Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2015</td>
<td>1.0</td>
<td>Document has been updated for Revision 1.0.</td>
</tr>
<tr>
<td>September 2015</td>
<td>0.7</td>
<td>Document has been updated for Revision 0.7.</td>
</tr>
<tr>
<td>April 2015</td>
<td>0.5</td>
<td>Initial release of document.</td>
</tr>
</tbody>
</table>
Contents—Intel® Omni-Path Fabric Suite Fabric Manager GUI

6.0 Topology.. 52
 6.1 Resource Tree (Topology)... 52
 6.2 Outline.. 53
 6.3 Selected Resources... 53
 6.4 Local Topology... 53
 6.4.1 Device Set (Topology)... 54
 6.4.2 Device Node.. 55
 6.4.3 Links.. 56
 6.4.4 Routes... 57

7.0 Admin Tab.. 59
 7.1 Applications Management.. 59
 7.2 Device Group Management.. 61
 7.3 Virtual Fabric Management... 61
 7.4 Interactive Console.. 62
 7.5 Log View.. 65

8.0 Troubleshooting Guide.. 67
 8.1 Overview... 67
 8.2 General Error Prevention... 68
 8.3 Best Practices... 68
 8.4 Application Log.. 68
 8.5 Troubleshooting Q & A.. 69
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fabric Manager GUI</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Fabric Topology</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Time Window</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Metrics Collected in Time Window</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Email Settings Error Dialog</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Enable Email Notification Selection</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>SMTP Host Selection</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>SMTP Sender Selection</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>SMTP Test Recipient Selection</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>SMTP Settings Test</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Save SMTP Settings</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>Email Notification Event Selection</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>Save Events</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>Email Notification Recipients List</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>Email Notification Test</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>Save Email Recipients</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>Event Table Example</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>Cards pinned to the Pin Board</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>Pin Board Examples</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Subnet Statistics Example</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>Subnet Status Example</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>Health Trend Example</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>Health Score Example</td>
<td>29</td>
</tr>
<tr>
<td>24</td>
<td>Subnet Performance Example</td>
<td>29</td>
</tr>
<tr>
<td>25</td>
<td>Top N Example</td>
<td>30</td>
</tr>
<tr>
<td>26</td>
<td>Performance Tab Example</td>
<td>33</td>
</tr>
<tr>
<td>27</td>
<td>Events Example</td>
<td>35</td>
</tr>
<tr>
<td>28</td>
<td>General Summary Example</td>
<td>35</td>
</tr>
<tr>
<td>29</td>
<td>Top N Example</td>
<td>36</td>
</tr>
<tr>
<td>30</td>
<td>Performance (Node) Example</td>
<td>37</td>
</tr>
<tr>
<td>31</td>
<td>Connectivity Example</td>
<td>40</td>
</tr>
<tr>
<td>32</td>
<td>Jump to Performance or Topology</td>
<td>41</td>
</tr>
<tr>
<td>33</td>
<td>Cable Information Jump</td>
<td>41</td>
</tr>
<tr>
<td>34</td>
<td>Node Properties Example</td>
<td>44</td>
</tr>
<tr>
<td>35</td>
<td>Port Performance Example</td>
<td>46</td>
</tr>
<tr>
<td>36</td>
<td>Topology Example</td>
<td>52</td>
</tr>
<tr>
<td>37</td>
<td>Local Topology Example</td>
<td>53</td>
</tr>
<tr>
<td>38</td>
<td>Device Set Example</td>
<td>54</td>
</tr>
<tr>
<td>39</td>
<td>Device Groups Example</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>Device Node Example</td>
<td>56</td>
</tr>
<tr>
<td>41</td>
<td>Links Example</td>
<td>57</td>
</tr>
<tr>
<td>42</td>
<td>Routes Example</td>
<td>58</td>
</tr>
<tr>
<td>43</td>
<td>Admin Tab</td>
<td>59</td>
</tr>
<tr>
<td>44</td>
<td>Applications Management Example</td>
<td>59</td>
</tr>
<tr>
<td>45</td>
<td>Device Group Management Example</td>
<td>60</td>
</tr>
<tr>
<td>46</td>
<td>Virtual Fabric Management Example</td>
<td>61</td>
</tr>
<tr>
<td>47</td>
<td>Interactive Console</td>
<td>62</td>
</tr>
<tr>
<td>48</td>
<td>Interactive Console Examples</td>
<td>63</td>
</tr>
<tr>
<td>49</td>
<td>Log Viewer</td>
<td>65</td>
</tr>
<tr>
<td>50</td>
<td>Troubleshooting Example</td>
<td>69</td>
</tr>
</tbody>
</table>
Tables

1. Pin Board Options ... 25
2. Ports Table Data ... 38
3. Connectivity Data ... 41
4. Device Information ... 44
5. Port Properties ... 45
6. Receive Counters .. 47
7. Transmit Counters .. 48
8. Other Counters ... 49
9. Typographical Conventions .. 67
Preface

This manual is part of the documentation set for the Intel® Omni-Path Fabric (Intel® OP Fabric), which is an end-to-end solution consisting of adapters, edge switches, director switches and fabric management and development tools.

The Intel® OP Fabric delivers a platform for the next generation of High-Performance Computing (HPC) systems that is designed to cost-effectively meet the scale, density, and reliability requirements of large-scale HPC clusters.

Both the Intel® OP Fabric and standard InfiniBand® are able to send Internet Protocol (IP) traffic over the fabric, or IPoFabric. In this document, however, it is referred to as IP over IB or IPoIB. From a software point of view, IPoFabric and IPoIB behave the same way and, in fact, use the same ib_ipolb driver to send IP traffic over the ib0 and/or ib1 ports.

Intended Audience

The intended audience for the Intel® Omni-Path (Intel® OP) document set is network administrators and other qualified personnel.

Documentation Set

The following are the list of the complete end-user publications set for the Intel® Omni-Path product. These documents can be downloaded from https://downloadcenter.intel.com/.

- Hardware Documents:
 - Intel® Omni-Path Fabric Switches Hardware Installation Guide
 - Intel® Omni-Path Fabric Switches GUI User Guide
 - Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide
 - Intel® Omni-Path Edge Switch Platform Configuration Reference Guide
 - Intel® Omni-Path Fabric Managed Switches Release Notes
 - Intel® Omni-Path Fabric Externally-Managed Switches Release Notes
 - Intel® Omni-Path Host Fabric Interface Installation Guide
 - Intel® Omni-Path Host Fabric Interface Release Notes

- Software Documents:
 - Intel® Omni-Path Fabric Software Installation Guide
 - Intel® Omni-Path Fabric Suite Fabric Manager User Guide
 - Intel® Omni-Path Fabric Suite FastFabric User Guide
 - Intel® Omni-Path Fabric Host Software User Guide
 - Intel® Omni-Path Fabric Suite Fabric Manager GUI Online Help
Documentation Conventions

This guide uses the following documentation conventions:

- **Note:** provides additional information.
- **Caution:** indicates the presence of a hazard that has the potential of causing damage to data or equipment.
- **Warning:** indicates the presence of a hazard that has the potential of causing personal injury.
- Text in *blue* font indicates a hyperlink (jump) to a figure, table, or section in this guide. Links to Web sites are also shown in blue. For example:

 See **License Agreements** on page 9 for more information.

 For more information, visit www.intel.com.

- Text in **bold** font indicates user interface elements such as a menu items, buttons, check boxes, or column headings. For example:

 Click the **Start** button, point to **Programs**, point to **Accessories**, and then click **Command Prompt**.

- Text in **Courier** font indicates a file name, directory path, or command line text. For example:

 Enter the following command: `sh ./install.bin`

- Key names and key strokes are shown in underlined bold uppercase letters. For example:

 Press **CTRL-P** and then press the **UP ARROW** key.

- Text in **italics** indicates terms, emphasis, variables, or document titles. For example:

 For a complete listing of license agreements, refer to the **Intel® Software End User License Agreement**.

License Agreements

This software is provided under one or more license agreements. Please refer to the license agreement(s) provided with the software for specific detail. Do not install or use the software until you have carefully read and agree to the terms and conditions of the license agreement(s). By loading or using the software, you agree to the terms of the license agreement(s). If you do not wish to so agree, do not install or use the software.
Technical Support

Technical support for Intel® Omni-Path products is available 24 hours a day, 365 days a year. Please contact Intel Customer Support or visit www.intel.com for additional detail.
1.0 Introduction

Intel® Omni-Path Fabric Suite Fabric Manager GUI provides an intuitive, scalable dashboard and set of analysis tools for graphically monitoring fabric status and configuration. It is a user-friendly alternative to traditional command-line tools for day-to-day monitoring of fabric health.

Figure 1. Fabric Manager GUI

Fabric Manager GUI can be run on a Linux® or Windows® desktop/laptop system with TCP/IP connectivity to the Intel® Omni-Path Fabric Suite Fabric Manager. Network connectivity to the Fabric Executive (FE) component of the Fabric Manager allows continuous, remote, “out of band” monitoring. If configured with alternate FE connection information, the Fabric Manager GUI automatically fails over to an alternative FE if the connection to the original is lost.

Fabric Manager GUI feature highlights include:

- The ability to monitor multiple fabric “subnets” simultaneously
- A dashboard summary of the state of the connected fabric
- An interactive way to visualize the fabric topology (see the following figure)
- A Pin Board that allows a user-selected set of GUI indicators to remain visible at all times
- Reliable “out-of-band” connectivity to the fabric over both secured and non-secured links
- Email and other alerts if user-selected events occur within the fabric
- Connectivity to the Fabric Manager’s console for access to the rich set of Intel® Omni-Path Fabric Suite FastFabric command-line tools
• Connectivity to the Fabric Manager’s log file for troubleshooting purposes
• The ability to modify the configuration of the Fabric Manager

Figure 2. Fabric Topology
2.0 Intel® Omni-Path Fabric Suite Fabric Manager GUI Setup Wizard

Setup Wizard guides a user to set up the Fabric Manager GUI, including the areas described below.

- Hosts
- Events
- Preferences

Hosts

To add a new subnet, click the button on the Hosts tab and provide the following attributes:
- Name – unique name of the subnet
- IP address or Host name – address used to connect with the FM, specifically the address used to connect to the FE
- Port number - the port number used to connect

To add a subnet, user name is not required. Even for the secure connection (when the Secure check box is checked), user name is not necessary.

For a secure connection, check the Secure check box and enter Key Store and Trust Store information.

The Auto Connect checkbox must be selected to make the connection automatic.

Events

In the course of exploring a fabric, the Fabric Manager may send an event message to the Fabric Manager GUI to notify the user about an incident occurring on the network. The Events tab lists the classification and type of each event, and allows the user to select the severity level and action to take when an event is received.

Events are defined with the following attributes:
- Event Class – Subnet Event, Miscellaneous Event, etc.
- Event Type – Lost Connection with FE, Inactive Port, etc.
- Severity – Informational, Warning, Error, Critical
- Action – Set notification with an email, display, or both

All events have predefined default values, so you need to change only those events of interest.

User Preferences

On the Preferences tab, you define the following attributes:
Refresh Rate – the rate at which the UI is refreshed with the latest data from the Fabric Manager. This rate must not be less than the Fabric Manager sweep rate.

Time Window – the duration of the sliding time window over which the number of active nodes and ports:

- Reported a Critical, Error, or Warning event type
- Was classified as a Worst Node based on its performance

In the following figure, a time window of 1 hour is defined. As time transpires the data collected prior to the time window is removed as new information is reported.

Figure 3. Time Window

Indicators for these values can be found on the Home and Performance pages as shown in the highlighted panels below.

Figure 4. Metrics Collected in Time Window

Note: This value must be larger than 10 * FM sweep rate.
Worst Nodes – number of the worst nodes to display.

Email recipients – used to list recipients of email notifications for the subnet. See Setting up Email Notification on page 15 for more details.

2.1 Setting up Email Notification

The email notification feature allows a specified list of addresses to receive an email notification if a user-selected event occurs in the Fabric Manager GUI or in the fabric itself. Both the list of recipients and the list of events are specified on a per-subnet basis using the Configuration Setup Wizard: Configure menu > Setup Wizard (refer to Intel® Omni-Path Fabric Suite Fabric Manager GUI Setup Wizard on page 13). A single SMTP server is used to send messages for all defined subnets and is specified using the Email Settings dialog (Configure menu > Email setup).

Server Invalid/No Server Configured

The notification in the following figure is displayed any time the Fabric Manager GUI cannot connect to the specified SMTP server. This can be due to the Fabric Manager GUI host being offline (for example, no network connection), invalid SMTP settings, or SMTP settings left blank (with email notification enabled). If the dialog appears in response to an SMTP server settings test, you can dismiss the dialog and the SMTP settings can still be saved.

Figure 5. Email Settings Error Dialog

SMTP Configuration

A single SMTP server is used to send messages for all defined subnets and is specified using the Email Settings dialog (Configure menu > Email setup). To begin SMTP server configuration, click the Enable Email Notifications check box in the Email Settings dialog shown in the following figure.
Figure 6. Enable Email Notification Selection

You may enable/disable email notifications at any time but the SMTP settings may be edited only when email notifications have been enabled.

Enter the SMTP server address (for example, "mail.mydomain.com") in the SMTP Host field as shown in the following figure.

Figure 7. SMTP Host Selection

Enter a valid email address in the "Sender" field as shown in the following figure. This is the "from" address that will appear in all email notifications.
Figure 8. SMTP Sender Selection

SMTP Server Test

If the Fabric Manager GUI host has a working network connection, you can test the SMTP server settings if you choose to do so. Enter a valid email address for the recipient of the test notification message as shown in the following figure.

Figure 9. SMTP Test Recipient Selection

The Test button (shown in the following figure), can be used to send a test notification message to the specified recipient. After all settings in the dialog have been entered, the Test button becomes active. Click the button to send the message. If the Fabric Manager GUI is unable to connect to the SMTP server for any reason, the error notification dialog shown in Figure 5 on page 15 will be displayed. Note that you can still save the entered settings, if desired.
If the test is successful, the recipient receives the test message at the address specified. Note that the Fabric Manager GUI can provide feedback on server connection status only. It is possible for the Fabric Manager GUI to connect to a valid SMTP server without the test message being received. In this case, verify that the recipient address is correct and that any spam filter is set to pass the message.

Save SMTP Settings

To save SMTP settings, click **OK** as shown in the following figure.

To dismiss the Email Settings dialog without saving, click **Cancel**. To revert to the last saved settings, click **Reset**.
2.2 Email Notification of Events

Select Events

To send an email notification when a particular event occurs, Click **Select...** in the Actions column in the row of the desired event as shown in the following figure. Then click the **SEND_EMAIL** check box. An envelope icon will appear in the Actions column for all selected events.

Figure 12. Email Notification Event Selection

![Email Notification Event Selection](image)

Save Events

To save the selected events, click the **Apply** button as shown in the following figure.

Figure 13. Save Events

![Save Events](image)

Email Notification Recipients

Email Recipients List
To specify a list of email notification recipients for the subnet, enter one, or more valid email addresses in the **Email recipients** field in the Preferences tab as shown in the following figure. Entries must be separated by a semi-colon.

Figure 14. Email Notification Recipients List

![Email Notification Recipients List](image)

Note that addresses are validated as they are entered. Addresses must be of the form `user@host.ext` where "ext" is a three character extension (e.g., "com"). A red border surrounds the field until a valid entry is completed.

Email Test

If desired, a test notification message can be sent to all addresses in the recipients list. The Fabric Manager GUI host must have a working network connection and valid SMTP server settings must be configured prior to the test (refer to Setting up Email Notification on page 15). Click the **Test** button as shown in the following figure.

Figure 15. Email Notification Test

![Email Notification Test](image)

Save Recipients

To save the list of email recipients, click the **Apply** button as shown in the following figure.
Figure 16. **Save Email Recipients**

![Configuration Save Wizard](image-url)

- **Name:** [Name Field]
- **Preferences:**
 - **Refresh Rate:** [Value]
 - **Time Window:** [Value]
 - **# Nodes:** [Value]
- **Email Recipients:**
 - [Recipient Email Address]

- [Save] button highlighted
3.0 Fabric Manager GUI Window Navigation

The Fabric Manager GUI window is comprised of the following areas:

- **Menu Bar** on page 22
- **Tool Bar** on page 23
- **Main Panel** on page 23
- **Event Table** on page 23
- **Pin Board** on page 24

The following image shows the Fabric Manager GUI window with call-outs of the areas.

![Fabric Manager GUI Window](image)

3.1 Menu Bar

The Menu Bar supplies window and application specific menus that provide access to the following functions:

- **Subnet** Menu
 - Connect to a Subnet on page 23
 - Close

- **Configure** Menu
 - Intel® Omni-Path Fabric Suite Fabric Manager GUI Setup Wizard on page 13
 - Logging - In the Logging section, you set up the output destination, information level, and output format required for error logging.
• Email Setup - Set up SMTP server used in email notification.

Help Menu
• Online Help
• About

3.1.1 Connect to a Subnet
Subnets may be configured to connect to the fabric either automatically or manually. To connect a subnet automatically upon starting the Fabric Manager GUI, see Hosts on page 13.

To manually connect a subnet to the fabric:
From the menu bar, click Subnet, Connect To, and then the subnet.

Note: If a connection error is received, verify that the host name and port number are correct, and verify that the Fabric Executive is active.

3.2 Tool Bar
The tool bar contains the following buttons.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Refresh - Refreshes Fabric Manager GUI immediately with the latest data from the Fabric Manager or indicates that a data refresh is taking place.</td>
</tr>
<tr>
<td></td>
<td>Navigation - Navigate to previous or next page and subpage displayed in Fabric Manager GUI.</td>
</tr>
</tbody>
</table>

3.3 Main Panel
The Main Panel contains the content for one of the following selected tabs:
• Home Tab on page 26
• Performance Tab on page 33
• Topology on page 52
• Admin Tab on page 59

3.4 Event Table
The Event Table displays the latest notices received from the Fabric Manager. By default this table is sorted by notice receive time, the time the Fabric Manager GUI receives a notice, in descending order and therefore shows the latest notice as the first row in the table. This table also shows each notice’s severity level with colored text, the source, and the description of the notice. This table is visible across all pages on the Home tab, and can be turned on/off by clicking the event summary panel on the pin board.
The Fabric Manager GUI provides a pin board at the right side of the main window (see the following figure) to monitor cards of interest. Click the pin button on a card’s title bar to make it instantly visible on the pin board, which allows you to monitor performance metrics while exploring other parts of the system. For example, the congestion trend card can be pinned to the pin board and it remains visible even when looking at the performance of a specific port. To remove cards from the pin board, click the button.

The Event Summary is the default pin card that shows the summary of events in a defined time window; it cannot be unpinned. Clicking the Event Summary card toggles the event panel at the bottom of the main window. Below it are user pin cards that are created by clicking the pin button on a card’s title bar. This board holds a maximum of eight pin cards. Each pin card is resizable by dragging the bottom edge. The following table summarizes the available operations on a pin card.
Table 1. Pin Board Options

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>displays information about this pin card, such as data type, data source, etc.</td>
</tr>
<tr>
<td>🔽</td>
<td>moves this pin card up</td>
</tr>
<tr>
<td>🔼</td>
<td>moves this pin card down</td>
</tr>
<tr>
<td>✗</td>
<td>unpins this pin card</td>
</tr>
</tbody>
</table>

Figure 19. Pin Board Examples

The previous figure shows the default pin card displaying the summary of events in a defined time window by severity levels. Clicking on this card toggles the event table between visible and invisible states. By default, the Event Table is visible when the Home Page is selected and invisible when other pages are selected.
4.0 Home Tab

The Home tab provides the "big picture" of a fabric using two sections: Subnet Summary and Subnet Performance. See the topics below for details on each section of the Home tab.

- **Subnet Summary (Home)** on page 26
- **Subnet Performance** on page 29

4.1 Subnet Summary (Home)

This section of the Home tab summarizes what happened in the past. It includes the following panels:

- **Subnet Statistics** on page 26
- **Subnet Status** on page 27
- **Health Trend** on page 27
- **Worst Nodes** on page 29

4.1.1 Subnet Statistics

Subnet Statistics lists basic information about a subnet in the first column: Master SM name and its up time; Standby SMs' names; Summary of Links (number of internal switch links and host links); and Other ports (ports that are not in the subnet). The second and third columns show the statistical summary of nodes and ports separately. The top of each column displays the number of actives nodes/ports, followed by the numbers of failed and skipped nodes/ports, and then the distribution of device types (specifically Switch and HFI).

Figure 20. Subnet Statistics Example
4.1.2 Subnet Status

Subnet Status shows the current status of switches and HFIs. It tells a user that in the past time window (defined in setup wizard), how many switches/HFIs are under critical, error, warning, or normal status and are measured based on notices from the Fabric Manager. If one node has multiple notices within a time window, it is counted by the notice with the highest severity level. The map between notice and severity is customizable with the setup wizard. Choose either pie chart or bar chart with the icon on the right side of the title bar.

Figure 21. Subnet Status Example

4.1.3 Health Trend

Health Trend displays the health history of a subnet in an area chart.

Figure 22. Health Trend Example

The card shown in the previous figure displays the health history of a subnet in an area chart. On the chart is the current health score which is calculated with the following equation:

\[
\text{Health Score} = \sum_j (S_j \times W_j) \times 100
\]

where:

- \(S_j \) = the score for attribute \(j \)
- \(W_j \) = the weight for attribute \(j \)
The score for an attribute can be calculated using the following formula:

\[S_j = \frac{V_j}{\sum_j(B_j \times W_j)} \]

where:
- \(V_j = \) the current value for attribute \(j \)
- \(B_j = \) the current baseline for attribute \(j \)

Currently, the attributes, their source and their weight in the formula are as follows:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Source</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of switches</td>
<td>ImageInfo</td>
<td>Average number of active ports per switch + 1</td>
</tr>
<tr>
<td>Number of HFIs</td>
<td>ImageInfo, FabricInfo</td>
<td>Average number of active ports per HFI + 1</td>
</tr>
<tr>
<td>Number of Inter Switch Links</td>
<td>FabricInfo</td>
<td>3</td>
</tr>
<tr>
<td>Number of HFI links</td>
<td>FabricInfo</td>
<td>2</td>
</tr>
<tr>
<td>Number of Active Ports</td>
<td>ImageInfo</td>
<td>1</td>
</tr>
<tr>
<td>Number of Non-degraded Inter Switch Links</td>
<td>FabricInfo</td>
<td>3</td>
</tr>
<tr>
<td>Number of Non-degraded HFI links</td>
<td>FabricInfo</td>
<td>2</td>
</tr>
</tbody>
</table>

Weights represent the relative importance of one attribute against the others. For example, consider the small fabric in the following image: two 48-port switches connected by four ISLs and serving eight nodes. In this configuration, a switch down will have 5 times more impact in the health score than a HFI link down (switch weight = 4 node-ports + 4 ISLs + port 0 + 1 = 10 against weight HFI link = 2). However, the impact is even greater if you consider that a switch down may also affect other attributes. In this example, the health score goes down to 53% when you bring down one of the switches but only goes down to 93% when you bring down a HFI link. The end result is that even small changes in the fabric configuration are not diluted when the size of the fabric is big: in simulations with a fabric of over 8K nodes, a port being brought down is reflected with the non-perfect score of 99%.
You can see the current values of each attribute and their baselines by hovering the mouse over the score; a tooltip appears to help you determine the source of a non-perfect score. The baseline values for each attribute are taken during initialization of the application and whenever the number of switches or HFIs increases in the fabric.

4.1.4 Worst Nodes

Worst Nodes lists the nodes with low health scores in a subnet as measured by a node's status. Normal, warning, error, and critical status levels have the scores of 100, 80, 30, and 10 respectively. Click on a worst node to display more information about the node and view performance, topology, and other data.

4.2 Subnet Performance

The Subnet Performance displays a statistical overview of the fabric to provide insight into the hot spots. It contains two groups of performance: Utilization and PM Counter Categories.

- Utilization Group on page 30
- PM Counter Categories Group on page 31

Refer to Intel® Omni-Path Fabric Suite Fabric Manager User Guide, in the section titled "Counter Classification" for more information on how Performance and "error" groups work, how thresholds are set, weights settings, adding PM groups, etc.

Figure 23. Health Score Example

![Health Score Example](image)

Figure 24. Subnet Performance Example

![Subnet Performance Example](image)
4.2.1 Utilization Group

The utilization group provides visual representation of a fabric’s performance in terms of bandwidth and packet rate. Each metric is summarized by the following:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend Chart</td>
<td>The historical values measured by all devices and all switches in a fabric, showing the trend and how switches contribute to the metric. The value represents the aggregated metric on all data traffic types: internal, send and transmit.</td>
</tr>
<tr>
<td>Top N Chart</td>
<td>The CURRENT top N worst ports measured by the selected metric. The parameter N can be changed with the Setup Wizard, or in this chart.</td>
</tr>
<tr>
<td>Histogram Chart</td>
<td>The CURRENT value distribution against ports, i.e., how many ports fall in a value range.</td>
</tr>
</tbody>
</table>

The combination of these charts provides mixed insights about the history, the present, and the global and local performance over the ports. On the bottom of the charts panel are the trend thumbnails of available metrics.

To bring the metric to the front, click on a thumbnail. To switch between the Top N and Histogram charts, use the drop-down menu on the title bar.

4.2.1.1 Trend (Performance)

The Trend chart shows the historical values measured by all devices and all switches in a fabric. The value represents the aggregated metric on all data traffic types: internal, external, send, and transmit (received). See General Summary (Performance) on page 35 for information about the different traffic types.

4.2.1.2 Top N Chart

The Top N chart shows the current top N worst ports measured by the selected metric. The parameter can be changed with the Setup Wizard, or in this chart.

Right-click a port to open a context menu to drill down to view this port's performance or topology.

Figure 25. Top N Example

4.2.1.3 Histogram

The Histogram chart shows the current value distribution against ports, i.e., how many ports fall in a value range.
4.2.2 **PM Counter Categories Group**

The PM Counter Categories Group is similar to the Utilization Group except the following metrics are applied:

- Congestion
- SMA Congestion
- Integrity
- Bubble
- Security
- Routing

Congestion

These counters reflect possible errors that indicate traffic congestion in the fabric.

When congestion or a packet that has seen congestion is detected, one of these counters will be incremented and then depending on the issue reported, the packet will just have to wait or in an extreme case, it may be dropped.

SMA Congestion

These counters reflect congestion in the fabric specific to communication between the Subnet Manager and Subnet Manager Agents using the management VL (VL 15).

The category is calculated exactly as the Congestion category using the same weights and the correct VL15 utilization counters.

Integrity

These counters reflect errors in the Physical (PHY) and Link Layers, as well as errors in Firmware. The typical cause is a hardware problem such as a poor connection, marginal cable, incorrect length/model cable for signal rate, or damaged/broken hardware (for example, bad connectors).

When a bad packet is detected, one of these counters are incremented and the Link Layer discards the packet.

During the link training sequence, assorted errors may be observed. This is a normal part of the link training and clock synchronization process. Hence, errors observed as part of rebooting nodes or moving cables should not be considered a problem.

Bubble

These counters occur when an unexpected idle *flit* is transmitted or received. The term *flit* refers to a Flow Control Digit or Flit, the smallest unit of information on which flow control may be performed. Intel® Omni-Path Fabric packets are divided into flits of 64 bits for transmission across a link. The flit excludes any headers; the 64 bits is the payload size.

The transmit port will send idle flits until it can continue sending the rest of the packet. The category is calculated as follows:

1. The maximum value between the sum of the XmitWastedBW and XmitWaitData or the neighbor's PortRcvBubble.
2. Divide the previous value by the port's utilization to provide context.

Security

These counters reflect possible security problems in the fabric.

Security problems occur if a PKey or SLID violation occurs at the port during the ingress or egress of a packet.

Routing

These counters reflect possible routing issues. When a routing issue occurs, the offending packet is dropped.

A typical cause of this error is the routing to a wrong egress port or an improper Service Channel (SC) mapping.
5.0 Performance Tab

The Performance tab displays the detailed information about a subnet's performance. On the left of the page is a resource tree panel that organizes subnet devices by different categories which allows you to select resources. The main panel shows the performance of a selected resource and its content changes based on the type of resource selected.

Figure 26. Performance Tab Example

See the topics below for details on each section of the Performance tab.
- Resource Tree on page 33
- Tree Search on page 34
- Summarized Performance on page 34
- Node Performance on page 36
- Port Performance on page 45

5.1 Resource Tree

The Resource Tree displays and organizes resources of the following types:
- **Device Type**: Organize resources by device types, Switch and HFI
- **Device Group**: Organize resources by device group (PM Port Group)
• **Virtual Fabric**: Organize resources by defined virtual fabric

Although the resources are organized differently in the Resource Tree, there are only three types of resources, as described below. Click a resource to display the performance information in the right panel.

• **Device Set**: A set of device nodes, such as a subnet, a device group, a virtual fabric, or a type of device

• **Device Node**: A fabric node that can be either a switch or HFI

• **Device Port**: A port in a fabric node

5.2 Tree Search

Tree Search enables you to search a node by name, node LID, or node GUID. The search results are displayed in a tree and selecting a node from the results tree populates the node from the Resource Tree.

5.3 Summarized Performance

Summarized performance shows aggregated performance on a set of device nodes. Similar to the Home tab, it includes two sections: Subnet Summary and General Performance.

Subnet Summary (Home) on page 26

General Summary (Performance) on page 35

5.3.1 Subnet Summary (Performance)

The Subnet Summary section displays the following:

Statistics (Performance Subnet Summary) on page 34

Events (Performance Subnet Summary) on page 34

5.3.1.1 Statistics (Performance Subnet Summary)

The Statistics section displays the basic information about a selected resource: the resource statistics summary, i.e., total number of active nodes/ports, their distribution against device types, and the number of ports not in the subnet.

5.3.1.2 Events (Performance Subnet Summary)

The Event section displays past performance statistics based on recent events. The pie chart on the left summarizes the events distribution in a defined time window. This chart is very similar to the Status chart on Home tab, where nodes with informational or no events are categorized as normal nodes. Nodes without events are represented in gray. The bar chart on the right shows how the events distribute at each time point in the past.
Figure 27. **Events Example**

This section is very similar to the Subnet Performance section on the Home tab. It organizes charts line-by-line to allow a user to look at the details of the charts. It also supports different data traffic types via the drop-down menu on the title bar.

Figure 28. **General Summary Example**

5.3.2 **General Summary (Performance)**

This section is very similar to the Subnet Performance section on the Home tab. It organizes charts line-by-line to allow a user to look at the details of the charts. It also supports different data traffic types via the drop-down menu on the title bar.

The supported traffic types include:
- Internal - internal data traffic within a device set
- Send - data sent from a device set
- Transmit - data received from the outside
- External - the sum of send and transmit, i.e., the total data traffic with the outside
- All - the sum of internal, send, and transmit

The General Summary contains the following sections:
- Trend (Performance) on page 30
- Top N Chart on page 30
- Histogram on page 30
The combination of the Trend (Performance) on page 30, Top N Chart on page 30, and Histogram on page 30 charts provide mixed insights about the history, the present, and the global and local performance over the ports.

On the bottom of the charts panel are the trend thumbnails of available metrics. Click on a thumbnail to bring the metric to the front.

5.3.2.1 Trend (Performance)

The Trend chart shows the historical values measured by all devices and all switches in a fabric. The value represents the aggregated metric on all data traffic types: internal, external, send, and transmit (received). See General Summary (Performance) on page 35 for information about the different traffic types.

5.3.2.2 Top N Chart

The Top N chart shows the current top N worst ports measured by the selected metric. The parameter can be changed with the Setup Wizard, or in this chart.

Right-click a port to open a context menu to drill down to view this port's performance or topology.

Figure 29. Top N Example

5.3.2.3 Histogram

The Histogram chart shows the current value distribution against ports, i.e., how many ports fall in a value range.

5.4 Node Performance

Node performance of a device node is displayed in three sections:

- Performance (Node) on page 37
- Connectivity (Node) on page 40
- Node Properties on page 43
5.4.1 Performance (Node)

The Performance section includes the following:

- **Ports Table** on page 37
- **Received Data/Packets Rate** on page 40
- **Transmitted Data/Packets Rate** on page 40

Figure 30. Performance (Node) Example

5.4.1.1 Ports Table

The Ports Table lists each port's performance data. A preview panel displays the historical traffic data of a selected port, such as received packets/data and transmitted packets/data. Data supporting the table and charts are the port counters belonging to the selected node. Use the button on the top-right corner of the ports table to select which port counters fields to display.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #</td>
<td>Port number.</td>
</tr>
<tr>
<td>LinkQualityIndicator</td>
<td>This is a status indicator, similar to the signal strength bar display on a mobile phone, that enumerates link quality as a range of 0-5, with 5 being very good. Values in the lower part of the range may indicate hardware problems such as port, cable, etc. that surface as signal integrity issues, leading to performance and other problems.</td>
</tr>
<tr>
<td>RcvPktsRate</td>
<td>Receive Packets Rate in Packets per second (Pps).</td>
</tr>
<tr>
<td>RcvDataRate (MBps)</td>
<td>Receive Data Rate in Megabytes per second (MBps).</td>
</tr>
<tr>
<td>RcvData (MB)</td>
<td>Receive Data in Megabytes (MB).</td>
</tr>
<tr>
<td>RcvPkts</td>
<td>The total number of received fabric data packets.</td>
</tr>
<tr>
<td>MulticastRcvPkts</td>
<td>The total number of multicast and collective packets received. This counter includes all valid packets and all packets with a header up to and including the DLID, where the DLID is within the configured range for multicast or collectives. Packets within the configured multicast or collective address space are counted, even if later checks determine the packet is unroutable or exceeds the SwitchInfo.MulticastFDBCap, SwitchInfo.CollectiveFDBCap, configured SwitchInfo.MulticastFDBTop or configured SwitchInfo.CollectiveFDBTop.</td>
</tr>
<tr>
<td>RcvErrors</td>
<td>This counter indicates the total number of packets containing an error that were received by the port, including physical errors and malformed packets. It may indicate possible misconfiguration of a port, either by the SM or (more likely) by user intervention (e.g., using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>RcvConstraintErrors</td>
<td>This counter is incremented when partition key or source LID violations are detected in a received packet, indicating a possible security issue or misconfiguration of device security settings.</td>
</tr>
<tr>
<td>RcvSwitchRelayErrors</td>
<td>This counter indicates the number of packets that were dropped due to internal routing errors. It is indicative of the possible misconfiguration of a switch by the SM.</td>
</tr>
<tr>
<td>RcvRemotePhysicalErrors</td>
<td>This counter indicates the number of downstream effects of signal integrity problems. It is indicative of an SI issue in the upstream path.</td>
</tr>
<tr>
<td>RcvFECN</td>
<td>When a device receives a packet with the FECN (Forward Explicit Congestion Notification) bit set to one, this counter is incremented.</td>
</tr>
<tr>
<td>RcvBECN</td>
<td>When a device receives a packet with the BECN (Backward Explicit Congestion Notification) bit set to one, this counter is incremented.</td>
</tr>
<tr>
<td>RcvBubble</td>
<td>This counter indicates the total number of "flit times" where one or more packets have started to be received, but the receiver received idle flits from the wire.</td>
</tr>
<tr>
<td>XmitPktsRate</td>
<td>Transmitted Packets Rate in Packets per second (Pps).</td>
</tr>
<tr>
<td>XmitDataRate (MBps)</td>
<td>Transmitted Data Rate in Megabytes per second (MBps).</td>
</tr>
<tr>
<td>XmitData (MB)</td>
<td>The total number of transmitted fabric data in Megabytes.</td>
</tr>
<tr>
<td>XmitPkts</td>
<td>The total number of fabric packets transmitted. This counter includes all fabric packet head flits transmitted with and without errors (such as PktBadHead).</td>
</tr>
<tr>
<td>MulticastXmitPkts</td>
<td>The total number of multicast and collective packets transmitted.</td>
</tr>
<tr>
<td>XmitDiscards</td>
<td>The number of packets dropped due to one of the following errors: Switch lifetime Limit exceeded, Switch head-of-queue lifetime limit exceeded.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Output port not in active state</td>
<td>•</td>
</tr>
<tr>
<td>Packet length exceeded maximum fabric packet size for MTU for VL</td>
<td>•</td>
</tr>
<tr>
<td>Flow control disabled and insufficient credits available</td>
<td>•</td>
</tr>
<tr>
<td>SC2VL_t mapping invalid for given SC</td>
<td>•</td>
</tr>
<tr>
<td>XmitConstrainErrors</td>
<td>This counter is incremented when partition key or source LID violations are detected in a packet attempting to be transmitted, indicating a possible security issue or misconfiguration of device security settings.</td>
</tr>
<tr>
<td>XmitWait</td>
<td>This counter indicates the amount of time (in "flit times") any virtual lane had data but was unable to transmit (for reasons such as no credits available, or that the link was busy sending non-data packets such as link layer retraining or flow control).</td>
</tr>
<tr>
<td>XmitTimeCong</td>
<td>This counter indicates the total number of "flit times" that the counter was in a congested state.</td>
</tr>
<tr>
<td>XmitWastedBW</td>
<td>This counter indicates the number of "flit times" where one or more packets have been started but the transmitters are forced to send idles due to bubbles.</td>
</tr>
<tr>
<td>XmitWaitData</td>
<td>This counter indicates the number of "flit times" where one or more packets have been started but interrupted due to bubbles in the ingress stream.</td>
</tr>
<tr>
<td>LocalLinkIntegrityErrors</td>
<td>This counter indicates the number of retries initiated by the link transfer layer. It may be indicative of low signal quality, or may be due to long or low quality cables.</td>
</tr>
<tr>
<td>FMConfigErrors</td>
<td>This counter indicates inconsistencies of low level SMA configuration on both sides of the link. It is indicative of the possible misconfiguration of a port, either by the SM, or (more likely) by user intervention (by using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>ExcessiveBufferOverruns</td>
<td>This counter, associated with credit management, indicates an input buffer overrun. It may indicate possible misconfiguration of a port, either by the SM or (more likely) by user intervention (e.g. using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>SwPortCongestion</td>
<td>This switch-only counter indicates the number of packets that were discarded as unable to transmit due to flow control issues.</td>
</tr>
<tr>
<td>MarkFECN</td>
<td>This counter indicates the total number of packets that were marked FECN by the transmitter due to congestion.</td>
</tr>
<tr>
<td>LinkErrorRecovery</td>
<td>This counter indicates the number of times the link has successfully completed the link error recovery process. If LQI is fluctuating toward low values AND this counter is increasing, it may be indicative of a bad link. Indication of a more severe signal quality problem.</td>
</tr>
<tr>
<td>LinkDowned</td>
<td>This counter indicates the total number of times the port has failed the link error recovery process and downed the link. A large number of occurrences of these events can cause disruptions to fabric traffic.</td>
</tr>
<tr>
<td>UncorrectableErrors</td>
<td>This counter indicates the number of unrecoverable internal device errors. It is indicative of a severe hardware defect or data corruption on the wire.</td>
</tr>
</tbody>
</table>

5.4.1.2 Performance (Charts)

Click the clock icon to choose the time option for the chart displays. **Current** show current values in a time window of \(100 \times \text{refreshRate}\). **1H, 2H, 6H and 24H** show the history values in the last 1, 2, 6, or 24 hours respectively.
5.4.1.2.1 **Received Data/Packets Rate**

The chart displays received traffic data through the selected port in the ports table either in Data Rate in Byte per second (Bps) or in Packets Rate in Packet per second (Pps) by a user selection.

5.4.1.2.2 **Transmitted Data/Packets Rate**

The chart displays transmitted traffic data through the selected port in the ports table either in Data Rate in Byte per second (Bps) or in Packets Rate in Packet per second (Pps) by a user selection.

5.4.2 **Connectivity (Node)**

The Connectivity section summarizes each port’s link status in a table. Each active port is followed by its neighboring port, and inactive ports are presented in gray. Data shown in the table are the port counters for each involved port and the table columns are configurable with the top-right corner button.

Figure 31. Connectivity Example

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Node GUID</th>
<th>Port #</th>
<th>Link State</th>
<th>Physical Link State</th>
<th>Active Link Speed</th>
<th>Link Speed Supported</th>
<th>Link Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port A</td>
<td></td>
<td>1</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port B</td>
<td></td>
<td>2</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port C</td>
<td></td>
<td>3</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port D</td>
<td></td>
<td>4</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port E</td>
<td></td>
<td>5</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port F</td>
<td></td>
<td>6</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port G</td>
<td></td>
<td>7</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port H</td>
<td></td>
<td>8</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port I</td>
<td></td>
<td>9</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port J</td>
<td></td>
<td>10</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port K</td>
<td></td>
<td>11</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
<tr>
<td>Port L</td>
<td></td>
<td>12</td>
<td>Active</td>
<td>Link Up</td>
<td>12.5 Gbps</td>
<td>25 Gbps</td>
<td></td>
</tr>
</tbody>
</table>

Note: If link speed and link width are displayed with red color, it indicates the following situations:

- Slow speed – active speed/width is lower than configured
- Configured slow speed – enabled speed is lower than supported
- Mismatched speed - active speed/width does not match neighboring port

Right-click on a port to open a menu to quickly jump to this port’s performance page or topology page.
Left-click on a Cable Info column to directly display cable information about this port.

The fields in the table below can be selected from the drop-down list at the upper-right corner of the section.

Table 3. Connectivity Data

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Name</td>
<td>Node Name is typically assigned by the system administrator based on the desired naming convention. It is typically the same or derived from the Linux hostname for the server. Once selected by the sysadmin, the value persists across OS reboot.</td>
</tr>
<tr>
<td>Node GUID</td>
<td>GUID of the HFI or Switch.</td>
</tr>
<tr>
<td>Port #</td>
<td>The link port number this SMP came on in.</td>
</tr>
<tr>
<td>Link State</td>
<td>Port State</td>
</tr>
<tr>
<td>Physical Link State</td>
<td>Physical Port State</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinkQualityIndicator</td>
<td>This is a status indicator, similar to the signal strength bar display on a mobile phone, that enumerates link quality as a range of 0-5, with 5 being very good. Values in the lower part of the range may indicate hardware problems such as port, cable, etc. that surface as signal integrity issues, leading to performance and other problems.</td>
</tr>
<tr>
<td>Link Width</td>
<td>The possible values for link width: 1x, 2x, 3x, 4x.</td>
</tr>
<tr>
<td>Link Width Enabled</td>
<td>The set of link widths that the LNI protocol negotiates. The LNI protocol uses only LW.E to negotiate link width during LNI.</td>
</tr>
<tr>
<td>Link Width Supported</td>
<td>The link widths the port can negotiate to during LNI. In some implementations firmware/driver and/or local device settings may restrict this value further.</td>
</tr>
<tr>
<td>Active Link Speed</td>
<td>The link speed active value of this port.</td>
</tr>
<tr>
<td>Link Speed Enabled</td>
<td>The link speed enabled value of this port.</td>
</tr>
<tr>
<td>Link Speed Supported</td>
<td>The link speed supported value of this port.</td>
</tr>
<tr>
<td>RcvData (MB)</td>
<td>Receive Data Rate in Megabytes per second (MBps).</td>
</tr>
<tr>
<td>RcvPkts</td>
<td>The total number of received fabric data packets.</td>
</tr>
<tr>
<td>MulticastRcvPkts</td>
<td>The total number of multicast and collective packets received. This counter includes all valid packets and all packets with a header up to and including the DLID, where the DLID is within the configured range for multicast or collectives. Packets within the configured multicast or collective address space are counted, even if later checks determine the packet is unroutable or exceeds the SwitchInfo.MulticastFDBCap, SwitchInfo.CollectiveFDBCap, configured SwitchInfo.MulticastFDBTop or configured SwitchInfo.CollectiveFDBTop.</td>
</tr>
<tr>
<td>RcvErrors</td>
<td>This counter indicates the total number of packets containing an error that were received by the port, including physical errors and malformed packets. It may indicate possible misconfiguration of a port, either by the SM or (more likely) by user intervention (e.g., using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>RcvConstraintErrors</td>
<td>This counter is incremented when partition key or source LID violations are detected in a received packet, indicating a possible security issue or misconfiguration of device security settings.</td>
</tr>
<tr>
<td>RcvSwitchRelayErrors</td>
<td>This counter indicates the number of packets that were dropped due to internal routing errors. It is indicative of the possible misconfiguration of a switch by the SM.</td>
</tr>
<tr>
<td>RcvRemotePhysicalErrors</td>
<td>This counter indicates the number of downstream effects of signal integrity problems. It is indicative of an SI issue in the upstream path.</td>
</tr>
<tr>
<td>RcvFECN</td>
<td>When a device receives a packet with the FECN (Forward Explicit Congestion Notification) bit set to one, this counter is incremented.</td>
</tr>
<tr>
<td>RcvBECN</td>
<td>When a device receives a packet with the BECN (Backward Explicit Congestion Notification) bit set to one, this counter is incremented.</td>
</tr>
<tr>
<td>RcvBubble</td>
<td>This counters indicates the total number of “flit times” where one or more packets have started to be received, but the receiver received idle flits from the wire.</td>
</tr>
<tr>
<td>XmitData (MB)</td>
<td>The total number of transmitted fabric data in Megabytes.</td>
</tr>
<tr>
<td>XmitPkts</td>
<td>The total number of fabric packets transmitted. This counter includes all fabric packet head flits transmitted with and without errors (such as PktBadHead).</td>
</tr>
<tr>
<td>MulticastXmitPkts</td>
<td>The total number of multicast and collective packets transmitted continued...</td>
</tr>
</tbody>
</table>
Option | **Description**
--- | ---
XmitDiscards | The number of packets dropped due to one of the following errors:
- Switch lifetime Limit exceeded
- Switch head-of-queue lifetime limit exceeded
- Output port not in active state
- Packet length exceeded maximum fabric packet size for MTU for VL
- Flow control disabled and insufficient credits available
- SC2VL_t mapping invalid for given SC

XmitConstrainErrors | This counter is incremented when partition key or source LID violations are detected in a packet attempting to be transmitted, indicating a possible security issue or misconfiguration of device security settings.

XmitWait | This counter indicates the amount of time (in "flit times") any virtual lane had data but was unable to transmit (for reasons such as no credits available, or that the link was busy sending non-data packets such as link layer retraining or flow control).

XmitTimeCong | This counter indicates the total number of "flit times" that the counter was in a congested state.

XmitWastedBW | This counter indicates the number of "flit times" where one or more packets have been started but the transmitters are forced to send idles due to bubbles.

XmitWaitData | This counter indicates the number of "flit times" where one or more packets have been started but interrupted due to bubbles in the ingress stream.

LocalLinkIntegrityErrors | This counter indicates the number of retries initiated by the link transfer layer. It may be indicative of low signal quality, or may be due to long or low quality cables.

FMConfigErrors | This counter indicates inconsistencies of low level SMA configuration on both sides of the link. It is indicative of the possible misconfiguration of a port, either by the SM, or (more likely) by user intervention (by using a tool such as opaportconfig).

ExcessiveBufferOverruns | This counter, associated with credit management, indicates an input buffer overrun. It may indicate possible misconfiguration of a port, either by the SM or (more likely) by user intervention (e.g., using a tool such as opaportconfig).

SwPortCongestion | This switch-only counter indicates the number of packets that were discarded as unable to transmit due to flow control issues.

MarkFECN | This counter indicates the total number of packets that were marked FECN by the transmitter due to congestion.

LinkErrorRecovery | This counter indicates the number of times the link has successfully completed the link error recovery process. If LQI is fluctuating toward low values AND this counter is increasing, it may be indicative of a bad link. Indication of a more severe signal quality problem.

LinkDowned | This counter indicates the total number of times the port has failed the link error recovery process and downed the link. A large number of occurrences of these events can cause disruptions to fabric traffic.

UncorrectableErrors | This counter indicates the number of unrecoverable internal device errors. It is indicative of a severe hardware defect or data corruption on the wire.

5.4.3 Node Properties

The Node Properties section displays the properties for a selected node. The tool bar contains the following buttons:
- **Apply Options** – select which properties to display
• Show Border – turns on/off borders on property items
• Uniform Rows – turns on/off alternative row colors

Figure 34. Node Properties Example

5.4.3.1 General Properties (Node Performance)

The General panel includes device information for a host or switch. This information is not editable by the user.

Table 4. Device Information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node State</td>
<td>The current state of the node.</td>
</tr>
<tr>
<td>LID</td>
<td>The Local Identifier (LID) is an address assigned at an Endpoint by the Fabric Manager, unique within the Fabric, used for forwarding Packets.</td>
</tr>
<tr>
<td>Node Name</td>
<td>Node Name is typically assigned by the system administrator based on the desired naming convention. It is typically the same or derived from the Linux hostname for the server. Once selected by the sysadmin, the value should persist across OS reboot.</td>
</tr>
<tr>
<td>Type</td>
<td>Node Type: UNKNOWN, HFI, SWITCH, ROUTER, OTHER.</td>
</tr>
<tr>
<td>Node GUID</td>
<td>GUID of the HFI or switch.</td>
</tr>
<tr>
<td>System Image GUID</td>
<td>GUID of system, same GUID for all OPA devices in a single system.</td>
</tr>
<tr>
<td>Partition Cap</td>
<td>Number of entries in the Partition Table for end ports.</td>
</tr>
<tr>
<td>Base Version</td>
<td>Supported MAD Base Version.</td>
</tr>
<tr>
<td>Sma Version</td>
<td>Supported Subnet Management Class (SMP) Version.</td>
</tr>
<tr>
<td>Device ID</td>
<td>Device ID information as assigned by device manufacturer.</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>Device vendor, per IEEE.</td>
</tr>
<tr>
<td>Revision</td>
<td>Device revision, assigned by manufacturer.</td>
</tr>
</tbody>
</table>
Table 5. **Port Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port GUID</td>
<td>The globally unique identifier (GUID) for the node.</td>
</tr>
<tr>
<td>Number of Ports</td>
<td>The number of ports on the node.</td>
</tr>
<tr>
<td>Port Number</td>
<td>The link port number this SMP came on in.</td>
</tr>
</tbody>
</table>

5.4.3.2 **Switch Information (Properties)**

Fabric management switch node information.

5.4.3.3 **Routing Information (Performance Properties)**

Routing information for a switch.

5.4.3.4 **Device Group**

Device Group properties include information regarding the device groups that have been set up on a host or switch. This information is available for hosts and switches and is not editable by the user.

5.4.3.5 **Multicast Forwarding**

Multicast forwarding properties include information regarding the number of ports followed by the list of port numbers on a switch to which packets of a specific MLID value are forwarded. The MLID is the destination address for the packets, and packets sent to the MLID address will be sent to the ports listed for that MLID. This information is only available for switches and is not editable by the user.

5.4.3.6 **Linear Forwarding**

Linear forwarding properties include information regarding the port numbers on a switch to which packets of a specific LID value are forwarded. A port number of 255 indicates that the switch does not accept packets containing the specified LID. This information is only available for switches and is not editable by the user.

5.4.3.7 **SC2SL Mapping Table**

This mapping table converts the SC from a received packet back into the Service Level the SC is associated with.

5.5 **Port Performance**

Port performance of a device node is displayed in three sections:

- Performance
- Connectivity
- Properties
Performance Tab

The performance tab (shown above) includes two sections: Performance (Port) on page 46 and Counters. The performance section displays received and transmitted packets and data to facilitate comparison between received and transmitted data. The counters section displays unit and error counters for the selected port.

Connectivity Tab

This section displays the same content as the Connectivity (Node) on page 40.

Properties Tab

This section displays Port Performance properties. The Port Performance properties include Device Information, Link, Link Connection, Port Capability, Virtual Lane, Diagnostics, Partition Key Enforcement, Management, Flit Control, Port Error Actions, Miscellaneous, MTU by VL, HoQLife By VL, VL Stall Count By VL, QSFP Interpreted Cable Information, SC2VLT Mapping Table, SC2VLNT Mapping Table, and Link Down Error Log.

5.5.1 Performance (Port)

The performance subpage includes two sections: Performance and Counters. The performance section displays received and transmitted packets and data side-by-side with the same scale so you can compare received and transmitted data. The counters section displays unit and error counters for the selected port.
5.5.1.1 Charts (Port Performance)
See Performance (Charts) on page 39.

5.5.1.2 Counters
Click the options described below to set the utilization and error counters displays for the selected port shown in the Port Counters on page 47 and Other Counters on page 48 areas.

Hide/Show Border – a toggle button that turns on/off borders on the display

Alternating/Uniform Rows – a toggle button that turns on/off alternate row colors on the display

5.5.1.2.1 Port Counters
This section displays the Receive and Transmit data shown below.

Table 6. Receive Counters
This section displays the Receive and Transmit data shown below.

<table>
<thead>
<tr>
<th>Data Displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RcvData</td>
<td>The total number of fabric packet flits received. This counter includes all fabric packet flits received with and without errors (such as PktBadTail). Only includes flits actually received in certain error situations, in which case only actual flits received are counted. In IB mode: The total number of data octets, divided by 4, received.</td>
</tr>
<tr>
<td>RcvPkts</td>
<td>The total number of fabric packets received. This counter includes all fabric packet head flits received with and without errors (such as PktBadHead).</td>
</tr>
<tr>
<td>MulticastRcvPkts</td>
<td>The total number of multicast and collective packets received. This counter includes all valid packets and all packets with a header up to and including the DLID, where the DLID is within the configured range for multicast or collectives. Packets within the configured multicast or collective address space are counted, even if later checks determine the packet is unroutable or exceeds the SwitchInfo.MulticastFDBCap, SwitchInfo.CollectiveFDBCap, configured SwitchInfo.MulticastFDBTop or configured SwitchInfo.CollectiveFDBTop.</td>
</tr>
<tr>
<td>RcvErrors</td>
<td>This counter indicates the total number of packets containing an error that were received by the port, including physical errors and malformed packets. It may indicate possible misconfiguration of a port, either by the SM or (more likely) by user intervention (e.g., using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>RcvConstraintErrors</td>
<td>This counter is incremented when partition key or source LID violations are detected in a received packet, indicating a possible security issue or misconfiguration of device security settings.</td>
</tr>
<tr>
<td>RcvSwitchRelayErrors</td>
<td>This counter indicates the number of packets that were dropped due to internal routing errors. It is indicative of the possible misconfiguration of a switch by the SM.</td>
</tr>
<tr>
<td>RcvRemotePhysicalErrors</td>
<td>This counter indicates the number of downstream effects of signal integrity problems. It is indicative of an SI issue in the upstream path.</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Data Displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RcvFECN</td>
<td>When a device receives a packet with the FECN (Forward Explicit Congestion Notification) bit set to one, this counter is incremented.</td>
</tr>
<tr>
<td>RcvBECN</td>
<td>When a device receives a packet with the BECN (Backward Explicit Congestion Notification) bit set to one, this counter is incremented.</td>
</tr>
<tr>
<td>RcvBubble</td>
<td>This counter indicates the total number of "flit times" where one or more packets have been started to be received, but receiver received idle flits from the wire.</td>
</tr>
</tbody>
</table>

Table 7. Transmit Counters

<table>
<thead>
<tr>
<th>Data Displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XmitData</td>
<td>The total number of fabric packet flits transmitted. Does not include idle nor other LF command flits. This counter includes all fabric packet flits transmitted without and with errors (such as PktBadTail). Only includes flits actually transmitted (e.g., PktLen in header may exceed actual flits transmitted in certain error situations, in which case only actual flits transmitted are counted).</td>
</tr>
<tr>
<td>XmitPkts</td>
<td>The total number of fabric packets transmitted. This counter includes all fabric packet head flits transmitted with and without errors (such as PktBadHead).</td>
</tr>
<tr>
<td>MulticastXmitPkts</td>
<td>The total number of multicast and collective packets transmitted</td>
</tr>
</tbody>
</table>
| Transmit Discards | The number of packets dropped due to one of the following errors:
 - Switch lifetime limit exceeded
 - Switch head-of-queue lifetime limit exceeded
 - Output port not in active state
 - Packet length exceeded maximum fabric packet size for MTU for VL
 - Flow control disabled and insufficient credits available
 - SC2VL_t mapping invalid for given SC |
| XmitConstraintErrors | This counter is incremented when partition key or source LID violations are detected in a packet attempting to be transmitted, indicating a possible security issue or misconfiguration of device security settings. |
| XmitWait | This counter indicates the amount of time (in "flit times") any virtual lane had data but was unable to transmit (for reasons such as no credits available, or that the link was busy sending non-data packets such as link layer retraining or flow control). |
| XmitTimeCong | This counter indicates the total number of "flit times" that the counter was in a congested state. |
| XmitWastedBW | This counter indicates the number of "flit times" where one or more packets have been started but the transmitters is forced to send idles due to bubbles. |
| XmitWaitData | This counter indicates the number of "flit times" where one or more packets have been started but interrupted due to bubbles in the ingress stream. |

5.5.1.2.2 Other Counters

This section displays the data shown in the following table.
Table 8. Other Counters

<table>
<thead>
<tr>
<th>Data Displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LocalLinkIntegrityErrors</td>
<td>This counter indicates the number of retries initiated by the link transfer layer. It may be indicative of low signal quality, or may be due to long or low quality cables.</td>
</tr>
<tr>
<td>FMConfigErrors</td>
<td>This counter indicates inconsistencies of low level SMA configuration on both sides of the link. It is indicative of the possible misconfiguration of a port, either by the SM, or (more likely) by user intervention (by using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>ExcessiveBufferOverruns</td>
<td>This counter, associated with credit management, indicates an input buffer overrun. It may indicate possible misconfiguration of a port, either by the SM or (more likely) by user intervention (e.g. using a tool such as opaportconfig).</td>
</tr>
<tr>
<td>SwPortCongestion</td>
<td>This switch-only counter indicates the number of packets that were discarded as unable to transmit due to flow control issues.</td>
</tr>
<tr>
<td>MarkFECN</td>
<td>This counter indicates the total number of packets that were marked FECN by the transmitter due to congestion.</td>
</tr>
<tr>
<td>LinkErrorRecovery</td>
<td>This counter indicates the number of times the link has successfully completed the link error recovery process. If LQI is fluctuating toward low values AND this counter is increasing, it may be indicative of a bad link. Indication of a more severe signal quality problem.</td>
</tr>
<tr>
<td>LinkDowned</td>
<td>This counter indicates the total number of times the port has failed the link error recovery process and downed the link. A large number of occurrences of these events can cause disruptions to fabric traffic.</td>
</tr>
<tr>
<td>UncorrectableErrors</td>
<td>This counter indicates the number of unrecoverable internal device errors. It is indicative of a severe hardware defect or data corruption on the wire.</td>
</tr>
<tr>
<td>LinkQualityIndicator</td>
<td>This is a status indicator, similar to the signal strength bar display on a mobile phone, that enumerates link quality as a range of 0-5, with 5 being very good. Values in the lower part of the range may indicate hardware problems such as port, cable, etc. that surface as signal integrity issues, leading to performance and other problems.</td>
</tr>
</tbody>
</table>

5.5.2 Connectivity (Port Performance)

See Connectivity (Node) on page 40.

5.5.3 Port Properties

Port properties are not editable by the user.

To view the port properties:
1. From the main screen, click the Performance tab.
2. From the left resource panel, click the Device Types drop-down arrow to reveal the hierarchical view.
3. For any node, click + (plus sign) to expand the tree and select a port for a host or a switch.
4. Click the Properties tab.
5.5.3.1 **Device Information (Performance Properties)**
This panel displays general port information.

5.5.3.2 **Link (Performance Properties)**
This panel displays link information for this port.

5.5.3.3 **Link Connection (Performance Properties)**
This panel displays link connection information that includes the link connected to, neighbor mode, and port mode.

5.5.3.4 **Port Capability**
This panel displays the port capabilities that are supported for the current port.

5.5.3.5 **Virtual Lane**
This panel displays the information about the virtual lanes of the port.

5.5.3.6 **Diagnostics (Performance)**
This panel displays General diagnostic information for the current port.

5.5.3.7 **Partition Key Enforcement**
This panel displays the information about packet partition key enforcement for the current port. Choices are true, false or N/A (not applicable).

5.5.3.8 **Management (Performance)**
This panel displays subnet manager and management key information for the current port.

5.5.3.9 **Flit Control (Performance)**
This panel displays flit control information that includes the interleave and preemption.

5.5.3.10 **Port Error Actions**
This panel displays a port error action mask.

5.5.3.11 **Miscellaneous (Performance Properties)**
This panel displays miscellaneous information such as IP Address, Buffer Units and Subnet.

5.5.3.12 **MTU By VL**
This panel displays RW/HS-E Neighbor MTU values per VL.

5.5.3.13 **HoQLife By VL**
This panel displays the time a packet can live at the head of a VL queue.
5.5.3.14 **VL Stall Count By VL**
This panel displays the number of sequential packets dropped that causes the port to enter the VLStalled state.

5.5.3.15 **QSFP Interpreted Cable Information**
This panel displays QSFP port type cable information.

5.5.3.16 **SC2VLT Mapping Table**
This panel displays the Service Channel (SC) to Virtual Lane Transmit (VLT) mapping table.

5.5.3.17 **SC2VLNT Mapping Table**
This panel displays the Service Channel (SC) to Virtual Lane Non-transmit (VLNT) mapping table.

5.5.3.18 **Link Down Error Log**
This panel displays the Link Down Reason and Neighbor Link Down Reason in time that indicates the reason the port transitioned from Link states Init, Armed, Active to Down.
6.0 **Topology**

The Topology tab displays the topology for selected resources. On the left of the page is a resource tree panel that organizes subnet devices by different categories, which allows you to select resources. The main panel shows the topology of a selected resource and its content changes based on the type of selected resource.

The main panel displays the topology and related information. The left section showing the overall topology outline and selected resources corresponds to the topology of selected resources shown at the right. The bottom section displays detailed information for the currently selected resources and its contents change based on the type of resource selected.

Figure 36. Topology Example

See the topics below for details on each section of the Topology tab:

- **Resource Tree** on page 33
- **Outline** on page 53
- **Selected Resources** on page 53
- **Local Topology** on page 53

6.1 **Resource Tree (Topology)**

The Resource Tree panel is the same as on the Performance tab except that it allows multiple selections on resources with the same type, for example, multiple nodes, multiple ports or multiple device groups, virtual fabrics. However, when a user selects among different resource types, only one resource is allowed.
6.2 Outline

The Outline section shows the topology outline for a subnet, highlighting the selected resources. Use the Enlarge button at the bottom to open a pop up a window of the topology outline for a closer look at the topology.

6.3 Selected Resources

This section displays the selected resources when you select multiple resources that cannot be shown on the same screen as the device tree panel.

6.4 Local Topology

This section displays a small and clear topology of selected resources for a closer look. Although it shows only local topology, it shares the same topology architecture as the outline graph to indicate how the local topology relates to the subnet topology overall.

Buttons at the top can be used to zoom in/out of the graph or fit the graph into the window. Each element shown on the local topology is clickable for a single selection. Hover the mouse over a device node to show the name of the node and to highlight its connections on the topology graph to see how it is connected.

Figure 37. Local Topology Example

The content of this panel depends upon the type of resources selected, as described in the topics linked below.

- Device Node on page 55
- Links on page 56
- Routes on page 57
6.4.1 Device Set (Topology)

Selection on a whole subnet is a special case of the device set selection. This panel shows the whole topology of the subnet.

Figure 38. Device Set Example

Selections on one or more device types, device groups, or virtual fabrics are also treated as a device set. This panel shows the topology among all involved devices, and each device is highlighted with a green border.
Figure 39. Device Groups Example

When a device node is selected, this panel shows the connections of the node. The selected node is highlighted with a green border to distinguish it from its neighbors.

6.4.2 Device Node

When a device node is selected, this panel shows the connections of the node. The selected node is highlighted with a green border to distinguish it from its neighbors.
Figure 40. Device Node Example

Detailed Information Panel

When a device node is selected this panel displays this node's properties and connectivity table, which is the same data represented with different views. For more detailed information see Connectivity (Node) on page 40 and Node Performance on page 36.

6.4.3 Links

When you select one or more ports, this panel shows and highlights each port's connection.
Figure 41. Links Example

Detailed Information Panel
When multiple ports are selected, this panel shows each port’s connectivity table in a tabbed pane. Use the More button on the top-right corner to display additional links. When the number of links is less than 5, the button is disabled.

6.4.4 Routes
When multiple device nodes are selected, this panel shows the local topology of the selected nodes. It also highlights the routes among the nodes to show how they connect to each other.
Figure 42. Routes Example

Detailed Information Panel
When multiple device nodes are selected, this panel shows the pairwise route among the selected nodes in a tabbed pane. Each tab shows the route as a connectivity table (see Connectivity (Node) on page 40). It shows the whole path from one port to another and each port's performance data.
7.0 Admin Tab

The Admin tab provides tools to manage a subnet. The control panel on the left lists all available functions. The right side displays the corresponding content for a selected function.

The first time you select one of the icons on the control panel, you must enter a valid username and password to log in, which gives you access to the administrative features. After the initial login, admin features, there is no need to enter the credentials again.

The following functions are described in the linked topics:

- Applications Management on page 59
- Device Group Management on page 61
- Virtual Fabric Management on page 61
- Interactive Console on page 62
- Log View on page 65

Figure 43. Admin Tab

7.1 Applications Management

The left panel lists the application names with two buttons on the bottom that allow you to add or remove one application.
Figure 44. Applications Management Example

The right panel displays and allows you to edit the configuration of one application. An application's configuration is made up of a set of attributes that are represented as attribute bars.

The **Click to add a new attribute** button allows you to select an attribute type from a drop-down list and specify values for the attribute. Use the **Save** and **Reset** buttons to save the new configuration or reset the configuration to original values.

Fabric Manager GUI validates the configuration before you save or remove an application, checking for duplicate names, invalid value ranges, for example a min value that is larger than the max value, and application references. An application with reference to others cannot be removed or renamed until you resolve any reference issues.

The **Deploy** button on the bottom-right corner deploys the applications to the master Subnet Manager in the following way:

1. Fabric Manager GUI makes a copy of current configuration file `opafm.xml` with a name such as `opafm.xml.<timestamp>.fv`.
2. Fabric Manager GUI maintains the number of backup files to 16 by removing older files.
3. Fabric Manager GUI replaces `opafm.xml` with the new configurations.

To see the new configurations take effect, restart and relaunch Fabric Manager GUI.

Some applications are predefined and they cannot be edited or removed. These applications are indicated with ⚭ on the view only mode on the right panel.
7.2 Device Group Management

Device Groups management is similar to Applications management, but it has a different way to add or change an attribute. On the middle center is a resource selection panel that displays current resource selections and allows you to change them.

The Devices tab shows selected devices that can be described either by name or GUID. The Select tab shows the selection on special types of devices. The Include tab allows a Device Group to include another one.

Figure 45. Device Group Management Example

7.3 Virtual Fabric Management

This management tool is the same as Applications Management on page 59 except that groups are replaced with virtual fabrics.
On the right panel, you can specify basic administrator policies, for example, whether to enable one virtual fabric and whether it should provide security control and/or QOS control.

The administrator policies attributes can be used only once and the used attribute is identified with an icon to indicate that it is not available.

7.4 Interactive Console

When you select the Console icon on the control panel (or the "+" tab) Fabric Manager GUI displays a new console screen where you must enter a username, password, host, and port (SSH uses port 22 by default). After logging in, the Interactive Console window changes as shown in the following figure.
The Interactive Console provides:

- An Integrated Management Environment to allow a power user to manage a subnet via consoles within the Fabric Manager GUI.

- A Dynamic Online Help for CLI tools. It may be difficult for users to remember the arguments for a CLI tool. This special console monitors your actions and is able to automatically identify and show the corresponding help for the command as you are typing.

 For example, when you type `opare`, the console analyses the input, selects the `opareport` command, and then displays the help content for this command with arguments and their meanings. If you continue to type `opareport -o`, the panel scrolls to the available output types for argument `-o`.

The Interactive Console also manages consoles by tabs and each command can be issued either in the same console or a new console. Issuing commands in a new console enables you to compare results from similar commands by switching tabs.

To close a console, click the [icon] on the tab. To log into a console, click the [+] icon (+).
Figure 48. Interactive Console Examples
7.5 Log View

The SM Log Viewer shown in the following figure shows the error log from the remote SM host. At the top of the page controls are provided to change the log text shown. A status line displays the file name, number of lines, number of matched search results, and range of lines in the file being viewed. The File Name field shows the path of the log file on the remote host. The tooltip to display the entire path is available for file paths that exceed the name filed width. The main text portion of the window displays the lines of text taken from the log file (see Lines/Page below).

Figure 49. Log Viewer

Filters

Check boxes ☑️ are used to filter lines of text containing SM, PM, FE, WARN, and ERROR. When a checkbox is selected, all lines containing the selected filter are displayed and highlighted in a different color; lines that do not contain the filtered text are not displayed.

Refresh

The Lines/Page control ☐ allows you to select the number of lines to display on each page as the file is traversed. The Total Lines field shows the total number of lines in the log file and is updated as lines are added.

Note:

After you enter or select a number of lines, click the ☐ to refresh the viewer with the new lines.
Search

The Search feature is accessible through the actions described below. The Matches field below it indicates the number of search results found.

- **Search Field**
 - Click the search field to highlight text.
 - Double-clicking on the search field removes highlights from existing text and places a cursor at the end of the text.
 - Enter text to search for and then click to perform search.
 - Click to remove highlights from search results and to clear the search field.

- **Marked Search**
 - In the main text window, double-click on a word to highlight all instances of the word.
 - Selected word also appears in the search field.
 - Click to remove highlights from search results and to clear the search field.

- **Selected Search**
 - Copy/Paste
 1. While holding down the left mouse button, drag the mouse pointer across a word, phrase, line, or multiple lines to select the desired search entry.
 2. Right-click on the text area to display the context menu and select Copy.
 3. Right-click in the search field to display the context menu and select Paste.
 4. Click or press ENTER to perform search.
 5. Click to remove highlights from search results and to clear the search field.

 Note: You can also use Ctrl+C to copy to the clipboard, and Ctrl+V to paste from the clipboard.

- **Highlighting**
 1. While holding down the left mouse button, drag the mouse pointer across a word, phrase, line, or multiple lines to select the desired search entry.
 2. Right-click on the text area to display the context menu and select Highlight to highlight all instances of the selected text.
 3. Click to remove highlights from search results and to clear the search field.

Paging

The Paging control allows you to move backward and forward through the log file in line increments specified in the Lines/Page field. Highlighting of text imposed by the Filter, Highlight, or Search functions remains in effect as the page view changes. The Line Range field, located below the controls, shows the range of lines currently being viewed. This range remains unchanged if lines are filtered and show a subset of lines designated by Lines/Page or range.
8.0 Troubleshooting Guide

8.1 Overview

This troubleshooting guide is intended to provide assistance to system administrators and users to detect and correct system anomalies brought on by hardware failures or incorrect hardware/software configuration.

Assumptions

It is assumed that the user has some knowledge of High-Performance Computing (HPC) systems and is familiar with the following:

- The Intel® Omni-Path Fabric Suite FastFabric Tool Suite
- Navigation of the Linux command line
- Protocols: Secure Shell, Secure Copy, and Secure Ftp
- General administration of a network cluster

About This Guide

This guide provides steps that can be taken to prevent or correct errors encountered when using the Fabric Manager GUI. It is not meant as an exhaustive troubleshooting guide for fabric-related anomalies but provides direction in correcting improper functioning of the Fabric Manager GUI.

Who Should Use This Guide

This guide is intended for system administrators responsible for the configuration and maintenance of HPC systems.

Typographical Conventions

The typographical conventions used throughout the Troubleshooting Guide are shown in the following table.

<table>
<thead>
<tr>
<th>Table 9. Typographical Conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convention</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Shaded block</td>
</tr>
<tr>
<td>Bold</td>
</tr>
<tr>
<td>Square Brackets []</td>
</tr>
<tr>
<td>Angle Brackets < ></td>
</tr>
</tbody>
</table>
8.2 General Error Prevention

The number of errors encountered when using the Fabric Manager GUI can be minimized by adhering to a set of commonly ascribed best practices. While it is possible to encounter errors even when measured precautions have been observed, Intel highly recommends that these practices be used as a first line of defense against commonly known errors.

8.3 Best Practices

By following these best practices, many common errors can be averted.

- Keep an Ssh Terminal Open
 When running the Fabric Manager GUI, it is helpful to always have an Ssh Terminal available to verify host connectivity, analyze OPAFM configuration, use Intel® Omni-Path Fabric Suite FastFabric Tools to verify expected behavior, etc. Even if it is not possible to connect to the subnet, an Ssh session can still be opened using a CONSOLE feature under the ADMIN tab.

- Use the Online Help System
 The Fabric Manager GUI has an Online Help System that should be used as a guide to the proper use and understanding of features being explored. Click the ONLINE HELP from the HELP menu for information about setting up access to a subnet.

- Use the Fast Fabric Assistant
 The CONSOLE feature mentioned above has the additional ability of providing real-time help through the FastFabric Assistant, which provides command line syntax for commands in the Intel® Omni-Path Fabric Suite FastFabric Tool Suite.

- Take advantage of the SM Log
 The Fabric Manager GUI provides a window into the SM Log file where errors and other activities are logged by the Intel® Omni-Path Fabric Suite Fabric Manager. This can be an invaluable resource in detecting the root cause of errors encountered when running the Fabric Manager GUI. Under the ADMIN tab, select the LOGS tab and log into the host. Lines of text from the log file are provided beginning with the most recent 100 lines to a maximum of 1000 lines of text. Use the filters to narrow the text being displayed by device type, warnings, or errors.

8.4 Application Log

There are several application log files which, if configured, can provide much guidance in determine the root cause of system failures. These logs are located in different directories depending on whether it is installed under Windows or Linux.

The log files names are:
- fmgui.log
- hibernate.log
- opadbmgr.log
- opafedriver.log
The paths for each OS are:

- **Windows:** C:\Users\<user_name>\AppData\Roaming\Intel\FabricManagerGUI\logs
- **Linux:** $HOME/.Intel/FabricManagerGUI/logs

Log file names and location are configurable in the logging configuration file at C:\Users\<user_name>\AppData\Roaming\Intel\FabricManagerGUI\logconfig.xml

8.5 Troubleshooting Q & A

In general, text fields throughout the Fabric Manager GUI provide real-time validation. If the type of information provided is not appropriate or left blank, the field is highlighted in light red with a red border as shown in the following example. Mouse-over the field to display a tool tip about how to provide the correct information.

Figure 50. Troubleshooting Example

Q1. Why is the number of active nodes/ports wrong on the Home screen?

A1. It is possible that the Fabric Manager GUI is configured to connect to the wrong host. Double-check the hostname/IP address to confirm the connection to the expected host.

Q2. On the HOME page, why does the **MASTER SM** field show the name of a different host than the one I am connected to?

A2. On the HOME page, notice that the name of the host you are connected to is shown in a number of places:
In the title bar at the top of the screen.

In the Subnet: field at the top of the SUBNET SUMMARY section.

Either in the Master SM or Standby SMs fields.

If you have connected to a Standby SM, the name in the Master SM field will be different from the name in the title bar and Subnet: field.

<table>
<thead>
<tr>
<th>Connected to a Master SM</th>
<th>Connected to a Standby SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Master SM Screen]</td>
<td>![Standby SM Screen]</td>
</tr>
</tbody>
</table>

Q3. The Fabric Manager GUI fails to connect to a subnet after a long time and then displays an error message. How can I fix this?

A3. There are many reasons why a remote subnet fails to connect. The Fabric Manager GUI repeatedly attempts to connect to a subnet through the failover process. By traversing the list of subnet hosts, provided in the Subnet Wizard, the Fabric Manager GUI attempts to obtain a response from the Subnet Manager (SM) and subsequently the Performance Manager (PM). During the connection process the following dialog is displayed:

Connection to Subnet Manager lost. Recovery in process...

If no response is received from the SM, or if the SM responds but the PM does not, then the failover process has failed and the following dialog is displayed:
If this happens, then it is necessary to determine the root cause of the problem. Here are a few things to look at:

1. Check whether the host is reachable.
 Open an Ssh session using the CONSOLE feature under the ADMIN tab and then type the following command:

   ```
   ping <ip/hostname>
   ```

 If there is no response, determine the root cause and try again.

2. Check whether the FE is running.
 For more information about configuring the Fabric Manager to initialize the FE, refer to the Intel® Omni-Path Fabric Suite Fabric Manager User Guide in the section titled "Controlling FM Startup."

Q4. When I try to connect to a subnet I get an error indicating that the connection was forcibly closed by the remote host. What can I do?

A4. This error is displayed when an attempt is made to connect to a secure fabric without providing the necessary security certificates to establish the connection.

1. Follow the procedure in Section F.2.3 Import Certificates to Fabric Manager GUI Key Store and Trust Store in the Intel® Omni-Path Fabric Suite Fabric Manager User Guide.
2. Open the **SETUP WIZARD** under the **CONFIGURE** menu. Select the subnet to be configured and click on the **SECURE** checkbox as shown in the following figure. Use the file browser icons to locate the Key and Trust Store files, click **APPLY**, and then **RUN**.

![Configuration Setup Wizard](image)

3. Enter the password for the certificates on the new dialog to establish a connection to the remote host.

![Certificate Configuration](image)

Q5. While trying to open an Ssh session to a remote host using the **CONSOLE** feature under the **ADMIN** tab, the following error was reported. Why?

```
SSH_MSG_DISCONNECT: 2 Too many authentication failures for invaliduser
```

A5. This error is displayed when:
• Invalid credentials are provided on the console login panel; check the credentials and try again.
• Invalid or valid credentials are provided, but the host is unreachable.

Q6. While trying to open an Ssh session to a remote host using the **CONSOLE** feature under the **ADMIN** tab, the following error was reported:

```
Unable to connect to remote host phgppriv22: java.net.ConnectException: Connection refused: connect
```

A6. This error is displayed when the Ssh port is incorrect. By default the Ssh port number is 22 unless specifically reconfigured by the system administrator.

Q7. In the Preferences Wizard I put an email recipient in the list and clicked on the Test button, but no email was sent.

A7. To send emails, the SMTP server must be running on the remote host. Then the Fabric Manager GUI must be configured to point to the SMTP server. Under the configure menu, select **Email Setup** and enter the SMTP Host, Port #, and Sender's email address.

![Email Settings](image)

Q8. On the **LOGGING** window under the **CONFIGURATION** menu, how can I get more information about filling out the **OUTPUT FORMAT** field?

A8. Click on the Help icon to the right of the **OUTPUT FORMAT** field to display the formatting help window, which provides detailed information about the formatting symbols.