

Order No.: H99668-3.0

Intel® Omni-Path Storage Router

Design Guide

August 2016

Legal Disclaimer

Intel® Omni-Path Storage Router

Design Guide August 2016

2 Order No.: H99668-3.0

Legal Disclaimer

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting: http://www.intel.com/design/literature.htm

Intel Omni-Path and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Contents

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 3

Contents

1 Introduction ... 6

2 Linux IP Router .. 7

2.1 Overview ... 7
2.1.1 Reference Documents ... 7
2.1.2 Linux Router Use Cases Covered in this Document 8

2.1.2.1 Single Router .. 8
2.1.2.2 Fault-tolerant Router Pair ... 8
2.1.2.3 Fault-tolerant Router Pairs with Load-balanced Backend

Application Servers .. 9
2.1.2.4 Fault-tolerant Router Pairs with Two Master and One Backup

Servers .. 9
2.2 Hardware Requirements ... 10

2.2.1 BIOS Settings .. 11
2.3 Software Requirements .. 11

2.3.1 Red Hat* Enterprise Linux* 7 and SLES* 12 Installation 11
2.3.1.1 Red Hat* Enterprise Linux* 7 .. 11
2.3.1.2 SuSE Linux Enterprise Server 12.0 Installation 12

2.3.2 Intel® Omni-Path Software Installation .. 12
2.3.2.1 Software Requirements .. 12
2.3.2.2 Installation Steps .. 12

2.4 Router Configuration .. 14
2.4.1 Network Interface Naming Consistency .. 14

2.4.1.1 Network Interface Naming Using Explicit Driver Loading 14
2.4.1.2 Network Interface Naming Using udev 15
2.4.1.3 Configuring Network Devices with nmcli for RHEL 7 15
2.4.1.4 Configuring Network Devices with yast2 for SLES 12 17

2.4.2 10/40Gbit Ethernet ... 17
2.5 Client Configuration ... 17

2.5.1 Intel® Omni-Path Node Build .. 17
2.5.2 IB Node Build .. 18

2.5.2.1 Adding Static Routes .. 18
2.6 Router Redundancy/Failover with VRRP v3 .. 19

2.6.1 keepalived Installation .. 19
2.6.2 Ensuring keepalived Successfully Launches at Boot Time 19
2.6.3 Configuring keepalived .. 20
2.6.4 Load-Balancing VRRP/IPVS .. 22
2.6.5 Example keepalived.conf File for Load Balancing Backend NFS Servers 22

2.7 Performance Benchmarking and Tuning .. 23
2.7.1 BIOS Tunings .. 23
2.7.2 IP MTUs and Intel® Omni-Path Fabric MTUs .. 23
2.7.3 IP over Fabric Connected Mode .. 24
2.7.4 Intel® Omni-Path Fabric MTU ... 25
2.7.5 Measuring Baseline IP Performance ... 25

2.7.5.1 qperf ... 25
2.7.5.2 iperf .. 26

2.7.6 Hardware Installation Notes ... 26
2.7.7 Router Saturation ... 27

Contents

Intel® Omni-Path Storage Router

Design Guide August 2016

4 Order No.: H99668-3.0

3 LNet Router .. 28

3.1 Overview ... 28
3.1.1 Conventions Used ... 29
3.1.2 Related Documentation ... 29

3.2 Configuring LNet ... 30
3.2.1 Fault-tolerant and Load Balancing Configurations 31
3.2.2 Fine-Grained Routing .. 32
3.2.3 Advanced Parameters ... 33

3.3 Troubleshooting .. 34
3.3.1 LNet Tuning ... 36

3.4 Designing LNet Routers to Connect Intel® OPA and InfiniBand* 38
3.4.1 Hardware Design and Tuning ... 39
3.4.2 CPU Selection .. 39
3.4.3 Memory Considerations ... 40
3.4.4 Software Compatibility .. 41

Appendix A RHEL 7.1 Firewall and SELinux Configuration ... 43

A.1 Firewall Configuration for VRRP on Red Hat Enterprise Linux 7 using firewalld 43
A.2 Keepalived and SELinux with RHEL 7 .. 44

Figures

Figure 1. Single Router Example .. 8
Figure 2. Fault-tolerant Router Pair Example ... 8
Figure 3. Fault-tolerant Router Pairs with Load-balanced Backend Application

Servers Example .. 9
Figure 4. Fault-tolerant Router Pairs with Two Master and One Backup Servers Example 10
Figure 5. Heterogeneous Topology ... 29
Figure 6. LNet Router .. 30
Figure 7. PCI-e slot allocation ... 40

Tables

Table 1. Lustre suggested tunable for Intel® OPA .. 38
Table 2. LNet router CPU tuning ... 39
Table 3. Sample Table .. 41
Table 4. Intel® EE for Lustre* Software version compatibility matrix 42
Table 5. Intel® Foundation Edition for Lustre* Software version compatibility matrix 42
Table 6. Community edition (opensfs.org) compatibility matrix ... 42

Revision History

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 5

Revision History

Date Revision Description

August 2016 3.0 Minor correction in Section 2.5.2.1 Adding Static Routes

February 2016 2.0 Added LNet Router content.

 Added RHEL 7.2 SLES 12 SP1.

November 2015 1.0 Initial release.

§

Introduction

Intel® Omni-Path Storage Router

Design Guide August 2016

6 Order No.: H99668-3.0

1 Introduction

The Intel® Omni-Path Fabric can be configured with two different storage routers:

 Linux IP Router, described in Section 2.

 LNet Router, described in Section 3.

Appendix A, which begins on page 43, provides additional information on RHEL 7.1

Firewall and SELinux Configuration.

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 7

2 Linux IP Router

2.1 Overview

The Intel® Omni-Path Fabric Linux IP Router is designed to form a high-speed network

connection to existing InfiniBand* (IB) fabrics and vice-versa. For Intel® Omni-Path
and InfiniBand* Layer2 networks IPoIB is used as the common protocol to connect the

two fabrics. This section of the document instructs end users on how to install,
configure and administer an IPoIB router solution for inter-operating between Intel
Omni-Path and a legacy IB fabric. End users include systems administrators, network

administrators, cluster administrators and other qualified personnel tasked with
coupling the Intel® Omni-Path Fabric to existing IB fabrics.

The traditional method for sending IP traffic over the InfiniBand* fabric is IP over IB or

IPoIB. The Intel® Omni-Path fabric uses IP over Fabric or IPoFabric. From the software

point of view, it behaves the same way as IPoIB, and in fact uses the ib_ipoib driver
and sends IP traffic over the ib0 and/or ib1 ports.

For specific instructions about installing the Intel® Omni-Path Host Fabric Interface

adapters and the Intel® Omni-Path software consult the document set below.

2.1.1 Reference Documents

 Hardware Documents:

 Intel® Omni-Path Fabric Switches Hardware Installation Guide

 Intel® Omni-Path Fabric Switches GUI User Guide
 Intel® Omni-Path Fabric Switches Command Line Interface Reference Guide

 Intel® Omni-Path Edge Switch Platform Configuration Reference Guide
 Intel® Omni-Path Fabric Managed Switches Release Notes
 Intel® Omni-Path Fabric Externally-Managed Switches Release Notes

 Intel® Omni-Path Host Fabric Interface Installation Guide

 Software Documents:
 Intel® Omni-Path Fabric Software Installation Guide
 Intel® Omni-Path Fabric Suite Fabric Manager User Guide

 Intel® Omni-Path Fabric Suite FastFabric User Guide
 Intel® Omni-Path Fabric Host Software User Guide
 Intel® Omni-Path Fabric Suite Fabric Manager GUI Online Help

 Intel® Omni-Path Fabric Suite Fabric Manager GUI User Guide
 Intel® Omni-Path Fabric Suite FastFabric Command Line Interface Reference

Guide

 Intel® Performance Scaled Messaging 2 (PSM2) Programmer's Guide
 Intel® Omni-Path Fabric Performance Tuning User Guide
 Intel® Omni-Path Host Fabric Interface Platform Configuration Reference

Guide

 Intel® Omni-Path Storage Router Design Guide
 Intel® Omni-Path Fabric Software Release Notes
 Intel® Omni-Path Fabric Manager GUI Release Notes

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

8 Order No.: H99668-3.0

2.1.2 Linux Router Use Cases Covered in this Document

The following examples demonstrate how the router may be used to connect the two

fabrics.

Data on the storage area networks (SAN) are on the existing IB fabric. The Intel®

Omni-Path fabric needs to access the data on the IB fabric. With an IPoIB/Intel®
Omni-Path Fabric Linux Router Intel® Omni-Path fabric nodes can access the data on
the IB fabric SAN via common IP services such as NFS, Samba, iSCSI, FTP and data

on the Intel® Omni-Path fabric can be moved back via the same services to the IB
SAN. See Figure 3 on page 9.

2.1.2.1 Single Router

A single router connects the Intel® Omni-Path fabric to the IB fabric. This is the

simplest setup possible to gain connectivy between the Intel® Omni-Path and IB
fabrics. There is no fail-over and no load-balancing. This is the setup recommended

for testing and development.

Figure 1. Single Router Example

2.1.2.2 Fault-tolerant Router Pair

This setup includes two routers running Virtual Router Redundancy Protocol (VRRP) to

provide fault-tolerance and fail-over. If a single router fails with this setup, having two

routers provides automatic fail-over.

Figure 2. Fault-tolerant Router Pair Example

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 9

2.1.2.3 Fault-tolerant Router Pairs with Load-balanced Backend
Application Servers

This setup includes two routers running Virtual Router Redundancy Protocol (VRRP)

and IP Virtual Server (IPVS) to provide automatic fault-tolerance and load balancing to
mutliple storage servers.

Figure 3. Fault-tolerant Router Pairs with Load-balanced Backend Application Servers

Example

2.1.2.4 Fault-tolerant Router Pairs with Two Master and One Backup
Servers

This setup contains three routers: Two Masters and a Backup. In this scenario two

routers are used on the same subnet to accommodate router saturation. Router 1 has
VIPs on the 192.168.100.1 and 192.168.200.1, while Router 2 has VIPs

192.168.100.2 and 192.168.200.2. Node groups on the same subnets can be
configured to use different routers to reduce the chance of router saturation. The
Backup router sits in standby mode to accommodate the failure of one or both Master

routers.

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

10 Order No.: H99668-3.0

Figure 4. Fault-tolerant Router Pairs with Two Master and One Backup Servers

Example

2.2 Hardware Requirements

Intel® Workstation System SC5650SCWS was used for the routers at the time this

document was written. However, a server with at least one Intel® Xeon® Processor
with four or more cores, PCIe* Gen3 x16 link interfaces, and a minimum of 8GB RAM
will be sufficient. Systems using dual-port or additional HFI/HCA adapters would be
able to take advantage of a second Xeon CPU. Intel recommends that hyper-threading

be disabled on all CPUs.

The following components are required:

 Intel® Omni-Path Fabric HFI (One for each router)

 QDR/FDR/EDR HCA (One for each router)

 QSFP cables for HFIs/HCAs

 One QDR/FDR/EDR switch

 One Intel® Omni-Path Fabric switch

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 11

2.2.1 BIOS Settings

Setting the system BIOS is an important step in configuring a cluster to provide the

best mix of application performance and power efficiency. In the following, we specify
settings that should maximize the Intel® Omni-Path Fabric and application
performance. Optimally settings similar to these should be used during a cluster bring-
up and validation phase to show that the fabric is performing as expected. For the

long term, you may want to set the BIOS to provide more power savings, even though
that will reduce overall application and fabric performance to some extent.

For BIOS settings, reference the Intel® Omni-Path Fabric Performance Tuning User

Guide.

2.3 Software Requirements

Note: RHEL 7 requirements are RHEL 7.1 and later. SLES 12 requirements are SLES 12.0

and later.

2.3.1 Red Hat* Enterprise Linux* 7 and SLES* 12 Installation

2.3.1.1 Red Hat* Enterprise Linux* 7

Note: Instructions for RHEL 7 are the same for CentOS 7 and Scientific Linux 7.

The Red Hat* server should be built as a development platform during installation to

allow for the compile of keepalived -1.2.19.

Refer to the Intel® Omni-Path Fabric Software Installation Guide for additional OS
software requirements.

Note: The mxl4/5 modules and rdma are part of a base RHEL 7.1 install.

1. Disable firewalld during the Intel® Omni-Path Basic installation period:

systemctl disable firewalld

systemctl stop firewalld

2. Disable SELinux during the install period:

3. # setenforce 0

4. Edit /etc/sysconfig/selinux and change SELINUX=enforcing to

SELINUX=disabled to keep SELinux disabled on reboot.

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

12 Order No.: H99668-3.0

2.3.1.2 SuSE Linux Enterprise Server 12.0 Installation

SuSE Linux Enterprise Server 12 (SLES 12) should be built as a development platform

to allow for the compile of keepalived -1.2.19.

Refer to the Intel® Omni-Path Fabric Software Installation Guide for additional OS

software requirements.

2.3.2 Intel® Omni-Path Software Installation

2.3.2.1 Software Requirements

 Intel® Omni-Path IFS on Intel® Omni-Path node

 Intel® Omni-Path Basic on Coexist routers

The Intel® Omni-Path Fabric Suite Fabric Manager should NOT be enabled on the

coexist routers, nor should the IB subnet manager. The Intel® Omni-Path Basic install
package does not contain the Intel® Omni-Path Fabric Suite Fabric Manager and the

base RHEL 7.1/SLES 12 build does not include the opensm service. These should be
running on either the host nodes or on the Intel® Omni-Path/IB switches. Both setups
(node subnet/fabric manager masters and switch subnet/fabric manager masters)
have been tested.

Note: Unless specifically identified, the instructions for Intel® Omni-Path Software

Installation are for both RHEL 7 and SLES 12.

2.3.2.2 Installation Steps

1. Install the Intel® Omni-Path Basic build on the routers using instructions from the
Intel® Omni-Path Fabric Software Installation Guide.

After completing the Intel® Omni-Path Basic build you should see the following

Intel® Omni-Path HFI1 modules loaded from the ouput of lsmod:

lsmod |grep hfi

hfi1 558596 5

ib_mad 61179 4

 hfi1,ib_cm,ib_sa,ib_umad

compat 13237 7

hfi1,rdma_cm,ib_cm,ib_sa,ib_mad,ib_umad,ib_ipoib

ib_core 88311 11

hfi1,rdma_cm,ib_cm,ib_sa,iw_cm,ib_mad

Note: To ensure that the mlx4_ib module loads correctly at boot time, add the following line

to /etc/modprobe.d/mlx4.conf:

install mlx4_ib /usr/sbin/modprobe --ignore-install -f mlx4_ib

This is necessary to ensure that modprobe skips the check of symbol signatures
that are different from IFS-built ib_mad, ib_sa, ib_umad modules sharing the
same API.

You should also see the following mlx modules:

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 13

lsmod |grep mlx

mlx4_ib 158552 2

mlx4_en 94530 0

vxlan 37409 1 mlx4_en

ib_sa 33949 5

rdma_cm,ib_cm,mlx4_ib,rdma_ucm,ib_ipoib

ib_mad 61179 5 hfi1,ib_cm,ib_sa,mlx4_ib,ib_umad

ptp 18933 2 igb,mlx4_en

mlx4_core 254286 2 mlx4_en,mlx4_ib

ib_core 88311 12

hfi1,rdma_cm,ib_cm,ib_sa,iw_cm,mlx4_ib,ib_mad,ib_ucm,ib_umad,

ib_uverbs,rdma_ucm,ib_ipoib

2. With Intel® Omni-Path software installed and the HFI1 and mlx drivers loaded,
confirm that both devices are active on their respective fabrics.

a. To check the Intel® Omni-Path HFI, run opainfo:

opainfo

hfi1_0:1

PortGID:0xfe80000000000000:0011750101574238

 PortState: Active

 LinkSpeed Act: 25Gb En: 25Gb

 LinkWidth Act: 4 En: 4

 LinkWidthDnGrd ActTx: 4 Rx: 4 En: 3,4

 LCRC Act: 14-bit En: 14-bit,16-bit,48-bit

Mgmt: True

 LID: 0x00000006-0x00000006 SM LID: 0x00000001 SL: 0

 QSFP: PassiveCu, 2m TE Connectivity P/N 2821076-2

Rev B

 Xmit Data: 961 MB Pkts: 13540087

 Recv Data: 28702 MB Pkts: 15932547

 Link Quality: 5 (Excellent)

 Integrity Err: 0 Err Recovery 0

Notice that the PortState is Active.

b. To check the InfiniBand* HCA, run ibstat:

ibstat

CA 'mlx4_0'

 CA type: MT4099

 Number of ports: 1

 Firmware version: 2.34.5000

 Hardware version: 0

 Node GUID: 0x0002c903003d5bf0

 System image GUID: 0x0002c903003d5bf3

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

14 Order No.: H99668-3.0

 Port 1:

 State: Active

 Physical state: LinkUp

 Rate: 56

 Base lid: 17

 LMC: 0

 SM lid: 5

 Capability mask: 0x02514868

 Port GUID: 0x0002c903003d5bf1

 Link layer: InfiniBand

Notice that State is Active.

3. If the Intel® Omni-Path HFI is inactive, confirm that the Intel® Omni-Path Fabric

Suite Fabric Manager is running on either the Intel® Omni-Path switch or an Intel®
Omni-Path node. If the IB HCA is inactive, check that the IB subnet manager is
running on the IB switch or an IB node.

2.4 Router Configuration

2.4.1 Network Interface Naming Consistency

2.4.1.1 Network Interface Naming Using Explicit Driver Loading

On Linux, the order in which the HFI/HCA drivers are loaded determines which

interface name (ib0, ib1 …) is associated with the driver. The network interface

configuration files in /etc/sysconfig/network-scripts for RHEL 7 or

/etc/sysconfig/network for SLES 12 depend on the appropriate driver being

assigned to the correct interface. You can either observe the behavior on your system

after the cards have been installed or you can explicitly control the order in which the

drivers are installed.

For controlling driver installation, you must first “blacklist” the drivers involved by

using a text file located in /etc/modprobe.d containing something similar to the

following:

Blacklist the InfiniBand/ Intel Omni-Path drivers to prevent the

system automatically loading them at startup.

blacklist mlx4_core

blacklist hfi1

A script stored in /etc/sysconfig/modules is then used to start the drivers in a

particular order:

#!/bin/sh

Influence the order of the interfaces - the first one loaded

gets ib0 the next ib1, etc.

if [! -c /dev/ipath0] ; then

 /sbin/modprobe --force mlx4_core > /dev/null 2>&1

fi

if [! -c /dev/hfi1] ; then

 /sbin/modprobe hfi1 > /dev/null 2>&1

fi

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 15

2.4.1.2 Network Interface Naming Using udev

Another method for setting device names is through udev. In the following example,

you see the /etc/udev/rules.d/70-persistent-ipoib.rules file. The directions in

the file are very clear and to the point.

>>>>>>

#This is a sample udev rules file that demonstrates how to get udev to

set the name of IPoIB interfaces to whatever you want. There is a

16 character limit on network device names.

Important items to note: ATTR{type}=="32" is IPoIB interfaces, and the

ATTR{address} match must start with ?* and only reference the last 8

bytes of the address or else the address might not match on any given

start of the IPoIB stack

Note: as of rhel7, udev is case sensitive on the address field match

and all addresses need to be in lower case.

ACTION=="add", SUBSYSTEM=="net", DRIVERS=="?*", ATTR{type}=="32",

ATTR{address}=="?*00:11:75:01:01:57:51:59", NAME="ib0"

ACTION=="add", SUBSYSTEM=="net", DRIVERS=="?*", ATTR{type}=="32",

ATTR{address}=="?*00:02:c9:03:00:33:13:81", NAME="ib1"

<<<<<<<

In the previous file example the entry "?*00:11:75:01:01:57:51:59", NAME="ib0"

defines the interface itself via the last 8 bytes of the IB/ Intel® Omni-Path GUID,

which can viewed by the output of "ip a", and defines the device name mapping you
choose for the interface.

Depending on how you have placed the HFI/HCA on the motherboard, you may see

that IB1 is listed above IB0 with the output of "ip a", but for purposes of scripting the

devices will always have the same device name.

Both the explicit driver loading method and the udev method require a working OS

and manual intervention, which obviates network installs from using kickstart and
other provisioning tools. To guarantee the correct device name assignments you must
place the devices in the proper order in the PCI bridges on the motherboard. If this is

done for each router before the builds, then neither of the previously mentioned
modifications are necessary.

2.4.1.3 Configuring Network Devices with nmcli for RHEL 7

The Intel® Omni-Path Basic installation will ask if you want to configure the IPoIB

network scripts. RHEL 7 no longer uses the ifconfig utilily, replacing it with tools

from the NetworkManager service. While you can choose to configure the HFI/IB
devices using the Intel® Omni-Path install tool, Intel recommends using the default
RHEL 7 network tools. If the Intel® Omni-Path device is not recognized by the OS (the

IP utility is not showing an IB device from the output of "ip a") then there may be a
problem with the modules loading correctly at boot.

The following is an example of using the nmcli tool to create an Intel® Omni-Path or

InfiniBand* network device:

nmcli con add type infiniband con-name ib0 ifname ib0 transport-mode

connected mtu 65520 ip4 192.168.100.10/24

Note: You need to configure both the Intel® Omni-Path HFI and IB devices using nmcli.

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

16 Order No.: H99668-3.0

The nmcli command creates the ifcfg files in /etc/sysconfig/network-scripts.

Example of /etc/sysconfig/network-scripts/ifcfg-ib0 created by nmcli:

CONNECTED_MODE=yes

TYPE=InfiniBand

BOOTPROTO=none

DEFROUTE=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=no

IPV6_AUTOCONF=no

IPV6_DEFROUTE=no

IPV6_FAILURE_FATAL=no

NAME=ib0

UUID=eb1de50f-48f0-4f79-aafb-9eb3d8024bc0

DEVICE=ib0

ONBOOT=yes

MTU=65520

IPADDR=192.168.200.11

PREFIX=24

IPV6_PEERDNS=no

IPV6_PEERROUTES=no

After completing the device connection configs for the HFI and IB devices the output

of "ip a" should look similar to this:

4: ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 qdisc pfifo_fast

state UP qlen 256

 link/infiniband

80:00:00:02:fe:80:00:00:00:00:00:00:00:11:75:01:01:57:42:38 brd

00:ff:ff:ff:ff:12:40:1b:80:01:00:00:00:00:00:00:ff:ff:ff:ff

 inet 192.168.200.11/24 brd 192.168.200.255 scope global ib0

 valid_lft forever preferred_lft forever

 inet6 fe80::211:7501:157:4238/64 scope link

 valid_lft forever preferred_lft forever

5: ib1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 qdisc pfifo_fast

state UP qlen 256

 link/infiniband

80:00:00:48:fe:80:00:00:00:00:00:00:00:02:c9:03:00:3d:5b:f1 brd

00:ff:ff:ff:ff:12:40:1b:ff:ff:00:00:00:00:00:00:ff:ff:ff:ff

 inet 192.168.100.11/24 brd 192.168.100.255 scope global ib1

 valid_lft forever preferred_lft forever

 inet 192.168.100.1/32 scope global ib1

 valid_lft forever preferred_lft forever

 inet6 fe80::202:c903:3d:5bf1/64 scope link

 valid_lft forever preferred_lft forever

Enable forwarding on the routers:

1. The coexist routers need to able to forward packets. For a quick test of
functionality:

echo 1 > /proc/sys/net/ipv4/conf/ib0/forwarding

echo 1 > /proc/sys/net/ipv4/conf/ib1/forwarding

2. For persistence through a reboot, add the following entries to

/usr/lib/sysctl.d/00-system.conf:

net.ipv4.conf.ib0.forwarding=1

net.ipv4.conf.ib1.forwarding=1

This will limit IP forwarding to only the IB/Intel® Omni-Path interfaces.

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 17

2.4.1.4 Configuring Network Devices with yast2 for SLES 12

The Intel® Omni-Path Basic installation will ask if you want to configure the IPoIB

network scripts. You can accept this or use yast2 to configure the interfaces or create

the files manually in /etc/sysconfig/network/.

The following is an example of the /etc/sysconfig/network/ifcfg-ib0 file created by

yast2:

BOOTPROTO='static'

BROADCAST=''

ETHTOOL_OPTIONS=''

IPADDR='192.168.100.10/24'

IPOIB_MODE='connected'

MTU='65520'

NAME=''

NETWORK=''

REMOTE_IPADDR=''

STARTMODE='auto'

2.4.2 10/40Gbit Ethernet

The Intel® Omni-Path Fabric Linux Router can be used with 10/40Gbit Ethernet

devices. The following command uses the nmcli command to configure a 10/40Gbit

Ethernet device:

nmcli con add type ethernet con-name eth2 ifname eth2 mtu 9000 ip4

192.168.100.20/24

Note: Intel recommends an MTU of 9000 (jumbo frame) for 10/40Gbit Ethernet.

2.5 Client Configuration

To test the routers a minimum of one Intel® Omni-Path node and one IB node (as

standalone representatives of their respective fabrics) need to be configured and

connected to the same switched environment that the routers are on.

The network configuration on RHEL 7 and SLES 12 uses the same setup as mentioned

previously to configure the Intel® Omni-Path HFI or the IB HCA network devices.

2.5.1 Intel® Omni-Path Node Build

The Intel® Omni-Path node in this environment should be built from the Intel® Omni-

Path-IFS package. This provides all the packages from the Intel® Omni-Path Basic

build and adds the Intel® Omni-Path Fabric Suite Fabric Manager. If the fabric
manager is running on the Intel® Omni-Path switch then the installation of the Intel®
Omni-Path Basic software will be sufficient.

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

18 Order No.: H99668-3.0

2.5.2 IB Node Build

The IB node network interface works directly from a base build of RHEL 7 or SLES 12,

and a subnet manager can be added with the addition of the opensm package if the
subnet manager is not running on the InfiniBand switch.

For both the Intel® Omni-Path and IB nodes a static route needs to be added to the

network configuration for the client nodes to use the Linux router as a gateway to the
opposing fabric. Based on the example network topology provided in this document

the routes will be added as described in the following sections.

2.5.2.1 Adding Static Routes

On the IB node:

ip route add 192.168.200.0/24 via 192.168.100.1

This can be written to /etc/sysconfig/network-scripts/route-<interface> to keep

the routing tables persistent through a reboot.

Example:

cat /etc/sysconfig/network-scripts/route-ib0

192.168.100.0/24 via 192.168.200.1 dev ib0

Note: Sometimes the above route is NOT added at system boot. This is due to the Intel®

Omni-Path and IB interfaces not being fully operational on the fabric when the

NetworkManger service starts due to delays to an active state from the fabric or

subnet managers, causing the static route config to fail. A workaround is to add the

following to /etc/rc.d/rc.local on RHEL 7 or /etc/rc.d/after.local on SLES

12:

1. Set execute permissions on /etc/rc.d/rc.local:
chmod +x /etc/rc.d/rc.local

The rc.local file:

sleep 30 #Delays adding the static route addition until the

HFI/HCA is up.

/usr/sbin/ip route add 192.168.100.0/24 via 192.168.200.1

logger --p info ‘‘STATIC ROUTED ADDED’’ # Use this to confirm that

the rc.local sript runs."

2. Start the rc-local service before rebooting the system to activate the service.

systemctl start rc-local.service

At this point, with both routers up and connected to the fabrics you should be able to

ping nodes from the Intel® Omni-Path fabric subnet through the router to the IB fabric
subnet.

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 19

2.6 Router Redundancy/Failover with VRRP v3

Virtual Router Redundancy Protocol (VRRP) v3 is used to provide fault-tolerance,

failover and load-balancing on the routers.

VRRP v3 is used in this documentation. VRRP v3 is part of the keepalived-1.2.19

service. The source code for keepalived is available here:

http://www.keepalived.org/download.html

VRRP v3 RFC 5798 is available here:

https://tools.ietf.org/html/rfc5798

Note: RHEL 7.1 repositories provide VRRP v2 as part of the keepalived RPM and should not

be used.

2.6.1 keepalived Installation

Note: keepalived requires openssl and openssl-devel to compile.

Unpack the source code and run config, make and make install. You will see from

the output of make install that keepalived is installed to the /usr/local file system.

However, the config files, startup scripts, etc. all point to RHEL 7/SLES 12 default

directories, so you can move the keepalive config files to the /etc directory and the

keepalived service to /usr/sbin or edit the config files to point to the /usr/local

directories.

systemctl enable keepalived.

2.6.2 Ensuring keepalived Successfully Launches at Boot Time

Due to the delay caused by the subnet manager/fabric manager services in bringing

the IB and Intel® Omni-Path devices to an active state, VRRP may fail at boot time.

The solution is to add this line to the the /etc/systemd/system/keepalived xml file:

"After=NetworkManager-wait-online.service"

This delays the start of keepalive service until the network devices are in an active

state.

Enable the NetworkManager-wait-online.service:

systemctl enable NetworkManager-wait-online.service

The following is an example of the keepalived.xml file:

[Unit]

Description=LVS and VRRP High Availability Monitor

After=syslog.target network.target

After=NetworkManager-wait-online.service

http://www.keepalived.org/download.html
https://tools.ietf.org/html/rfc5798

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

20 Order No.: H99668-3.0

[Service]

Type=forking

KillMode=process

EnvironmentFile=-/etc/sysconfig/keepalived

ExecStart=/usr/sbin/keepalived $KEEPALIVED_OPTIONS

ExecReload=/bin/kill -HUP $MAINPID

[Install]

WantedBy=multi-user.target

Place the keepalived.xml file in /etc/systemd/system/.

Note: SLES 12 does not use NetworkManager by default. Intel recommends adding a line to

the /etc/rc.d/after.local file that restarts keepalived after 30 seconds.

2.6.3 Configuring keepalived

There are two files involved in configuring keepalived.

The first is /etc/keepalived/keepalived.conf. This is the configuration file that

defines keepalived keyword settings. See the man page keepalived.conf(5) for

complete information.

The second file is /etc/sysconfig/keepalived. This file sets the runtime options for

keepalived. Two useful options are -D for detailed log messages and -P to run only the

VRRP service. These are both recommended settings when building and testing the

routers for fault-tolerance.

The basic setup for fault-tolerance and automatic failover is to configure one router as

the master for both subnet virtual IPs and the other as a backup. In the event the

master router fails, the backup router will immediately assume the master role.

Another option is to configure the routers so that they split the traffic, with one router

as the master on one subnet and the second router as the backup on the second
subnet. This setup has the potential to reduce load on an individual router if traffic is
going back and forth between the fabrics.

Below is a configuration example for a simple master/backup router pair.

/etc/keepalived/keepalived.conf for router1 (master):

vrrp_instance VI_1 {

 state MASTER

 interface ib0

 virtual_router_id 1

 priority 250

 authentication {

 auth_type PASS

 auth_pass password

 }

 virtual_ipaddress {

 192.168.200.1

 }

}

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 21

vrrp_instance VI_2 {

 interface ib1

 state MASTER

 virtual_router_id 2

 priority 250

 authentication {

 auth_type PASS

 auth_pass password

 }

 virtual_ipaddress {

 192.168.100.1

 }

}

The following is an example of /etc/keepalived/keepalived.conf for router2

(backup):

 vrrp_instance VI_1 {

 state BACKUP

 interface ib0

 virtual_router_id 1

 priority 100

 authentication {

 auth_type PASS

 auth_pass password

 }

 virtual_ipaddress {

 192.168.200.1

 }

}

vrrp_instance VI_2 {

 interface ib3

 state BACKUP

 virtual_router_id 2

 priority 100

 authentication {

 auth_type PASS

 auth_pass password

 }

 virtual_ipaddress {

 192.168.100.1

 }

 }

}

Note: In the above keepalived.conf file the auth_type value is PASS, which transmits the

password in plain text. Another option is auth_type AH, which uses IPSEC and

transmits an encrypted password. Discussion of overall VRRP protocol security is

outside of scope of this document. Please see RFC 5798 for more information at

https://tools.ietf.org/html/rfc5798.

https://tools.ietf.org/html/rfc5798

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

22 Order No.: H99668-3.0

2.6.4 Load-Balancing VRRP/IPVS

The load-balancing piece of keepalived is provided by VRRP using IPVS. The following

example demonstrates connection-oriented load balancing. The last stanza in the file
references the NFS server frontend/backend. The weighted roundrobin algorithm is
used and different weights have been added to distribute load across NFS servers that
have different performance capabilites. Notice that in the following example the router

is acting as a master on one subnet and a backup on the other.

2.6.5 Example keepalived.conf File for Load Balancing Backend

NFS Servers
vrrp_instance VI_1 {

 state BACKUP

 interface ib0

 virtual_router_id 1

 priority 100

 advert_int 5

 authentication {

 auth_type PASS

 auth_pass password

 }

 virtual_ipaddress {

 192.168.200.1

 }

}

vrrp_instance VI_2 {

 interface ib1

 state MASTER

 virtual_router_id 2

 priority 255

 advert_int 5

 authentication {

 auth_type PASS

 auth_pass password

 }

 virtual_ipaddress {

 192.168.100.1

 }

}

#Frontend

virtual_server 192.168.100.1 2049 {

 delay_loop 20

 lb_algo wrr

 lb_kind NAT

 persistence_timeout 50

 protocol TCP

#Backend

 real_server 192.168.100.12 2049 {

 weight 100

 TCP_CHECK {

 connect_timeout 3

 }

 }

}

 real_server 192.168.100.16 2049 {

 weight 50

 TCP_CHECK {

 connect_timeout 3

 }

 }

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 23

 real_server 192.168.100.17 2049 {

 weight 25

 TCP_CHECK {

 connect_timeout 3

 }

 }

}

Note: Conventional NFS client mount points in /etc/fstab identify a specific server by

hostname or IP, obviating the load-balancing provided by IPVS. The frontend VIP

provides a single IP to the clients for frontend connectivity to multiple data servers on

the backend. Documentation on IPVS can be obtained here:

http://www.linuxvirtualserver.org/Documents.html

Roundrobin DNS can accomplish the same thing but can be problematic if NFS clients
are caching DNS queries.

2.7 Performance Benchmarking and Tuning

2.7.1 BIOS Tunings

Error! Reference source not found. in Section 2.1.1 “Intel Xeon Processor E5 v3

amily” indicate the desired BIOS settings for good performance for client or router

nodes.

Here we just emphasize that for the Router nodes, Intel recommends setting Hyper-

Threading Technology to Disabled.

2.7.2 IP MTUs and Intel® Omni-Path Fabric MTUs

The following three sections discuss the setting of two types of MTUs at different

protocol layers. This background section explains the protocol layers involved in IP

over Intel® Omni-Path Fabric communications.

There are Maximum Transmission Units (MTUs) that apply both to the datagrams of

the Internet or IP layer and to the packets of the Link layer (provided by the Intel®
Omni-Path Fabric). The following diagram shows the layered TCP/IP protocol stack.

http://www.linuxvirtualserver.org/Documents.html

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

24 Order No.: H99668-3.0

The Transport Layer performs host-to-host communications on either the same or

different hosts and on either the local network or remote networks separated by
routers. The Transmission Control Protocol (TCP) provides flow-control, connection

establishment, and reliable transmission of data.

The Internetwork (IP) layer has the task of exchanging datagrams (a.k.a. packets)

across network boundaries. This layer defines the addressing and routing structures
used for the TCP/IP protocol suite. The primary protocol in this scope is the Internet
Protocol, which defines IP addresses.

The Link layer, implemented by the Omni-Path fabric in this case, includes the

protocols used to describe the local network topology and the interfaces needed to
transmit packets to next-neighbor hosts or switches.

In the context of IP over Fabric or IPoIB, there are two important IP MTU sizes at the

internetwork layer: 2044 and 65520 bytes.

The OPA Host adapter supports all OPA MTU sizes defined by the Storm Lake

Architecture Specification. The full set of OPA MTU sizes for general traffic types at the

link layer is 256, 512, 1024, 2048, 4096, and 8192 bytes.

As detailed in the next two sub-sections, the best IP over Fabric throughput is

obtained by using the 65520 byte MTU size in the IP layer and the 8096 byte MTU
size in the link layer.

2.7.3 IP over Fabric Connected Mode

The Intel® Omni-Path fabric uses IP over Fabric or IPoFabric. From the software point

of view, it behaves the same way as IPoIB, and in fact uses an ib_ipoib driver and
sends IP traffic over the ib0 and/or ib1 ports. Thus, we will primarily refer to this
traffic as IPoFabric, but will contunue to use the terms ib_ipoib and the ib0/ib1 ports,
and measure performance with traditional IP orientated benchmarks such as qperf and

iperf3. For IPoFabric bandwidth benchmarks, a prerequisite for good throughput
performance is a link layer MTU of 8KB enabled on the fabric. To enable use of the 8K
MTU, for IPoFabric traffic, one only needs to have IPoIB configured for Connected

Mode. Connected Mode works best when configured with a 65520 byte IP layer MTU.

The chapters on “Router Configuration” and “Client Configuration” earlier in this

document discuss methods for configuring IPoIB to automatically start upon reboot
and how to configure the nodes for IPoIB Connected Mode operation.

To do a quick check if you are in connected mode with the corresponding IP MTU size,
one way is to cat two files:

cat /sys/class/net/ib0/mode

connected

cat /sys/class/net/ib0/mtu

65520

Another way is then looking at the state of the IP interfaces, if on the appropriate ibX

interface, you see the correct IP layer MTU size:

ip -f inet addr

<snip>

6: ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 qdisc pfifo_fast

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 25

state UP qlen 256

 inet 192.168.158.55/24 brd 192.168.158.255 scope global ib0

2.7.4 Intel® Omni-Path Fabric MTU

InfiniBand* supports MTU sizes of 256B, 512B, 1024B, 2048B, and 4096B only. Intel®

Omni-Path Architecture, on the other hand, can support MTU sizes up to 8192B (8KB)

MTUs for verbs or PSM traffic. IPoFabric traffic uses verbs for its transport. Intel
recommends you use the 8KB MTU for best large message throughput. 8KB MTU is the
default for user data with the host driver, FM, and the switch; this is a

recommendation to use that default.

2.7.5 Measuring Baseline IP Performance

Before running storage benchmarks, which will run over IP protocols, it is important to

measure the performance of IP over the Intel® Omni-Path & IB Fabrics: between
Intel® Omni-Path Clients, between Storage servers, and between an Intel® Omni-Path
client through the router to a storage server.

2.7.5.1 qperf

qperf is a benchmark that is available from the RHEL 7 repository. It is designed to be

run on a pair of nodes. You arbitrarily designate one node to be the server and the

other to be the client.

Run a ping test to ensure that ib_ipoib is running. If you are concerned about

performance, a quick and useful pretest is to run qperf on both the server and the

client node.
qperf <server ipoib addr> -m 4M –ca 6 tcp_bw

In the above command line:

<server ipoib addr> IP address of the ib0 port of the server node.

-ca 6 Can be considered a tuning that will pin both the server and client

side qperf process to core 6, which is typically on the first socket.

You do not want to specify core 1 or other lower number cores

where OS or driver interrupts will interfere with the benchmark.

-m Specifies a message size. In the example above, 4M specifies a 4

megabyte message size.

To stop testing, type <Ctrl+C> on the server side to kill the server’s qperf process. On

nodes with Intel® Xeon® Process E5-2600 Product Family v3 CPUs with a frequency
set at 2.5 GHz or higher, the Intel® Omni-Path IPoIB throughput performance should
be greater than 3.5 GB/s, if Connected Mode is in effect, and if 8KB Intel® Omni-Path
fabric MTU is in effect on your network.

If running multiple qperf processes per node, use a different core number for each

process so that they do not interfere with each other.

Linux IP Router

Intel® Omni-Path Storage Router

Design Guide August 2016

26 Order No.: H99668-3.0

2.7.5.2 iperf

iperf is a tool for active measurements of the maximum achievable bandwidth on

networks that carry IP traffic. It supports tuning of various parameters related to
timing, protocols, and buffers. For each test, iperf reports the bandwidth, loss, and

other parameters.

The following set of iperf command lines have been found to improved Intel® Omni-

Path’s IPoIB throughput:

server: iperf3 -s -1 -f G -A $core

client: iperf3 -c $ipoib -f G -t 12 -O 2 -w 2M --len 1M -A $core

In the previous command lines:

-A $core Similar to -ca with qperf. This sets cpu affinity to core $core (e.g., 4 is

typically a good value)

--len Indicates the message size in bytes, in this case 1 M

-t 12 -O 2 Runs the test for 12 seconds, but omit the first 2 seconds when calculating

the bandwidth result at the bottom of the output. This typically improves

performance and makes performance results more stable.

-f G Indicates the output bandwidth should be in GB (gigabyte) units.

$ipoib IPoIB address of the server

Note: iperf3, the current version of iperf, is a new implementation from scratch, with the

goal of a smaller, simpler code base, and a library version of the functionality that can

be used in other programs. The latest version of iperf is available for download at

http://software.es.net/iperf/.

2.7.6 Hardware Installation Notes

The Intel® Omni-Path Host Interface adapter should be installed in a PCIe x16 Gen3

slot that is electrically connected to Socket 0 for best performance.

http://software.es.net/iperf/

Linux IP Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 27

2.7.7 Router Saturation

Intel recommends using qperf and sar (from the RHEL 7 repository) to determine at

what point the router saturates.

The following are some examples for determining saturation using qperf and sar.

qperf example

qperf <server ipoib addr> -t 120 -m 4M –ca 6 tcp_bw

In the above example qperf will run for 120 seconds with a 4M messages size. While

qperf is running, use sar to observe load on the Intel® Omni-Path Architecture/IB

devices on the router.

sar example

sar -n DEV 2 20

or

sar -n DEV -f /var/log/sa/<file name> -s <start time> -e <end time>

In the the above example the output interval is every 2 seconds and 20 is the number

of times output will be displayed. Start and end times are in 24-hour format

(00:00:00). Please see the sar man page for options and usage examples.

Router saturation points will vary depending on router usage. After a saturation point
has been determined, Intel recommends adding another router.

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

28 Order No.: H99668-3.0

3 LNet Router

3.1 Overview

Lustre* file systems have the unique capability to run the same global namespace

across several different network topologies. The LNet components of Lustre provide
this abstraction layer. LNet is an independent project from Lustre and is used for other

projects beyond the Lustre file system. LNet was originally based on the Sandia
Portals project.

LNet can support Ethernet*, InfiniBand*, legacy fabrics (ELAN and MyriNet) and

specific compute fabrics as Cray* Gemini, Aries, and Cascade.

LNet is part of the Linux kernel space and allows for full RDMA throughput and zero

copy communications when available. Lustre can initiate a multi-OST read or write
using a single Remote Procedure Call (RPC), which allows the client to access data
using RDMA, regardless of the amount of data being transmitted.

LNet was developed to provide the maximum flexibility for connecting different
network topologies using LNet routing. LNet’s routing capabilities provide an efficient

protocol to enable bridging between different networks, e.g., from Ethernet-to-
InfiniBand, or the use of different fabric technologies such as Intel® Omni-Path
Architecture (OPA) and InfiniBand.

Figure 5 shows an example of how to connect an existing InfiniBand network (storage

and compute nodes) to new Intel® OPA compute nodes.

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 29

Figure 5. Heterogeneous Topology

3.1.1 Conventions Used

Conventions used in this document include:

 # preceding a command indicates the command is to be entered as root

 $ indicates a command is to be entered as a user

 <variable_name> indicates the placeholder text that appears between the angle
brackets is to be replaced with an appropriate value

3.1.2 Related Documentation

 Intel® Enterprise Edition for Lustre* Software, Version 2.4.0.0 Release Notes

 Intel® Manager for Lustre* Software User Guide

 Installing Intel® EE for Lustre* Software on Intel® Xeon Phi™ Coprocessors

 Hierarchical Storage Management Configuration Guide

 Installing Hadoop, the Hadoop Adapter for Intel® EE for Lustre*, and the Job
Scheduler Integration

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

30 Order No.: H99668-3.0

 Creating an HBase Cluster and Integrating Hive on an Intel® EE for Lustre* File
System

 Creating a Monitored Lustre* Storage Solution over a ZFS File System

 Creating a High-Availability Lustre* Storage Solution over a ZFS File System

 Upgrading a Lustre file system to Intel® Enterprise Edition for Lustre* Software
(Lustre only)

 Creating a Scalable File Service for Windows Networks using Intel® EE for Lustre*

Software

 Intel® EE for Lustre* Hierarchical Storage Management Framework White Paper

 Architecting a High-Performance Storage System White Paper

 Lustre* Software Release 2.x Operations Manual
(https://build.hpdd.intel.com/job/lustre-
manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml)

3.2 Configuring LNet

An LNet router is a specialized Lustre client where only the LNet is running. An

industry-standard, Intel-based server equipped with two sockets is appropriate for this
role.

The Lustre file system is not mounted on the router, and a single LNet router can

serve different file systems. In the context of LNet routing between two RDMA-
enabled networks, in-memory zero copy capability is used to optimize latency and
performance.

Figure 6. LNet Router

Consider the simple example shown in Figure 6 above, where:

 Storage servers are on LAN1, a Mellanox*-based InfiniBand network –
10.10.0.0/24

 Clients are on LAN2, an Intel® OPA network – 10.20.0.0/24

 The router is between LAN1 and LAN2 at 10.10.0.20 and 10.20.0.29

The network configuration on the servers (typically created in

/etc/modprobe.d/lustre.conf) will be:

options lnet networks="o2ib1(ib0)" routes="o2ib2 10.10.0.20@o2ib1"

https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml
https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 31

The network configuration on the LNet router (typically created in

/etc/modprobe.d/lustre.conf) will be:

options lnet networks="o2ib1(ib0),o2ib2(ib1)" "forwarding=enabled"

The network configuration on the clients (typically created in

/etc/modprobe.d/lustre.conf) will be:

options lnet networks="o2ib2(ib0)" routes="o2ib1 10.20.0.29@o2ib2"

Restarting LNet is necessary to apply the new configuration:

modprobe -r lnet && modprobe lnet

Clients will mount the Lustre file system using the usual command line (assuming

mgs1 and mgs2 are the IP addresses of the two Lustre servers hosting the MGS

service on the LAN1 network):

mount --t lustre mgs1@o2ib1:mgs2@o2ib1:/<file system name> /<mount

point>

3.2.1 Fault-tolerant and Load Balancing Configurations

Lustre is designed to avoid any single point of failure and to scale as much as

possible. The implementation of LNet routers follows this philosophy. We can organize
a pool of routers to provide load balancing and high availability.

LNet routers are designed to discover each other and function as a pool (cluster); they

monitor peer health and communicate state. In the case of a router failure, they will

route traffic in order to avoid the failed peer router.

Routers return state information to clients and clients process the state of each router

in the pool. This information is used to load-balance traffic across the entire pool of
routers, and a routing table and routing status is maintained on each client.

Referring again to Figure 6, consider this example using pools, where:

• Servers are on LAN1, a Mellanox based InfiniBand network – 10.10.0.0/24

• Clients are LAN2, an Intel® OPA network – 10.20.0.0/24

• Routers on LAN1 and LAN2 at 10.10.0.20-29 and 10.20.0.20-29

The network configuration on the servers (typically created in

/etc/modprobe.d/lustre.conf) will be:

options lnet networks="o2ib1(ib0)" routes="o2ib2 10.10.0.[20-29]@o2ib1"

The network configuration on the LNet routers (typically created in

/etc/modprobe.d/lustre.conf) will be:

options lnet networks="o2ib1(ib0),o2ib2(ib1)" "forwarding=enabled"

The network configuration on the clients (typically created in

/etc/modprobe.d/lustre.conf) will be:

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

32 Order No.: H99668-3.0

options lnet networks="o2ib2(ib0)" routes="o2ib1 10.20.0.[20-29]@o2ib2"

Restarting LNet is necessary to apply the new configuration. Clients will mount the

Lustre file system using the usual command line (assuming mgs1 and mgs2 are the IP

addresses of the two Lustre servers hosting the MGS service on the LAN1 network):

mount --t lustre mgs1@o2ib1:mgs2@o2ib1:/<file system name> /<mount

point>

3.2.2 Fine-Grained Routing

The routes parameter is used to tell a node which route to use when forwarding

traffic, by identifying LNet routers in a Lustre configuration. The routes parameter

specifies a semi-colon-separated list of router definitions.

routes=dest_lnet [hop] [priority] router_NID@src_lnet; \

dest_lnet [hop] [priority] router_NID@src_lnet

An alternative syntax consists of a colon-separated list of router definitions:

routes=dest_lnet: [hop] [priority] router_NID@src_lnet \

[hop] [priority] router_NID@src_lnet

When there are two or more LNet routers, it is possible to give weighted priorities to

each router using the priority parameter. Here are some possible reasons for using
this parameter:

 One of the routers is more capable than the other.

 One router is a primary router and the other is a back-up.

 One router is for one section of clients and the other is for another section.

 Each router is moving traffic to a different physical location. The priority
parameter is optional and need not be specified if no priority exists.

The hop parameter specifies the number of hops to the destination. When a node

forwards traffic, the route with the least number of hops is used. If multiple routes to

the same destination network have the same number of hops, the traffic is distributed
between these routes in a round-robin fashion. To reach/transmit to the LNet

dest_lnet, the next hop for a given node is the LNet router with the NID router_NID

in the LNet src_lnet.

Given a sufficiently well-architected system, it is possible to map the flow to and from

every client or server. This type of routing has also been called fine-grained routing.

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 33

3.2.3 Advanced Parameters

In a Lustre configuration where different types of LNet networks are connected by

routers, several kernel module parameters can be set to monitor and improve routing
performance.

The routing related parameters are:

 auto_down - Enable/disable (1/0) the automatic marking of router state as up or

down. The default value is 1. To disable router marking, enter:

options lnet auto_down=0

 avoid_asym_router_failure - Specifies that if even one interface of a router is

down for some reason, the entire router is marked as down. This is important
because if nodes are not aware that the interface on one side is down, they will

still keep pushing data to the other side presuming that the router is healthy,
when it really is not. To turn it on, enter:

options lnet avoid_asym_router_failure=1

 live_router_check_interval - Specifies a time interval in seconds after which

the router checker will ping the live routers. The default value is 60. To set the
value to 50, enter:

options lnet live_router_check_interval=50

 dead_router_check_interval - Specifies a time interval in seconds after which

the router checker will check the dead routers. The default value is 60. To set the
value to 50, enter:

options lnet dead_router_check_interval=50

 router_ping_timeout - Specifies a timeout for the router checker when it checks

live or dead routers. The router checker sends a ping message to each dead or

live router once every dead_router_check_interval or

live_router_check_interval respectively. The default value is 50. To set the

value to 60, enter:

options lnet router_ping_timeout=60

 check_routers_before_use - Specifies that routers are to be checked before use.

Set to off by default. If this parameter is set to on, the

dead_router_check_interval parameter must be given a positive integer value.

options lnet check_routers_before_use=on

The router_checker obtains the following information from each router:

 time the router was disabled

 elapsed disable time

If the router_checker does not get a reply message from the router within

router_ping_timeout seconds, it considers the router to be down.

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

34 Order No.: H99668-3.0

When a router in a priority class goes down, the traffic stops intermittently until LNet

safely marks the router that is down as “down,” and then proceeds on again,
depending either on other routers of the same class, or a different priority class. The

time it takes for LNet to recover is roughly based on the values for the

live/dead_router_checker parameters provided.

If a router that is marked “up” responds to a ping, the timeout is reset. If 100 packets

have been sent successfully through a router, the sent-packets counter for that router
will have a value of 100. The ping response also provides the status of the NIDs of the
node being pinged. In this way, the pinging node knows whether to keep using this
node as a next-hop or not. If one of the NIDs of the router is down and the

avoid_asym_router_failure = 1 is set, then that router is no longer used.

3.3 Troubleshooting

LNet provides a several metrics to troubleshoot a network. Referencing Figure 6 again,

considering the following configuration:

 Six Lustre servers are on LAN0 (o2ib0), a Mellanox based InfiniBand network –
192.168.3.[1-6]

 Sixteen clients are LAN1 (o2ib1), an Intel® OPA network – 192.168.5.[100-254]

 Two routers on LAN0 and LAN1 at 192.168.3.7-8 and 192.168.5.7-8

On each Lustre client we can see the status of the connections using the

/proc/sys/lnet/peers metric file. This file shows all NIDs known to this node, and

provides information on the queue state:

cat /proc/sys/lnet/peers

nid refs state last max rtr min tx min queue

192.168.5.8@o2ib1 4 up -1 8 8 8 8 -505 0

192.168.5.7@o2ib1 4 up -1 8 8 8 8 -473 0

Here, “state” is the status of the routers. In the case of a failure of one path, I/O will

be routed through the surviving path. When both paths are available, RPCs will use
both paths in round-robin.

Here, “max” is the maximum number of concurrent sends from this peer and “tx” is

the number of peer credits currently available for this peer.

Notice the negative number in the “min” column. This negative value means that the

number of slots on the LNet was not sufficient and the queue was overloaded. This is
an indication to increase the number of peer credits and credits (see LNet Tuning on
page 36). Increasing the credits value has some drawbacks, including increased

memory requirements and possible congestion in networks with a very large number
of peers.

The status of the routing table can be obtained from the /proc/fs/lnet/routes file from

a client:

Routing disabled

net hops priority state router

o2ib 1 0 up 192.168.5.8@o2ib1

o2ib 1 0 up 192.168.5.7@o2ib1

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 35

The status of the routers can be verified from the /proc/fs/lnet/routers file from a

client:

ref rtr_ref alive_cnt state last_ping ping_sent deadline down_ni router

4 1 3 up 47 1 NA 0 192.168.5.7@o2ib1

4 1 1 up 47 1 NA 0 192.168.5.8@o2ib1

On each LNet router, the /proc/sys/lnet/peers metric shows all NIDs known to this

node, and provides the following information (values are examples and not all

information is shown):

nid refs state last max rtr min tx min queue

192.168.3.4@o2ib 1 up 165 8 8 -8 8 -15 0

192.168.3.1@o2ib 1 up 47 8 8 -6 8 -8 0

192.168.3.6@o2ib 1 up 165 8 8 -8 8 -15 0

192.168.3.3@o2ib 1 down 115 8 8 -8 8 -12 0

192.168.3.5@o2ib 1 up 153 8 8 -8 8 -8 0

192.168.3.2@o2ib 1 up 83 8 8 8 8 7 0

192.168.5.134@o2ib1 1 up 65 8 8 -8 8 -6 0

192.168.3.104@o2ib 1 down 9999 8 8 -8 8 -1 0

192.168.5.139@o2ib1 1 up 127 8 8 -4 8 -13 0

192.168.5.131@o2ib1 1 up 67 8 8 -8 8 -26 0

192.168.5.144@o2ib1 1 up 170 8 8 -3 8 -12 0

192.168.5.136@o2ib1 1 up 151 8 8 -4 8 -7 0

192.168.3.106@o2ib 1 down 9999 8 8 4 8 4 0

192.168.5.141@o2ib1 1 up 58 8 8 -3 8 -9 0

192.168.5.133@o2ib1 1 up 178 8 8 -8 8 -14 0

192.168.5.146@o2ib1 1 up 63 8 8 -4 8 -18 0

. . .

In the output above, we can see some Lustre clients on LNet0 are down.

Credits are initialized to allow a certain number of operations. In the example in the

above table, this value is 8 (eight), shown under the max column. LNet keeps track of
the minimum number of credits ever seen over time showing the peak congestion that
has occurred during the time monitored. Fewer available credits indicates a more

congested resource.

The number of credits currently in flight (number of transmit credits) is shown in the

“tx” column. The maximum number of send credits available is shown in the “max”
column and that never changes. The number of router buffers available for

consumption by a peer is shown in the “rtr” column.

Therefore, rtr – tx is the number of transmits in flight. Typically, rtr == max, although

a configuration can be set such that max >= rtr. The ratio of routing buffer credits to
send credits (rtr/tx) that is less than max indicates operations are in progress. If the
ratio rtr/tx is greater than max, operations are blocking.

LNet also limits concurrent sends and number of router buffers allocated to a single

peer, so that no peer can occupy all these resources.

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

36 Order No.: H99668-3.0

Realtime statistics of the LNet router can be obtained using the routerstat

command. Routerstat watches LNet router statistics. If no interval is specified, stats

are sampled and printed only once; otherwise, stats are sampled and printed every

interval. Output includes the following fields:

 M - msgs_alloc(msgs_max)

 E - errors

 S - send_count/send_length

 R - recv_count/recv_length

 F - route_count/route_length

 D - drop_count/drop_length

3.3.1 LNet Tuning

LNet tuning is possible by passing parameters to the Lustre Network Driver (LND). The

Lustre Network Driver for RDMA is the ko2iblnd kernel module. This driver is used

both for Intel® OPA cards and InfiniBand cards.

All peers (compute nodes, LNet router, servers) on the network require identical

tunable parameter for LNet to work independently from the hardware technology used
(Intel® OPA or InfiniBand).

Intel® Enterprise Edition for Lustre* Software (version 2.4 and later) detects a

network card and, using the /usr/sbin/ko2iblnd-probe, seta tunable parameters for

supported cards.

Intel® OPA and Intel® True Scale cards are automatically detected and configured by

the script to achieve optimal performance with Lustre. The script can be modified to
detect other network cards and set optimal parameters.

If you are routing into a fabric with older Lustre nodes or nodes based on InfiniBand,

these must be updated to apply identical options to the ko2iblnd module.

The following example is a configuration file (/etc/modprobe.d/ko2iblnd.conf) for a

Lustre peer with a Mellanox ConnectX-3 card on a machine running Intel® EE for
Lustre* Software, version 2.4.

alias ko2iblnd-mlx4 ko2iblnd

options ko2iblnd-mlx4 peer_credits=128 peer_credits_hiw=64 credits=1024

concurrent_sends=256 ntx=2048 map_on_demand=32 fmr_pool_size=2048

fmr_flush_trigger=512 fmr_cache=1

install ko2iblnd /usr/sbin/ko2iblnd-probe

The following example is a configuration file (/etc/modprobe.d/ko2iblnd.conf) for a

Lustre peer with an older version of Lustre.

options ko2iblnd peer_credits=128 peer_credits_hiw=64 credits=1024

concurrent_sends=256 ntx=2048 map_on_demand=32 fmr_pool_size=2048

fmr_flush_trigger=512 fmr_cache=1

Intel® EE for Lustre* Software, version 3.0 will support different optimizations based

on the networking technology used, and it will also be possible to change these

parameters online without unloading the LNet kernel modules.

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 37

LNet uses peer credits and a network interface credits to send data through the

network with a fixed MTU size of 1MB.

The peer_credits tunable parameter manages the number of concurrent sends to a

single peer and can be monitored using the /proc/sys/lnet/peers interface. The

number for peer_credits can be increased using a module parameter for the specific
Lustre Network Driver (LND):

ko2iblnd-opa peer_credits=128

default value is 8

It is not always mandatory to increase peer_credits to obtain good performance,

because in very large installation, an increased value can overload the network and
increase the memory utilization of the OFED stack.

The tunable network interface credits (credits) limits the number of concurrent sends

to a single network, and can be monitored using the /proc/sys/lnet/nis interface.

The number of network interface credits can be increased using a module parameter
for the specific Lustre Network Driver (LND):

ko2iblnd-opa credits=1024

The default value is 64 and it shared across all the CPU partitions (CPTs).

Fast Memory Registration (FMR) is a technique to reduce memory allocation costs. In

FMR, memory registration is divided in two phases: 1) allocating resources needed by
the registration and then 2) registering using resources obtained from the first step.
The resource allocation and de-allocation can be managed in batch mode, and as
result, FMR can achieve a much faster memory registration. To enable FMR in LNet,

the value for map_on_demand should be more than zero.

ko2iblnd-opa map_on_demand=32

The default value is 0.

Fast Memory Registration is supported by Intel® OPA and Mellanox FDR cards (based

on the mlx4 driver), but it is not supported by Mellanox FDR/EDR cards (based on the
mlx5 driver).

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

38 Order No.: H99668-3.0

Table 1. Lustre suggested tunable for Intel® OPA

Tunable Suggested Value Default Value

peer_credits 128 8

peer_credits_hiw 64 0

Credits 1024 64

concurrent_sends 256 0

ntx 2014 512

map_on_demand 32 0

fmr_pool_size 2048 512

fmr_flush_trigger 512 384

fmr_cache 1 1

From the above table:

 peer_credits_hiw sets high water mark to start to retrieve credits

 concurrent_sends is the number of concurrent HW sends to a single peer

 ntx is the number of message descriptors allocated for each pool

 fmr_pool_size is the size of the FMR pool on each CPT

 fmr_flush_trigger is the number of dirty FMRs that triggers a pool flush

 fmr_cache should be set to non-zero to enable FMR caching.

Note that file systems running Intel® EE for Lustre* Software achieved higher

performance with Intel® OPA cards using the tuning parameters in Table 1, above.

The following string is automatically generated by the /usr/sbin/ko2iblnd-probe

script:

options ko2iblnd-opa peer_credits=128 peer_credits_hiw=64 credits=1024

concurrent_sends=256 ntx=2048 map_on_demand=32 fmr_pool_size=2048

fmr_flush_trigger=512 fmr_cache=1

3.4 Designing LNet Routers to Connect Intel® OPA
and InfiniBand*

The LNet router can be deployed using an industry standard server with enough

network cards and the LNet software stack. Designing a complete solution for a
production environment is not an easy task, but Intel is providing tools (LNet Self
Test) to test and validate the configuration and performance in advance.

The goal is to design LNet routers with enough bandwidth to satisfy the throughput

requirements of the back-end storage. The number of compute nodes connected to an
LNet router normally doesn’t change the design of the solution.

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 39

The bandwidth available to an LNet router is limited by the slowest network

technology connected to the router. Typically, Intel has observed a 10-15% decline in
bandwidth from the nominal hardware bandwidth of the slowest card, due to the LNet

router.

In every case, Intel encourages validating the implemented solution using tools

provided by the network interface maker and/or the LNet Self Test utility, which is
available with Lustre.

LNet routers can be congested if the number of credits (peer_credits and credits) are

not set properly. For communication to routers, not only a credit and peer credit must

be tuned, but a global router buffer and peer router buffer credit are needed.

To design an LNet router in this context, we need to consider the following topics:

 Hardware design and tuning

 Software compatibility

3.4.1 Hardware Design and Tuning

When designing an LNet router between two different network technologies such as

Mellanox InfiniBand and Intel® OPA, one should consider that LNet was developed

taking advantage of the RDMA zero copy capability. This makes the LNet router
extremely efficient.

To achieve higher performance from Intel® OPA in a Lustre file system, one must tune

the LNet stack as described in LNet Tuning. However as shown in Table 2, some

higher-performing hardware combinations are not desirable because certain Mellanox

cards based on the mlx5 driver don’t support the map_on_demand tuning parameter.
Also see Software Compatibility on page 41 for additional considerations.

3.4.2 CPU Selection

General speaking, the CPU performance is not critical for the LNet router code, and

the recent SMP affinity implementation enables the LNet code to scale on NUMA

servers.

To obtain higher performance, we suggest turning off the Hyper-Threading Technology

and Frequency Scaling capabilities of the CPU (see below).

Table 2. LNet router CPU tuning

Hardware Recommendation

CPU E5-2697 v3

Hyperthreading OFF

CPU Frequency Scaling DISABLED

It is important to select the right PCI-e slot in the server for the Intel® OPA and IB

cards in order to avoid long distance paths in the NUMA architecture. See Figure 7.

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

40 Order No.: H99668-3.0

Figure 7. PCI-e slot allocation

3.4.3 Memory Considerations

An LNet router uses additional credit accounting when it needs to forward a packet for

another peer:

 Peer Router Credit: This credit manages the number of concurrent receives from a
single peer and prevent single peer from using all router buffer resources. By
default this value should be 0. If this value is 0 LNet router uses peer_credits.

 Router Buffer Credit: This credit allows messages to be queued and select non
data payload RPC versus data RPC to avoid congestion. In fact, an LNet Router
has a limited number of buffers:

 tiny_router_buffers – size of buffer for messages of <1 page size
 small_router_buffers – size of buffer for messages of 1 page in size
 large_router_buffers – size of buffer for messages >1 page in size

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 41

These LNet kernel module parameters can be monitored using the

/proc/sys/lnet/buffers file and are available per CPT:

pages count credits min

 0 512 512 503

 0 512 512 504

 0 512 512 497

 0 512 512 504

 1 4096 4096 4055

 1 4096 4096 4050

 1 4096 4096 4048

 1 4096 4096 4072

 256 256 256 244

 256 256 256 248

 256 256 256 240

 256 256 256 246

Negative numbers in the “min” column above indicate that the buffers have been

oversubscribed; we can increase the number of router buffers for a particular size to
avoid stalling.

The memory utilization of the LNet router stack is caused by the Peer Router Credit

and Router Buffer Credit parameters. A LNet router with a RAM size of 64GB or more

has enough memory to sustain very large configurations for these parameters. In
every case, the memory consumption of the LNet stack can be measured using the

/proc/sys/LNet/lnet_memused metric’s file.

3.4.4 Software Compatibility

This section discusses compatibility considerations for the software stack to be used:

 The Intel® Fabric Suite (IFS) for Intel® OPA supports RHEL 7.1+.

 The Mellanox OFED 3.1 stack is supported from Intel® EE for Lustre* Software,

version 2.4.

 Intel® EE for Lustre* Software, version 2.4 is supporting RHEL* 7.1+ as Lustre
client and LNet Router only.

 Intel® EE for Lustre* Software, version 3.0 will support RHEL* 7.2+ as Lustre

client, LNet Router and Storage Server.

Table 3. Sample Table

Hardware Recommendation

RAM 64GB

Technology DDR3 or DDR4 ECC

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

42 Order No.: H99668-3.0

Table 4. Intel® EE for Lustre* Software version compatibility matrix

Compute Node LNet Router Storage Server Notes

Intel® OPA 2.4+ Intel® OPA/

Mellanox

ConnectX-3

or IB

2.4+ Mellanox ConnectX-

3 or IB

2.4+ Compute nodes

and LNet

Routers on

RHEL 7.1+;

Storage Server

on RHEL 6.7+

Intel® OPA 2.4+ Intel® OPA/

Mellanox

ConnectX-3

or IB

2.4+ Mellanox ConnectX-

4

2.4+ Compute nodes

and LNet

Routers on

RHEL 7.1+;

Storage Server

on RHEL 6.7+

due the

support of

Mellanox OFED

3.1

Table 5. Intel® Foundation Edition for Lustre* Software version compatibility matrix

Compute Node LNet Router Storage Server

Intel® OPA 2.7.1 Intel® OPA/

Mellanox

ConnectX-3 or IB

2.7.1 Mellanox

ConnectX-3 or IB

2.7.1

Intel® OPA 2.7.1 Intel® OPA/

Mellanox

ConnectX-3 or IB

2.7.1 Mellanox

ConnectX-4

2.7.1

Table 6. Community edition (opensfs.org) compatibility matrix

Compute Node LNet Router Storage Server

Intel® OPA 2.8 Intel® OPA/

Mellanox

ConnectX-3 or IB

2.8 Mellanox

ConnectX-3 or IB

2.8

Intel® OPA 2.8 Intel® OPA/

Mellanox

ConnectX-3 or IB

2.8 Mellanox

ConnectX-4

2.8

LNet Router

 Intel® Omni-Path Storage Router

August 2016 Design Guide

Order No.: H99668-3.0 43

Appendix A RHEL 7.1 Firewall and

SELinux Configuration

A.1 Firewall Configuration for VRRP on Red Hat
Enterprise Linux 7 using firewalld

VRRP uses multicast address 224.0.0.18 for VRRP Advertisement messages between

Master and Backup routers. This traffic can be observered with tcpdump.

The following is a tcpdump example of a VRRP advertisement.

Router1
tcpdump -i ib0 host 224.0.0.18 -v -v

11:26:47.454956 IP (tos 0xc0, ttl 255, id 8057, offset 0, flags [none],

proto VRRP (112), length 40) 192.168.100.10 > vrrp.mcast.net: vrrp

192.168.100.10 > vrrp.mcast.net: VRRPv2, Advertisement, vrid 2, prio 250,

authtype simple, intvl 1s, length 20, addrs: 192.168.100.1 auth

"password"

1. To allow VRRP Advertisements through the firewall on a Red Hat Enterprise 7.1
system using firewalld:

firewall-cmd --permanent --zone=public --add-rich-rule='rule

family=ipv4 destination address=224.0.0.18 protocol value=ip accept'

2. Reload firewalld to commit the change:

firewall-cmd --reload

3. Verify the new firewall entry:

firewall-cmd --list-all

public (default, active)

 interfaces: eth0 eth1 ib0 ib1

 sources: 224.0.0.8

 services: dhcpv6-client ssh

 ports:

 masquerade: no

 forward-ports:

 icmp-blocks:

 rich rules:

 rule family="ipv4" destination address="224.0.0.18" protocol

value="ip" accept

In a network where multiple router pairs are in use on the same subnets it is critical

that the VRRP advertisements are isolated within each router pair. As can be seen in
the above output from tcpdump a password is used in each advertisement. To ensure

that advertisements from other router pairs do not interfere, a unique password
should be used for each router pair.

LNet Router

Intel® Omni-Path Storage Router

Design Guide August 2016

44 Order No.: H99668-3.0

A.2 Keepalived and SELinux with RHEL 7

Keepalived with VRRP configured as a fault-tolerant router should need no special

SELinux settings. However, if IPVS is configured with VRRP for load-balancing there
may be SELinux tcp_socket_port violations. An example of this error and sealert's
suggested workaround, when using IPVS to load-balance NFS servers, is seen in the

following output from /var/log/messages:

Nov 4 13:04:35 sriov setroubleshoot: SELinux is preventing

/usr/sbin/keepalived from name_connect access on the tcp_socket port

2049. For complete SELinux messages. run sealert -l ed9e8c1c-9172-

4d93-9765-94e3be9306f3

Nov 4 13:04:35 sriov python: SELinux is preventing

/usr/sbin/keepalived from name_connect access on the tcp_socket port

2049.

***** Plugin catchall (100. confidence) suggests

If you believe that keepalived should be allowed name_connect access

on the port 2049 tcp_socket by default.

Then you should report this as a bug.

You can generate a local policy module to allow this access.

Do

allow this access for now by executing:

grep keepalived /var/log/audit/audit.log | audit2allow -M mypol

semodule -i mypol.pp

The suggestion to generate a local policy module is a working solution. You may want

to reboot the server to ensure that the new local policy module is correctly applied.

§

