
Intel® Omni-Path Fabric Host
Software
User Guide

Rev. 5.0

December 2016

Order No.: H76470-5.0



You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit http://
www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel, the Intel logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015–2016, Intel Corporation. All rights reserved.

Intel® Omni-Path Fabric Host Software
User Guide December 2016
2 Order No.: H76470-5.0

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/


Revision History
For the latest documentation, go to: http://www.intel.com/omnipath/FabricSoftwarePublications.

Date Revision Description

December 2016 5.0 Updates to this document include:
• Added sections Intel® Omni-Path Architecture Overview and Host

Software Stack.
• Multi-Rail Support in PSM2: clarified behavior when

PSM2_MULTIRAIL is not set in multiple fabrics. Added Multi-Rail
Overview section.

• Added hfidiags User Guide (moved from Software Installation Guide
to this document).

• Globally, updated the following filepaths:
— from /opt/opa to /usr/lib/opa
— from /var/opt/opa to /var/usr/lib/opa
— from /opt/opafm to /usr/lib/opa-fm
— from /var/opt/opafm to /var/usr/lib/opa-fm

• Added Cluster Configurator for Intel® Omni-Path Fabric to Preface.

August 2016 4.0 Updates to this document include:
• Added Setting up Open MPI with SLURM.
• Removed pre-built PGI* MPIs from Installing SHMEM. The PGI*

compiler is supported, however, pre-built PGI* MPIs are not
included in the software package.

• Added Intel® Omni-Path Routing Features and Innovations.

May 2016 3.0 Global updates to document.

February 2016 2.0 Global updates to document.

November 2015 1.0 Global updates to document.

Revision History—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 3

http://www.intel.com/omnipath/FabricSoftwarePublications


Contents

Revision History..................................................................................................................3

Preface............................................................................................................................. 10
Intended Audience..................................................................................................... 10
Documentation Set.....................................................................................................10
Cluster Configurator for Intel® Omni-Path Fabric............................................................ 11
Documentation Conventions........................................................................................ 11
License Agreements....................................................................................................12
Technical Support.......................................................................................................12

1.0 Introduction................................................................................................................13
1.1 Intel® Omni-Path Architecture Overview.................................................................. 13
1.2 Host Software Stack..............................................................................................16

2.0 Step-by-Step Cluster Setup and MPI Usage Checklists................................................20
2.1 Cluster Setup....................................................................................................... 20
2.2 Using MPI............................................................................................................ 21

3.0 Intel® Omni-Path Cluster Setup and Administration................................................... 22
3.1 Installation Packages Overview...............................................................................22
3.2 Installed Layout....................................................................................................22
3.3 Intel® Omni-Path Fabric and OFA Driver Overview.....................................................23
3.4 Configuring IPoIB Network Interface........................................................................23
3.5 Configuring IPoIB Driver........................................................................................ 25
3.6 IB Bonding...........................................................................................................26

3.6.1 Interface Configuration Scripts....................................................................26
3.6.2 Verifying IB Bonding Configuration.............................................................. 26

3.7 Intel Distributed Subnet Administration....................................................................27
3.7.1 Applications that use the DSAP Plugin..........................................................28
3.7.2 DSAP Configuration File............................................................................. 28
3.7.3 Virtual Fabrics and the Distributed SA Provider............................................. 30

3.8 HFI Node Description Assignment............................................................................36
3.9 MTU Size............................................................................................................. 36
3.10 Managing the Intel® Omni-Path Fabric Driver..........................................................36

3.10.1 Intel® Omni-Path Driver File System..........................................................37
3.10.2 More Information on Configuring and Loading Drivers.................................. 37

4.0 Intel® True Scale/Intel® Omni-Path Coexistence........................................................38
4.1 Coexist Nodes...................................................................................................... 38
4.2 Configurations......................................................................................................38
4.3 Coexist Node Details............................................................................................. 40
4.4 Intel® Omni-Path Node Details............................................................................... 41
4.5 Intel® True Scale Node Details............................................................................... 42
4.6 Installing on an Existing Intel® True Scale Cluster.....................................................43
4.7 PSM2 Compatibility............................................................................................... 46

4.7.1 PSM2 Standard Configuration..................................................................... 47
4.7.2 Using the PSM2 Interface on Intel® Omni-Path Hardware............................... 47

Intel® Omni-Path Fabric—Contents

Intel® Omni-Path Fabric Host Software
User Guide December 2016
4 Order No.: H76470-5.0



5.0 Running MPI on Intel® Omni-Path Host Fabric Interfaces...........................................49
5.1 Introduction.........................................................................................................49

5.1.1 MPIs Packaged with Intel® Omni-Path Fabric Host Software............................49
5.2 Intel® MPI Library.................................................................................................49

5.2.1 Intel® MPI Library Installation and Setup..................................................... 49
5.2.2 Running Intel® MPI Library Applications....................................................... 50

5.3 Open MPI.............................................................................................................51
5.3.1 Installing Open MPI...................................................................................51
5.3.2 Setting up Open MPI................................................................................. 51
5.3.3 Setting up Open MPI with SLURM................................................................51
5.3.4 Compiling Open MPI Applications................................................................ 52
5.3.5 Creating the mpi_hosts File........................................................................ 52
5.3.6 Running Open MPI Applications...................................................................52
5.3.7 Configuring MPI Programs for Open MPI.......................................................54
5.3.8 Using Another Compiler............................................................................. 54
5.3.9 Allocating Processes.................................................................................. 55
5.3.10 Using the mpi_hosts File.......................................................................... 58
5.3.11 Using the Open MPI mpirun script..............................................................59
5.3.12 Using Console I/O in Open MPI Programs................................................... 60
5.3.13 Process Environment for mpirun................................................................61
5.3.14 Environment Variables............................................................................. 61
5.3.15 Further Information on Open MPI.............................................................. 62

5.4 Open MPI and Hybrid MPI/OpenMP Applications........................................................ 62
5.5 Debugging MPI Programs.......................................................................................63

5.5.1 MPI Errors................................................................................................63
5.5.2 Using Debuggers...................................................................................... 63

6.0 Using Other MPIs........................................................................................................ 64
6.1 Introduction.........................................................................................................64
6.2 Installed Layout....................................................................................................64
6.3 MVAPICH2........................................................................................................... 65

6.3.1 Compiling MVAPICH2 Applications............................................................... 65
6.3.2 Running MVAPICH2 Applications..................................................................65
6.3.3 Further Information on MVAPICH2...............................................................66

6.4 Managing MPI Versions with the MPI Selector Utility.................................................. 66

7.0 SHMEM Description..................................................................................................... 67
7.1 Interoperability.....................................................................................................67
7.2 Installing SHMEM..................................................................................................67
7.3 Basic SHMEM Program...........................................................................................68
7.4 Compiling and Running SHMEM Programs................................................................ 68
7.5 Integrating SHMEM with slurm................................................................................68

7.5.1 Full Integration.........................................................................................69
7.5.2 Two-Step Integration................................................................................ 69
7.5.3 No Integration..........................................................................................70

7.6 Sizing Global Shared Memory................................................................................. 70
7.7 Application Programming Interface..........................................................................71
7.8 SHMEM Benchmark Programs.................................................................................71

7.8.1 SHMEM Random Access Benchmark.............................................................72
7.8.2 SHMEM All-to-All Benchmark...................................................................... 73
7.8.3 SHMEM Barrier Benchmark.........................................................................74

Contents—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 5



7.8.4 SHMEM Reduce Benchmark........................................................................ 74

8.0 Virtual Fabric Support in PSM2....................................................................................75
8.1 Virtual Fabric Support using Fabric Manager ............................................................ 76

9.0 Multi-Rail Support in PSM2......................................................................................... 77
9.1 Multi-Rail Overview............................................................................................... 77
9.2 Multi-Rail Users.................................................................................................... 78
9.3 Environment Variables...........................................................................................79
9.4 Multi-Rail Configuration Examples........................................................................... 79

10.0 Routing..................................................................................................................... 83
10.1 Intel® Omni-Path Routing Features and Innovations................................................ 83
10.2 Dispersive Routing.............................................................................................. 84

11.0 Integration with a Batch Queuing System.................................................................87
11.1 Clean Termination of MPI Processes.......................................................................87
11.2 Clean Up PSM2 Shared Memory Files..................................................................... 88

12.0 Benchmark Programs................................................................................................89
12.1 Measuring MPI Latency Between Two Nodes........................................................... 89
12.2 Measuring MPI Bandwidth Between Two Nodes....................................................... 90
12.3 Multiple Bandwidth / Message Rate Test ................................................................91
12.4 Enhanced Multiple Bandwidth / Message Rate Test (mpi_multibw)............................. 92

13.0 Troubleshooting........................................................................................................94
13.1 Using the LED to Check the State of the HFI........................................................... 94
13.2 BIOS Settings.....................................................................................................94
13.3 Kernel and Initialization Issues............................................................................. 94

13.3.1 Driver Load Fails Due to Unsupported Kernel.............................................. 95
13.3.2 Rebuild or Reinstall Drivers if Different Kernel Installed................................ 95
13.3.3 Intel® Omni-Path Interrupts Not Working................................................... 95
13.3.4 OpenFabrics Load Errors if HFI Driver Load Fails..........................................96
13.3.5 Intel® Omni-Path HFI Initialization Failure.................................................. 96
13.3.6 MPI Job Failures Due to Initialization Problems............................................ 97

13.4 OpenFabrics and Intel® Omni-Path Issues.............................................................. 97
13.4.1 Stop Services Before Stopping/Restarting Intel® Omni-Path..........................97

13.5 System Administration Troubleshooting..................................................................98
13.5.1 Broken Intermediate Link......................................................................... 98

13.6 Performance Issues.............................................................................................98

14.0 Recommended Reading.............................................................................................99
14.1 References for MPI.............................................................................................. 99
14.2 Books for Learning MPI Programming.....................................................................99
14.3 Reference and Source for SLURM.......................................................................... 99
14.4 OpenFabrics Alliance* .........................................................................................99
14.5 Clusters.............................................................................................................99
14.6 Networking.......................................................................................................100
14.7 Other Software Packages....................................................................................100

Appendix A hfidiags User Guide...................................................................................... 101
A.1 Key Features......................................................................................................101
A.2 Usage................................................................................................................101

Intel® Omni-Path Fabric—Contents

Intel® Omni-Path Fabric Host Software
User Guide December 2016
6 Order No.: H76470-5.0



A.2.1 Command Line....................................................................................... 101
A.2.2 Interactive Interface................................................................................102
A.2.3 CSR Addressing...................................................................................... 102

A.3 Command Descriptions........................................................................................ 105
A.3.1 Default Command Descriptions................................................................. 106
A.3.2 Custom Command Descriptions.................................................................112

A.4 Extending the Interface....................................................................................... 114
A.4.1 Command Callbacks................................................................................ 115

Contents—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 7



Figures
1 Intel® OPA Building Blocks........................................................................................13
2 Intel® OPA Fabric.................................................................................................... 14
3 Intel® OPA Fabric and Software Components...............................................................15
4 Host Software Stack Components.............................................................................. 17
5 Host Software Stack - Detailed View.......................................................................... 18
6 Distributed SA Provider Default Configuration..............................................................32
7 Distributed SA Provider Multiple Virtual Fabrics Example............................................... 33
8 Distributed SA Provider Multiple Virtual Fabrics Configured Example............................... 33
9 Virtual Fabrics with Overlapping Definition for PSM2_MPI.............................................. 34
10 Virtual Fabrics with all SIDs assigned to PSM2_MPI Virtual Fabric...................................34
11 Virtual Fabrics with PSM2_MPI Virtual Fabric Enabled................................................... 35
12 Virtual Fabrics with Unique Numeric Indexes............................................................... 35
13 Intel® True Scale/Intel® Omni-Path........................................................................... 39
14 Intel® True Scale/Omni-Path Rolling Upgrade..............................................................40
15 Coexist Node Details................................................................................................ 41
16 Intel® Omni-Path Node Details.................................................................................. 42
17 Intel® True Scale Node Details.................................................................................. 43
18 Adding Intel® Omni-Path Hardware and Software........................................................ 44
19 Adding the Base Distro.............................................................................................44
20 Adding Basic Software..............................................................................................45
21 Adding Nodes to Intel® Omni-Path Fabric....................................................................46
22 PSM2 Standard Configuration....................................................................................47
23 Overriding LD_LIBRARY_PATH to Run Existing MPIs on Intel® Omni-Path Hardware..........48

Intel® Omni-Path Fabric—Figures

Intel® Omni-Path Fabric Host Software
User Guide December 2016
8 Order No.: H76470-5.0



Tables
1 APIs Supported by Host Software.............................................................................. 19
2 Installed Files and Locations......................................................................................22
3 PSM and PSM2 Compatibility Matrix........................................................................... 46
4 Intel® MPI Library Wrapper Scripts ........................................................................... 50
5 Open MPI Wrapper Scripts........................................................................................ 52
6 Command Line Options for Scripts............................................................................. 52
7 Intel Compilers........................................................................................................55
8 Other Supported MPI Implementations ...................................................................... 64
9 MVAPICH2 Wrapper Scripts.......................................................................................65
10 SHMEM Micro-Benchmarks Command Line Options.......................................................72
11 SHMEM Random Access Benchmark Options................................................................72
12 SHMEM All-to-All Benchmark Options......................................................................... 73
13 SHMEM Barrier Benchmark Options............................................................................74
14 SHMEM Reduce Benchmark Options........................................................................... 74

Tables—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 9



Preface

This manual is part of the documentation set for the Intel® Omni-Path Fabric (Intel®
OP Fabric), which is an end-to-end solution consisting of Intel® Omni-Path Host Fabric
Interfaces (HFIs), Intel® Omni-Path switches, and fabric management and
development tools.

The Intel® OP Fabric delivers a platform for the next generation of High-Performance
Computing (HPC) systems that is designed to cost-effectively meet the scale, density,
and reliability requirements of large-scale HPC clusters.

Both the Intel® OP Fabric and standard InfiniBand* are able to send Internet Protocol
(IP) traffic over the fabric, or IPoFabric. In this document, however, it is referred to as
IP over IB or IPoIB. From a software point of view, IPoFabric and IPoIB behave the
same way and, in fact, use the same ib_ipoib driver to send IP traffic over the ib0
and/or ib1 ports.

Intended Audience

The intended audience for the Intel® Omni-Path (Intel® OP) document set is network
administrators and other qualified personnel.

Documentation Set

The complete end user publications set for the Intel® Omni-Path product includes the
following items.

• Hardware Documents:

— Intel® Omni-Path Fabric Switches Hardware Installation Guide

— Intel® Omni-Path Fabric Switches GUI User Guide

— Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide

— Intel® Omni-Path Edge Switch Platform Configuration Reference Guide

— Intel® Omni-Path Fabric Managed Switches Release Notes

— Intel® Omni-Path Fabric Externally-Managed Switches Release Notes

— Intel® Omni-Path Host Fabric Interface Installation Guide

• Software Documents:

— Intel® Omni-Path Fabric Software Installation Guide

— Intel® Omni-Path Fabric Suite Fabric Manager User Guide

— Intel® Omni-Path Fabric Suite FastFabric User Guide

— Intel® Omni-Path Fabric Host Software User Guide

— Intel® Omni-Path Fabric Suite Fabric Manager GUI Online Help

— Intel® Omni-Path Fabric Suite Fabric Manager GUI User Guide

Intel® Omni-Path Fabric—Preface

Intel® Omni-Path Fabric Host Software
User Guide December 2016
10 Order No.: H76470-5.0



— Intel® Omni-Path Fabric Suite FastFabric Command Line Interface Reference
Guide

— Intel® Performance Scaled Messaging 2 (PSM2) Programmer's Guide

— Intel® Omni-Path Fabric Performance Tuning User Guide

— Intel® Omni-Path Host Fabric Interface Platform Configuration Reference
Guide

— Intel® Omni-Path Fabric Software Release Notes

— Intel® Omni-Path Fabric Manager GUI Release Notes

— Intel® Omni-Path Storage Router Design Guide

— Building Lustre* Servers with Intel® Omni-Path Architecture Application Note

— Intel® Omni-Path Fabric Staging Guide

Documents are available at the following URLs:

• Intel® Omni-Path Switches Installation, User, and Reference Guides

http://www.intel.com/omnipath/SwitchPublications

• Intel® Omni-Path Host Fabric Interface Installation, User, and Reference Guides
(includes software documents)

http://www.intel.com/omnipath/FabricSoftwarePublications

• Drivers and Software (including Release Notes)

http://www.intel.com/omnipath/Downloads

Cluster Configurator for Intel® Omni-Path Fabric

The Cluster Configurator for Intel® Omni-Path Fabric is available at: http://
www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-
configurator.html.

This tool generates sample cluster configurations based on key cluster attributes,
including a side-by-side comparison of up to four cluster configurations. The tool also
generates parts lists and cluster diagrams.

Documentation Conventions

The following conventions are standard for Intel® Omni-Path documentation:

• Note: provides additional information.

• Caution: indicates the presence of a hazard that has the potential of causing
damage to data or equipment.

• Warning: indicates the presence of a hazard that has the potential of causing
personal injury.

• Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this
guide. Links to websites are also shown in blue. For example:

See License Agreements on page 12 for more information.

For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as menu items, buttons,
check boxes, key names, key strokes, or column headings. For example:

Preface—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 11

http://www.intel.com/omnipath/SwitchPublications
http://www.intel.com/omnipath/FabricSoftwarePublications
http://www.intel.com/omnipath/Downloads
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com.


Click the Start button, point to Programs, point to Accessories, and then click
Command Prompt.

Press CTRL+P and then press the UP ARROW key.

• Text in Courier font indicates a file name, directory path, or command line text.
For example:

Enter the following command: sh ./install.bin
• Text in italics indicates terms, emphasis, variables, or document titles. For

example:

Refer to Intel® Omni-Path Fabric Software Installation Guide for details.

In this document, the term chassis refers to a managed switch.

Procedures and information may be marked with one of the following qualifications:

• (Linux) – Tasks are only applicable when Linux* is being used.

• (Host) – Tasks are only applicable when Intel® Omni-Path Fabric Host Software
or Intel® Omni-Path Fabric Suite is being used on the hosts.

• (Switch) – Tasks are applicable only when Intel® Omni-Path Switches or Chassis
are being used.

• Tasks that are generally applicable to all environments are not marked.

License Agreements

This software is provided under one or more license agreements. Please refer to the
license agreement(s) provided with the software for specific detail. Do not install or
use the software until you have carefully read and agree to the terms and conditions
of the license agreement(s). By loading or using the software, you agree to the terms
of the license agreement(s). If you do not wish to so agree, do not install or use the
software.

Technical Support

Technical support for Intel® Omni-Path products is available 24 hours a day, 365 days
a year. Please contact Intel Customer Support or visit www.intel.com for additional
detail.

Intel® Omni-Path Fabric—Preface

Intel® Omni-Path Fabric Host Software
User Guide December 2016
12 Order No.: H76470-5.0

http://www.intel.com


1.0 Introduction

This document, the Intel® Omni-Path Fabric Host Software User Guide, shows you
how to set up and administer the fabric after the software has been installed. The
audience for this document includes both cluster administrators and Message Passing
Interface (MPI) application programmers, who have different but overlapping interests
in the details of the technology.

For installation details, see the following documents:

• Intel® Omni-Path Fabric Software Installation Guide

• Intel® Omni-Path Fabric Switches Hardware Installation Guide

• Intel® Omni-Path Host Fabric Interface Installation Guide

Intel® Omni-Path Architecture Overview

Intel® Omni-Path Architecture (Intel® OPA) is an end-to-end solution consisting of
Intel® Omni-Path Host Fabric Interfaces (HFIs), Intel® Omni-Path switches, and fabric
management and development tools. These building blocks are shown in the following
figure.

Figure 1. Intel® OPA Building Blocks

Switch

Node 0

HFI

Switch

(Service)
Node y

HFI

Fabric 
Manager

Switch

Node x

HFI

Additional Links and Switches

For software applications, Intel® OPA maintains consistency and compatibility with
existing Intel® True Scale Fabric and InfiniBand* APIs utilizing the open source
OpenFabrics Alliance* (OFA) software stack on Linux* distribution releases.

The following figure shows a sample Intel® OPA-based fabric, consisting of different
types of nodes and servers.

1.1  

Introduction—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 13



Figure 2. Intel® OPA Fabric

Software Components

The key software components and their usage models are shown in the following
figure and described in the following paragraphs.

Intel® Omni-Path Fabric—Introduction

Intel® Omni-Path Fabric Host Software
User Guide December 2016
14 Order No.: H76470-5.0



Figure 3. Intel® OPA Fabric and Software Components

Software Component Descriptions

Element Management Stack
• Runs on an embedded Intel processor included in managed Intel® OP Edge Switch 100 Series and Intel®

Omni-Path Director Class Switch 100 Series switches.
• Provides system management capabilities, including signal integrity, thermal monitoring, and voltage

monitoring, among others.
• Accessed via Ethernet* port using command line interface (CLI) or graphical user interface (GUI).
User documents:
• Intel® Omni-Path Fabric Switches GUI User Guide
• Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide

Host Software Stack
• Runs on all Intel® OPA-connected host nodes and supports compute, management, and I/O nodes.
• Provides high performance, highly scalable MPI implementation via PSM2 and extensive set of upper

layer protocols.
• Includes Boot over Fabric mechanism for configuring a server to boot over Intel® Omni-Path using the

Intel® OP HFI Unified Extensible Firmware Interface (UEFI) firmware.
User documents:
• Intel® Omni-Path Fabric Host Software User Guide

continued...   

Introduction—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 15



Software Component Descriptions

• Intel® Performance Scaled Messaging 2 (PSM2) Programmer's Guide

Fabric Management Stack
• Runs on Intel® OPA-connected management nodes or embedded Intel processor on the switch.
• Initializes, configures, and monitors the fabric routing, QoS, security, and performance.
• Includes a toolkit for configuration, monitoring, diagnostics, and repair.
User documents:
• Intel® Omni-Path Fabric Suite Fabric Manager User Guide
• Intel® Omni-Path Fabric Suite FastFabric User Guide
• Intel® Omni-Path Fabric Suite FastFabric Command Line Interface Reference Guide

Fabric Management GUI
• Runs on workstation with a local screen and keyboard.
• Provides interactive GUI access to Fabric Management features such as configuration, monitoring,

diagnostics, and element management drill down.
User documents:
• Intel® Omni-Path Fabric Suite Fabric Manager GUI Online Help
• Intel® Omni-Path Fabric Suite Fabric Manager GUI User Guide

Host Software Stack

Host Software Stack Components

The design of Intel® OPA leverages the existing OpenFabrics Alliance* (OFA), which
provides an extensive set of mature upper layer protocols (ULPs). OFA integrates
fourth-generation proven, scalable PSM capability for HPC. The OpenFabrics Interface
(OFI) API is aligned with application requirements.

Key elements are open source accessible, including the host software stack (via OFA*)
and the Intel® Omni-Path Fabric Suite FastFabric Tools, Fabric Manager, and GUI.
Intel® Omni-Path Architecture support is included in standard Linux* distributions and
delta distribution of OFA stack atop Linux* distributions is provided as needed.

1.2  

Intel® Omni-Path Fabric—Introduction

Intel® Omni-Path Fabric Host Software
User Guide December 2016
16 Order No.: H76470-5.0



Figure 4. Host Software Stack Components

Intel® FM

uMAD API

Intel® 
FastFabric

Intel® Omni-Path HFI Hardware

Intel® Omni-Path HFI Driver (hfi1)

4th Generation 
Intel® Communication 

Library (PSM2)

Kernel Space

User Space

Intel® Omni-Path 
& Intel® True Scale 

Compiled Applications
3rd party proprietary & open source

Intel® Omni-Path Enabled Switching Fabric

In
te

l®
 M

P
I

O
pe

n 
M

P
I

M
VA

P
IC

H
2

3rd
 p

ar
ty

 M
P

I

S
H

M
E

M

Intel® Omni-Path 
OFI Provider

OFI libfabric

In
te

l®
 M

P
I

O
pe

n 
M

P
I

M
VA

P
IC

H
2

O
th

er
 M

P
I

S
H

M
E

M

IO
 A

pp
s

Fi
le

 S
ys

te
m

s

IB
* 

H
C

A

W
A

R
P

 N
IC

OFA
Verbs

O
th

er
 F

ab
ric

s
3rd

 p
ar

ty
 p

ro
pr

ie
ta

ry
 &

 o
pe

n 
so

ur
ce

Binary 
Compatible 
Applications

Key

Intel® Omni-Path 
open source 
components

Verbs
Provider/

Driver

I/O 
Focused

ULPs
3rd party 

proprietary 
& open 
source

OFA
Verbs
Stack

Intel 
proprietary 
components

3rd party
open source 
components

3rd party
proprietary 
components

The Linux* kernel contains an RDMA networking stack that supports both InfiniBand*
and iWarp transports. User space applications use interfaces provided by the
OpenFabrics Alliance* that work in conjunction with the RDMA networking stack
contained within the kernel.

The following figure illustrates the relationships between Intel® Omni-Path, the kernel-
level RDMA networking stack, and the OpenFabrics Alliance* user space components.
In the figure, items labelled as "Intel (new)" are new components written to use and
manage the Intel® Omni-Path host fabric interface. Items marked as "non-Intel" are
existing components that are neither used nor altered by the addition of Intel® Omni-
Path to the Linux* environment.

Note: The following figure illustrates how Intel® Omni-Path components fit within the Linux*
architecture, however, the figure does not show actual implementation or layering.

Introduction—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 17



Figure 5. Host Software Stack - Detailed View

ibcore
ib

 c
m ULPs 

(SRP, 
RDS)

Rdma-cm

Intel® OPA VPD

Data Applications, 
User File Systems

Intel® OPA FM

rd
m

a 
cm

rsockets

sockets

Ksockets

IPoIBuv
er

bs

Intel® OPA HFI

File 
Systems 
(Lustre* 
Panasas 

NFS 
RDMA)

ib
ve

rb
s

Lib  Intel® 
OPA  VPD

IB
 c

m
iw

 c
m

iWarp VPDIB* VPD

IB* HCA  

NIC
Driver

Ethernet* NIC

GPFS

IP, UDP, TCP

LEGEND

Existing Intel
(New) UpdatedNon-

Intel 3rd Party

Intel® OPA PSM2 HW dvr

In
te

l®
 M

PI

M
VA

PI
CH

 2

3rd
 P

ar
ty

 M
PI

O
pe

nS
HM

EM

O
pe

nM
PI

User
Kernel

IB* Mgmt

IB* Mgmt

PSM2
Libfabric (OFI WG) – Alpha

In
te

l®
 M

PI

M
VA

PI
CH

 2

3rd
 P

ar
ty

 M
PI

O
pe

nS
HM

EM

O
pe

nM
PI

Co-array Fortran

ibacm
PlugIns

Mgmt Node Only

Optimized Compute

RDMA IO Sockets and TCP/IP IO

Management

Most of the software stack is open sourced, with the exception of middleware that is
not open sourced such as Intel® MPI Library and third-party software. The blue
components show the existing open fabric components applicable for fabric designs. In
the management grouping, the Fabric Manager and FastFabric tools are open source,
100% full feature capability. A new driver and a corresponding user space library were
introduced for the Intel® Omni-Path hardware for the verbs path.

Intel is working with the OpenFabrics Alliance* (OFA) community, and has upstreamed
new features to support Intel® Omni-Path management capabilities and introduced
extensions around address resolution. Intel is also participating in the OFA libfabric
effort which is a multi-vendor standard API that takes advantage of available
hardware features and supports multiple product generations.

Host Software APIs

Application Programming Interfaces (APIs) provide a set of common interfaces for
software-based applications and services to communicate with each other, and to
access and use services within the software architecture. The following table provides
a brief overview of the APIs supported by the Intel® Omni-Path Host Software.

Intel® Omni-Path Fabric—Introduction

Intel® Omni-Path Fabric Host Software
User Guide December 2016
18 Order No.: H76470-5.0



Table 1. APIs Supported by Host Software

API Description

Sockets Enables applications to communicate with each other using standard
interfaces locally, or over a distributed network. Sockets are supported
via standard Ethernet* NIC network device interfaces and IPoIB
network device interfaces.

RDMA verbs Provides access to RDMA capable devices, such as Intel® OPA,
InfiniBand* (IB), iWarp, and RDMA over Converged Ethernet* (RoCE).

IB Connection Manager (CM) Establishes connections between two verbs queue pairs on one or two
nodes.

RDMA Connection Manager (CM) Provides a sockets-like method for connection establishment that works
in Intel® OPA, InfiniBand*, and iWarp environments.

Performance Scaled Messaging 2
(PSM2)

Provides a user-level communications interface for Intel® Omni-Path
products. PSM2 provides HPC-middleware, such as MPI stacks, with
mechanisms necessary to implement higher level communications
interfaces in parallel environments.

OpenFabrics Interface (OFI)
libfabric

Extends the OpenFabrics APIs to increase application support and
improve hardware abstraction. Framework features include connection
and addressing services, message queues, RDMA transfers, and others,
as well as support for the existing verbs capabilities. OFI is an open
source project that is actively evolving APIs, sample providers, sample
applications, and infrastructure implementation.

NetDev In Linux*, NetDev interfaces provide access to network devices, their
features, and their state.
For Intel® Omni-Path, NetDev interfaces are created for IP
communications over Intel® OPA via IPoIB.

Linux* Virtual File System Provides the abstraction for the traditional system calls of open, close,
read, and write.

SCSI low-level driver Implements the delivery of SCSI commands to a SCSI device.

Message Passing Interface
(MPI)

Standardized API for implementing HPC computational applications.
Supported implementations include: Intel® MPI Library, Open MPI,
MVAPICH2, and others. See the Intel® Omni-Path Fabric Software
Release Notes for the complete list.

OpenSHMEM Provides one-sided communication, synchronization, collectives, locks,
atomics, and memory management using a cluster-wide shared address
space between processing elements (PEs).
For Intel® Omni-Path, OpenSHMEM uses the Active Messaging APIs
within PSM2.

Unified Extensible Firmware
Interface (UEFI) Specification

Defines the specification for future BIOS work, including the multi-core
processor (MCP) packaging of the HFI. The specification details booting,
including booting over fabric.
Intel® OPA includes a UEFI BIOS extension to enable PXE boot of notes
over the Intel® OPA fabric.

Introduction—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 19



2.0 Step-by-Step Cluster Setup and MPI Usage
Checklists

This section describes how to set up your cluster to run high-performance Message
Passing Interface (MPI) jobs.

Cluster Setup

Prerequisites

Make sure that hardware installation has been completed according to the instructions
in the following documents:

• Intel® Omni-Path Host Fabric Interface Installation Guide

• Intel® Omni-Path Fabric Switches Hardware Installation Guide

Make sure that software installation and driver configuration has been completed
according to the instructions in the Intel® Omni-Path Fabric Software Installation
Guide.

To minimize management problems, Intel recommends that the compute nodes of the
cluster have similar hardware configurations and identical software installations.

Cluster Setup

Perform the following tasks when setting up the cluster:

1. Check that the BIOS is set properly according to the information provided in the
Intel® Omni-Path Fabric Performance Tuning User Guide.

2. Optional: Set up the Distributed Subnet Administration Provider (DSAP) to
correctly synchronize your virtual fabrics. See Intel Distributed Subnet
Administration on page 27.

3. Set up automatic Node Description name configuration. See HFI Node Description
Assignment.

4. Check other performance tuning settings. See the Intel® Omni-Path Fabric
Performance Tuning User Guide.

5. Set up the host environment to use ssh using one of the following methods:

• Use the opasetupssh CLI command. See the man pages or the Intel® Omni-
Path Fabric Suite FastFabric Command Line Interface Reference Guide for
details.

• Use the FastFabric textual user interface (TUI) to set up ssh. See the Intel®
Omni-Path Fabric Suite FastFabric User Guide for details.

6. Verify the cluster setup using the opainfo CLI command. See the man pages or
the Intel® Omni-Path Fabric Suite FastFabric Command Line Interface Reference
Guide.

2.1  

Intel® Omni-Path Fabric—Step-by-Step Cluster Setup and MPI Usage Checklists

Intel® Omni-Path Fabric Host Software
User Guide December 2016
20 Order No.: H76470-5.0



Using MPI

The instructions in this section use Open MPI as an example. Other MPIs, such as
MVAPICH2 and Intel® MPI Library, may be used instead.

Prerequisites

Before you continue, the following tasks must be completed:

1. Verify that the Intel hardware and software has been installed on all the nodes.

2. Set up the host environment to use ssh on your cluster, using one of the following
methods:

Use the opasetupssh CLI command. See the man pages or the Intel® Omni-Path
Fabric Suite FastFabric Command Line Interface Reference Guide for details.

Use the FastFabric textual user interface (TUI) to set up ssh. See the Intel®
Omni-Path Fabric Suite FastFabric User Guide for details.

Using MPI

Perform the following tasks:

1. Set up Open MPI. See Setting up Open MPI.

2. Compile Open MPI applications. See Compiling Open MPI Applications.

3. Create an mpihosts file that lists the nodes where your programs will run. See 
Creating the mpi_hosts File.

4. Run Open MPI applications. See Running Open MPI Applications.

5. Configure MPI programs for Open MPI. See Configuring MPI Programs for Open
MPI.

6. To test using other MPIs that run over PSM2, such as MVAPICH2, and Intel® MPI
Library, see Using Other MPIs.

7. Use the MPI Selector Utility to switch between multiple versions of MPI. See 
Managing MPI Versions with the MPI Selector Utility.

8. Refer to Intel® Omni-Path Cluster Setup and Administration, and the document
Intel® Omni-Path Fabric Performance Tuning User Guide for information regarding
fabric performance tuning.

9. Refer to Using Other MPIs to learn about using other MPI implementations.

2.2  

Step-by-Step Cluster Setup and MPI Usage Checklists—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 21



3.0 Intel® Omni-Path Cluster Setup and
Administration

This section describes what the cluster administrator needs to know about the Intel®
Omni-Path software and system administration.

Installation Packages Overview

The following software installation packages are available for an Intel® Omni-Path
Fabric:

• Intel® Omni-Path Fabric Host Software – This is the basic installation package that
installs the Intel® Omni-Path Fabric Host Software components needed to set up
compute, I/O, and Service nodes with drivers, stacks, and basic tools for local
configuration and monitoring.

• Intel® Omni-Path Fabric Suite (IFS) Software – This installation package provides
special features and includes the Intel® Omni-Path Fabric Host Software package,
along with the Intel® Omni-Path Fabric Suite FastFabric Toolset (FastFabric) and
the Intel® Omni-Path Fabric Suite Fabric Manager (Fabric Manager).

• Intel® Omni-Path Fabric Suite Fabric Manager GUI (Fabric Manager GUI) – This
installation package provides a set of features for viewing and monitoring the
fabric or multiple fabrics, and is installed on a computer outside of the fabric.

Installed Layout

As described in the previous section, there are several installation packages. Refer to
the Intel® Omni-Path Fabric Software Installation Guide for complete instructions.

The following table describes the default installed layout for the Intel® Omni-Path
Software and Intel-supplied Message Passing Interfaces (MPIs).

Table 2. Installed Files and Locations

File Type Location

Intel-supplied Open MPI and
MVAPICH2 RPMs

Compiler-specific directories using the following format:
/usr/mpi/<compiler>/<mpi>-<mpi_version>-hfi
For example: /usr/mpi/gcc/openmpi-X.X.X-hfi

Utility

/usr/sbin
/usr/lib/opa/*
/usr/bin
/usr/lib/opa-fm

Documentation

/usr/share/man
/usr/share/doc/opa-fm-X.X.X.X
Intel® Omni-Path user documentation can be found on the Intel web site.
See Documentation Set on page 10 for URLs.

continued...   

3.1  

3.2  

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
22 Order No.: H76470-5.0



File Type Location

Configuration
/etc/sysconfig
/etc/sysconfig/opa
/etc/rdma

Initialization /etc/init.d

Intel® Omni-Path Fabric Driver
Modules

/lib/modules/<kernel name>/updates/drivers/
infiniband/hw/hfi1

Other Modules
/usr/lib/opa
/lib/modules/<kernel name>/updates/kernel/drivers/net
/lib/modules/<kernel name>/updates/kernel/net/rds

Intel® Omni-Path Fabric and OFA Driver Overview

The Intel® Omni-Path Host Fabric Interface (HFI) kernel module hfi1 provides low-
level Intel hardware support. It is the base driver for both Message Passing Interface
(MPI)/Performance Scaled Messaging (PSM2) programs and general OFA protocols
such as IPoIB. The driver also supplies the Subnet Management Agent (SMA)
component.

A list of optional configurable OFA components and their default settings follows:

• IPoIB network interface

This component is required for TCP/IP networking for running IP traffic over the
Intel® Omni-Path Fabric link. It is not running until it is configured.

• OpenSM

This component is not supported with Intel® Omni-Path Fabric. You must use the
Intel® Omni-Path Fabric Suite Fabric Manager which may be installed on a host or
may be run inside selected switch models, for smaller fabrics.

• SCSI RDMA Protocol (SRP)

This component is not running until the module is loaded and the SRP devices on
the fabric have been discovered.

Other optional drivers can also be configured and enabled, as described in Configuring
IPoIB Network Interface.

Configuring IPoIB Network Interface

The following instructions show you how to manually configure your OpenFabrics
Alliance* (OFA) IPoIB network interface. Intel recommends using the Intel® Omni-
Path Software Installation package for installation of the software, including setting up
IPoIB, or using the opaconfig tool if the Intel® Omni-Path Software has already
been installed on your management node. For larger clusters, Intel® Omni-Path Fabric
Suite FastFabric can be used to automate installation and configuration of many
nodes. These tools automate the configuration of the IPoIB network interface.

This example assumes the following:

• Shell is either sh or bash.

• All required Intel® Omni-Path and OFA RPMs are installed.

• Your startup scripts have been run, either manually or at system boot.

3.3  

3.4  

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 23



• The IPoIB network is 10.1.17.0, which is one of the networks reserved for private
use, and thus not routeable on the Internet. The network has a /8 host portion. In
this case, the netmask must be specified.

• The host to be configured has the IP address 10.1.17.3, no hosts files exist, and
DHCP is not used.

Note: Instructions are only for this static IP address case.

Perform the following steps:

1. Enter the following command (as a root user):

ip addr add 10.1.17.3/255.255.255.0 dev ib0

Note: You can configure/reconfigure the IPoIB network interface from the TUI
using the opaconfig command.

2. Bring up the link with the command:

ifup ib0

3. To verify the configuration, use the command:

ip addr show ib0
The output from this command is similar to:

ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 2044 qdisc pfifo_fast state UP qlen
256
link/infiniband 80:00:00:02:fe:80:00:00:00:00:00:00:00:11:75:01:01:6a:36:83 
brd
00:ff:ff:ff:ff:12:40:1b:80:01:00:00:00:00:00:00:ff:ff:ff:ff
inet 10.1.17.3/24 brd 10.1.17.255 scope global ib0
valid_lft forever preferred_lft forever
inet6 fe80::211:7501:16a:3683/64 scope link
valid_lft forever preferred_lft forever

4. Enter the command:

ping -c 2 -b 10.1.17.255
The output of the ping command is similar to the following, with a line for each
host already configured and connected:

WARNING: pinging broadcast address
PING 10.1.17.255 (10.1.17.255) 517(84) bytes of data.
174 bytes from 10.1.17.3: icmp_seq=0 ttl=174 time=0.022 ms
64 bytes from 10.1.17.1: icmp_seq=0 ttl=64 time=0.070 ms
64 bytes from 10.1.17.7: icmp_seq=0 ttl=64 time=0.073 ms
The IPoIB network interface is now configured.

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
24 Order No.: H76470-5.0



Note: Connected Mode is enabled by default if you are using the INSTALL script to create
ifcfg files via the setup IPoIB menus/prompts, or using the Intel® Omni-Path Fabric
Installer TUI to install other nodes in the fabric. In such cases, the setting in /etc/
sysconfig/network-scripts/ ifcfg-ib0 is CONNECTED_MODE=yes. However,
if loading rpms directly via a provisioning system or using stock distro mechanisms, it
defaults to datagram mode. In such cases, the setting is CONNECTED_MODE=no. In
addition, the Connected Mode setting can also be changed when asked during initial
installation via ./INSTALL or using the FF_IPOIB_CONNECTED option in
opafastfabric.conf when using FastFabric to install other nodes in the fabric.

Configuring IPoIB Driver

Intel recommends using the FastFabric TUI or the opaconfig command to configure
the IPoIB driver for autostart. Refer to the Intel® Omni-Path Fabric Suite FastFabric
User Guide for more information on using the TUI.

To configure the IPoIB driver using the command line, perform the following steps.

1. For each IP Link Layer interface, create an interface configuration file, /etc/
sysconfig/network-scripts/ifcfg-NAME, where NAME is the network
interface name. An example of the ifcfg-NAME file follows:

DEVICE=ib0
BOOTPROTO=static
IPADDR=10.228.216.153
BROADCAST=10.228.219.255
NETWORK=10.228.216.0
NETMASK=255.255.252.0
ONBOOT=yes
NM_CONTROLLED=no
CONNECTED_MODE=yes

Note: For IPoIB, the INSTALL script for the adapter helps you create the ifcfg
files.

In the ifcfg file, the following options are listed by default:

• ONBOOT=yes This is a standard network option that tells the system to
activate the device at boot time.

• NM_CONTROLLED=no This option prohibits the Network Manager (NM) daemon
from controlling the IPoIB interface state.

• CONNECTED_MODE=yes This option controls IPoIB interface transport mode.

yes [default] sets Reliable Connection (RC) mode and no sets Unreliable
Datagram (UD) mode.

2. Bring up the IPoIB interface with the following command:

ifup <interface name>
For example:

ifup ib0

3.5  

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 25



IB Bonding

IB bonding is a high-availability solution for IPoIB interfaces. It is based on the Linux*
Ethernet Bonding Driver and was adopted to work with IPoIB. The support for IPoIB
interfaces is only for the active-backup mode. Other modes are not supported.

Interface Configuration Scripts

Create interface configuration scripts for the ibX and bondX interfaces. Once the
configurations are in place, perform a server reboot, or a service network restart. For
SLES* operating systems, a server reboot is required.

Red Hat* Enterprise Linux* (RHEL*)

See the Intel® Omni-Path Fabric Software Release Notes for versions of RHEL* that
are supported by Intel® Omni-Path Fabric Host Software.

Add the following lines to the RHEL* file /etc/modprobe.d/hfi.conf:

alias bond0 bonding
        options bonding miimon=100 mode=1 max_bonds=1     

SUSE* Linux* Enterprise Server (SLES*)

See the Intel® Omni-Path Fabric Software Release Notes for versions of SLES* that
are supported by Intel® Omni-Path Fabric Host Software.

Verify that the following line is set to yes in /etc/sysconfig/boot:

RUN_PARALLEL="yes"

Verifying IB Bonding Configuration

After the configuration scripts are updated, and the service network is restarted or a
server reboot is accomplished, use the following CLI commands to verify that IB
bonding is configured.

cat /proc/net/bonding/bond0 
ifconfig

Example of cat /proc/net/bonding/bond0 output:

cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: vX.X.X (mm dd, yyyy)

Bonding Mode: fault-tolerance (active-backup) (fail_over_mac)
Primary Slave: ib0
Currently Active Slave: ib0
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0

Slave Interface: ib0
MII Status: up
Link Failure Count: 0

3.6  

3.6.1  

3.6.1.1  

3.6.1.2  

3.6.2  

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
26 Order No.: H76470-5.0



Permanent HW addr: 80:00:04:04:fe:80

Slave Interface: ib1
MII Status: up
Link Failure Count: 0
Permanent HW addr: 80:00:04:05:fe:80

Example of ifconfig output:

st2169:/etc/sysconfig ifconfig
bond0     Link encap:InfiniBand  HWaddr 
80:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00
       inet addr:192.168.1.1  Bcast:192.168.1.255  Mask:255.255.255.0
       inet6 addr: fe80::211:7500:ff:909b/64 Scope:Link
       UP BROADCAST RUNNING MASTER MULTICAST  MTU:65520  Metric:1
       RX packets:120619276 errors:0 dropped:0 overruns:0 frame:0
       TX packets:120619277 errors:0 dropped:137 overruns:0 carrier:0
       collisions:0 txqueuelen:0
       RX bytes:10132014352 (9662.6 Mb)  TX bytes:10614493096 (10122.7 Mb)

ib0     Link encap:InfiniBand  HWaddr 
80:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00
       UP BROADCAST RUNNING SLAVE MULTICAST  MTU:65520  Metric:1
       RX packets:118938033 errors:0 dropped:0 overruns:0 frame:0
       TX packets:118938027 errors:0 dropped:41 overruns:0 carrier:0
       collisions:0 txqueuelen:256
       RX bytes:9990790704 (9527.9 Mb)  TX bytes:10466543096 (9981.6 Mb)

ib1     Link encap:InfiniBand  HWaddr 
80:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00
       UP BROADCAST RUNNING SLAVE MULTICAST  MTU:65520  Metric:1
       RX packets:1681243 errors:0 dropped:0 overruns:0 frame:0
       TX packets:1681250 errors:0 dropped:96 overruns:0 carrier:0
       collisions:0 txqueuelen:256
       RX bytes:141223648 (134.6 Mb)  TX bytes:147950000 (141.0 Mb)

Intel Distributed Subnet Administration

As Intel® Omni-Path Fabric clusters are scaled into the Petaflop range and beyond, a
more efficient method for handling queries to the Fabric Manager (FM) is required.
One of the issues is that while the Fabric Manager can configure and operate that
many nodes, under certain conditions it can become overloaded with queries from
those same nodes.

For example, consider a fabric consisting of 1,000 nodes, each with 4 processes. When
a MPI job is started across the entire fabric, each process needs to collect path records
for every other node in the fabric. For this example, 4 processes x 1000 nodes = 4000
processes. Each of those processes tries to contact all other processes to get the path
records from its own node to the nodes for all other processes. That is, each process
needs to get the path records from its own node to the 3999 other processes. This
amounts to a total of nearly 16 million path queries just to start the job. Each process
queries the subnet manager for these path records at roughly the same time.

In the past, MPI implementations have side-stepped this problem by hand-crafting
path records themselves, but this solution cannot be used if advanced fabric
management techniques such as virtual fabrics and advanced topologies
configurations are being used. In such cases, only the subnet manager itself has
enough information to correctly build a path record between two nodes.

3.7  

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 27



The open source daemon ibacm accomplishes the task of collecting path records by
caching paths as they are used. ibacm also provides a plugin architecture, which Intel
has extended with the Distributed Subnet Administration Provider (DSAP) to enhance
the ibacm path record caching solution. DSAP works with ibacm by allowing each
node to locally replicate the path records needed to reach the other nodes on the
fabric. At boot time, each ibacm/DSAP pairing queries the subnet manager for
information about the relevant parts of the fabric, backing off whenever the subnet
manager indicates that it is busy.

Once this information is in the DSAP's database, it is ready to answer local path
queries from MPI or other applications. If the fabric changes, due to a switch failure or
a node being added or removed from the fabric, the DSAP updates the affected
portions of the database. The DSAP can be installed and run on any node in the fabric,
however, it is most beneficial on nodes running OpenSHMEM* and MPI applications.

Applications that use the DSAP Plugin

The Performance Scaled Messaging (PSM2) Library for Intel® Omni-Path has been
extended to take advantage of the Distributed Subnet Administration Provider (DSAP)
plugin to the ibacm daemon. Therefore, all MPIs that use the Intel PSM2 library can
take advantage of the DSAP.

Any application that uses rdmacm also uses the DSAP plugin for path record caching,
assuming the FM is configured with the rdmacm SID range correctly. For details, see 
Service ID (SID).

Other applications must be modified specifically to take advantage of it.

If you plan to use the DSAP plugin, refer to the header file /usr/include/
Infiniband/opasadb_path.h for information. This file can be found on any node
where the libopasadb library is installed. The libopasadb library is found in the
Intel® Omni-Path Fabric Suite FastFabric-AR package, which is named opa-address-
resolution. For further assistance, please contact Intel Support.

DSAP Configuration File

The Distributed Subnet Administration Provider (DSAP) configuration file is /etc/
rdma/dsap.conf and it contains a brief description of each setting. Typically
administrators only need to deal with several of the options included in the file.

Refer to the following subsections for details on the recommended settings.

Service ID (SID)

The SID is the primary configuration setting for the DSAP. SIDs identify applications
that use the DSAP to determine their path records. The default configuration for the
DSAP includes all the SIDs defined in the default Fabric Manager (FM) configuration for
use by MPI.

Each SID entry defines one Service ID that is used to identify an application. Multiple
SID entries can be specified.

3.7.1  

3.7.2  

3.7.2.1  

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
28 Order No.: H76470-5.0



For example, if a virtual fabric has three sets of SIDs associated with it (0x0a1
through 0x0a3, 0x1a1 through 0x1a3, and 0x2a1 through 0x2a3), you would define
this as:

SID=0x0a1
SID=0x0a2
SID=0x0a3
SID=0x1a1
SID=0x1a2
SID=0x1a3
SID=0x2a1
SID=0x2a2
SID=0x2a3

Note: A SID of zero is not supported at this time. Instead, the OPA libraries treat zero values
as unspecified.

ScanFrequency

Periodically, the DSAP completely re-synchronizes its database. This also occurs if the
Fabric Manager (FM) is restarted. ScanFrequency defines the minimum number of
seconds between complete re-synchronizations. It defaults to 600 seconds, or 10
minutes.

On very large fabrics, increasing this value may help reduce the total amount of SM
traffic. For example, to set the interval to 15 minutes, add this line to the bottom of
the dsap.conf file:

ScanFrequency=900

LogFile

Most DSAP events are logged into /var/log/ibacm.log, and the message output is
controlled by the log_level parameter in /etc/rdma/ibacm_opts.cfg. When this
parameter is given, the I/O path events are redirected to the specified log file. Error
events in the I/O path library, oibutils/libibumad, are printed to the screen by
default.

LogFile=/var/log/ibacm.log

The LogFile and Dbg parameters are used primarily for debugging purposes.

Dbg

This parameter controls whether the DSAP records a normal level or a debugging level
of logging information.

To change the Dbg setting for DSAP, find the line in dsap.conf that reads Dbg=n,
and change the parameter to the desired value.

Valid options for Dbg include:

• Dbg = 1-6 Normal Logging

Errors, warnings, events, status and operation information are logged. Any value
between 1 and 6, inclusive, has the same effect.

3.7.2.2  

3.7.2.3  

3.7.2.4  

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 29



• Dbg = 7 Debug Logging

Debug logging should only be turned if requested by Intel Support, because it
generates so much information that system operation is impacted.

The LogFile and Dbg parameters are used primarily for debugging purposes.

Virtual Fabrics and the Distributed SA Provider

Open Fabrics Alliance* applications can be identified by a Service ID (SID). The Intel®
Omni-Path Fabric Suite Fabric Manager (FM) uses SIDs to identify applications. One or
more applications can be associated with a Virtual Fabric using the SID.

The Distributed Subnet Administration Provider (DSAP) is designed to be aware of
Virtual Fabrics, and to only store records for those Virtual Fabrics that match the SIDs
in the DSAP's configuration file. The DSAP recognizes when multiple SIDs match the
same Virtual Fabric and only stores one copy of each path record within a Virtual
Fabric. SIDs that match more than one Virtual Fabric are associated with a single
Virtual Fabric. The method for handling cases of multiple VFs matching the same SID
is discussed later in this document. The Virtual Fabrics that do not match SIDs in the
DSAP's database are ignored.

Configuring the DSAP

To minimize the number of queries made by the DSAP, it is important to configure it
correctly, both matching the configuration of the Fabric Manager (FM) and excluding
portions of the fabric not used by applications using the DSAP.

If you want to include an application in DSAP, you must do both of the following
steps:

• include the Service ID (SID) of the application in etc/rdma/dsap.conf
• include the application in the FM configuration file /etc/sysconfig/opafm.xml

DSAP Configuration Example

The default dsap.conf file's SID section looks like this sample:

#PSM MPI SID range. 
# PSM_Control 
      SID=0x1000117500000000 
      SID=0x1000117500000001 
      SID=0x1000117500000002 
      SID=0x1000117500000003 
      SID=0x1000117500000004 
      SID=0x1000117500000005 
      SID=0x1000117500000006 
      SID=0x1000117500000007 

# PSM_Data 
      SID=0x1000117500000008 
      SID=0x1000117500000009 
      SID=0x100011750000000a 
      SID=0x100011750000000b 
      SID=0x100011750000000c 
      SID=0x100011750000000d 
      SID=0x100011750000000e 
      SID=0x100011750000000f
      
#PSM MPI SID range #2 
# PSM_Control 

3.7.3  

3.7.3.1  

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
30 Order No.: H76470-5.0



      SID=0x1 
      SID=0x2 
      SID=0x3 
      SID=0x4 
      SID=0x5 
      SID=0x6 
      SID=0x7 
# PSM_Data 
      SID=0x9 
      SID=0xa 
      SID=0xb 
      SID=0xc 
      SID=0xd 
      SID=0xe 
      SID=0xf 

By default, DSAP enables the PSM application by including the SIDs for PSM. However,
the FM configuration file does not enable the PSM_Compute virtual fabric by default,
as shown in this sample:

<VirtualFabric>
      <Name>PSM_Compute</Name>
      <Enable>0</Enable>
                        <Security>1</Security>
      <QOS>1</QOS>
      <Bandwidth>70%</Bandwidth>
      <!-- <Member>compute_nodes</Member> -->
      <Member>All</Member>    <!-- can be reduced in scope if desired -->
      <Application>PSM</Application>
</VirtualFabric>

In this example, the application PSM contains all the SIDs defined by dsap.conf:

<Application>
      <Name>PSM</Name>
      <ServiceIDRange>0x1000117500000000-0x100011750000000f</ServiceIDRange>
      <!-- for simplicity, when serviceId is needed on mpirun command line -->
      <!-- we also allow serviceId 0x1 to 0xf -->
      <ServiceIDRange>0x1-0xf</ServiceIDRange>
    </Application>

Therefore, to skip an application in DSAP, simply remove the SIDs of the application
from dsap.conf. The application SIDs are generally defined by FM in the /etc/
sysconfig/opafm.xml file.

DSAP Configuration BKMs

The following items are some Best Known Methods (BKMs) for configuring DSAP:

• When using PSM without the PSM arguments to use DSAP, you can remove PSM in
the dsap.conf file.

• Applications that rarely establish new connections such as SRP can also be
removed from the dsap.conf file.

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 31



Default Configuration

As shipped, the Fabric Manager (FM) creates a single application virtual fabric called
Default and maps all nodes and Service IDs (SIDs) to it. The DSAP ships with a
configuration that lists a set of 31 SIDs, 0x1000117500000000 through
0x100011750000000f, and 0x1 through 0xf. This results in an arrangement like the
one shown in the following figure.

Figure 6. Distributed SA Provider Default Configuration

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0 x0-0 xffffffffffffffff

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0 x1-0 xf
SID Range: 0x 10000117500000000-0x 100011750000000f

Distributed SA ProviderInfiniBand* Fabric

If you are using the Fabric Manager in its default configuration, and you are using the
standard Intel PSM2 SIDs, you do not need to modify the DSAP configuration file. Be
aware that the DSAP has restricted the range of applicable SIDs to those defined in its
configuration file. Attempts to get path records using other SIDs do not work, even if
those other SIDs are valid for the fabric. When using this default configuration, MPI
applications can only be run using one of these 31 SIDs.

Multiple Virtual Fabrics Example

If you are configuring the physical fabric, you may want to add other Virtual Fabrics to
the default configuration.

In the following figure, the administrator has divided the physical fabric into four
virtual fabrics:

• Admin: communicates with the Fabric Manager

• Storage: used by SRP

• PSM2_MPI: used by regular MPI jobs

• Reserved: for special high-priority jobs

3.7.3.2  

3.7.3.3  

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
32 Order No.: H76470-5.0



Figure 7. Distributed SA Provider Multiple Virtual Fabrics Example

Virtual Fabric “Admin”
Pkey: 0x7fff

InfiniBand* Fabric

Virtual Fabric 
“PSM2_MPI”
Pkey: 0x8003

SID Range: 0x1-0xf
SID Range: 

0x1000117500000000-
0x100011750000000f

Virtual Fabric “Storage”
Pkey: 0x8001

SID: 
0x0000494353535250

Virtual Fabric 
“Reserved”

Pkey: 0x8002
SID Range: 0x10-0x1f

Distributed SA Provider

Virtual Fabric “PSM2_MPI”
Pkey: 0x8003

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

In this example, the DSAP was not configured to include the SID Range 0x10 through
0x1f, therefore it has ignored the Reserved virtual fabric. To resolve this issue, add
those SIDs to the dsap.conf file as shown in the following figure.

Figure 8. Distributed SA Provider Multiple Virtual Fabrics Configured Example

Virtual Fabric “Admin”
Pkey: 0x7fff

InfiniBand* Fabric

Virtual Fabric 
“PSM2_MPI”
Pkey: 0x8003

SID Range: 0x1-0xf
SID Range: 

0x1000117500000000-
0x100011750000000f

Virtual Fabric “Storage”
Pkey: 0x8001

SID: 
0x0000494353535250

Virtual Fabric 
“Reserved”

Pkey: 0x8002
SID Range: 0x10-0x1f

Distributed SA Provider

Virtual Fabric “Reserved”
Pkey: 0x8002

SID Range: 0x10-0x1f

Virtual Fabric “PSM2_MPI”
Pkey: 0x8003

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Virtual Fabrics with Overlapping Definitions

This section describes some examples of overlapping definitions which can occur when
SIDs are used in more than one virtual fabric.

In the following example, the fabric administrator enabled the PSM2_MPI Virtual
Fabric without modifying the Default Virtual Fabric. As a result, the DSAP sees two
different Virtual Fabrics that match its configuration file.

3.7.3.4  

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 33



Figure 9. Virtual Fabrics with Overlapping Definition for PSM2_MPI

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

InfiniBand* Fabric

Looking for SID Range 0x1-0xf 
and  0x1000117500000000-

0x100011750000000f

Distributed SA Provider

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff
Looking for SID Ranges 0x1-0xf and  

0x1000117500000000-
0x100011750000000f?Virtual Fabric “PSM2_MPI”

Pkey: 0x8002
SID Range: 0x1-0xf

SID Range: 
0x1000117500000000-
0x100011750000000f

When a path query is received, the DSAP deals with this conflict as follows:

Any Virtual Fabric with a pkey of 0xffff or 0x7fff is considered to be an Admin or
Default Virtual Fabric. This Admin or Default Virtual Fabric is treated as a special case
by the DSAP and is used only as a last resort. Stored SIDs are only mapped to the
default Virtual Fabric if they do not match any other Virtual Fabrics. Thus, the DSAP
assigns all the SIDs in its configuration file to the PSM2_MPI Virtual Fabric as shown in
the following figure.

Figure 10. Virtual Fabrics with all SIDs assigned to PSM2_MPI Virtual Fabric

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

Virtual Fabric “PSM2_MPI”
Pkey: 0x8002

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Distributed SA Provider

Virtual Fabric “PSM2_MPI”
Pkey: 0x8002

SID Range: 0x1-0xf
SID Range: 

0x1000117500000000-
0x100011750000000f

InfiniBand* Fabric

In the following example, the fabric administrator created two different Virtual Fabrics
without turning off the Default and two of the new fabrics have overlapping SID
ranges.

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
34 Order No.: H76470-5.0



Figure 11. Virtual Fabrics with PSM2_MPI Virtual Fabric Enabled

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Distributed SA Provider

Virtual Fabric “Default”    Pkey: 0xffff
SID Range: 0x0-0xffffffffffffffff

Looking for SID Ranges 0x1-0xf and  
0x1000117500000000-
0x100011750000000f?Virtual Fabric “PSM2_MPI”

ID: 1      Pkey: 0x8002
SID Range: 0x1-0xf

SID Range: 
0x1000117500000000-
0x100011750000000f

Virtual Fabric “Reserved”
ID: 2

Pkey: 0x8003
SID Range: 0x1-0xf

InfiniBand* Fabric

When a path query is received, the DSAP deals with this conflict as follows:

The DSAP handles overlaps by taking advantage of the fact that Virtual Fabrics have
unique numeric indexes. These indexes are assigned by the Fabric Manager (FM) in
the order that the Virtual Fabrics appear in the configuration file. These indexes can
be seen by using the opasaquery -o vfinfo command. The DSAP always assigns a
SID to the Virtual Fabric with the lowest index. This ensures that all copies of the
DSAP in the fabric make the same decisions about assigning SIDs. However, it also
means that the behavior of your fabric can be affected by the order in which you
configured the virtual fabrics.

In the following figure, the DSAP assigns all overlapping SIDs to the PSM2_MPI fabric
because it has the lowest index.

Note: The DSAP makes these assignments in order to allow the fabric to work despite
configuration ambiguities. The proper solution in these cases is to redefine the fabric
so that no node is ever a member of two Virtual Fabrics that service the same SID.

Figure 12. Virtual Fabrics with Unique Numeric Indexes

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

InfiniBand* Fabric

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Distributed SA Provider

Virtual Fabric “Default”        Pkey: 0xffff
SID Range: 0x0-0xffffffffffffffff

Virtual Fabric “PSM_MPI”
ID: 1           Pkey: 0x8002

SID Range: 0x1-0xf
SID Range: 

0x1000117500000000-
0x100011750000000f

Virtual Fabric “Reserved”
ID: 2      Pkey: 0x8003

SID Range: 0x1-0xf Virtual Fabric “PSM_MPI”
Pkey: 0x8002

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 35



Configuring DSAP for AutoStart

When using Virtual Fabrics in conjunction with Intel HFIs and PSM2 with PathRecord
query enabled, Intel recommends that you enable the DSAP for autostart on all the
compute nodes to simplify the operation of MPI jobs.

You can use any of the following methods to enable DSAP for autostart:

• Enable OpenFabrics Alliance* IBACM (ibacm) in the Intel OPA Autostart Menu
when installing, upgrading, or running the opaconfig command.

• Add -E dist_sa to the FF_INSTALL_OPTIONS and FF_UPGRADE_OPTIONS in
opafastfabric.conf when using FastFabric to install or upgrade all the
compute nodes.

• Use the opacmdall command or any other distributed shell to perform a
opaconfig -E dist_sa operation on all nodes.

HFI Node Description Assignment

Node Description names can be configured in many ways. For Intel® Omni-Path, Intel
recommends the use of the rdma-ndd daemon to keep the Node Description up to
date with the hostname of the node.

The Intel® Omni-Path Fabric Suite includes the rdma-ndd daemon in the infiniband-
diags package for convenience. For details on rdma-ndd, see the man page.

MTU Size

Intel® OP Software provides central configuration for the Maximum Transfer Unit
(MTU) based on individual virtual fabrics, or vFabrics. Refer to the Intel® Omni-Path
Fabric Suite Fabric Manager User Guide for information on configuring vFabrics,
including setting MTU size to some value other than the default. The values may be
set to one of the following: 2048 bytes, 4096 bytes, and 8192 bytes.

Note: Intel recommends that you use the default MTU size of 8K for the best overall fabric
performance.

Applications that use librdmacm, for example, PSM2 and RDMA, automatically obtain
the MTU information from the Fabric Manager. For other applications, configuration of
MTU varies.

Managing the Intel® Omni-Path Fabric Driver

The startup script for the Intel® Omni-Path Host Fabric Interface (HFI) is installed
automatically as part of the software installation, and typically does not need to be
changed. It runs as a system service.

The primary configuration file for the Intel® Omni-Path Fabric driver and other
modules and associated daemons is /etc/rdma/rdma.conf.

Typically, this configuration file is set up correctly at installation and the drivers are
loaded automatically during system boot once the software has been installed.
However, the HFI driver has several configuration variables that set reserved buffers
for the software, define events to create trace records, and set the debug level.

3.7.3.5  

3.8  

3.9  

3.10  

Intel® Omni-Path Fabric—Intel® Omni-Path Cluster Setup and Administration

Intel® Omni-Path Fabric Host Software
User Guide December 2016
36 Order No.: H76470-5.0



Existing configuration files are not overwritten during an upgrade operation.

Intel® Omni-Path Driver File System

The Intel® Omni-Path driver supplies a file system for exporting certain binary
statistics to user applications. By default, this file system is mounted in the /sys/
kernel/debug directory when the driver runs, for example, at system startup. The
file system is unmounted when the driver stops running, for example, at system
shutdown.

A sample layout of a system with two cards is shown in the following example:

/sys/kernel/debug/0/flash
/sys/kernel/debug/0/port2counters
/sys/kernel/debug/0/port1counters
/sys/kernel/debug/0/portcounter_names
/sys/kernel/debug/0/counter_names
/sys/kernel/debug/0/counters
/sys/kernel/debug/driver_stats_names
/sys/kernel/debug/driver_stats
/sys/kernel/debug/1/flash
/sys/kernel/debug/1/port2counters
/sys/kernel/debug/1/port1counters
/sys/kernel/debug/1/portcounter_names
/sys/kernel/debug/1/counter_names
/sys/kernel/debug/1/counters

The driver_stats file contains general driver statistics. There is one numbered
subdirectory per Intel® Omni-Path device on the system. Each numbered subdirectory
contains the following per-device files:

• port1counters contains counters for the device. These counters include
interrupts received, bytes and packets in and out, and others.

• port2counters contains counters for the device. These counters include
interrupts received, bytes and packets in and out, and others.

• flash is an interface for internal diagnostic commands.

The file counter_names provides the names associated with each of the counters in
the binary port#counters files.

Tthe file driver_stats_names provides the names for the stats in the binary
driver_stats files.

More Information on Configuring and Loading Drivers

See the modprobe(8), modprobe.conf(5), and lsmod(8) man pages for more
information.

Also refer to the /usr/share/doc/initscripts-*/sysconfig.txt file for
general information on configuration files.

3.10.1  

3.10.2  

Intel® Omni-Path Cluster Setup and Administration—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 37



4.0 Intel® True Scale/Intel® Omni-Path Coexistence

It is possible to have Intel® True Scale and Intel® Omni-Path coexist within the same
server. Doing so, however, requires some special procedures. It is important to keep
the following points in mind.

• Intel® True Scale and Intel® Omni-Path do not interoperate. You cannot connect
an Intel® True Scale adapter card to an Intel® Omni-Path switch. Likewise, you
cannot connect an Intel® Omni-Path adapter card to an Intel® True Scale switch.

• Each fabric must have its own Intel® Omni-Path Fabric Suite Fabric Manager node.

• Any node you intend to use in a coexistence scenario must be running an Intel®
Omni-Path-compatible Linux* distribution. See the Intel® Omni-Path Fabric
Software Release Notes for versions of Linux* distributions that are supported by
Intel® Omni-Path Fabric Host Software

• Some MPIs can work with both Intel® True Scale and Intel® Omni-Path network
adapters. However, to do so, those MPIs must be recompiled such that they are
able to correctly choose the library support for the underlying hardware.

Coexist Nodes

In a mixed fabric (Intel® True Scale and Intel® Omni-Path coexisting), certain nodes
may have both Intel® True Scale HCAs and Intel® Omni-Path HFIs installed. Note that
verbs continues to work on both cards without special configuration.

Configurations

There are two supported scenarios for creating Intel® True Scale/Intel® Omni-Path
coexistence configurations. The first is where the Intel® True Scale hardware serves
as an InfiniBand* storage network, and the Intel® Omni-Path hardware is used for
computing. This configuration allows for the continued use of existing Intel® True
Scale infrastructure for data storage, and for taking advantage of the performance
improvements that are inherent in Intel® Omni-Path for compute operations and
fabric management. The following figure illustrates this configuration.

4.1  

4.2  

Intel® Omni-Path Fabric—Intel® True Scale/Intel® Omni-Path Coexistence

Intel® Omni-Path Fabric Host Software
User Guide December 2016
38 Order No.: H76470-5.0



Figure 13. Intel® True Scale/Intel® Omni-Path

TS Hardware, TS IFS Software (or Mellanox HW/SW)

TS and OPA Hardware, Distribution + OFA Delta Install Software

OPA Hardware, Distribution + OFA Delta Install Software

IB Switch(s) OPA Switch

TS FM

Coexist Node1

OPA Switch(s)

OPA FM

Coexist NodeN

...
Compute Node1

Compute Node2

Compute NodeN

IO Node1

...
IO Node2

IO NodeN

...

The second scenario is referred to as a rolling upgrade from Intel® True Scale to
Intel® Omni-Path. In this scenario, Intel® Omni-Path hardware is added to an existing
Intel® True Scale fabric over time. Once the Intel® Omni-Path hardware is installed
and configured, the Intel® True Scale hardware is decommissioned.

Intel® True Scale/Intel® Omni-Path Coexistence—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 39



Figure 14. Intel® True Scale/Omni-Path Rolling Upgrade

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...
TS only Node

TSnode1
OPA only Node

OPAnode1

Coexist Node Details

Coexist Nodes support full distro verbs. All standard verbs applications, including
Lustre, IPoIB, SRP, and Verbs MPIs, are supported by the distribution software for
both Intel® True Scale and Intel® Omni-Path hardware.

Monitoring and Management of the InfiniBand* fabric is accomplished using Intel®
True Scale Fabric Suite FastFabric and/or Open Fabrics commands. Refer to Intel®
True Scale Fabric Suite FastFabric User Guide and OFA distribution documentation.

4.3  

Intel® Omni-Path Fabric—Intel® True Scale/Intel® Omni-Path Coexistence

Intel® Omni-Path Fabric Host Software
User Guide December 2016
40 Order No.: H76470-5.0



Figure 15. Coexist Node Details

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...
TS only Node

TSnode1

Intel® Omni-Path Node Details

Intel® Omni-Path Fabric Suite Fabric Manager runs on an Intel® Omni-Path-only node,
and manages the Intel® Omni-Path hardware, whether in Intel® Omni-Path nodes or
coexist nodes. Full Intel® Omni-Path support is provided on all these nodes.

The Intel® Omni-Path Basic installation is installed on all nodes with Intel® Omni-Path
hardware. The Basic installation will only upgrade some distribution packages when
deemed necessary by the installation scripts, based on the distribution detected
during the installation process.

4.4  

Intel® True Scale/Intel® Omni-Path Coexistence—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 41



Figure 16. Intel® Omni-Path Node Details

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...
TS only Node

TSnode1
OPA only Node

OPAnode1

Intel® True Scale Node Details

Full support for Intel® True Scale Fabric Suite (IFS) software is available on the Intel®
True Scale Fabric management node. This includes support for OFA and all Intel® True
Scale Fabric Suite FastFabric tools, such as iba_report, iba_top, and iba_port. Intel®
True Scale-only compute nodes retain full Intel® True Scale Fabric Suite software
support. Note, however, that dist_sa is not supported on Intel® True Scale nodes in a
coexistence configuration.

4.5  

Intel® Omni-Path Fabric—Intel® True Scale/Intel® Omni-Path Coexistence

Intel® Omni-Path Fabric Host Software
User Guide December 2016
42 Order No.: H76470-5.0



Figure 17. Intel® True Scale Node Details

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...
TS only Node

TSnode1
OPA only Node

OPAnode1

Installing on an Existing Intel® True Scale Cluster

The following scenario describes the case of adding Intel® Omni-Path to an existing
Intel® True Scale cluster.

Add an Intel® Omni-Path Fabric management node, Intel® Omni-Path switches, and
an Intel® Omni-Path HFI to the Intel® True Scale nodes that are to operate as dual
mode nodes. With the hardware in place and connected, install the standard Intel®
Omni-Path Fabric Suite software on the management node. Follow the standard Intel®
Omni-Path installation procedures, as described in the Intel® Omni-Path Fabric
Software Installation Guide.

4.6  

Intel® True Scale/Intel® Omni-Path Coexistence—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 43



Figure 18. Adding Intel® Omni-Path Hardware and Software

IB Switch(s)

TS FM

Coexist Node1

Coexist Node2

Coexist NodeN

...

TS only Node
TSnode1

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...

TS only Node
TSnode1

Next, install the Base Distro (RHEL* or SLES*) onto the coexist nodes. Note that
Intel® True Scale IFS should not be installed on the coexist nodes.

Figure 19. Adding the Base Distro

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...

TS only Node
TSnode1

Install Intel® Omni-Path Basic software on the coexist nodes. Follow the standard
Intel® Omni-Path installation procedures, as described in the Intel® Omni-Path Fabric
Switches Hardware Installation Guide, the Intel® Omni-Path Host Fabric Interface
Installation Guide, and the Intel® Omni-Path Fabric Software Installation Guide.

Intel® Omni-Path Fabric—Intel® True Scale/Intel® Omni-Path Coexistence

Intel® Omni-Path Fabric Host Software
User Guide December 2016
44 Order No.: H76470-5.0



Figure 20. Adding Basic Software

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...

TS only Node
TSnode1

Add Intel® Omni-Path-only nodes to the Intel® Omni-Path Fabric. Follow the standard
Intel® Omni-Path installation procedures, as described in the Intel® Omni-Path Fabric
Switches Hardware Installation Guide, the Intel® Omni-Path Host Fabric Interface
Installation Guide, and the Intel® Omni-Path Fabric Software Installation Guide.

Intel® True Scale/Intel® Omni-Path Coexistence—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 45



Figure 21. Adding Nodes to Intel® Omni-Path Fabric

IB Switch(s) OPA Switch(s)

TS FM OPA FM

Coexist Node1

Coexist Node2

Coexist NodeN

...
TS only Node

TSnode1
OPA only Node

OPAnode1

PSM2 Compatibility

For enhanced compatibility, Open MPI can be recompiled to run on the same node at
the same time on both Intel® True Scale and Intel® Omni-Path hardware. Note that
updating Intel® MPI Library to version 5.1 Gold allows Intel® True Scale and Intel®
Omni-Path hardware to operate simultaneously without using the compat package.

The following table indicates the compatibility of the MPI libraries with PSM and PSM2
versions and Intel® True Scale/Intel® Omni-Path hardware.

Table 3. PSM and PSM2 Compatibility Matrix

Library PSM (Intel® True
Scale Hardware)

PSM-Compat (Intel®
Omni-Path Hardware)

PSM2 (Intel® Omni-
Path Hardware)

Recompiled for PSM2

Open MPI X X

MVAPICH2 X

Intel® MPI Library 5.1
Gold

X X

Existing version

Open MPI X X

MVAPICH2 X X

Intel® MPI Library X X

4.7  

Intel® Omni-Path Fabric—Intel® True Scale/Intel® Omni-Path Coexistence

Intel® Omni-Path Fabric Host Software
User Guide December 2016
46 Order No.: H76470-5.0



PSM2 Standard Configuration

Existing MPIs that were compiled for Intel® True Scale can be linked to an optionally-
installed compat RPM using an LD_LIBRARY_PATH directive. The compat RPM
contains a library that has a binary-compatible API for linking old MPIs into PSM2.

Intel® Omni-Path Fabric Suite defaults to the compat RPM library, including new MPIs
that are compiled against the new PSM2 library. MPIs such as OpenMPI, which have
runtime selectors of the underlying hardware, can be used to select the hardware
using their mechanisms. The following figure shows the linkage when an MPI is run
with the LD_LIBRARY_PATH specifying the compat RPM library.

Note: In this environment, even OpenMPI would run over PSM2 if the Intel® True Scale
hardware is selected.

Figure 22. PSM2 Standard Configuration

libpsm_infinipath.so

libpsm2.so

TS hardware (qib) OPA hardware (hfi1)

Existing MPIs
openmpi
mvapich2

Recompiled (for OPA)
mvapich2

Distro
“infinipath-psm” rpm

OPA package
“libpsm2”

MPI Recompiled (for OPA) 
with Hardware Selector
(for example, openmpi)

Using the PSM2 Interface on Intel® Omni-Path Hardware

The libpsm2-compat package provides a recompiled infinipath-psm library
placed in /usr/lib64/psm2-compat. This package allows existing MPIs to be run on
Intel® Omni-Path hardware without being recompiled.

LD_LIBRARY_PATH must be prepended with /usr/lib64/psm2-compat on the
mpirun command line, with /etc/profile.d, /etc/profile, or added to the
user's shell environment.

To use PSM2 with existing OpenMPI, enter the command:

mpirun -np 2 -x LD_LIBRARY_PATH=/usr/lib64/psm2-compat:$LD_LIBRARY_PATH

To use PSM2 with existing Intel® MPI Library or MVAPICH2, enter the command:

mpirun -np 2 -genv LD_LIBRARY_PATH=/usr/lib64/psm2-compat:$LD_LIBRARY_PATH

4.7.1  

4.7.2  

Intel® True Scale/Intel® Omni-Path Coexistence—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 47



When LD_LIBRARY_PATH is not modified, existing MPIs continue to use the library
from the infinipath-psm package and run on Intel® True Scale hardware.

Figure 23. Overriding LD_LIBRARY_PATH to Run Existing MPIs on Intel® Omni-Path
Hardware

libpsm_infinipath.so libpsm2.so

TS hardware (qib) OPA hardware (hfi1)

Recompiled (for OPA) 
mvapich2

OPA package
“hfi-psm-compat” OPA package

“libpsm2”
libpsm_infinipath.so

Existing MPIs
openmpi
mvapich2 Over ridden by

LD_LIBRARY_PATH

Recompiled (for OPA)
openmpi

Distro
“infinipath-psm” rpm

Intel® Omni-Path Fabric—Intel® True Scale/Intel® Omni-Path Coexistence

Intel® Omni-Path Fabric Host Software
User Guide December 2016
48 Order No.: H76470-5.0



5.0 Running MPI on Intel® Omni-Path Host Fabric
Interfaces

This section provides information on using the Message Passing Interface (MPI) on
Intel® Omni-Path Host Fabric Interfaces (HFIs). Examples are provided for setting up
the user environment, and for compiling and running MPI programs.

Introduction

The MPI standard is a message passing library or collection of routines used in
distributed-memory parallel programming. It is used in data exchange and task
synchronization between processes. The goal of MPI is to provide portability and
efficient implementation across different platforms and architectures.

MPIs Packaged with Intel® Omni-Path Fabric Host Software

The high-performance open-source MPIs packaged with Intel® Omni-Path Basic
installation package include Open MPI and MVAPICH2. These MPIs are offered in
versions built with the Intel® Omni-Path Performance Scaled Messaging 2 (PSM2)
interface, and versions built to run over IB Verbs.

Also, there are commercial MPIs that are not packaged with Intel® Omni-Path Basic
installation package that use the PSM2 application programming interface (API) and
run over IB Verbs, including Intel® MPI Library.

For more information on other MPIs, see Using Other MPIs.

Intel® MPI Library

Intel® Omni-Path supports the 64-bit version of Intel® MPI Library. The 32-bit version
is not supported. The Intel® MPI Library is not included in the Intel® Omni-Path
software, but is available separately. Go to www.intel.com for more information.

Intel® MPI Library Installation and Setup

Download the Intel® MPI Library from www.intel.com and follow the installation
instructions. The following subsections provide setup instructions for the Intel® MPI
Library.

Setting Up the Intel® MPI Library

Intel® Omni-Path supports only the 64-bit version of the Intel® MPI Library.

To launch MPI jobs, the Intel installation directory must be included in PATH and
LD_LIBRARY_PATH.

5.1  

5.1.1  

5.2  

5.2.1  

5.2.1.1  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 49

http://www.intel.com
http://www.intel.com


When using sh for launching MPI jobs, run the following command:

$ source $prefix/bin64/mpivars.sh

When using csh for launching MPI jobs, run the following command:

$ source $prefix/bin64/mpivars.csh

Compiling Intel® MPI Library Applications

Intel recommends that you use the included wrapper scripts that invoke the
underlying compiler. The default underlying compiler is GCC*, including gfortran.

Note: The Intel® MPI Library includes more wrapper scripts than what is listed in the
following table. See the Intel® MPI Library documentation for the complete list of
wrapper scripts.

Table 4. Intel® MPI Library Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC C++

mpif77 Fortran 77

mpif90 Fortran 90

mpiicc C (uses Intel C compiler)

mpiicpc C++ (uses Intel C++ compiler)

mpiifort Fortran 77/90 (uses Intel Fortran compiler)

To compile your program in C using the default compiler, enter the command:

$ mpicc mpi_app_name.c -o mpi_app_name

To use the Intel compiler wrappers (mpiicc, mpiicpc, mpiifort), the Intel
compilers must be installed and resolvable from the user’s environment.

Running Intel® MPI Library Applications

Here is an example of a simple mpirun command running with four processes:

$ mpirun -np 4 -f mpihosts mpi_app_name

For more information, follow the Intel® MPI Library instructions for using mpirun,
which is a wrapper script that invokes the mpiexec.hydra command.

Pass the following option to mpirun to select Tag Matching Interface (TMI):

-genv I_MPI_FABRICS tmi

5.2.1.2  

5.2.2  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
50 Order No.: H76470-5.0



To help with TMI debugging, add this option to the Intel mpirun command:

-genv TMI_DEBUG 1

Open MPI

Open MPI is an open source MPI implementation from the Open MPI Project.
Precompiled versions of Open MPI that run over PSM2 and are built with the GCC* and
Intel compilers are available with the Intel download. Open MPI that runs over verbs is
also available, however, Intel strongly recommends that you do not use MPI on verbs
for Intel® Omni-Path.

Open MPI can be managed with the mpi-selector utility, as described in Managing MPI
Versions with the MPI Selector Utility on page 66.

Installing Open MPI

Follow the instructions in the Intel® Omni-Path Fabric Software Installation Guide for
installing Open MPI.

Setting up Open MPI

Intel recommends that you use the mpi-selector tool, because it performs the
necessary $PATH and $LD_LIBRARY_PATH setup.

If the mpi-selector tool is not used, you must do the following:

• Put the Open MPI installation directory in the appropriate path by adding the
following to PATH:

$mpi_home/bin

where $mpi_home is the directory path where Open MPI is installed.

• Set $LD_LIBRARY_PATH appropriately.

Setting up Open MPI with SLURM

To allow launching Open MPI applications using SLURM, you must set the Open MPI
environment variable OMPI_MCA_orte_precondition_transports in every node
running the job. The format is 16 digit hexadecimal characters separated by a dash.
For example:

OMPI_MCA_orte_precondition_transports=13241234acffedeb-abcdefabcdef1233

This key is used by the PSM2 library to uniquely identify each different job end point
used on the fabric. If two MPI jobs are running on the same node sharing the same
HFI and using PSM2, each one must have a different key.

5.3  

5.3.1  

5.3.2  

5.3.3  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 51



Compiling Open MPI Applications

Intel recommends that you use the included wrapper scripts that invoke the
underlying compiler instead of attempting to link to the Open MPI libraries manually.
This allows the specific implementation of Open MPI to change without forcing
changes to linker directives in users' Makefiles.

The following table lists the included wrapper scripts.

Table 5. Open MPI Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC, mpicxx, or mpic++ C++

mpif77 Fortran 77

mpif90 Fortran 90

To compile your program in C, enter the following:

$ mpicc mpi_app_name.c -o mpi_app_name

All of the wrapper scripts provide the command line options listed in the following
table.

The wrapper scripts pass most options on to the underlying compiler. Use the
documentation for the underlying compiler to determine which options to use for your
application.

Table 6. Command Line Options for Scripts

Command Meaning

man mpicc (mpif90,
mpicxx, etc.)

Provides help.

-showme Lists each of the compiling and linking commands that would be called
without actually invoking the underlying compiler.

-showme:compile Shows the compile-time flags that would be supplied to the compiler.

-showme:link Shows the linker flags that would be supplied to the compiler for the link
phase.

Creating the mpi_hosts File

Create an MPI hosts file in the same working directory where Open MPI is installed.
The MPI hosts file contains the host names of the nodes in your cluster that run the
examples, with one host name per line. Name this file mpi_hosts.

For more details, see Using the mpi_hosts File on page 58.

Running Open MPI Applications

The mpi-selector --list command invokes the MPI Selector and provides the
following list of MPI options, including a number of Open MPI choices.

5.3.4  

5.3.5  

5.3.6  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
52 Order No.: H76470-5.0



• mvapich2_gcc-X.X
• mvapich2_gcc_hfi-X.X
• mvapich2_intel_hfi-X.X
• openmpi_gcc-X.X.X
• openmpi_gcc_hfi-X.X.X
• openmpi_intel_hfi-X.X.X
Intel strongly recommends using the choices that contain the _hfi string, because
they run using PSM2 which is the default PSM for Intel® Omni-Path. The choices
without the _hfi string use verbs by default.

For example, if you chose openmpi_gcc_hfi-X.X.X, the following simple mpirun
command would run using PSM2:

$ mpirun -np 4 -machinefile mpi_hosts mpi_app_name

To run over IB Verbs instead of the default PSM2 transport in openmpi_gcc_hfi-
X.X.X, enter this command:

$ mpirun -np 4 -machinefile mpi_hosts -mca btl sm,openib,self -mca mtl ^psm,psm2 
mpi_app_name

The following command enables shared memory:

-mca btl sm

The following command enables openib transport and communication to self:

-mca btl openib,self 

The following command disables both PSM and PSM2 transport:

-mca mtl ^psm,^psm2

Note: In the previous commands, btl stands for byte transport layer and mtl for matching
transport layer.

PSM2 transport works in terms of MPI messages. OpenIB transport works in terms of
byte streams.

Alternatively, you can use Open MPI with a sockets transport running over IPoIB, for
example:

$ mpirun -np 4 -machinefile mpi_hosts -mca btl sm -mca btl tcp,self --mca 
btl_tcp_if_exclude eth0 -mca btl_tcp_if_include ib0 -mca mtl ^psm2 <mpi_app_name>

In this example, eth0 and psm are excluded, while ib0 is included. These instructions
may need to be adjusted for your interface names.

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 53



Note that in Open MPI, machinefile is also known as the hostfile.

Configuring MPI Programs for Open MPI

When configuring an MPI program, for example, generating header files and/or
Makefiles for Open MPI, you usually need to specify mpicc, mpicxx, and so on as the
compiler, rather than gcc, g__, etc.

Specifying the compiler is typically done with commands similar to the following,
assuming that you are using sh or bash as the shell:

$ export CC=mpicc
$ export CXX=mpicxx
$ export F77=mpif77
$ export F90=mpif90

The shell variables vary with the program being configured. The following examples
show frequently used variable names. If you use csh, use commands similar to the
following:

$ setenv CC mpicc

You may need to pass arguments to configure directly, for example:

$ ./configure -cc=mpicc -fc=mpif77 -c__=mpicxx -c__linker=mpicxx

You may also need to edit a Makefile to achieve this result, adding lines similar to:

CC=mpicc
F77=mpif77
F90=mpif90
CXX=mpicxx

In some cases, the configuration process may specify the linker. Intel recommends
that you specify the linker as mpicc, mpif90, etc. in these cases. This specification
automatically includes the correct flags and libraries, rather than trying to configure to
pass the flags and libraries explicitly. For example:

LD=mpif90

These scripts pass appropriate options to the various compiler passes to include
header files, required libraries, etc. While the same effect can be achieved by passing
the arguments explicitly as flags, the required arguments may vary from release to
release, so it is good practice to use the provided scripts.

Using Another Compiler

Open MPI and all other Message Passing Interfaces (MPIs) that run on Intel® Omni-
Path support multiple compilers, including:

• GNU* Compiler Collection (GCC*, including gcc, g__ and gfortran) versions 3.3
and later

• Intel compiler versions 9.x, 10.1, 11.x, and 12.x

5.3.7  

5.3.8  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
54 Order No.: H76470-5.0



• PGI* compiler versions 8.0 through 11.9

Note: The PGI* compiler is supported, however, pre-built PGI* MPIs are not
included in the Intel® Omni-Path Fabric software package.

The easiest way to use other compilers with any MPI that comes with Intel® Omni-
Path Fabric software is to use mpi-selector to change the selected MPI/compiler
combination. For details, see Managing MPI Versions with the MPI Selector Utility on
page 66.

The compilers can be invoked on the command line by passing options to the wrapper
scripts. Command line options override environment variables, if set.

The following table shows the options for each of the compilers. In each case, .....
stands for the remaining options to the mpicxx script, the options to the compiler in
question, and the names of the files that it operates.

Table 7. Intel Compilers

Compiler Command

C $ mpicc -cc=icc .....

C++ $ mpicc -CC=icpc

Fortran 77 $ mpif77 -fc=ifort .....

Fortran 90/95 $ mpif90 -f90=ifort .....
$ mpif95 -f95=ifort .....

Use mpif77, mpif90, or mpif95 for linking; otherwise, .true. may have the wrong
value.

If you are not using the provided scripts for linking, you can link a sample program
using the -show option as a test to see what libraries to add to your link line.

Compiler and Linker Variables

When you use environment variables to select the compiler to use, the scripts also set
the matching linker variable if it is not already set. For example, if you use the
$MPICH_CC variable, the matching linker variable $MPICH_CLINKER is also set.

If both the environment variable and command line options are used, the command
line option takes precedence.

If both the compiler and linker variables are set, and they do not match the compiler
you are using, the MPI program may fail to link. If it links, it may not execute
correctly.

Allocating Processes

MPI ranks are processes that communicate through the PSM2 library for best
performance. These MPI ranks are called PSM2 processes.

Typically, MPI jobs are run with each rank associated with a dedicated HFI hardware
context that is mapped to a CPU.

5.3.8.1  

5.3.9  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 55



If the number of node processes is greater than the available number of hardware
contexts, software context sharing increases the number of node programs that can
be run. Each HFI supports 8 software contexts per hardware context, therefore up to 8
MPI processes from the same MPI job can share that hardware context. There is a
small additional overhead for each shared context.

For the Intel® Omni-Path Host Fabric Interfaces, the maximum number of contexts
available is:

• Up to 160 user hardware contexts available per HFI.

• Up to 8*160 (1280) MPI ranks that can be run per HFI when software context
sharing is enabled (default mode).

The number of hardware contexts available can be set by the driver, and depends on
the number of processor cores in the system, including hyper-threaded cores.

The default hardware context/CPU mappings can be changed on the HFIs.

Optimal performance may be achieved by ensuring that the PSM2 process affinity is
assigned to the CPU of the Non-Uniform Memory Access (NUMA) node local to the HFI
that it is operating.

When running MPI jobs in a batch system environment where multiple jobs may be
running simultaneously, it may be useful to restrict the number of Intel® Omni-Path
contexts that are made available on each node running an MPI job. See Restricting
Intel® Omni-Path Hardware Contexts in a Batch Environment.

Errors that may occur with context sharing are covered in Reviewing Context Sharing
Error Messages on page 57.

There are multiple ways of specifying how processes are allocated, including:

• mpi_hosts file

• -np and -ppn options with mpirun
• MPI_NPROCS and PSM2_MAX_CONTEXTS_PER_JOB (formerly called

PSM2_SHAREDCONTEXTS_MAX) environment variables

These methods are described later in this document.

Restricting Intel® Omni-Path Hardware Contexts in a Batch
Environment

You can restrict the number of Intel® Omni-Path hardware contexts that are made
available on each node of an MPI job by setting that number in the
PSM2_MAX_CONTEXTS_PER_JOB environment variable. This option may be required
for resource sharing between multiple jobs in batch systems.

Note: Before enabling hardware context sharing, first ensure that the maximum number of
hardware contexts are enabled and used.

For example, consider that the maximum 160 hardware contexts are enabled and that
the driver configuration consumes 16 of these, leaving 144 for user contexts. If you
are running two different jobs on nodes using Intel® OP HFIs,
PSM2_MAX_CONTEXTS_PER_JOB can be set to 72 for each job. Both of the jobs that
want to share a node would have to set PSM2_MAX_CONTEXTS_PER_JOB=72. Each
job would then have at most half of the available hardware contexts.

5.3.9.1  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
56 Order No.: H76470-5.0



Note: MPIs use different methods for propagating environment variables to the nodes used
for the job. See Virtual Fabric Support in PSM2 for examples. Open MPI automatically
propagates PSM2 environment variables.

Setting PSM2_MAX_CONTEXTS_PER_JOB=16 as a cluster-wide default unnecessarily
penalizes nodes that are dedicated to running single jobs. Intel recommends that a
per-node setting, or some level of coordination with the job scheduler with setting the
environment variable, should be used.

PSM2_RANKS_PER_CONTEXT provides an alternate way of specifying how PSM2
should use contexts. The variable is the number of ranks that share each hardware
context. The supported values are 1 through 8, where 1 is no context sharing, 2 is 2-
way context sharing, 3 is 3-way context sharing, and so forth, up to 8 being 8-way
context sharing. The same value of PSM2_RANKS_PER_CONTEXT must be used for all
ranks on a node. Typically, you use the same value for all nodes in that job.

Note: Either PSM2_RANKS_PER_CONTEXT or PSM2_MAX_CONTEXTS_PER_JOB is used in a
particular job, but not both. If both are used and the settings are incompatible, PSM2
reports an error and the job fails to start.

See the Intel® Performance Scaled Messaging 2 (PSM2) Programmer's Guide for
details.

Reviewing Context Sharing Error Messages

The error message when the context limit is exceeded is:

No free OPA contexts available on /dev/hfi1

This message appears when the application starts.

Error messages related to contexts may also be generated by mpirun. For example:

PSM2 found 0 available contexts on OPA device

The most likely cause is that the cluster has processes using all the available PSM2
contexts. Clean up these processes before restarting the job.

Running in Shared Memory Mode

Open MPI supports running exclusively in shared memory mode. No Intel® Omni-Path
Host Fabric Interface is required for this mode of operation. This mode is used for
running applications on a single node rather than on a cluster of nodes.

To add pre-built applications (benchmarks), add /usr/mpi/gcc/openmpi-X.X.X-
hfi/tests/osu_benchmarks-X.X.X to your path. Or, if you installed the MPI in
another location, add $MPI_HOME/tests/osu_benchmarks-X.X.X to your path.

To enable shared memory mode, use a single node in the hostfile. For example, if
the file is named onehost and it is in the working directory, enter the following:

$ cat /tmp/onehost idev-64 slots=8

5.3.9.2  

5.3.9.3  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 57



Enabling shared memory mode uses a feature of Open MPI host files to list the
number of slots, which is the number of possible MPI processes (ranks) that you want
to run on the node. Typically, this is set equal to the number of processor cores on the
node. A hostfile with 8 lines containing idev-64 functions identically.

You can use the hostfile for the following operations:

• To measure MPI latency between two cores on the same host using shared
memory, run:

$ mpirun -np=2 -hostfile onehost osu_latency

• To measure MPI unidirectional bandwidth using shared memory, run:

$ mpirun -np=2 -hostfile onehost osu_bw

Using the mpi_hosts File

As noted in Creating the mpi_hosts File on page 52, a hostfile (also called
machines file, nodefile, or hostsfile) is created in your current working directory during
software installation. This file names the nodes that the node programs may run.

The two supported formats for the hostfile are:

hostname1
hostname2
...

or

hostname1 slots=process_count
hostname2 slots=process_count
...

In the first format, if the -np count (number of processes to spawn in the mpirun
command) is greater than the number of lines in the machine file, the hostnames are
repeated (in order) as many times as necessary for the requested number of node
programs. Also, if the -np count is less than the number of lines in the machine file,
mpirun still processes the entire file and tries to pack processes to use as few hosts
as possible in the hostfile. This is a different behavior than MVAPICH2.

In the second format, process_count can be different for each host, and is normally
the number of available cores on the node. When not specified, the default value is
one. The value of process_count determines how many node processes are started
on that host before using the next entry in the hostfile file. When the full
hostfile is processed, and there are additional processes requested, processing
starts again at the start of the file.

Intel recommends that you use the second format and various command line options
to schedule the placement of processes to nodes and cores. For example, use the
mpirun option -npernode to specify how many processes should be scheduled on
each node on each pass through the hostfile. (The -npernode option is similar to
the Intel® MPI Library option -ppn.) In the case of nodes with 8 cores each, if the

5.3.10  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
58 Order No.: H76470-5.0



hostfile line is specified as hostname1 slots=8 max-slots=8, then Open MPI
assigns a maximum of 8 processes to the node and there can be no over-subscription
of the 8 cores.

There are several ways of specifying the hostfile:

• Use the command line option -hostfile as shown in the following example:

$mpirun -np n -hostfile mpi_hosts [other options] program-name

In this case, if the named file cannot be opened, the MPI job fails.

Also, -machinefile is a synonym for -hostfile.

• Use the -H, -hosts, or --host command line option, followed by a host list. The
host list can follow one of the following examples:

host-01, or 
host-01,host-02,host-04,host-06,host-07,host-08

• Use the file ./mpi_hosts, if it exists.

If you are working in the context of a batch queuing system, it may provide a job
submission script that generates an appropriate mpi_hosts file. For more details,
see the website:

http://www.open-mpi.org/faq/?category=running#mpirun-scheduling

Using the Open MPI mpirun script

The mpirun script is a front end program that starts a parallel MPI job on a set of
nodes in a cluster. mpirun may be run on any x86_64 machine inside or outside the
cluster, as long as it is on a supported Linux* distribution, and has TCP connectivity to
all Intel® Omni-Path cluster machines to be used in a job.

The script starts, monitors, and terminates the node processes. mpirun uses ssh
(secure shell) to log in to individual cluster machines and prints any messages that
the node process prints on stdout or stderr, on the terminal where mpirun is
invoked.

The general syntax is:

$ mpirun [mpirun_options...] program-name [program options]

program-name is usually the pathname to the executable MPI program. When the MPI
program resides in the current directory and the current directory is not in your search
path, then program-name must begin with ./, as shown in this example:

./program-name 

Unless you want to run only one instance of the program, use the -np option, for
example:

$ mpirun -np n [other options] program-name

5.3.11  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 59

http://www.open-mpi.org/faq/?category=running#mpirun-scheduling


This option spawns n instances of program-name. These instances are called node
processes.

Generally, mpirun tries to distribute the specified number of processes evenly among
the nodes listed in the hostfile. However, if the number of processes exceeds the
number of nodes listed in the hostfile, then some nodes will be assigned more than
one instance of the process.

Another command line option, -npernode, instructs mpirun to assign a fixed number
p of node processes to each node, because it distributes n instances among the
nodes:

$ mpirun -np n -npernode p -hostfile mpi_hosts program-name

This option overrides the slots=process_count specifications, if any, in the lines of
the mpi_hosts file. As a general rule, mpirun distributes the n node processes
among the nodes without exceeding, on any node, the maximum number of instances
specified by the  slots=process_count option. The value of
the slots=process_count option is specified by either the -npernode command
line option or in the mpi_hosts file.

Typically, the number of node processes should not be larger than the number of
processor cores, at least not for compute-bound programs.

This option specifies the number of processes to spawn. If this option is not set, then
environment variable MPI_NPROCS is checked. If MPI_NPROCS is not set, the default
is to determine the number of processes based on the number of hosts in the
hostfile or the list of hosts -H or --host.

-npernode processes-per-node

This option creates up to the specified number of processes per node.

Each node process is started as a process on one node. While a node process may fork
child processes, the children themselves must not call MPI functions.

There are many more mpirun options for scheduling where the processes get
assigned to nodes. See man mpirun for details.

mpirun monitors the parallel MPI job, terminating when all the node processes in that
job exit normally, or if any of them terminates abnormally.

Killing the mpirun program kills all the processes in the job. Use CTRL+C to kill
mpirun.

Using Console I/O in Open MPI Programs

Open MPI directs UNIX* standard input to /dev/null on all processes except the
MPI_COMM_WORLD rank 0 process. The MPI_COMM_WORLD rank 0 process inherits
standard input from mpirun.

5.3.12  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
60 Order No.: H76470-5.0



Note: The node that invoked mpirun need not be the same as the node where the
MPI_COMM_WORLD rank 0process resides. Open MPI handles the redirection of the
mpirun standard input to the rank 0 process.

Open MPI directs UNIX* standard output and error from remote nodes to the node
that invoked mpirun and prints it on the standard output/error of mpirun. Local
processes inherit the standard output/error of mpirun and transfer to it directly.

It is possible to redirect standard I/O for Open MPI applications by using the typical
shell redirection procedure on mpirun, as shown in the following example:

$ mpirun -np 2 my_app < my_input > my_output

In this example, only the MPI_COMM_WORLD rank 0 process receives the stream from
my_input on stdin. The stdin on all the other nodes is tied to /dev/null. However,
the stdout from all nodes is collected into the my_output file.

Process Environment for mpirun

See the Open MPI documentation for additional details on the mpirun command,
specifically these sections:

• Remote Execution:

https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php#sect18

• Exported Environment Variables:

https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php#sect19

• Setting MCA Parameters:

https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php#sect20

Environment Variables

The Intel® Performance Scaled Messaging 2 (PSM2) Programmer's Guide lists
environment variables that are relevant to any PSM, including Open MPI. Refer to that
document for complete details.

PSM2-specific environment variables include, but are not limited to, the following:

• PSM2_DEVICES

• PSM2_IB_SERVICE_ID

• PSM2_MAX_CONTEXTS_PER_JOB

• PSM2_MEMORY

• PSM2_MQ_RECVREQS_MAX

• PSM2_MQ_RNDV_HFI_THRESH

• PSM2_MQ_RNDV_SHM_THRESH

• PSM2_MQ_SENDREQS_MAX

• PSM2_MTU

• PSM2_PATH_REC

• PSM2_PATH_SELECTION

5.3.13  

5.3.14  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 61

https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php#sect18
https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php#sect19
https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php#sect20


• PSM2_RANKS_PER_CONTEXT

• PSM2_RCVTHREAD

• PSM2_SHAREDCONTEXTS

• PSM2_SHAREDCONTEXTS_MAX

• PSM2_TID

• PSM2_TRACEMASK

Open MPI provides its own environment variables that may be more relevant, because
these variables are only active after the mpirun command has been issued and while
the MPI processes are active. See the Open MPI documentation for information,
specifically:

• MPI Environment Variables:

https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables

• Setting mpirun -mca Parameters:

https://www.open-mpi.org/doc/v1.6/man1/mpirun.1.php#sect19

Further Information on Open MPI

For more information about Open MPI, see:

http://www.open-mpi.org/

http://www.open-mpi.org/faq

Open MPI and Hybrid MPI/OpenMP Applications

Open MPI supports hybrid MPI/OpenMP applications, provided that MPI routines are
called only by the master OpenMP thread. This application is called the funneled
thread model. Instead of MPI_Init/MPI_INIT (for C/C__ and Fortran respectively),
the program can call MPI_Init_thread/MPI_INIT_THREAD to determine the level
of thread support, and the value MPI_THREAD_FUNNELED is returned.

To use this feature, the application must be compiled with both OpenMP and MPI code
enabled. To do this, use the -openmp or -mp flag on the mpicc compile line,
depending on your compiler.

MPI routines can be called only by the master OpenMP thread. The hybrid executable
is executed using mpirun, but typically only one MPI process is run per node and the
OpenMP library creates additional threads to use all CPUs on that node. If there are
sufficient CPUs on a node, you may run multiple MPI processes and multiple OpenMP
threads per node.

Note: When there are more threads than CPUs, both MPI and OpenMP performance can be
significantly degraded due to over-subscription of the CPUs.

The number of OpenMP threads is on a per-node basis and is controlled by the
OMP_NUM_THREADS environment variable in the .bashrc file. OMP_NUM_THREADS is
used by other compilers’ OpenMP products, but is not an Open MPI environment
variable. Use this variable to adjust the split between MPI processes and OpenMP
threads. Usually, the number of MPI processes (per node) times the number of
OpenMP threads is set to match the number of CPUs per node.

5.3.15  

5.4  

Intel® Omni-Path Fabric—Running MPI on Intel® Omni-Path Host Fabric Interfaces

Intel® Omni-Path Fabric Host Software
User Guide December 2016
62 Order No.: H76470-5.0

https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables
https://www.open-mpi.org/doc/v1.6/man1/mpirun.1.php#sect19
http://www.open-mpi.org/
http://www.open-mpi.org/


An example case is a node with four CPUs, running one MPI process and four OpenMP
threads. In this case, OMP_NUM_THREADS is set to four.

See Process Environment for mpirun on page 61 for information on setting
environment variables.

Note: With Open MPI, and other PSM2-enabled MPIs, you typically turn off PSM2's CPU
affinity controls so that the OpenMP threads spawned by an MPI process are not
constrained to stay on the CPU core of that process, causing over-subscription of that
CPU. Accomplish this using the HFI_NO_CPUAFFINITY=1 setting as follows:

OMP_NUM_THREADS=8 (typically set in the ~/.bashrc file)
mpirun -np 2 -H host1,host2 -x HFI_NO_CPUAFFINITY=1 ./hybrid_app

In this case, there would be 8 or more CPU cores on the host1 and host2 nodes, and
this job would run on a total of 16 threads, 8 on each node. You can use top and then
1 to monitor that the load is distributed to 8 different CPU cores.

The OMP_NUM_THREADS and HFI_NO_CPUAFFINITY variables can be set in .bashrc
or on the command line after -x options.

Debugging MPI Programs

Debugging parallel programs is substantially more difficult than debugging serial
programs. Thoroughly debugging the serial parts of your code before parallelizing is
good programming practice.

MPI Errors

Almost all MPI routines (except MPI_Wtime and MPI_Wtick) return an error code. It
is returned either as the function return value in C functions or as the last argument in
a Fortran subroutine call. Before the value is returned, the current MPI error handler is
called. By default, this error handler terminates the MPI job. Therefore, you can get
information about MPI exceptions in your code by providing your own handler for
MPI_ERRORS_RETURN. For details, see the MPI_Errhandler_set man page: 
https://www.open-mpi.org/doc/v2.0/man3/MPI_Errhandler_set.3.php

For details on MPI error codes, see the man page: https://www.open-mpi.org/doc/
v2.0/man3/MPI.3.php

Using Debuggers

See http://www.open-mpi.org/faq/?category=debugging for details on debugging with
Open MPI.

The TotalView* debugger can be used with the Open MPI supplied in this release. For
more information, see: http://www.open-mpi.org/faq/?category=running#run-with-tv

5.5  

5.5.1  

5.5.2  

Running MPI on Intel® Omni-Path Host Fabric Interfaces—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 63

https://www.open-mpi.org/doc/v2.0/man3/MPI_Errhandler_set.3.php
https://www.open-mpi.org/doc/v2.0/man3/MPI.3.php
https://www.open-mpi.org/doc/v2.0/man3/MPI.3.php
http://www.open-mpi.org/faq/?category=debugging
http://www.open-mpi.org/faq/?category=running#run-with-tv


6.0 Using Other MPIs

This section provides information on using Message Passing Interface (MPI)
implementations other than Open MPI and Intel® MPI Library, which are discussed in 
Open MPI and Intel® MPI Library, respectively. This section also compares the MPIs
available and discusses how to choose between MPIs.

Introduction

Intel® Omni-Path supports multiple high-performance MPI implementations. Most
implementations run over both PSM2 and OpenFabrics Verbs, as shown in the
following table. Use the mpi-selector-menu command to choose which MPI to use,
as described in Managing MPI Versions with the MPI Selector Utility on page 66.

Table 8. Other Supported MPI Implementations

MPI Implementation Runs Over Compiled
With

Comments

Open MPI PSM2
Verbs

GCC*
Intel

Provides some MPI-2 functionality (one-sided
operations and dynamic processes).
Available as part of the Intel download.
Can be managed by mpi-selector.

MVAPICH2 PSM2
Verbs

GCC*
Intel

Provides MPI-2 functionality.
Can be managed by mpi-selector.

Intel® MPI Library PSM2
Verbs

GCC*
Intel

Provides MPI-1 and MPI-2 functionality.
Available for purchase from Intel.

Note: The MPI implementations run on multiple interconnects and have their own
mechanisms for selecting the relevant interconnect. This section contains basic
information about using the MPIs. For details, see the MPI-specific documentation.

Installed Layout

By default, MVAPICH2 and Open MPI are installed in the following directory tree:

/usr/mpi/$compiler/$mpi-mpi_version

Note: See documentation for the Intel® MPI Library for information on the default
installation directory.

The Intel-supplied MPIs are precompiled with GCC* and Intel compilers. They also
have -hfi appended after the MPI version number, for example:

/usr/mpi/gcc/openmpi-VERSION-hfi

If a prefixed installation location is used, /usr is replaced by $prefix.

6.1  

6.2  

Intel® Omni-Path Fabric—Using Other MPIs

Intel® Omni-Path Fabric Host Software
User Guide December 2016
64 Order No.: H76470-5.0



The examples in this section assume that the default path for each MPI
implementation to mpirun is:

/usr/mpi/$compiler/$mpi/bin/mpirun

If a prefixed installation location is used, /usr may be replaced by $prefix. This
path is sometimes referred to as $mpi_home/bin/mpirun in the following sections.

MVAPICH2

Precompiled versions of MVAPICH2 that run over PSM2 and are built with GCC* and
Intel compilers are included with the Intel download. A precompiled version of
MVAPICH2 that runs over Verbs and is built with the GCC* compiler is also available.

MVAPICH2 can be managed with the MPI Selector utility, as described in Managing
MPI Versions with the MPI Selector Utility on page 66.

Compiling MVAPICH2 Applications

Intel recommends that you use the included wrapper scripts that invoke the
underlying compiler, as shown in the following table.

Table 9. MVAPICH2 Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC, mpicxx C++

mpif77 Fortran 77

mpif90 Fortran 90

To compile your program in C, use the command:

$ mpicc mpi_app_name.c -o mpi_app_name

To check the default configuration for the installation, check the following file:

/usr/mpi/$compiler/$mpi/etc/mvapich2.conf

Running MVAPICH2 Applications

The mpi-selector --list command invokes the MPI Selector and lists the MPI
options, including the following MVAPICH2 choices:

• mvapich2_gcc-X.X
• mvapich2_gcc_hfi-X.X
• mvapich2_intel_hfi-X.X

Intel strongly recommends using the choices that contain the _hfi string, because
they run using PSM2 which is the default PSM for Intel® Omni-Path. The choices
without the _hfi string use verbs by default.

6.3  

6.3.1  

6.3.2  

Using Other MPIs—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 65



Here is an example of a simple mpirun command running with four processes:

$ mpirun -np 4 -hostfile mpihosts ./mpi_app_name

Further Information on MVAPICH2

For more information about MVAPICH2, refer to:

http://mvapich.cse.ohio-state.edu/support/

Managing MPI Versions with the MPI Selector Utility

When multiple MPI implementations have been installed on the cluster, you can use
the MPI Selector utility to switch between them.

The MPI Selector is installed as a part of Intel® Omni-Path Fabric Host Software and it
includes the following basic functions:

• Listing MPI implementations that have registered with the utility

• Setting a default MPI to use (per user or site-wide)

• Unsetting a default MPI to use (per user or site-wide)

• Querying the current default MPI

Here is an example for listing and selecting an MPI:

$ mpi-selector --list
mvapich2_gcc-X.X
mvapich2_gcc_hfi-X.X
mvapich2_intel_hfi-X.X
openmpi_gcc-X.X.X
openmpi_gcc_hfi-X.X.X
openmpi_intel_hfi-X.X.X

The new default takes effect in the next shell that is started. See the mpi-selector
man page for more information.

Each MPI registers itself with the MPI Selector, and provides shell scripts mpivar.sh
and mpivars.sh scripts that can be found in $prefix/mpi/<COMPILER>/
<MPI>/bin directories.

For all non-GNU* compilers that are installed outside standard Linux* search paths,
set up the paths so that compiler binaries and runtime libraries can be resolved. For
example, set LD_LIBRARY_PATH, both in your local environment and in an rc file
(such as .mpirunrc, .bashrc, or .cshrc), are invoked on remote nodes.

Additional details can be found at:

• Process Environment for mpirun

• Environment Variables

• Compiler and Linker Variables

Note: The Intel-compiled versions require that the Intel compiler is installed and that paths
to the Intel compiler runtime libraries are resolvable from the user’s environment.

6.3.3  

6.4  

Intel® Omni-Path Fabric—Using Other MPIs

Intel® Omni-Path Fabric Host Software
User Guide December 2016
66 Order No.: H76470-5.0

http://mvapich.cse.ohio-state.edu/support/


7.0 SHMEM Description

SHMEM (Symmetric Hierarchical Memory) is a programing paradigm for one-sided
operations. The OpenSHMEM* community defines the standard, which includes an
Application Programming Interface (API). The OpenSHMEM* API provides global
distributed shared memory across a network of hosts.

The Intel® Omni-Path Fabric software package includes a copy of the University of
Houston SHMEM, which is based on OpenSHMEM*.

SHMEM is quite distinct from local shared memory, which may be abbreviated as shm.
Local shared memory is the sharing of memory by processes on the same host
running the same OS system image. SHMEM provides access to global shared memory
distributed across a cluster. The OpenSHMEM* API is completely different from, and
unrelated to, the standard System V Shared Memory API provided by UNIX* operating
systems.

Interoperability

The SHMEM library distributed with the Intel® Omni-Path Fabric Suite depends on the
GASNet layer, which in turn depends on the Intel Performance Scaled Messaging
(PSM2) protocol layer, implemented as a user-space library.

Installing SHMEM

SHMEM is packaged with the Intel® Omni-Path Fabric Suite or Intel® Omni-Path Fabric
Host Software. Every node in the cluster must have an Intel® HFI and must be
running Red Hat* Enterprise Linux* (RHEL*) operating system.

An Message Passing Interface (MPI) implementation with Performance Scaled
Messaging (PSM2) support must be available to run SHMEM. The following MPI
implementations are included in IFS:

• Open MPI configured to include PSM2 support:

— /usr/mpi/gcc/openmpi-X.X.X-hfi
— /usr/mpi/intel/openmpi-X.X.X-hfi
The -hfi suffix denotes that this is the Intel PSM2 version.

• MVAPICH2 compiled for PSM2:

— /usr/mpi/gcc/mvapich2-X.X-hfi
— /usr/mpi/intel/mvapich2-X.X-hfi
The -hfi suffix denotes that this is the Intel PSM2 version.

Intel recommends that you match the compiler used to build the MPI implementation
with the compiler that you are using to build your SHMEM application. For example, if
you are using the Intel compilers to build your SHMEM application and you wish to run
with Open MPI, then use the Intel build of the Open MPI library:

7.1  

7.2  

SHMEM Description—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 67



/usr/mpi/intel/openmpi-X.X.X-hfi
The following C compilers are supported:

• GCC* (as provided by distro) in 64-bit mode

• Intel C compiler in 64-bit mode

• PGI* compiler in 64-bit mode

Note: The PGI* compiler is supported, however, pre-built PGI* MPIs are not
included in the Intel® Omni-Path Fabric software package.

For more information or to perform an installation with SHMEM enabled, see the
Intel® Omni-Path Fabric Software Installation Guide.

Basic SHMEM Program

Examples of creating basic SHMEM programs are available in the OpenSHMEM*
Specification, Annex A, available at www.openshmem.org.

Compiling and Running SHMEM Programs

See the OpenSHMEM* specification at www.openshmem.org, Annex B, for up-to-date
information on compiling and running programs with shmrun.

Note that the MPIRUN_CMD environment variable needs to be set, but how it is set
depends on the MPI used. For Open MPI, use the command:

export MPIRUN_CMD="mpirun -mca mtl ^psm2 -mca mtl ^psm -np %N %C"

This is necessary because PSM2 cannot be used by both MPI and SHMEM at the same
time due to a limitation in the number of endpoints per process used by PSM2. The
above environment variable prevents Open MPI from using PSM2. Note that SHMEM
only uses MPI for job launch and initialization.

First, the MPI, GASNet, and SHMEM installations must be added to the environment
paths:

export PATH=/usr/shmem/gcc/openshmem-$VERSION-hfi/bin:/usr/shmem/gcc/
gasnet-$VERSION-openmpi-hfi/bin:/usr/mpi/gcc/openmpi-$VERSION/bin:$PATH

export LD_LIBRARY_PATH=/usr/shmem/gcc/openshmem-$VERSION-hfi/lib:/usr/shmem/gcc/
gasnet-$VERSION-openmpi-hfi/bin:/usr/mpi/gcc/openmpi-$VERSION/
lib64:$LD_LIBRARY_PATH

Note that some MPI builds may also contain their own SHMEM implementation.

Integrating SHMEM with slurm

SHMEM relies on an MPI implementation to provide a runtime environment for jobs.
This includes job startup, stdin/stdout/stderr routing, and other low performance
control mechanisms. SHMEM programs are typically started using shmemrun, which is

7.3  

7.4  

7.5  

Intel® Omni-Path Fabric—SHMEM Description

Intel® Omni-Path Fabric Host Software
User Guide December 2016
68 Order No.: H76470-5.0

http://openshmem.org/site/
http://openshmem.org/site/


a wrapper script around mpirun. The shmemrun script takes care of setting up the
environment appropriately, and also provides a common command line interface
regardless of which underlying mpirun is used.

SLURM Workload Manager (Simple Linux Utility for Resource Management or slurm) is
a free and open-source job scheduler for Linux* and Unix*-like operating systems.
Integration of SHMEM with slurm is provided by the MPI implementation. For details,
see: http://slurm.schedmd.com/slurm.html

The following sections describe methods for integrating SHMEM and slurm:

• Full Integration on page 69

• Two-Step Integration on page 69

• No Integration on page 70

Full Integration

This approach fully integrates SHMEM startup into slurm and is available when
running over MVAPICH2. The SHMEM program is executed using srun directly. For
example:

srun -N 16 shmem-test-world

To run a program on 16 nodes, slurm starts the processes using slurmd and
provides communication initialization. The implementation relies on slurm providing a
process management interface (PMI) library and the MPI implementation using that
library so that each MPI process can hook into slurm.

You must set up the environment appropriately, including adding the SHMEM library
directory to LD_LIBRARY_PATH. See Compiling and Running SHMEM Programs on
page 68 for more information on the environment setup.

Two-Step Integration

This integrated approach is performed in two steps to allocate the nodes and run the
job. This option is available when running over Open MPI. The run command is:

salloc -N 16 shmemrun shmem-test-world

The salloc command allocates 16 nodes and runs one copy of shmemrun on the first
allocated node, which then creates the SHMEM processes. shmemrun invokes mpirun,
and mpirun determines the correct set of hosts and required number of processes
based on the slurm allocation that it is running inside of. Because shmemrun is used
in this approach, you do not need to set up the environment.

For additional details, see Setting up Open MPI with SLURM on page 51.

7.5.1  

7.5.2  

SHMEM Description—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 69

http://slurm.schedmd.com/slurm.html


No Integration

This approach allows a job to be launched inside a slurm allocation but with no
integration. This approach can be used for any supported MPI implementation.
However, it requires that a wrapper script is used to generate the hosts file. slurm is
used to allocate nodes for the job, and the job runs within that allocation, but not
under the control of the slurm daemon. One method for this approach is:

salloc -N 16 shmemrun_wrapper shmem-test-world

In this example, shmemrun_wrapper is a user-provided wrapper script that:

• Creates a hosts file based on the current slurm allocation.

• Invokes mpirun with the hosts file and other appropriate options.

Note: In this case, ssh is used for starting processes, not slurm.

Sizing Global Shared Memory

SHMEM provides a symmetric heap that determines the amount of global shared
memory per Processing Element (PE) that is available to the application. This is an
important resource and this section discusses the mechanisms available to size it. The
SHMEM library pre-allocates room in the virtual address space according to
$SHMEM_SHMALLOC_MAX_SIZE (default of 4GB). It then populates this with enough
pages to cover $SHMEM_SHMALLOC_INIT_SIZE (default 16MB). The global shared
memory segment can then grow dynamically from its initial size up to its maximum
size. If an allocation attempts to exceed the maximum size, allocations are no longer
guaranteed to succeed, and it fails if there is no room in the virtual memory space of
the process following the global shared memory segment. A reasonable limit is 4GB
per process. One side effect of this approach is that SHMEM programs consume a
large amount of virtual memory when viewed with opatop, due to the large
maximum size setting. The RES field of opatop indicates the actual amount of
memory that is resident and in use.

If a SHMEM application program runs out of global shared memory, increase the value
of $SHMEM_SHMALLOC_MAX_SIZE. The value of $SHMEM_SHMALLOC_INIT_SIZE can
also be changed to pre-allocate more memory up front rather than dynamically.

It is possible for SHMEM to fail at start-up or while allocating global shared memory,
due to limits placed by the operating system on the amount of local shared memory
that SHMEM can use. Because SHMEM programs can use very large amounts of
memory, this can exceed typical OS configurations. As long as there is sufficient
physical memory for the program, the following steps can be used to solve local
shared memory allocation problems:

• Check for low ulimits on memory:

ulimit -l : max locked memory (important for PSM, not SHMEM)
ulimit -v : max virtual memory

7.5.3  

7.6  

Intel® Omni-Path Fabric—SHMEM Description

Intel® Omni-Path Fabric Host Software
User Guide December 2016
70 Order No.: H76470-5.0



• Check the contents of these sysctl variables:

sysctl kernel.shmmax ; maximum size of a single shm allocation in bytes
sysctl kernel.shmall ; maximum size of all shm allocations in “pages”
sysctl kernel.shmnmi ; maximum number of shm segments

• Check the size of /dev/shm:

df /dev/shm

• Check for stale files in /dev/shm:

ls /dev/shm

If any of these checks indicate a problem, ask the cluster administrator to increase the
limit.

Application Programming Interface

Full documentation on the OpenSHMEM* Application Programming Interface can be
found at: http://openshmem.org/site/Specification

SHMEM Benchmark Programs

The following SHMEM micro-benchmark programs are included:

• shmem-get-latency: measures get latency

• shmem-get-bw: measures streaming get bandwidth (uni-directional)

• shmem-get-bibw: measures streaming get bandwidth (bi-directional)

• shmem-put-latency: measures put latency

• shmem-put-bw: measures streaming put bandwidth (uni-directional)

• shmem-put-bibw: measures streaming put bandwidth (bi-directional)

The benchmarks must be run with an even number of processes. They are typically
run on exactly two hosts with the processes divided equally between them. The
processes are split up into pairs, with one from each pair on either host, and each pair
is loaded with the desired traffic pattern. The benchmark automatically determines the
correct mapping, regardless of the actual rank order of the processes and their
mapping to the two hosts.

Alternatively, if the -f option is specified, the benchmark is forced to use the rank
order when arranging the communication pattern. In this mode and with np ranks,
each rank i (in 0, np/2) is paired with rank (np / 2) _ i. For example, this mode
can be used to test SHMEM performance within a single node.

The micro-benchmarks have the command line options shown in the following table.

7.7  

7.8  

SHMEM Description—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 71

http://openshmem.org/site/Specification


Table 10. SHMEM Micro-Benchmarks Command Line Options

Option Description

-a INT log2 of desired alignment for buffers. Default = 12

-b INT Batch size, number of concurrent operations. Default = 64

-f Force order for bifurcation of PEs based on rank order.

-h Display the help page.

-l INT Set minimum message size. Default = 2

-m INT Set the maximum message size. Default = 4194304

Additional SHMEM micro-benchmark programs are described in the following sections
of this document:

• SHMEM Random Access Benchmark on page 72

• SHMEM All-to-All Benchmark on page 73

• SHMEM Barrier Benchmark on page 74

• SHMEM Reduce Benchmark on page 74

SHMEM Random Access Benchmark

Name: shmem-rand
Description: randomized put/get benchmark. This is a hybrid SHMEM/MPI code, so a
binary is provided per supported MPI implementation.

Usage: shmem-rand [options] [list of message sizes]
Message sizes are specified in bytes. Default = 8.

Options are listed in the following table.

Table 11. SHMEM Random Access Benchmark Options

Option Description

-a Use automatic (NULL) handles for NB ops. Default = explicit handles

-b Use a barrier every window.

-c INTEGER Specify loop count. See also -t.

-f Fixed window size. Default = scaled

-h Display the help page.

-l Enable communication to local ranks.

-m INTEGER[K] Memory size in MB. Can also specify KB using a K suffix. Default = 8 MB

-n Use non-pipelined mode for NB ops. Default = pipelined

-o OP Operation. Values include:
get
getnb
put

continued...   

7.8.1  

Intel® Omni-Path Fabric—SHMEM Description

Intel® Omni-Path Fabric Host Software
User Guide December 2016
72 Order No.: H76470-5.0



Option Description

putnb

-p For blocking puts, no quiet every window. This is the default operation.

-q For blocking puts, use quiet every window.

-r Use ring pattern. Default = random

-s Enable communication to self.

-t FLOAT If the loop count is not given, run the test for this many seconds. Default = 10
seconds

-u Run in uni-directional mode.

-v Verbose mode. Repeat for more verbose.

-w INTEGER Set the window size. Default = 32

-x INTEGER Window size limit. Default = 16384

SHMEM All-to-All Benchmark

Name: shmem-alltoall
Description: all-to-all put benchmark. This is a hybrid SHMEM/MPI code, so a binary is
provided per supported MPI implementation.

Usage: /test/shmem-alltoall [options] [list of message sizes]
Message sizes are specified in bytes. Default = 8.

Options are listed in the following table.

Table 12. SHMEM All-to-All Benchmark Options

Option Description

-a Use automatic (NULL) handles for NB ops. Default = explicit handles

-c INTEGER Specify loop count. See also -t.

-f Fixed window size. Default = scaled

-h Display the help page.

-l Enable communication to local ranks.

-m INTEGER[K] Memory size in MB. Can also specify KB using a K suffix. Default = 8 MB

-n Use non-pipelined mode for NB ops. Default = pipelined

-o OP Operation. Values include:
put
putnb

-p INTEGER Offset for all-to-all schedule. Default = 1. Typically set to ppn

-r Randomize all-to-all schedule.

-s Enable communication to self.

continued...   

7.8.2  

SHMEM Description—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 73



Option Description

-t FLOAT If the loop count is not given, run the test for this many seconds. Default = 10
seconds

-v Verbose mode. Repeat for more verbose.

-w INTEGER Set the window size. Default = 32

-x INTEGER Window size limit. Default = 16384

SHMEM Barrier Benchmark

Name: shmem-barrier
Description: barrier benchmark.

Usage: shmem-barrier [options]
Options are listed in the following table.

Table 13. SHMEM Barrier Benchmark Options

Option Description

-h Display the help page.

-i INTEGER[K] Outer iterations. Default = 1

SHMEM Reduce Benchmark

Name: shmem-reduce
Description: reduce benchmark.

Usage: shmem-reduce [options]
Options are listed in the following table.

Table 14. SHMEM Reduce Benchmark Options

Option Description

-b INTEGER Number of barriers between reduces. Default = 0

-h Display the help page.

-i INTEGER[K] Outer iterations. Default = 1

-r INTEGER Inner iterations. Default = 10000

7.8.3  

7.8.4  

Intel® Omni-Path Fabric—SHMEM Description

Intel® Omni-Path Fabric Host Software
User Guide December 2016
74 Order No.: H76470-5.0



8.0 Virtual Fabric Support in PSM2

Intel® Omni-Path supports full Virtual Fabric (vFabric) integration using Performance
Scaled Messaging (PSM2). To target a vFabric, you can specify IB Service Level (SL)
and Partition Key (PKey) or provide a configured Service ID (SID). You can also use
path record queries to the Intel® Omni-Path Fabric Suite Fabric Manager (FM) during
connection setup.

All PSM2-enabled MPIs can leverage these capabilities transparently using
environment variables. PSM2 environment variables are documented in the Intel®
Performance Scaled Messaging 2 (PSM2) Programmer's Guide.

With MPI applications, the environment variables must be propagated across all nodes
and processes and not just the node from where the job is submitted and run. The
mechanisms to do this are MPI-specific, as shown in the following examples:

• Open MPI: Use –x ENV_VAR=ENV_VAL in the mpirun command line.

Example:

mpirun –np 2 –machinefile machinefile -x PSM2_ENV_VAR=PSM_ENV_VAL prog 
prog_args

• MVAPICH2: Use mpirun_rsh to perform job launch. Do not use mpiexec or
mpirun alone. Specify the environment variable and value in the mpirun_rsh
command line before the program argument.

Example:

mpirun_rsh –np 2 –hostfile machinefile PSM2_ENV_VAR=PSM_ENV_VAL prog prog_args

• Intel® MPI Library: Use -genv as shown below. Additional examples are shown
at: https://software.intel.com/en-us/node/535596

Example:

mpirun –np 2 –machinefile machinefile -genv PSM2_ENV_VAR PSM_ENV_VAL prog 
prog_args

Additional options include:

-genvall Enables propagation of all environment variables to all MPI processes.

-genvlist <list of genv var names> Passes a list of environment
variables with their current values, where <list of genv var names> is a
comma-separated list of environment variables to be sent to all MPI processes.

Virtual Fabric Support in PSM2—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 75

https://software.intel.com/en-us/node/535596


Virtual Fabric Support using Fabric Manager

Virtual Fabric (vFabric) in PSM2 is supported with the Fabric Manager (FM). The Fabric
Manager contains a sample file with pre-configured vFabrics for PSM2, at /etc/
sysconfig/opafm.xml. Sixteen unique Service IDs have been allocated for PSM2-
enabled MPI vFabrics to simplify testing, however, any Service ID can be used.

There are two ways to use vFabric with PSM2:

• Specify the appropriate SL and PKey for the vFabric in question.

• Specify a Service ID (SID) that identifies the vFabric to be used. PSM2
automatically obtains the SL and PKey to use for the vFabric from the Fabric
Manager via path record queries.

Refer to the Intel® Omni-Path Fabric Suite Fabric Manager User Guide for more details
about vFabrics.

8.1  

Intel® Omni-Path Fabric—Virtual Fabric Support in PSM2

Intel® Omni-Path Fabric Host Software
User Guide December 2016
76 Order No.: H76470-5.0



9.0 Multi-Rail Support in PSM2

Multi-rail means that a process can use multiple network interface cards to transfer
messages. This chapter defines terminology, explains user scenarios, and describes
implementation details for MPI application programmers.

Multi-Rail Overview

A multi-rail configuration provides load balancing and failover capabilities, adding a
higher degree of fabric redundancy. If one HFI or an entire subnet fails, traffic can be
moved to the remaining switches.

The multi-rail feature can be applied to a single subnet or multiple subnets. By
enabling multi-rail, a process can use multiple network interface cards (HFIs) to
transfer messages.

Note: Subnets can also be referred to as planes or fabrics. Rails are also referred to as HFIs.

Three basic scenarios include:

• Single-rail in a single subnet: This scenario, shown in the following figure, consists
of one HFI in a server connected to one subnet. This is the default configuration
during installation. This configuration provides the performance required by most
applications in use today.

• Dual-rail in dual subnets: This scenario, shown in the following figure, consists of
two HFIs in the same server connected to separate subnets. This configuration
provides improved MPI message rate, latency, and bandwidth to the node as well
as flexibility for configuring failover and load-balancing.

9.1  

Multi-Rail Support in PSM2—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 77



• Dual-rail in a single subnet: This scenario, shown in the following figure, consists
of two HFIs in the same server connected to the same subnet. This configuration
also provides improved MPI message rate, latency, and bandwidth to the node,
but only basic HFI failover capabilities if configured.

Note: Other multi-rail scenarios can be configured up to the supported number of FM
instances. These scenarios are out of scope at this time.

Multi-Rail Users

Multi-rail can be used by both system administrators and MPI application
programmers.

The system administrator sets up a multi-rail system using multiple Intel® Omni-Path
HFIs per node. If desired, the system administrator connects the HFIs to multiple
subnets, and configures each subnet with different subnet IDs. This is done by editing
the opafm.xml file, as described in the Intel® Omni-Path Fabric Software Installation
Guide.

9.2  

Intel® Omni-Path Fabric—Multi-Rail Support in PSM2

Intel® Omni-Path Fabric Host Software
User Guide December 2016
78 Order No.: H76470-5.0



MPI application programmers can run their application over a multi-rail system to
improve performance or increase the number of hardware resources available for jobs.
By default, PSM2 selects HFIs in round-robin fashion, in an attempt to evenly
distribute the use of hardware resources and provide performance benefits.

The default behavior is single-rail configuration, where each process uses a single
context/sub-context that maps to a single HFI to communicate to other processes.
Intel recommends that you enable PSM2 to use multiple rail communication on
systems with multiple HFIs per node.

On a multi-subnet system, if multi-rail is not turned on, Intel recommends that you
set the HFI_UNIT environment variable (from 0) to notify the PSM2 job which HFI to
use. The HFIs should be on the same subnet, otherwise, the same job might try to use
HFIs from different subnets and cause the job to hang because there is no path
between subnets. In this case, some jobs may run across different subnets, but this
behavior cannot be guaranteed. However, if multi-rail is turned on, PSM2 can reorder
and automatically match the HFIs by using the subnet ID. That is why unique subnet
IDs are required for each subnet.

Environment Variables

The following environment variables can be set:

• PSM2_MULTIRAIL = n where n can be any value up to a maximum of 4.

If set to a non-zero value, PSM2 sets up multiple rails, to a maximum of 4.
Otherwise, multi-rail is turned off. How multi-rails are set up and how many rails
are set up depends on whether the environment variable PSM2_MULTIRAIL_MAP
is set.

• PSM2_MULTIRAIL_MAP = unit:port,unit:port,unit:port,...
Specifies the HFI/port pair(s) to set up a rail. Multiple specifications are separated
by a comma. Values include:

unit starts from 0. The term unit refers to an HFI.

port is always 1 because Intel® Omni-Path Host Fabric Interfaces are single port
devices.

If only one rail is specified, it is equivalent to a single-rail case. The unit/port is
specified instead of using the unit/port values assigned by the hfi1 driver.
PSM2 scans the above pattern until a violation or error is encountered, and uses
the information it has gathered.

Multi-Rail Configuration Examples

This section contains examples of multi-rail used in a single subnet and in multiple
subnets.

Terminology:

• Subnets can also be referred to as planes or fabrics.

• Hosts can also be referred to as nodes.

• HFIs can also be referred to as rails.

9.3  

9.4  

Multi-Rail Support in PSM2—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 79



Single subnet, each host has two HFIs

The following figure shows an example of a single subnet with each host having two
HFIs. HFI 0 has one port and HFI 1 has one port.

Host 1 Subnet Host 2

HFI 1

HFI 0 HFI 0

HFI 1

Example Environment Variables

• PSM2_MULTIRAIL is not set. PSM2 is using single-rail, the HFI/port/context
selection is from the assignment of the hfi1 driver. You must specify the HFI/port
using HFI_UNIT and HFI_PORT.

• PSM2_MULTIRAIL is set. PSM2 checks that there are two HFIs in the system. The
first available port is Port 1 for HFI 0. The next available port is Port 1 for HFI 1.
PSM2, by default, uses a PSM2_MULTIRAIL_MAP of 0:1,1:1. Because this is a
single subnet, all of the ports have the same subnet ID. PSM2 sets up the first
(master) connection over 0:1, and sets up the second (standby) connection over
1:1.

• PSM2_MULTIRAIL=1 and PSM2_MULTIRAIL_MAP=1:1,0:1 You must specify the
map and how to use the HFI/port. PSM2 uses the given pairs. PSM2 sets up the
master connection over HFI 1 Port 1 and sets up the standby connection over HFI
0 Port 1.

Multi-subnets, with same subnet ID

The following figure shows an example of multiple subnets with the same subnet ID.

Both Subnets have 
same Subnet ID

Host 1
Subnet

Host 2

HFI 1

HFI 0 HFI 0

HFI 1
Subnet

Example Environment Variables

• PSM2_MULTIRAIL is not set. There are multiple subnets, therefore PSM2 may not
work if multi-rail is not turned on. If one process on a different host chooses HFI 0
Port 1 and another process chooses HFI 1 Port 1, there is no path between these
two processes and the MPI job fails to start.

• PSM2_MULTIRAIL is set. The two subnets have the same subnet ID and PSM2
does not know which ports are in the same subnet. PSM2 does not work in this
case.

Multi-subnets, single subnet ID, atypical wiring

The following figure shows an example of multiple subnets with a single subnet ID and
atypical wiring.

Intel® Omni-Path Fabric—Multi-Rail Support in PSM2

Intel® Omni-Path Fabric Host Software
User Guide December 2016
80 Order No.: H76470-5.0



Both Subnets have 
same Subnet ID

Host 1
Subnet

Host 2

HFI 1

HFI 0 HFI 0

HFI 1
Subnet

Example Environment Variables

• PSM2_MULTIRAIL is not set. PSM2 may not work because there are multiple
subnets.

• PSM2_MULTIRAIL=1. The two subnets have the same subnet ID, PSM2 does not
know which ports are in the same subnet. PSM2 does not work in this case.

Multi-subnets, different subnet IDs

The following figure shows an example of multiple subnets with different subnet IDs.

Subnets have 
different Subnet IDs

Host 1
Subnet

Host 2

HFI 1

HFI 0 HFI 0

HFI 1
Subnet

Example Environment Variables

• PSM2_MULTIRAIL is not set. PSM2 may not work because there are multiple
subnets. HFI 0/Port 1 on first host has no connection to HFI 1/Port 1 on second
host.

• PSM2_MULTIRAIL=1 automatic selection. Both hosts get HFI/Port pairs 0:1,1:1
first. After the PSM2 reordering based on subnet ID, the host on the left side gets
0:1,1:1 and the host on the right side gets 0:1,1:1. The PSM2 makes the master
rail on 0:1 of the left host with 0:1 on the right host. The standby rail is set up on
1:1 of the left host with 1:1 of the right host. PSM2 works in this configuration/
setting.

• PSM2_MULTIRAIL=1 and PSM2_MULTIRAIL_MAP=1:1,0:1. You must specify the
HFI/port pairs. PSM2 does not reorder them. Both hosts use 1:1 to make the
connection on the second subnet as the master rail, and set up the second rail
over 0:1 on both sides. PSM2 works fine in this configuration.

Multi-subnets, different subnet IDs, atypical wiring

The following figure shows an example of multiple subnets with different subnet IDs
and atypical wiring.

Multi-Rail Support in PSM2—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 81



Subnets have 
different Subnet IDs

Host 1
Subnet

Host 2

HFI 1

HFI 0 HFI 0

HFI 1
Subnet

Example Environment Variables

• PSM2_MULTIRAIL is not set. PSM2 may not work because there are multiple
subnets.

• PSM2_MULTIRAIL=1 automatic selection. Both hosts get HFI/port pairs 0:1,1:1
first. After PSM2 reordering based on the subnet ID, the host on the left side gets
0:1,1:1 and the host on the right side gets 1:1,0:1. The PSM2 makes the master
rail on 0:1 of the left host with 1:1 on the right host. The standby rail is set up on
1:1 of the left host with 0:1 on the right host. PSM2 works in this configuration/
setting.

• PSM2_MULTIRAIL=1 and PSM2_MULTIRAIL_MAP=1:1,0:1. You must specify the
HFI/port pairs. PSM2 does not reorder them. Both hosts use 1:1 to make a
connection, it fails because there is no path between them. PSM2 does not work in
this case.

Intel® Omni-Path Fabric—Multi-Rail Support in PSM2

Intel® Omni-Path Fabric Host Software
User Guide December 2016
82 Order No.: H76470-5.0



10.0 Routing

This chapter discusses the following topics:

• Intel® Omni-Path Routing Features and Innovations

• Dispersive Routing

Refer to the Intel® Omni-Path Fabric Suite Fabric Manager User Guide for information
about Fabric Manager features that can improve application performance, including:

• Adaptive routing - improves bandwidth and congestion.

• Congestion control - helps with many to one congestion handling.

• Traffic flow optimization (TFO) - decreases latency for important jobs, using Fabric
Manager DeviceGroup-based routing algorithms.

Intel® Omni-Path Routing Features and Innovations

Intel® Omni-Path Architecture (Intel® OPA) supports clusters of all sizes with
optimization for HPC applications at both the host and fabric levels for benefits that
are not possible with the standard InfiniBand*-based designs. This section describes
some of the routing features.

Adaptive Routing

Adaptive Routing monitors the performance of the possible paths between fabric end-
points and periodically rebalances the routes to reduce congestion and achieve a more
balanced packet load. While other technologies also support adaptive routing, the
implementation is vital. Intel's implementation is based on cooperation between the
Fabric Manager and the switch ASICs. The Fabric Manager—with a global view of the
topology—initializes the switch ASICs with several egress ports per destination,
updating these options as the fundamental fabric changes when links are added or
removed. Once the switch egress ports are set, the Fabric Manager monitors the fabric
state, and the switch ASICs dynamically monitor and react to the congestion sensed
on individual links. This approach enables Adaptive Routing to scale as fabrics grow
larger and more complex.

Refer to the Intel® Omni-Path Fabric Suite Fabric Manager User Guide for additional
information.

Dispersive Routing

One of the critical roles of fabric management is the initialization and configuration of
routes through the fabric between pairs of nodes. Intel® Omni-Path supports a variety
of routing methods, including defining alternate routes that disperse traffic flows for
redundancy, performance, and load balancing. Instead of sending all packets from a
source to a destination via a single path, Dispersive Routing allows the sending host to
distribute traffic across multiple paths. Once received, the destination host processes
packets in their proper order for rapid, efficient processing. By leveraging more of the
fabric to deliver maximum communications performance for all jobs, Dispersive
Routing promotes optimal fabric efficiency.

10.1  

Routing—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 83



Traffic Flow Optimization

Traffic Flow Optimization optimizes the quality of service beyond traditional per-VL
packet level scheduling of packets to be sent on a given link. At the Intel® Omni-Path
Architecture link level, low priority packets may be preempted and a higher priority
packet may be placed on the link. Once the higher priority packet(s) have completed,
the lower priority preempted packet is resumed.

The key benefit is that Traffic Flow Optimization reduces the variation in latency seen
through the network by high priority traffic in the presence of lower priority traffic. It
addresses a traditional weakness of both Ethernet and InfiniBand* in which a packet
must be transmitted to completion once the link starts even if higher priority packets
become available.

Packet Integrity Protection

Intel® Omni-Path specifies a link-level correction mechanism called Packet Integrity
Protection that corrects bit errors, but does not add latency, making it a much more
suitable scheme for HPC environments. (Prior schemes used forward error correction
as the link-level correction mechanism, which had the side-effect of adding significant
latency to every hop.) Packet Integrity Protection is capable of handling bit error rates
of up to 1e-07 without performance impacts. Intel specifies a worst case bit error rate
of 1e-08, which allows up to 1000 corrected link integrity errors per second per link
without impacting performance.

Packet Integrity Protection allows for rapid and transparent recovery of transmission
errors between a sender and a receiver on an Intel® Omni-Path Architecture link.
Given the very high Intel® OPA signaling rate (25.78125G per lane) and the goal of
supporting large scale systems of a hundred thousand or more links, transient bit
errors must be tolerated while ensuring that the performance impact is insignificant.
Packet Integrity Protection enables recovery of transient errors whether it is between
a host and switch or between switches. This eliminates the need for transport level
timeouts and end-to-end retries. This is done without the heavy latency penalty
associated with alternate error recovery approaches.

Dynamic Lane Scaling

Dynamic Lane Scaling allows an operation to continue even if one or more lanes of a
4x link fail, saving the need to restart or go to a previous checkpoint to keep the
application running. The job can then run to completion before taking action to resolve
the issue. Currently, InfiniBand* typically drops the whole 4x link if any of its lanes
drops, costing time and productivity.

Dispersive Routing

By default, Intel® Omni-Path architecture uses deterministic routing that is chosen
based on the Destination LID (DLID) of a given packet.

Deterministic routing can create hotspots even in full bisection bandwidth (FBB)
fabrics for certain communication patterns if the communicating node pairs map onto
a common upstream link. Because routing is based on DLIDs, the Intel® Omni-Path
fabric provides the ability to assign multiple LIDs to an HFI port using a feature called
Lid Mask Control (LMC). The total number of DLIDs assigned to an HFI port is 2^LMC
with the LIDS being assigned contiguously. The default Intel® Omni-Path fabric

10.2  

Intel® Omni-Path Fabric—Routing

Intel® Omni-Path Fabric Host Software
User Guide December 2016
84 Order No.: H76470-5.0



configuration uses a LMC of 0, meaning each port has 1 LID assigned to it. With non-
zero LMC fabrics, there can be multiple potential paths through the fabric to reach the
same destination HFI port.

Dispersive routing, as implemented in PSM2, attempts to avoid congestion hotspots,
described above, by spraying messages across these paths. This can result in better
traffic balance and therefore avoid congestion in the fabric. The current
implementation of PSM2 supports fabrics with a maximum LMC of 3, with 8 LIDs
assigned per port. When more than 1 DLID is assigned per HFI port, PSM2 takes
advantage of the DLIDs by using the following style of paths for packets: [SLID,
DLID], [SLID _ 1, DLID _ 1], [SLID _ 2, DLID _ 2] ….. [SLID _ N, DLID _ N].

Internally, PSM2 utilizes dispersive routing differently for small and large messages.
Large messages are any messages greater-than or equal-to 64K. For large messages,
the message is split into message fragments of 128K by default, called a window.
Each of these message windows is sprayed across a different path between HFI ports.
All packets belonging to a window use the same path; however, the windows
themselves can take a different path through the fabric. PSM2 assembles the windows
that make up an MPI message before delivering it to the application. Small messages,
on the other hand, always use a single path when communicating to a remote node;
however, different processes executing on a node can use different paths for their
communication between the nodes.

The default PSM2 path selection policy is adaptive, which behaves as described in the
following example. Assume two nodes A and B each with 8 CPU cores per node and
assume the fabric is configured for a LMC of 3. In this case, PSM2 constructs 8 paths
through the fabric as described above and a 16 process MPI application that spans
these nodes (8 processes per node). Then:

• Small Messages are sent to a remote process that use a fixed path X, where X is
selected with a round-robin algorithm.

Note: Only path X is used by this process for all communications to any process
on the remote node.

• For a large message, each process uses all of the 8 paths and sprays the
windowed message across all 8 paths.

There are other path selection policies that determine how to select the path or the
path index from the set of available paths. The policies are used by a process when
communicating with a remote node. These are static policies that assign a static path
on job startup for both small and large message transfers. They include:

• Static_Src: Only one path per process is used for all remote communications.
The path index is based on the context number the process is running.

Note: Multiple paths are still used in the fabric if multiple processes on a given
node are sending packets.

• Static_Dest: The path selection is based on the context index of the destination
process. Multiple paths can be used if data transfer is to different remote
processes within a destination node. If multiple processes from Node A send a
message to a single process on Node B, only one path is used across all
processes.

• Static_Base: The only path that is used is the base path [SLID,DLID] between
nodes regardless of the LMC of the fabric or the number of paths available.

Routing—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 85



Note: A fabric configured with LMC of 0 even with the default adaptive policy
enabled operates as the Static_Base policy because only a single path exists
between any port pairs.

For more information, see the Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide, specifically the PSM2_PATH_SELECTION environment variable.

Intel® Omni-Path Fabric—Routing

Intel® Omni-Path Fabric Host Software
User Guide December 2016
86 Order No.: H76470-5.0



11.0 Integration with a Batch Queuing System

Most cluster systems use some kind of batch queuing system as an orderly way to
provide users with access to the resources they need to meet their job’s performance
requirements. One task of the cluster administrator is to allow users to submit MPI
jobs through these batch queuing systems.

For Open MPI, there are resources at openmpi.org that document how to use the MPI
with different batch queuing systems, located at the following links:

• Torque / PBS Pro: http://www.open-mpi.org/faq/?category=tm

• SLURM: http://www.open-mpi.org/faq/?category=slurm

• Bproc: http://www.open-mpi.org/faq/?category=bproc

• LSF: https://www.open-mpi.org/faq/?category=building#build-rte-lsf

Clean Termination of MPI Processes

The Intel® Omni-Path Fabric Host Software typically ensures clean termination of all
Message Passing Interface (MPI) programs when a job ends. In some rare
circumstances an MPI process may remain alive, and potentially interfere with future
MPI jobs. To avoid this problem, Intel recommends you run a script before and after
each batch job to kill all unwanted processes. Intel does not provide such a script,
however, you can find out which processes on a node are using the Intel interconnect
with the fuser command, which is typically installed in the /sbin directory.

Run the following commands as a root user to ensure that all processes are reported.

/sbin/fuser -v /dev/hfi1
/dev/ipath:    22648m 22651m

In this example, processes 22648 and 22651 are using the Intel interconnect.

Another example using the lsof command:

lsof /dev/hfi1

This command displays a list of processes using Intel® Omni-Path.

To get all processes, including stats programs, SMA, diags, and others, run the
following command:

/sbin/fuser -v /dev/hfi1*

lsof can also take the same form:

lsof /dev/hfi1*

11.1  

Integration with a Batch Queuing System—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 87

http://www.openmpi.org
http://www.open-mpi.org/faq/?category=tm
http://www.open-mpi.org/faq/?category=slurm
http://www.open-mpi.org/faq/?category=bproc
https://www.open-mpi.org/faq/?category=building#build-rte-lsf


Run the following command to terminate all processes using the Intel interconnect:

/sbin/fuser -k /dev/hfi1 

For more information, see the man pages for fuser(1) and lsof(8).

Note: Hard and explicit program termination, such as kill -9 on the mpirun Process ID
(PID), may result in Open MPI being unable to guarantee that the /dev/shm shared
memory file is properly removed. If many stale files accumulate on each node, an
error message can appear at startup:

node023:6.Error creating shared memory object in shm_open(/dev/shm may have stale 
shm files that need to be removed):

If this error occurs, refer to Clean Up PSM2 Shared Memory Files.

Clean Up PSM2 Shared Memory Files

If a PSM2 job terminates abnormally, such as with a segmentation fault, there could
be POSIX shared memory files left over in the /dev/shm directory. The files are
owned by the user and can be deleted either by the user or by root.

To clean up the system, create, save, and run the following PSM2 SHM cleanup script
as root on each node. Either log on to the node, or run remotely using pdsh or ssh.

#!/bin/sh
files=`/bin/ls /dev/shm/psm2_shm.* 2> /dev/null`;
for file in $files;
do
/sbin/fuser $file > /dev/null 2>&1;
if [ $? -ne 0 ];
then
/bin/rm $file > /dev/null 2>&1;
fi;
done;

When the system is idle, you can remove all of the shared memory files, including
stale files, with the following command:

# rm -rf /dev/shm/psm2_shm.*

11.2  

Intel® Omni-Path Fabric—Integration with a Batch Queuing System

Intel® Omni-Path Fabric Host Software
User Guide December 2016
88 Order No.: H76470-5.0



12.0 Benchmark Programs

Several Message Passing Interface (MPI) performance measurement programs are
installed by default with the MPIs during installation. This section describes a few of
these benchmarks and how to run them. For additional details on running these and
other MPI sample applications, refer to the Intel® Omni-Path Fabric Suite FastFabric
Command Line Interface Reference Guide.

The remainder of this section assumes that the GCC*-compiled version of Open MPI
was installed in the default location of /usr/mpi/gcc/openmpi-X.X.X-hfi and
that mpi-selector is used to choose this Open MPI version as the MPI to be used.

Note: The following examples are intended to show only the syntax for invoking these
programs and the meaning of the output. They are not representations of actual
Intel® Omni-Path performance characteristics.

Measuring MPI Latency Between Two Nodes

In the MPI community, latency for a message of given size is the time difference
between a node program calling MPI_Send and the time that the corresponding
MPI_Recv in the receiving node program returns. The term latency alone, without a
qualifying message size, indicates the latency for a message of size zero. This latency
represents the minimum overhead for sending messages, due to both software
overhead and delays in the electronics of the fabric. To simplify the timing
measurement, latencies are usually measured with a ping-pong method, timing a
round-trip and dividing by two.

The program osu_latency, from The Ohio State University, measures the latency for
a range of messages sizes from 0 bytes to 4 megabytes. It uses a ping-pong method,
where the rank zero process initiates a series of sends and the rank one process
echoes them back, using the blocking MPI send and receive calls for all operations.
Half the time interval observed by the rank zero process for each exchange is a
measure of the latency for messages of that size, as previously defined. The program
uses a loop, executing many such exchanges for each message size, to get an
average. The program defers the timing until the message has been sent and received
a number of times, to be sure that all the caches in the pipeline have been filled.

This benchmark always involves two node programs. It can be run with the command:

$ mpirun -H host1,host2 /usr/mpi/gcc/openmpi-X.X.X-hfi/tests/osu_benchmarks-X.X.X/
osu_latency

-H or --hosts allows the specification of the host list on the command line instead of
using a host file with the -m or -machinefile option. Because only two hosts are
listed in this example, only two host programs would be started, as if -np 2 were
specified.

12.1  

Benchmark Programs—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 89



Note: This example shows the syntax of the command and the format of the output. The
output of the program depends on your particular configuration.

# OSU MPI Latency Test vX.X.X)
# Size          Latency (us) 
0                 -
.                 -
.                 -
.                 -
4194304           -

The first column displays the message size in bytes. The second column displays the
average (one-way) latency in microseconds.

Alternative Method

An alternative method to run this program uses the commands:

# cd /usr/lib/opa/src/mpi_apps
# ./run_lat

For details, see the Intel® Omni-Path Fabric Suite FastFabric Command Line Interface
Reference Guide, MPI Sample Applications section.

Measuring MPI Bandwidth Between Two Nodes

The osu_bw benchmark measures the maximum rate that you can move data
between two nodes. This benchmark also uses a ping-pong mechanism, similar to the
osu_latency code. In this case, the originator of the messages pumps 64 of them in
succession using the non-blocking MPI_Isend function, while the receiving node
consumes them as quickly as it can using the non-blocking MPI_Irecv function and
then returns a zero-length acknowledgment when all of the sent data has been
received.

You can run this program by typing:

$ mpirun -H host1,host2 /usr/mpi/gcc/openmpi-X.X.X-hfi/tests/osu_benchmarks-X.X.X/
osu_bw

Note: This example shows the syntax of the command and the format of the output. The
output of the program depends on your particular configuration.

# OSU MPI Bandwidth Test vX.X.X
# Size        Bandwidth (MB/s)
1                         -
.                         -
.                         -
.                         -
4194304                   -

You will see an increase in measured bandwidth with the message size due to the
contribution of each packet's overhead to the measured time becoming relatively
smaller.

12.2  

Intel® Omni-Path Fabric—Benchmark Programs

Intel® Omni-Path Fabric Host Software
User Guide December 2016
90 Order No.: H76470-5.0



Alternative Method

An alternative method to run this program uses the commands:

# cd /usr/lib/opa/src/mpi_apps
# ./run_bw

For details, see the Intel® Omni-Path Fabric Suite FastFabric Command Line Interface
Reference Guide, MPI Sample Applications section.

Multiple Bandwidth / Message Rate Test

osu_mbw_mr is a multi-pair bandwidth and message rate test that evaluates the
aggregate uni-directional bandwidth and message rate between multiple pairs of
processes. Each of the sending processes sends a fixed number of messages (the
window size) back-to-back to the paired receiving process before waiting for a reply
from the receiver. This process is repeated for several iterations. The objective of this
benchmark is to determine the achieved bandwidth and message rate from one node
to another node with a configurable number of processes running on each node. You
can run this program as follows:

$ mpirun -H host1,host2 -npernode 12 /usr/mpi/gcc/openmpi-X.X.X-hfi/tests/
osu_benchmarks-X.X.X/osu_mbw_mr

This sample was run on 12-core compute nodes, so the Open MPI -npernode 12
option was used to place 12 MPI processes on each node (for a total of 24) to
maximize message rate. Note that the output below indicates that there are 12 pairs
of communicating processes.

Note: This example shows the syntax of the command and the format of the output. The
output of the program depends on your particular configuration.

OSU MPI Multiple Bandwidth / Message Rate Test vX.X.X
[ pairs: 12 ] [ window size: 64 ]
Size                    MB/s          Messages/s
1                          -               -
.                          -               -
.                          -               -
.                          -               -
4194304                    -               -

Alternative Method

An alternative method to run this program uses the commands:

# cd /usr/lib/opa/src/mpi_apps
# ./run_mbw_mr3 NP 

where NP is the number of processes to run or all

For details, see the Intel® Omni-Path Fabric Suite FastFabric Command Line Interface
Reference Guide, MPI Sample Applications section.

12.3  

Benchmark Programs—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 91



Enhanced Multiple Bandwidth / Message Rate Test
(mpi_multibw)

mpi_multibw is a version of osu_mbw_mr that has been enhanced by Intel to
optionally run in a bidirectional mode and to scale better on the larger multi-core
nodes available today. This benchmark is a modified form of the OSU Network-Based
Computing Lab’s osu_mbw_mr benchmark (as shown in the previous example). It has
been enhanced with the following additional functionality:

• N/2 is dynamically calculated at the end of the run.

• You can use the -b option to get a bidirectional message rate and bandwidth
results.

• Scalability has been improved for larger core-count nodes.

The benchmark has been updated with code to dynamically determine what processes
are on which host.

Note: The values returned by the test depends on your particular configuration.

$ mpirun -H host1,host2 -npernode 12  /usr/mpi/gcc/openmpi-X.X.X-hfi/tests/intel/
mpi_multibw
PathScale Modified OSU MPI Bandwidth Test
(OSU Version X.X, PathScale $Revision: X.X.X.X $)
Running on 12 procs per node (uni-directional traffic for each process pair)

Size          Aggregate Bandwidth (MB/s)      Messages/s
1                   -                               -
.                   -                               -
.                   -                               -
.                   -                               -
4194304             -                               -
Searching for N/2 bandwidth.  Maximum Bandwidth of - MB/s...
Found N/2 bandwidth of - MB/s at size 121 bytes

You will see improved message rates at small message sizes of ~- million compared to
the rate measured with osu_mbw_mr. Note that it only takes a message of size -
bytes to generate half of the peak uni-directional bandwidth.

The following is an example output when running with the bidirectional option (-b):

Note: This example shows the syntax of the command and the format of the output. The
output of the program depends on your particular configuration.

$ mpirun -H host1,host2 -np 24  \
  /usr/mpi/gcc/openmpi-X.X.X-hfi/tests/intel/mpi_multibw -b
PathScale Modified OSU MPI Bandwidth Test
(OSU Version X.X, PathScale $Revision: X.X.X.X $)
Running on 12 procs per node (bi-directional traffic for each process pair)
Size          Aggregate Bandwidth (MB/s)      Messages/s
1                    -                            -
.                    -                            -
.                    -                            -
.                    -                            -
4194304              -                            -
Searching for N/2 bandwidth.   Maximum Bandwidth of - MB/s...
Found N/2 bandwidth of - MB/s at size - bytes

12.4  

Intel® Omni-Path Fabric—Benchmark Programs

Intel® Omni-Path Fabric Host Software
User Guide December 2016
92 Order No.: H76470-5.0



Alternative Method

An alternative method to run this program uses the commands:

# cd /usr/lib/opa/src/mpi_apps
# ./run_multibw processes 

where processes is the number of processes on which to run the test. 
All indicates the test should be run for every process in the mpi_hosts file.

For details, see the Intel® Omni-Path Fabric Suite FastFabric Command Line Interface
Reference Guide, MPI Sample Applications section.

Benchmark Programs—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 93



13.0 Troubleshooting

This chapter describes some of the tools you can use to diagnose and fix problems.
The following topics are discussed:

• Using the LED to Check the State of the HFI

• BIOS Settings

• Kernel and Initialization Issues

• OpenFabrics and Intel® Omni-Path Issues

• System Administration Troubleshooting

• Performance Issues

Additional troubleshooting information can be found in:

• Intel® Omni-Path Host Fabric Interface Installation Guide

• Intel® Omni-Path Fabric Switches Hardware Installation Guide

• Intel® Omni-Path Fabric Software Installation Guide

Intel® Omni-Path user documentation can be found on the Intel web site. See 
Documentation Set on page 10 for URLs.

Using the LED to Check the State of the HFI

The LED on the Intel® Omni-Path Host Fabric Interface functions as link state and data
rate indicator once the Intel® Omni-Path software has been installed, the driver has
been loaded, and the fabric is being actively managed by a subnet manager.

The LED functions are as follows:

• Link Down = Off

• Link Up Initialized = On solid green

• Link Up Active (No Traffic) = On solid green

• Link Up: Active (Slow Packet rate <10K/S) = BLINK: 384ms On, 384ms Off

• Link Up: Active (Fast Packet rate >10K/S) = BLINK: 128ms On, 128ms Off

BIOS Settings

Refer to the Intel® Omni-Path Fabric Performance Tuning User Guide for information
relating to checking, setting, and changing BIOS settings.

Kernel and Initialization Issues

Issues that may prevent the system from coming up properly are described in the
following sections:

• Driver Load Fails Due to Unsupported Kernel

13.1  

13.2  

13.3  

Intel® Omni-Path Fabric—Troubleshooting

Intel® Omni-Path Fabric Host Software
User Guide December 2016
94 Order No.: H76470-5.0



• Rebuild or Reinstall Drivers if Different Kernel Installed

• Intel® Omni-Path Interrupts Not Working

• OpenFabrics Load Errors if HFI Driver Load Fails

• Intel® Omni-Path HFI Initialization Failure

• MPI Job Failures Due to Initialization Problems

Driver Load Fails Due to Unsupported Kernel

If you try to load the Intel® Omni-Path driver on a kernel that the Intel® Omni-Path
software does not support, the load fails with error messages that point to hfi1.ko.

To correct this problem, install one of the appropriate supported Linux kernel versions,
then reload the driver.

Rebuild or Reinstall Drivers if Different Kernel Installed

If you upgrade the kernel, you must reboot and then rebuild or reinstall the Intel®
Omni-Path kernel modules (drivers). Intel recommends that you use the Textual User
Interface (TUI) to perform this rebuild or reinstall. Refer to the Intel® Omni-Path
Fabric Software Installation Guide for more information.

Intel® Omni-Path Interrupts Not Working

The driver cannot configure the Intel® Omni-Path link to a usable state unless
interrupts are working. Check for this problem with the command:

$ grep hfi1 /proc/interrupts

Note: The output you see may vary depending on board type, distribution, or update level,
and the number of CPUs in the system.

If there is no output at all, the driver initialization failed. For more information on
driver problems, see Driver Load Fails Due to Unsupported Kernel or Intel® Omni-Path
HFI Initialization Failure.

If the output is similar to one of these lines, then interrupts are not being delivered to
the driver.

-MSI-edge    hfi1_0 sdma6
177:    0    0   0    PCI-MSI-edge    hfi1_0 sdma7
178:    0    0   0    PCI-MSI-edge    hfi1_0 sdma8
179:    0    0   0    PCI-MSI-edge    hfi1_0 sdma9
180:    0    0   0    PCI-MSI-edge    hfi1_0 sdma10
181:    0    0   0    PCI-MSI-edge    hfi1_0 sdma11
182:    0    0   0    PCI-MSI-edge    hfi1_0 sdma12
183:    0    0   0    PCI-MSI-edge    hfi1_0 sdma13
184:    0    0   0    PCI-MSI-edge    hfi1_0 sdma14
185:    0    0   0    PCI-MSI-edge    hfi1_0 sdma15
186:   39    0   0    PCI-MSI-edge    hfi1_0 kctxt0
187:    1   77   0    PCI-MSI-edge    hfi1_0 kctxt1
188:    0    0   0    PCI-MSI-edge    hfi1_0 kctxt2

A zero count in all CPU columns means that no Intel® Omni-Path interrupts have been
delivered to the processor.

13.3.1  

13.3.2  

13.3.3  

Troubleshooting—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 95



The possible causes of this problem are:

• Booting the Linux* kernel with ACPI disabled on either the boot command line or
in the BIOS configuration.

• Other Intel® Omni-Path initialization failures.

To check if the kernel was booted with the noacpi or pci=noacpi option, use this
command:

$ grep -i acpi /proc/cmdline

If output is displayed, fix the kernel boot command line so that ACPI is enabled. This
command line can be set in various ways, depending on your OS distribution. If no
output is displayed, check that ACPI is enabled in your BIOS settings.

To track down other initialization failures, see Intel® Omni-Path HFI Initialization
Failure.

OpenFabrics Load Errors if HFI Driver Load Fails

When the HFI driver fails to load, the other OpenFabrics drivers/modules are loaded
and shown by lsmod. However, commands such as ibv_devinfo fail if the HFI
driver fails to load, as shown in the following example:

ibv_devinfo
libibverbs: Fatal: couldn’t read uverbs ABI version.
No Omni-Path devices found

Intel® Omni-Path HFI Initialization Failure

There may be cases where the HFI driver was not properly initialized. Symptoms of
this may show up in error messages from an MPI job or another program.

Here is a sample command and error message:

$ mpirun -np 2 -m ~/tmp/mbu13 osu_latency
<nodename>:hfi_userinit: assign_port command failed: Network is down
<nodename>:can’t open /dev/hfi1, network down

This is followed by messages of this type after 60 seconds:

MPIRUN<node_where_started>: 1 rank has not yet exited 60 seconds after rank 0 
(node 
<nodename>) exited without reaching MPI_Finalize().
MPIRUN<node_where_started>:Waiting at most another 60 seconds for the remaining 
ranks to do a clean shutdown before terminating 1 node processes.

If this error appears, check to see if the Intel® Omni-Path HFI driver is loaded with the
command:

$ lsmod | grep hfi

13.3.4  

13.3.5  

Intel® Omni-Path Fabric—Troubleshooting

Intel® Omni-Path Fabric Host Software
User Guide December 2016
96 Order No.: H76470-5.0



If no output is displayed, the driver did not load for some reason. In this case, try the
following commands (as root):

modprobe -v hfi1
lsmod | grep hfi1
dmesg | grep -i hfi1 | tail -25

The output indicates whether the driver has loaded or not. Printing out messages
using dmesg may help to locate any problems with the HFI driver.

If the driver loaded, but MPI or other programs are not working, check to see if
problems were detected during the driver and Intel hardware initialization with the
command:

$ dmesg | grep -i hfi1

This command may generate more than one screen of output.

Also, check the link status with the command:

$ hfi1_control -iv

MPI Job Failures Due to Initialization Problems

If one or more nodes do not have the interconnect in a usable state, messages similar
to the following appear when the MPI program is started:

userinit: userinit ioctl failed: Network is down [1]: device init failed
userinit: userinit ioctl failed: Fatal Error in keypriv.c(520): device init failed

These messages may indicate that a cable is not connected, the switch is down, SM is
not running, or that a hardware error occurred.

OpenFabrics and Intel® Omni-Path Issues

The following section covers issues related to OpenFabrics, including Subnet
Managers, and Intel® Omni-Path.

Stop Services Before Stopping/Restarting Intel® Omni-Path

The Fabric Manager must be stopped before stopping, starting, or restarting Intel®
Omni-Path software.

Use the systemctl command to stop or start the Fabric Manager:

# systemctl [start|stop|restart] opafm 

To verify the status of the Fabric Manager, run the following command:

# systemctl status opafm 

13.3.6  

13.4  

13.4.1  

Troubleshooting—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 97



System Administration Troubleshooting

The following section provides details on locating problems related to system
administration.

Broken Intermediate Link

Sometimes message traffic passes through the fabric while other traffic appears to be
blocked. In this case, MPI jobs fail to run.

In large cluster configurations, switches may be attached to other switches to supply
the necessary inter-node connectivity. Problems with these inter-switch (or
intermediate) links are sometimes more difficult to diagnose than failure of the final
link between a switch and a node. The failure of an intermediate link may allow some
traffic to pass through the fabric while other traffic is blocked or degraded.

If you notice this behavior in a multi-layer fabric, check that all switch cable
connections are correct. Statistics for managed switches are available on a per-port
basis, and may help with debugging. See your switch vendor for more information.

Intel recommends using FastFabric to help diagnose this problem. For details, see the
Intel® Omni-Path Fabric Suite FastFabric User Guide.

Performance Issues

See the Intel® Omni-Path Fabric Performance Tuning User Guide for details about
Intel® Omni-Path Fabric optimizing performance and handling performance issues.

13.5  

13.5.1  

13.6  

Intel® Omni-Path Fabric—Troubleshooting

Intel® Omni-Path Fabric Host Software
User Guide December 2016
98 Order No.: H76470-5.0



14.0 Recommended Reading

This section contains lists of reference material for further reading.

References for MPI

The MPI Standard specification documents are located at:

http://www.mpi-forum.org/docs

The MPICH implementation of MPI and its documentation are located at:

http://www-unix.mcs.anl.gov/mpi/mpich/

The ROMIO distribution and its documentation are located at:

http://www.mcs.anl.gov/romio

Books for Learning MPI Programming

Gropp, William, Ewing Lusk, and Anthony Skjellum, Using MPI, Second Edition, 1999,
MIT Press, ISBN 0-262-57134-X

Gropp, William, Ewing Lusk, and Anthony Skjellum, Using MPI-2, Second Edition,
1999, MIT Press, ISBN 0-262-57133-1

Pacheco, Parallel Programming with MPI, 1997, Morgan Kaufman Publishers,
ISBN 1-55860

Reference and Source for SLURM

The open-source resource manager designed for Linux clusters is located at:

http://www.llnl.gov/linux/slurm/

OpenFabrics Alliance*

Information about the OpenFabrics Alliance* (OFA) is located at:

http://www.openfabrics.org

Clusters

Gropp, William, Ewing Lusk, and Thomas Sterling, Beowulf Cluster Computing with
Linux, Second Edition, 2003, MIT Press, ISBN 0-262-69292-9

14.1  

14.2  

14.3  

14.4  

14.5  

Recommended Reading—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 99

http://www.mpi-forum.org/docs
http://www-unix.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/romio
http://www.llnl.gov/linux/slurm
http://www.openfabrics.org


Networking

The Internet Frequently Asked Questions (FAQ) archives contain an extensive Request
for Command (RFC) section. Numerous documents on networking and configuration
can be found at:

http://www.faqs.org/rfcs/index.html

Other Software Packages

Environment Modules is a popular package to maintain multiple concurrent versions of
software packages and is available from:

http://modules.sourceforge.net/

14.6  

14.7  

Intel® Omni-Path Fabric—Recommended Reading

Intel® Omni-Path Fabric Host Software
User Guide December 2016
100 Order No.: H76470-5.0

http://www.faqs.org/rfcs/index.html
http://modules.sourceforge.net


Appendix A hfidiags User Guide

hfidiags is a Python* tool that allows users with the appropriate permissions to
open the HFI driver's user interface to examine and modify Control and Status
Registers (CSRs) of the Intel® Omni-Path HFI Silicon 100 Series hardware.

Key Features

The key features for hfidiags include:

• CSR name tab completion

• Hardware state capture and export functionality

• Support for parsing/decoding of data structures and headers

• Command operations on previously saved states

• Extendable functionality through additions of new commands

Usage

The hfidiags tool requires that you have sufficient permissions to open the device's
UI interface (provided by the hfi device driver). Typically, the system superuser has
these permissions.

Command Line

The default mode of operation for the hfidiags tool is in the shell-like interactive
mode. When started, the tool presents a command prompt and accepts typed-in
commands. However, it is also possible to run the tool in scripted mode. In this mode,
the shell-like command interface is not started and the tool processes commands
passed in via a script. This can be accomplished in the following ways:

1. Using the -e command line option, you can pass in a single command to be
executed by the tool. The output of the command is the same as if it were typed
into the command line interface.

2. Using the -s command line option, you can pass in a filename containing a list of
commands (one per line), which the tool reads in and executes sequentially. This
option also accepts reading the commands from the standard input if the value for
the filename argument is set to - as shown in the following example:

$ echo –e "help\nunit 1" | hfidiags –s –

The example executes two commands, help and unit 1, and then exits. Note
that the new line character \n is also present between the commands because of
the -s option and - option.

Both methods above accept all commands and command options supported by the
command line interface.

A.1  

A.2  

A.2.1  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 101



By default, the tool attempts to open the hardware device interface on startup.
However, it can be directed to skip opening the device interface using command line
options. This can be used to examine a previously saved hardware state.

Interactive Interface

The hfidiags tool provides some default functionality as a standard part of the tool.
Most of these commands work regardless of the target (hardware or saved state).
Some commands do not work as they may not make sense nor do anything useful. An
example of such a command is write when used with a previously saved state; a
previously saved state cannot be altered.

Summary of standard commands (see Command Descriptions for details):

• read – Reads hardware CSR(s) or memory

• write – Writes hardware CSR(s) or memory

• decode – Decodes a hexadecimal value as a CSR

• info – Describes a hardware CSR

• unit – Switches HFI unit

• state – Captures, saves, and loads hardware state

• config – Sets/views tool configuration

• help – Shows command and other help screens

All commands that operate on hardware CSRs by accepting names as operands use a
common CSR name format (see CSR Addressing).

All standard commands include help screens describing their usage and operation.
While it is highly recommended and desired, commands that extend the capabilities of
the tool may not provide such help text.

Command Aliasing

The interactive command interface supports aliasing for command names. Some
commonly used commands have a preset alias name (usually, the first letter of the
command) that remains valid regardless of other available commands.

Commands that do not have a preset alias name are automatically aliased by the tool
to the shortest string that uniquely identifies the commands. This can be used in
combination with the command auto-completion support to execute commands in a
more convenient manner.

Note: It is important to note that automatic aliases are not static. These aliases can change
depending on the availability of other commands, which may change the string
required to uniquely identify a particular command. Therefore, Intel recommends that
you use the full command names in hfidiags scripts.

CSR Addressing

All tool commands that accept CSR names as operands accept and use the following
CSR specification. The information below is also provided as help text within the tool.

A.2.2  

A.2.2.1  

A.2.3  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
102 Order No.: H76470-5.0



The CSR specification format can be used to reference hardware CSRs by their
symbolic names instead of address offsets. The CSR names are defined to match the
hardware specification documents.

There are three types of hardware CSRs:

• Scalar CSRs are CSRs that have only one instance defined in the hardware.

• Context-index CSRs are CSRs that have one instance per send and/or receive
context (depending on the section where they are defined).

• Context- and array-index CSRs are CSRs that have an array of instances for
every send and/or receive context (depending on the section where the CSR is
defined).

The CSR specification format defines a common way to reference any of the CSRs,
independent of the type of CSR.

Index Formatting

CSRs that support indexing (context-indexed and context- and array-indexed) can be
a single index or an index range. A single index references only the CSR or array
instance indexed. A range references all CSRs or array instances between the starting
and ending index, inclusively.

Both context indexes and array indexes support the above described format.

Scalar CSR Specification

Scalar CSRs are CSRs that have only one instance defined in the hardware. These
CSRs do not support any type of indexing. If indexing is used, an error is reported. To
reference a scalar CSR, only the name of that CSR is required.

Example:

read CceRevision

Context-Indexed or Array-Only-Index CSR Specification

Context-index CSR are CSRs that have one instance per send or receive context.

Array-only-index CSRs are CSRs that have multiple instances defined, however, these
instances are global for the entire chip. Examples of such CSRs are the counter CSRs.

To reference the CSR index for a particular context or a particular array element, a
standard one-dimensional array indexing syntax is used. For example:

<CSR>'['<index>']'

The index is optional. If the index is omitted, the command performs its action on
every CSR in the CSR set. For example, the command read RcvCtxtCtrl reads and
displays the value of the RcvCtxtCtrl CSR for each of the receive contexts defined
by the hardware.

A.2.3.1  

A.2.3.2  

A.2.3.3  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 103



Examples:

read SendCtxtCtrl[3]
read RcvCtxtCtrl[1-4]

Context- and Array-Indexed CSR Specification

Context- and array-index CSRs are CSRs that have a number of instances defined per
send or receive context. If the hardware defines N contexts of a certain type (send or
receive) and M instances per context, then the CSR has a total of NxM instances.

To reference such CSRs, a standard two-dimensional array indexing syntax is used:

<CSR>'['<index>']''['<index>']'

Both the context index and the array index are optional. However, if only one index is
present, it is assumed that it is the context index. In other words, there is no support
for short-circuiting the context index of the CSR.

As with the context-indexed CSR specification, if any of the indexes are missing, the
operation is carried out on the entire range.

Examples:

read RcvTidFlowTable[3][0]
read RcvTidFlowTable[4-6][3]
read RcvTidFlowTable[4-6][0-3]

Bit Fields

All three types of CSR specifications support the use of bit fields. When bit fields are
used, the commands are limited to performing their action only on the specified bit
field. The rest of the CSR is ignored.

Currently, only one bit field at a time can be specified. If multiple bit fields within a
CSR must be operated on, multiple commands must be issued—one for each bit field.

Use the following syntax to specify a CSR bit field:

<CSR>'['<index>']''['<index>']'

where <CSR> is one of the three CSR types. The following table lists the CSR types
and the appropriate format:

CSR Type Bit Field Addressing Format

Scalar CSRs <CSR name>'.'<bit field>

Context-indexed or Array-
only-index CSRs

<CSR name>'['<index>']''.'<bit field>

Context- and Array-
indexed CSRs

<CSR name>'['<index>']''['<index>']''.'<bit field>

A.2.3.4  

A.2.3.5  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
104 Order No.: H76470-5.0



Symbolic CSR Indexes

Some Array-only-index CSRs defined in the hardware specification include symbolic
references to their indexes. Examples of such CSRs are the counter CSRs in the send
block. Though the tool supports use of these symbolic references, it does not do any
special processing on the symbolic references such as verification and reference-CSR
matching (that is, whether the symbolic reference applies to the CSR). Therefore,
these symbolic references are treated just like names for numeric indexes. This means
that they could be used to index any single- or multi-dimensional CSR, provided that
the CSR has sufficient depth in the dimension in question.

Globals/Wildcards

The hfidiags user interface supports several regular-expression style wildcards that
can be used to address multiple CSRs and/or bit fields.

Wildcard Description

* Matches any (zero or more) alpha-numeric set of characters.

+ Matches one or more alpha-numeric characters.

? Matches exactly one alpha-numeric character.

{n} Matches exactly n alpha-numeric characters.

{n,m} Matches between n and m alpha-numeric characters.

When using the wildcards, all other CSR addressing options are still supported. CSR
ranges (both context and array indexes) can still be used as well as bit fields.
Furthermore, the wildcards can be used on the CSR bit field names.

Wildcard characters can be used multiple times within the same scope (CSR name or
bit field name). For example, this could be used to get all CSR values for specific class
of CSRs.

When the wildcard characters are used for both CSR names and CSR bit fields, only
CSRs that match both criteria are returned. This means that from the set of CSRs that
match the CSR name pattern, only those that contain fields matching the bit field
pattern are returned.

While the wildcards above are similar to those used in most regular expressions, other
special character wildcards are not supported. This is especially true for . (period) and
[] (square brackets) due to their special meaning in CSR addressing. Another
important consideration is that, while the actual wildcard characters are supported,
non-greedy matching combinations (supported by some regular expression syntaxes)
are not supported. Therefore, a matching character combination of +?, for example,
does not produce the desired result.

Command Descriptions

This section describes the hfidiags tool's default commands and custom commands,
which allow you to extend the tool's functionality.

Note: All command names are abbreviated to their first letter if that first letter is unique. If
two commands start with the same letter, the abbreviation is not present.

A.2.3.6  

A.2.3.7  

A.3  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 105



Default Command Descriptions

This section describes all the default commands that are distributed with the
hfidiags tool.

config Command

Syntax

config [<option name>] [<new value>]

Description

The config command allows you to configure the look, feel, and behavior of the UI.
UI options are not persistent.

The following configuration options are supported:

Option Name Type Default Description

ignore_debug_registers Boolean True Do not process CSRs marked as DEBUG CSRs.

last_on_enter Boolean True Repeat last command when Enter is pressed on
an empty command line.

output_paging Boolean True Use command output paging.
When enabled, command output that is longer
than the screen height is paused when it fills up
the screen.

show_64bit_fields Boolean False Show CSR bit fields as 64-bit value.
Otherwise, only use enough bits to cover the
width of the field.

show_fields Boolean True Show CSR bit fields in the output of any
command.

show_register_bitfields Boolean True Decode CSR bit fields.
When set to False, only the CSR value is shown.

show_zero_values Boolean True Show CSRs that have a value of 0.
This is useful when using the watch command to
monitor multiple CSRs.

show_zero_bitfield_values Boolean True When showing decoded CSR bit fields, show bit
fields that have values of 0.

The config command is used to display the current values of configuration options or
to set new values for an option.

To display the current values for all configuration options, issue the config command
without any arguments:

diags >> config

UI Config
---------------------------------------------------------
ignore_debug_CSRs:                                   True
last_on_enter:                                       True
output_paging:                                       True
show_64bit_fields:                                  False
show_CSR_bitfields:                                  True

A.3.1  

A.3.1.1  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
106 Order No.: H76470-5.0



show_zero_values:                                    True

diags >>

To display the current value of a single option, issue the config command with the
option name as the only argument:

diags >> config last_on_error

To change the value of a UI configuration option, issue the config command with the
option name and the new value as arguments:

diags >> config last_on_error false

Configuration options do not support strict type-checking. However, the UI converts
the input value to the type of the configuration option. As an example, Boolean type
configuration options accept a number of values when being changed. The values
true, True, TRUE, yes, Yes, YES, and 1 are all evaluated to True. Similarly, the
values false, False, FALSE, no, No, NO, and 0 are all evaluated to False.

decode Command

Syntax

decode <CSR> <hex value>

Description

Most output related to the Intel® Omni-Path HFI Silicon 100 Series displays CSR
values as 64-bit hexadecimal values that represent the value of the entire CSR.
However in most cases, each CSR encodes multiple pieces of information in bit fields.

The decode command allows you to parse the 64-bit CSR value into the values of the
individual bit fields encoded by the CSR. It does so by only considering the bits of the
64-bit CSR value that cover each bit field and shifting the masked value down.

The best way to describe the decode command is by using an example. Assume that
the Intel® Omni-Path HFI Silicon 100 Series defines a CSR named ExampleCSR at
address 0x1000000, which encodes the following bit fields:

Byte Offset
Byte 2 Byte 0Byte 1Byte 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4

0BitField1BitField2BitField3Reserved1
BitField4BitField5Reserved2

In addition, assume that when reading the address of the CSR, the value returned is
0x12345678. Separating the values of the individual bit fields from the value of the
64-bit CSR could be difficult, especially when the bit fields are not aligned on byte
boundaries.

A.3.1.2  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 107



By using the decode command, you can easily get the values of the individual bit
fields:

diags >> decode ExampleCSR 0x12345678

ExampleCSR @ 0x1000000                 0x0000000012345678
---------------------------------------------------------
ExampleCSR.Reserved2     (63-54):                0x000000
ExampleCSR.BitField5     (53-42):                     0x0
ExampleCSR.BitField4     (41-32):                     0x0
ExampleCSR.Reserved1     (31-28):                     0x0
ExampleCSR.BitFeild3     (27-20):                   0x123
ExampleCSR.BitField2     (19-6):                     0x59
ExampleCSR.BitField1     (5-0):                      0x18

diags >>

Each bit field and its value, as well as the bit range that the bit field occupies, are
displayed separately. By default, the width of the bit field values is adjusted to cover
just the bit range of the bit field. However, the tool can display full 64-bit wide bit field
values by using the show_64bit_fields UI configuration option. See the config
Command on page 106 for details.

help Command

Syntax

help [<topic>]

Description

The help command allows you to retrieve help text for all of the tool's commands
from the UI. Without any arguments, the help command displays general help text,
the list of documented commands, and any miscellaneous help topics. You can use the
command or topic as an argument to the help command to get additional
information.

info Command

Syntax

info <CSR>

Description

The info command shows you a description of a CSR. The output lists the address of
the CSR in the CSR memory space and all its defined bit fields. Each defined bit field
shows the values of its ACCESS, SHIFT, MASK, and SMASK attributes, where the
attributes are defined as:

Value Description

ACCESS The value of the access attribute for the bit field.

continued...   

A.3.1.3  

A.3.1.4  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
108 Order No.: H76470-5.0



Value Description

The hardware supports several types of access attributes that define
the hardware behavior when accessing the bit field. Consult the Intel®
Omni-Path HFI Silicon 100 Series Specification document for more
information.

SHIFT The starting bit index of the bit field.
Hardware CSRs are defined as little-endian CSRs. Therefore, the
starting bit index is the least significant bit of the bit field.

MASK The bit mask indicating the width of the field.

SMASK The bit mask defined by the MASK attribute shifted right by the value of
the SHIFT attribute.

In cases where the queried CSR has multiple instances, is an array, or both, the
address shown is the starting address. That is, the address in the CSR address map of
the first instance or element.

While the info command accepts all supported CSR addressing formats, it only
displays the information for the first instance or element of the CSR. The largest
impact of this is on the CSR address shown, as described in the previous paragraph.

read Command

Syntax

read <CSR> | <address> [<size>]

Description

The read command allows you to read the values of hardware CSRs or memory
addresses. Two formats are supported using either the CSR Addressing formats or a
memory address-length combination.

The first form of the command (read <CSR>) reads and displays the value of a single
or multiple CSRs. It accepts all CSR addressing formats and methods described in the 
CSR Addressing on page 102 section.

By default, the output of the read command in its first form is the name of the read
CSR and its address in the CSR memory map along with the full 64-bit value of the
CSR, followed by the fully decoded values of all the CSR's defined bit fields:

diags >> read CceRevision

CceRevision @ 0x0                      0x0000000003020700
---------------------------------------------------------
CceRevision.Reserved_63_40     (63-40):          0x000000
CceRevision.BoardIDUpperNibble (39-36):               0x0
CceRevision.BoardIDLowerNibble (35-32):               0x0
CceRevision.SW                 (31-24):              0x03
CceRevision.Arch               (23-16):              0x02
CceRevision.ChipRevMajor       (15-8):               0x07
CceRevision.ChipRevMinor       (7-0):                0x00

The decoding of the CSR bit fields can be controlled with the show_CSR_bitfields
configuration option (see config Command on page 106).

A.3.1.5  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 109



By default, the read command shows all defined bit fields. However, bit fields with
values of 0 can be omitted from the output by using the show_zero_values
configuration option.

The second form of the command (read <address> [<size>]) reads entire
sections of the memory space. With this form of the command, the <address>
argument is the starting address of the section to be read and the <size> argument
is the length (in bytes) to be read. The <size> argument is optional, and if not
present, the size read defaults to eight bytes. Both the address and size values are a
multiple of eight bytes.

When using the second form of the read command, no CSR decoding is performed.
The output of the command is the raw memory values read from the memory map:

diags >> read 0x0 40

0x0: 0x0000000003020700 0x0000000018030200
0x0000000000000000 0x0000000000000000
0x20: 0x0000000000000000

The output is in the form of lines. Each line is prefaced by the starting memory
address of the values to come, followed by up to 32 bytes (in four groups of eight
bytes) of data.

state Command

Syntax

state <subcommand> [<subcommand arguments>]
    subcommand syntax:
        capture
        load <filename>
        save [<state>] <filename>
        diff <state1> <state2>
        switch <state>
        show

Description

The state command allows you to capture, save, and/or use the complete hardware
state of the entire chip. The state captured includes the entire memory mapped chip
area that includes all memory mapped CSRs.

The hardware state is stored internally and can be saved to a file or loaded from a file.

The internal memory object supports two loaded memory states and a single captured
state. Each state capture overwrites the previously captured state. States loaded from
files overwrites previously loaded states in a round-robin fashion once both internal
slots have been filled.

There are several sub-commands that can be used with the state command:

Command Description

capture Captures the current hardware state to internal memory.

continued...   

A.3.1.6  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
110 Order No.: H76470-5.0



Command Description

This capture does not overwrite any loaded states. Successive captures overwrite each
other.

load Loads a saved state from a file on disk into one of the internal memory slots.
Once loaded, it can be made the active state and examined. The loaded memory state is not
made active by default.

save Saves an internally captured state to a file.
This file can later be loaded and used to examine the state of the hardware. By specifying
which state to be saved, you can save any previously loaded states or save a newly captured
state. When saving the current hardware state (instead of a loaded one), a new capture is
done prior to the save.

diff Examines both hardware states and shows any differences in CSR values.
The <stateN> arguments can be any of the following:
• saved1 – This is the state in the first internal slot.
• saved2 – This is the state in the second internal slot.
• hw – This is the current hardware state. Using this state causes the tool to capture a new

hardware state prior to the comparison.

switch Switches the active state to <state>.
Values possible for <state> are the same as with the diff argument. When the state is
switched to one of the internal states, the read command gets CSR values from that saved
state.

show Displays information about all hardware states currently in memory (loaded and captured).

It is possible for the CSR definitions used by the hfidiags tool to change from time
to time. However, for saved states to be valid at a later time, they need to match the
CSR definitions. To ensure a correct patch between CSR definitions and saved states,
the tool uses a version value.

Each state that is saved to a file includes a version value in its binary data. This
version value is also present in the CSR definition file. When a saved state is loaded
into the tool, both of the version values are compared and if they do not match, the
load halts and the loaded data is not made available.

unit Command

Syntax

unit <unit>

Description

The unit command allows you to switch between active units on the same node. This
command is useful only if the node on which the hfidiags tool is running contains
multiple HFIs. Using this command, you can switch between any of the available units
without having to restart the tool.

write Command

Syntax

write <CSR> <hex value> | <address> <length> <hex value>

A.3.1.7  

A.3.1.8  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 111



Description

The write command allows you to write to hardware CSRs. Two formats are
supported using either the CSR addressing formats or a memory address-length
combination.

The CSR addressing format writes the specified value to the CSRs given on the
command line. The address-length formation writes the specified value starting at
address <address> and continuing for <length> bytes.

In both formats, at least eight bytes are written to a memory location in the hardware
memory map. When the CSR addressing formats are used and multiple CSRs are
specified on the command line or when the <length> argument is larger than eight
bytes, the same value is written to all CSRs or eight byte memory increments.

Since the CSR addressing format is supported by the write command, it is possible
to write only to CSR bit fields. However, because the hardware addressing does not
support writing to bit fields natively, modifying a CSR bit field results in a read-
modify-write operation.

Writing CSR bit fields is subject to the access type of the CSR bit field. The Intel®
Omni-Path host adapter defines several types of access rights for CSR bit fields. Only
bit fields with access type of RW (Read/Write) can be modified. This restriction is only
applicable to writing CSR bit fields.

Note: It is possible for CSRs to include bit fields of different access types. If a CSR includes a
RW and a WO (Write Only) bit fields, the read-modify-write operation results in a
potentially unwanted side effect. Reading the WO bit fields returns values of 0. When
the modified value is written back, the 0 values could overwrite any other values
already stored in the bit fields.

Custom Command Descriptions

This section describes the custom commands that are distributed with the hfidiags
tool.

header Command

Syntax

header <header/structure name>["["<index>[-<index>]"]"] 
<hex value>[<hex value>]

Description

The header command is similar to the decode command except that instead of
operating on CSR and CSR bit fields, it operates on pre-defined headers and memory
structures.

The header command decodes entire or partial headers or memory structures. The
command splits the input byte stream into double words (DWords) and can process
each DWord value separately. To accomplish this, the command supports header and
structure indexing on the DWord level. The header/structure indexing uses the same
format as the Context-Indexed or Array-Only-Index CSR Specification on page 103
format.

A.3.2  

A.3.2.1  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
112 Order No.: H76470-5.0



The following headers/structure are defined and decoded by the command:

Name Type Endianness Size (in DWords)

PBC Structure Little Endian 2

LRH Header Big Endian 2

BTH Header Big Endian 3

BTH31 Header Big Endian 3

KDETH Header Little Endian 2 (See Note.)

RHF Structure Little Endian 2

SDMADESC Structure Little Endian 8

Note: The size of the KDETH header listed here is only the size that is visible to the hardware. The actual
size of the KDETH header could differ due to it being software defined after the first two DWords.

The hexadecimal byte stream input values can be specified as individual DWords (one
or more) or a continuous hexadecimal string covering multiple DWords.

If the values specified do not cover the entire size of the header or structure, the
indexing format can be used to decode particular fields. If the indexing format is not
used, the command assumes that the byte stream represents the start of the header
or structure. (It assigns the first byte of the input values to the first byte of the header
or structure, taking endianness into account.)

mempeek Command

Syntax

mempeek <type> [<pid>] <address> [<length>]

Description

The mempeek command allows you to read data from host physical memory by using
either a physical address or a process virtual address. Due to security and reliability
concerns, you cannot write to host memory.

The <type> argument indicates the type of address given on the command line. It
can have two values, phys (physical memory) and virt (virtual memory). For virtual
memory, the <pid> argument is required to convert the virtual address to a physical
one based on the process' virtual address space.

Note: This command cannot swap in a page that may have been swapped out of main
memory.

pci Command

Syntax

pci read|write <PCI CSR> [<hex value>]

A.3.2.2  

A.3.2.3  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 113



Description

The pci command allows you to read and write the CSR within the PCIe configuration
space of the Intel® Omni-Path HFI Silicon 100 Series hardware. Unlike the general
read and write commands, this command only works on PCIe configuration space
registers. Therefore, tab completion actions on the <PCI CSR> argument only operate
on the set of PCIe configuration space CSRs defined by the hardware.

When writing to PCIe configuration space registers, the <hex value> argument is
required and is a 32-bit value to be written to the CSR.

While the read and write commands differ from the pci command in the set of
CSRs operated on, the decode and info commands can be used with all CSRs,
including PCIe configuration space CSRs.

watch Command

Syntax

watch <register spec> | <addr> [<register spec> | <addr>] [<timeout>]

Description

This command allows you to continuously monitor CSRs for changes. It keeps reading
the values of all CSRs or addresses specified on the command line and displays the
current values.

The command accepts both symbolic register specifications (see CSR Addressing on
page 102) and hardware memory addresses.

Multiple CSRs or addresses can be monitored at the same time by specifying them on
the command line. The last command line option is a floating point number
representing the interval at which to read the values. Default interval is 1 second.

Note: Since there is no reason to monitor CSRs from a saved state, the current active state
is ignored and the command monitors only hardware CSRs.

Extending the Interface

The hfidiags tool and framework is designed to be extendable through additions of
commands to the user interface. The framework provides a set of common modules,
classes, and functions to be used for accessing the hardware, processing input, and
displaying output to the terminal. Beyond that, custom commands are free to perform
any action needed.

Custom commands are written in the Python* programming language (http://
www.python.org) or any other language that can use Python* modules.

All custom command files are stored in the commands/ directory. At start-up, the tool
scans that directory and processes all files in it. If any of the files contains custom
commands, those commands are added to the tool's UI.

A.3.2.4  

A.4  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
114 Order No.: H76470-5.0

http://www.python.org/
http://www.python.org/


A file in the commands/ directory can contain multiple custom commands. When
processing a file in the commands/ directory, the tool expects a specific variable to be
defined in the global scope of the file containing a list of all commands provided by the
file. The variable that needs to be defined is "__commands__". Its value is a list of
four or five-element tuples, each of which has the following format:

("<name>", <alias>, <action callback>, <tab completion callback>, <help callback>)

where:

<name> is the command name to be used in the UI.

<alias> is optional. When present, the element is a string assigning an alias to the
command. The alias is registered with the UI and is treated as a normal command.

The rest of the elements are command callbacks (see Command Callbacks on page
115). Only the <action callback> is required. If the custom command does not
provide the other callbacks, their values can be set to None.

If a file in the commands/ directory does not define the "__commands__" variable, it
is skipped by the tool even if it does define custom command callbacks.

Command Callbacks

Each custom command provides three callbacks:

1. A callback that executes the command's actions.

2. A callback that performs the command's tab-completion actions.

3. A callback that provides the command's help text.

The callback types are defined in the following sections.

Action Callback

The action callback is called when you execute the custom command using the name
defined in the tuple. The action callback has the following structure:

action_callback(ui_object, command_line, output)

where the arguments are:

Argument Description

ui_object UI instance. The primary use of this argument is to get access to the
hardware and its CSRs.

command_line String containing the complete command line input with the exception
of the first command word. The first command word is not present
since it is the one that triggers the call of this callback and is already
known.

output A list passed to the callback where the callback can append text to be
displayed. Upon return from the command, if the list is not empty, the
UI formats and displays the output to the screen.

A.4.1  

A.4.1.1  

hfidiags User Guide—Intel® Omni-Path Fabric

Intel® Omni-Path Fabric Host Software
December 2016 User Guide
Order No.: H76470-5.0 115



The action callback returns False in normal conditions even if the actual command
action did not result in an error. A True return stops the UI from accepting any
further commands and the application exits. Command action failures are displayed
through one of the error notification methods provided by the UI object.

Tab-Completion Callback

The tab-completion callback is called when you attempt a tab-completion after you
have already input the name of the command. Tab-completion of actual command
names is handled by the UI object. This callback provides tab-completion for any
command arguments. The tab-completion callback structure is:

tab_completion_callback(ui_object, text, cmd_line, start_index, end_index)

where the arguments are:

Argument Description

ui_object UI instance. The primary use of this argument is to get access to the
hardware and its CSRs.

text The text that is being completed.

line The complete command line up to this point.

start_index Beginning index of the readline tab-completion scope.

end_index Ending index of the readline tab-completion scope.

This callback returns a list of all possible completions for text (if text is not an
empty string) or all possible next tokens.

Help Callback

The help callback is called when you request help for a command through the built-in
help <command/topic> command.

This callback is called without any arguments. It returns a Python* dictionary of help
text broken into sections. The following sections are supported:

• Synopsis

• Description

• Arguments

• Returns

• Known issues

• See also

Intel recommends that custom commands provide Synopsis and Description sections,
at a minimum.

The value for each section in the Python* dictionary is a string containing all the text
for that section. The help string can contain newline (\n) and tab (\t) characters to
help with formatting.

A.4.1.2  

A.4.1.3  

Intel® Omni-Path Fabric—hfidiags User Guide

Intel® Omni-Path Fabric Host Software
User Guide December 2016
116 Order No.: H76470-5.0


	Revision History
	Contents
	Figures
	Tables

	Preface
	Intended Audience
	Documentation Set
	Cluster Configurator for Intel® Omni-Path Fabric
	Documentation Conventions
	License Agreements
	Technical Support

	1.0 Introduction
	1.1 Intel® Omni-Path Architecture Overview
	1.2 Host Software Stack

	2.0 Step-by-Step Cluster Setup and MPI Usage Checklists
	2.1 Cluster Setup
	2.2 Using MPI

	3.0 Intel® Omni-Path Cluster Setup and Administration
	3.1 Installation Packages Overview
	3.2 Installed Layout
	3.3 Intel® Omni-Path Fabric and OFA Driver Overview
	3.4 Configuring IPoIB Network Interface
	3.5 Configuring IPoIB Driver
	3.6 IB Bonding
	3.6.1 Interface Configuration Scripts
	3.6.1.1 Red Hat* Enterprise Linux* (RHEL*)
	3.6.1.2 SUSE* Linux* Enterprise Server (SLES*)

	3.6.2 Verifying IB Bonding Configuration

	3.7 Intel Distributed Subnet Administration
	3.7.1 Applications that use the DSAP Plugin
	3.7.2 DSAP Configuration File
	3.7.2.1 Service ID (SID)
	3.7.2.2 ScanFrequency
	3.7.2.3 LogFile
	3.7.2.4 Dbg

	3.7.3 Virtual Fabrics and the Distributed SA Provider
	3.7.3.1 Configuring the DSAP
	3.7.3.2 Default Configuration
	3.7.3.3 Multiple Virtual Fabrics Example
	3.7.3.4 Virtual Fabrics with Overlapping Definitions
	3.7.3.5 Configuring DSAP for AutoStart


	3.8 HFI Node Description Assignment
	3.9 MTU Size
	3.10 Managing the Intel® Omni-Path Fabric Driver
	3.10.1 Intel® Omni-Path Driver File System
	3.10.2 More Information on Configuring and Loading Drivers


	4.0 Intel® True Scale/Intel® Omni-Path Coexistence
	4.1 Coexist Nodes
	4.2 Configurations
	4.3 Coexist Node Details
	4.4 Intel® Omni-Path Node Details
	4.5 Intel® True Scale Node Details
	4.6 Installing on an Existing Intel® True Scale Cluster
	4.7 PSM2 Compatibility
	4.7.1 PSM2 Standard Configuration
	4.7.2 Using the PSM2 Interface on Intel® Omni-Path Hardware


	5.0 Running MPI on Intel® Omni-Path Host Fabric Interfaces
	5.1 Introduction
	5.1.1 MPIs Packaged with Intel® Omni-Path Fabric Host Software

	5.2 Intel® MPI Library
	5.2.1 Intel® MPI Library Installation and Setup
	5.2.1.1 Setting Up the Intel® MPI Library
	5.2.1.2 Compiling Intel® MPI Library Applications

	5.2.2 Running Intel® MPI Library Applications

	5.3 Open MPI
	5.3.1 Installing Open MPI
	5.3.2 Setting up Open MPI
	5.3.3 Setting up Open MPI with SLURM
	5.3.4 Compiling Open MPI Applications
	5.3.5 Creating the mpi_hosts File
	5.3.6 Running Open MPI Applications
	5.3.7 Configuring MPI Programs for Open MPI
	5.3.8 Using Another Compiler
	5.3.8.1 Compiler and Linker Variables

	5.3.9 Allocating Processes
	5.3.9.1 Restricting Intel® Omni-Path Hardware Contexts in a Batch Environment
	5.3.9.2 Reviewing Context Sharing Error Messages
	5.3.9.3 Running in Shared Memory Mode

	5.3.10 Using the mpi_hosts File
	5.3.11 Using the Open MPI mpirun script
	5.3.12 Using Console I/O in Open MPI Programs
	5.3.13 Process Environment for mpirun
	5.3.14 Environment Variables
	5.3.15 Further Information on Open MPI

	5.4 Open MPI and Hybrid MPI/OpenMP Applications
	5.5 Debugging MPI Programs
	5.5.1 MPI Errors
	5.5.2 Using Debuggers


	6.0 Using Other MPIs
	6.1 Introduction
	6.2 Installed Layout
	6.3 MVAPICH2
	6.3.1 Compiling MVAPICH2 Applications
	6.3.2 Running MVAPICH2 Applications
	6.3.3 Further Information on MVAPICH2

	6.4 Managing MPI Versions with the MPI Selector Utility

	7.0 SHMEM Description
	7.1 Interoperability
	7.2 Installing SHMEM
	7.3 Basic SHMEM Program
	7.4 Compiling and Running SHMEM Programs
	7.5 Integrating SHMEM with slurm
	7.5.1 Full Integration
	7.5.2 Two-Step Integration
	7.5.3 No Integration

	7.6 Sizing Global Shared Memory
	7.7 Application Programming Interface
	7.8 SHMEM Benchmark Programs
	7.8.1 SHMEM Random Access Benchmark
	7.8.2 SHMEM All-to-All Benchmark
	7.8.3 SHMEM Barrier Benchmark
	7.8.4 SHMEM Reduce Benchmark


	8.0 Virtual Fabric Support in PSM2
	8.1 Virtual Fabric Support using Fabric Manager

	9.0 Multi-Rail Support in PSM2
	9.1 Multi-Rail Overview
	9.2 Multi-Rail Users
	9.3 Environment Variables
	9.4 Multi-Rail Configuration Examples

	10.0 Routing
	10.1 Intel® Omni-Path Routing Features and Innovations
	10.2 Dispersive Routing

	11.0 Integration with a Batch Queuing System
	11.1 Clean Termination of MPI Processes
	11.2 Clean Up PSM2 Shared Memory Files

	12.0 Benchmark Programs
	12.1 Measuring MPI Latency Between Two Nodes
	12.2 Measuring MPI Bandwidth Between Two Nodes
	12.3 Multiple Bandwidth / Message Rate Test
	12.4 Enhanced Multiple Bandwidth / Message Rate Test (mpi_multibw)

	13.0 Troubleshooting
	13.1 Using the LED to Check the State of the HFI
	13.2 BIOS Settings
	13.3 Kernel and Initialization Issues
	13.3.1 Driver Load Fails Due to Unsupported Kernel
	13.3.2 Rebuild or Reinstall Drivers if Different Kernel Installed
	13.3.3 Intel® Omni-Path Interrupts Not Working
	13.3.4 OpenFabrics Load Errors if HFI Driver Load Fails
	13.3.5 Intel® Omni-Path HFI Initialization Failure
	13.3.6 MPI Job Failures Due to Initialization Problems

	13.4 OpenFabrics and Intel® Omni-Path Issues
	13.4.1 Stop Services Before Stopping/Restarting Intel® Omni-Path

	13.5 System Administration Troubleshooting
	13.5.1 Broken Intermediate Link

	13.6 Performance Issues

	14.0 Recommended Reading
	14.1 References for MPI
	14.2 Books for Learning MPI Programming
	14.3 Reference and Source for SLURM
	14.4 OpenFabrics Alliance*
	14.5 Clusters
	14.6 Networking
	14.7 Other Software Packages

	Appendix A hfidiags User Guide
	A.1 Key Features
	A.2 Usage
	A.2.1 Command Line
	A.2.2 Interactive Interface
	A.2.2.1 Command Aliasing

	A.2.3 CSR Addressing
	A.2.3.1 Index Formatting
	A.2.3.2 Scalar CSR Specification
	A.2.3.3 Context-Indexed or Array-Only-Index CSR Specification
	A.2.3.4 Context- and Array-Indexed CSR Specification
	A.2.3.5 Bit Fields
	A.2.3.6 Symbolic CSR Indexes
	A.2.3.7 Globals/Wildcards


	A.3 Command Descriptions
	A.3.1 Default Command Descriptions
	A.3.1.1 config Command
	A.3.1.2 decode Command
	A.3.1.3 help Command
	A.3.1.4 info Command
	A.3.1.5 read Command
	A.3.1.6 state Command
	A.3.1.7 unit Command
	A.3.1.8 write Command

	A.3.2 Custom Command Descriptions
	A.3.2.1 header Command
	A.3.2.2 mempeek Command
	A.3.2.3 pci Command
	A.3.2.4 watch Command


	A.4 Extending the Interface
	A.4.1 Command Callbacks
	A.4.1.1 Action Callback
	A.4.1.2 Tab-Completion Callback
	A.4.1.3 Help Callback




