
Intel® Performance Scaled
Messaging 2 (PSM2)
Programmer's Guide

Rev. 8.0

October 2017

Order No.: H76473-8.0

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit http://
www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or
retailer or learn more at intel.com.

No computer system can be absolutely secure.

Intel, the Intel logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015–2017, Intel Corporation. All rights reserved.

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
2 Order No.: H76473-8.0

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://intel.com

Revision History
For the latest documentation, go to http://www.intel.com/omnipath/FabricSoftwarePublications.

Date Revision Description

October 2017 8.0 No technical changes to document; clerical change only.
The Intel® Omni-Path Fabric Suite FastFabric Command Line Interface
Reference Guide has been merged into the Intel® Omni-Path Fabric
Suite FastFabric User Guide. See the Intel® Omni-Path Documentation
Library for details.

August 2017 7.0 Updates to this document include:
• Added Differences between PSM2 and PSM.
• Added PSM2 Multi-Endpoint Functionality.
• Additions to support multi-endpoint functionality: PSM2_MULTI_EP,

psm2_ep_query, psm2_ep_epid_lookup, psm2_ep_epid_lookup2,
and psm2_epaddr_to_epid.

April 2017 6.0 Updates to this document include:
• Added: PSM2_CCA_PRESCAN, PSM2_CUDA, PSM2_DISABLE_CCA,

PSM2_GPUDIRECT, PSM2_GPUDIRECT_RECV_THRESH,
PSM2_GPUDIRECT_SEND_THRESH, and
PSM2_MAX_PENDING_SDMA_REQS.

• Updated: PSM2_MAX_CONTEXTS_PER_JOB, PSM2_MULTIRAIL, and
PSM2_MULTIRAIL_MAP.

• Added Intel® Omni-Path Documentation Library.

December 2016 5.0 Updates to this document include:
• Updated psm2_ep_open_opts_get_defaults to add Return Value

PSM2_PARAM_ERR.
• Updated psm2_ep_open as follows: added Return Value

PSM2_PARAM_ERR, changed default timeout value to 30, and added
bullets to Options section.

• Updated psm2_ep_open_opts to add fields in rows 7-12.
• Added Cluster Configurator for Intel® Omni-Path Fabric.

August 2016 4.0 Updates to this document include:
• Added: PSM2_MULTIRAIL, PSM2_MULTIRAIL_MAP,

PSM2_PATH_SELECTION.
• Updated: PSM2_IB_SERVICE_ID, PSM2_MAX_CONTEXTS_PER_JOB,

PSM2_MAX_PENDING_SDMA_REQS, PSM2_MQ_RECVREQS_MAX,
PSM2_MTU.

May 2016 3.0 Updates to this document include:
• Added Environment Variable: PSM2_MAX_CONTEXTS_PER_JOB.
• Deprecated Environment Variable: PSM2_SHAREDCONTEXTS_MAX.
• Updated Environment Variable: HFI_NO_CPUAFFINITY.

February 2016 2.0 Updates to this document include:
• Added Environment Variables: PSM2_MTU, PSM2_PATH_REC, and

PSM2_IB_SERVICE_ID.

November 2015 1.0 Starting with this release, the Intel® PSM2 API library is a stand-alone
package with its own documentation.

Revision History—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 3

http://www.intel.com/omnipath/FabricSoftwarePublications

Contents

Revision History..3

Preface... 7
Intended Audience... 7
Intel® Omni-Path Documentation Library.. 7
Cluster Configurator for Intel® Omni-Path Fabric.. 9
Documentation Conventions.. 9
License Agreements..10
Technical Support...10

1.0 Intel® PSM2 API... 11
1.1 Introduction...11
1.2 Compatibility..11
1.3 Endpoint Communication Model.. 12
1.4 PSM2 Components.. 12
1.5 PSM2 Multi-Endpoint Functionality...13
1.6 PSM2 Communication Progress Guarantees.. 14
1.7 PSM2 Completion Semantics.. 14
1.8 PSM2 Error Handling... 14
1.9 Environment Variables...15

1.9.1 PSM2_CCA_PRESCAN.. 15
1.9.2 PSM2_CUDA...15
1.9.3 PSM2_DEVICES.. 16
1.9.4 PSM2_DISABLE_CCA... 16
1.9.5 PSM2_GPUDIRECT.. 16
1.9.6 PSM2_GPUDIRECT_RECV_THRESH.. 16
1.9.7 PSM2_GPUDIRECT_SEND_THRESH..16
1.9.8 PSM2_IB_SERVICE_ID...17
1.9.9 PSM2_MAX_CONTEXTS_PER_JOB..17
1.9.10 PSM2_MAX_PENDING_SDMA_REQS...17
1.9.11 PSM2_MEMORY...17
1.9.12 PSM2_MQ_RECVREQS_MAX..17
1.9.13 PSM2_MQ_RNDV_HFI_THRESH... 18
1.9.14 PSM2_MQ_RNDV_SHM_THRESH..18
1.9.15 PSM2_MQ_SENDREQS_MAX... 18
1.9.16 PSM2_MTU...18
1.9.17 PSM2_MULTI_EP... 18
1.9.18 PSM2_MULTIRAIL..19
1.9.19 PSM2_MULTIRAIL_MAP.. 19
1.9.20 PSM2_PATH_REC.. 19
1.9.21 PSM2_PATH_SELECTION..20
1.9.22 PSM2_RANKS_PER_CONTEXT... 20
1.9.23 PSM2_RCVTHREAD..20
1.9.24 PSM2_SHAREDCONTEXTS.. 20
1.9.25 PSM2_SHAREDCONTEXTS_MAX.. 21
1.9.26 PSM2_TID..21
1.9.27 PSM2_TRACEMASK..21

1.10 HFI Environment Variables... 21

Intel® Omni-Path Fabric—Contents

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
4 Order No.: H76473-8.0

1.10.1 HFI_DISABLE_MMAP_MALLOC.. 21
1.10.2 HFI_NO_CPUAFFINITY... 21
1.10.3 HFI_UNIT...22

2.0 Intel® PSM2 Component Documentation...23
2.1 MQ Tag Matching.. 23
2.2 MQ Message Reception.. 24
2.3 MQ Completion Semantics..25
2.4 MQ Progress Requirements.. 26

3.0 Intel® PSM2 Component Functional Documentation..27
3.1 PSM2 Initialization and Maintenance..27

3.1.1 Data Structures.. 27
3.1.2 Defines..27
3.1.3 Typedefs..28
3.1.4 Enumerations...28
3.1.5 Functions...30

3.2 PSM2 Device Endpoint Management.. 33
3.2.1 Data Structures.. 33
3.2.2 Defines..34
3.2.3 Typedefs..34
3.2.4 Functions...35

3.3 PSM2 Matched Queues.. 48
3.3.1 Modules...48
3.3.2 Data Structures.. 49
3.3.3 Defines..51
3.3.4 Typedefs..51
3.3.5 Functions...52
3.3.6 PSM2 Matched Queue Options.. 73

4.0 Intel® PSM2 Sample Program... 76
4.1 Prerequisites.. 76
4.2 Setting Up the Program... 76
4.3 Sample Code..76

Contents—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 5

Tables
1 Intel® PSM2 Thread-Safe APIs...13
2 Initialization and Maintenance Defines..27
3 Initialization and Maintenance Typedefs..28
4 Error Type Enumerators... 29
5 Initialization and Maintenance Functions... 30
6 Endpoint Defines... 34
7 Endpoint Typedefs... 34
8 Endpoint Functions.. 35
9 Matched Queues Data Structures...49
10 Matched Queues Defines.. 51
11 Matched Queue Functions... 52
12 Matched Queue Options Defines.. 73
13 Matched Queue Options Functions... 74

Intel® Omni-Path Fabric—Tables

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
6 Order No.: H76473-8.0

Preface

This manual is part of the documentation set for the Intel® Omni-Path Fabric (Intel®
OP Fabric), which is an end-to-end solution consisting of Intel® Omni-Path Host Fabric
Interfaces (HFIs), Intel® Omni-Path switches, and fabric management and
development tools.

The Intel® OP Fabric delivers a platform for the next generation of High-Performance
Computing (HPC) systems that is designed to cost-effectively meet the scale, density,
and reliability requirements of large-scale HPC clusters.

Both the Intel® OP Fabric and standard InfiniBand* are able to send Internet Protocol
(IP) traffic over the fabric, or IPoFabric. In this document, however, it is referred to as
IP over IB or IPoIB. From a software point of view, IPoFabric and IPoIB behave the
same way and, in fact, use the same ib_ipoib driver to send IP traffic over the ib0
and/or ib1 ports.

Intended Audience

The intended audience for the Intel® Omni-Path (Intel® OP) document set is network
administrators and other qualified personnel.

Intel® Omni-Path Documentation Library

Intel® Omni-Path publications are available at the following URLs:

• Intel® Omni-Path Switches Installation, User, and Reference Guides

http://www.intel.com/omnipath/SwitchPublications

• Intel® Omni-Path Software Installation, User, and Reference Guides (includes HFI
documents)

http://www.intel.com/omnipath/FabricSoftwarePublications

• Drivers and Software (including Release Notes)

http://www.intel.com/omnipath/Downloads

Use the tasks listed in this table to find the corresponding Intel® Omni-Path
document.

Task Document Title Description

Key:
Shading indicates the URL to use for accessing the particular document.

• Intel® Omni-Path Switches Installation, User, and Reference Guides: http://www.intel.com/omnipath/SwitchPublications

• Intel® Omni-Path Software Installation, User, and Reference Guides (includes HFI documents):
http://www.intel.com/omnipath/FabricSoftwarePublications (no shading)

• Drivers and Software (including Release Notes): http://www.intel.com/omnipath/Downloads

continued...

Preface—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 7

http://www.intel.com/omnipath/SwitchPublications
http://www.intel.com/omnipath/FabricSoftwarePublications
http://www.intel.com/omnipath/Downloads
http://www.intel.com/omnipath/SwitchPublications
http://www.intel.com/omnipath/FabricSoftwarePublications
http://www.intel.com/omnipath/Downloads

Task Document Title Description

Using the Intel® OPA
documentation set

Intel® Omni-Path Fabric Quick Start
Guide

A roadmap to Intel's comprehensive library of publications
describing all aspects of the product family. It outlines the
most basic steps for getting your Intel® Omni-Path
Architecture (Intel® OPA) cluster installed and operational.

Setting up an Intel®
OPA cluster

Intel® Omni-Path Fabric Setup Guide
(Old title: Intel® Omni-Path Fabric
Staging Guide)

Provides a high level overview of the steps required to stage
a customer-based installation of the Intel® Omni-Path Fabric.
Procedures and key reference documents, such as Intel®
Omni-Path user guides and installation guides are provided to
clarify the process. Additional commands and BKMs are
defined to facilitate the installation process and
troubleshooting.

Installing hardware

Intel® Omni-Path Fabric Switches
Hardware Installation Guide

Describes the hardware installation and initial configuration
tasks for the Intel® Omni-Path Switches 100 Series. This
includes: Intel® Omni-Path Edge Switches 100 Series, 24 and
48-port configurable Edge switches, and Intel® Omni-Path
Director Class Switches 100 Series.

Intel® Omni-Path Host Fabric Interface
Installation Guide

Contains instructions for installing the HFI in an Intel® OPA
cluster. A cluster is defined as a collection of nodes, each
attached to a fabric through the Intel interconnect. The Intel®
HFI utilizes Intel® Omni-Path switches and cabling.

Installing host
software
Installing HFI
firmware
Installing switch
firmware (externally-
managed switches)

Intel® Omni-Path Fabric Software
Installation Guide

Describes using a Text-based User Interface (TUI) to guide
you through the installation process. You have the option of
using command line interface (CLI) commands to perform the
installation or install using the Linux* distribution software.

Managing a switch
using Chassis Viewer
GUI
Installing switch
firmware (managed
switches)

Intel® Omni-Path Fabric Switches GUI
User Guide

Describes the Intel® Omni-Path Fabric Chassis Viewer
graphical user interface (GUI). It provides task-oriented
procedures for configuring and managing the Intel® Omni-
Path Switch family.
Help: GUI online help.

Managing a switch
using the CLI
Installing switch
firmware (managed
switches)

Intel® Omni-Path Fabric Switches
Command Line Interface Reference
Guide

Describes the command line interface (CLI) task information
for the Intel® Omni-Path Switch family.
Help: -help for each CLI.

Managing a fabric
using FastFabric

Intel® Omni-Path Fabric Suite
FastFabric User Guide
(Merged with: Intel® Omni-Path Fabric
Suite FastFabric Command Line
Interface Reference Guide)

Provides instructions for using the set of fabric management
tools designed to simplify and optimize common fabric
management tasks. The management tools consist of TUI
menus and command line interface (CLI) commands.
Help: -help and man pages for each CLI. Also, all host CLI
commands can be accessed as console help in the Fabric
Manager GUI.

Managing a fabric
using Fabric Manager

Intel® Omni-Path Fabric Suite Fabric
Manager User Guide

The Fabric Manager uses a well defined management protocol
to communicate with management agents in every Intel®
Omni-Path Host Fabric Interface (HFI) and switch. Through
these interfaces the Fabric Manager is able to discover,
configure, and monitor the fabric.

Intel® Omni-Path Fabric Suite Fabric
Manager GUI User Guide

Provides an intuitive, scalable dashboard and set of analysis
tools for graphically monitoring fabric status and
configuration. It is a user-friendly alternative to traditional
command-line tools for day-to-day monitoring of fabric
health.
Help: Fabric Manager GUI Online Help.

continued...

Intel® Omni-Path Fabric—Preface

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
8 Order No.: H76473-8.0

Task Document Title Description

Configuring and
administering Intel®
HFI and IPoIB driver
Running MPI
applications on
Intel® OPA

Intel® Omni-Path Fabric Host Software
User Guide

Describes how to set up and administer the Host Fabric
Interface (HFI) after the software has been installed. The
audience for this document includes both cluster
administrators and Message-Passing Interface (MPI)
application programmers, who have different but overlapping
interests in the details of the technology.

Writing and running
middleware that
uses Intel® OPA

Intel® Performance Scaled Messaging
2 (PSM2) Programmer's Guide

Provides a reference for programmers working with the Intel®
PSM2 Application Programming Interface (API). The
Performance Scaled Messaging 2 API (PSM2 API) is a low-
level user-level communications interface.

Optimizing system
performance

Intel® Omni-Path Fabric Performance
Tuning User Guide

Describes BIOS settings and parameters that have been
shown to ensure best performance, or make performance
more consistent, on Intel® Omni-Path Architecture. If you are
interested in benchmarking the performance of your system,
these tips may help you obtain better performance.

Designing an IP or
storage router on
Intel® OPA

Intel® Omni-Path IP and Storage
Router Design Guide

Describes how to install, configure, and administer an IPoIB
router solution (Linux* IP or LNet) for inter-operating
between Intel® Omni-Path and a legacy InfiniBand* fabric.

Building a Lustre*
Server using Intel®
OPA

Building Lustre* Servers with Intel®
Omni-Path Architecture Application
Note

Describes the steps to build and test a Lustre* system (MGS,
MDT, MDS, OSS, OST, client) from the HPDD master branch
on a x86_64, RHEL*/CentOS* 7.1 machine.

Building Containers
for Intel® OPA
fabrics

Building Containers for Intel® Omni-
Path Fabrics using Docker* and
Singularity* Application Note

Provides basic information for building and running Docker*
and Singularity* containers on Linux*-based computer
platforms that incorporate Intel® Omni-Path networking
technology.

Writing management
applications that
interface with Intel®
OPA

Intel® Omni-Path Management API
Programmer’s Guide

Contains a reference for programmers working with the
Intel® Omni-Path Architecture Management (Intel OPAMGT)
Application Programming Interface (API). The Intel OPAMGT
API is a C-API permitting in-band and out-of-band queries of
the FM's Subnet Administrator and Performance
Administrator.

Learning about new
release features,
open issues, and
resolved issues for a
particular release

Intel® Omni-Path Fabric Software Release Notes

Intel® Omni-Path Fabric Manager GUI Release Notes

Intel® Omni-Path Fabric Switches Release Notes (includes managed and externally-managed switches)

Cluster Configurator for Intel® Omni-Path Fabric

The Cluster Configurator for Intel® Omni-Path Fabric is available at: http://
www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-
configurator.html.

This tool generates sample cluster configurations based on key cluster attributes,
including a side-by-side comparison of up to four cluster configurations. The tool also
generates parts lists and cluster diagrams.

Documentation Conventions

The following conventions are standard for Intel® Omni-Path documentation:

• Note: provides additional information.

• Caution: indicates the presence of a hazard that has the potential of causing
damage to data or equipment.

Preface—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 9

http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html

• Warning: indicates the presence of a hazard that has the potential of causing
personal injury.

• Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this
guide. Links to websites are also shown in blue. For example:

See License Agreements on page 10 for more information.

For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as menu items, buttons,
check boxes, key names, key strokes, or column headings. For example:

Click the Start button, point to Programs, point to Accessories, and then click
Command Prompt.

Press CTRL+P and then press the UP ARROW key.

• Text in Courier font indicates a file name, directory path, or command line text.
For example:

Enter the following command: sh ./install.bin
• Text in italics indicates terms, emphasis, variables, or document titles. For

example:

Refer to Intel® Omni-Path Fabric Software Installation Guide for details.

In this document, the term chassis refers to a managed switch.

Procedures and information may be marked with one of the following qualifications:

• (Linux) – Tasks are only applicable when Linux* is being used.

• (Host) – Tasks are only applicable when Intel® Omni-Path Fabric Host Software
or Intel® Omni-Path Fabric Suite is being used on the hosts.

• (Switch) – Tasks are applicable only when Intel® Omni-Path Switches or Chassis
are being used.

• Tasks that are generally applicable to all environments are not marked.

License Agreements

This software is provided under one or more license agreements. Please refer to the
license agreement(s) provided with the software for specific detail. Do not install or
use the software until you have carefully read and agree to the terms and conditions
of the license agreement(s). By loading or using the software, you agree to the terms
of the license agreement(s). If you do not wish to so agree, do not install or use the
software.

Technical Support

Technical support for Intel® Omni-Path products is available 24 hours a day, 365 days
a year. Please contact Intel Customer Support or visit http://www.intel.com/
omnipath/support for additional detail.

Intel® Omni-Path Fabric—Preface

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
10 Order No.: H76473-8.0

http://www.intel.com.
http://www.intel.com/omnipath/support
http://www.intel.com/omnipath/support

1.0 Intel® PSM2 API

This manual is a reference for programmers working with the Intel® PSM2 Application
Programming Interface (API). The Performance Scaled Messaging 2 API (PSM2 API) is
a low-level user-level communications interface.

For details about the other documents for the Intel® Omni-Path product line, refer to
Intel® Omni-Path Documentation Library on page 7.

Introduction

The Intel® Performance Scaled Messaging 2 (Intel® PSM2) API is a high-performance,
vendor-specific protocol that provides a low-level communications interface for the
Intel® Omni-Path family of products. PSM2 enables mechanisms necessary to
implement higher level communications interfaces in parallel environments.

PSM2 targets clusters of multicore processors and transparently implements two levels
of communication: inter-node communication and intra-node shared memory
communication.

Differences between PSM2 and PSM

The Intel® PSM2 interface differs from the Intel® True Scale PSM interface in the
following ways:

• PSM2 includes new features and optimizations for Intel® Omni-Path hardware and
processors.

• The PSM2 API was ported to directly use Intel® Omni-Path hardware, because
PSM2 uses kernel bypass mode to achieve higher performance.

• PSM2 supports a larger 96-bit tag format, while Intel® True Scale PSM only
supports 64-bit tags.

• PSM2 includes performance improvements specific to Intel® OPA and larger
workloads.

• PSM2 adjusted the field width for job rank numbers to accommodate jobs larger
than 64K ranks.

• PSM2 is actively under development and will continue to improve on Intel® OPA
platforms, while Intel® True Scale PSM is a legacy product which is maintained for
bug fixes only.

Compatibility

PSM2 can coexist with other Intel software distributions, such as OpenFabrics, which
allows applications to simultaneously target PSM2-based and non-PSM2-based
applications on a single node without changing any system-level configuration.

However, unless otherwise noted, PSM2 does not support running PSM2-based and
non-PSM2-based communication within the same user process.

1.1

1.2

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 11

PSM2 is currently a single-threaded library. This means that you cannot make any
concurrent PSM2 library calls. While threads may be a valid execution model for the
wider set of potential PSM2 clients, applications should currently expect better
effective use of Intel® Omni-Path resources (and hence better performance) by
dedicating a single PSM2 communication endpoint to every CPU core.

Except where noted, PSM2 does not assume a single program, multiple data (SPMD)
parallel model, and extends to multiple program, multiple data (MPMD) environments
in specific areas. However, PSM2 assumes the runtime environment to be
homogeneous on all nodes in bit width (64-bit only) and endianness (little or big), and
fails at startup if any of these assumptions do not hold.

Endpoint Communication Model

PSM2 follows an endpoint communication model where an endpoint is defined as an
object (or handle) instantiated to support sending and receiving messages to other
endpoints. In order to prevent PSM2 from being tied to a particular parallel model
(such as SPMD), you retain control over the parallel layout of endpoints. Opening
endpoints (psm2_ep_open) and connecting endpoints to enable communication
(psm2_ep_connect) are two decoupled mechanisms. If you do not dynamically
change the number of endpoints beyond parallel startup, you can combine both
mechanisms at startup. If you wish to manipulate the location and amount of
endpoints at runtime, you can do so by explicitly connecting sets or subsets of
endpoints.

As a side effect, this greater flexibility allows you to manage a two-stage initialization
process. In the first stage of opening an endpoint (psm2_ep_open), you obtain an
opaque handle to the endpoint and a globally distributable endpoint identifier
(psm2_epid_t). Prior to the second stage of connecting endpoints
(psm2_ep_connect), you must distribute all relevant endpoint identifiers through an
out-of-band mechanism. Once the endpoint identifiers are successfully distributed to
all processes that wish to communicate, you connect all endpoint identifiers to the
locally opened endpoint (psm2_ep_connect). In connecting the endpoints, you
obtain an opaque endpoint address (psm2_epaddr_t), which is required for all PSM2
communication primitives.

PSM2 Components

PSM2 exposes a single endpoint initialization model, but enables various levels of
communication functionality and semantics through components. The first major
component available in PSM2 is PSM2 Matched Queues (Intel® PSM2 Component
Documentation on page 23). Matched Queues (MQ) present a queue-based
communication model with the distinction that queue consumers use a 3-tuple of
metadata to match incoming messages against a list of preposted receive buffers. The
MQ semantics are sufficiently akin to MPI to cover the entire MPI-1.2 standard. With
future releases of the PSM2 interface, more components may be exposed to
accommodate users who implement parallel communication models that deviate from
the Matched Queue semantics.

1.3

1.4

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
12 Order No.: H76473-8.0

PSM2 Multi-Endpoint Functionality

PSM2 Multi-Endpoint (Multi-EP) functionality is part of the PSM2 API library, however,
it is not default behavior and must be enabled using the PSM2_MULTI_EP environment
variable.

By default, only one PSM2 endpoint may be opened in a process or MPI rank. Enabling
PSM2_MULTI_EP allows more than one PSM2 endpoint to be opened in a single
process and expands the behavior of several APIs, including psm2_init,
psm2_ep_open, and the psm2_mq_* APIs listed below.

PSM2 has added minimal thread safety for using with Multi-EP in a performant
manner. Along with each EP (endpoint) created, an associated MQ (matched queue) is
created, which tracks message completion and ordering. The following APIs have been
made thread-safe to allow for multiple threaded access, assuming each is called with a
different MQ.

Table 1. Intel® PSM2 Thread-Safe APIs

psm2_mq_cancel
psm2_mq_improbe
psm2_mq_improbe2
psm2_mq_imrecv
psm2_mq_ipeek
psm2_mq_ipeek2

psm2_mq_iprobe
psm2_mq_iprobe2
psm2_mq_irecv
psm2_mq_irecv2
psm2_mq_isend
psm2_mq_isend2

psm2_mq_send
psm2_mq_send2
psm2_mq_test
psm2_mq_test2
psm2_mq_wait
psm2_mq_wait2

Limitation

By default, PSM2 allows hardware context sharing to increase the number of local
ranks. This feature requires that the total number of connections is specified at job
startup. Since the Multi-EP feature allows the middleware or end user to dynamically
create and teardown endpoints, context sharing is disabled while Multi-EP is enabled.
This limits the number of local MPI ranks to the number of real hardware resources
exposed by the Intel® Omni-Path hfi1 driver. More information can be obtained on this
topic in the Intel® Omni-Path Fabric Performance Tuning User Guide and Intel® Omni-
Path Fabric Host Software User Guide. However, by default, the number of endpoints
that can be opened is limited to the number of real CPU cores present on the machine.

Related Information

• Intel® MPI Library Multi-Thread (MT)

Intel® MPI MT design is motivated by the need to improve communication
throughput and concurrency in hybrid MPI applications on Intel hardware,
particularly when using Intel® Omni-Path Architecture (Intel® OPA). However, the
design is universal, so it can be used on any other hardware that is supported with
specific abstractions (Scalable Endpoints). The design is entirely based on the
Open Fabric Interface (OFI) libfabric concept of Scalable Endpoints (SEP).

For details, go to: https://software.intel.com/en-us/intel-mpi-library/
documentation

• OpenFabrics Alliance* (OFA) Open Fabric Interfaces libfabric

Starting with libfabric 1.5.0 release, the psm2 provider supports scalable
endpoints when running over newer PSM2 libraries that have the multi-EP feature
enabled. When the psm2 provider is initialized, it checks the feature set of the

1.5

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 13

https://software.intel.com/en-us/intel-mpi-library/documentation
https://software.intel.com/en-us/intel-mpi-library/documentation

underlying PSM2 library and turns on/off the scalable endpoint support
automatically. This is an unconditional dependency and the scalable endpoint
support does not work with older PSM2 libraries.

For details, go to: https://ofiwg.github.io/libfabric/

PSM2 Communication Progress Guarantees

PSM2 internally ensures progress of both intra-node and inter-node messages, but not
autonomously. This means that while performance does not depend greatly on how
you decide to schedule communication progress, explicit progress calls are required
for correctness. The psm2_poll function is available to make progress over all PSM2
components in a generic manner. For more information on making progress over
many communication operations in the MQ component, see MQ Progress
Requirements on page 26.

PSM2 Completion Semantics

PSM2 currently only implements the MQ component, which documents its own
message completion semantics (see MQ Completion Semantics on page 25).

PSM2 Error Handling

PSM2 exposes a list of user and runtime errors enumerated in psm2_error. While
most errors are fatal in that you are not expected to be able to recover from them,
PSM2 still allows some level of control. By default, PSM2 returns all errors, but as a
convenience, allows you to either defer errors internally to PSM2 or to have PSM2 call
a user-provided error callback function.

PSM2 attempts to deallocate its resources as a best effort, but exits are always non-
collective with respect to endpoints opened in other processes. You are expected to be
able to handle non-collective exits from any endpoint and cleanly and independently
terminate the parallel environment.

Local error handling can be handled in three modes, two of which are predefined PSM2
mechanisms:

• PSM2-internal error handler (PSM2_ERRHANDLER_PSM_HANDLER)

• No-op PSM2 error handler where errors are returned
(PSM2_ERRHANDLER_NO_HANDLER)

• User-registered error handlers

The default PSM2-internal error handler effectively frees you from explicitly handling
the return values of every PSM2 function, but may not return in a function determined
to have caused a fatal error.

The No-op PSM2 error handler bypasses all error handling functionality and always
returns the error. You can then use psm2_error_get_string to obtain a generic
string from an error code (compared to a more detailed error message available
through registering of error handlers).

1.6

1.7

1.8

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
14 Order No.: H76473-8.0

https://ofiwg.github.io/libfabric/

For even more control, you can register your own error handlers to have access to
more precise error strings and selectively control when and when not to return to
callers of PSM2 functions. All error handlers shown defer error handling to PSM2 for
errors that are not recognized using psm2_error_defer. Deferring an error from a
custom error handler is equivalent to relying on the default error handler.

Errors and error handling can be individually registered either globally or per-
endpoint:

• Per-endpoint error handling captures errors for functions where the error scoping
is determined to be over an endpoint. This includes all communication functions
that include an EP or MQ handle as the first parameter.

• Global error handling captures errors for functions where a particular endpoint
cannot be identified or for psm2_ep_open, where errors (if any) occur before the
endpoint is opened.

Error handling is controlled by registering error handlers
(psm2_error_register_handler). The global error handler can be set at any time
(even before psm2_init), whereas a per-endpoint error handler can be set as soon
as a new endpoint is successfully created. If a per-endpoint handle is not registered,
the per-endpoint handler inherits from the global error handler at time of open.

Environment Variables

This section describes how to control PSM2 behavior using environment variables.

PSM2_CCA_PRESCAN

Enables Congestion Control Prescanning when set. Can improve the response time of
the PSM2 software stack by prescanning packet headers for network notification for
congestion. This will slightly increase CPU usage of the local rank, but may provide
faster response to notification and thus less congestion and more fair play within the
network.

Options:

• 1 enabled

• 0 disabled (default)

Default: PSM2_CCA_PRESCAN=0 (disabled)

PSM2_CUDA

Enables CUDA* support in PSM2 when set. Requires libpsm2 to be compiled with
CUDA* support.

For additional details, see the Intel® Omni-Path Fabric Performance Tuning User
Guide.

Note: If GPU buffers are used in the workloads and PSM2_CUDA is not set to 1, undefined
behavior will result.

Default: PSM2_CUDA=0

1.9

1.9.1

1.9.2

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 15

PSM2_DEVICES

PSM2 implements the following devices for communication: self, shm, and hfi. For
PSM2 jobs that do not require shared-memory communications, PSM2_DEVICES can
be specified as self, hfi. Similarly, for shared-memory only jobs, the hfi device
can be disabled. You must ensure that the endpoint IDs passed in psm2_ep_connect
do not require a device that has been explicitly disabled. In some instances, enabling
only the devices that are required may improve performance.

Default: PSM2_DEVICES="self,shm,hfi"
For shared-memory only jobs: PSM2_DEVICES="shm,self"

PSM2_DISABLE_CCA

Disables use of Congestion Control Architecture (CCA).

Options:

• 1 disabled

• 0 enabled (default)

Default: PSM2_DISABLE_CCA=0 (enabled)

PSM2_GPUDIRECT

GPUDirect* RDMA is a technology that enables a direct path for data exchange
between a graphics processing unit (GPU) and a third-party peer device using
standard features of PCI Express. For more information, see the NVIDIA* CUDA*
toolkit documentation: http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

Enables GPUDirect* RDMA support when set and allows direct data exchange between
GPU and HFI. For complete operation, you also need the appropriate hfi1 driver
support. For details, see the Intel® Omni-Path Fabric Software Installation Guide.

Default: PSM2_GPUDIRECT=0

PSM2_GPUDIRECT_RECV_THRESH

Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the
GPUDirect* RDMA feature will not be used on the receive side of a connection.

Range: 0 to (232-1)

Default: PSM2_GPUDIRECT_RECV_THRESH=0

PSM2_GPUDIRECT_SEND_THRESH

Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the
GPUDirect* RDMA feature will not be used on the send side of a connection.

Range: 1 to (232-1) Note that 0 is invalid.

Default: PSM2_GPUDIRECT_SEND_THRESH=30000

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
16 Order No.: H76473-8.0

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

PSM2_IB_SERVICE_ID

Sets IB Service ID for path resolution. Using this overrides value set by the options
used by applications or upper layer transports.

If you pass in a value with psm2_ep_open in the psm2_ep_open_opts structure,
then the default of HFI_DEFAULT_SERVICE_ID or 0x1000117500000000ULL is
replaced. If the environment variable here is listed, it replaces the default or any value
passed in.

Default: PSM2_IB_SERVICE_ID=0x1000117500000000ULL

PSM2_MAX_CONTEXTS_PER_JOB

Maximum number of contexts that a job opens.

If required for resource sharing in batch systems, users can restrict the number of
Intel® Omni-Path contexts that are made available on each node of an MPI job by
setting that number in the PSM2_MAX_CONTEXTS_PER_JOB environment variable.
The default is to use all possible contexts.

Default: PSM2_MAX_CONTEXTS_PER_JOB=all available

PSM2_MAX_PENDING_SDMA_REQS

Sets maximum pending SDMA requests.

Range = 8 to sdma_comp_size - 1, where sdma_comp_size is the number of
entries in the SDMA request ring. Any other value is replaced with the default value.

Default: PSM2_MAX_PENDING_SDMA_REQS=sdma_comp_size - 1

PSM2_MEMORY

Memory usage mode. Controls the amount of memory used for MQ entries by setting
the number of entries. Setting this value also sets PSM2_MQ_RECVREQS_MAX and
PSM2_MQ_RNDV_HFI_THRESH to preset internal values, see Options for details.

Options:

Note: You must enter the desired option as text, not a numerical value.

• min = reserves memory to hold 65536 pending requests

• normal = reserves memory to hold 1048576 pending requests

• large = reserves memory to hold 16777216 pending requests

Default: PSM2_MEMORY=normal

PSM2_MQ_RECVREQS_MAX

Sets the maximum number of irecv requests pending completion. Setting this value
overrides the PSM2_MAX_PENDING_SDMA_REQS default for any mode.

Default: PSM2_MQ_RECVREQS_MAX=1048576

1.9.8

1.9.9

1.9.10

1.9.11

1.9.12

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 17

PSM2_MQ_RNDV_HFI_THRESH

Sets the threshold (in bytes) for the hfi eager-to-rendezvous switchover.

Default: PSM2_MQ_RNDV_HFI_THRESH=64000

PSM2_MQ_RNDV_SHM_THRESH

Sets the threshold (in bytes) for shared memory eager-to-rendezvous switchover.

Default: PSM2_MQ_RNDV_SHM_THRESH=16000

PSM2_MQ_SENDREQS_MAX

Sets the maximum number of isend requests pending completion. Setting this value
overrides the PSM2_MAX_PENDING_SDMA_REQS default for any mode.

Default: PSM2_MQ_SENDREQS_MAX=1048576

PSM2_MTU

Sets PSM2 MTU to user-specified size, if defined. The default behavior is controlled by
driver or switch. PSM2 does not query the path record unless PSM2_PATH_REC is
enabled. This environment variable, when defined, overrides the path record value
only allowing selections of MTU values equal to or less than that maximum indicated
by the path records.

Valid values are 1-7, 256-8192, 10240. Using bad values will silently use the smaller
of the internal default of 8192 or the network configured value. Values 1-7 are indexes
into this table:

• 1 = 256

• 2 = 512

• 3 = 1024

• 4 = 2048

• 5 = 4096

• 6 = 8192

• 7 = 10240

Default: PSM2_MTU=Automatic based on network configs, typically
8192.

PSM2_MULTI_EP

Enables more than one PSM2 endpoint to be opened in a process.

Options:

• 0 Disabled (default).

• 1 Enabled.

1.9.13

1.9.14

1.9.15

1.9.16

1.9.17

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
18 Order No.: H76473-8.0

PSM2_MULTIRAIL

Enables multi-rail capability so a process can use multiple network interface cards to
transfer messages. The PSM2 multi-rail feature can be applied to a single fabric with
multiple ports (multiple HFIs), or multiple fabrics.

Options:

• 0 Multi-rail capability disabled (default for single rank jobs).

• 1 Enable multi-rail capability and use all available HFI(s) in the system.

• 2 Enable multi-rail within a single NUMA socket capability.

PSM2 looks for at least one available HFI(s) in the same NUMA socket on which
you pin the task. If no such HFIs are found, PSM2 falls back to
PSM2_MULTIRAIL=1 behavior and uses any other available HFI(s). You are
responsible for physical placement of HFI(s). Job launchers, middleware, and end
users are responsible for correctly affinitizing MPI ranks and processes for best
performance. For details, see the Intel® Omni-Path Fabric Performance Tuning
User Guide.

Default: PSM2_MULTIRAIL=0x0=Disabled (multi-rail is not supported)

PSM2_MULTIRAIL_MAP

Tells PSM2 which unit/port pair is used to set up a rail.

If only one rail is specified, it is equivalent to a single-rail case. The Unit/Port is
specified instead of using Unit/Port assigned by the hfi1 driver. PSM2 scans the
above pattern until a violation or error is encountered, and uses the information it has
gathered.

Note: PSM2_MULTIRAIL_MAP overrides any auto-selection and affinity logic in PSM2,
regardless of whether PSM2_MULTIRAIL on page 19 is set to 1 or 2. For details, see
the Intel® Omni-Path Fabric Performance Tuning User Guide.

Options: unit:port,unit:port,unit:port,...
• unit starts from 0.

• port is always 1.

• Multiple specifications are separated by a comma.

PSM2_PATH_REC

Sets mechanism to query HFI path record.

Options:

• NONE Default same as previous instances. Utilizes static data.

• OPP Use OFED Plus Plus library to do path record queries.

• UMAD Use raw libibumad interface to form and process path records.

Default: PSM2_PATH_REC=NONE

1.9.18

1.9.19

1.9.20

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 19

PSM2_PATH_SELECTION

Policy to use if multiple paths are available between endpoints. For details, see the
Intel® Omni-Path Fabric Host Software User Guide, Routing section.

Options:

• adaptive
• static_src
• static_dest
• static_base
Default: PSM2_PATH_SELECTION=adaptive

PSM2_RANKS_PER_CONTEXT

Provides an alternate way of specifying how PSM should use contexts. The variable is
the number of ranks that share each hardware context. The supported values include:

• 1 no context sharing

• 2 2-way context sharing

• 3 3-way context sharing

• 4 4-way context sharing

• 8 8-way context sharing (maximum)

The same value of PSM2_RANKS_PER_CONTEXT must be used for all ranks on a node,
and typically, you use the same value for all nodes in that job.

Default:

If this value is not set, then by default PSM2 assigns one context per rank when
possible. However, if too many MPI ranks are present, then context sharing is enabled
to be able to give each rank a portion of a context. The value is determined by the
number of ranks present at job launch. Since context sharing impacts performance by
way of limiting queue sizes, PSM2 only enables the minimum required level of context
sharing to evenly spread the ranks among the contexts and retain what performance
is possible.

PSM2_RCVTHREAD

PSM2 uses an extra background thread per rank to make MPI communication progress
more efficiently. This thread does not aggressively compete with resources against the
main computation thread, but can be disabled by setting PSM2_RCVTHREAD=0.

Default: PSM2_RCVTHREAD=0x1

PSM2_SHAREDCONTEXTS

Enable shared contexts. Context sharing is on by default.

Default (either option works):

• PSM2_SHAREDCONTEXTS=1

1.9.21

1.9.22

1.9.23

1.9.24

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
20 Order No.: H76473-8.0

• PSM2_SHAREDCONTEXTS=YES
To explicitly disable context sharing, set this environment variable in one of the two
following ways:

• PSM2_SHAREDCONTEXTS=0
• PSM2_SHAREDCONTEXTS=NO

PSM2_SHAREDCONTEXTS_MAX

Deprecated.

See PSM2_MAX_CONTEXTS_PER_JOB for details.

PSM2_TID

TID (Token ID) protocol flags. A value of 0 disables the protocol.

Default: PSM2_TID=0x1

PSM2_TRACEMASK

Depending on the value of the tracemask, various parts of PSM2 output debugging
information. With a default value of 0x1, informative messages are printed; this value
should be considered a minimum. At 0x101, startup and finalization messages are
added to the output. At 0x1c3, every communication event is logged and should
hence be used for extreme debugging only.

Default: PSM2_TRACEMASK=0x1

HFI Environment Variables

The following HFI environment variables are also related to PSM2 functionality.

HFI_DISABLE_MMAP_MALLOC

Disable mmap for malloc().

Uses glibc mallopt() to disable all uses of mmap by setting M_MMAP_MAX to 0 and
M_TRIM_THRESHOLD to -1. Refer to the Linux* man page for mallopt() for details.

Default: HFI_DISABLE_MMAP_MALLOC=NO

Note: Choosing YES may reduce the memory footprint required by your program, at the
potential expense of increasing CPU overhead associated with memory allocation and
memory freeing. The default NO option is better for performance.

HFI_NO_CPUAFFINITY

Prevents PSM2 from setting affinity.

During initialization with HFI_NO_CPUAFFINITY unset, if the "affinity" option is
passed to the psm2_ep_open() call, PSM2 may set affinity based on the affinity hints
from the driver.

1.9.25

1.9.26

1.9.27

1.10

1.10.1

1.10.2

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 21

With HFI_NO_CPUAFFINITY set, PSM2 does not set affinity regardless of the
aforementioned "affinity" option. This allows either user applications to control affinity
or the OS to automatically choose affinity.

Default: HFI_NO_CPUAFFINITY is unset.

HFI_UNIT

Device Unit number. Used to restrict the number of contexts used on an Intel® Omni-
Path unit. When context sharing is enabled on a system with multiple Intel® Omni-
Path boards (units) and the HFI_UNIT environment variable is set, the number of
Intel® Omni-Path contexts made available to MPI jobs are restricted to the number of
contexts available on that unit.

Note: The Intel® PSM2 implementation has a limit of four (4) HFIs.

Default: HFI_UNIT is unset. All available contexts from all units are autodetected and
used, and are made available to MPI jobs.

1.10.3

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
22 Order No.: H76473-8.0

2.0 Intel® PSM2 Component Documentation

The Intel® PSM2 Matched Queues (MQ) interface implements a queue-based
communication model with the distinction that queue message consumers use a 3-
tuple of metadata to match incoming messages against a list of preposted receive
buffers. These semantics are consistent with those presented by MPI-1.2, and all the
features and side-effects of message passing find their way into matched queues.

There is currently a single MQ context. If need be, MQs may expose a function to
allocate more than one MQ context in the future. Since an MQ is implicitly bound to a
locally opened endpoint handle, all MQ functions use an MQ handle instead of an EP
handle as a communication context.

MQ Tag Matching

Note: Tag matching is different in PSM2 compared to the original version. PSM2 tags are 96-
bit values of type psm2_mq_tag_t. The behavior of send and receive tags and tag
selectors is the same, and any 64-bit tags used in existing code are automatically
padded to 96 bits within PSM2. The functions designed for 64-bit tags remain in PSM2
and can exist within the same program. Since these two types of functions can
operate on the same MQ, care should be taken to avoid unintentional tag matches.
Intel recommends that you use a single tag size within a single program.

Users of PSM2 can interpret the 96-bit tag type as a sequence of three 32-bit integers,
or any other convenient interpretation scheme. The extended tags can be helpful in
high node-count environments.

A successful MQ tag match requires a 3-tuple of unsigned 96-bit ints, two of which are
provided by the receiver when posting a receive buffer (psm2_mq_irecv and
psm2_mq_irecv2) and the last is provided by the sender as part of every message
sent (psm2_mq_send and psm2_mq_isend). Since MQ is a receiver-directed
communication model, the tag matching done at the receiver involves matching a sent
message send tag (stag) with the tag (rtag) and tag selector (rtagsel) attached to
every preposted receive buffer. The incoming stag is compared to the posted rtag
but only for significant bits set in the rtagsel. The rtagsel can be used to mask off
parts (or even all) of the bitwise comparison between sender and receiver tags. A
successful match causes the message to be received into the buffer with which the tag
is matched. If the incoming message is too large, it is truncated to the size of the
posted receive buffer. The bitwise operation corresponding to a successful match and
receipt of an expected message amounts to the following expression evaluating as
true:

((stag ^ rtag) & rtagsel) == 0
You must encode (pack) into the 96-bit unsigned integers, including employing the
rtagsel tag selector as a method to wildcard part or all of the bits significant in the
tag matching operation. For example, MPI could use a triple based on context (MPI
communicator), source rank, and send tag.

2.1

Intel® PSM2 Component Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 23

Note: The following code example will be updated in a future release of this document.

The following code example shows how the triple can be packed into 64 bits:

// 64-bit send tag formed by packing the triple:
// (context_id_16bits | source_rank_16bits | send_tag_32bits)

stag = ((((context_id)&0xffffULL)<<48)| \
(((source_rank)&0xffffULL)<<32)| \
(((send_tag)&0xffffffffULL)));

Similarly, the receiver applies the rtag matching bits and rtagsel masking bits
against a list of send tags and returns the first successful match. Zero bits in the
tagsel can be used to indicate wildcarded bits in the 64-bit tag, which can be useful
for implementing MPI's MPI_ANY_SOURCE and MPI_ANY_TAG. Following the example
bit splicing in the previous stag example:

// Example MPI implementation
// where MPI_COMM_WORLD implemented as 0x3333
// MPI_Irecv source_rank=MPI_ANY_SOURCE,
// tag=7, comm=MPI_COMM_WORLD

rtag = 0x3333000000000007;
rtagsel = 0xffff0000ffffffff;

// MPI_Irecv source_rank=3, tag=MPI_ANY_TAG,
// comm=MPI_COMM_WORLD

rtag = 0x3333000300000000;
rtagsel = 0xffffffff80000000; // can’t ignore sign bit in tag

// MPI_Irecv source_rank=MPI_ANY_SOURCE,
// tag=MPI_ANY_TAG, comm=MPI_COMM_WORLD

rtag = 0x3333000000000000;
rtagsel = 0xffff000080000000; // can’t ignore sign bit in tag

Applications that do not follow tag matching semantics can simply always pass a value
of 0 for rtagsel, which always yields a successful match to the first preposted buffer.
If a message cannot be matched to any of the preposted buffers, the message is
delivered as an unexpected message.

MQ Message Reception

MQ messages are either received as expected or unexpected:

• The received message is expected if the incoming message tag matches the
combination of tag and tag selector of at least one of the user-provided receive
buffers preposted with psm2_mq_irecv or psm2_mq_irecv2.

• The received message is unexpected if the incoming message tag doesn't match
any combination of tag and tag selector from all the user-provided receive buffers
preposted with psm2_mq_irecv or psm2_mq_irecv2.

The difference between psm2_mq_irecv() and psm2_mq_irecv2() is that
psm2_mq_irecv() does not specify where the message should come from; it purely
relies on the tag matching mechanism and the message could come from any other
source process. However, psm2_mq_irecv2() has an additional argument to specify
the source process, where only messages from this specified process can match the

2.2

Intel® Omni-Path Fabric—Intel® PSM2 Component Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
24 Order No.: H76473-8.0

receiving operation. One special case for psm2_mq_irecv2() is to specify
PSM2_MQ_TAG_ANY for the source process argument, which is equivalent to
psm2_mq_irecv(). Therefore, psm2_mq_irecv() is equivalent to a call to
psm2_mq_irecv2() with PSM2_MQ_TAG_ANY as the source value.

Unexpected messages are messages buffered by the MQ library until a receive buffer
that can match the unexpected message is provided. With Matched Queues and MPI
alike, unexpected messages can occur as a side-effect of the programming model,
whereby the arrival of messages can be slightly out of step with receive buffer
ordering. Unexpected messages can also be triggered by the difference between the
rate at which a sender produces messages and the rate at which a paired receiver can
post buffers and hence consume the messages.

In all cases, too many unexpected messages can negatively affect performance. Use
some of the following mechanisms to reduce the effect of added memory allocations
and copies that result from unexpected messages:

• If and when possible, receive buffers should be posted as early as possible and
ideally before calling into the progress engine.

• Use rendezvous messaging that can be controlled with PSM2_MQ_RNDV_HFI_SZ
and PSM2_MQ_RNDV_SHM_SZ options. These options default to values determined
to make effective use of bandwidth, and hence not advisable for all
communication message sizes. However, rendezvous messaging inherently
prevents unexpected messages by synchronizing the sender with the receiver.

• The amount of memory that is allocated to handle unexpected messages can be
bounded by adjusting the Global PSM2_MQ_MAX_SYSBUF_MBYTES option.

• MQ statistics, such as the amount of received unexpected messages and the
aggregate amount of unexpected bytes are available in the psm2_mq_stats
structure.

Whenever a match occurs, whether the message is expected or unexpected, you must
ensure that the message is not truncated. Message truncation occurs when the size of
the preposted buffer is less than the size of the incoming matched message. MQ
correctly handles message truncation by always copying the appropriate amount of
bytes as to not overwrite any data. While it is valid to send less data than the amount
of data that has been preposted, messages that are truncated are marked
PSM2_MQ_TRUNCATION as part of the error code in the message status structure
(psm2_mq_status_t).

The psm2_mq_status_t structure also returns the source ID of the message. During
PSM2 initialization time, each process registers an application interpreted ID. When a
message from that process is received by any other process, the application
interpreted ID is returned in the status structure so that application can interpret
where the message comes from. The source ID is returned in the status structure,
regardless of which receiving function is used to receive the message. If a process did
not register such ID, the default ID is -1.

MQ Completion Semantics

Message completion in Matched Queues follows local completion semantics. When
sending an MQ message, it is deemed complete when MQ guarantees that the source
data has been sent and that the entire input source data memory location can be
safely overwritten. As with standard Message Passing, MQ does not make any remote
completion guarantees for sends. MQ does however, allow a sender to synchronize

2.3

Intel® PSM2 Component Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 25

with a receiver to send a synchronous message which sends a message only after a
matching receive buffer has been posted by the receiver
(PSM2_MQ_FLAG_SENDSYNC).

A receive is deemed complete after it has matched its associated receive buffer with
an incoming send and that the data from the send has been completely delivered to
the receive buffer.

MQ Progress Requirements

You must explicitly ensure progress on MQs for correctness. The progress requirement
holds even if certain areas of the MQ implementation require less network attention
than others, or if progress may internally be guaranteed through interrupts. The main
polling function, psm2_poll, is the most general form of ensuring progress on a given
endpoint. Calling psm2_poll ensures that progress is made over all the MQs and
other components instantiated over the endpoint passed to psm2_poll.

While psm2_poll is the only way to directly ensure progress, other MQ functions
conditionally ensure progress depending on how they are used:

• psm2_mq_wait and psm2_mq_wait2 employ polling and wait until the request is
completed. For blocking communication operations where the caller is waiting on a
single send or receive to complete, psm2_mq_wait or psm2_mq_wait2 usually
provides the best responsiveness in terms of latency.

• psm2_mq_test and psm2_mq_test2 test a particular request for completion, but
never directly or indirectly ensure progress because they only test the completion
status of a request, nothing more. See functional documentation for
psm2_mq_test and psm2_mq_test2 for details.

• psm2_mq_ipeek and psm2_mq_ipeek2 ensure progress if and only if the MQ's
completion queue is empty. These functions do not ensure progress as long as the
completion queue is non-empty. If you always aggressively process all elements of
the MQ completion queue as part of your own progress engine, you indirectly
always ensure MQ progress. The ipeek or ipeek2 mechanism is the preferred
way for ensuring progress when many non-blocking requests are in flight, since
these functions return requests in the order in which they complete. Depending on
how communication is initiated and completed, this may be preferable to calling
other progress functions on individual requests.

• psm2_mq_iprobe, psm2_mq_iprobe2, psm2_mq_improbe, and
psm2_mq_improbe2 ensure progress if matching request wasn't found after the
first attempt.

2.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
26 Order No.: H76473-8.0

3.0 Intel® PSM2 Component Functional
Documentation

PSM2 Initialization and Maintenance

Data Structures

struct psm2_optkey
Option key/pair structure. Currently only used in MQ.

Data Fields:

uint32_t key Option key.

void * value Key value.

Defines

Table 2. Initialization and Maintenance Defines

Define Description

#define PSM2_VERNO Header-defined Version number.

#define PSM2_VERNO_MAJOR Header-defined Major Version Number.

#define PSM2_VERNO_MINOR Header-defined Minor Version Number.

#define PSM2_ERRHANDLER_DEFAULT Legacy value; included for backwards compatibility.
Use PSM2_ERRHANDLER_PSM_HANDLER instead.

#define PSM2_ERRHANDLER_NOP Legacy value; included for backwards compatibility.
Use PSM2_ERRHANDLER_NO_HANDLER instead.

#define PSM2_ERRHANDLER_PSM_HANDLER PSM2 error handler as explained in PSM2 Error
Handling.

#define PSM2_ERRHANDLER_NO_HANDLER Bypasses the default PSM2 error handler and returns
all errors (this is the default).

#define PSM2_ERRSTRING_MAXLEN Maximum error string length.

3.1

3.1.1

3.1.2

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 27

Typedefs

Table 3. Initialization and Maintenance Typedefs

Typedef Description

typedef enum psm2_error See also: psm2_error.

typedef psm2_error_token
*psm2_error_token_t

Error handling opaque token. A token is required for
users that register their own handlers and wish to
defer further error handling to PSM2.

typedef
psm2_error_t(*psm2_ep_errhandler_t)
(psm2_ep_t ep, const psm2_error_t error,
const char *error_string,
psm2_error_token_t token)

Error handling function. Users can handle errors
explicitly instead of relying on PSM2's own error
handler. There is one global error handler and error
handlers that can be individually set for each opened
endpoint. By default, endpoints inherit the global
handler registered at the time of open.
Parameters:
• ep

Handle associated to the endpoint over which the
error occurred or NULL if the error is being
handled by the global error handler.

• error
PSM2 error identifier.

• error_string
A descriptive error string of maximum length
PSM2_ERRSTRING_MAXLEN.

• token
Opaque PSM2 token associated with the
particular event that generated the error. The
token can be used to extract the error string and
can be passed to psm2_error_defer to defer
any remaining or unhandled error handling to
PSM2.

Postcondition: If the error handler returns, the
error returned is propagated to the caller.

Enumerations

enum psm2_error {PSM2_OK, PSM2_OK_NO_PROGRESS, PSM2_PARAM_ERR,
PSM2_NO_MEMORY, PSM2_INIT_NOT_INIT, PSM2_INIT_BAD_API_VERSION,
PSM2_NO_AFFINITY, PSM2_INTERNAL_ERR, PSM2_SHMEM_SEGMENT_ERR,
PSM2_OPT_READONLY, PSM2_TIMEOUT, PSM2_TOO_MANY_ENDPOINTS,
PSM2_IS_FINALIZED, PSM2_EP_WAS_CLOSED, PSM2_EP_NO_DEVICE,
PSM2_EP_UNIT_NOT_FOUND, PSM2_EP_DEVICE_FAILURE,
PSM2_EP_NO_PORTS_AVAIL, PSM2_EP_NO_NETWORK,
PSM2_EP_INVALID_UUID_KEY, PSM2_EPID_UNKNOWN,
PSM2_EPID_UNREACHABLE, PSM2_EPID_INVALID_NODE,
PSM2_EPID_INVALID_MTU, PSM2_EPID_INVALID_UUID_KEY,
PSM2_EPID_INVALID_VERSION, PSM2_EPID_INVALID_CONNECT,
PSM2_EPID_ALREADY_CONNECTED,PSM2_EPID_NETWORK_ERROR,
PSM2_MQ_INCOMPLETE, PSM2_MQ_TRUNCATION, PSM2_ERROR_LAST}

3.1.3

3.1.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
28 Order No.: H76473-8.0

Table 4. Error Type Enumerators

Enumerator Description

PSM2_OK Interface-wide "ok", guaranteed to be 0.

PSM2_OK_NO_PROGRESS No events progressed on psm2_poll (not fatal).

PSM2_PARAM_ERR Error in a function parameter.

PSM2_NO_MEMORY PSM2 ran out of memory.

PSM2_INIT_NOT_INIT PSM2 has not been initialized by psm2_init.

PSM2_INIT_BAD_API_VERSION API version passed in psm2_init is incompatible.

PSM2_NO_AFFINITY PSM2 Could not set affinity.

PSM2_INTERNAL_ERR PSM2 Unresolved internal error.

PSM2_SHMEM_SEGMENT_ERR PSM2 could not set up shared memory segment.

PSM2_OPT_READONLY PSM2 option is a read-only option.

PSM2_TIMEOUT PSM2 operation timed out.

PSM2_TOO_MANY_ENDPOINTS Too many endpoints.

PSM2_IS_FINALIZED PSM2 is finalized.

PSM2_EP_WAS_CLOSED Endpoint was closed.

PSM2_EP_NO_DEVICE PSM2 Could not find an Intel® Omni-Path Unit.

PSM2_EP_UNIT_NOT_FOUND User passed a bad unit number.

PSM2_EP_DEVICE_FAILURE Failure in initializing endpoint.

PSM2_EP_NO_PORTS_AVAIL No free ports could be obtained.

PSM2_EP_NO_NETWORK Could not detect network connectivity.

PSM2_EP_INVALID_UUID_KEY Invalid Unique job-wide UUID Key.

PSM2_EPID_UNKNOWN Endpoint connect status unknown (because of other
failures or if connect attempt timed out).

PSM2_EPID_UNREACHABLE Endpoint could not be reached by any PSM2
component.

PSM2_EPID_INVALID_NODE At least one of the connecting nodes was
incompatible in endianess.

PSM2_EPID_INVALID_MTU At least one of the connecting nodes provided an
invalid MTU.

PSM2_EPID_INVALID_UUID_KEY At least one of the connecting nodes provided a bad
key.

PSM2_EPID_INVALID_VERSION At least one of the connecting nodes is running an
incompatible PSM2 protocol version.

PSM2_EPID_INVALID_CONNECT At least one node provided garbled information.

PSM2_EPID_ALREADY_CONNECTED EPID was already connected.

PSM2_EPID_NETWORK_ERROR EPID is duplicated, network connectivity problem.

continued...

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 29

Enumerator Description

PSM2_MQ_INCOMPLETE MQ Non-blocking request is incomplete.

PSM2_MQ_TRUNCATION MQ Message has been truncated at the receiver.

PSM2_ERROR_LAST Reserved Value, indicates highest ENUM value for
psm2_error.

Functions

Table 5. Initialization and Maintenance Functions

Function Description

psm2_init (int *api_verno_major, int
*api_verno_minor)

Initialize PSM2 interface.
For details, see psm2_init.

psm2_finalize (void) Finalize PSM2 interface.
For details, see psm2_finalize.

psm2_error_register_handler (psm2_ep_t
ep, const psm2_ep_errhandler_t
errhandler)

PSM2 error handler registration.
For details, see psm2_error_register_handler.

psm2_error_defer (psm2_error_token_t
err_token)

PSM2 deferred error handler.
For details, see psm2_error_defer.

psm2_error_get_string (psm2_error_t
error)

Get generic error string from error.
For details, see psm2_error_get_string.

psm2_init

Syntax

psm2_error_t psm2_init (int *api_verno_major, int
*api_verno_minor)

Call to initialize the PSM2 library for a desired API revision number.

Parameters

api_verno_major As input, a pointer to an integer that holds
PSM2_VERNO_MAJOR. As output, the pointer is updated with the
major revision number of the loaded library.

api_verno_minor As input, a pointer to an integer that holds
PSM2_VERNO_MINOR. As output, the pointer is updated with the
minor revision number of the loaded library.

Precondition

You have not called any other PSM2 library call except
psm2_error_register_handler to register a global error handler.

Warning

PSM2 initialization is a precondition for all functions used in the PSM2 library.

3.1.5

3.1.5.1

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
30 Order No.: H76473-8.0

Returns

PSM2_OK The PSM2 interface could be opened and the
desired API revision can be provided.

PSM2_INIT_BAD_API_VERSION The PSM2 library is not compatible with the desired
API version.

Example

// In this example, we want to handle our own errors before doing init,
// since we don't want a fatal error if Intel® Omni-Path is not found.
// Note that @ref psm2_error_register_handler
// (and @ref psm2_uuid_generate)
// are the only functions that can be called before @ref psm2_init

int try_to_initialize_psm() {
 int verno_major = PSM2_VERNO_MAJOR;
 int verno_minor = PSM2_VERNO_MINOR;
 int err = psm2_error_register_handler(NULL, //Global handler
 PSM2_ERRHANDLER_NO_HANDLER);//return errors
 if (err) {
 fprintf(stderr, "Couldn't register global handler: %s\n",
 psm2_error_get_string(err));
 return -1;
 }

 err = psm2_init(&verno_major, &verno_minor);
 if (err || verno_major > PSM2_VERNO_MAJOR) {
 if (err)
 fprintf(stderr, "PSM2 initialization failure: %s\n",
 psm2_error_get_string(err));
 else
 fprintf(stderr, "PSM2 loaded an unexpected/unsupported "
 "version (%d.%d)\n", verno_major, verno_minor);
 return -1;
 }

 // We were able to initialize PSM2 but defer all further error
 // handling since most of the errors beyond this point are fatal.

 int err = psm2_error_register_handler(NULL, // Global handler
 PSM2_ERRHANDLER_PSM_HANDLER); //
 if (err) {
 fprintf(stderr, "Couldn't register global errhandler: %s\n",
 psm2_error_get_string(err));
 return -1;
 }
 return 1;
}

psm2_finalize

Syntax

psm2_error_t psm2_finalize (void)

Finalize PSM2 interface. Single call to finalize PSM2 and close all unclosed endpoints.

Postcondition

You guarantee not to make any further PSM2 calls, including psm2_init.

3.1.5.2

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 31

Returns

PSM2_OK Always returns PSM2_OK.

psm2_error_register_handler

Syntax

psm2_error_t psm2_error_register_handler (psm2_ep_t ep, const
psm2_ep_errhandler_t errhandler)

PSM2 error handler registration. Function to register error handlers on a global basis
and on a per-endpoint basis. PSM2_ERRHANDLER_PSM_HANDLER and
PSM2_ERRHANDLER_NO_HANDLER are special pre-defined handlers to respectively
enable use of the default PSM2-internal handler or the no-handler that disables
registered error handling and returns all errors to the caller (both are documented in
PSM2 Error Handling on page 14).

Parameters

ep Handle of the endpoint over which the error handler should be
registered. With ep set to NULL, the behavior of the global error
handler can be controlled.

errhandler Handler to register. Can be a user-specific error handling function or
PSM2_ERRHANDLER_PSM_HANDLER or
PSM2_ERRHANDLER_NO_HANDLER.

Remarks

When ep is set to NULL, this is the only function that can be called before
psm2_init.

psm2_error_defer

Syntax

psm2_error_t psm2_error_defer (psm2_error_token_t err_token)

PSM2 deferred error handler.

Function to handle fatal PSM2 errors if no error handler is installed or if you wish to
defer further error handling to PSM2. Depending on the type of error, PSM2 may or
may not return from the function call.

Parameters

err_token Error token initially passed to error handler.

Precondition

The function is called because PSM2 is designated to handle an error case.

3.1.5.3

3.1.5.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
32 Order No.: H76473-8.0

Postcondition

The function may or may not return depending on the error.

psm2_error_get_string

Syntax

const char* psm2_error_get_string (psm2_error_t error)

Get generic error string from error. Function to return the default error string
associated to a PSM2 error. While a more detailed and precise error string is usually
available within error handlers, this function is available to obtain an error string out
of an error handler context or when a no-op error handler is registered.

Parameters

error PSM2 error.

PSM2 Device Endpoint Management

Data Structures

psm2_ep_open_opts

Endpoint Open Options. These options are available for opening a PSM2 endpoint.
Each is individually documented. Setting each option to -1 or passing NULL as the
options parameter in psm2_ep_open instructs PSM2 to use implementation-defined
defaults.

Additional details are documented in the psm2_ep_open Options section.

Data Fields:

Field Description

int64_t timeout Timeout in nanoseconds to open device.

int unit Intel® Omni-Path Unit ID to open on.
Note: The Intel® PSM2 implementation has a limit of
four (4) HFIs.

int affinity How PSM2 should set affinity.

int shm_mbytes Megabytes used for intra-node communication.

int sendbufs_num Preallocated send buffers.

uint64_t network_pkey Network Protection Key (v1.01).

int port Intel® Omni-Path port to use. Range = 1 to N.

int outsl Intel® Omni-Path SL to use when sending packets.

uint64_t service_id Intel® Omni-Path Service ID to use for endpoint.

continued...

3.1.5.5

3.2

3.2.1

3.2.1.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 33

Field Description

psm2_path_res_t path_res_type Path resolution type.

int senddesc_num Preallocated send descriptors.

int imm_size Immediate data size for endpoint.

Defines

Table 6. Endpoint Defines

Define Description

#define PSM2_EP_OPEN_AFFINITY_SKIP Disable setting affinity.

#define PSM2_EP_OPEN_AFFINITY_SET Enable setting affinity unless already set.

#define PSM2_EP_OPEN_AFFINITY_FORCE Enable setting affinity regardless of current affinity
setting.

#define PSM2_EP_OPEN_PKEY_DEFAULT Default protection key.

#define PSM2_EP_CLOSE_GRACEFUL Graceful close mode in psm2_ep_close.

#define PSM2_EP_CLOSE_FORCE Forceful close mode in psm2_ep_close.

Typedefs

Table 7. Endpoint Typedefs

Typedef Description

typedef psm2_ep *psm2_ep_t Local endpoint handle (opaque). Handle is returned
when a new local endpoint is created. The handle is
a local handle to be used in all communication
functions and is not intended to globally identify the
opened endpoint in any way.
All open endpoint handles can be globally identified
using the endpoint id integral type (psm2_epid_t)
and all communication must use an endpoint address
(psm2_epaddr_t) that can be obtained by
connecting a local endpoint to one or more endpoint
identifiers.

typedef uint64_t psm2_epid_t Endpoint ID. Integral type of size 8 bytes that can be
used to globally identify a successfully opened
endpoint. Although the contents of the endpoint id
integral type remains opaque, unique network ID
and Intel® Omni-Path port number can be extracted
using psm2_epid_nid and psm2_epid_port.

typedef psm2_epaddr *psm2_epaddr_t Endpoint Address (opaque). Remote endpoint
addresses are created when you bind an endpoint ID
to a particular endpoint handle using
psm2_ep_connect. A given endpoint address is
only guaranteed to be valid over a single endpoint.

typedef uint8_t psm2_uuid_t[16] PSM2 Unique UID (UUID). PSM2 type equivalent to
the DCE-1 uuid_t, used to uniquely identify an
endpoint within a particular job. Since PSM2 does not
participate in job allocation and management, you
must generate a unique ID to associate endpoints to
a particular parallel or collective job. See also:
psm2_uuid_generate.

3.2.2

3.2.3

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
34 Order No.: H76473-8.0

Functions

Table 8. Endpoint Functions

Function Description

psm2_epid_nid (psm2_epid_t epid) Get Endpoint identifier's Unique Network ID.

psm2_epid_port (psm2_epid_t epid) Get Endpoint identifier's Intel® Omni-Path port.

psm2_epid_context (psm2_epid_t epid) Get Endpoint identifier's Intel® Omni-Path context
number.

psm2_map_nid_hostname(int num, const
uint64_t *nids, const char **hostnames)

Provide a mapping from network ID (LID) to
hostnames.
For details, see psm2_map_nid_hostname.

psm2_ep_num_devunits (uint32_t
*num_units)

List the number of available Intel® Omni-Path units.
For details, see psm2_ep_num_devunits.

psm2_uuid_generate (psm2_uuid_t
uuid_out)

Utility to generate UUIDs for psm2_ep_open.
For details, see psm2_uuid_generate.

psm2_ep_open_opts_get_defaults (struct
psm2_ep_open_opts *opts);

Endpoint open default options.
For details, see psm2_ep_open_opts_get_defaults.

psm2_ep_open (const psm2_uuid_t
unique_job_key, const struct
psm2_ep_open_opts *opts, psm2_ep_t *ep,
psm2_epid_t *epid)

Intel® Omni-Path endpoint creation.
For details, see psm2_ep_open.

psm2_ep_epid_share_memory (psm2_ep_t ep,
psm2_epid_t epid, int *result)

Endpoint shared memory query.
For details, see psm2_ep_epid_share_memory.

psm2_ep_close (psm2_ep_t ep, int mode,
int64_t timeout)

Close endpoint.
For details, see psm2_ep_close.

psm2_ep_connect (psm2_ep_t ep, int
num_of_epid, const psm2_epid_t
*array_of_epid, const int
*array_of_epid_mask, psm2_error_t
*array_of_errors, psm2_epaddr_t
*array_of_epaddr, int64_t timeout)

Connect one or more remote endpoints to a local
endpoint.
For details, see psm2_ep_connect.

psm2_ep_disconnect (psm2_ep_t ep, int
num_of_epaddr, const psm2_epaddr_t
*array_of_epaddr, const int
*array_of_epaddr_mask, psm2_error_t
*array_of_errors, int64_t timeout)

Disconnect one or more remote endpoints from a
local endpoint.
For details, see psm2_ep_disconnect.

psm2_poll (psm2_ep_t ep) Ensure endpoint communication progress.
For details, see psm2_poll.

psm2_epaddr_setlabel (psm2_epaddr_t
epaddr, const char *epaddr_label_string)

Set a user-determined ep address label.
For details, see psm2_epaddr_setlabel.

psm2_ep_query (int *num_of_epinfo,
psm2_epinfo_t *array_of_epinfo)

Query PSM2 for endpoint information.
For details, see psm2_ep_query.

psm2_ep_epid_lookup (psm2_epid_t epid,
psm2_epconn_t *epconn)

Query PSM2 for endpoint connections.
For details, see psm2_ep_epid_lookup.

psm2_ep_epid_lookup2 (psm2_ep_t ep,
psm2_epid_t epid, psm2_epconn_t *epconn)

Query specified PSM2 endpoint for its connections.
For details, see psm2_ep_epid_lookup2.

psm2_epaddr_to_epid
(psm2_epaddr_to_epid)

Get PSM2 epid for given epaddr.
For details, see psm2_epaddr_to_epid.

3.2.4

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 35

psm2_map_nid_hostname

Syntax

psm2_error_t psm2_map_nid_hostname(int num, const uint64_t *nids, const char
**hostnames)

Provide a mapping from Network ID (LID) to hostnames.

Since PSM2 does not assume or rely on the availability of an external network ID-to-
hostname mapping service, users can provide one or more of these mappings. The
psm2_map_nid_hostname function allows a list of network ids to be associated with
hostnames.

This function is not mandatory for correct operation but may allow PSM2 to provide
better diagnostics when remote endpoints are unavailable and can otherwise only be
identified by their Network ID.

Parameters

num Number elements in nid and hostnames arrays.

nids User-provided array of network IDs (that is, Intel® Omni-Path LIDs),
should be obtained by calling psm2_epid_nid on each epid.

hostnames User-provided array of hostnames (array of NULL-terminated strings)
where each hostname index maps to the provided nid hostname.

Warning

Duplicate nids may be provided in the input nids array, only the first corresponding
hostname is remembered.

Precondition

You may or may not have already provided a hostname mappings.

Postcondition

You may free any dynamically allocated memory passed to the function.

psm2_ep_num_devunits

Syntax

psm2_error_t psm2_ep_num_devunits (uint32_t *num_units)

List the number of available Intel® Omni-Path units. Function used to determine the
amount of locally available Intel® Omni-Path units. For N units, valid unit numbers in
psm2_ep_open are 0 to N-1.

3.2.4.1

3.2.4.2

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
36 Order No.: H76473-8.0

Returns

PSM2_OK Unless you have not called psm2_init.

psm2_uuid_generate

Syntax

void psm2_uuid_generate (psm2_uuid_t uuid_out)

Utility to generate UUIDs for psm2_ep_open. Utility to generate UUIDs for
psm2_ep_open. This function is available as a utility for generating unique job-wide
ids. See discussion in psm2_ep_open for further information.

Remarks

This function does not require PSM2 to be initialized.

psm2_ep_open_opts_get_defaults

Syntax

psm2_error_t psm2_ep_open_opts_get_defaults (struct psm2_ep_open_opts *opts);

Function used to initialize the set of endpoint options to their default values for use in
psm2_ep_open.

Parameters

opts Endpoint Open options.

Warning

For portable operation, you should always call this function prior to calling
psm2_ep_open.

Returns

PSM2_OK If result could be updated.

PSM2_INIT_NOT_INIT If PSM2 has not been initialized.

PSM2_PARAM_ERR If user passes invalid parameters to the API.

psm2_ep_open

Syntax

psm2_error_t psm2_ep_open (const psm2_uuid_t unique_job_key, const
struct psm2_ep_open_opts *opts, psm2_ep_t *ep, psm2_epid_t *epid)

3.2.4.3

3.2.4.4

3.2.4.5

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 37

Endpoint creation.

Function used to create a new local communication endpoint on an Intel® Omni-Path
HFI. The returned endpoint handle is required in all PSM2 communication operations,
as PSM2 can manage communication over multiple endpoints. An opened endpoint has
no global context until you connect the endpoint to other global endpoints by way of
psm2_ep_connect. All local endpoint handles are globally identified by endpoint IDs
(psm2_epid_t) which are also returned when an endpoint is opened. It is assumed
that you can provide an out-of-band mechanism to distribute the endpoint IDs in
order to establish connections between endpoints (see psm2_ep_connect for more
information).

Parameters

unique_job_key Endpoint key, to uniquely identify the endpoint's job. You must
ensure that the key is globally unique over a period long enough
to prevent duplicate keys over the same set of endpoints (see
additional details in the following paragraphs).

opts Open options of type psm2_ep_open_opts (see
psm2_ep_open_opts_get_defaults). Note that this
parameter can also be NULL. Refer to the example in psm2_init.

ep User-supplied storage to return a pointer to the newly created
endpoint. The returned pointer of type psm2_ep_t is a local
handle and cannot be used to globally identify the endpoint.

epid User-supplied storage to return the endpoint ID associated to the
newly created local endpoint returned in the ep handle. The
endpoint ID is an integral type suitable for uniquely identifying
the local endpoint.

PSM2 does not internally verify the consistency of the uuid. You must ensure that the
uuid is unique enough not to collide with other currently-running jobs. Use one of the
following mechanisms to obtain a uuid:

1. Use the supplied psm2_uuid_generate utility.

2. Use an OS or library-specific uuid generation utility that complies with OSF DCE
1.1, such as uuid_generate on Linux* or uuid_create on FreeBSD*.

See: http://www.opengroup.org/onlinepubs/009629399/uuid_create.htm.

3. Manually pack a 16-byte string using a utility such as /dev/random or other source
with enough entropy and proper seeding to prevent two nodes from generating
the same uuid_t.

Options

The following options are relevant when opening an endpoint:

• timeout establishes the amount of nanoseconds to wait before failing to open a
port (with -1, defaults to 30 secs).

• unit sets the unit number to use to open a port (with -1, PSM2 determines the
best unit to open the port). If HFI_UNIT is set in the environment, this setting is
ignored.

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
38 Order No.: H76473-8.0

http://www.opengroup.org/onlinepubs/009629399/uuid_create.htm

• affinity enables or disables PSM2 setting processor affinity. The option can be
controlled to either disable (PSM2_EP_OPEN_AFFINITY_SKIP) or enable the
affinity setting only if it is already unset (PSM2_EP_OPEN_AFFINITY_SET) or
regardless of affinity begin set or not (PSM2_EP_OPEN_AFFINITY_FORCE). If
HFI_NO_CPUAFFINITY is set in the environment, this setting is ignored.

• shm_mbytes sets a maximum amount of megabytes that can be allocated to each
local endpoint ID connected through this endpoint (with -1, defaults to 10 MB).

• sendbufs_num sets the number of send buffers that can be pre-allocated for
communication (with -1, defaults to 512 buffers of MTU size).

• network_pkey sets the protection key to employ for point-to-point PSM2
communication. Unless a specific value is used, this parameter should be set to
PSM2_EP_OPEN_PKEY_DEFAULT.

• port sets the Intel® Omni-Path port to use. Range = 1 to N.

• outsl sets the Intel® Omni-Path SL to use when sending packets. Range = 0 to
31. Check with your network administrator for details.

• service_id sets the Intel® Omni-Path Service ID to use for an endpoint. Used
for path resolution. Default is 0x1000117500000000ULL

See PSM2_IB_SERVICE_ID for more details.

• path_res_type sets the path resolution type. Values include:

— PSM2_PATH_RES_NONE (default)

— PSM2_PATH_RES_OPP
— PSM2_PATH_RES_UMAD
See PSM2_PATH_REC for more details.

• senddesc_num sets preallocated send descriptors. Default = 1048576 (1 Million).

See PSM2_MQ_RNDV_HFI_THRESH for more details.

• imm_size sets the immediate data send size not requiring a buffer. Default = 128
bytes.

Postcondition

Depending on the environment variable PSM2_MULTI_EP being set and its contents,
support for opening multiple endpoints is either enabled or disabled.

Warning

By default, PSM2 limits the user to calling psm2_ep_open only once per process and
subsequent calls will fail. To enable creation of multiple endpoints per process, you
must properly set the environment variable PSM2_MULTI_EP before calling
psm2_init.

Returns

PSM2_PARAM_ERR If user passes invalid parameters to the API.

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 39

Example

// In order to open an endpoint and participate in a job, each endpoint has
// to be distributed a unique 16-byte UUID key from an out-of-band source.
// Presumably this can come from the parallel spawning utility either
// indirectly through an implementors own spawning interface or as in this
// example, the UUID is set as a string in an environment variable
// propagated to all endpoints in the job.

int try_to_open_psm2_endpoint(psm2_ep_t *ep, // output endpoint handle
 psm2_epid_t *epid, // output endpoint identifier
 int unit) // unit of our choice
{
 psm2_ep_open_opts epopts;
 psm2_uuid_t job_uuid;
 char *c;

 // Let PSM2 assign its default values to the endpoint options.
 psm2_ep_open_opts_get_defaults(&epopts);

 // We want a stricter timeout and a specific unit
 epopts.timeout = 15*1e9; // 15 second timeout
 epopts.unit = unit; // We want a specific unit, -1 would let PSM2
 // choose the unit for us.
 // We’ve already set affinity, don’t let PSM2 do so if it wants to.
 if (epopts.affinity == PSM2_EP_OPEN_AFFINITY_SET)
 epopts.affinity = PSM2_EP_OPEN_AFFINITY_SKIP;

 // ENDPOINT_UUID is set to the same value in the environment of all the
 // processes that wish to communicate over PSM2 and was generated by
 // the process spawning utility.
 c = getenv("ENDPOINT_UUID");
 if (c && *c)
 implementor_string_to_16byte_packing(c, job_uuid);
 else {
 fprintf(stderr, "Can't find UUID for endpoint\n);
 return -1;
 }

 // Assume we don't want to handle errors here.
 psm2_ep_open(job_uuid, &epopts, ep, epid);
 return 1;
}

psm2_ep_epid_share_memory

Syntax

psm2_error_t psm2_ep_epid_share_memory (psm2_ep_t ep, psm2_epid_t
epid, int *result)

Endpoint shared memory query. Function used to determine if a remote endpoint
shares memory with a currently opened local endpoint.

Parameters

ep Endpoint handle.

epid Endpoint ID.

result Is non-zero if the remote endpoint shares memory with the local endpoint
ep, or zero otherwise.

3.2.4.6

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
40 Order No.: H76473-8.0

Returns

PSM2_OK If result could be updated.

PSM2_EPID_UNKNOWN If the epid is not recognized.

psm2_ep_close

Syntax

psm2_error_t psm2_ep_close (psm2_ep_t ep, int mode, int64_t timeout)

Close endpoint.

Parameters

ep Endpoint handle.

mode One of PSM2_EP_CLOSE_GRACEFUL or PSM2_EP_CLOSE_FORCE.

If mode is PSM2_EP_CLOSE_GRACEFUL, before closing the endpoint, the
function attempts to disconnect from any other endpoints that are
connected, and also waits for connected endpoints to disconnect. If the
timeout is reached and there are still unresolved open connections, the
endpoint is closed as if mode was set to PSM2_EP_CLOSE_FORCE.

If mode is PSM2_EP_CLOSE_FORCE, the endpoint is closed without
ensuring that any open connections are successfully disconnected.

timeout How long to wait in nanoseconds for negotiated disconnects to succeed. If
mode is PSM2_EP_CLOSE_GRACEFUL, 0 waits forever. -1 lets the function
decide using an internal heuristic. If mode is PSM2_EP_CLOSE_FORCE, this
parameter is ignored.

The following error is returned, others are handled by the per-endpoint error handler:

Returns

PSM2_OK Endpoint was successfully closed without force or successfully closed with
force within the supplied timeout.

psm2_ep_connect

Syntax

psm2_error_t psm2_ep_connect (psm2_ep_t ep, int num_of_epid, const
psm2_epid_t *array_of_epid, const int *array_of_epid_mask,
psm2_error_t *array_of_errors, psm2_epaddr_t *array_of_epaddr,
int64_t timeout)

3.2.4.7

3.2.4.8

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 41

Connect one or more remote endpoints to a local endpoint. Function to non-
collectively establish a connection to a set of endpoint IDs and translate endpoint IDs
into endpoint addresses. Establishing a remote connection with a set of remote
endpoint IDs does not imply a collective operation and you are free to connect
unequal sets on each process. Similarly, a given endpoint address does not imply that
a pairwise communication context exists between the local endpoint and remote
endpoint.

Parameters

ep Endpoint handle.

num_of_epid The number of endpoints to connect to, which also
establishes the amount of elements contained in all of the
function's array-based parameters.

array_of_epid User-allocated array that contains num_of_epid valid
endpoint identifiers. Each endpoint id (or epid) has been
obtained through an out-of-band mechanism and each
endpoint must have been opened with the same uuid key.

array_of_epid_mask User-allocated array that contains num_of_epid integers.
This array of masks allows users to select which of the epids
in array_of_epid should be connected. If the integer at
index i is zero, PSM2 does not attempt to connect to the
epid at index i in array_of_epid. If this parameter is
NULL, PSM2 tries to connect to each epid.

array_of_errors User-allocated array of at least num_of_epid elements. If
the function does not return PSM2_OK, this array can be
consulted for each endpoint not masked off by
array_of_epid_mask to know why the endpoint could not
be connected. Endpoints that could not be connected
because of an unrelated failure are marked as
PSM2_EPID_UNKNOWN. If the function returns PSM2_OK, the
errors for all endpoints also contain PSM2_OK.

array_of_epaddr User-allocated array of at least num_of_epid elements of
type psm2_epaddr_t. Each successfully connected endpoint
is updated with an endpoint address handle that corresponds
to the endpoint id at the same index in array_of_epid.
Handles are only updated if the endpoint could be connected
and if its error in array_of_errors is PSM2_OK.

timeout Timeout in nanoseconds after which connection attempts are
abandoned. Setting this value to 0 disables timeout and
waits until all endpoints have been successfully connected or
until an error is detected.

Precondition

You have opened a local endpoint and obtained a list of endpoint IDs to connect to a
given endpoint handle using an out-of-band mechanism not provided by PSM2.

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
42 Order No.: H76473-8.0

Postcondition

If the connect is successful, array_of_epaddr is updated with valid endpoint
addresses.

If unsuccessful, you can query the return status of each individual remote endpoint in
array_of_errors.

You can call into psm2_ep_connect many times with the same endpoint ID and the
function is guaranteed to return the same output parameters. PSM2 does not keep
any reference to the arrays passed into the function and the caller is free to deallocate
them.

The error value with the highest importance is returned by the function if some
portion of the communication failed. Users should always refer to individual errors in
array_of_errors whenever the function cannot return PSM2_OK.

Returns

PSM2_OK The entire set of endpoint IDs were successfully connected and endpoint
addresses are available for all endpoint IDs.

Example

int connect_endpoints(psm2_ep_t ep, int numep, const psm2_epid_t
 *array_of_epid, psm2_epaddr_t
**array_of_epaddr_out)
{
 psm2_error_t *errors = (psm2_error_t *)
 calloc(numep, sizeof(psm2_error_t));
 if (errors == NULL)

 return -1;

 psm2_epaddr_t *all_epaddrs =
 (psm2_epaddr_t *) calloc(numep, sizeof(psm2_epaddr_t));
 if (all_epaddrs == NULL)
 return -1;
 psm2_ep_connect(ep, numep, array_of_epid,
 NULL, // We want to connect all epids, no mask needed
 errors,
 all_epaddrs,
 30*e9); // 30 second timeout, <1 ns is forever
 *array_of_epaddr_out = all_epaddrs; free(errors);
 return 1;
}

psm2_ep_disconnect

Syntax

psm2_error_t psm2_ep_disconnect (psm2_ep_t ep, int num_of_epaddr,
psm2_epaddr_t *array_of_epaddr, const int *array_of_epaddr_mask,
psm2_error_t *array_of_errors, int64_t timeout)

Disconnect one or more remote endpoints from a local endpoint. Function to non-
collectively disconnect a connection to a set of endpoint addresses and free each of
the endpoint addresses if there are no incoming connections to that endpoint address.

3.2.4.9

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 43

After disconnecting, the application cannot send messages to the remote processes
again and PSM2 is restored back to the state before calling psm2_ep_connect. The
application must call psm2_ep_connect to establish the connections again.

Parameters

ep Endpoint handle.

num_of_epaddr The number of endpoint addresses to disconnect from,
which also indicates the amount of elements contained in
all of the function's array-based parameters.

array_of_epaddr User-allocated array that contains num_of_epaddr valid
endpoint addresses. Each endpoint address (or epaddr)
has been obtained through a previous psm2_ep_connect
call.

array_of_epaddr_mask User-allocated array that contains num_of_epaddr
integers. This array of masks allows users to select which
of the epaddresses in array_of_epaddr should be
disconnected. If the integer at index i is zero, PSM2 does
not attempt to disconnect to the epaddr at index i in
array_of_epaddr. If this parameter is NULL, PSM2 tries
to disconnect all epaddr in array_of_epaddr.

array_of_errors User-allocated array of at least num_of_epaddr
elements. If the function does not return PSM2_OK, this
array can be consulted for each endpoint address not
masked off by array_of_epaddr_mask to know why the
endpoint could not be disconnected. Any endpoint address
that could not be disconnected because of an unrelated
failure is marked as PSM2_EPID_UNKNOWN. If the function
returns PSM2_OK, the errors for all endpoint addresses
also contain PSM2_OK.

timeout Timeout in nanoseconds after which disconnection
attempts are abandoned. Setting this value to 0 disables
timeout and waits until all endpoints have been
successfully disconnected or until an error is detected.

Precondition

You have established the connections with previous psm2_ep_connect calls.

Postcondition

If the disconnect is successful, the corresponding epaddr in array_of_epaddr is
reset to NULL pointer.

If unsuccessful, you can query the return status of each individual remote endpoint in
array_of_errors.

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
44 Order No.: H76473-8.0

PSM2 does not keep any reference to the arrays passed into the function and the
caller is free to deallocate them.

The error value with the highest importance is returned by the function if some
portion of the communication failed. Refer to individual errors in array_of_errors
whenever the function cannot return PSM2_OK.

Returns

PSM2_OK The entire set of endpoint IDs were successfully disconnected and endpoint
addresses are freed by PSM2.

Example

int disconnect_endpoints(psm2_ep_t ep, int num_epaddr, const psm2_epaddr_t
 *array_of_epaddr)
{
 psm2_error_t *errors = (psm2_error_t *)
 calloc(num_epaddr, sizeof(psm2_error_t));
 if (errors == NULL)
 return -1;

 psm2_ep_disconnect(ep, num_epaddr, array_of_epaddr,
 NULL, // We want to disconnect all epaddrs, no mask needed,
 errors,
 30*e9); // 30 second timeout, <1 ns is forever

 free(errors);
 return 1;
}

psm2_poll

Syntax

psm2_error_t psm2_poll (psm2_ep_t ep)

Ensure endpoint communication progress.

Function to ensure progress for all PSM2 components instantiated on an endpoint
(currently, this only includes the MQ component). The function never blocks and is
typically required in two cases:

• Allowing all PSM2 components instantiated over a given endpoint to make
communication progress. Refer to MQ Progress Requirements on page 26 for a
detailed discussion on MQ-level progress issues.

• Cases where users write their own synchronization primitives that depend on
remote communication, such as spinning on a memory location whose new value
depends on ongoing communication.

The poll function does not block, but you can rely on the PSM2_OK_NO_PROGRESS
return value to control polling behavior in terms of frequency (poll until an event
happens) or execution environment (poll for a while but yield to other threads of CPUs
are oversubscribed).

3.2.4.10

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 45

Returns

PSM2_OK Some communication events were progressed.

PSM2_OK_NO_PROGRESS Polling did not yield any communication progress.

psm2_epaddr_setlabel

Syntax

void psm2_epaddr_setlabel (psm2_epaddr_t epaddr, const char *epaddr_label_string)

Set a user-determined ep address label.

Parameters

epaddr Endpoint address, obtained from psm2_ep_connect.

epaddr_label_string User-allocated string to print when identifying endpoint in
error handling or other verbose printing. You must allocate
the NULL-terminated string since PSM2 only keeps a
pointer to the label. If you do not explicitly set a label for
each endpoint, endpoints identify themselves as
hostname:port.

psm2_ep_query

Syntax

psm2_error_t psm2_ep_query(int *num_of_epinfo, psm2_epinfo_t *array_of_epinfo)

Function to query PSM2 for endpoint information. This allows retrieval of endpoint
information in cases where the caller does not have access to the results of
psm2_ep_open. In the default single-rail mode, PSM2 uses a single endpoint. If either
multi-rail mode or multi-endpoint mode is enabled, PSM2 uses multiple endpoints.

Parameters

num_of_epinfo On input, sizes the available number of entries in
array_of_epinfo.

On output, specifies the returned number of entries in
array_of_epinfo.

array_of_epinfo Returns endpoint information structures.

Precondition

PSM2 is initialized and the endpoint has been opened.

3.2.4.11

3.2.4.12

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
46 Order No.: H76473-8.0

Returns

PSM2_OK Indicates success.

PSM2_PARAM_ERR If input num_if_epinfo is less than or equal to zero.

PSM2_EP_WAS_CLOSED If PSM2 endpoint is closed or does not exist.

psm2_ep_epid_lookup

Syntax

psm2_error_t psm2_ep_epid_lookup(psm2_epid_t epid, psm2_epconn_t *epconn)

Function to query PSM2 for endpoint connections. This allows retrieval of endpoint
connections in cases where the caller does not have access to the results of
psm2_ep_connect. The epid values can be found using psm2_ep_query so that
each PSM2 process can determine its own epid. These values can then be distributed
across the PSM2 process so that each PSM process knows the epid for all other PSM2
processes.

Parameters

epid Endpoint ID of a PSM2 process.

epconn Returns connection information for the specified PSM2 process.

Precondition

PSM2 is initialized and the endpoint has been connected to this epid.

Returns

PSM2_OK Indicates success.

PSM2_EP_WAS_CLOSED If PSM2 endpoint is closed or does not exist.

PSM2_EPID_UNKNOWN If the epid is not recognized.

psm2_ep_epid_lookup2

Syntax

psm2_error_t psm2_ep_epid_lookup2(psm2_ep_t ep, psm2_epid_t epid, psm2_epconn_t
*epconn)

Function to query PSM2 endpoint for its connections.

Note: This function is similar to psm2_ep_epid_lookup, however, it contains an extra
endpoint parameter which limits the lookup to that single ep.

3.2.4.13

3.2.4.14

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 47

Parameters

ep PSM2 endpoint handle.

epid Endpoint ID of a PSM2 process.

epconn Returns connection information for the specified PSM2 process.

Returns

PSM2_OK Indicates success.

PSM2_EP_WAS_CLOSED If PSM2 endpoint is closed or does not exist.

PSM2_EPID_UNKNOWN If the epid is not recognized.

PSM2_PARAM_ERR If output epconn is NULL.

psm2_epaddr_to_epid

Syntax

psm2_error_t psm2_epaddr_to_epid(psm2_epaddr_t epaddr, psm2_epid_t *epid)

Get PSM2 epid for given epaddr.

Parameters

epaddr Endpoint address.

epid Returns endpoint ID of a PSM2 process.

Returns

PSM2_OK Indicates success.

PSM2_PARAM_ERR If input epaddr or output epconn is NULL.

PSM2 Matched Queues

Modules

PSM2 Matched Queue Options.

3.2.4.15

3.3

3.3.1

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
48 Order No.: H76473-8.0

Data Structures

Table 9. Matched Queues Data Structures

Data Structure Description

psm2_mq_status MQ Non-blocking operation status structure.
For details, see psm2_mq_status on page 49.

psm2_mq_stats MQ statistics structure.
For details, see MQ Statistics Structure on page
49.

psm2_tag_t MQ 96-bit tag structure
For details, see psm2_tag_t on page 50.

psm2_mq_status2_t MQ status structure for 96-bit (psm2_tag_t) non-
blocking operations.
For details, see psm2_mq_status2 on page 50.

psm2_mq_status

 struct psm2_mq_status

MQ Non-blocking operation status structure

Message completion status for asynchronous communication operations. For wait and
test functions, MQ fills in the structure upon completion. Upon completion, receive
requests fill in every field of the status structure while send requests only return a
valid error_code and context pointer.

Data Fields:

Field Description

uint64_t msg_tag Sender's original message tag (receive reqs only).

uint32_t msg_length Sender's original message length (receive reqs only).

uint32_t nbytes Actual number of bytes transferred (receive reqs
only).

psm2_error_t error_code MQ error code for communication operation.

void *context User-associated context for send or receive.

MQ Statistics Structure

struct psm2_mq_stats

MQ statistics structure

Data Fields:

Field Description

uint64_t rx_user_bytes Bytes received into a matched user buffer.

uint64_t rx_user_num Messages received into a matched user buffer.

continued...

3.3.2

3.3.2.1

3.3.2.2

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 49

Field Description

uint64_t rx_sys_bytes Bytes received into an unmatched system buffer.

uint64_t rx_sys_num Messages received into an unmatched system buffer.

uint64_t tx_num Total Messages transmitted (shm and hfi).

uint64_t tx_eager_num Messages transmitted eagerly.

uint64_t tx_eager_bytes Bytes transmitted eagerly.

uint64_t tx_rndv_num Messages transmitted using expected TID
mechanism.

uint64_t tx_rndv_bytes Bytes transmitted using expected TID mechanism.

uint64_t tx_shm_num Messages transmitted (shm only).

uint64_t rx_shm_num Messages received through shm.

uint64_t rx_sysbuf_num Number of system buffers allocated.

uint64_t rx_sysbuf_bytes Bytes allocated for system buffers

uint64_t _reserved[16] Internally reserved for future use.

psm2_tag_t

struct psm2_tag_t

MQ 96-bit tag structure

Data Fields:

Field Description

uint32_t tag[3] Message tag bits. The backwards-compatible 64-bit
component of the tag is stored in tag[0] and tag[1].

psm2_mq_status2

struct psm2_mq_status2

MQ Non-blocking operation status structure

Message completion status for asynchronous communication operations. For wait and
test functions, MQ fills in the structure upon completion. Upon completion, receive
requests fill in every field of the status structure while send requests only return a
valid error_code and context pointer.

Data Fields:

Field Description

psm2_epaddr_t msg_peer Remote peer's epaddr.

psm2_mq_tag_t msg_tag Sender's original message tag.

uint32_t msg_length Sender's original message length (receive reqs only).

continued...

3.3.2.3

3.3.2.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
50 Order No.: H76473-8.0

Field Description

uint32_t nbytes Actual number of bytes transferred (receive reqs
only).

psm2_error_t error_code MQ error code for communication operation.

void * context User-associated context for send or receive.

Defines

Table 10. Matched Queues Defines

#define PSM2_MQ_ORDERMASK_NONE Used to initialize MQ and disable all MQ message
ordering guarantees (this mask may prevent the use
of MQ to maintain matched message envelope
delivery required in MPI).

#define PSM2_MQ_ORDERMASK_ALL Used to initialize MQ with no message ordering hints,
which forces MQ to maintain order over all
messages.

#define PSM2_MQ_FLAG_SENDSYNC MQ Send Force synchronous send.

#define PSM2_MQ_REQINVALID MQ request completion value.

#define PSM2_MQ_NUM_STATS How many stats are currently used in
psm2_mq_stats.

#define PSM2_MQ_ANY_ADDR psm2_epaddr_t that matches any epaddr in the MQ.

Typedefs

Typedef Description

typedef psm2_mq *psm2_mq_t MQ handle (opaque). Handle returned when a new
Matched Queue is created (psm2_mq_init).

typedef struct psm2_mq_status
psm2_mq_status_t

MQ Non-blocking operation status for 64-bit tagged
operations. Message completion status for
asynchronous communication operations. For wait
and test functions, MQ fills in the structure upon
completion. Other than error_code and context
guaranteed to be valid for send and recv operations,
other struct members are only defined for posted
receives.

typedef struct psm2_mq_status2
psm2_mq_status_t

MQ Non-blocking operation status for 96-bit tagged
operations. Message completion status for
asynchronous communication operations. For wait
and test functions, MQ fills in the structure upon
completion. Other than error_code and context
guaranteed to be valid for send and recv operations,
other struct members are only defined for posted
receives.

typedef struct psm2_mq_stats
psm2_mq_stats_t

Statistics for messages send and received over a
given MQ.

typedef psm2_mq_req *psm2_mq_req_t PSM2 Communication handle (opaque).

3.3.3

3.3.4

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 51

Functions

Table 11. Matched Queue Functions

Function Description

psm2_mq_init (psm2_ep_t ep, uint64_t
tag_order_mask, const struct psm2_optkey
*opts, int numopts, psm2_mq_t *mq)

Initialize the MQ component for MQ communication.
For details, see psm2_mq_init.

psm2_mq_finalize (psm2_mq_t mq) Finalize (close) an MQ handle.
For details, see psm2_mq_finalize.

psm2_mq_irecv (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, uint32_t flags,
void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection
criteria.
For details, see psm2_mq_irecv.

psm2_mq_irecv2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, uint32_t flags,
void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection
criteria, it only matches message from the specified
src process. Source matching is optional. Uses 96-bit
psm2_mq_tag_t instead of 64-bit tag.
For details, see psm2_mq_irecv2.

psm2_mq_send (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
uint64_t stag, const void *buf, uint32_t
len)

Send a blocking MQ message.
For details, see psm2_mq_send.

psm2_mq_send2 (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
psm2_mq_tag_t *stag, const void *buf,
uint32_t len)

Send a blocking MQ message.
For details, see psm2_mq_send2.

psm2_mq_isend (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
uint64_t stag, const void *buf, uint32_t
len, void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message.
For details, see psm2_mq_isend.

psm2_mq_isend2 (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
psm2_mq_tag_t *stag, const void *buf,
uint32_t len, void *context,
psm2_mq_req_t *req)

Send a non-blocking MQ message.
For details, see psm2_mq_isend2.

psm2_mq_iprobe (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, psm2_mq_status_t
*status)

Try to probe if a message is received to match tag
selection criteria.
For details, see psm2_mq_iprobe.

psm2_mq_iprobe2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel,
psm2_mq_status2_t *status)

Try to probe if a message from the specified src
process is received to match tag selection criteria.
Source matching is optional. Uses 96-bit
psm2_mq_tag_t instead of 64-bit tag.
For details, see psm2_mq_iprobe2.

psm2_mq_improbe (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, psm2_mq_req_t
*req, psm2_mq_status_t *status)

Probe for a matching message, and if found, remove
the message from the MQ; the message can be
retrieved through the req.
For details, see psm2_mq_improbe.

psm2_mq_improbe2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, psm2_mq_req_t
*req, psm2_mq_status2_t *status)

Probe for a matching message, and if found, remove
the message from the MQ; the message can be
retrieved through the req.
For details, see psm2_mq_improbe2.

continued...

3.3.5

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
52 Order No.: H76473-8.0

Function Description

psm2_mq_imrecv(psm2_mq_t mq, uintew_t
flags, void *buf, uint32_t len, void
*context, psm2_mq_req_t *req)

Retrieves both 64-bit and 96-bit tagged messages,
through the psm2_mq_req_t, matched by a previous
call to psm2_mq_improbe() or
psm2_mq_improbe2().
For details, see psm2_mq_imrecv.

psm2_mq_ipeek (psm2_mq_t mq,
psm2_mq_req_t *req, psm2_mq_status_t
*status)

Query for non-blocking requests ready for
completion.
For details, see psm2_mq_ipeek.

psm2_mq_ipeek2 (psm2_mq_t mq,
psm2_mq_req_t *req, psm2_mq_status2_t
*status)

Query for 96-bit psm2_mq_tag_t nonblocking
requests ready for completion.
For details, see psm2_mq_ipeek2.

psm2_mq_wait (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Wait until a non-blocking request completes.
For details, see psm2_mq_wait.

psm2_mq_wait2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Wait until a 96-bit psm2_mq_tag_t non-blocking
request completes.
For details, see psm2_mq_wait2.

psm2_mq_test (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Test if a non-blocking request is complete.
For details, see psm2_mq_test.

psm2_mq_test2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Test if a 96-bit psm2_mq_tag_t non-blocking
request completes.
For details, see psm2_mq_test2.

psm2_mq_cancel (psm2_mq_req_t *req) Cancel a preposted request.
For details, see psm2_mq_cancel.

psm2_mq_get_stats (psm2_mq_t mq,
psm2_mq_stats_t *stats)

Retrieve statistics from an instantiated MQ.
For details, see psm2_mq_get_stats.

psm2_mq_init

Syntax

psm2_error_t psm2_mq_init (psm2_ep_t ep, uint64_t tag_order_mask,
const struct psm2_optkey *opts, int numopts, psm2_mq_t *mq)

Initialize the MQ component for MQ communication. This function provides the
Matched Queue handle necessary to perform all Matched Queue communication
operations.

Parameters

ep Endpoint over which to initialize Matched Queue.

tag_order_mask Order mask hint to let MQ know what bits of the send tag are
required to maintain MQ message order. In MPI parlance, this
mask sets the bits that store the context (or communicator ID).
You can choose to pass PSM2_MQ_ORDERMASK_NONE or
PSM2_MQ_ORDERMASK_ALL to tell MQ to respectively provide no
ordering guarantees or to provide ordering over all messages by
ignoring the contexts of the send tags.

opts Set of options for Matched Queue.

3.3.5.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 53

numopts Number of options passed.

mq User-supplied storage to return the Matched Queue handle
associated to the newly created Matched Queue.

Remarks

This function can be called many times to retrieve the MQ handle associated to an
endpoint, but options are only considered the first time the function is called.

Postcondition

You obtain a handle to an instantiated Match Queue.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK A new Matched Queue has been instantiated across all the members of the
group.

Example

int try_open_endpoint_and_initialize_mq(
 psm2_ep_t *ep, // endpoint handle
 psm2_epid_t *epid, // unique endpoint ID
 psm2_uuid_t job_uuid, // unique job uuid, for ep_open
 psm2_mq_t *mq, // MQ handle initialized on endpoint 'ep'
 uint64_t communicator_bits) // Where we store our communicator or
 // context bits in the 64-bit tag.
{
 // Simplifed open, see psm2_ep_open documentation for more info
 psm2_ep_open(job_uuid,
 NULL, // no options
 ep, epid);

 // We initialize a matched queue by telling PSM2 the bits that are
 // order-significant in the tag. Point-to-point ordering is not
 // maintained between senders where the communicator bits are not
 // the same.
 psm2_mq_init(ep,
 communicator_bits,
 NULL, // no other MQ options
 0, // 0 options passed
 mq); // newly initialized matched Queue

 return 1;
}

psm2_mq_finalize

Syntax

psm2_error_t psm2_mq_finalize (psm2_mq_t mq)

Finalize (close) an MQ handle.

3.3.5.2

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
54 Order No.: H76473-8.0

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK A given Matched Queue has been freed and use of the future use of the
handle produces undefined results.

psm2_mq_irecv

Syntax

psm2_error_t psm2_mq_irecv (psm2_mq_t mq, uint64_t rtag,
uint64_t rtagsel, uint32_t flags, void *buf, uint32_t len,
void *context, psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection criteria. Function to receive a
non- blocking MQ message by providing a preposted buffer. For every MQ message
received on a particular MQ, the tag and tagsel parameters are used against the
incoming message's send tag as described in MQ Tag Matching on page 23.

Parameters

mq Matched Queue handle.

rtag Receive tag.

rtagsel Receive tag selector.

flags Receive flags (None currently supported).

buf Receive buffer.

len Receive buffer length.

context User context pointer, available in psm2_mq_status_t upon completion.

req PSM2 MQ Request handle created by the preposted receive, to be used for
explicitly controlling message receive completion.

Precondition

The supplied receive buffer is given to MQ to match against incoming messages unless
it is cancelled via psm2_mq_cancel before any match occurs.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

3.3.5.3

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 55

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The receive buffer has successfully been posted to the MQ.

psm2_mq_irecv2

Syntax

psm2_error_t psm2_mq_irecv2 (psm2_mq_t mq, psm2_epaddr_t src,
psm2_mq_tag_t *rtag, psm2_mq_tag_t *rtagsel, uint32_t flags, void
*buf, uint32_t len, void *context, psm2_mq_req_t *req)

Post a receive to a Matched Queue with source and tag selection criteria. Function to
receive a nonblocking MQ message by providing a preposted buffer. Only for every MQ
message received from the specified source process on a particular MQ, the src, tag,
and tagsel parameters are used against the incoming message's send tag as
described in MQ Tag Matching on page 23.

If argument src is NULL pointer, then every MQ message received from any process is
used to do the matching, which is equivalent to psm2_mq_irecv.

Parameters

mq Matched Queue handle.

src Source EP address; PSM2_MQ_ANY_ADDR can allow a match on any sender.

rtag Receive tag pointer.

rtagsel Receive tag selector pointer.

flags Receive flags (None currently supported).

buf Receive buffer.

len Receive buffer length.

context User context pointer, available in psm2_mq_status2_t upon completion.

req PSM2 MQ Request handle created by the preposted receive, to be used for
explicitly controlling message receive completion.

Postcondition

The supplied receive buffer is given to MQ to match against incoming messages unless
it is cancelled via psm2_mq_cancel before any match occurs.

3.3.5.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
56 Order No.: H76473-8.0

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The receive buffer has successfully been posted to the MQ.

psm2_mq_send

Syntax

psm2_error_t psm2_mq_send (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, uint64_t stag, const void *buf, uint32_t len)

Send a blocking MQ message. Function to send a blocking MQ message, whereby the
message is locally complete and the source data can be modified upon return.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it
has matched the send with a receive buffer.

stag Message Send Tag.

buf Source buffer pointer.

len Length of message starting at buf.

Postcondition

The source buffer is reusable and the send is locally complete.

Note: This send function has been implemented to best suit MPI_Send.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

3.3.5.5

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 57

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully sent.

psm2_mq_send2

Syntax

psm2_error_t psm2_mq_send2 (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, psm2_mq_tag_t *stag, const void *buf, uint32_t len)

Send a blocking MQ message. Function to send a blocking MQ message, whereby the
message is locally complete and the source data can be modified upon return.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it
has matched the send with a receive buffer.

stag Message Send Tag pointer.

buf Source buffer pointer.

len Length of message starting at buf.

Postcondition

The source buffer is reusable and the send is locally complete.

Note: This send function has been implemented to best suit MPI_Send.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully sent.

3.3.5.6

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
58 Order No.: H76473-8.0

psm2_mq_isend

Syntax

psm2_error_t psm2_mq_isend (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, uint64_t stag, const void *buf, uint32_t len,
void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message. Function to initiate the send of a non-blocking MQ
message. You must ensure that the source data remains unmodified until the send is
locally completed through a call such as psm2_mq_wait or psm2_mq_test.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message
synchronously, meaning that the message is not sent until the receiver
acknowledges that it has matched the send with a receive buffer.

stag Message Send Tag.

buf Source buffer pointer.

len Length of message starting at buf.

context Optional user-provided pointer available in psm2_mq_status_t when the
send is locally completed.

req PSM2 MQ Request handle created by the non-blocking send, to be used for
explicitly controlling message completion.

Postcondition

The source buffer is not reusable and the send is not locally complete until its request
is completed by either psm2_mq_test or psm2_mq_wait.

Note: This send function has been implemented to suit MPI_Isend.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

3.3.5.7

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 59

PSM2_OK The message has been successfully initiated.

Example

psm2_mq_req_t
non_blocking_send(const psm2_mq_t mq, psm2_epaddr_t dest_ep,
 const void *buf, uint32_t len,
 int context_id, int send_tag, const my_request_t *req)
{
 psm2_mq_req_t req_mq;
 // Set up our send tag, assume that "my_rank" is global and
 // represents the rank of this process in the job
 uint64_t tag = (((context_id & 0xffff) << 48) |
 ((my_rank & 0xffff) << 32) |
 ((send_tag & 0xffffffff)));

 psm2_mq_isend(mq, dest_ep,
 0, // no flags
 tag,
 buf,
 len,
 req, // this req is available in psm2_mq_status_t when one
 // of the synchronization functions is called.
 &req_mq);
 return req_mq;
}

psm2_mq_isend2

Syntax

psm2_error_t psm2_mq_isend2 (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, psm2_mq_tag_t *stag, const void *buf, uint32_t len,
void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message. Function to initiate the send of a non-blocking MQ
message. You must ensure that the source data remains unmodified until the send is
locally completed through a call such as psm2_mq_wait2 or psm2_mq_test2.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message
synchronously, meaning that the message is not sent until the receiver
acknowledges that it has matched the send with a receive buffer.

stag Message Send Tag pointer.

buf Source buffer pointer.

len Length of message starting at buf.

3.3.5.8

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
60 Order No.: H76473-8.0

context Optional user-provided pointer available in psm2_mq_status2_t when the
send is locally completed.

req PSM2 MQ Request handle created by the non-blocking send, to be used for
explicitly controlling message completion.

Postcondition

The source buffer is not reusable and the send is not locally complete until its request
is completed by either psm2_mq_test2 or psm2_mq_wait2.

Note: This send function has been implemented to suit MPI_Isend.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully initiated.

psm2_mq_iprobe

Syntax

psm2_error_t psm2_mq_iprobe (psm2_mq_t mq, uint64_t rtag,
uint64_t rtagsel, psm2_mq_status_t *status)

Try to probe if a message is received to match tag selection criteria.

Function to verify whether a message matching the supplied tag and tag selectors has
been received. The function is not fully matched until you provide a buffer with the
successfully matching tag selection criteria through psm2_mq_irecv. Probing for
messages may be useful if the size of the message to be received is unknown, in
which case its size is available in the msg_length member of the returned status.

Parameters

mq Matched Queue handle.

rtag Message receive tag.

rtagsel Message receive tag selector.

status Upon return, status is filled with information regarding the matching send.

3.3.5.9

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 61

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The iprobe is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The iprobe is unsuccessful and status is unchanged.

psm2_mq_iprobe2

Syntax

psm2_error_t psm2_mq_iprobe2 (psm2_mq_t mq, psm2_epaddr_t src,
psm2_mq_tag_t *rtag, psm2_mq_tag_t *rtagsel, psm2_mq_status2_t *status);

Try to probe if a message is received to match tag selection criteria. If src is
PSM2_MQ_ANY_ADDR, messages from all remote processes are used for the matching.

Function to verify whether a message matching the supplied tag and tag selectors has
been received. The function is not fully matched until you provide a buffer with the
successfully matching tag selection criteria through psm2_mq_irecv2. Probing for
messages may be useful if the size of the message to be received is unknown, in
which case its size is available in the msg_length member of the returned status.

Parameters

mq Matched Queue handle.

src Source EP address.

rtag Message receive tag pointer.

rtagsel Message receive tag selector pointer.

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

3.3.5.10

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
62 Order No.: H76473-8.0

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The iprobe2 is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The iprobe2 is unsuccessful and status is unchanged.

psm2_mq_improbe

Syntax

psm2_mq_improbe (psm2_mq_t mq, uint64_t rtag, uint64_t rtagsel,
psm2_mq_req_t *req, psm2_mq_status_t *status)

Probe for a matching message, and if found, remove the message from the MQ; the
message can be retrieved through the req.

Parameters

mq Matched Queue handle.

rtag Message receive tag.

rtagsel Message receive tag selector.

req PSM2 MQ Request handle, to be used for receiving the matched message.

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The improbe is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The improbe is unsuccessful and status is unchanged.

3.3.5.11

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 63

psm2_mq_improbe2

Syntax

psm2_mq_improbe2 (psm2_mq_t mq, psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, psm2_mq_req_t *req, psm2_mq_status2_t *status)

Probe for a matching message, and if found, remove the message from the MQ; the
message can be retrieved through the req.

Parameters

mq Matched Queue handle.

rtag Message receive tag pointer.

rtagsel Message receive tag selector pointer.

req PSM2 MQ Request handle, to be used for receiving the matched message.

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The improbe2 is successful and status is updated if non-
NULL.

PSM2_MQ_INCOMPLETE The improbe2 is unsuccessful and status is unchanged.

psm2_mq_imrecv

Syntax

psm2_mq_imrecv (psm2_mq_t mq, uintew_t flags, void *buf,
uint32_t len, void *context, psm2_mq_req_t *req)

psm2_mq_imrecv() retrieves both 64-bit and 96-bit tagged messages through the
req handle returned by the appropriate improbe function.

Parameters

mq Matched Queue handle.

3.3.5.12

3.3.5.13

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
64 Order No.: H76473-8.0

flags Receive flags (None currently supported).

buf Receive buffer.

len Receive buffer length.

context User context pointer, available in psm2_mq_status_t upon completion.

req PSM2 MQ Request handle created by the preposted receive, to be used for
explicitly controlling message receive completion.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

PSM2_OK The function is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The function is unsuccessful and status is unchanged.

psm2_mq_ipeek

Syntax

psm2_error_t psm2_mq_ipeek (psm2_mq_t mq, psm2_mq_req_t *req, psm2_mq_status_t
*status)

Query for non-blocking requests ready for completion.

Function to query a particular MQ for non-blocking requests that are ready for
completion. Requests "ready for completion" are not actually considered complete by
MQ until they are returned to the MQ library through psm2_mq_wait or
psm2_mq_test.

If you can deal with consuming request completions in the order in which they
complete, this function can be used both for completions and for ensuring progress.
The latter requirement is satisfied when you peek an empty completion queue as a
side effect of always aggressively peeking and completing all of an MQ's requests
ready for completion.

Parameters

mq Matched Queue handle.

req MQ non-blocking request.

3.3.5.14

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 65

status Optional MQ status, can be NULL.

Postcondition

You have ensured progress if the function returns PSM2_MQ_INCOMPLETE.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The peek is successful and req is updated with a request
ready for completion. If status is non-NULL, it is also
updated.

PSM2_MQ_INCOMPLETE The peek is not successful, meaning that there are no
further requests ready for completion. The contents of req
and status remain unchanged.

Example

// Example that uses psm2_mq_ipeek to make progress instead of psm2_poll
// We return the amount of non-blocking requests that we've completed
int main_progress_loop(psm2_mq_t mq)
{
 int num_completed = 0;
 psm2_mq_req_t req;
 psm2_mq_status_t status;
 psm2_error_t err;
 my_request_t *myreq;

 do {
 err = psm2_mq_ipeek(mq, &req,
 NULL); // No need for status in ipeek here
 if (err == PSM2_MQ_INCOMPLETE)
 return num_completed;
 else if (err != PSM2_OK)
 goto errh; num_completed++;

 // We obtained 'req' at the head of the completion queue.
 // We can now free the request with PSM2 and obtain our
 // original request from the status' context
 err = psm2_mq_test(&req, // is marked as invalid
 &status); // we need the status
 myreq = (my_request_t *) status.context;

 // handle the completion for myreq whether myreq is a
 // posted receive or a non-blocking send.

 }
 while (1);
}

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
66 Order No.: H76473-8.0

psm2_mq_ipeek2

Syntax

psm2_error_t psm2_mq_ipeek2 (psm2_mq_t mq, psm2_mq_req_t *req, psm2_mq_status2_t
*status)

Query for non-blocking requests ready for completion.

Function to query a particular MQ for non-blocking requests that are ready for
completion. Requests "ready for completion" are not actually considered complete by
MQ until they are returned to the MQ library through psm2_mq_wait2 or
psm2_mq_test2.

If you can deal with consuming request completions in the order in which they
complete, this function can be used both for completions and for ensuring progress.
The latter requirement is satisfied when you peek an empty completion queue as a
side effect of always aggressively peeking and completing all of an MQ's requests
ready for completion.

Parameters

mq Matched Queue handle.

req MQ non-blocking request.

status Optional MQ status, can be NULL.

Postcondition

You have ensured progress if the function returns PSM2_MQ_INCOMPLETE.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The peek is successful and req is updated with a request
ready for completion. If status is non-NULL, it is also
updated.

PSM2_MQ_INCOMPLETE The peek is not successful, meaning that there are no
further requests ready for completion. The contents of req
and status remain unchanged.

3.3.5.15

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 67

psm2_mq_wait

Syntax

psm2_error_t psm2_mq_wait (psm2_mq_req_t *request, psm2_mq_status_t *status)

Wait until a non-blocking request completes. Function to wait on requests created
from either preposted receive buffers or non-blocking sends. This is the only blocking
function in the MQ interface and it polls until the request is complete as per the
progress semantics explained in MQ Progress Requirements on page 26.

Parameters

request MQ non-blocking request.

status Updated if non-NULL when request successfully completes.

Precondition

You have obtained a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv
and you pass a pointer to enough storage to write the output of a
psm2_mq_status_t or NULL if status is to be ignored.

Since MQ internally ensures progress, you need not ensure that progress is made prior
to calling this function.

Postcondition

The request is assigned the value PSM2_MQ_REQINVALID and all associated MQ
request storage is released back to the MQ library.

Remarks

This function ensures progress on the endpoint as long as the request is incomplete.
The status can be NULL, in which case no status is written upon completion. If
request is PSM2_MQ_REQINVALID, the function returns immediately.

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

psm2_mq_wait2

Syntax

psm2_error_t psm2_mq_wait2 (psm2_mq_req_t *request, psm2_mq_status2_t *status)

3.3.5.16

3.3.5.17

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
68 Order No.: H76473-8.0

Wait until a non-blocking request completes. Function to wait on requests created
from either preposted receive buffers or non-blocking sends. This is the only blocking
function in the MQ interface and it polls until the request is complete as per the
progress semantics explained in MQ Progress Requirements on page 26.

Parameters

request MQ non-blocking request.

status Updated if non-NULL when request successfully completes.

Precondition

You have obtained a valid MQ request by calling psm2_mq_isend2 or
psm2_mq_irecv2 and you pass a pointer to enough storage to write the output of a
psm2_mq_status2_t or NULL if status is to be ignored.

Since MQ internally ensures progress, you need not ensure that progress is made prior
to calling this function.

Postcondition

The request is assigned the value PSM2_MQ_REQINVALID and all associated MQ
request storage is released back to the MQ library.

Remarks

This function ensures progress on the endpoint as long as the request is incomplete.
The status can be NULL, in which case no status is written upon completion. If
request is PSM2_MQ_REQINVALID, the function returns immediately.

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

psm2_mq_test

Syntax

psm2_error_t psm2_mq_test (psm2_mq_req_t *request, psm2_mq_status_t *status)

Test whether a non-blocking request is complete. Function to test requests created
from either preposted receive buffers or non-blocking sends for completion. Unlike
psm2_mq_wait, this function tests requests for completion and never ensures
progress directly or indirectly. If you choose to exclusively test requests for
completion, you must ensure progress, using functions described in MQ Progress
Requirements on page 26.

3.3.5.18

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 69

It can be useful to construct higher-level completion tests over arrays to test some,
all, or any request that has completed. If you are testing arrays of requests for
completion, Intel recommends that you only ensure progress once, for better
performance.

Parameters

request MQ non-blocking request.

status Updated if non-NULL and the request successfully completes.

Precondition

You obtain a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv and pass
a pointer to enough storage to write the output of a psm2_mq_status_t or NULL if
status is to be ignored.

You must ensure progress on the Matched Queue if psm2_mq_test is exclusively
used for guaranteeing request completions.

Postcondition

If the request is complete, the request is assigned the value PSM2_MQ_REQINVALID
and all associated MQ request storage is released back to the MQ library. If the
request is incomplete, the contents of request are unchanged.

You must ensure progress on the Matched Queue if psm2_mq_test is exclusively
used for guaranteeing request completions.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following two errors are always returned. Other errors are handled by the PSM2
error handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

PSM2_MQ_INCOMPLETE The request is not complete and request is unchanged.

Example

// Function that returns the first completed request in an array
// of requests.
void * user_testany(psm2_ep_t ep, psm2_mq_req_t *allreqs, int nreqs)
{
 int i;
 void *context = NULL;

 // Ensure progress only once
 psm2_poll(ep);

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
70 Order No.: H76473-8.0

 // Test for at least one completion and return its context
 psm2_mq_status_t stat;
 for (i = 0; i < nreqs; i++) {
 if (psm2_mq_test(&allreqs[i], &stat) == PSM2_OK) {
 context = stat.context;
 break;
 }
 }
 return context;
}

psm2_mq_test2

Syntax

psm2_error_t psm2_mq_test2 (psm2_mq_req_t *request, psm2_mq_status2_t *status)

Test whether a non-blocking request is complete. Function to test requests created
from either preposted receive buffers or non-blocking sends for completion. Unlike
psm2_mq_wait2, this function tests request for completion and never ensures
progress directly or indirectly. If you choose to exclusively test requests for
completion, you must ensure progress, using functions described in MQ Progress
Requirements on page 26.

It can be useful to construct higher-level completion tests over arrays to test some,
all, or any request that has completed. If you are testing arrays of requests for
completion, Intel recommends that you only ensure progress once, for better
performance.

Parameters

request MQ non-blocking request.

status Updated if non-NULL and the request successfully completes.

Precondition

You obtain a valid MQ request by calling psm2_mq_isend2 or psm2_mq_irecv2 and
pass a pointer to enough storage to write the output of a psm2_mq_status2_t or
NULL if status is to be ignored.

You must ensure progress on the Matched Queue if psm2_mq_test2 is exclusively
used for guaranteeing request completions.

Postcondition

If the request is complete, the request is assigned the value PSM2_MQ_REQINVALID
and all associated MQ request storage is released back to the MQ library. If the
request is incomplete, the contents of request are unchanged.

You must ensure progress on the Matched Queue if psm2_mq_test2 is exclusively
used for guaranteeing request completions.

3.3.5.19

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 71

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following two errors are always returned. Other errors are handled by the PSM2
error handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

PSM2_MQ_INCOMPLETE The request is not complete and request is unchanged.

psm2_mq_cancel

Syntax

psm2_error_t psm2_mq_cancel (psm2_mq_req_t *req)

Cancel a preposted request. Function to cancel a preposted receive request returned
by psm2_mq_irecv.

It is currently illegal to cancel a send request initiated with psm2_mq_isend.

Precondition

You have obtained a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv
and you pass a pointer to enough storage to write the output of a
psm2_mq_status_t or NULL if status is to be ignored.

Postcondition

Whether the cancel is successful or not, you return the request to the library using
psm2_mq_test or psm2_mq_wait.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

Only the following errors can be returned directly, without being handled by the error
handler (psm2_error_register_handler).

PSM2_OK The request could be successfully cancelled such that the
preposted receive buffer could be removed from the
preposted receive queue before a match occurred. The
associated request remains unchanged and you must still
return the storage to the MQ library.

3.3.5.20

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
72 Order No.: H76473-8.0

PSM2_MQ_INCOMPLETE The request could not be successfully cancelled since the
preposted receive buffer has already matched an incoming
message. The request remains unchanged.

psm2_mq_get_stats

Syntax

psm2_mq_get_stats (psm2_mq_t mq, psm2_mq_stats_t *stats)

Retrieve statistics from an instantiated MQ.

Parameters

mq Matched Queue handle.

stats MQ Stats handle.

PSM2 Matched Queue Options

MQ options can be modified at any point at runtime, unless otherwise noted. The
following example shows how to retrieve the current message size at which messages
are sent as synchronous.

uint32_t get_hfirv_size(psm2_mq_t mq)
{
 uint32_t rvsize;
 psm2_getopt(mq, PSM2_MQ_RNDV_HFI_SZ, &rvsize);
 return rvsize;
}

Defines

Table 12. Matched Queue Options Defines

Define Description

#define PSM2_MQ_RNDV_HFI_SZ [uint32_t] Size at which to start enabling rendezvous
messaging for Intel® Omni-Path messages. If unset,
defaults to values between 56000 and 72000
depending on the system configuration.

#define PSM2_MQ_RNDV_SHM_SZ [uint32_t] Size at which to start enabling rendezvous
messaging for shared memory (intra-node)
messages. If unset, defaults to 64000 bytes.

#define PSM2_MQ_MAX_SYSBUF_MBYTES [uint32_t] Maximum amount of bytes to allocate for
unexpected messages. Messages that would cause
memory allocation to exceed this amount are
dropped.

3.3.5.21

3.3.6

3.3.6.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 73

Functions

Table 13. Matched Queue Options Functions

Function Description

psm2_mq_getopt (psm2_mq_t mq, int
option, void *value)

Get an MQ option. For details, see:
psm2_mq_getopt.

psm2_mq_setopt (psm2_mq_t mq, int
option, const void *value)

Set an MQ option. For details, see:
psm2_mq_setopt.

psm2_mq_getopt

Syntax

psm2_error_t psm2_mq_getopt (psm2_mq_t mq, int option, void *value)

Get an MQ option. Function to retrieve the value of an MQ option.

Parameters

mq Matched Queue handle.

option Index of option to retrieve. Possible values are:

• PSM2_MQ_RNDV_HFI_SZ
• PSM2_MQ_RNDV_SHM_SZ
• PSM2_MQ_MAX_SYSBUF_MBYTES

value Pointer to storage that can be used to store the value of the option to be
set. You must ensure that the pointer points to a memory location large
enough to accommodate the value associated to the type. Each option
documents the size associated to its value.

Returns

PSM2_OK If option could be retrieved.

PSM2_PARAM_ERR If the option is not a valid option number.

psm2_mq_setopt

Syntax

psm2_error_t psm2_mq_setopt (psm2_mq_t mq, int option, const void *value)

Set an MQ option. Function to set the value of an MQ option.

Parameters

mq Matched Queue handle.

3.3.6.2

3.3.6.2.1

3.3.6.2.2

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
74 Order No.: H76473-8.0

option Index of option to retrieve. Possible values are:

• PSM2_MQ_RNDV_HFI_SZ
• PSM2_MQ_RNDV_SHM_SZ
• PSM2_MQ_MAX_SYSBUF_MBYTES

value Pointer to storage that contains the value to be updated for the supplied
option number. You must ensure that the pointer points to a memory
location with a correct size.

Returns

PSM2_OK If option could be retrieved.

PSM2_PARAM_ERR If the option is not a valid option number.

PSM2_OPT_READONLY If the option to be set is a read-only option (currently no MQ
options are read- only).

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 75

4.0 Intel® PSM2 Sample Program

This section describes a sample program that can be used to verify basic PSM2
functionality, similar to Hello World code.

Prerequisites

To run the sample program, you need a built copy of PSM2 in your local directory.

Setting Up the Program

1. Start two instances of this program from the same working directory. These
processes can execute on the same host, or on two hosts connected with Intel®
Omni-Path Architecture (Intel® OPA).

2. Compile using this command:

gcc psm2-demo.c -o psm2-demo -lpsm2

3. Run one instance as a server process using the command:

./psm2-demo -s

4. Run the other instance as a client process using the command:

./psm2-demo

Sample Code

/*
 PSM2 example program.
 Start two instances of this program from the same working directory.
 These processes can execute on the same host, or on two hosts connected with
 OPA.

 Compile with: gcc psm2-demo.c -o psm2-demo -lpsm2
 Run as: ./psm2-demo -s # this is the server process
 and: ./psm2-demo # this is the client process

 Copyright(c) 2015 Intel Corporation.
*/
#include <stdio.h>
#include <psm2.h> /* required for core PSM2 functions */
#include <psm2_mq.h> /* required for PSM2 MQ functions (send, recv, etc) */
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

#define BUFFER_LENGTH 80
#define CONNECT_ARRAY_SIZE 8

4.1

4.2

4.3

Intel® Omni-Path Fabric—Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
76 Order No.: H76473-8.0

void die(char *msg, int rc){
 fprintf(stderr, "%s: %d\n", msg, rc);
 exit(1);
}

/* Helper functions to find the server's PSM2 endpoint identifier (epid). */
psm2_epid_t find_server(){
 FILE *fp = NULL;
 psm2_epid_t server_epid = 0;

 printf("PSM2 client waiting for epid mapping file to appear...\n");
 while (!fp){
 sleep(1);
 fp = fopen("psm2-demo-server-epid", "r");
 }
 fscanf(fp, "%lx", &server_epid);
 fclose(fp);
 printf("PSM2 client found server epid = 0x%lx\n", server_epid);
 return server_epid;
}

void write_epid_to_file(psm2_epid_t myepid) {
 FILE *fp;

 fp = fopen("psm2-demo-server-epid", "w");
 if (!fp){
 fprintf(stderr,
 "Exiting, couldn't write server's epid mapping file: ");
 die(strerror(errno), errno);
 }
 fprintf(fp, "0x%lx", myepid);
 fclose(fp);
 printf("PSM2 server wrote epid = 0x%lx to file.\n", myepid);
 return;
}

int main(int argc, char **argv){
 struct psm2_ep_open_opts o;
 psm2_uuid_t uuid;
 psm2_ep_t myep;
 psm2_epid_t myepid;
 psm2_epid_t server_epid;
 psm2_epid_t epid_array[CONNECT_ARRAY_SIZE];
 int epid_array_mask[CONNECT_ARRAY_SIZE];
 psm2_error_t epid_connect_errors[CONNECT_ARRAY_SIZE];
 psm2_epaddr_t epaddr_array[CONNECT_ARRAY_SIZE];

 int rc;
 int ver_major = PSM2_VERNO_MAJOR;
 int ver_minor = PSM2_VERNO_MINOR;
 char msgbuf[BUFFER_LENGTH];
 psm2_mq_t q;
 psm2_mq_req_t req_mq;
 int is_server = 0;

 if (argc > 2){
 die("To run in server mode, invoke as ./psm2-demo -s\n" \
 "or run in client mode, invoke as ./psm2-demo\n" \
 "Wrong number of args", argc);
 }

 is_server = argc - 1; /* Assume any command line argument is -s */

 memset(uuid, 0, sizeof(psm2_uuid_t)); /* Use a UUID of zero */

 /* Try to initialize PSM2 with the requested library version.
 * In this example, given the use of the PSM2_VERNO_MAJOR and MINOR
 * as defined in the PSM2 headers, ensure that we are linking with
 * the same version of PSM2 as we compiled against. */

Intel® PSM2 Sample Program—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 77

 if ((rc = psm2_init(&ver_major, &ver_minor)) != PSM2_OK){
 die("couldn't init", rc);
 }
 printf("PSM2 init done.\n");

 /* Setup the endpoint options struct */
 if ((rc = psm2_ep_open_opts_get_defaults(&o)) != PSM2_OK){
 die("couldn't set default opts", rc);
 }
 printf("PSM2 opts_get_defaults done.\n");

 /* Attempt to open a PSM2 endpoint. This allocates hardware resources. */
 if ((rc = psm2_ep_open(uuid, &o, &myep, &myepid)) != PSM2_OK){
 die("couldn't psm2_ep_open()", rc);
 }
 printf("PSM2 endpoint open done.\n");

 if (is_server){
 write_epid_to_file(myepid);
 } else {
 server_epid = find_server();
 }

 if (is_server){
 /* Server does nothing here. A connection does not have to be
 * established to receive messages. */
 printf("PSM2 server up.\n");
 } else {
 /* Setup connection request info */
 /* PSM2 can connect to a single epid per request,
 * or an arbitrary number of epids in a single connect call.
 * For this example, use part of an array of
 * connection requests. */
 memset(epid_array_mask, 0, sizeof(int) * CONNECT_ARRAY_SIZE);
 epid_array[0] = server_epid;
 epid_array_mask[0] = 1;

 /* Begin the connection process.
 * note that if a requested epid is not responding,
 * the connect call will still return OK.
 * The errors array will contain the state of individual
 * connection requests. */
 if ((rc = psm2_ep_connect(myep,
 CONNECT_ARRAY_SIZE,
 epid_array,
 epid_array_mask,
 epid_connect_errors,
 epaddr_array,
 0 /* no timeout */
)) != PSM2_OK){
 die("couldn't ep_connect", rc);
 }
 printf("PSM2 connect request processed.\n");

 /* Now check if our connection to the server is ready */
 if (epid_connect_errors[0] != PSM2_OK){
 die("couldn't connect to server", epid_connect_errors[0]);
 }
 printf("PSM2 client-server connection established.\n");
 }

 /* Setup our PSM2 message queue */
 if ((rc = psm2_mq_init(myep, PSM2_MQ_ORDERMASK_NONE, NULL, 0, &q))
 != PSM2_OK){
 die("couldn't initialize PSM2 MQ", rc);
 }
 printf("PSM2 MQ init done.\n");

 if (is_server){
 /* Post the receive request */
 if ((rc = psm2_mq_irecv(q,

Intel® Omni-Path Fabric—Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide October 2017
78 Order No.: H76473-8.0

 0xABCD, /* message tag */
 (uint64_t)-1, /* message tag mask */
 0, /* no flags */
 msgbuf, BUFFER_LENGTH,
 NULL, /* no context to add */
 &req_mq /* track irecv status */
)) != PSM2_OK){
 die("couldn't post psm2_mq_irecv()", rc);
 }
 printf("PSM2 MQ irecv() posted\n");

 /* Wait until the message arrives */
 if ((rc = psm2_mq_wait(&req_mq, NULL)) != PSM2_OK){
 die("couldn't wait for the irecv", rc);
 }
 printf("PSM2 MQ wait() done.\n");
 printf("Message from client:\n");
 printf("%s", msgbuf);

 unlink("psm2-demo-server-epid");
 } else {
 /* Say hello */
 snprintf(msgbuf, BUFFER_LENGTH,
 "Hello world from epid=0x%lx, pid=%d.\n",
 myepid, getpid());

 if ((rc = psm2_mq_send(q,
 epaddr_array[0], /* destination epaddr */
 0, /* no flags */
 0xABCD, /* tag */
 msgbuf, BUFFER_LENGTH
)) != PSM2_OK){
 die("couldn't post psm2_mq_isend", rc);
 }
 printf("PSM2 MQ send() done.\n");
 }

 /* Close down the MQ */
 if ((rc = psm2_mq_finalize(q)) != PSM2_OK){
 die("couldn't psm2_mq_finalize()", rc);
 }
 printf("PSM2 MQ finalized.\n");

 /* Close our ep, releasing all hardware resources.
 * Try to close all connections properly */
 if ((rc = psm2_ep_close(myep, PSM2_EP_CLOSE_GRACEFUL,
 0 /* no timeout */)) != PSM2_OK){
 die("couldn't psm2_ep_close()", rc);
 }
 printf("PSM2 ep closed.\n");

 /* Release all local PSM2 resources */
 if ((rc = psm2_finalize()) != PSM2_OK){
 die("couldn't psm2_finalize()", rc);
 }
 printf("PSM2 shut down, exiting.\n");

 return 0;
}

Intel® PSM2 Sample Program—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
October 2017 Programmer's Guide
Order No.: H76473-8.0 79

	Revision History
	Contents
	Tables

	Preface
	Intended Audience
	Intel® Omni-Path Documentation Library
	Cluster Configurator for Intel® Omni-Path Fabric
	Documentation Conventions
	License Agreements
	Technical Support

	1.0 Intel® PSM2 API
	1.1 Introduction
	1.2 Compatibility
	1.3 Endpoint Communication Model
	1.4 PSM2 Components
	1.5 PSM2 Multi-Endpoint Functionality
	1.6 PSM2 Communication Progress Guarantees
	1.7 PSM2 Completion Semantics
	1.8 PSM2 Error Handling
	1.9 Environment Variables
	1.9.1 PSM2_CCA_PRESCAN
	1.9.2 PSM2_CUDA
	1.9.3 PSM2_DEVICES
	1.9.4 PSM2_DISABLE_CCA
	1.9.5 PSM2_GPUDIRECT
	1.9.6 PSM2_GPUDIRECT_RECV_THRESH
	1.9.7 PSM2_GPUDIRECT_SEND_THRESH
	1.9.8 PSM2_IB_SERVICE_ID
	1.9.9 PSM2_MAX_CONTEXTS_PER_JOB
	1.9.10 PSM2_MAX_PENDING_SDMA_REQS
	1.9.11 PSM2_MEMORY
	1.9.12 PSM2_MQ_RECVREQS_MAX
	1.9.13 PSM2_MQ_RNDV_HFI_THRESH
	1.9.14 PSM2_MQ_RNDV_SHM_THRESH
	1.9.15 PSM2_MQ_SENDREQS_MAX
	1.9.16 PSM2_MTU
	1.9.17 PSM2_MULTI_EP
	1.9.18 PSM2_MULTIRAIL
	1.9.19 PSM2_MULTIRAIL_MAP
	1.9.20 PSM2_PATH_REC
	1.9.21 PSM2_PATH_SELECTION
	1.9.22 PSM2_RANKS_PER_CONTEXT
	1.9.23 PSM2_RCVTHREAD
	1.9.24 PSM2_SHAREDCONTEXTS
	1.9.25 PSM2_SHAREDCONTEXTS_MAX
	1.9.26 PSM2_TID
	1.9.27 PSM2_TRACEMASK

	1.10 HFI Environment Variables
	1.10.1 HFI_DISABLE_MMAP_MALLOC
	1.10.2 HFI_NO_CPUAFFINITY
	1.10.3 HFI_UNIT

	2.0 Intel® PSM2 Component Documentation
	2.1 MQ Tag Matching
	2.2 MQ Message Reception
	2.3 MQ Completion Semantics
	2.4 MQ Progress Requirements

	3.0 Intel® PSM2 Component Functional Documentation
	3.1 PSM2 Initialization and Maintenance
	3.1.1 Data Structures
	3.1.2 Defines
	3.1.3 Typedefs
	3.1.4 Enumerations
	3.1.5 Functions
	3.1.5.1 psm2_init
	3.1.5.2 psm2_finalize
	3.1.5.3 psm2_error_register_handler
	3.1.5.4 psm2_error_defer
	3.1.5.5 psm2_error_get_string

	3.2 PSM2 Device Endpoint Management
	3.2.1 Data Structures
	3.2.1.1 psm2_ep_open_opts

	3.2.2 Defines
	3.2.3 Typedefs
	3.2.4 Functions
	3.2.4.1 psm2_map_nid_hostname
	3.2.4.2 psm2_ep_num_devunits
	3.2.4.3 psm2_uuid_generate
	3.2.4.4 psm2_ep_open_opts_get_defaults
	3.2.4.5 psm2_ep_open
	3.2.4.6 psm2_ep_epid_share_memory
	3.2.4.7 psm2_ep_close
	3.2.4.8 psm2_ep_connect
	3.2.4.9 psm2_ep_disconnect
	3.2.4.10 psm2_poll
	3.2.4.11 psm2_epaddr_setlabel
	3.2.4.12 psm2_ep_query
	3.2.4.13 psm2_ep_epid_lookup
	3.2.4.14 psm2_ep_epid_lookup2
	3.2.4.15 psm2_epaddr_to_epid

	3.3 PSM2 Matched Queues
	3.3.1 Modules
	3.3.2 Data Structures
	3.3.2.1 psm2_mq_status
	3.3.2.2 MQ Statistics Structure
	3.3.2.3 psm2_tag_t
	3.3.2.4 psm2_mq_status2

	3.3.3 Defines
	3.3.4 Typedefs
	3.3.5 Functions
	3.3.5.1 psm2_mq_init
	3.3.5.2 psm2_mq_finalize
	3.3.5.3 psm2_mq_irecv
	3.3.5.4 psm2_mq_irecv2
	3.3.5.5 psm2_mq_send
	3.3.5.6 psm2_mq_send2
	3.3.5.7 psm2_mq_isend
	3.3.5.8 psm2_mq_isend2
	3.3.5.9 psm2_mq_iprobe
	3.3.5.10 psm2_mq_iprobe2
	3.3.5.11 psm2_mq_improbe
	3.3.5.12 psm2_mq_improbe2
	3.3.5.13 psm2_mq_imrecv
	3.3.5.14 psm2_mq_ipeek
	3.3.5.15 psm2_mq_ipeek2
	3.3.5.16 psm2_mq_wait
	3.3.5.17 psm2_mq_wait2
	3.3.5.18 psm2_mq_test
	3.3.5.19 psm2_mq_test2
	3.3.5.20 psm2_mq_cancel
	3.3.5.21 psm2_mq_get_stats

	3.3.6 PSM2 Matched Queue Options
	3.3.6.1 Defines
	3.3.6.2 Functions
	3.3.6.2.1 psm2_mq_getopt
	3.3.6.2.2 psm2_mq_setopt

	4.0 Intel® PSM2 Sample Program
	4.1 Prerequisites
	4.2 Setting Up the Program
	4.3 Sample Code

