute045

opadisablehosts -h 1 -p 2 'crashed' compute001 compute045
```

3.4.32 opachassisadmin

(Switch) Performs a number of multi-step chassis initialization and verification operations, including initial chassis setup, firmware upgrades, chassis reboot, and others.

**Syntax**

```
opachassisadmin [-c] [-F chassisfile] [-H 'chassis']
[-a action] [-I fm_bootstate] [-S] [-d upload_dir] [-s securityfiles] operation ...
```

or

```
opachassisadmin --help
```
Options

--help
Produces full help text.

-c
Clobbers result files from any previous run before starting this run.

-F chassisfile
File with chassis in cluster. The default is /etc/sysconfig/opa/chassis.

-H chassis
List of chassis to execute the operation against.

-P packages
Filenames and directories of firmware images to install. For directories specified, all .pkg files in directory tree are used. shell wild cards may also be used within quotes, or for fmconfig, filename of FM config file to use, or for fmgetconfig, filename to upload to (default opafm.xml).

-a action
Action for supplied file. The default is push.

For chassis upgrade:
- push Ensures firmware is in primary or alternate.
- select Ensures firmware is in primary.
- run Ensures firmware is in primary and running.

For chassis fmconfig:
- push Ensures the configuration file is in chassis.
- run After push, restarts FM on master, stops on secondary.
- runall After push, restarts FM on all management modules.

For chassis fmcontrol:
- stop Stops FM on all management modules.
- run Ensures FM running on master, stopped on secondary.
- runall Ensures FM running on all management modules.
restart
  Restarts FM on master, stops
  on secondary.

restartall
  Restarts FM on all MM.

For chassis

fmsecurityfiles:
  push
  Ensures FM security files
  are in chassis.

-I fm_bootstate
  fmconfig and fmcontrol install options.

disable
  Disables FM start at chassis boot.

enable
  Enables FM start on master at chassis boot.

enableall
  Enables FM start on all MM at chassis boot.

-d upload_dir
  Directory to upload FM configuration files to; default is
  uploads.

-S
  Securely prompts for password for user on chassis.

-s securityFiles
  Security files to install. Default is *.pem.

For Chassis fmsecurityfiles:
  filenames/directories of
  security files to install. For directories specified, all security files
  in directory tree are used. Shell wildcards may also be used
  within quotes.

For Chassis fmgetsecurityfiles, filename to upload to.
  Default is *.pem

operation
  Operation to perform. Can be one or more of:

reboot
  Reboots chassis, ensures they go down
  and come back.

configure
  Runs wizard to perform chassis
  configuration.

upgrade
  Upgrades install of all chassis.

getconfig
  Gets basic configuration of chassis.

fmconfig
  FM configuration operation on all
  chassis.
fmgetconfig  Fetches FM configuration from all chassis.

fmcontrol  Controls FM on all chassis.

fmsecurityfiles  FM security files operation on all chassis.

fmgetsecurityfiles  Fetches FM security files from all chassis.

For more information on the operations that can be performed, see opachassisadmin operation Details.

Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>opachassisadmin -c reboot</td>
<td></td>
</tr>
<tr>
<td>opachassisadmin -P /root/ChassisFw4.2.0.0.1 upgrade</td>
<td></td>
</tr>
<tr>
<td>opachassisadmin -H 'chassis1 chassis2' reboot</td>
<td></td>
</tr>
<tr>
<td>CHASSIS='chassis1 chassis2' opachassis_admin reboot</td>
<td></td>
</tr>
<tr>
<td>opachassisadmin -a run -P '*.pkg' upgrade</td>
<td></td>
</tr>
</tbody>
</table>

Environment Variables

The following environment variables are also used by this command:

- **CHASSIS** List of chassis, used if -H and -P option not supplied. Refer to Selection of Chassis on page 15 for more information.
- **CHASSIS_FILE** File containing list of chassis, used in absence of -F and -H. Refer to Selection of Chassis on page 15 for more information.
- **FF_MAX_PARALLEL** Maximum concurrent operations.
- **FF_SERIALIZE_OUTPUT** Serializes output of parallel operations (yes or no).
- **UPLOADS_DIR** Directory to upload to, used in absence of -d.

opachassisadmin Operation Details

**Switch** All chassis operations log into the chassis as chassis user admin. Intel recommends using the -S option to securely prompt for a password, in which case the same password is used for all chassis. Alternately, the password may be put in the environment or the opafastfabric.conf file using FF_CHASSIS_ADMIN_PASSWORD.

All versions of Intel® Omni-Path Switch 100 Family firmware permit SSH keys to be configured within the chassis for secure password-less login. In this case, there is no need to configure a FF_CHASSIS_ADMIN_PASSWORD and FF_CHASSIS_LOGIN_METHOD can be SSH. Refer to the Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide for more information.
**upgrade**

Upgrades the firmware on each chassis or slot specified. The `-P` option selects a directory containing `.pkg` files or provides an explicit list of `.pkg` files for the chassis and/or slots. The `-a` option selects the desired minimal state for the new firmware. For each chassis and/or slot selected for upgrade, the `.pkg` file applicable to that slot is selected and used. If more than one `.pkg` file is specified of a given card type, the operation is undefined.

The upgrade is intelligent and does not upgrade chassis that already have the desired firmware in the desired state (as specified by `-a`).

When the `-a` option specifies run, chassis that are not already running the desired firmware are rebooted. By selecting the proper `FF_MAX_PARALLEL` value, a rolling upgrade or a parallel upgrade may be accomplished. In most cases, a parallel upgrade is recommended for expediency.


**configure**

Runs the chassis setup wizard, which asks a series of questions. Once the wizard has finished prompting for configuration information, all the selected chassis are configured through the CLI interface according to the responses. The following options may be configured for all chassis:

- syslog server IP address, TCP/UDP port number, syslog facility code, and the chassis LogMode.
- NTP server
- local time zone
- maximum packet MTU
- VL capability
- VL credit distribution
- link width supported
- IB node description
- IB node description format
- disable chassis auto clear of port counters

*Note:* In a fabric where FastFabric tools such as `opatop` work in conjunction with the PM/PA to monitor port counters, you must disable the chassis port counter auto-clear feature.

**reboot**

Reboots the given chassis and ensures they go down and come back up by pinging them during the reboot process.
By selecting the proper FF_MAX_PARALLEL value, a rolling reboot or a parallel reboot may be accomplished. In most cases, a parallel upgrade is recommended for expediency.

getconfig
Retrieves basic information from a chassis such as syslog, NTP configuration, timezone info, MTU Capability, VL Capability, VL Credit Distribution, Link Width, and node description.

fmconfig
Updates the Fabric Manager configuration file on each chassis specified. The -P option selects a file to transfer to the chassis. The -a option selects the desired minimal state for the new configuration and controls whether the FM is started/restarted after the file is updated. The -I option can be used to configure the FM start at boot for the selected chassis.

fmgetconfig
Uploads the FM configuration file from all selected chassis. The file is uploaded to the selected uploads directory. The -P option specifies the desired destination filename within the uploads directory.

fmcontrol
Allows the FM to be controlled on each chassis specified. The -a option selects the desired state for the FM. The -I option configures the FM start at boot for the selected chassis.

fmsecurityfiles
Updates the FM security files on each chassis specified. The -s option selects file(s) to transfer to the chassis. The -a option selects the desired minimal state for the new security files. In this release, push is the only supported action.

fmgetsecurityfiles
Uploads the FM security files from all selected chassis. The files are uploaded to the selected uploads directory. The -s option specifies the desired destination filename within the uploads directory.

Logging
opachassisadmin provides detailed logging of its results. During each run, the following files are produced:

test.res Appended with summary results of run.
test.log Appended with detailed results of run.
save_tmp/ Contains a directory per failed test with detailed logs.
test_tmp/* Intermediate result files while test is running.

The -c option removes all log files.
ssh Keys

When performing operations against chassis, Intel recommends setting up SSH keys. If SSH keys are not set up, all chassis must be configured with the same admin password. In this case, Intel recommends using the \(-S\) option. The \(-S\) option avoids the need to keep the password in configuration files.

Results

Results from opachassisadmin are grouped into test suites, test cases, and test items. A given run of opachassisadmin represents a single test suite. Within a test suite, multiple test cases occur; typically one test case per chassis being operated on. Some of the more complex operations may have multiple test items per test case. Each test item represents a major step in the overall test case.

Each opachassisadmin run appends to test.res and test.log, and creates temporary files in test_tmp$PID in the current directory. The test.res file provides an overall summary of operations performed and their results. The same information is also displayed while opachassisadmin is executing. test.log contains detailed information about what was performed, including the specific commands executed and the resulting output. The test_tmp directories contain temporary files that reflect tests in progress (or killed). The logs for any failures are logged in the save_temp directory with a directory per failed test case. If the same test case fails more than once, save_temp retains the information from the first failure. Subsequent runs of opachassisadmin are appended to test.log. Intel recommends reviewing failures and using the \(-c\) option to remove old logs before subsequent runs of opachassisadmin.

opachassisadmin implicitly performs its operations in parallel. However, as for the other tools, FF_MAX_PARALLEL can be exported to change the degree of parallelism. Twenty (20) parallel operations is the default.

3.4.33 opaswitchadmin

(Switch) Performs a number of multi-step initialization and verification operations against one or more externally managed Intel® Omni-Path switches. The operations include initial switch setup, firmware upgrades, chassis reboot, and others.

Syntax

```
or

opaswitchadmin --help
```

Options

-\(-c\) Produces full help text.
-\(-c\) Clobbers result files from any previous run before starting this run.
-N nodes  List of nodes to execute the operation against.

-L nodefile  File with nodes in the cluster. Default is /etc/sysconfig/opa/switches file.

-P packages  File name or directory where the firmware image is to install. For the directory specified, .emfw file in the directory tree is used. shell wild cards may also be used within quotes.

For capture  File name to upload to. Default is switchcapture file.

-t portsfile  File with list of local HFI ports used to access fabrics for switch access. Default is /etc/sysconfig/opa/ports file.

-p ports  List of local HFI ports used to access fabrics for switch access. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0  First active port in system.

0:y  Port y within system.

x:0  First active port on HFI x.

x:y  HFI x, port y.

-a action  Action for firmware file for switch upgrade. The action argument can be one or more of the following:

select  Ensures firmware is in primary (default).

run  Ensures firmware is in primary and running.

-O override  For firmware upgrades, bypasses the previous firmware version checks, and forces the update unconditionally.

operation  Performs the specified operation, which can be one or more of the following:

reboot  Reboots switches, ensures they go down and come back.

configure  Runs wizard to set up switch configuration.
upgrade  Upgrades installation of all switches.
info    Reports firmware and hardware version, part number, and data rate capability of all nodes.
hwvpd   Completes hardware Vital Product Data (VPD) report of all nodes.
ping    Pings all nodes and tests for presence.
fwverify Reports integrity of failsafe firmware of all nodes.
getconfig Gets port configurations of an externally managed switch.

For more information on operations, see opachassisadmin operation Details.

Example

```
opaswitchadmin -c reboot
opaswitchadmin -P /root/ChassisFwX.X.X.X upgrade
opaswitchadmin -a run -P '*.emfw' upgrade
```

Environment Variables

The following environment variables are also used by this command:

- **OPASWITCHES**
  List of nodes, used in absence of –N and –L options. See discussion in Selection of Switches on page 17.

- **OPASWITCHES_FILE**
  File containing list of nodes, used in absence of –N and –L options. See discussion in Selection of Switches on page 17.

- **FF_MAX_PARALLEL**
  Maximum concurrent operations.

- **FF_SERIALIZE_OUTPUT**
  Serialize output of parallel operations (yes or no).

Details

opaswitchadmin provides detailed logging of its results. During each run, the following files are produced:

- **test.res**
  Appended with summary results of run.

- **test.log**
  Appended with detailed results of run.

- **save_tmp/**
  Contains a directory per failed test with detailed logs.

- **test_tmp/**
  Intermediate result files while test is running.
The \texttt{-c} option removes all log files.

Results from \texttt{opaswitchadmin} are grouped into test suites, test cases, and test items. A given run of \texttt{opaswitchadmin} represents a single test suite. Within a test suite, multiple test cases occur; typically one test case per chassis being operated on. Some of the more complex operations may have multiple test items per test case. Each test item represents a major step in the overall test case.

Each \texttt{opaswitchadmin} run appends to \texttt{test.res} and \texttt{test.log} and creates temporary files in \texttt{test_tmp$PID} in the current directory. The \texttt{test.res} file provides an overall summary of operations performed and their results. The same information is also displayed while \texttt{opaswitchadmin} is executing. \texttt{test.log} contains detailed information about what was performed, including the specific commands executed and the resulting output. The \texttt{test_tmp} directories contain temporary files that reflect tests in progress (or killed). The logs for any failures are logged in the \texttt{save_temp} directory with a directory per failed test case. If the same test case fails more than once, \texttt{save_temp} retains the information from the first failure. Subsequent runs of \texttt{opaswitchadmin} are appended to \texttt{test.log}. Intel recommends reviewing failures and using the \texttt{-c} option to remove old logs before subsequent runs of \texttt{opaswitchadmin}. \texttt{opaswitchadmin} also appends to \texttt{punchlist.csv} for failing switches.

\texttt{opaswitchadmin} implicitly performs its operations in parallel. However, as for the other tools, \texttt{FF_MAX_PARALLEL} can be exported to change the degree of parallelism. Twenty (20) parallel operations is the default.

\texttt{opaswitchadmin} Operation Details

\textbf{(Switch)} All operations against Intel® Omni-Path Fabric externally-managed switches (except ping) securely access the selected switches. If a password has been set, the \texttt{-S} option must be used to securely prompt for a password. In this case, the same password is used for all switches.

\texttt{reboot} Reboots the given switches.

Use the \texttt{FF_MAX_PARALLEL} value to select either a rolling reboot or a parallel reboot. In most cases, a parallel reboot is recommended for expediency.

\texttt{upgrade} Upgrades the firmware on each specified switch. The \texttt{-P} option selects a directory containing a \texttt{.emfw} file or provides an explicit \texttt{.emfw} file for the switches. If more than one \texttt{.emfw} file is specified, the operation is undefined. The \texttt{-a} option selects the desired minimal state for the new firmware. Only the \texttt{select} and \texttt{run} options are valid for this operation.

When the \texttt{-a} option specifies \texttt{run}, switches are rebooted. Use the \texttt{FF_MAX_PARALLEL} value to select a rolling upgrade or a parallel upgrade. In most cases, a parallel upgrade is recommended for expediency.

The upgrade process also sets the switch name. See discussion on \texttt{Selection of Devices} on page 14.
The upgrade process is used to set, clear, or change the password of the switches using the `–s` option. When this option is specified, you are prompted for a new password to be set on the switches. To reset (clear) the password, press **Enter** when prompted. This option can be used to configure the switches to not require a password for subsequent operations. A change to the password does not take effect until the next reboot of the switch.

For more information about switch firmware, refer to the *Intel® Omni-Path Fabric Switches GUI User Guide* and *Intel® Omni-Path Fabric Externally-Managed Switches Release Notes*.

**configure**  
Runs the switch setup wizard, which asks a series of questions. Once the wizard has finished prompting for configuration information, all the selected switches are configured according to the entered responses. The following items are configurable for all Intel® Omni-Path Switch 100 Family:

- MTU
- VL Capability
- VL credit distribution
- Link Width Supported
- OPA Node Description

**Note:** If 4X capability is not enabled in the user selection, 4X capability is added to port 1 for each switch being configured. This provides a rescue capability for the switch using FastFabric, in case the link is unable to connect to a link width other than 4X.

**Note:** Typically, the Node Description is updated automatically during a firmware upgrade, if it is configured properly in the `switches` file. Updating the node description is also available using the `configure` option without performing a firmware upgrade.

**info**  
Queries the switches and displays the following information:

- Firmware version
- Hardware version
- Hardware part number, including revision information
- Speed capability
- Fan status
- Power supply status

This operation also outputs a summary of various configuration settings for each switch within a fabric.
For example, in a fabric with seven switches, a report similar to the following is displayed.

<table>
<thead>
<tr>
<th>Summary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>count - info</td>
</tr>
<tr>
<td>7 = Capability:QDR</td>
</tr>
<tr>
<td>7 = Fan 1 status:Normal/Normal</td>
</tr>
<tr>
<td>7 = Fan 2 status:Normal/Normal</td>
</tr>
<tr>
<td>6 = F/W ver:6.0.2.0.28</td>
</tr>
<tr>
<td>1 = F/W ver:6.1.0.0.72</td>
</tr>
<tr>
<td>7 = H/W pt num:220058-004-E</td>
</tr>
<tr>
<td>7 = H/W ver:004-E</td>
</tr>
<tr>
<td>7 = PS1 Status:N/A</td>
</tr>
<tr>
<td>7 = PS2 Status:ENGAGED</td>
</tr>
</tbody>
</table>

**hwvpd** Queries the switches and displays the Vital Product Data (VPD) including:
- Serial number
- Part number
- Model name
- Hardware version
- Manufacturer
- Product description
- Manufacturer ID
- Manufacture date
- Manufacture time

**ping** Issues an inband packet to the switches to test for presence and reports on presence/non-presence of each selected switch.

*Note:* It is not necessary to supply a password (using -S) for this operation.

**fwverify** Verifies the integrity of the firmware images in the EEPROMs of the selected switches.

**capture** Gets switch hardware and firmware state capture of all nodes.

**getconfig** Gets port configurations of an externally managed switch. This operation also outputs a summary of various configuration settings for each switch within a fabric. For example, in a fabric with seven switches, a report similar to the following is displayed.

<table>
<thead>
<tr>
<th>Summary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>count - configuration</td>
</tr>
<tr>
<td>7 = Link Speed : 2.5-10Gb</td>
</tr>
<tr>
<td>1 = Link Width : 1-8x</td>
</tr>
<tr>
<td>6 = Link Width : 4x</td>
</tr>
<tr>
<td>7 = MTU : 2048</td>
</tr>
</tbody>
</table>
This summary helps determine if all switches have the same configuration, and if not, indicates how many have each value. If some of the values are not as expected, view the test.res file to identify which switches have the undesirable values.

### 3.4.34 opahostadmin

**Host** Performs a number of multi-step host initialization and verification operations, including upgrading software or firmware, rebooting hosts, and other operations. In general, operations performed by opahostadmin involve a login to one or more host systems.

**Syntax**

```
```

or

```
opahostadmin --help
```

**Options**

- **--help**
  
  Produces full help text.

- **-c**
  
  Clobbers result files from any previous run before starting this run.

- **-i ipoib_suffix**
  
  Suffix to apply to host names to create ipoib host names. Default is -opa.

- **-f hostfile**
  
  File with the names of hosts in a cluster. Default is /etc/sysconfig/opa/hosts file.

- **-h hosts**
  
  List of hosts to execute the operation against.

- **-r release**
  
  Software version to load/upgrade to. Default is the version of Intel® Omni-Path Software presently being run on the server.

- **-d dir**
  
  Directory to retrieve product.release.tgz for load or upgrade.

- **-I install_options**
  
  Software install options.
-U upgrade_options  Software upgrade options.

-T product  Product type to install. Default = IntelOPA-Basic.RHEL7-x86_64

Other options include: IntelOPA-Basic.<distro>, IntelOPA-IFS.<distro> where <distro> is the distribution and CPU.

-P packages  Packages to install. Default = oftools ipoib mpi

-m netmask  IPoIB netmask to use for configipoib operation.

-S  Securely prompts for user password on remote system.

operation  Performs the specified operation, which can be one or more of the following:

load  Starts initial installation of all hosts.

upgrade  Upgrades installation of all hosts.

configipoib  Creates ifcfg-ib1 using host IP address from /etc/hosts file.

reboot  Reboots hosts, ensures they go down and come back.

sacache  Confirms sacache has all hosts in it.

ipoibping  Verifies this host can ping each host through IPoIB.

mpiperf  Verifies latency and bandwidth for each host.

mpiperfdeviation  Verifies latency and bandwidth for each host against a defined threshold (or relative to average host performance).

Example

```
opahostadmin -c reboot
opahostadmin upgrade
opahostadmin -h 'elrond arwen' reboot
HOSTS='elrond arwen' opahostadmin reboot
```
**Details**

*opahostadmin* provides detailed logging of its results. During each run, the following files are produced:

- **test.res**: Appended with summary results of run.
- **test.log**: Appended with detailed results of run.
- **save_tmp/**: Contains a directory per failed test with detailed logs.
- **test_tmp/**: Intermediate result files while test is running.

The `--c` option removes all log files.

Results from *opahostadmin* are grouped into *test suites*, *test cases*, and *test items*. A given run of *opahostadmin* represents a single test suite. Within a test suite, multiple test cases occur; typically one test case per host being operated on. Some of the more complex operations may have multiple test items per test case. Each test item represents a major step in the overall test case.

Each *opahostadmin* run appends to **test.res** and **test.log**, and creates temporary files in **test_tmp$PID** in the current directory. **test.res** provides an overall summary of operations performed and their results. The same information is also displayed while *opahostadmin* is executing. **test.log** contains detailed information about what was performed, including the specific commands executed and the resulting output. The **test_tmp** directories contain temporary files which reflect tests in progress (or killed). The logs for any failures are logged in the **save_temp** directory with a directory per failed test case. If the same test case fails more than once, **save_temp** retains the information from the first failure. Subsequent runs of *opahostadmin* are appended to **test.log**. Intel recommends reviewing failures and using the `--c` option to remove old logs before subsequent runs of *opahostadmin*.

*opahostadmin* implicitly performs its operations in parallel. However, as for the other tools, **FF_MAX_PARALLEL** can be exported to change the degree of parallelism. Twenty (20) parallel operations is the default.

**Environment Variables**

The following environment variables are also used by this command:

- **HOSTS**: List of hosts, used if `-h` option not supplied.
- **HOSTS_FILE**: File containing list of hosts, used in absence of `-f` and `-h`.
- **FF_MAX_PARALLEL**: Maximum concurrent operations are performed.
- **FF_SERIALIZE_OUTPUT**: Serialize output of parallel operations (yes or no).
opahostadmin Operation Details

(Host) Intel recommends that you set up password SSH or SCP for use during this operation. Alternatively, the -S option can be used to securely prompt for a password, in which case the same password is used for all hosts. Alternately, the password may be put in the environment or the opafastfabric.conf file using FF_PASSWORD and FF_ROOTPASS.

load

Performs an initial installation of Intel® Omni-Path Software on a group of hosts. Any existing installation is uninstalled and existing configuration files are removed. Subsequently, the hosts are installed with a default Intel® Omni-Path Software configuration. The -I option can be used to select different install packages. Default = oftools ipoib mpi The -r option can be used to specify a release to install other than the one that this host is presently running. The FF_PRODUCT.FF_PRODUCT_VERSION.tgz file (for example, IntelOPA-Basic.version.tgz) is expected to exist in the directory specified by -d. Default is the current working directory. The specified software is copied to all the selected hosts and installed.

upgrade

Upgrades all selected hosts without modifying existing configurations. This operation is comparable to the -U option when running ./INSTALL manually. The -r option can be used to upgrade to a release different from this host. The default is to upgrade to the same release as this host. The FF_PRODUCT.FF_PRODUCT_VERSION.tgz file (for example, IntelOPA-Basic.version.tgz) is expected to exist in the directory specified by -d. (The default is the current working directory.) The specified software is copied to all the end nodes and installed.

Note: Only components that are currently installed are upgraded. This operation fails for hosts that do not have Intel® Omni-Path Software installed.

configipoib

Creates an ifcfg-ib1 configuration file for each node using the IP address found using the resolver on the node. The standard Linux* resolver is used through the host command. (If running OFED Delta, this option configures ifcfg-ib0.)

If the host is not found, /etc/hosts on the node is checked. The -i option specifies an IPOIB suffix to apply to the host name to create the IPOIB host name for the node. The default suffix is -ib. The -m option specifies a netmask other than the default for the given class of IP address, such as when dividing a class A or B address into smaller IP subnets. IPOIB is configured for a static IP address and is autostarted at boot. For the Intel® OPA Software Stack, the default /etc/
The `sysconfig/ipoib.cfg` file is used, which provides a redundant IPoIB configuration using both ports of the first HFI in the system.

**Note:** `opahostadmin configipoib` now supports DHCP (auto or static options) for configuring the IPoIB interface. You must specify these options in `/etc/sysconfig/opa/opa_fastfabric.conf` against the `FF_IPOIB_CONFIG` variable. If no options are found, the static IP configuration is used by default. If `auto` is specified, then one IP address from either static or dhcp is chosen. Static is used if the IP address can be obtained out of `/etc/hosts` or the resolver, otherwise DHCP is used.

**reboot**
Reboots the given hosts and ensures they go down and come back up by pinging them during the reboot process. The ping rate is slow (5 seconds), so if the servers boot faster than this, false failures may be seen.

**sacache**
Verifies the given hosts can properly communicate with the SA and any cached SA data that is up to date. To run this command, Intel® Omni-Path Fabric software must be installed and running on the given hosts. The subnet manager and switches must be up. If this test fails: `opacmdall 'opasaquery -o desc'` can be run against any problem hosts.

**Note:** This operation requires that the hosts being queried are specified by a resolvable TCP/IP host name. This operation FAILS if the selected hosts are specified by IP address.

**ipoibping**
Verifies IPoIB basic operation by ensuring that the host can ping all other nodes through IPoIB. To run this command, Intel® Omni-Path Fabric software must be installed, IPoIB must be configured and running on the host, and the given hosts, the SM, and switches must be up. The `-i` option can specify an alternate IPoIB hostname suffix.

**mpiperf**
Verifies that MPI is operational and checks MPI end-to-end latency and bandwidth between pairs of nodes (for example, 1-2, 3-4, 5-6). Use this to verify switch latency/hops, PCI bandwidth, and overall MPI performance. The `test.res` file contains the results of each pair of nodes tested.

**Note:** This option is available for the Intel® Omni-Path Fabric Host Software OFED Delta packaging, but is not presently available for other packagings of OFED.
To obtain accurate results, this test should be run at a time when no other stressful applications (for example, MPI jobs or high stress file system operations) are running on the given hosts.

Bandwidth issues typically indicate server configuration issues (for example, incorrect slot used, incorrect BIOS settings, or incorrect HFI model), or fabric issues (for example, symbol errors, incorrect link width, or speed). Assuming opareport has previously been used to check for link errors and link speed issues, the server configuration should be verified.

Note that BIOS settings and differences between server models can account for 10-20% differences in bandwidth. For more details about BIOS settings, consult the documentation from the server supplier and/or the server PCI chipset manufacturer.

mpiperfdeviation Enhanced version of mpiperf that verifies MPI performance. Can be used to verify switch latency/hops, PCI bandwidth, and overall MPI performance. It performs assorted pair-wise bandwidth and latency tests, and reports pairs outside an acceptable tolerance range. The tool identifies specific nodes that have problems and provides a concise summary of results. The test.res file contains the results of each pair of nodes tested.

By default, concurrent mode is used to quickly analyze the fabric and host performance. Pairs that have 20% less bandwidth or 50% more latency than the average pair are reported as failures.

The tool can be run in a sequential or a concurrent mode. Sequential mode runs each host against a reference host. By default, the reference host is selected based on the best performance from a quick test of the first 40 hosts. In concurrent mode, hosts are paired up and all pairs are run concurrently. Since there may be fabric contention during such a run, any poor performing pairs are then rerun sequentially against the reference host.

Concurrent mode runs the tests in the shortest amount of time, however, the results could be slightly less accurate due to switch contention. In heavily oversubscribed fabric designs, if concurrent mode is producing unexpectedly low performance, try sequential mode.

Note: This option is available for the Intel® Omni-Path Fabric Host Software OFED Delta packaging, but is not presently available for other packagings of OFED.

To obtain accurate results, this test should be run at a time when no other stressful applications (for example, MPI jobs, high stress file system operations) are running on the given hosts.
Bandwidth issues typically indicate server configuration issues (for example, incorrect slot used, incorrect BIOS settings, or incorrect HFI model), or fabric issues (for example, symbol errors, incorrect link width, or speed). Assuming `opareport` has previously been used to check for link errors and link speed issues, the server configuration should be verified.

Note that BIOS settings and differences between server models can account for 10-20% differences in bandwidth. A result 5-10% below the average is typically not cause for serious alarm, but may reflect limitations in the server design or the chosen BIOS settings.

For more details about BIOS settings, consult the documentation from the server supplier and/or the server PCI chipset manufacturer.

The deviation application supports a number of parameters which allow for more precise control over the mode, benchmark and pass/fail criteria. The parameters to use can be selected using the `FF_DEVIATION_ARGS` configuration parameter in `opafastfabric.conf`.

Available parameters for deviation application:

```
[-bwtol bwtol] [-bwdelta MBs] [-bwthres MBs]
[-bwloop count] [-bwsise size] [-lattol latol]
[-latdelta usec] [-latthres usec] [-latloop count]
[-latsize size][-c] [-b] [-v] [-vv]
[-h reference_host]
```

- `bwtol` Percent of bandwidth degradation allowed below average value.
- `bwbidir` Performs a bidirectional bandwidth test.
- `bwunidir` Performs a unidirectional bandwidth test (default).
- `bwdelta` Limit in MB/s of bandwidth degradation allowed below average value.
- `bwthres` Lower limit in MB/s of bandwidth allowed.
- `bwloop` Number of loops to execute each bandwidth test.
- `bwsise` Size of message to use for bandwidth test.
- `lattol` Percent of latency degradation allowed above average value.
- `latdelta` Limit in usec of latency degradation allowed above average value.
-latthres Lower limit in usec of latency allowed.
-latloop Number of loops to execute each latency test.
-latsize Size of message to use for latency test.
-c Runs test pairs concurrently instead of the default of sequential.
-b When comparing results against tolerance and delta, uses best instead of average.
-v Verbose output.
-vv Very verbose output.
-h Reference host to use for sequential pairing.

Both bwtol and bwdelta must be exceeded to fail bandwidth test.
When bwthres is supplied, bwtol and bwdelta are ignored.
Both lattol and latdelta must be exceeded to fail latency test.
When latthres is supplied, lattol and latdelta are ignored.
For consistency with OSU benchmarks, MB/s is defined as 1000000 bytes/s.

3.4.35 Interpreting the opahostadmin, opachassisadmin, and opaswitchadmin log files

Each run of opahostadmin, opachassisadmin, and opaswitchadmin creates test.log and test.res files in the current directory.

The test.res file summarizes which tests have failed and identifies servers that have failed. If the problem is not immediately obvious, check the test.log file. The most recent results are at the end of the file. The save_tmp/*/test.log files are easier to read since they represent the logs for a single test case, typically against a single chassis, switch, or host.

The keyword FAILURE is used to mark any failures. Due to the roll up of error messages, the first instance of FAILURE in a given sequence shows the operations in process at the time of failure. The log also shows the exact sequence of commands issued to the target host and/or chassis and the resulting output from that host and/or chassis before the FAILURE keyword.
If there is a **FAILURE** message indicating time-out, it means the expected output did not occur within a reasonable time limit. The time limits used are generous, so such failures often indicate a host, chassis, or switch is offline. It could also indicate unexpected prompts, such as a password prompt when password-less SSH is expected. Review the `test.log` first for such prompts. Also verify that the host can SSH to the target host or chassis with the expected password behavior.

One common source of time-out errors is incorrect host shell command prompts. Verify that both this host and the target host meet the following criteria for command prompts:

- The command line prompt must end in `#` or `$
- There must be a space after either character.

Another common source of time-outs is typographical errors in selected host or chassis names. Verify that the host, chassis, or switch names in the `test.log` file match the intended host names.

When IPoIB host names are used, verify that the correct name is formed based on the `opahostadmin -i '<IPOIB SUFFIX>'` argument. This argument applies a suffix to host names to create IPoIB host names. The default is `-ib`. Use `-i ''` to indicate no suffix.

### 3.4.36 opareport Detailed Information

This section provides additional information about using `opareport`.

#### 3.4.36.1 opareport Basics

`opareport` can be run with no options at all. In this mode it provides a brief list of the nodes in the fabric, the `brnodes` report.

A sample of an `opareport` for a small fabric follows:

```bash
opareport
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Node Type Brief Summary
4 Connected FIs in Fabric:
NodeGUID Type Name
Port LID PortGUID Width Speed
0x00117501016a35f0 FI coyote hfi1_0 1 0x0004 0x00117501016a35f0 4 25Gb
0x00117501016a361d FI goblin hfi1_0 1 0x0003 0x00117501016a361d 4 25Gb
0x00117501016a365f FI ogre hfi1_0 1 0x0005 0x00117501016a365f 4 25Gb
0x00117501016a366d FI duster hfi1_0 1 0x0001 0x00117501016a366d 4 25Gb

1 Connected Switches in Fabric:
NodeGUID Type Name
Port LID PortGUID Width Speed
0x00117500ff6a5619 SW edge1 0 0x0002 0x00117500ff6a5619 1 25Gb
12 4 25Gb
```
Each opareport allows for various levels of detail. Increasing detail is shown as further indentation of the additional information. The -d option to opareport controls the detail level. The default is 2. Values from 0-n are permitted. The maximum detail per report varies, but most have less than five detail levels.

For example, when the previous report is run at detail level 0, the output is as follows:

```
opareport -d 0
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Node Type Brief Summary
4 Connected FIs in Fabric
1 Connected Switches in Fabric
1 Connected SMs in Fabric

A summary of fabric components is shown in the following example. This report is very similar to opafabricinfo. At the next level of detail, the report has more detail:

```
# opareport -d 1
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Node Type Brief Summary
4 Connected FIs in Fabric:
NodeGUID   Type  Name
0x00117501016a35f0  FI  ogre hfi1_0
0x00117501016a361d  FI  goblin hfi1_0
0x00117501016a365f  FI  coyote hfi1_0
0x00117501016a366d  FI  duster hfi1_0
1 Connected Switches in Fabric:
NodeGUID   Type  Name
0x00117500ff6a5619  SW  edge1
1 Connected SMs in Fabric:
State   GUID            Name
Master  0x00117501016a366d  duster hfi1_0
```

The previous examples were all performed with a single report: the brnodes (Brief Nodes) report. This is just one of the many topology reports that opareport can generate.

Other reports summarize the present state of the fabric. Use these reports to analyze the configuration of the fabric and verify that the installation is consistent with the desired design and configuration. These reports include:
nodes A more verbose form of brnode that provides much greater levels of detail to drill down into all the details of every node, even down to all the port state, IOUs/IOCs/Services, and Port counters.

comps and brcomps Very similar to brnodes and nodes, except the reports are organized around systems. The grouping into systems is based on system image GUIDs for each node. This report presents more complex systems (such as servers with multiple HFIs or large switches composed of multiple switch chips).

Note: All Intel switches implement a system image GUID and are therefore properly grouped. However, some third-party devices do not implement the system image GUID and may report a value of 0. In such a case, opareport treats each component as an independent system.

links Presents all the links in the fabric. The output is very concise and helps to identify the connectivity between nodes in the fabric. This includes both internal (inside a large switch or system) and external ports (cables).

extlinks Lists all the external links in the fabric, for example, those between different systems. This report omits links internal to a single system. Identification of a system is through SystemImageGuid.

lids Similar to brnodes, however it is organized and sorted by LID. The output is very concise and provides a simple cross reference of LIDs assigned to each HFI and Switch in the fabric. This information can be useful in interpreting the output from the linear, mcast, and portusage reports.

ious Similar to the nodes reports, however the focus is around IOUs/IOCs and IO Services in the fabric. This report identifies various IO devices in the fabric and their capabilities, such as the IBTA compliant direct-attach storage.

otherports Lists all ports that are not connected to this fabric. This report identifies additional ports on FIs or Switches that are not connected to this fabric. For switches, these represent unused ports. For FIs, these may be ports connected to other fabrics or unused ports.

Additionally, opareport has reports that analyze the operational characteristics of the fabric and identify bottlenecks and faulty components in the fabric. These reports include:

slowlinks Identifies links that are running slower than expected, that pinpoints bad cables or components in the fabric. The analysis includes both link speed and width.

slowconfiglinks Extends the slowlinks report to also report links that have been configured (typically by software) to run at a width or speed below their potential.
slowconnlinks Extends on the slowconfiglinks report to also report links that are cabled such that one of the ends of the link can never run to its potential.

misconfiglinks Similar to slowconfiglinks in that it reports links that have been configured to run below their potential. However, report does not include links that are running slower than expected.

misconnlinks Similar to slowconnlinks in that it reports links that have been connected between ports of different speed potential. However, report does not include links that are running slower than expected, nor links that have been configured to run slower than their potential.

errors Performs a single point in time analysis of the PMA port counters for every node and port in the fabric. All the counters are compared against configured thresholds. Defaults are listed in the opamon.conf file. Any link whose counters exceed these thresholds are listed. Depending on the detail level, the exact counter and threshold are reported. This is a powerful way to identify marginal links in the fabric such as bad or loose cables or damaged components. The opamon.si.conf file can also be used to check for any non-zero values for signal integrity (SI) counters.

route Identifies two end points in the fabric (by node name, node GUID, port name, port GUID, system image GUID, LID, port GID, IOC GIUD, or IOC name), and obtains a list of all the links and components used when these two end points communicate. If there are multiple paths between the end points, such as an FI with 2 connected ports or a system with 2 FIs, the route for every available path is reported based on presently configured routing tables.

linear Shows the linear forwarding table for each switch in the fabric. Used to manually review the routing of unicast traffic in the fabric. For each switch, every unicast LID is shown along with the port it is routed out (egress port), and the neighboring Node and Port. For large fabrics, this report can be quite large.

mcast Shows the multicast forwarding table for each switch in the fabric. Used to manually review the routing of multicast traffic in the fabric. For each switch, every multicast LID is shown along with the list of ports it is routed out. For large fabrics, this report can be quite large.

portusage Provides a summary analysis of the unicast routing in the fabric, in terms of how many LIDs of each node type are routed out a given port. Used for analysis of how balanced the routes in the fabric are, especially for ISLs and core switches. For each switch, all the ports are shown along with the counts of how many unicast LIDs are routed out each port. The total is shown along with HFI-All, HFI-Base, Switch, and Router.
- HFI-All includes all LIDs that correspond to an HFI, including LIDs that are the base LID of the HFI and LIDs that map to the HFI though LMC masking.
- HFI-Base includes only LIDs that correspond to the base LID of an HFI. HFI-Base is always a subset of HFI-All.
- Switch includes all LIDs that correspond to a Switch.
- Router includes all LIDs that correspond to a Router. Only Ports with a non-zero total are shown.

pathusage
Computes all the FI to FI dLID paths through the fabric and reports on the usage of each ISL Port (SW to SW link). The -F option indicates the switches and the ports on those switches to analyze. Switch Port 0 is always omitted from the analysis. These reports can also be run against snapshots that were performed with the -r option.

treepathusage
Similar to pathusage with the exception that treepathusage is applicable only to Fat Tree topologies and provides specific analysis of uplink and downlink paths, indicating what tier each switch is in within the fabric.

3.4.36.2 Simple Topology Verification

opareport provides a flexible way to identify changes to the fabric or the appropriate reassembly of the fabric after a move. For example, run opareport after staging and testing the fabric in a remote location before final installation at a customer site.

This type of report can be saved for later comparison to a future report. Since opareport produces simple text reports, standard tools such as sdiff (side by side diff) can be used for comparison and analysis of the changes.

In this mode of operation, all previous reports are available, however, you can filter the information that is output. Use the all report to include all reports of general interest.

Use the -P option to omit information that does not persist across a fabric reboot, for example, LIDs and error counters. In the report, the information is marked out with xxx.

If software configuration changes are anticipated, use the opareport -H option to only include hardware information. Use this option when adjusting the timeouts the SM configures in the fabric.

Use the -N option to omit all the node and IOC names from the report. If changes are anticipated in this area, this option can be used so future differences do not report changes in names.

3.4.36.3 Advanced Topology Verification

You can use the -T option for opareport to compare the state of the fabric against a previous state or a user-generated configuration for the fabric.
The XML description used by the -T option is the same as the XML format generated by the -o links or -o extlinks and/or -o bnodes reports when they are run with the -x option. The opareport -o topology argument is an easy way to generate such a report and is equivalent to specifying all three of these reports.

A simple way to perform topology verification against a previous configuration is to generate the previous topology using a command such as:

```
opareport -o topology -x > topology.xml
```

Later, the fabric can be compared against that topology using a command such as:

```
opareport -T topology.xml -o verifyall
```

Unlike simple diff comparisons discussed in Simple Topology Verification, this method of topology verification performs a more context-sensitive comparison and presents information in terms of links, nodes, or SMs that are missing, unexpected, or incorrectly configured.

All the other capabilities of opareport are fully available when using a topology_input file. For example, snapshot_input files can also be used to generate or compare topologies based on previous fabric snapshots. In addition, the -F option may be used to focus the analysis.

Note: verify* reports may still report missing links, nodes, or SMs outside the scope of the desired focus.

There are multiple variations of advanced topology verification: verifycas, verifysws, verifyrtrs, verifysms, verifylinks, and verifyextlinks. In addition, verifynodes and verifyall can be used to generate combined reports.

verifylinks and verifyextlinks perform the same analysis, however, they differ in the scope of the analysis. verifylinks checks all links in the fabric. In contrast, verifyextlinks performs the following:

- Limits its verification to links outside of a system.
- Does not analyze links between nodes with the same SystemImageGuid, such as within a large Intel® Omni-Path Fabric Chassis.
- Ignores links from the topology_input file that specify a non-zero value for the XML tag <Internal> within the <Link> tag.

The XML tags have the following meanings:

- `<Report>` Primary top level tag. Exactly one such tag is permitted per file. Alternatively, this may be `<Topology>`.
- `<LinkSummary>` Container tag describing all the links expected in the fabric. Alternatively, `<ExternalLinkSummary>` may be used. `<ExternalLinkSummary>` should be used if the file only describes external links. If both external and internal links are described, `<LinkSummary>` should be used. Only one of these two choices is permitted per file.
<Link>

Container tag describing a single link. Many instances of this tag can occur per <LinkSummary> or <ExternalLinkSummary>.

<Link> allows the following tags:

<Rate>

String describing the expected rate of the link. Valid values are 2.5g, 5g, 10g, 20g, 30g, 40g, 60g, 80g, or 120g. The value is case-insensitive but must contain no extra whitespace. Alternatively, an integer value <Rate_Int> may be provided based on the IBTA defined values for Rate from the SMA packets. If both <Rate> and <Rate_Int> are specified, whichever value appears later within the given link is used. If neither is specified, the rate of the link is not verified.

<MTU>

An integer describing the expected MTU of the link. Valid values are 256, 512, 1024, 2048, and 4096. If not specified, the MTU of the link is not verified.

<Internal>

A flag indicating if the link is internal or external. A value of 0 indicates external links that are processed by both verifylinks and verifyextlinks. A value of 1 indicates an internal link that is only processed by verifylinks. If omitted, the actual fabric link attributes or the attributes of the port are used to determine if the link should be processed. The value for this field is not verified against the actual fabric.

<LinkDetails>

A free form text field of up to 64 characters. This field is optional. When provided, this is output as a link attribute in all reports that show link details, such as links, extlinks, route, verifylinks, and verifyextlinks reports. Intel recommends you use this field to describe the purpose of the link. This field can also be used by the linkdetpat focus option to select the link.

<Cable>

A container tag providing additional information about the cable.

<Cable> allows the following tags:

<CableLength>

A free form text field up to 10 characters. This field is optional. When provided, this is output as a link cable attribute in all reports that show link details, such as links, extlinks, route, verifylinks, and verifyextlinks reports. Intel recommends you use this field to describe the
length of the cable using text such as 11m. This field can also be used by the lengthpat focus option to select the link.

<CableLabel> A free form text field up to 20 characters. This field is optional. When provided, this is output as a link cable attribute in all reports that show link details, such as links, extlinks, route, verifylinks, and verifyextlinks reports. Intel recommends you use this field to describe the identifying label attached to the cable using text such as S4576. This field can also be used by the labelpat focus option to select the link. Using this field to match the actual unique physical labels placed on the cables during installation can greatly help cross-referencing the reports to the physical cluster, such as when needing to identify or replace cables.

<CableDetails> A free form text field of up to 64 characters. This field is optional. When provided, this is output as a link attribute in all reports that show link details, such as links, extlinks, route, verifylinks, and verifyextlinks reports. Intel recommends you use this field to describe the type, model, and/or manufacturer of the cable. This field can also be used by the cabledetpat focus option to select the link.

<Port> A container tag providing additional information about the two ports that make up the link.

<Port> allows the following tags:

<NodeGUID> Node GUID reported by the SMA for the given FI, switch, or router.

<PortGUID> Port GUID reported by the SMA for the given FI, switch, or router.

Note: Switches only have PortGuids for port 0 (the internal management port), while FIs and routers have a unique GUID for every port.

<PortNum> Port Number within the FI, switch, or router.

<NodeDesc> Node Description reported by the FI, switch, or router. Intel recommends that you configure a unique value for this field in each node in your fabric. For example, Intel® Omni-Path Fabric
Host Software Linux® hosts use the combination of Linux hostname and HFI number to create a unique NodeDesc.

<NodeType> Node type reported by the node. Values include: FI, SW, or RT. Alternatively, an integer value <NodeType_Int> may be provided based on the IBTA defined values for NodeType from the SMA packets. If both <NodeType> and <NodeType_Int> are specified, whichever appears later within the given Port is used. If neither is specified, the node type of the port is not verified.

<PortDetails> Free form text field of up to 64 characters. This field is optional. When provided, this is output as a port attribute in all reports that show port details, such as links, extlinks, route, comps, verifylinks, and verifyextlinks reports. Intel recommends you use this field to describe the purpose of the port. This field can also be used by the portdetpat focus option to select the port.

The previous fields are used to associate a port in the topology_input file with an actual port in the fabric, also called resolving the port. You need not provide all of the information. Association to an actual port in the fabric is performed using the following order of checks based on the tags that are specified:

- NodeGUID, PortNum
- NodeGUID, PortGUID
- NodeGUID – if given FI has exactly 1 port.
- NodeDesc, PortNum
- NodeDesc, PortGUID
- NodeDesc – if given FI has exactly 1 port.
- PortGUID, PortNum – useful to select ports other than 0 on a switch.
- PortGUID

If NodeDesc is used to specify ports, it is important that the fabric is configured such that each NodeDesc is unique. Otherwise, the <Port> may resolve to a different port than desired, which could result in incorrect results or errors during topology verification.

When redundant information is provided, the extra information is ignored while resolving the port. However, during verifylinks or verifyextlinks all the input provided is verified against the actual fabric and any discrepancies are reported.
Some examples of redundant information:

- NodeGuid, NodeDesc – NodeDesc is not used to resolve port.
- NodeGuid, PortNum, PortGuid – PortGuid is not used to resolve port.
- NodeDesc, PortNum, PortGuid – PortGuid is not used to resolve port.

The <NodeType> field is never used during resolution; it is only used during verification.

<NodeType>

<Nodes> Container tag describing all the nodes expected in the fabric.

<FIs> Container tag describing all the FIs expected in the fabric. Many instances of this tag can occur per <Nodes>.

<Switches> Container tag describing all the Switches expected in the fabric. Many instances of this tag can occur per <Nodes>.

<Routers> Container tag describing all the Routers expected in the fabric. Many instances of this tag can occur per <Nodes>.

<SMs> Container tag describing all the SMs expected in the fabric. Many instances of this tag can occur per <Nodes>.

<Nodes> Container tag describing a single node (FI, SW, or RT). Many instances of this tag can occur per <FIs>, <Switches>, or <Routers>.

<Node> allows the following tags:

<NodeGUID> Node GUID reported by the SMA for the given FI, Switch, or Router.

<NodeDesc> Node Description reported by the FI, switch, or router. Intel recommends that you configure a unique value for this field in each node in your fabric. For example, Intel® Omni-Path Fabric Host Software Linux® hosts use the combination of Linux hostname and HFI number to create a unique NodeDesc.

<NodeDetails> Free form text field of up to 64 characters. This field is optional. When provided, this is output as a node attribute in all reports that show node details, such as links, extlinks, route, comps, verifyscas, verifysws, verifyrts, verifylinks, and verifyextlinks reports. Intel recommends you use this field to describe the purpose and/or model of the node. This field can also be used by the nodedetpat focus option to select the node.
The previous fields are used to associate a Node (FI, Switch, or Router) in the topology_input file with an actual node in the fabric, also called resolving the node. You need not provide all of the information. Association to an actual node in the fabric is performed using the following order of checks based on the tags that are specified:

- NodeGUID
- NodeDesc

If NodeDesc is used to specify nodes, the fabric must be configured such that each NodeDesc is unique. Otherwise, the <Node> may resolve to a different node than desired, which could result in incorrect results or errors during topology verification.

When redundant information is provided, the extra information is ignored while resolving the node. However, during verifycas, verifysysws, or verifyrtrs, all the input provided is verified against the actual fabric and any discrepancies are reported.

An example of redundant information:

- NodeGuid, NodeDesc - NodeDesc is not used to resolve node.

The node type (as implied by the container tag for the <Node>) is never used during resolution, it is only used during verification.

<SM> Container tag describing a single SM. Many instances of this tag can occur per <SMs>.

<SM> allows the following tags:

- <NodeGUID> Node GUID reported by the SMA for the given FI, switch, or router that is running the SM.
- <NodeDesc> Node Description reported by the FI, switch, or router that is running the SM. Intel recommends that you configure a unique value for this field in each node in your fabric. For example, Intel® Omni-Path Fabric Host Software Linux* hosts use the combination of Linux hostname and HFI number to create a unique NodeDesc.
- <PortGUID> Port GUID reported by the SMA for the given FI, switch, or router that is running the SM.

 Note: Switches only have PortGuids for port 0 (the internal management port), while FIs and routers have a unique GUID for every port.
- <PortNum> Port Number within the FI, switch, or router that is running the SM.
<NodeType> Node type reported by the node that is running the SM. Values include: FI, SW, or RT. Alternatively, an integer value **<NodeType_Int>** may be provided based on the IBTA defined values for NodeType from the SMA packets. If both **<NodeType>** and **<NodeType_Int>** are specified, whichever appears later within the given port is used. If neither is specified, the node type of the SM is not verified.

<SMDetails> Free form text field of up to 64 characters. This field is optional. When provided, this is output as a SM attribute in all reports that show SM details, such as comps and verifysms reports. Intel recommends you use this field to describe the purpose of the SM. This field can also be used by the smdetpat focus option to select the SM.

The previous fields are used to associate a port running an SM in the topology_input file with an actual port in the fabric, also called resolving the SM. You need not provide all of the information. Association to an actual port in the fabric is performed using the following order of checks based on the tags that are specified:

- NodeGUID, PortNum
- NodeGUID, PortGUID
- NodeGUID – if given FI has exactly 1 active port or is a switch.
- NodeDesc, PortNum
- NodeDesc, PortGUID
- NodeDesc – if given FI has exactly 1 active port or is a switch.
- PortGUID, PortNum – limited usefulness.
- PortGUID

If **NodeDesc** is used to specify SM ports, the fabric must be configured such that each **NodeDesc** is unique. Otherwise, the **<SM>** may resolve to a different port than desired, which could result in incorrect results or errors during topology verification.

When redundant information is provided, the extra information is ignored while resolving the port for an SM. However, during verifysms all the input provided is verified against the actual fabric and any discrepancies are reported.

Some examples of redundant information:

- NodeGuid, NodeDesc – **NodeDesc** is not used to resolve port.
- NodeGuid, PortNum, PortGuid – **PortGuid** is not used to resolve port.
- NodeDesc, PortNum, PortGuid – PortGuid is not used to resolve port.

The NodeType field is never used during resolution, it is only used during verification.

3.4.36.4 Augmented Report Information

As discussed in Advanced Topology Verification, a topology_input file includes additional information including cable (length, label, details), links (details), ports (details), nodes (details) and SMs (details).

A topology_input file can be used during any report to provide information about the fabric that is not electronically available. This can help cross-reference the output of the report against the physical fabric. For example, if the cable length field is supplied, reports can be focused on all cables of a given length. Similarly, if cable labels are supplied, the report output includes the labels, making it much easier to locate the actual cables for tasks such as rerouting or replacement.

3.4.36.5 Focused Reports

One of the more powerful features of opareport is the ability to focus a report on a subset of the fabric. Using the -F option, you can specify a node name, node name pattern, node GUID, node type, port GUID, IOC name, IOC name pattern, IOC GUID, IOC type, system image GUID, port GID, port rate, port state, port physical state, MTU capability, LID, link quality indicator, cable info for cable length, cable info for vendor name, cable info for vendor part number, cable info for vendor rev, cable info for vendor serial number, or SM.

The subsequent report indicates the total components in the fabric but only reports on those that relate to the focus area. For example, in a nodes report, if a port is specified for focus, only the node containing that port is reported on. In a links report, if a port is specified for focus, only the link using that port is reported.

When a focus is used for fabric analysis, -o errors, -C or -i, the analysis includes all the ports selected by the focus as well as their neighbors. If desired, the -L option limits the operation to exactly the selected ports.

You may choose a focus level that is different from the orientation of the report. For example, if a node name is specified as the focus for a links report, a report of all the links to that node is provided. This includes multiple switch ports or FI ports.

You can perform reverse lookups by carefully using this feature of report focus. For example, requesting a brnodes report with a focus on a LID performs reverse lookup on that LID and indicates what node it is for.

When focusing a report, you can also specify a detail level. For detail 0, the report shows only a count of number of matches. For detail 1, the report shows only the highest level of the entity that matches.

3.4.36.6 Advanced Focus

As mentioned previously, you can focus a report on a subset of the fabric. In addition, you can further limit the report focus using the following methods.
The beginning of a focused report includes a summary of the items focused on. When the focus has a large scope, this list can be quite long. To omit the summary section from the report, use the -Q option.

- **Port number specifier**
 The node name, node name pattern, node guid, node type, IOC name, IOC name pattern, IOC GUID, IOC type, and system image GUID also allow for a port number specifier. This limits the focus to the given port number. If the selection resolves to multiple switches or FIs, all ports on the present fabric matching the given port number are selected for the report. For example, in a system composed of multiple nodes, there may be multiple ports with the same port number.

- **Route between points**
 This method focuses on all the ports involved in a particular route and can be an excellent way to determine a performance or error situation reported between two specific points in the fabric. For example, MPI may report StatusTimeoutRetry between two processes in its run.

 * syadmin fields supplied in a topology file (typically generated by opaxlattopology or opaxlattopology_cust) including cable labels, cable details, planned cable length, link details, port details, and SM details.

- **glob-style patterns**
 You can use a wildcard focus for the node name, IOC name, node details, cable label, cable length, cable details, cable vendor name, cable vendor part number, cable vendor rev, cable vendor serial number, link details, port details, or SM details. If a consistent naming convention is used for fabric components, this method provides a powerful way to focus reports on nodes. If the host names are prefixed with an indication of their purpose, searches can be performed based on the purpose of the node.

 For example, if you use a naming convention such as the following: l### = login node ###, n### = compute node ###, s### = storage node ###, then you can create a report using one of the following patterns: 'l*', 'n*', or 's*'.

 Note: A glob style pattern is a shell-style wildcard pattern as used by bash and other tools. If you use this style of pattern, you must also use single quotes so the shell does not try to expand them to match local file names.

3.4.36.7 Focus Examples

Examples of using the focus options are shown in the following list:

```
  opareport -o nodes -F portguid:0x00117500a000447b
  opareport -o nodes -F nodeguid:0x001175009800447b:port:1
  opareport -o nodes -F nodeguid:0x001175009800447b
  opareport -o nodes -F nodetype:FI
  opareport -o nodes -F nodetype:FI:port:1
  opareport -o nodes -F lid:1
  opareport -o nodes -F iocguid:0x00117501300001e0
  opareport -o nodes -F 'ioc:Chassis 0x001175005000010C, Slot 2, IOC 1'
```
3.4.36.8 Scriptable Output

opareport permits custom scripting. As previously mentioned, options like \(-H\), \(-P\), and \(-N\) generate reports that can be compared to each other. The \(-x\) option permits output reports to be generated in XML format. The XML hierarchy is similar to the text-based reports. Using XML permits other XML tools (such as PERL XML extensions) to easily parse opareport output, enabling you to create scripts to further search and refine report output formats.

The opaxmlextract tool easily converts between XML files and delimited text files. For more information, see opaxmlextract on page 76.

You can integrate opareport into custom scripts. You can also generate customer-specific new report formats and cross-reference opareport with other site-specific information.

3.4.36.9 Monitor for Fabric Changes Using opareport

opareport can easily be used in other scripts. For example, the following simple script can be run as a cron job to identify if the fabric has changed from the initial design.

```bash
#!/bin/bash
# specify some filenames to use
expected_config=/usr/local/report.master # master copy of config previously created
cfg=/tmp/report$$ # where we will generate new report
diffs=/tmp/report.diff$$ # where we will generate diffs

opareport -o all -d 5 -P > $config 2>/dev/null
if ! diff $config $expected_config > $diffs 2>/dev/null then
    # notify admin, for example mail the new config to the admin
cat $diffs $expected_config $config | mail -s "fabric change detected" admin@somewhere
fi
rm -f $config $diffs
```

3.4.36.10 Sample Outputs

Analyze all ports in fabric for errors, inconsistent connections, bad cables

```
[root@duster root]# opareport -o errors -o slowlinks
Links running slower than expected Summary

<table>
<thead>
<tr>
<th>Rate</th>
<th>NodeGUID</th>
<th>Port Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lanes, Used(Tx), Used(Rx), Rate, Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100G</td>
<td>0x00117501025019ab</td>
<td>44 SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>25Gb</td>
</tr>
</tbody>
</table>
```

November 2015
Order No.: H76472-1.0
Identify the route between two nodes

[root@goblin root]# opareport -o route -S node:"goblin hfi1_0" -D node:"orc hfi1_0"

Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records

Routes Summary Between:
Node: 0x001175010157409d FI goblin hfi1_0
and Node: 0x001175010157403d FI orc hfi1_0

Routes between ports:
0x001175010157409d 1 FI goblin hfi1_0
and 0x001175010157403d 1 FI orc hfi1_0

2 Paths
SGID: 0xfe8000000000000:001175010157409d
DGID: 0xfe8000000000000:001175010157403d
SLID: 0x0001 DLID: 0x0018 Reversible: Y PKey: 0x8001
Raw: N FlowLabel: 0x0000 HopLimit: 0x00 TClass: 0x00
SL: 0 Mtu: 8192 Rate: 100g PktLifeTime: 134 ms Pref: 0
Rate NodeGUID Port Type Name
100g 0x001175010157409d HopLimit: 0x00 TClass: 0x00
-> 0x001175010157401cb 44 SW edge1
100g 0x001175010157401cb 40 SW edge1
-> 0x001175010157403d 1 FI orc hfi1_0
2 Links Traversed
SGID: 0xfe8000000000000:001175010157409d
DGID: 0xfe8000000000000:001175010157403d
SLID: 0x0001 DLID: 0x0018 Reversible: Y PKey: 0xffff
Raw: N FlowLabel: 0x0000 HopLimit: 0x00 TClass: 0x00
SL: 0 Mtu: 8192 Rate: 100g PktLifeTime: 134 ms Pref: 0
Rate NodeGUID Port Type Name
100g 0x001175010157409d HopLimit: 0x00 TClass: 0x00
-> 0x001175010157401cb 44 SW edge1
100g 0x001175010157401cb 40 SW edge1
-> 0x001175010157403d 1 FI orc hfi1_0
2 Links Traversed
To obtain very detailed information about nodes, use the `opareport` command with specific options. Here is an example focusing on a single node:

```
[root@duster root]# opareport -o nodes -F node:"duster hfi1_0" -d 5 -s
```

This command outputs information about the node `duster hfi1_0`, including:

- **Node Type Summary**
- **48 Connected FIs in Fabric:**
- **Port Link Mode:**
- **Link Speed:**
- **SM_TrapQP:**
- **SA_QP:**
- **VL Arb Cap:**
- **Preempt Limit:**
- **Flow Control Disabled Mask:**
- **Neighbor Mode:**
- **Neighbor NodeType:**
- **Capability:**
- **Capability3:**

This example uses the `opareport` command to get detailed node information, making it easier to understand the configuration and status of the nodes in the fabric.
Violations: M_Key: 0 P_Key: 0 Q_Key: 0

PortMode ActiveOptimize: Off PassThrough: Off VLMarker: Off
FlitCtrlInterleave Distance Max: 1 Enabled: 1
MaxNestLevelTxEnabled: 0 MaxNestLevelRxSupported: 0
SmallPktLimit: 0x00 MaxSmallPktLimit: 0x00 PreamendmentLimit: 0x00
FlitCtrlPreemption MinInitial: 0x0000 MinTail: 0x0000 LargePktLim: 0x00
BufferUnits: VLI5Init 0x0110; VLI5CreditRate 0x00; CreditAck 0x00;

PortErrorActions: 0x172000: CE-UVLMCE-BCDCE-BHDM-BVLM
ReplayDepth Buffer 0x80; Wire 0x0a
DiagCode: 0x0000
OverallBufferSpace: 0x093f

OverallBufferSpace: 0x093f
P_Key Enforcement: In: Off Out: Off
Performance: Transmit
Xmit Data 42 MB (5278567 Flits)
Xmit Pkts 303029
MC Xmt Pkts 0
Performance: Receive
Rcv Data 220 MB (27592828 Flits)
Rcv Pkts 303026
MC Rcv Pkts 0
Performance: Congestion
Congestion Discards 0
Rcv FECN 0
Rcv BECN 0
Mark FECN 0
Xmit Time Congestion 0
Xmit Wait 0
Performance: Bubbles
Rcv Bubble 240092
Xmit Wasted BW 0
Xmit Wait Data 0
Link Qual Indicator 5 (Excellent)

Errors: Signal Integrity
Uncorrectable Errors 0
Link Downed 0
Rcv Errors 0
Exc. Buffer Overrun 0
FM Config Errors 0
Link Error Recovery 0
Local Link Integ Err 0
Rcv Rmt Phys Err 0

Errors: Security
Xmit Constraint 0
Rcv Constraint 0

Errors: Other
Rcv Sw Relay Err 0
Xmit Discards 0

QSFP Interpreted CableInfo:
Identifier: 0xd
ExtIdentifier: Power Class 1, 1.5W max
Connector: 0x23
NominalBR: 25 Gb
OM2Length: 0m
OM3Length: 0m
OM4Length: 1m
DeviceTech: Passive copper cable
VendorName: FCI Electronics
VendorOUI: 0xfc7ce7
VendorPN: 10131941-2010LF
VendorRev: 2
MaxCasetemp: 0 C
CC_BASE: 0xe0
TxCDR: N/A
TxInpEqFixProg: False
TxInpEqAutoAdp: False
TxSquelchImp: False
RxCDR: N/A
RxOutpEmphFixProg: False
RxOutpAmplFixProg: False
MemPage02Provided: False
Identify connections and links composing the fabric

[goblin1 root@goblin1]# opareport -o links
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Link Summary

96 Links in Fabric:

<table>
<thead>
<tr>
<th>Rate</th>
<th>NodeGUID</th>
<th>Port</th>
<th>Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>100g</td>
<td>0x001175010157401b</td>
<td>1</td>
<td>FI</td>
<td>goblin8</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>7</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x001175010157403d</td>
<td>1</td>
<td>FI</td>
<td>goblin2</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>40</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x0011750101574053</td>
<td>1</td>
<td>FI</td>
<td>goblin12</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>23</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x001175010157405c</td>
<td>1</td>
<td>FI</td>
<td>goblin16</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>33</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x001175010157406c</td>
<td>1</td>
<td>FI</td>
<td>goblin13</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>42</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x0011750101574071</td>
<td>1</td>
<td>FI</td>
<td>goblin18</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>4</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x0011750101574074</td>
<td>1</td>
<td>FI</td>
<td>goblin15</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>41</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x0011750101574077</td>
<td>1</td>
<td>FI</td>
<td>goblin20</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>3</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x001175010157409d</td>
<td>1</td>
<td>FI</td>
<td>goblin1</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>44</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740bb</td>
<td>1</td>
<td>FI</td>
<td>goblin22</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>2</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740bd</td>
<td>1</td>
<td>FI</td>
<td>goblin3</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>43</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740db</td>
<td>1</td>
<td>FI</td>
<td>goblin21</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>10</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740de</td>
<td>1</td>
<td>FI</td>
<td>goblin41</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>22</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740e3</td>
<td>1</td>
<td>FI</td>
<td>goblin33</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>48</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740eb</td>
<td>1</td>
<td>FI</td>
<td>goblin25</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>46</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740f8</td>
<td>1</td>
<td>FI</td>
<td>goblin45</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>18</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740fc</td>
<td>1</td>
<td>FI</td>
<td>goblin42</td>
</tr>
<tr>
<td></td>
<td>0x00117501025019ab</td>
<td>30</td>
<td>SW</td>
<td>edge1</td>
</tr>
<tr>
<td></td>
<td>0x00117501015740fa</td>
<td>1</td>
<td>FI</td>
<td>goblin29</td>
</tr>
<tr>
<td></td>
<td>0x00117501025131cb</td>
<td>32</td>
<td>SW</td>
<td>edge2</td>
</tr>
<tr>
<td></td>
<td>0x0011750101575021</td>
<td>1</td>
<td>FI</td>
<td>goblin46</td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>15 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>16 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>19 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>20 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>23 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>24 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>27 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>28 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>29 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>31 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>32 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>34 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>36 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>39 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>40 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>42 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>43 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>44 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>45 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>47 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>48 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>49 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>51 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>52 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>54 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>55 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>57 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>58 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>60 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>61 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>63 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>64 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>66 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>67 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>69 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>70 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>72 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>73 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>75 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>76 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>78 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>79 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>81 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>82 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>84 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>85 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>87 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>88 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>90 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>91 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>93 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>94 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>96 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>97 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>99 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100g 0x00117501025019ab</td>
<td>100 SW edge1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descriptions of Command Line Tools—Intel® Omni-Path Fabric

Order No.: H76472-1.0

November 2015

167
Reverse lookup

The following example translates a LID or GUID into the information about the node or port represented.

```
[root@duster duster]# opareport -o nodes -F lid:5
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Node Type Summary
Focused on:  
  Port: 1 0x0011750101574071 in Node: 0x0011750101574071 FI goblin2 hfi1_0

48 Connected FIs in Fabric:
  Name: goblin2 hfi1_0
  NodeGUID: 0x0011750101574071 Type: FI
  PortNum: 1 LID: 0x0005 GUID: 0x0011750101574071
  Neighbor: Name: edge1
  NodeGUID: 0x00117501025131cb Type: SW PortNum: 4
  Width: 4 Speed: 25Gb Downgraded? No
1 Matching FIs Found

4 Connected Switches in Fabric:
0 Matching Switches Found

1 Connected SMs in Fabric:
0 Matching SMs Found
```

Forward lookup

The following example returns information about nodes or IOCs listed by name.

```
[root@duster root]# opareport -o nodes -F "node:goblin2 hfi1_0"
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Node Type Summary
Focused on:  
  Node: 0x0011750101574071 FI goblin2 hfi1_0

48 Connected FIs in Fabric:
  Name: goblin2 hfi1_0
  NodeGUID: 0x0011750101574071 Type: FI
```
Generate report for comparison

The following example generates a report so topology verification can be performed against a known good configuration.

Note:
To shorten the length of the output, the following example focuses on only one node.

```
[root@duster root]# opareport -o nodes -F "node:goblin2 hfi1_0" -d 5 -P
Getting All Node Records...
Done Getting All Node Records
Done Getting All Link Records
Done Getting All Cable Info Records
Done Getting All SM Info Records
Node Type Summary
Focused on: Node: 0x0011750101574071 FI goblin2 hfi1_0
48 Connected FIs in Fabric:
Name: goblin2 hfi1_0 NodeGUID: 0x0011750101574071 Type: FI
Ports: 1 PartitionCap: 16 SystemImageGuid: 0x0011750101574071
BaseVer: 128 SmaVer: 128 VendorID: 0x1175 DeviceID: 0x24f0 Rev: 0x0
1 Connected Ports:
PortNum: 1 LID: xxxxxx GUID: 0x0011750101574071
Neighbor: Name: edge1 NodeGUID: 0x00117501025131cb Type: SW PortNum: 4
Width: 4 Speed: 25Gb Downgraded? No
1 Matching FIs Found
```

```
4 Connected Switches in Fabric:
0 Matching Switches Found
1 Connected SMs in Fabric:
0 Matching SMs Found

```
LinkSpeed: Active: 25Gb Supported: 25Gb Enabled: 25Gb
SM_TrapQP: 0x0 SA_QP: 0x1 IPAddr Prim/Sec: :: / 0.0.0.0
VLs: Active: 8+1 Supported: 8+1
HQOLife (Per VL):
 VL 0: 0x0 VL 1: 0x0 VL 2: 0x0 VL 3: 0x0 VL 4: 0x0
 VL 5: 0x0 VL 6: 0x0 VL 7: 0x0 VL 8: 0x0 VL 9: 0x0
 VL10: 0x0 VL11: 0x0 VL12: 0x0 VL13: 0x0 VL14: 0x0
 VL15: 0x0 VL16: 0x0 VL17: 0x0 VL18: 0x0 VL19: 0x0
 VL20: 0x0 VL21: 0x0 VL22: 0x0 VL23: 0x0 VL24: 0x0
 VL25: 0x0 VL26: 0x0 VL27: 0x0 VL28: 0x0 VL29: 0x0
 VL30: 0x0 VL31: 0x0

VL Arb Cap: High: 16 Low: 16 HiLimit: 0
PreemptLimit 0

VLFLOWControlDisabledMask: 0x00000000
NeighborMode MgmtAllowed: Yes FWAuthenBypass: On

NeighborNodeType: Switch
Capability 0x00410020: CN CM APM
Capability3 0x0008: SS
Violations: M_Key: xxxxx P_Key: xxxxx Q_Key: xxxxx
PortMode ActiveOptimize: Off PassThrough: Off VLMarker: Off
FlitCtrlInterleave Distance Max: 1 Enabled: 1
MaxNestLevelTxEnabled: 0 MaxNestLevelRxSupported: 0
SmallPktLimit: 0x00 MaxSmallPktLimit: 0x00 PreemptionLimit: 0x00
FlitCtrlPreemption MinInitial: 0x0000 MinTail: 0x0000 LargePktLim: 0x00
BufferUnits: VL15init 0x0110; VL15CreditRate 0x00; CreditAck 0x0;
BufferAlloc 0x1

PortErrorActions: 0x172000: CE-UVLMCE-BCDCE-BHDR-BVLM
ReplayDepth Buffer 0x80; Wire 0x0c
DiagCode: 0x0000
OverallBufferSpace: 0x093f
P_Key Enforcement: In: Off Out: Off

QSPF Interpreted CableInfo:
 Identifier: 0xd
 ExtIdentifier: Power Class 1, 1.5W max
 Connector: 0x23
 NominalBR: 25 Gb
 OM2Length: 0m
 OM3Length: 0m
 OM4Length: 1m
 DeviceTech: Passive copper cable
 VendorName: FCI Electronics
 VendorOUI: 0xfc7ce7
 VendorPN: 10131941-2010LF
 VendorRev: 2
 MaxCaseTemp: 0 C
 CC_BASE: 0xe0
 TXCDR: N/A
 TXInpEqFixProg: False
 TXInpEqAutoAdp: False
 TXSquelchImp: False
 RXCDR: N/A
 RXOutpEmphFixProg: False
 RXOutpAmpFixProg: False
 MemPage02Provided: False
 MemPage01Provided: False
 VendorSN: CNI449PA102L0163
 DateCode: 2014/12/06-
 CC_EXT: 0x68
 CertCableFlag: N
 ReachClass: 4
 CertDataRates: 4x25G

1 Matching FIs Found
4 Connected Switches in Fabric:
0 Matching Switches Found
1 Connected SMs in Fabric:
0 Matching SMS Found

3.4.36.11 Snapshots

You can take a snapshot of the fabric state for later offline analysis using the `-o snapshot` report. This report generates an XML snapshot of the present fabric status in a format that `opareport` can parse.

Note: Intel recommends that you do not develop your own tools against this format because it may change in future versions of `opareport`.

The snapshot capability can be used to provide powerful analysis capabilities. Multiple reports can be run against the exact same fabric snapshot, which saves time by not requiring the subsequent reports to query the fabric. Also, historic snapshots can be retained for later offline analysis or historical tracking of the fabric.

When a snapshot is generated, no additional `-o` options are allowed during the run and certain `opareport` options are ignored. These include: `-F, -P, -H, and -N`. However, the following options are valid:

- `-s` includes port counters in the snapshot.
- `-r` includes switch routing tables in the snapshot.
- `-V` includes QoS VL-related tables in the snapshot.
- `-i, -L, -a, and -C` control the port counters.

After a snapshot has been generated, it may then be used as input to generate many types of `opareport` reports. To do this, use the `-X snapshot_input` option, where the `snapshot_input` file is the output from a previous snapshot run. When using a snapshot as input, the fabric is not accessed and the node running `opareport` does not need to be attached to the fabric. Because this is a static report, certain options are not available, including `-i, -a, -C, -h HFI, and -p port`.

The report generated from the snapshot includes port counters only if the original snapshot was run with the `-s` option. If not, reports such as `-o` errors are not permitted against the snapshot.

Similarly, certain reports are permitted only if the original snapshot was run with the `-r` option. This includes: `-o linear, -o mcast, -o portusage, -o pathusage, -o treepathusage, and -o route`.

If you want to use standard input (`stdin`) for the snapshot file, then specify `-X`. This can be helpful if snapshots are piped through gzip/gunzip to conserve disk space.

Note: Limitations of `-o route`:

- The Path Records reported may not be complete. The report shows the minimum valid value or an invalid value because certain fields such as SLID, SL, PKey, MTU, Rate, and PktLifeTime are not available. These values do not impact the actual route shown.
- Some routes reported may not be incomplete or not available to applications.

3.4.37 opacheckload

Returns load information on hosts in the fabric.
Syntax

```
opacheckload [-f hostfile] [-h 'hosts']
[-r] [-a|-n numprocs]
```

```
or

opacheckload --help
```

Options

```
--help          Produces full help text.
-f hostfile     File with hosts to check. Default is /etc/sysconfig/opa/
                hosts.
-h hosts        List of hosts to check.
-r              Reverses output to show the least busy hosts. Default is busiest
                hosts.
-n numprocs     Shows top numprocs hosts. Default is 10.
-a              Shows all hosts. Default is 10.
-d upload_dir   Directory to upload loadavg to. Default is uploads.
```

Examples

```
opacheckload
opacheckload -h 'arwen elrond'
HOSTS='arwen elrond' opacheckload
```

Environment

```
HOSTS         List of hosts, used if -h option not supplied.
HOSTS_FILE    File containing list of hosts, used in absence of -f and -h.
UPLOADS_DIR   Directory to upload loadavg, used in absence of -d.
FF_MAX_PARALLEL Maximum concurrent operations.
```

3.4.38 opafirmware

Returns firmware information.

Syntax

```
opafirmware --showVersion firmwareFile
```
or

```
opafirmware --showType firmwareFile
```

Options

--help

Produces full help text.

--showVersion firmwarefile

--showType firmwarefile

3.4.39 opaswdisableall

Syntax

```
opaswdisableall [-t portsfile] [-p ports] [-F focus] [-K mkey]
```

or

```
opaswdisableall --help
```

Options

--help

Produces full help text.

-t portsfile

File with list of local HFI ports used to access fabrics when clearing counters. Default is `/etc/sysconfig/opa/ports` file.

-p ports

List of local HFI ports used to access fabrics for counter clear. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format `hfi:port`, for example:

- `0:0` First active port in system.
- `0:y` Port `y` within system.
- `x:0` First active port on HFI `x`.
- `x:y` HFI `x`, port `y`.

-F focus

An opareport-style focus argument to limit the scope of operation. For more information, see Advanced Focus on page 159.

-K mkey

SM management key to access remote ports.
Examples

opaswdisableall
opaswdisableall -p '1:1 2:1'

Environment Variables

The following environment variables are also used by this command:

- PORTS List of ports, used in absence of -t and -p.
- PORTS_FILE File containing list of ports, used in absence of -t and -p.

3.4.40 opaswenableall

Syntax

opaswenableall [-t portsfile] [-p ports] [-F focus] [-K mkey]

or

opaswenableall --help

Options

- --help Produces full help text.
- -t portsfile File with list of local HFI ports used to access fabrics for operation. Default is /etc/sysconfig/opa/ports file.
- -p ports List of local HFI ports used to access fabrics for operation. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.
 Uses the format hfi:port, for example:

 0:0 First active port in system.
 0:y Port y within system.
 x:0 First active port on HFI x.
 x:y HFI x, port y.
- -F focus An opareport-style focus argument to limit the scope of operation. For more information, see Advanced Focus on page 159.
- -K mkey SM management key to access remote ports.
Examples

opaswenableall
opaswenableall -p '1:1 2:1'

Environment Variables

The following environment variables are also used by this command:

PORTS List of ports, used in absence of -t and -p.

PORTS_FILE File containing list of ports, used in absence of -t and -p.

3.4.41 opatop

Syntax

opatop [-v] [-q] [-h hfi] [-p port] [-i seconds]

or

opatop --help

--help Produces full help text.

-v/--verbose level Verbose output level. Value is additive and includes:

1 Screen

4 STDERR opatop

16 Screen PaClient

-q/--quiet Disables progress reports.

-h/--hfi hfi HFI, numbered 1..n. Using 0 specifies that the -p port is a system-wide port number. Default is 0.

-p/--port port List of local HFI ports used to access fabrics for counter clear. Default is first active port. The first HFI in the system is 1. The first port on an HFI is 1.

Uses the format hfi:port, for example:

0:0 First active port in system.

0:y Port y within system.
x:0 First active port on HFI x.

x:y HFI x, port y.

-i/--interval seconds

- Obtains performance statistics for the value of seconds.

-h and -p options permit a variety of selections:

-h 0 First active port in system (default).

-h 0 -p 0 First active port in system.

-h x First active port on HFI x.

-h x -p 0 First active port on HFI x.

-h 0 -p y Port y within system (no matter which ports are active).

-h x -p y HFI x, port y.

3.5 Health Check and Baselining Tools

(All) The software includes tools to rapidly identify if the fabric has a problem or if its configuration has changed since the last baseline. Analysis includes hardware, software, fabric topology, and SM configuration. The tools are designed to permit easy manual execution or automated execution using cron or other mechanisms. The health check tools include:

• opafabricanalysis – Performs fabric topology and PMA error counters analysis.

• opachassisanalysis – Performs chassis configuration and health analysis for selected chassis.

• opaesmanalysis – Performs embedded SM configuration and health analysis for selected chassis.

• opahostsmanalysis – Performs host SM configuration and health analysis for the local host.

• opaallanalysis – Performs analysis on all components or a subset of components. Intel recommends this as the primary tool for general analysis.

3.5.1 Usage Model

The health check tools support three modes of operation: health check only mode, baseline mode, and check mode. The typical usage model for the tools is:

• Perform initial fabric install and verification:
 — Optionally run tools in health check only mode
 — Performs quick health check
— Duplicates some of steps already done during verification

• Run tools in baseline mode:
 — Takes a baseline of present hardware and software configuration

• Periodically run tools in check mode:
 — Performs quick health check
 — Compares present hardware and software configuration to baseline
 — Can be scheduled in hourly **cron** jobs

• As needed, rerun baseline when expected changes occur, including:
 — Fabric upgrades
 — Hardware replacements and changes
 — Software configuration changes

3.5.2 Common Operations and Options

The Health Check and Baselining tool supports the following options:

- `-b` Performs a baseline snapshot of the configuration.
- `-e` Performs an error check/health analysis only.

If no option is specified, the tool performs a snapshot of the present configuration, compares it to the baseline, and performs an error check/health analysis.

Using both `-b` and `-e` on a given run is not permitted.

A typical use case is:

- Perform an initial error check by running the `-e` option.
- Review and correct the errors reported in the files indicated by the tools.
- Once all the errors are corrected, perform a baseline of the configuration using the `-b` option. The baseline configuration is saved to files in **FF_ANALYSIS_DIR/baseline**. The default `/var/opt/opa/analysis/baseline` is set through `/etc/sysconfig/opa/opafastfabric.conf`. This baseline configuration should be carefully reviewed to make sure it matches the intended configuration. If it does not, correct the configuration and run a new baseline.

Example

```
opafabricanalysis -e
```

Errors reported could include links with high error rates, unexpected low speeds, etc. Correct any errors, then rerun **opafabricanalysis -e** to make sure there is a good fabric.

```
opafabricanalysis -b
```

The baseline configuration is saved to **FF_ANALYSIS_DIR/baseline**. This includes files starting with `links` and `comps`, which are the results of **opareport -o links** and **opareport -o comps** reports respectively. Review these files and make sure all the expected links and components are present. For example, make sure all the
switches and servers in the cluster are present. Also, verify the appropriate links between servers and switches are present. If the fabric is not correctly configured, correct the configuration and rerun the baseline.

Note: Alternatively, the advanced topology verification capabilities of opareport can be used to verify the fabric deployment against the intended design.

Once a good baseline has been established, use the tools to compare the present fabric against the baseline and check its health.

opafabricanalysis

Checks the present fabric links and components against the previous baseline. If there have been changes, it reports a failure and indicate which files hold the resulting snapshot and differences. It also checks the PMA error counters and link speeds for the fabric, similar to opafabricanalysis -e. If either of these checks fail, it returns a non-zero exit status, permitting higher level scripts to detect a failed condition.

The differences files are generated using the Linux* command specified by FF_DIFF_CMD in opafastfabric.conf. By default, this is the diff -C 1 command. It is run against the baseline and new snapshot. Therefore, lines after each *** #,# **** heading in the diff are from the baseline and lines after each --- #,# ---- heading are from the new snapshot. If FF_DIFF_CMD is simply set to diff, lines indicated by "<" in the diff are from the baseline and lines indicated by ">" in the diff are from the new snapshot.

Another useful command is the Linux* sdiff command. For more information about the diff output format, consult the Linux* man page for diff.

If the configuration is intentionally changed, Intel recommends that you obtain a new error analysis and baseline using the same sequence as the initial installation to establish a new baseline for future comparisons.

In addition, all of the tools support the following two options:

- **-s**
 Saves history of failures.
 When the -s option is used, each failed run also creates a directory whose name is the date and time the analysis tool was started. The directory contains the failing snapshot information and diffs, allowing you to track a history of failures. Note that every run of the tools also creates a latest directory with the latest snapshot. The latest files are overwritten by each subsequent run of the tool, which means the most recent run results are always available.
 Beware, frequent use of the health check tools in conjunction with -s can consume a large amount of disk space. The space requirements depend greatly on the size of the cluster. For example, it could be > 10 megabytes per run on a 1000 node cluster.

- **-d dir**
 Specifies the top-level directory for saving baseline, snapshots, and history.
Runs using -d must use the same directory as any previous baseline to be compared to (except when the -e option is used). Default is FF_ANALYSIS_DIR which is set in opafastfabric.conf.

The FF_ANALYSIS_DIR option can be changed to provide a customer-specific alternate directory to be used whenever the -d option is not specified. Subdirectories under FF_ANALYSIS_DIR are created as follows:

- baseline Baseline snapshot from each analysis tool.
- latest Latest snapshot from each analysis tool.
- YYYY-MM-DD-HH:MM:SS Failed analysis from analysis run with -s.

3.5.3 opafabricanalysis

(All) Performs analysis of the fabric.

Syntax

```bash
```

Options

- `-b` Baseline mode, default is compare/check mode.
- `-e` Evaluate health only, default is compare/check mode.
- `-s` Save history of failures (errors/differences).
- `-d dir` Top-level directory for saving baseline and history of failed checks. Default = /var/opt/opa/analysis
- `-c file` Error thresholds config file. Default = /etc/sysconfig/opa/opamon.conf
- `-t portsfile` File with list of local HFI ports used to access fabric(s) for analysis. Default = /etc/sysconfig/opa/ports
- `-p ports` List of local HFI ports used to access fabric(s) for analysis. Default is the first active port. Specified as HFI:port as follows:

 - 0:0 First active port in system
 - 0:y Port y within system
 - x:0 First active port on HFI x
 - x:y HFI x, port y
-T topology_input Name of topology input file to use. Any %P markers in this filename are replaced with the HFI:port being operated on (such as 0:0 or 1:2). Default = /etc/sysconfig/opa/topology.%P.xml. If -T NONE is specified, no topology input file is used. See opareport on page 66 for more information.

Example

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>opafabricanalysis</td>
</tr>
<tr>
<td>opafabricanalysis -p '1:1 2:1'</td>
</tr>
</tbody>
</table>

The fabric analysis tool checks the following:
- Fabric links (both internal to switch chassis and external cables)
- Fabric components (nodes, links, SMs, systems, and their SMA configuration)
- Fabric PMA error counters and link speed mismatches

Note: The comparison includes components on the fabric. Therefore, operations such as shutting down a server cause the server to no longer appear on the fabric and are flagged as a fabric change or failure by opafabricanalysis.

Environment Variables

The following environment variables are also used by this command:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTS</td>
<td>List of ports, used in absence of -t and -p.</td>
</tr>
<tr>
<td>PORTS_FILE</td>
<td>File containing list of ports, used in absence of -t and -p.</td>
</tr>
<tr>
<td>FF_TOPOLOGY_FILE</td>
<td>File containing topology_input (may have %P marker in filename), used in absence of -T.</td>
</tr>
<tr>
<td>FF_ANALYSIS_DIR</td>
<td>Top level directory for baselines and failed health checks.</td>
</tr>
</tbody>
</table>

Details

For simple fabrics, the Intel® Omni-Path Fabric Suite FastFabric Toolset host is connected to a single fabric. By default, the first active port on the FastFabric Toolset host is used to analyze the fabric. However, in more complex fabrics, the FastFabric Toolset host may be connected to more than one fabric or subnet. In this case, you can specify the ports or HFI's to use with one of the following methods:
- On the command line using the -p option.
- In a file specified using the -t option.
- Through the environment variables PORTS or PORTS_FILE.
- Using the PORTS_FILE configuration option in opafastfabric.conf.
If the specified port does not exist or is empty, the first active port on the local system is used. In more complex configurations, you must specify the exact ports to use for all fabrics to be analyzed. For more information, refer to Selection of Devices on page 14.

You can specify the topology_input file to be used with one of the following methods:

- On the command line using the -T option.
- In a file specified through the environment variable FF_TOPOLOGY_FILE.
- Using the ff_topology_file configuration option in opafastfabric.conf.

If the specified file does not exist, no topology_input file is used. Alternately the filename can be specified as NONE to prevent use of an input file.

For more information, refer to opareport.

By default, the error analysis includes PMA counters and slow links (that is, links running below enabled speeds). You can change this using the FF_FABRIC_HEALTH configuration parameter in opafastfabric.conf. This parameter specifies the opareport options and reports to be used for the health analysis. It also can specify the PMA counter clearing behavior (-I seconds, -C, or none at all). See Appendix A in the Intel® Omni-Path Fabric Suite FastFabric User Guide for more information.

When a topology_input file is used, it can also be useful to extend FF_FABRIC_HEALTH to include fabric topology verification options such as -o verifylinks.

The thresholds for PMA counter analysis default to /etc/sysconfig/opa/opamon.conf. However, you can specify an alternate configuration file for thresholds using the -c option. The opamon.si.conf file can also be used to check for any non-zero values for signal integrity (SI) counters.

All files generated by opafabricanalysis start with fabric in their file name. This is followed by the port selection option identifying the port used for the analysis. Default is 0:0.

The opafabricanalysis tool generates files such as the following within FF_ANALYSIS_DIR:

- Health Check
 - latest/fabric.0:0.errors
 stdout of opareport for errors encountered during fabric error analysis.
 - latest/fabric.0:0.errors.stderr
 stderr of opareport during fabric error analysis.

- Baseline
 During a baseline run, the following files are also created in FF_ANALYSIS_DIR/latest.
 - baseline/fabric.0:0.snapshot.xml
 opareport snapshot of complete fabric components and SMA configuration.
• Full analysis
 — latest/fabric.0:0.snapshot.xml
 opareport snapshot of complete fabric components and SMA configuration.
 — latest/fabric.0:0.snapshot.stderr
 stderr of opareport during snapshot.
 — latest/fabric.0:0.errors
 stdout of opareport for errors encountered during fabric error analysis.
 — latest/fabric.0:0.errors.stderr
 stderr of opareport during fabric error analysis.
 — latest/fabric.0:0.comps
 stdout of opareport for fabric components and SMA configuration.
 — latest/fabric.0:0.comps.stderr
 stderr of opareport for fabric components.
 — latest/fabric.0:0.comps.diff
 diff of baseline and latest fabric components.
 — latest/fabric.0:0.links
 stdout of opareport summary of internal and external links.
 — latest/fabric.0:0.links.stderr
 stderr of opareport summary of internal and external links.
 — latest/fabric.0:0.links.diff
 diff of baseline and latest fabric internal and external links.
 — latest/fabric.0:0.links.changes.stderr
 stderr of opareport comparison of links.
 — latest/fabric.0:0.links.changes
 opareport comparison of links against baseline. This is typically easier to read than the links.diff file and contains the same information.
 — latest/fabric.0:0.comps.changes.stderr
 stderr of opareport comparison of components.
 — latest/fabric.0:0.comps.changes
 opareport comparison of components against baseline. This is typically easier to read than the comps.diff file and contains the same information.

The .diff and .changes files are only created if differences are detected.
If the \(-s\) option is used and failures are detected, files related to the checks that failed are also copied to the time-stamped directory name under \texttt{FF_ANALYSIS_DIR}.

Fabric items checked against the baseline

Based on opareport \(-o\) links:
- Unconnected/down/missing cables
- Added/moved cables
- Changes in link width and speed
- Changes to Node GUIDs in fabric (replacement of HFI or Switch hardware)
- Adding/Removing Nodes [FI, Virtual FIs, Virtual Switches, Physical Switches, Physical Switch internal switching cards (leaf/spine)]
- Changes to server or switch names

Based on opareport \(-o\) comps:
- Overlap with items from links report
- Changes in port MTU, LMC, number of VLs
- Changes in port speed/width enabled or supported
- Changes in HFI or switch device IDs/revisions/VendorID (for example, ASIC HW changes)
- Changes in port Capability mask (which features/agents run on port/server)
- Changes to ErrorLimits and PKey enforcement per port
- Changes to IOUs/IOCs/IOC Services provided

\textit{Note:} Only applicable if IOUs in fabric (such as Virtual IO cards, native storage, and others).

Location (port, node) and number of SMs in fabric. Includes:
- Primary and backups
- Configured priority for SM

Fabric items also checked during health check

Based on opareport \(-s\) \(-C\) \(-o\) errors \(-o\) slowlinks:
- PMA error counters on all Intel\textregistered Omni-Path Fabric ports (HFI, switch external and switch internal) checked against configurable thresholds.
 - Counters are cleared each time a health check is run. Each health check reflects a counter delta since last health check.
 - Typically identifies potential fabric errors, such as symbol errors.
 - May also identify transient congestion, depending on the counters that are monitored.
- Link active speed/width as compared to Enabled speed.
 - Identifies links whose active speed/width is < min (enabled speed/width on each side of link).
 - This typically reflects bad cables or bad ports or poor connections.
• Side effect is the verification of SA health.

3.5.4 opachassisanalysis

Switch Performs analysis of the chassis.

The opachassisanalysis tool checks the following for the Intel® Omni-Path Fabric Chassis:

- Chassis configuration (as reported by the chassis commands specified in FF_CHASSIS_CMDS in opafastfabric.conf).
- Chassis health (as reported by the chassis command specified in FF_CHASSIS_HEALTH in opafastfabric.conf).

Syntax

```bash
opachassisanalysis [-b|-e] [-s] [-d dir] [-F chassisfile] [-H 'chassis']
```

Options

- **--help** Produces full help text.
- **-b** Baseline mode. Default is the compare/check mode.
- **-e** Evaluates health only. Default is the compare/check mode.
- **-s** Saves history of failures (errors/differences).
- **-d dir** Top-level directory for saving baseline and history of failed checks. Default = /var/opt/opa/analysis
- **-F chassisfile** File with the chassis in the cluster. Default = /etc/sysconfig/opa/chassis
- **-H 'chassis'** List of chassis on which to execute the command.

Example

```bash
opachassisanalysis
```

Environment Variables

The following environment variables are also used by this command:

- CHASSIS List of chassis, used if -F and -H options are not supplied.
- CHASSIS_FILE File containing list of chassis, used if -F and -H options are not supplied.
- FF_ANALYSIS_DIR Top-level directory for baselines and failed health checks.
Details

Intel recommends that you set up SSH keys for chassis (see opasetupssh on page 47). If SSH keys are not set up, all chassis must be configured with the same admin password and the password must be kept in the /etc/sysconfig/opafastfabric.conf configuration file.

The default set of FF_CHASSIS_CMDS is:

```
showInventory fwVersion showNodeDesc timeZoneConf timeDSTConf
snmpCommunityConf snmpTargetAddr showChassisIpAddr showDefaultRoute
```

The commands specified in FF_CHASSIS_CMDS must be simple commands with no arguments. The output of these commands are compared to the baseline using FF_DIFF_CMD. Therefore, commands that include dynamically changing values, such as port packet counters, should not be included in this list.

FF_CHASSIS_HEALTH can specify one command (with arguments) to be used to check the chassis health. For chassis with newer firmware, the hwCheck command is recommended. For chassis with older firmware, a benign command, such as fruInfo, should be used. The default is hwCheck. Note that only the exit status of the FF_CHASSIS_HEALTH command is checked. The output is not captured and compared in a snapshot. However, on failure its output is saved to aid diagnosis.

The opachassisanalysis tool performs its analysis against one or more chassis in the fabric. As such, it permits the chassis to be specified using the -H, -F, CHASSIS, chassis_file or opafastfabric.conf. The handling of these options and settings is comparable to opacmdall -C and similar FastFabric Toolset commands against a chassis.

All files generated by opafabricanalysis start with chassis. in the file name.

The opachassisanalysis tool generates files such as the following within FF_ANALYSIS_DIR. The actual file names reflect the individual chassis commands that have been configured through the FF_CHASSIS_HEALTH and FF_CHASSIS_CMDS parameters:

- **Health Check**
 - latest/chassis.hwCheck
 - Output of hwCheck command for all selected chassis

- **Baseline**
 During a baseline run, the following files are also created in FF_ANALYSIS_DIR/
 - latest/chassis.fwVersion
 - Output of fwVersion command for all selected chassis.
 - baseline/chassis.showChassisIpAddr
 - Output of the showChassisIpAddr command for all selected chassis.
 - baseline/chassis.showDefaultRoute
 - Output of the showDefaultRoute command for all selected chassis.
— baseline/chassis.showNodeDesc
 Output of the showNodeDesc command for all selected chassis.

— baseline/chassis.showInventory
 Output of the showInventory command for all selected chassis.

— baseline/chassis.snmpCommunityConf
 Output of the snmpCommunityConf command for all selected chassis.

— baseline/chassis.snmpTargetAddr
 Output of the snmpTargetAddr command for all selected chassis.

— baseline/chassis.timeDSTConf
 Output of the timeDSTConf command for all selected chassis.

— baseline/chassis.timeZoneConf
 Output of the timeZoneConf command for all selected chassis.

• Full analysis
 The following .diff files are only created if differences are detected.

— latest/chassis.hwCheck
 Output of the hwCheck command for all selected chassis.

— latest/chassis.fwVersion
 Output of the fwVersion command for all selected chassis.

— latest/chassis.fwVersion.diff
 diff of the baseline and latest fwVersion.

— latest/chassis.showChassisIpAddr
 Output of the showChassisIpAddr command for all selected chassis.

— latest/chassis.showChassisIpAddr.diff
 diff of baseline and latest showChassisIpAddr.

— latest/chassis.showDefaultRoute
 Output of the showDefaultRoute command for all selected chassis.

— latest/chassis.showDefaultRoute.diff
 diff of the baseline and the latest showDefaultRoute.

— latest/chassis.showNodeDesc
 Output of the showNodeDesc command for all selected chassis.

— latest/chassis.showNodeDesc.diff
 diff of the baseline and latest showNodeDesc.

— latest/chassis.showInventory
 Output of the showInventory command for all selected chassis.

— latest/chassis.showInventory.diff
 diff of the baseline and latest showInventory.
— latest/chassis.snmpCommunityConf
 Output of the snmpCommunityConf command for all selected chassis.
— latest/chassis.snmpCommunityConf.diff
diff of the baseline and latest snmpCommunityConf.
— latest/chassis.snmpTargetAddr
 Output of the snmpTargetAddr command for all selected chassis.
— latest/chassis.snmpTargetAddr.diff
diff of the baseline and latest snmpTargetAddr.
— latest/chassis.timeDSTConf
 Output of the timeDSTConf command for all selected chassis.
— latest/chassis.timeDSTConf.diff
diff of the baseline and latest timeDSTConf.
— latest/chassis.timeZoneConf
 Output of the timeZoneConf command for all selected chassis.
— latest/chassis.timeZoneConf.diff
diff of the baseline and latest timeZoneConf.

If the -s option is used and failures are detected, files related to the checks that failed are also copied to a time-stamped directory name under FF_ANALYSIS_DIR.

Chassis items checked against the baseline

Based upon showInventory:
- Addition/removal of Chassis FRUs
 Replacement is only checked for FRUs that showInventory displays the serial number.
- Removal of redundant FRUs (spines, power supply, fan)

Based upon fwVersion:
- Changes to primary or alternate FW versions installed in cards in chassis.

Based upon showNodeDesc:
- Changes to configured node description for chassis. Note changes detected here would also be detected in fabric level analysis.

Based upon timeZoneConf and timeDSTConf:
- Changes to the chassis time zone and daylight savings time configuration.

Based upon snmpCommunityConf and snmpTargetAddr:
- Changes to SNMP persistent configuration within the chassis.

The following Chassis items are not checked against baseline:
• Changes to the chassis configuration on the management LAN (for example, `showChassisIpAddr`, `showDefaultRoute`). Such changes typically result in the chassis not responding on the LAN at the expected address that is detected by failures that perform other chassis checks.

Chassis items also checked during health check

Based upon `hwCheck`:

• Overall health of FRUs in chassis:
 — Status of Fans in chassis
 — Status of Power Supplies in chassis
 — Temp/Voltage for each card
• Presence of adequate power/cooling of FRUs
• Presence of N+1 power/cooling of FRUs
• Presence of Redundant AC input

3.5.5 opahostsmanalysis

(All) Performs analysis against the local server only.

Syntax

```bash
opahostsmanalysis [-b|-e] [-s] [-d dir]
```

Options

--help Produces full help text.

-b Baseline mode. Default is the compare/check mode.

e Evaluates health only. Default is the compare/check mode.

-s Saves history of failures (errors/differences).

d dir Top-level directory for saving baseline and history of failed checks. Default = `/var/opt/opa/analysis`

Example

```bash
opahostsmanalysis
```

The host SM analysis tool checks the following:

• Host SM software version
• Host SM configuration file (simple text compare using `FF_DIFF_CMD`)
• Host SM health (for example, is it running?)

The `opahostsmanalysis` tool performs analysis against the local server only. It is assumed that both the host SM and the FastFabric are installed on the same system.
Environment Variables

The following environment variables are also used by this command:

- **FF_ANALYSIS_DIR** - Top-level directory for baselines and failed health checks.
- **FF_CURTIME** - Timestamp to use on the directory created in FF_DIFF_CMD.
- **FF_DIFF_CMD** - Linux* command to use to compare baseline to latest snapshot.

Details

All files generated by opahostsmanalysis start with hostsm in the file name.

The opahostsmanalysis tool generates files such as the following within FF_ANALYSIS_DIR. The actual file names reflect the individual chassis commands that have been configured using the FF_CHASSIS_HEALTH and FF_CHASSIS_CMDS parameters:

- **Health Check**
 - latest/hostsm.smstatus - Output of the sm_query smShowStatus command.

- **Baseline**
 - baseline/hostsm.smver - Host SM version.
 - baseline/hostsm.smconfig - Copy of ifs_fm.config.

During a baseline run, the files are also created in FF_ANALYSIS_DIR/latest.

- **Full analysis**
 - latest/hostsm.smstatus - Output of the sm_query smShowStatus command.
 - latest/hostsm.smver - Host SM version.
 - latest/hostsm.smver.diff - diff of the baseline and latest host SM version.
 - latest/hostsm.smconfig - Copy of ifs_fm.xml.
 - latest/hostsm.smconfig.diff - diff of the baseline and the latest ifs_fm.xml.

The .diff files are only created if differences are detected.

If the -s option is used and failures are detected, files related to the checks that failed are also copied to a time-stamped directory name under FF_ANALYSIS_DIR.

- Host SM items checked against the baseline
 - SM configuration file
 - Version of the SM rpm installed on the system

- Host SM items also checked during healthcheck
 - The SM is in the running state.
3.5.6 opaesmanalysis

(Switch) Performs analysis of the embedded Subnet Manager (SM) for configuration and health.

Syntax

Options

--help Produces full help text.
-b Baseline mode. Default is the compare/check mode.
-e Evaluates health only. Default is the compare/check mode.
-s Saves history of failures (errors/differences).
-d dir Top-level directory for saving baseline and history of failed checks. Default = /var/opt/opa/analysis
-G esmchassisfile File with SM chassis in the cluster. Default = /etc/sysconfig/opa/esm_chassis
-E 'esmchassis' List of SM chassis on which to execute the command.

Example

opaesmanalysis

The opaesmanalysis tool checks the following:

- Embedded SM configuration, (as reported by the chassis commands specified in FF_ESM_CMDS in opafastfabric.conf.
- Embedded SM health, as reported by smControl status.
- The opafm.xml file for the chassis is also checked.

Environment Variables

The following environment variables are also used by this command:

ESM_CHASSIS List of SM chassis, used if -G and -E options are not supplied.
ESM_CHASSIS_FILE File containing list of SM chassis, used if -G and -E options are not supplied.
FF_ANALYSIS_DIR Top-level directory for baselines and failed health checks.
• **FF_TIMEOUT_MULT** – Multiplier for response time-outs. The default is 2. This typically does not need to be set, but in the event of unexpected time-outs or extremely slow chassis or management network, a larger value can be used.

• **FF_CHASSIS_LOGIN_METHOD** – How to log in to a chassis. Can be SSH or Telnet.

• **FF_CHASSIS_ADMIN_PASSWORD** – Password for administrator on all chassis.

• **FF_CURTME** – Time stamp to use on the directory created in **ff_analysis_dir**. The default is the current date and time.

• **FF_ESM_CMDS** – Set of chassis CLI commands to get the SM configuration.

• **FF_DIFF_CMD** – Linux* command to use to compare baseline to latest snapshot.

Details

Intel recommends that you set up SSH keys for chassis (see [opasetupssh](#) on page 47). If SSH keys are not set up, all chassis must be configured with the same admin password and the password must be kept in the **opafastfabric.conf** configuration file.

The default set of **FF_ESM_CMDS** is:

```
smShowSMParms smShowDefBcGroup
```

The commands specified in **FF_ESM_CMDS** must be simple commands with no arguments. The output of these commands are textually compared to the baseline using **diff**. Therefore, commands that include dynamically changing values (such as port packet counters) should not be included in this list.

The **opaesmanalysis** command performs analysis against one or more chassis in the fabric. As such, it permits a chassis to be specified using `-E`, `-G`, `ESM_CHASSIS`, `ESM_CHASSIS_FILE`, or `opafastfabric.conf`. The handling of these options and settings is comparable to **opacmdall -C** and similar toolset commands against a chassis. The exception in this case is that the option and variable names are slightly different to distinguish the fact that they are specifying only the chassis that has an embedded SM running.

All files generated by **opaesmanalysis** start with **esm** in the file name.

The **opaesmanalysis** command generates files such as the following within **FF_ANALYSIS_DIR**. The actual file names reflect the individual chassis commands that have been configured using the **FF_ESM_CMDS** parameter:

- **Health Check**
 - latest/esm.smstatus – Output of the **smControl status** command for all selected chassis.

- **Baseline**
 - baseline/esm.smShowDefBcGroup – Output of the **smShowDefBcGroup** command for all selected chassis.
 - baseline/esm.smShowSMParms – Output of the **smShowSMParms** command for all selected chassis.
 - /esm.CHASSIS.opafm.xml – The **opafm.xml** file for the given chassis.
During a baseline run, files are also created in \texttt{ff_analysis_dir/latest}.

- **Full analysis**
 - \texttt{latest/esm.smstatus} – Output of the \texttt{smControl status} command for all selected chassis.
 - \texttt{latest/esm.smShowDefBcGroup} – Output of the \texttt{smShowDefBcGroup} command for all selected chassis.
 - \texttt{latest/esm.smShowDefBcGroup.diff} – diff of baseline and latest.
 - \texttt{latest/esm.smShowSMParms} – Output of the \texttt{smShowSMParms} command for all selected chassis latest/esm.
 - \texttt{latest/smShowSMParms.diff} – diff of the baseline and the latest \texttt{smShowSMParms}.
 - \texttt{latest/esm.CHASSIS.ifs_fm.xml} – ifs_fm.xml file for the given chassis.
 - \texttt{latest/esm.CHASSIS.ifs_fm.xml.diff} – diff of the baseline and the latest ifs_fm.xml for the given chassis.

The .diff files are only created if differences are detected.

If the \texttt{-s} option is used, \texttt{smShowDefBcGroup} and failures are detected, files related to the checks that have failed are also copied to a time-stamped directory name under \texttt{FF_ANALYSIS_DIR}, such as:

\texttt{FF_ANALYSIS_DIR/YYYY-MM-DD- hh:mm:ss}

- **Chassis SM items that are checked against the baseline**
 Based upon \texttt{smShowSMParms}:
 - SM priority
 - SM sweep rate
 - SM retry and timeout
 - SM fabric time-outs configured (\texttt{switchLifeTime}, \texttt{HoqLife}, \texttt{VLStall}, \texttt{PacketLifeTimes} for PathRecords)
 - Multipath mode
 - Based on \texttt{smShowDefBcGroup}
 - Default IPoIB broadcast group settings in SM (\texttt{PKey}, \texttt{MTU}, \texttt{Rate}, \texttt{SL})
 - For a chassis, the entire \texttt{opafm.xml} file is also compared.

- **Chassis SM items also checked during healthcheck**
 Based upon \texttt{smControl status}:
 - SM is in running state.

3.5.7 \texttt{opaallanalysis}

\texttt{(All)} \texttt{opaallanalysis} command performs the set of analysis specified in \texttt{FF_ALL_ANALYSIS} and can be specified for fabric, chassis, esm, or hostsm.
Syntax

```bash
```

Options

--help	Produces full help text.
-b	Baseline mode. Default is compare/check mode.
-e	Evaluates health only. Default is compare/check mode.
-s	Saves history of failures (errors/differences).
-d dir	Top-level directory for saving baseline and history of failed checks. Default = /var/opt/opa/analysis
-c file	Error thresholds configuration file. Default = /etc/sysconfig/opa/opamon.conf
-t portsfile	File with list of local HFI ports used to access fabric(s) for analysis. Default = /etc/sysconfig/opa/ports
-p ports	List of local HFI ports used to access fabric(s) for analysis. Default is the first active port. Specified as HFI:port as follows:
 0:0 First active port in system.
 0:y Port y within system.
 x:0 First active port on HFI x.
 x:y HFI x, port y.
-F chassisfile	File with a chassis in a cluster. Default = /etc/sysconfig/opa/chassis
-H 'chassis'	List of chassis on which to execute the command.
-G esmchassisfile	File with embedded SM chassis in the cluster. Default = /etc/sysconfig/opa/esm_chassis
-E esmchassis	List of embedded SM chassis to analyze.
-T topology_input Name of topology input file to use. Any %P markers in this filename are replaced with the HFI:port being operated on, such as 0:0 or 1:2. Default = /etc/sysconfig/opa/topology.%P.xml. If -T NONE is specified, no topology input file is used. See opareport on page 66 for more information.

Example

opaallanalysis
opaallanalysis -p '1:1 2:1'

Environment Variables

The following environment variables are also used by this command:

PORTS List of ports, used in absence of -t and -p.
PORTS_FILE File containing list of ports, used in absence of -t and -p.
FF_TOPOLOGY_FILE File containing topology_input (may have %P marker in filename), used in absence of -T.
CHASSIS List of chassis, used if -F and -H options are not supplied.
CHASSIS_FILE File containing list of chassis, used if -F and -H options are not supplied.
ESM_CHASSIS List of SM chassis, used if -G and -E options are not supplied.
ESM_CHASSIS_FILE File containing list of SM chassis, used if -G and -E options are not supplied.
FF_ANALYSIS_DIR Top level directory for baselines and failed health checks.

Details

The opaallanalysis command performs the set of analysis specified in FF_ALL_ANALYSIS, which must be a space-separated list. This can be provided by the environment or using /etc/sysconfig/opa/opafastfabric.conf. The analysis set includes the options: fabric, chassis, esm, or hostsm.

Note that the opaallanalysis command has options which are a super-set of the options for all other analysis commands. The options are passed along to the respective tools as needed. For example, the -c file option is passed on to opafabricanalysis if it is specified in FF_ALL_ANALYSIS.

The output files are all the output files for the FF_ALL_ANALYSIS selected set of analysis. See the previous sections for the specific output files.
3.5.8 Manual and Automated Usage

There are two basic ways to use the tools:

- **Manual**
 Run the tools manually when trying to diagnose problems, or when you want to validate the fabric configuration and health.

- **Automated**
 Run `opaallanalysis` or a specific tool in an automated script (such as a cron job). When run in this mode, the `-s` option may prove useful, but care must be taken to avoid excessive saved failures. When run in automated mode, Intel recommends you use a frequency of no faster than hourly. For many fabrics, a daily run or perhaps every few hours is sufficient. Because the exit code from each of the tools indicates the overall success/failure, an automated script can easily check the exit status. If failure occurs, an e-mail of the output can be sent from the analysis tool to the appropriate administrators for further analysis and corrective action.

Notes:
Running these tools too often can have negative impacts. Among the potential risks:

- Each run adds a potential burden to the SM, fabric, and switches. For infrequent runs (hourly or daily), this impact is negligible. However, if this were to be run very frequently, the impacts to fabric and SM performance can be noticeable.

- Runs with the `-s` option consume additional disk space for each run that identifies an error. The amount of disk space varies depending on fabric size. For a larger fabric, this can be on the order of 1-40 MB. Therefore, care must be taken not to run the tools too often and to visit and clean out the `FF_ANALYSIS_DIR` periodically. If the `-s` option is used during automated execution of the health check tools, it may be helpful to also schedule automated disk space checks, for example, as a cron job.

- Runs coinciding with down time for selected components, (such as servers that are offline or rebooting, are considered failures and generate the resulting failure information. If the runs are not carefully scheduled, this data could be misleading and also waste disk space.

3.5.9 Re-establishing Health Check Baseline

Intel recommends you establish a baseline after you change the fabric configuration. The following activities are examples of ways in which the fabric configuration may be changed:

- Repair a faulty board, which leads to a new serial number for that component.
- Update switch firmware or Fabric Manager.
- Change time zones in a switch.
- Add or delete a new device or link to a fabric.
- Remove a failed link and its devices from the Fabric Manager database.

Perform the following procedure to re-establish the health check baseline:

1. Make sure that you have fixed all problems with the fabric, including inadvertent configuration changes, before proceeding.
2. Verify that the fabric configured is as expected. The simplest way to do this is to run `opafabricinfo` which returns information for each subnet to which the fabric management server is connected. The following is an example output for a single subnet.

```
# opafabricinfo
Fabric 0:0 Information:
SM: hds1fbn6241 hf11_0 Guid: 0x0011750101575ffe State: Master
Number of HFIs: 8
Number of Switches: 1
Number of Links: 8
Number of HFI Links: 8 (Internal: 0 External: 8)
Number of ISLs: 0 (Internal: 0 External: 0)
Number of Degraded Links: 0 (HFI Links: 0 ISLs: 0)
Number of Omitted Links: 0 (HFI Links: 0 ISLs: 0)
```

3. Save the old baseline because it may be required for future debug. The old baseline is a group of files in `/var/opt/opa/analysis/baseline`.

4. Run `opaallanalysis -b`

5. Check the new output files in `/var/opt/opa/analysis/baseline` to verify that the configuration is as you expect it. Refer to the *Intel® Omni-Path Fabric Suite FastFabric User Guide* for details.

3.5.10 Interpreting the Health Check Results

When any of the health check tools are run, the overall success or failure is indicated in the output of the tool and its exit status. The tool also indicates which areas had problems and which files should be reviewed. The results from the latest run can be found in `FF_ANALYSIS_DIR/latest/`. This directory includes the latest configuration of the fabric and any errors/differences found during the health check.

If the `-s` option was used when running the health check, a directory whose name is the date and time of the failing run is created under `FF_ANALYSIS_DIR`. In this case, refer to that directory instead of the `latest` directory shown in the following examples.

Intel recommends that you review the results for any ESM or SM health check failures. If the SM is misconfigured or not running, it can cause other health checks to fail. In this case, correct the SM problems first, then rerun the health check.

For a host SM analysis, review the files in the following order:

1. `latest/hostsm.smstatus`
 - Make sure this file indicates the SM is running. If no SMs are running on the fabric, correct that problem before proceeding further. Once corrected, rerun the health checks to look for further errors.

2. `latest/hostsm.smver.diff`
 - Indicates the SM version has changed. If this was not an expected change, correct the SM before proceeding further. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

3. `latest/hostsm.smconfig.diff`
Indicates that the SM configuration has changed. Review this file and compare the latest/hostsm.smconfig file to baseline/hostsm.smconfig. Correct the SM configuration, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

For an ESM analysis, the FF_ESM_CMDS configuration setting selects which ESM commands are used for the analysis. When using the default setting for this parameter, review the files in the following order:

1. latest/esm.smstatus
 Make sure this indicates the SM is running. If no SMs are running on the fabric, correct the problem before proceeding further. Once corrected, rerun the health checks to look for further errors.

2. latest/esm.CHASSIS.opafm.xml
 The opafm.xml file for the given chassis.

3. latest/esm.CHASSIS.opafm.xml.diff
 Indicates that the SM configuration has changed. Review this file and compare the latest/esm.CHASSIS.opafm.xml file to baseline/esm.CHASSIS.opafm.xml. Correct the SM configuration, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

4. latest/esm.smShowSMParms.diff
 Indicates that the SM configuration has changed. Review this file and compare the latest/esm.smShowSMParms file to baseline/esm.smShowSMParms. Correct the SM configuration, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

5. latest/esm.smShowDefBcGroup.diff
 Indicates that the SM broadcast group for IPoIB configuration has changed. Review this file and compare the latest/esm.smShowDefBcGroup file to baseline/esm.smShowDefBcGroup. Correct the SM configuration, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

6. latest/esm.*.diff
 If FF_ESM_CMDS has been modified, review the changes in results for those additional commands. Correct the SM configuration, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

Next, review the results of the fabric analysis for each configured fabric. If nodes or links are missing, the fabric analysis detects them. Missing links or nodes can cause other health checks to fail. If such failures are expected (for example, a node or switch is offline), you can perform further review of result files, however, be aware that the loss of the node or link can cause other analysis to also fail.
The following discussion presents the analysis order for fabric.0.0. If other or additional fabrics are configured for analysis, review the files in the order shown for each fabric. There is no specific order recommended for which fabric to review first.

1. latest/fabric.0.0.errors.stderr
 If this file is not empty, it can indicate problems with opareport, such as inability to access an SM. This may result in unexpected problems or inaccuracies in the related errors file. Correct problems reported in this file first. Once corrected, rerun the health checks to look for further errors.

2. latest/fabric.0:0.errors
 If any links with excessive error rates or incorrect link speeds are reported, correct them. If there are links with errors, beware the same links may also be detected in other reports such as the links and comps files.

3. latest/fabric.0.0.snapshot.stderr
 If this file is not empty, it can indicate problems with opareport, such as inability to access an SM. This may result in unexpected problems or inaccuracies in the related links and comps files. Correct problems reported in this file first. Once corrected, rerun the health checks to look for further errors.

4. latest/fabric.0:0.links.stderr and latest/fabric.0:0.links.changes.stderr
 If these files are not empty, it can indicate problems with opareport which can result in unexpected problems or inaccuracies in the related links files. Correct problems reported in this file first. Once corrected, rerun the health checks to look for further errors. For more information on .changes files, refer to Interpreting Health Check .changes Files on page 199.

5. latest/fabric.0:0.links.diff and latest/fabric.0:0.links.changes
 These indicate that the links between components in the fabric have changed, been removed/added, or that components in the fabric have disappeared. If both files are available, use the latest/fabric.0:0.links.changes file since it has a more concise and precise description of the fabric link changes. Compare the latest/fabric.0:0.links file to baseline/fabric.0:0.links. If components have disappeared, review the latest/fabric.0:0.comps.diff and latest/fabric.0:0.comps.changes files. Correct missing nodes and links, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and is permanent, rerun a baseline once all other health check errors have been corrected. For more information on .changes files, refer to Interpreting Health Check .changes Files on page 199.

6. latest/fabric.0:0.comps.stderr and latest/fabric.0:0.comps.changes.stderr
 If these files are not empty, it can indicate problems with opareport which can result in unexpected problems or inaccuracies in the related comps file. Correct problems reported in these files first. Once corrected, rerun the health checks to look for further errors. For more information on .changes files, refer to Interpreting Health Check .changes Files on page 199.

7. latest/fabric.0:0.comps.diff and latest/fabric.0:0.comps.changes
These indicate that the components in the fabric or their SMA configuration have changed. If both files are available, use the `fabric.0:0.comps.changes` file since it has a more concise and precise description of the fabric component changes. Compare the `latest/fabric.0:0.comps` file to `baseline/fabric.0:0.comps`. Correct missing nodes, missing SMs, ports that are down, and port misconfigurations, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected. For more information on `.changes` files, refer to Interpreting Health Check `.changes` Files on page 199.

Review the results of the `opachassisanalysis`. If chassis configuration has changed, the `opachassisanalysis` report detects it. Previous checks should have already detected missing chassis, missing or added links and many aspects of chassis configuration. For `opachassisanalysis`, the `FF_CHASSIS_CMDS` and `FF_CHASSIS_HEALTH` configuration settings select which chassis commands are used for the analysis. When using the default setting for this parameter, review the files in the following order:

1. `latest/chassis.hwCheck`
 Make sure this indicates all chassis are operating properly with the desired power and cooling redundancy. If there are problems, correct them, but other analysis files can be analyzed first. Once any problems are corrected, rerun the health checks to verify the correction.

2. `latest/chassis.fwVersion.diff`
 Indicates the chassis firmware version has changed. If this was not an expected change, correct the chassis firmware before proceeding further. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

3. `latest/chassis.*.diff`
 These files reflect other changes to chassis configuration based on checks selected by `FF_CHASSIS_CMDS`. Review the changes in results for these remaining commands. Correct the chassis, if necessary. Once corrected, rerun the health checks to look for further errors. If the change was expected and permanent, rerun a baseline once all other health check errors have been corrected.

3.5.11 Interpreting Health Check `.changes` Files

Files with the extension `.changes` summarize what has changed in a configuration based on the queries done by the health check.

This type of file uses the following format:

- [What is being verified]
- [Indication that something is not correct]
- [Items that are not correct and what is incorrect about them]
- [How many items were checked]
- [Total number of incorrect items]
- [Summary of how many items had particular issues]
The following example of `fabric.*.*.links.changes` only shows links that were "Unexpected". That means that the link was not found in the previous baseline. The issue "Unexpected Link" is listed after the link is presented.

Links Topology Verification

Links Found with incorrect configuration:

Rate MTU NodeGUID Port Type Name
60g 4096 0x00025500105baa00 1 FI IBM G2 Logical HFI
 #=> 0x00025500105baa02 2 SW IBM G2 Logical Switch 1
 Unexpected Link

20g 4096 0x00025500105baa02 1 SW IBM G2 Logical Switch 1
 #=> 0x0011750007000dbb 4 SW SilverStorm 9080 c938f4ql01 Leaf 2, Chip A
 Unexpected Link

60g 4096 0x00025500106cd200 1 FI IBM G2 Logical HFI
 #=> 0x00025500106cd202 2 SW IBM G2 Logical Switch 1
 Unexpected Link

20g 4096 0x00025500106cd202 1 SW IBM G2 Logical Switch 1
 #=> 0x0011750007000dbb 5 SW SilverStorm 9080 c938f4ql01 Leaf 2, Chip A
 Unexpected Link

60g 4096 0x00025500107a7200 1 FI IBM G2 Logical HFI
 #=> 0x00025500107a7202 2 SW IBM G2 Logical Switch 1
 Unexpected Link

20g 4096 0x00025500107a7202 1 SW IBM G2 Logical Switch 1
 #=> 0x0011750007000dbb 3 SW SilverStorm 9080 c938f4ql01 Leaf 2, Chip A
 Unexpected Link

165 of 165 Fabric Links Checked

Links Expected but Missing, Duplicate in input or Incorrect:
159 of 159 Input Links Checked

Total of 6 Incorrect Links found
0 Missing, 6 Unexpected, 0 Misconnected, 0 Duplicate, 0 Different

The following table summarizes possible issues found in .changes files.

Table 2. Possible issues found in health check .changes files

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description and possible actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>This indicates an item that is in the baseline, is not in this instance of health check output. This may indicate a broken item or a configuration change that has removed the item from the configuration. If you have intentionally removed this item from the configuration, save the original baseline and rerun the baseline. For example, if you've removed an HFI connection, the HFI and the link to it are shown as Missing in <code>fabric.*.*.links.changes</code> and <code>fabric.*.*.comps.changes</code> files. If the item is still part of the configuration, check for faulty connections or unintended changes to configuration files on the fabric management server. You should also look for any "Unexpected" or "Different" items that may correspond to this item. In some cases, the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed.</td>
</tr>
<tr>
<td>Unexpected</td>
<td>This indicates that an item is in this instance of health check output, but it is not in the baseline. This may indicate that an item was broken when the baseline was taken or a configuration change has added the item to the configuration.</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Issue</th>
<th>Description and possible actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If you have added this item to the configuration, save the original baseline and rerun the baseline. For example, if you’ve added an HFI connection, it is shown as Unexpected in fabric.::links.changes and fabric.::comps.changes files. You should also look for any "Missing" or "Different" items that may correspond to this item. In some cases, the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed.</td>
</tr>
<tr>
<td>Misconnected</td>
<td>This only applies to links and indicates that a link is not connected properly. This should be fixed. It is possible to find miswires by examining all of the Misconnected links in the fabric. However, you must look at all of the fabric.::links.changes files to find miswires between subnets. You should also look for any "Missing" or "Different" items that may correspond to this item. In some cases, the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed. Individual links that are Misconnected are reported as "Incorrect Link" and are added into the Misconnected summary count.</td>
</tr>
<tr>
<td>Duplicate</td>
<td>This indicates that an item has a duplicate in the fabric. This situation should be resolved so there is only one instance of any particular item being discovered in the fabric. This error can occur if there are changes in the fabric such as addition of parallel links. It can also be reported when there are changes to the fabric that it is difficult to properly resolve and report all the changes. It can also occur when opareport is run with a manually generated topology input files that may have duplicate items or incomplete specifications.</td>
</tr>
<tr>
<td>Different</td>
<td>This indicates that an item still exists in the current health check, but it is different from the baseline configuration. If the configuration has changed purposely since the most recent baseline, and this difference is reflected here, save the original baseline and rerun the baseline. If this difference was not intended, you must rectify the difference to prevent future health checks from reporting the same difference from the baseline. You should also look for any "Missing" or "Unexpected" items that may correspond to this item. In some cases, the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed. Individual items that are Different are reported as "Mismatched" or "Inconsistent" and are added into the Different summary count.</td>
</tr>
<tr>
<td>Port Attributes</td>
<td>This indicates that the attributes of a port on one side of a link have changed, such as PortGuid, Port Number, Device Type, or others. The inconsistency is caused by connecting a different type of device or a different instance of the same device type. This may also occur after replacing a faulty device. If the configuration has changed purposely since the most recent baseline, and this difference is reflected here, save the original baseline and rerun the baseline. If a faulty device was replaced, it is important to re-establish the baseline. If this difference was not intended, you must rectify the difference to prevent future health checks from reporting the same difference from the baseline. This is a specific case of "Different".</td>
</tr>
<tr>
<td>Inconsistent</td>
<td>This indicates that the attributes of a node in the fabric have changed, such as NodeGuid, Node Description, Device Type, or others. The inconsistency is caused by connecting a different type of device or a different instance of the same device type. This may also occur after replacing a faulty device. If the configuration has changed purposely since the most recent baseline, and this difference is reflected here, save the original baseline and rerun the baseline. If a faulty device was replaced, it is important to re-establish the baseline. If this difference was not intended, you must rectify the difference to prevent future health checks from reporting the same difference from the baseline. This is a specific case of "Different".</td>
</tr>
</tbody>
</table>

continued...
SM Attributes Inconsistent

This indicates that the attributes of the node or port running an SM in the fabric have changed, such as NodeGuid, Node Description, Port Number, Device Type, or others. The inconsistency is caused by moving a cable, changing from host-based subnet management to embedded subnet management (or vice-versa), or by replacing the HFI in the fabric management server.

- If the configuration has changed purposely since the most recent baseline, and this difference is reflected here, save the original baseline and rerun the baseline.
- If the HFI in the fabric management server was replaced, it is important to re-establish the baseline.
- If this difference was not intended, you must rectify the difference to prevent future health checks from reporting the same difference from the baseline.

This is a specific case of "Different".

X mismatch: expected found: ...

This indicates an aspect of an item has changed as compared to the baseline configuration. The aspect that changed and the expected and found values are shown. This typically indicates configuration differences such as MTU, Speed, and Node Description. It can also indicate that GUIDs have changed, such as replacing a faulty device with a comparable device.

- If the configuration has changed purposely since the most recent baseline, and this difference is reflected here, save the original baseline and rerun the baseline.
- If a faulty device was replaced, it is important to re-establish the baseline.
- If this difference was not intended, you must rectify the difference to prevent future health checks from reporting the same difference from the baseline.

This is a specific case of "Different".

Incorrect Link

This only applies to links and indicates that a link is not connected properly. This should be fixed.

It is possible to find miswires by examining all of the Misconnected links in the fabric. However, you must look at all of the `fabric.*:*.links.changes` files to find miswires between subnets.

You should also look for any "Missing" or "Different" items that may correspond to this item. In some cases, the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed.

This is a specific case of "Misconnected".

3.6 Address Resolution Tools

These tools allow you to verify and diagnose the `ibacm` distributed SA plug-in.

3.6.1 opa_osd_dump

Prints the current contents of the distributed SA shared memory database.

Syntax

```
opa_osd_dump [--verbose arg | -v arg]
```

Options

- `--help` Produces full help text.
- `--verbose/-v arg` Specifies the logging level to perform. Range = 1 - 7.

Example

```
opa_osd_dump >opasadb_contents
```
3.6.2 opa_osd_exercise
Performs stress test on SM and distributed SA query system.

Syntax
opa_osd_exercise [opts] guidlist

Options
opts Options. Values include:

-d debug level Sets debugging level.
-s seconds Specifies running for at least seconds seconds.
-r remote Specifies the host running the fabric simulator.
-x count Number of destinations to toggle up or down after each pass. Maximum = MAX_TOGGLES.
-X count Specifies how often to toggle a source port up or down (in seconds).
-D seconds Specifies how long to sleep after each pass. This value gives the Subnet Manager time to process port events.
-p pkey Specifies to include pkey in the searches. Can be specified up to 8 times.
-S sid Specifies to include SID in the searches.
-t error threshold Cancels the test if the number of path errors to a single destination exceeds error threshold. The count is reset to zero when a correct result is retrieved. Can be specified up to 8 times. Note that providing both SIDs and pkeys may cause problems.
-e Instructs simulator to enable all ports before starting.

guidlist Text file that lists the source and destination GUIDs and LIDs. For example, from a build_table.pl file.

Example
./opa_osd_exercise -P 0x9001 guidtable

3.6.3 opa_osd_perf
Tests the performance of the distributed SA shared memory database.
Syntax

opa_osd_perf [opts] guidtable

Options

opts Options. Values include:

- q queries Runs at least queries queries.
- p pkey Specifies to include pkey in the searches. Can be specified up to 8 times.
- S sid Specifies to include SID in the searches. Can be specified up to 8 times. Note that providing both SIDs and pkeys may cause problems.

guidtable Text file that lists the destination GUIDs and LIDs. For example, from a build_table.pl file.

Example

./opa_osd_perf -q 100000 -p 0x8001 guidtable

3.6.4 opa_osd_query

Queries the opasadb for path records. This tool allows you to create an arbitrary path query and view the result.

Syntax

opa_osd_query [options]

Options

All arguments are optional, but ill-formed queries can be expected to fail. You must provide at least a pair of LIDs or a pair of GIDs.

If you have multiple HFIs, the same LID can appear on more than one HFI, therefore you must specify which HFI to use when searching by LIDs.

Numbers can be in decimal, hex, or octal.

options Options. Values include:

- v/--verbose arg Sets debugging level. Range = 1 - 7.
- s/--slid arg Specifies source LID.
- d/--dlid arg Specifies destination LID.
-S/--sgid arg Specifies source GID in GID format
 (0x00000000:0x00000000) or in Inet6 format
 (x:x:x:x:x:x:x:x).

-D/--dgid arg Specifies destination GID in GID format
 (0x00000000:0x00000000) or in Inet6 format
 (x:x:x:x:x:x:x:x).

-k/--pkey arg Specifies partition key.

-i/--sid arg Specifies service ID.

-h/--hfi arg Specifies the HFI to use. Default = first HFI. The HFI
 can be identified by name, for example, mthfi0 or
 by number, for example, 1.

-p/--port arg Specifies the port to use. Default = first port.

-H/--help Provides this help text.

Example

opa_osd_query -s2 -d4
4.0 MPI Sample Applications

4.1 Overview

As part of an Intel® Omni-Path Fabric Suite FastFabric Toolset installation, sample MPI applications and benchmarks are installed in /opt/opa/src/mpi_apps. The sample applications can be used to perform basic tests and performance analysis of MPI, the servers, and the fabric.

The sample applications provided in the package include:

- Latency/bandwidth deviation test
- OSU latency (3 versions)
- OSU bandwidth (3 versions)
- OSU bidirectional bandwidth
- HPL
- HPL2
- Intel® MPI Benchmarks (IMB)

4.1.1 Building MPI Sample Applications

Perform the following procedure to build the applications:

1. Type `export MPICH_PREFIX=/usr/mpi/X/Y`
 where:
 - `X` is a compiler such as gcc
 - `Y` is an MPI variation such as openmpi-1.2.5
2. Type `cd /opt/opa/src/mpi_apps`
3. Type `make clean`
4. Type `make full` which builds all of the sample applications.

The Intel® Omni-Path Fabric Suite FastFabric TUI can assist with building the MPI sample applications by providing a simple way to select the MPI to use for the build.

Alternatives include:

- `quick` - Builds OSU1 Latency, OSU1 Bandwidth, OSU2, OSU3.8, Intel® MPI Benchmarks (IMB), Deviation, HPL, HPLv2, Group Stress
- `full` - Builds everything from `quick`
- `all` - Builds everything from `full`
4.1.2 Running MPI Sample Applications

To run the applications, an mpi_hosts file must be created in /opt/opa/src/mpi_apps that provides the names of the hosts on which processes should be run. Either IPoIB or Ethernet names can be specified. Typically, use of IPoIB names provides faster job startup, especially on larger clusters. These run scripts allow the mpi_hosts filename to be specified through the environment variable MPI_HOSTS. If this variable is not defined, the default mpi_hosts is used.

If a host has more than one real CPU, its name may appear in the MPI hosts file once per CPU.

Note: Intel® Xeon® processors support hyper-threading; however, it significantly impacts performance for floating point intensive MPI applications, such as HPL. For this reason, Intel recommends that you disable hyper-threading.

Note: When running the applications, all hosts listed in MPI_HOSTS must have a copy of the applications compiled for the same value of MPICH_PREFIX, for example, the same variation and version of MPI.

When the run_* scripts are used to execute the applications, the variation of MPI used to build the applications is detected and the proper mpirun is used to start the application.

To determine which variation of MPI the applications have been built, use the command:

```
cat /opt/opa/src/mpi_apps/.prefix
```

Note: Some variations of MPI may require that the MPD daemon be started prior to running applications. Consult the documentation on the specific variation of MPI for more information on how to start the MPD daemon.

When MPI applications are run with the run_* scripts provided, the results of the run are logged to a file in /opt/opa/src/mpi_apps/logs. The file name includes the date and time of the run for uniqueness.

The run_* scripts automatically use the ofed.openmpi.params or ofed.mvapich2.params files to set up parameters for mpirun. These files have various samples of setting parameters such as vFabric selection, dispersive routing, etc. These parameter files can also set the MPI_CMD_ARGS variable to provide additional arguments to mpirun.

The current run_* scripts include:

- run_allhfilatency: Checks the latencies of every pair of HFIs in the fabric.
- run_alltoall3: Runs the OSU3 all-to-all benchmark.
- run_batch_cabletest: runs the run_cabletest script on every node in the fabric, but runs them in batches to reduce the load on the fabric.
- run_bcast2: OSU2 broadcast test
- run_bcast3: OSU3 broadcast test
- run_bibw3: OSU3 bidirectional bandwidth test
• run_bw: OSU1 bandwidth test
• run_bw2: OSU2 bandwidth test
• run_bw3: OSU3 bandwidth test
• run_cabletest: stresses groups of nodes in the fabric to discover possible bad
cables
• run_deviation: runs the deviation test
• run_hpl: Runs HPL V1
• run_hpl2: Runs HPL V2
• run_imb: Runs Intel® MPI Benchmarks (IMB)
• run_lat: Runs OSU1 latency test
• run_lat2: Runs OSU2 latency test
• run_lat3: Runs OSU3 latency test
• run_mbw_mr3: Runs OSU3 mbw_mr test (multibandwidth message rate test)
• run_mpicheck: Simple test to validate that MPI is passing data correctly
• run_multi_lat3: OSU3 multi-latency test
• run_multibw: OSU1 multi-bandwidth test

4.2 Latency/Bandwidth Deviation Test

This is an analysis/diagnostic tool to perform assorted pairwise bandwidth and latency
tests and report pairs outside an acceptable tolerance range. The tool identifies
specific nodes that have problems and provides a concise summary of results.

This tool is also used by the Intel® Omni-Path Fabric Suite FastFabric Toolset Check
MPI performance TUI menu item. It can also be invoked using opahost
mpiperfdeviation.

Perform the following procedure to use the script provided to run this application:
1. Type cd /opt/opa/src/mpi_apps
2. Type ./run_deviation NP
 where:

 NP is the number of processes to run or all, such as:

 ./run_deviation 4

This runs a quick latency and bandwidth test against pairs of the hosts specified in
mpi_hosts. By default, each host is run against a single reference host and the
results are analyzed. Pairs that have 20% less bandwidth or 50% more latency than
the average pair are reported as failures.

Note: For this test, the mpi_hosts file should not list a given host more than once,
regardless of how many CPUs the host has.

The tool can be run in a sequential or a concurrent mode. Sequential mode is the
default and it runs each host against a reference host. By default, the reference host
is selected based on the best performance from a quick test of the first 40 hosts.
In concurrent mode, hosts are paired up and all pairs are run concurrently. Since there may be fabric contention during such a run, any poor performing pairs are then rerun sequentially against the reference host.

Concurrent mode runs the tests in the shortest amount of time, however, the results could be slightly less accurate due to switch contention. In heavily oversubscribed fabric designs, if concurrent mode is producing unexpectedly low performance, try sequential mode.

`run_deviation` supports a number of parameters that allow for more precise control over the mode, benchmark and pass/fail criteria.

```
'ff'  When specified, the configured FF_DEVIATION_ARGS will be used
bwtol Percent of bandwidth degradation allowed below Avg value
lattol Percent of latency degradation allowed above Avg value

Other deviation arguments:
- `[-bwbidir]`  Perform a bidirectional bandwidth test
- `[-bwnunidir]`  Perform a unidirectional bandwidth test (default)
- `[-bwdelta]`  Limit in MB/s of bandwidth degradation allowed below Avg value
- `[-bwthres]`  Lower Limit in MB/s of bandwidth allowed below Avg value
- `[-bwloop]`  Number of loops to execute each bandwidth test
- `[-bwsiz es]`  Size of message to use for bandwidth test
- `[-latdelta]`  Limit in usec of latency degradation allowed above Avg value
- `[-latthres]`  Upper Limit in usec of latency allowed
- `[-latloop]`  Number of loops to execute each latency test
- `[-latsize]`  Size of message to use for latency test
- `[-c]`  Run test pairs concurrently instead of the default of sequential
- `[-b]`  When comparing results against tolerance and delta use best instead of Avg
- '-v'  verbose output
- 'vv'  Very verbose output
- `[-h reference_host]`  Baseline host to use for sequential pairing

Both bwtol and bwdelta must be exceeded to fail bandwidth test
When bwthres is supplied, bwtol and bwdelta are ignored
Both lattol and latdelta must be exceeded to fail latency test
When latthres is supplied, lattol and latdelta are ignored

For consistency with OSU benchmarks MB/s is defined as 1000000 bytes/s

Examples:
```
./run_deviation 20 ff
./run_deviation 20 20 -v
./run_deviation 20 20 50 -c
./run_deviation 20 "" "" -c -v -bwthres 1200.5 -latthres 3.5
./run_deviation 20 20 50 -c -h compute0001
./run_deviation 20 0 0 -bwdelta 200 -latdelta 0.5
```

Example of 4 hosts with both 20% bandwidth and latency tolerances running in concurrent mode using the verbose option with a specified baseline host.

```
./run_deviation 4 20 20 -c -v -h hostname
```

### 4.3 OSU Tests

#### 4.3.1 OSU Latency

This is a simple benchmark of end-to-end latency for various MPI message sizes. The values reported are one-direction latency.
Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_lat`

This runs assorted latencies from 0 to 256 bytes. To run a different set of message sizes, an optional argument specifying the maximum message size can be provided.

This benchmark only uses the first two nodes listed in `MPI_HOSTS`.

### 4.3.2 OSU Latency 2

This is a simple performance test of end-to-end latency for various MPI message sizes. The values reported are one-direction latency.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_lat2`

This runs assorted latencies from 0 to 4 Megabytes.

This benchmark only uses the first two nodes listed in `MPI_HOSTS`.

### 4.3.3 OSU Latency 3

This is a simple performance test of end-to-end latency for various MPI message sizes. The values reported are one-direction latency.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_lat3`

This runs assorted latencies from 0 to 4 Megabytes.

This benchmark only uses the first two nodes listed in `MPI_HOSTS`.

### 4.3.4 OSU Multi Latency 3

This is a simple performance test of end-to-end latency for multiple concurrent pairs of hosts for various MPI message sizes. The values reported are average one-direction latency.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_multi_lat3 NP`

where:

`NP` is the number of processes to run or all, such as:

```
./run_multi_lat3 4
```

This runs assorted latencies from 0 to 4 Megabytes.
This benchmark only uses the first $NP$ nodes listed in MPI_HOSTS.

4.3.5 OSU Bandwidth

This is a simple benchmark of maximum unidirectional bandwidth.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `.run_bw`

This runs assorted bandwidths from 4K to 4Mbytes. To run a different set of message sizes, an optional argument specifying the maximum message size can be provided.

This benchmark only uses the first two nodes listed in MPI_HOSTS.

4.3.6 OSU Bandwidth2

This is a simple benchmark of maximum unidirectional bandwidth.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `.run_bw2`

This runs assorted bandwidths from 1 byte to 4Mbytes.

This benchmark only uses the first two nodes listed in MPI_HOSTS.

4.3.7 OSU Bandwidth3

This is a simple benchmark of maximum unidirectional bandwidth.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `.run_bw3`

This runs assorted bandwidths from 1 byte to 4Mbytes.

This benchmark only uses the first two nodes listed in MPI_HOSTS.

4.3.8 OSU Multi Bandwidth3

This is a simple benchmark of aggregate unidirectional bandwidth and messaging rate for multiple concurrent pairs of nodes.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `.run_mbw_mr3 $NP`

where:
NP is the number of processes to run or all, such as:

```
./run_mbw_mr3 4
```

This runs assorted messaging rates from 1 byte to 4Mbytes.

### 4.3.9 OSU Bidirectional Bandwidth

This is a simple benchmark of maximum bidirectional bandwidth.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_bibw2`

This runs assorted bandwidths from 1 byte to 4Mbytes.

This benchmark only uses the first two nodes listed in `MPI_HOSTS`.

### 4.3.10 OSU Bidirectional Bandwidth3

This is a simple benchmark of maximum bidirectional bandwidth.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_bibw3`

This runs assorted bandwidths from 1 byte to 4Mbytes.

This benchmark only uses the first two nodes listed in `MPI_HOSTS`.

### 4.3.11 OSU All to All 3

This is a simple benchmark of AllToAll latency.

Perform the following steps:
1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_alltoall3 NP`
   
   where:
   
   *NP is the number of processes to run or all, such as:*
   
   ```
 ./run_alltoall3 4
   ```

   This runs assorted latencies from 1 byte to 1Mbytes.

### 4.3.12 OSU Broadcast 3

This is a simple benchmark of Broadcast latency.

Perform the following steps:
1. Type cd /opt/opa/src/mpi_apps
2. Type ./run_bcast3 NP

   where:
   
   NP is the number of processes to run or all, such as:

   ./run_bcast3 4

This runs assorted latencies from 1 byte to 16K bytes.

4.3.13 OSU Multiple Bandwidth/Message Rate

The Multiple Bandwidth / Message Rate Test (osu_mbw_mr) is intended to be used with block assigned ranks. This means that all processes on the same machine are assigned ranks sequentially.

Note: All benchmarks are run using two processes, except for osu_bcast and osu_mbw_mr which can use more than two processes.

If you’re using mpd with MVAPICH2, you must specify the number of processes on each host in the host file, otherwise mpd assigns ranks in a cyclic fashion. Refer to the following table for rank assignments.

Table 3. Rank Assignment

<table>
<thead>
<tr>
<th>Rank</th>
<th>Block</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>host1</td>
<td>host1</td>
</tr>
<tr>
<td>1</td>
<td>host1</td>
<td>host2</td>
</tr>
<tr>
<td>2</td>
<td>host1</td>
<td>host1</td>
</tr>
<tr>
<td>3</td>
<td>host1</td>
<td>host2</td>
</tr>
<tr>
<td>4</td>
<td>host2</td>
<td>host1</td>
</tr>
<tr>
<td>5</td>
<td>host2</td>
<td>host2</td>
</tr>
<tr>
<td>6</td>
<td>host2</td>
<td>host1</td>
</tr>
<tr>
<td>7</td>
<td>host2</td>
<td>host2</td>
</tr>
</tbody>
</table>

Here is an example of MPD HOSTFILE:

host1:4  
host2:4  

MPI-1

-----

osu_bcast = Broadcast Latency Test
osu_bibw  = Bidirectional Bandwidth Test
osu_bw    = Bandwidth Test
osu_latency = Latency Test
osu_mbw_mr = Multiple Bandwidth / Message Rate Test
osu_multi_lat = Multi-pair Latency Test

MPI-2

-----

osu_acc_latency = Accumulate Latency Test
osu_get_bw = One-Sided Get Bandwidth Test
4.4 Latency Tests

The latency tests are carried out in a ping-pong fashion. The sender sends a message with a certain data size to the receiver and waits for a reply from the receiver. The receiver receives the message from the sender and sends back a reply with the same data size. Many iterations of this ping-pong test are carried out and average one-way latency numbers are obtained. Blocking version of MPI functions (MPI_Send and MPI_Recv) are used in the tests.

4.4.1 Multi-Threaded Latency Test

The multi-threaded latency test performs a ping-pong test with a single sender process and multiple threads on the receiving process. In this test, the sending process sends a message of a given data size to the receiver and waits for a reply from the receiver process. The receiving process has a variable number of receiving threads (set by default to 2), where each thread calls MPI_Recv and upon receiving a message sends back a response of equal size. Many iterations are performed and the average one-way latency numbers are reported.

Note: This test is only applicable for MVAPICH2 with threading support enabled.

4.4.2 Multi-Pair Latency Test

This test is very similar to the latency test, except that multiple pairs are performing the same test simultaneously. In order to perform the test across just two nodes, the hostnames must be specified in block fashion.

4.4.3 Broadcast Latency Test

This test is carried out in the following manner.

After doing an MPI_Bcast, the root node waits for an acknowledgment from the last receiver. This acknowledgment is in the form of a zero byte message from the receiver to the root. This test is carried out for a large number (1000) of iterations. The Broadcast latency is obtained by subtracting the time taken for the acknowledgment from the total time. The acknowledgment time is computed by doing a ping-pong test.

4.4.4 One-Sided Put Latency Test

The sender (origin process) calls MPI_Put (ping) to directly place a message of certain data size in the receiver window. The receiver (target process) calls MPI_Win_wait to make sure the message has been received. Then the receiver initiates a MPI_Put (pong) of the same data size to the sender, which is now waiting on a synchronization call. Several iterations of this test are carried out, and the average put latency is obtained.

Note: This test is only applicable for MVAPICH2.
4.4.5 One-Sided Get Latency Test

The origin process calls MPI_Get (ping) to directly fetch a message of certain data size from the target process window to its local window. It then waits on a synchronization call (MPI_Win_complete) for local completion. After the synchronization call, the target and origin processes are switched for the pong message. Several iterations of this test are carried out and the average get latency is obtained.

*Note:* This test is only applicable for MVAPICH2.

4.4.6 One-Sided Accumulate Latency Test

The origin process calls MPI_Accumulate to combine the data moved to the target process window with the data that resides at the remote window. The combining operation used in the test is MPI_SUM. The origin process then waits on a synchronization call (MPI_Win_complete) for local completion. After the synchronization call, the target and origin process are switched for the pong message. Several iterations of this test are carried out, and the average accumulate latency number is obtained.

*Note:* This test is only applicable for MVAPICH2.

4.5 Bandwidth Tests

The bandwidth tests are carried out by having the sender sending out a fixed number (equal to the window size) of back-to-back messages to the receiver and then waiting for a reply from the receiver. The receiver sends the reply only after receiving all these messages. This process is repeated for several iterations and the bandwidth is calculated based on the elapsed time (from the time sender sends the first message until the time it receives the reply back from the receiver) and the number of bytes sent by the sender. The objective of these bandwidth tests is to determine the maximum sustained date rate that can be achieved at the network level. Non-blocking versions of MPI functions (MPI_Isend and MPI_Irecv) are used in the test.

4.5.1 Bidirectional Bandwidth Test

The bidirectional bandwidth test is similar to the bandwidth test, except that both nodes send out a fixed number of back-to-back messages and wait for the reply. This test measures the maximum sustainable aggregate bandwidth by two nodes.

4.5.2 Multiple Bandwidth / Message Rate Test

The multi-pair bandwidth and message rate test evaluates the aggregate uni-directional bandwidth and message rate between multiple pairs of processes. Each of the sending processes sends a fixed number of messages (the window size) back-to-back to the paired receiving process before waiting for a reply from the receiver. This process is repeated for several iterations. The objective of this benchmark is to determine the achieved bandwidth and message rate from one node to another node with a configurable number of processes running on each node.
4.5.3 One-Sided Put Bandwidth Test

The bandwidth tests are carried out by the origin process calling a fixed number of back-to-back Puts, and then waiting on a synchronization call (MPI_Win_complete) for completion. This process is repeated for several iterations, then the bandwidth is calculated, based on the elapsed time and the number of bytes sent by the origin process.

*Note:* This test is only applicable for MVAPICH2.

4.5.4 One-Sided Get Bandwidth Test

The bandwidth tests are carried out by an origin process calling a fixed number of back-to-back Gets, and then waiting on a synchronization call (MPI_Win_complete) for completion. This process is repeated for several iterations, then the bandwidth is calculated based on the elapsed time and the number of bytes sent by the origin process.

*Note:* This test is only applicable for MVAPICH2.

4.5.5 One-Sided Put Bidirectional Bandwidth Test

The bidirectional bandwidth test is similar to the bandwidth test, except that both nodes send out a fixed number of back-to-back Put messages and wait for their completion. This test measures the maximum sustainable aggregate bandwidth by two nodes.

*Note:* This test is only applicable for MVAPICH2.

4.6 mpi_stress Test

This test can be used to place stress on the interconnect as part of verifying stability. The run_mpi_stress script can be used to run this application.

This MPI stress test program is designed to load an MPI interconnect with point-to-point messages while optionally checking for data integrity. By default, it runs with all-to-all traffic patterns, optionally including you and your local peers. It can also be set up with multi-dimensional grid traffic patterns, and can be parameterized to run rings, open 2D grids, closed 2D grids, cubic lattices, hypercubes, and so forth. Optionally, the message data can be randomized and checked using CRC checksums (strong but slow), or XOR checksums (weak but fast). The communication kernel is built out of non-blocking point-to-point calls to load the interconnect. The program is not designed to exhaustively test different MPI primitives. Performance metrics are displayed, but may not be entirely accurate.

**Usage**

```
run_mpi_stress [number_processes] [mpi_stress arguments]
```

**Options**

```
mpi_stress arguments
• -a INT – desired alignment for buffers (must be power of 2)
```
-b BYTE - byte value to initialize non-random send buffers (otherwise 0)
-c - enable CRC checksums
-D INT - set max data amount per msg size (default 1073741824)
-d - enable data checksums (otherwise headers only)
-e - exercise the interconnect with random length messages
-g INT - use INT-dimensional grid connectivity (non-periodic)
-G INT - use INT-dimensional grid connectivity (periodic) (default is to use all-to-all connectivity)
-h - display this help page
-i - include local ranks as destinations (only for all-to-all)
-I INT - set msg size increment (default power of 2)
-l INT - set min msg size (default 0)
-L INT - set min msg count (default 100)
-m INT - set max msg size (default 4194304)
-M INT - set max msg count (default 10000)
-n INT - number of times to repeat (default 1)
-O - show options and parameters used for the run.
-p - show progress
-P - poison receive buffers at init and after each receive
-q - quiet mode (don’t show error details)
-r - fill send buffers with random data (else 0 or -b byte)
-R - round robin destinations (default is random selection)
-s - include self as a destination (only for all-to-all)
-S - use non-blocking synchronous sends (MPI_Issend)
-t INT - run for INT minutes (implicitly adds -n BIGNUM)
-u - uni-directional traffic (only for grid)
-v - enable verbose mode (more -v for more verbose)
-w INT - number of send/recv in window (default 20)
-x - enable XOR checksums
-z - enable typical options for data integrity (-drx) (for stronger integrity checking try using -drc instead)
-Z - zero receive buffers at init and after each receive
4.7 High Performance Linpack (HPL, HPL2)

This test is a standard benchmark for Floating Point Linear Algebra performance. Two versions (1.0a and 2.0) are provided and both work identically. Included in the HPL is the Dr K. Goto Linear Algebra library. If desired, you can modify the HPL makefiles to use alternate libraries. Atlas source code and the open source math library are also provided in /opt/opa/src/mpi_apps/ATLAS.

Note: The Linear Algebra Library is highly optimized for a given CPU model. When running in a fabric with mixed CPU models, the HPL application must be rebuilt for each CPU model and that version must be used on all CPUs of the given type. Attempting to run a CPU with a library that is not optimized for the given CPU results in less than optimal performance. In some cases (such as trying to run an AMD CPU-optimized library on an Intel CPU), HPL may fail or produce incorrect results.

HPL is known to scale very well, and is the benchmark of choice for identifying a systems ranking in the Top 500 supercomputers (http://www.top500.org).

Prior to running this application, an HPL.dat file must be installed in /opt/opa/src/mpi_apps/hpl/bin/ICS.${ARCH}.${CC} on all nodes. The config_hpl script and some sample configurations are included.

The config_hpl script can select from one of the assorted HPL.dat files in opt/opa/src/mpi_apps/hpl-config. These files are a good starting point for most clusters, and should get within 10-20% of the optimal performance for the cluster. The problem sizes used assume a cluster with 1GB of physical memory per processor. For each cluster size, 4 files are provided:

- t – A very small test run (5000 problem size)
- s – A small problem size on the low end of optimal problem sizes
- m – A medium problem size
- l – A large problem size

These can be selected using config_hpl. The following command displays the pre-configured problem sizes available:

```bash
./config_hpl
```

For example, to quickly confirm that HPL runs on the 16 nodes in the /opt/opa/src/mpi_apps/mpi_hosts file:

1. Type ./config_hpl 16t.
   This command edits the HPL.dat file on the local host for a 16 host "very small" test, and copies that file to all hosts in the mpi_hosts file.
2. Once the HPL.dat has been configured and copied, HPL can be run using the script.
   Type cd /opt/opa/src/mpi_apps
3. Type ./run_hpl NP
   where:
NP is the number of processors for the run, or all. For example:

```
./run_hpl 16
```

For more information about HPL, refer to the README, TUNING, and assorted HTML files in /opt/opa/src/mpi_apps/hpl.

### 4.8 Intel® MPI Benchmarks (IMB)

Use the `run_imb` sample script in /opt/opa/src/mpi_apps to run the Intel® MPI Benchmarks (IMB).

1. Type `cd /opt/opa/src/mpi_apps`
2. Type `./run_imb NP`

where:

NP is the number of processes to run, or all. A minimum of two processes is required. For example:

```
./run_imb 4
```

### 4.9 MPI Fabric Stress Tests

These sample applications are designed to stress parts of a cluster to help ensure that the fabric is working properly. Although they report measurement data similar to other bandwidth applications, they are not intended to be benchmarking tools. Instead, they should be used to identify potential performance issues in the fabric, such as bad cables.

#### 4.9.1 All HFI Latency

The All HFI Latency test is a specialized stress test for large fabrics. It iterates through every possible pairing of the HFIs in the fabric, and performs a latency test on each pair. At the end of each combination, the test reports the fastest and slowest pairs. This test has no real value as a performance benchmark, but is extremely useful for checking for cabling problems in the fabric. A script is provided to run this application. It requires no arguments, but can take several options if needed. To run with no arguments, follow these steps:

   ```
 cd /opt/opa/src/mpi_apps
   ```
2. Run the All HFI Latency test
   ```
 ./run_allhfilatency
   ```

This test runs a 60 second test on the first two nodes listed in the mpi_hosts file.

To change the default behavior, specify up to three optional arguments, for example:

```
./run_allhfilatency NP MN SS
```

where:
NP is the number of processes to run, or all.

MN is the number of minutes the test should run.

SS is the size of the messages to use when testing (between 1 byte and 4 megabytes).

For example, to run a 30 minute test on 64 nodes with 4 kilobyte messages, the following command would be used from the /opt/opa/src/mpi_apps directory:

```bash
./run_allhfilatency 64 30 4096
```

Once 30 minutes has elapsed, the test completes as soon as the current round of testing has completed.

If you want the tests to repeat indefinitely, use the duration infinite as shown in the following CLI command:

```bash
./run_allhfilatency 64 infinite 4096
```

There are three options, -c, -h, and -v available:

- -h / --help Provides some help text, then terminates.
- -c / --csv Prints all raw test results in CSV file format, into the application logfile. Useful for analyzing the raw results with a spreadsheet application.
- -v / --verbose Runs the test in a verbose mode that shows more information.

To use the results of this test, look for nodes that are often listed as the slowest at the end of the round. One of those nodes may have a cabling problem, or there may be a congested interswitch link causing those nodes to experience degraded performance.

### 4.9.2 run_cabletest

The `run_cabletest` tool is a specialized stress test for large fabrics. It groups MPI ranks into sets that are tested against other members of the set. This test has no real value as a performance benchmark, but is extremely useful for checking for cabling problems in the fabric.

```
./run_cabletest
```

 requires no arguments, but does require you to generate a group hosts file. This is done with the `gen_group_hosts` script. The name of the group hosts file is specified by the `$MPI_GROUP_HOSTS` variable, and defaults to `mpi_group_hosts`. For more information on `gen_group_hosts`, refer to `gen_group_hosts` on page 223.

By default, `run_cabletest` runs for 60 minutes and uses 4-megabyte messages. These settings can be changed by using the three optional arguments: duration, smallest message size, and largest message size. The arguments are specified in order:

   ```bash
 cd /opt/opa/src/mpi_apps
   ```
2. Run the `run_cabletest` test including the duration in minutes, the smallest message size, and the largest message size.
./run_cabletest dd ss ll

where:
- **dd** is the duration in minutes.
- **ss** is the smallest message size.
- **ll** is the largest message size.

For example, to run a one minute test with 4-megabyte messages, enter the following CLI command:

```bash
./run_cabletest 1
```

Once one minute has elapsed, the test completes when the current round of testing completes.

If you want the tests to repeat indefinitely, use `infinite` as the duration, as shown in the following CLI command:

```bash
./run_cabletest infinite
```

In addition to the duration, you can specify the smallest and largest messages to send. The messages must be between 16384 and 4194304 (4 megabytes). The following example tests message sizes between 1 and 4 megabytes, and runs for 24 hours:

```bash
./run_cabletest 1440 1048576 4194304
```

There are two options available, `-h` and `-v`:
- `-h` / `--help` – provides this help text.
- `-v` / `--verbose` – runs the test in a verbose mode that shows you how the nodes were grouped.

### 4.9.3 run_batch_cabletest

The `run_batch_cabletest` in `/opt/opa/src/mpi_apps` makes it easier to run the `run_cabletest` stress test (see `run_cabletest` on page 220). The `run_batch_cabletest` script runs separate jobs for each `BATCH_SIZE` hosts, and can generate the `mpi_group_hosts` files needed using a single `mpi_hosts` file, which lists each host to be tested once, in topology order. For many clusters, `opasorthosts` may help put a list of hosts in topology order, or `opafindgood` may be used to identify candidate hosts. By using many small jobs, the impact of any individual host issues (host crash, hang, etc) during the test is limited to one batch of hosts.

*Note:* When using `run_batch_cabletest`, the log files are separated. Each individual job gets its own log file, with a suffix to the log filename indicating the run number within the set of batches. For example: `cabletest.04Jan12165901.1 cabletest.04Jan12165901.2` This avoids any intermingling of output from multiple runs in a single log file.
By default, `run_batch_cabletest` runs for 60 minutes and uses 4-megabyte messages. These settings can be changed by using the three optional arguments: duration, smallest message size, and largest message size. The arguments are specified in order:

   ```bash
cd /opt/opa/src/mpi_apps
```
2. Run the `run_batch_cabletest` test including the duration in minutes, the smallest message size, and the largest message size.
   ```bash
./run_batch_cabletest [duration [minmsg [maxmsg]]]
```
   where:
   - `duration` is the duration in minutes and can be infinite
   - `minmsg` is the smallest message size. Must be between 16384 and 4194304.
   - `maxmsg` is the largest message size. Must be between 16384 and 4194304.

This builds a set of `mpi_hosts.#` and `mpi_group_hosts.#` files, with no more than `BATCH_SIZE` hosts each. If an odd number of hosts appears in `mpi_hosts`, the last one is skipped.

For example, to run a one minute batch test, with 4-megabyte messages, enter the following CLI command:

```bash
./run_batch_cabletest 1
```

Once one minute has elapsed, the batch test completes when the current round of testing completes.

If you want the tests to repeat indefinitely, use `infinite` as the duration, as shown in the following CLI command:

```bash
./run_batch_cabletest infinite
```

In addition to the duration, you can specify the smallest and largest messages to send. This example batches test message sizes between 1 and 4 megabytes, and runs for 24 hours:

```bash
./run_batch_cabletest 1440 1048576 4194304
```

The following options are available:

- `-h` / `--help` - provides this help text.
- `-v` / `--verbose` - runs the test in a verbose mode that shows you how the nodes were grouped.
- `-n` - specifies the number of processes to run per host.
  ```
duration - how many minutes to run. Default is 60.
```
- `minmsg` - smallest message to use. Must be between 16384 and 4194304.
- `maxmsg` - largest message to use. Must be between 16384 and 4194304.
Default `minmsg` and `maxmsg` is 4 Megabytes.

Each `run_cabletest` MPI job has its output saved to a corresponding `/tmp/nohup.#.out` file.

**Environment**

- `MPI_HOSTS` - `mpi_hosts` file to use. The default is `mpi_hosts`. This file lists the hosts in topology order, one entry per host. The hosts are paired sequentially (first and second, third and fourth, and so on).
- `BATCH_SIZE` - The maximum hosts per MPI job. The default is 18, and the number must be even.

**Examples**

```bash
./run_batch_cabletest
MPI_HOSTS=good ./run_batch_cabletest 1440
BATCH_SIZE=16 MPI_HOSTS=good ./run_batch_cabletest infinite
```

### 4.9.4 gen_group_hosts

This tool generates an `mpi_group_test` file for use with `run_cabletest`. The `gen_group_hosts` tool asks three questions that need to be answered in order for it to generate the `mpi_group_hosts` file.

The first question asks for the name of your hosts file. The hosts must be listed in this file in group order, with one host per line. The hosts cannot be listed more than once and must be listed in their physical order. The default hosts file is `/opt/opa/src/mpi_apps/mpi_hosts`.

The second question asks how big your groups are. For example, if you want to test each node against the node next to it, use 2 as the group size. If you want to test the nodes connected to one leaf switch against the nodes on another leaf switch, and you have 16 nodes per leaf, use 32 as the group size. The default group size is 2.

The third question asks how many processes you want to run per node. The higher the number, the higher the link utilization. The number must be between 1 and the number of processors per node. The default number of processes per node is 3. Using more processes than needed to saturate the link does not improve testing.

After all questions are answered, the `/opt/opa/src/mpi_apps/mpi_group_hosts` file is generated.

If the number of the hosts is not a multiple of the group size, a warning is shown.

### 4.9.5 run_multibw

`run_multibw` runs `mpi_multibw`, which performs a multi-core pairwise bandwidth test. `mpi_multibw` is based on OSU bw and multi-lat.

   ```bash
 cd /opt/opa/src/mpi_apps
   ```
2. Run the `run_multibw` test including the number of processes on which to run the test.
./run_multibw  processes
where: processes is the number of processes on which to run the test. All indicates the test should be run for every process in the mpi_hosts file.

4.9.6 run_nxnlatbw

run_nxnlatbw runs mpi_nxnlatbw, which is an NxN latency bandwidth test.
cd /opt/opa/src/mpi_apps
2. Run the run_nxnlatbw test, including the number of processes on which to run the test.
   ./run_nxnlatbw  processes
where: processes is the number of processes on which to run the test. All indicates the test should be run for every process in the mpi_hosts file.

4.10 MPI Batch run_* Scripts

The run_batch_script makes it easier to run other run_* scripts as many smaller jobs. This script is located in /opt/opa/src/mpi_apps and runs separate jobs for each BATCH_SIZE host. By using many small jobs, the impact of any individual host issues (host crash, hang, etc.) during the test is limited to one batch of hosts.

Note: When using run_batch_script, the log files are separated. Each individual job gets its own log file with a suffix to the log filename indicating the run number within the set of batches. For example, mpi_groupstress.04Jan12165901.1 mpi_groupstress.04Jan12165901.2 This scheme avoids any intermingling of output from multiple runs in a single log file.

Usage

./run_batch_script [-e] run_script [args]

or

./run_batch_script --help

Options

• -e – Force an even number of hosts in the final batch by skipping the last one.
• run_script – A run_* script from this directory
• args – Arguments for run_script. If the first argument is NP, it is replaced with the process count.

This builds a set of mpi_hosts.# files with no more than BATCH_SIZE hosts each. If -e is specified and an odd number of hosts appear in mpi_hosts, the last one is skipped. Each run_script MPI job has its output saved to a corresponding/tmp/nowup.#.out file.

This script is only used for scripts that use MPI_HOSTS.
To run `run_cabletest`, use `run_batch_cabletest`.

**Environment**

- **MPI_HOSTS** – mpi_hosts file to use. Default is `mpi_hosts`.
- **BATCH_SIZE** – Maximum hosts per MPI job. The default is 18. If `-e` is used, the number must be even.
- **MIN_BATCH_SIZE** – Minimum hosts per MPI job. The default is 2. If `-e` is used, the number must be even.

The following environment variables are supported in individual `run_*` scripts:

- **SHOW_MPI_HOSTS** – Set to `y` if MPI_HOSTS contents should be output prior to starting job.
- **SHOW_MPI_HOSTS_LINES** – Set to the maximum number of lines in hosts file.

**Examples**

```
./run_batch_script run_deviation NP ff
BATCH_SIZE=2 MPI_HOSTS=good ./run_batch_script run_lat2
BATCH_SIZE=16 MPI_HOSTS=good ./run_batch_script run_deviation ff
MIN_BATCH_SIZE=16 BATCH_SIZE=16 ./run_batch_script run_hpl2 16
```

### 4.10.1 SHMEM Batch run_* scripts

Scripts for various SHMEM benchmarks included with SHMEM are contained in `/opt/opa/src/shmem_apps`. The behavior of these scripts is very similar to those in `mpi_apps`.

Each SHMEM application/benchmark has an accompanying `run_*` script, which assumes the existence of a local `mpi_hosts` file. The provided `run_*` scripts include the following:

- `run_alltoall`
- `run_barrier`
- `run_reduce`
- `run_get[put]_bw`
- `run_get[put]_bibw`
5.0 Port Counters Overview

Each port in an Intel® Omni-Path Fabric maintains a set of port counters to indicate both traffic and error counts. These counters can be grouped into the categories described in this section. Each port stops incrementing when the max value is reached, irrespective of counter size. Most of the counters are 64-bits in size. Exceptions are noted.

5.1 Link Integrity

These counters reflect errors in the Physical (PHY) and Link Layers, as well as errors in firmware. The typical cause is a hardware problem such as a poor connection, marginal cable, incorrect length/model cable for signal rate, or damaged/broken hardware, such as bad connectors.

When a bad packet is detected, one of these counters is incremented and the Link Layer discards the packet.

During the link training sequence, assorted errors may be observed. This is a normal part of the link training and clock synchronization process. Hence, errors observed as part of rebooting nodes or moving cables should not be considered a problem.

The category is calculated as a weighted sum of the counters in the group. With the exception of ExcessiveBufferOverrunErrors, the counters in this group report on the receive side of the link. However, the counter can indicate a problem on either side of the link.

5.1.1 Link Quality Indicator (LQI)

This is a status indicator, similar to the signal strength bar display on a mobile phone, that enumerates link quality as a range of 0-5, with 5 being very good. Values in the lower part of the range may indicate hardware problems such as port, cable, and others that surface as signal integrity issues, leading to performance and other problems.

5  Working at or above preferred link quality, no action needed.
4  Working slightly below preferred link quality, but no action required.
3  Working on low end of acceptable link quality, recommended to consider corrective action on next maintenance window.
2  Working below acceptable link quality, recommend consider timely corrective action.
1  Working far below acceptable link quality, recommend immediate corrective action.
0  Link down.
5.1.2 LocalLinkIntegrityErrors Counter

This counter indicates the number of retries initiated by the link transfer layer. Link Quality Indicator is the primary indicator for link quality to use. This counter is factored into the value reported for Link Quality Indicator. This counter may be non-zero for a properly functioning link.

5.1.3 PortRcvErrors Counter

This counter indicates the total number of packets containing an error that were received by the port, including Link Layer protocol violations and malformed packets. It indicates possible misconfiguration of a port, either by the SM or, more likely, by user intervention. It can also indicate hardware issues or extremely poor signal integrity for a link.

5.1.4 ExcessiveBufferOverrunErrors Counter

This counter, associated with credit management, indicates an input buffer overrun. It indicates possible misconfiguration of a port, either by the SM or, more likely, by user intervention. It can also indicate hardware issues or extremely poor signal integrity for a link.

5.1.5 LinkErrorRecovery Counter

This counter indicates the number of times the link has successfully completed the link error recovery process. Link Quality Indicator is the primary indicator for link quality to use. This counter is factored into the value reported for Link Quality Indicator. This counter may be non-zero for a properly functioning link.

5.1.6 LinkDowned Counter

This counter indicates the total number of times the port has failed the link error recovery process anddowned the link. These events can cause disruptions to fabric traffic.

5.2 Congestion

These counters reflect possible errors that indicate traffic congestion in the fabric.

When congestion or a packet that has seen congestion is detected, one of these counters is incremented and then depending on the issue reported, the packet must wait. In an extreme case, the packet may time out and be dropped.

The category is calculated as a weighted sum of the counters in the context of the utilization counters. With the exception of PortRcvFECN, the counters are all reported on the transmit side of the link. In addition, PortRcvBECN is only taken if the local node is an HFI. However, the counter could indicate a problem on either side of the link.
5.2.1 PortXmitWait Counter
This counter indicates the amount of time (in flit times) any virtual lane had data but was unable to transmit due to no credits available.

5.2.2 SwPortCongestion Counter
This switch-only counter indicates the number of packets that were discarded as unable to transmit due to timeouts.

5.2.3 PortRcvFECN Counter
When a device receives a packet with the FECN (Forward Explicit Congestion Notification) bit set to one, this counter is incremented.

5.2.4 PortRcvBECN Counter
When a device receives a packet with the BECN (Backward Explicit Congestion Notification) bit set to one, this counter is incremented.

5.2.5 PortXmitTimeCong Counter
This counter indicates the total number of flit times that the port was in a congested state for any data VL.

5.2.6 PortMarkFECN Counter
This counter indicates the total number of packets that were marked FECN (Forward Explicit Congestion Notification) by the transmitter due to congestion.

5.3 SMA Congestion
These counters reflect congestion in the fabric specific to communication between the Subnet Manager and Subnet Manager Agents using the management VL (VL 15).
The category is calculated exactly as the Congestion category using the same weights and the correct VL15 utilization counters.

5.3.1 PortVLXmitWait[15] Counter
This counter behaves the same as PortXmitWait, but it is restricted to VL 15 which carries only SM traffic.

5.3.2 SwPortVLCongestion[15] Counter
This counter behaves the same as SwPortCongestion, but it is restricted to VL 15 which carries only SM traffic.

5.3.3 PortVLRcvFECN[15] Counter
This counter behaves the same as PortRcvFECN, but it is restricted to VL 15 which carries only SM traffic.
5.3.4  **PortVLRcvBECN[15] Counter**
This counter behaves the same as PortRcvBECN, but it is restricted to VL 15 which carries only SM traffic.

5.3.5  **PortVLXmitTimeCong[15] Counter**
This counter behaves the same as PortXmitTimeCong, but it is restricted to VL 15 which carries only SM traffic.

5.3.6  **PortVLMarkFECN[15] Counter**
This counter behaves the same as PortMarkFECN, but it is restricted to VL 15 which carries only SM traffic.

5.4  **Bubble**
These counters occur when an unexpected idle flit is transmitted or received.

The transmit port sends idle flits until it can continue sending the rest of the packet. The category is calculated as follows:
1. The maximum value between the sum of the XmitWastedBW and XmitWaitData or the neighbor's PortRcvBubble.
2. Then divide the previous value by the port’s utilization to provide context.

5.4.1  **PortXmitWastedBW Counter**
This counter indicates the number of flit times where one or more packets have been started but the transmitters are forced to send idles due to bubbles in the ingress stream. Also, the VLs that have data to be sent are not permitted to preempt the currently transmitting VL.

5.4.2  **PortXmitWaitData Counter**
This counter indicates the number of flit times where one or more packets have been started but interrupted due to bubbles in the ingress stream.

5.4.3  **PortRcvBubble Counter**
This counter indicates the total number of flit times where one or more packets have started to be received, but the receiver received idle flits from the wire.

5.5  **Security**
These counters reflect possible security problems in the fabric.

Security problems can occur if a PKey or SLID violation occurs at the port during the ingress or egress of a packet.

The category is calculated as the sum of the neighbor’s PortRcvConstraintErrors and the local port’s PortXmitConstraintErrors.
5.5.1 PortRcvConstraintErrors
This counter is incremented when partition key or source LID violations are detected in a received packet, indicating a possible security issue or misconfiguration of device security settings.

5.5.2 PortXmitConstraintErrors
This counter is incremented when partition key violations are detected in a packet attempting to be transmitted, indicating a possible security issue or misconfiguration of device security settings.

5.6 Routing
These counters reflect possible routing issues. When a routing issue occurs, the offending packet is dropped.

A typical cause of this error is the routing to a wrong egress port or an improper Service Channel (SC) mapping. These errors can be a side effect of a port or device going down while traffic was still in flight to or through the given port or device.

5.6.1 PortRcvSwitchRelayErrors
This counter indicates the number of packets that were dropped due to internal routing errors. It indicates possible misconfiguration of a switch by the SM.

5.7 Other
These counters do not fit into any of the previous categories.

5.7.1 PortRcvRemotePhysicalErrors
This counter indicates the number of downstream effects of signal integrity (SI) problems. It indicates an SI issue in the upstream path.

5.7.2 UncorrectableErrors Counter
This counter indicates the number of unrecoverable internal device errors. It indicates a severe hardware defect or data corruption inside the device.

5.7.3 FMConfigErrors Counter
This counter indicates inconsistencies of low level SMA configuration on both sides of the link. It indicates possible misconfiguration of a port, either by the SM, or, more likely, by user intervention.