
Intel® Performance Scaled
Messaging 2 (PSM2)
Programmer's Guide

Rev. 15.0

April 2020

Doc. No.: H76473, Rev.: 15.0

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

Copyright © 2015–2020, Intel Corporation. All rights reserved.

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
2 Doc. No.: H76473, Rev.: 15.0

Revision History

Date Revision Description

April 2020 15.0 Updates to this document include:
• Updated PSM2_MQ_RECVREQS_MAX and

PSM2_MQ_SENDREQS_MAX to include constraints based on
PSM2_MEMORY settings.

• Added PSM2_TID_SENDSESSION_MAX.

January 2020 14.0 Updates to this document include:
• Updated links to Intel® Omni-Path documentation set in Intel®

Omni-Path Documentation Library.
• Updated tag-matching example to 96-bit tags in MQ Tag Matching.

October 2019 13.0 Updates to this document include:
• Removed SHMEM from Enumerations; it is no longer supported.
• Updated Preface to include new Best Practices.
• Added PSM2_AVX512.
• Removed PSM2_CCA_PRESCAN.
• Updated PSM2_MAX_PENDING_SDMA_REQS for

PSM2_MAX_PENDING_SDMA_REQS=8
• Updated PSM2_MULTIRAIL and PSM2_MULTIRAIL_MAP.
• Removed PSM2_PORT as not intended for use with Intel® OP.
• Added PSM2_RTS_CTS_INTERLEAVE.

March 2019 12.0 Updates to this document include:
• Added OFI PSM2 Multi-Endpoint Dependency.
• Added PSM2_CONNECT_TIMEOUT.
• In Matched Queues Defines, changed the descriptions for

PSM2_PQ_ORDERMASK_NONE and PSM2_MQ_ORDERMASK_ALL to
mark them as reserved for future use.

• Updated Matched Queue Functions and psm2_mq_init to indicate
that the tag_order_mask parameter is ignored.

December 2018 11.0 Updates to this document include:
• Added PSM2_PATH_NO_LMC_RANGE.
• Added PSM2_RCVTHREAD_FREQ.
• Added psm2_info_query function to Intel® PSM2 Component

Functional Documentation.
• Added query functions to code sample in Sample Code.

September 2018 10.0 Updates to this document include:
• Updated PSM2_MQ_RNDV_HFI_THRESH.
• Added PSM2_MQ_RNDV_HFI_WINDOW.
• Added PSM2_MQ_EAGER_SDMA_SZ.
• Updated the range and default values for

PSM2_GPUDIRECT_RECV_THRESH and
PSM2_GPUDIRECT_SEND_THRESH.

April 2018 9.0 Updates to this document include:
• Added How to Search the Intel® Omni-Path Documentation Set to

the Preface.
• Updated Differences Between PSM2 and PSM.
• Added PSM2 and NVIDIA* CUDA* Support.
• Added PSM2_PKEY, PSM2_PORT, HFI_SL.

continued...

Revision History—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 3

Date Revision Description

October 2017 8.0 No technical changes to document; clerical change only.
The Intel® Omni-Path Fabric Suite FastFabric Command Line Interface
Reference Guide has been merged into the Intel® Omni-Path Fabric
Suite FastFabric User Guide. See the Intel® Omni-Path Documentation
Library for details.

August 2017 7.0 Updates to this document include:
• Added Differences Between PSM2 and PSM.
• Added PSM2 Multi-Endpoint Functionality.
• Additions to support multi-endpoint functionality: PSM2_MULTI_EP,

psm2_ep_query, psm2_ep_epid_lookup, psm2_ep_epid_lookup2,
and psm2_epaddr_to_epid.

April 2017 6.0 Updates to this document include:
• Added: PSM2_CCA_PRESCAN, PSM2_CUDA, PSM2_DISABLE_CCA,

PSM2_GPUDIRECT, PSM2_GPUDIRECT_RECV_THRESH,
PSM2_GPUDIRECT_SEND_THRESH, and
PSM2_MAX_PENDING_SDMA_REQS.

• Updated: PSM2_MAX_CONTEXTS_PER_JOB, PSM2_MULTIRAIL, and
PSM2_MULTIRAIL_MAP.

• Added Intel® Omni-Path Documentation Library.

December 2016 5.0 Updates to this document include:
• Updated psm2_ep_open_opts_get_defaults to add Return Value

PSM2_PARAM_ERR.
• Updated psm2_ep_open as follows: added Return Value

PSM2_PARAM_ERR, changed default timeout value to 30, and added
bullets to Options section.

• Updated psm2_ep_open_opts to add fields in rows 7-12.
• Added Cluster Configurator for Intel Omni-Path Fabric.

August 2016 4.0 Updates to this document include:
• Added: PSM2_MULTIRAIL, PSM2_MULTIRAIL_MAP,

PSM2_PATH_SELECTION.
• Updated: PSM2_IB_SERVICE_ID, PSM2_MAX_CONTEXTS_PER_JOB,

PSM2_MAX_PENDING_SDMA_REQS, PSM2_MQ_RECVREQS_MAX,
PSM2_MTU.

May 2016 3.0 Updates to this document include:
• Added Environment Variable: PSM2_MAX_CONTEXTS_PER_JOB.
• Deprecated Environment Variable: PSM2_SHAREDCONTEXTS_MAX.
• Updated Environment Variable: HFI_NO_CPUAFFINITY.

February 2016 2.0 Updates to this document include:
• Added Environment Variables: PSM2_MTU, PSM2_PATH_REC and

PSM2_IB_SERVICE_ID.

November 2015 1.0 Starting with this release, the Intel® PSM2 API library is a stand-alone
package with its own documentation.

Intel® Omni-Path Fabric—Revision History

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
4 Doc. No.: H76473, Rev.: 15.0

Contents

Revision History..3

Preface... 8
Intended Audience... 8
Intel® Omni-Path Documentation Library...8

How to Search the Intel® Omni-Path Documentation Set.. 10
Cluster Configurator for Intel® Omni-Path Fabric...11
Documentation Conventions.. 11
Best Practices.. 12
License Agreements..12
Technical Support...12

1.0 Intel® PSM2 API... 13
1.1 Introduction...13
1.2 Differences between PSM2 and PSM.. 13
1.3 Compatibility..14
1.4 Endpoint Communication Model.. 14
1.5 PSM2 Components.. 15
1.6 PSM2 and NVIDIA* CUDA* Support...15
1.7 PSM2 Multi-Endpoint Functionality...16

1.7.1 OFI PSM2 Multi-Endpoint Dependency..17
1.8 PSM2 Communication Progress Guarantees.. 17
1.9 PSM2 Completion Semantics.. 18
1.10 PSM2 Error Handling..18
1.11 Environment Variables... 19

1.11.1 PSM2_AVX512.. 19
1.11.2 PSM2_CONNECT_TIMEOUT...19
1.11.3 PSM2_CUDA...19
1.11.4 PSM2_DEVICES.. 20
1.11.5 PSM2_DISABLE_CCA... 20
1.11.6 PSM2_GPUDIRECT...20
1.11.7 PSM2_GPUDIRECT_RECV_THRESH.. 20
1.11.8 PSM2_GPUDIRECT_SEND_THRESH..21
1.11.9 PSM2_IB_SERVICE_ID...21
1.11.10 PSM2_MAX_CONTEXTS_PER_JOB.. 21
1.11.11 PSM2_MAX_PENDING_SDMA_REQS... 21
1.11.12 PSM2_MEMORY... 21
1.11.13 PSM2_MQ_RECVREQS_MAX..22
1.11.14 PSM2_MQ_RNDV_HFI_THRESH... 22
1.11.15 PSM2_MQ_RNDV_HFI_WINDOW..22
1.11.16 PSM2_MQ_EAGER_SDMA_SZ.. 23
1.11.17 PSM2_MQ_RNDV_SHM_THRESH..23
1.11.18 PSM2_MQ_SENDREQS_MAX..23
1.11.19 PSM2_MTU... 24
1.11.20 PSM2_MULTI_EP..24
1.11.21 PSM2_MULTIRAIL.. 24
1.11.22 PSM2_MULTIRAIL_MAP...25
1.11.23 PSM2_PATH_NO_LMC_RANGE... 25

Contents—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 5

1.11.24 PSM2_PATH_REC...25
1.11.25 PSM2_PATH_SELECTION.. 26
1.11.26 PSM2_PKEY.. 26
1.11.27 PSM2_RANKS_PER_CONTEXT..26
1.11.28 PSM2_RCVTHREAD.. 27
1.11.29 PSM2_RCVTHREAD_FREQ...27
1.11.30 PSM2_RTS_CTS_INTERLEAVE..27
1.11.31 PSM2_SHAREDCONTEXTS...27
1.11.32 PSM2_SHAREDCONTEXTS_MAX...28
1.11.33 PSM2_TID.. 28
1.11.34 PSM2_TID_SENDSESSION_MAX... 28
1.11.35 PSM2_TRACEMASK.. 28

1.12 HFI Environment Variables... 28
1.12.1 HFI_DISABLE_MMAP_MALLOC...29
1.12.2 HFI_NO_CPUAFFINITY... 29
1.12.3 HFI_UNIT...29
1.12.4 HFI_SL.. 29

2.0 Intel® PSM2 Component Documentation...31
2.1 MQ Tag Matching.. 31
2.2 MQ Message Reception.. 32
2.3 MQ Completion Semantics..33
2.4 MQ Progress Requirements...34

3.0 Intel® PSM2 Component Functional Documentation..35
3.1 PSM2 Initialization and Maintenance..35

3.1.1 Data Structures.. 35
3.1.2 Defines..35
3.1.3 Typedefs..36
3.1.4 Enumerations.. 37
3.1.5 Functions...41

3.2 PSM2 Device Endpoint Management.. 45
3.2.1 Data Structures.. 45
3.2.2 Defines..46
3.2.3 Typedefs..46
3.2.4 Functions...47

3.3 PSM2 Matched Queues.. 61
3.3.1 Modules...61
3.3.2 Data Structures.. 61
3.3.3 Defines..63
3.3.4 Typedefs..63
3.3.5 Functions...64
3.3.6 PSM2 Matched Queue Options.. 85

4.0 Intel® PSM2 Sample Program... 88
4.1 Prerequisites.. 88
4.2 Setting Up the Program... 88
4.3 Sample Code..88
4.4 Sample Output... 94

Intel® Omni-Path Fabric—Contents

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
6 Doc. No.: H76473, Rev.: 15.0

Tables
1 PSM2 and PSM Compatibility Matrix... 14
2 Intel® PSM2 Thread-Safe APIs...16
3 Initialization and Maintenance Defines..35
4 Initialization and Maintenance Typedefs.. 36
5 Error Type Enumerators..37
6 Query Enumerators..38
7 Configuration Enumerators... 40
8 Threshold Enumerators.. 40
9 Initialization and Maintenance Functions... 41
10 Query Functions.. 41
11 Endpoint Defines... 46
12 Endpoint Typedefs... 46
13 Endpoint Functions.. 47
14 Matched Queues Data Structures...61
15 Matched Queues Defines.. 63
16 Matched Queue Functions... 64
17 Matched Queue Options Defines.. 85
18 Matched Queue Options Functions... 86

Tables—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 7

Preface

This manual is part of the documentation set for the Intel® Omni-Path Fabric (Intel®
OP Fabric), which is an end-to-end solution consisting of Intel® Omni-Path Host Fabric
Interfaces (HFIs), Intel® Omni-Path switches, and fabric management and
development tools.

The Intel® OP Fabric delivers the next generation, High-Performance Computing (HPC)
network solution that is designed to cost-effectively meet the growth, density, and
reliability requirements of large-scale HPC clusters.

Both the Intel® OP Fabric and standard InfiniBand* (IB) are able to send Internet
Protocol (IP) traffic over the fabric, or IPoFabric. In this document, however, it may
also be referred to as IP over IB or IPoIB. From a software point of view, IPoFabric
behaves the same way as IPoIB, and in fact uses an ib_ipoib driver to send IP traffic
over the ib0/ib1 ports.

Intended Audience

The intended audience for the Intel® Omni-Path (Intel® OP) document set is network
administrators and other qualified personnel.

Intel® Omni-Path Documentation Library

Intel® Omni-Path publications are available at the following URL, under Latest Release
Library:

https://www.intel.com/content/www/us/en/design/products-and-solutions/
networking-and-io/fabric-products/omni-path/downloads.html

Use the tasks listed in this table to find the corresponding Intel® Omni-Path
document.

Task Document Title Description

Using the Intel® OPA
documentation set

Intel® Omni-Path Fabric Quick Start
Guide

A roadmap to Intel's comprehensive library of publications
describing all aspects of the product family. This document
outlines the most basic steps for getting your Intel® Omni-
Path Architecture (Intel® OPA) cluster installed and
operational.

Setting up an Intel®
OPA cluster Intel® Omni-Path Fabric Setup Guide

Provides a high level overview of the steps required to stage
a customer-based installation of the Intel® Omni-Path Fabric.
Procedures and key reference documents, such as Intel®
Omni-Path user guides and installation guides, are provided
to clarify the process. Additional commands and best known
methods are defined to facilitate the installation process and
troubleshooting.

continued...

Intel® Omni-Path Fabric—Preface

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
8 Doc. No.: H76473, Rev.: 15.0

https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/fabric-products/omni-path/downloads.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/fabric-products/omni-path/downloads.html

Task Document Title Description

Installing hardware

Intel® Omni-Path Fabric Switches
Hardware Installation Guide

Describes the hardware installation and initial configuration
tasks for the Intel® Omni-Path Switches 100 Series. This
includes: Intel® Omni-Path Edge Switches 100 Series, 24 and
48-port configurable Edge switches, and Intel® Omni-Path
Director Class Switches 100 Series.

Intel® Omni-Path Host Fabric Interface
Installation Guide

Contains instructions for installing the HFI in an Intel® OPA
cluster.

Installing host
software
Installing HFI
firmware
Installing switch
firmware (externally-
managed switches)

Intel® Omni-Path Fabric Software
Installation Guide

Describes using a Text-based User Interface (TUI) to guide
you through the installation process. You have the option of
using command line interface (CLI) commands to perform the
installation or install using the Linux* distribution software.

Managing a switch
using Chassis Viewer
GUI
Installing switch
firmware (managed
switches)

Intel® Omni-Path Fabric Switches GUI
User Guide

Describes the graphical user interface (GUI) of the Intel®
Omni-Path Fabric Chassis Viewer GUI. This document
provides task-oriented procedures for configuring and
managing the Intel® Omni-Path Switch family.
Help: GUI embedded help files

Managing a switch
using the CLI
Installing switch
firmware (managed
switches)

Intel® Omni-Path Fabric Switches
Command Line Interface Reference
Guide

Describes the command line interface (CLI) task information
for the Intel® Omni-Path Switch family.
Help: -help for each CLI

Managing a fabric
using FastFabric

Intel® Omni-Path Fabric Suite
FastFabric User Guide

Provides instructions for using the set of fabric management
tools designed to simplify and optimize common fabric
management tasks. The management tools consist of Text-
based User Interface (TUI) menus and command line
interface (CLI) commands.
Help: -help and man pages for each CLI. Also, all host CLI
commands can be accessed as console help in the Fabric
Manager GUI.

Managing a fabric
using Fabric Manager

Intel® Omni-Path Fabric Suite Fabric
Manager User Guide

The Fabric Manager uses a well defined management protocol
to communicate with management agents in every Intel®
Omni-Path Host Fabric Interface (HFI) and switch. Through
these interfaces the Fabric Manager is able to discover,
configure, and monitor the fabric.

Intel® Omni-Path Fabric Suite Fabric
Manager GUI User Guide

Provides an intuitive, scalable dashboard and set of analysis
tools for graphically monitoring fabric status and
configuration. This document is a user-friendly alternative to
traditional command-line tools for day-to-day monitoring of
fabric health.
Help: Fabric Manager GUI embedded help files

Configuring and
administering Intel®
HFI and IPoIB driver
Running MPI
applications on
Intel® OPA

Intel® Omni-Path Fabric Host Software
User Guide

Describes how to set up and administer the Host Fabric
Interface (HFI) after the software has been installed. The
audience for this document includes cluster administrators
and Message-Passing Interface (MPI) application
programmers.

Writing and running
middleware that
uses Intel® OPA

Intel® Performance Scaled Messaging
2 (PSM2) Programmer's Guide

Provides a reference for programmers working with the Intel®
PSM2 Application Programming Interface (API). The
Performance Scaled Messaging 2 API (PSM2 API) is a low-
level user-level communications interface.

continued...

Preface—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 9

Task Document Title Description

Optimizing system
performance

Intel® Omni-Path Fabric Performance
Tuning User Guide

Describes BIOS settings and parameters that have been
shown to ensure best performance, or make performance
more consistent, on Intel® Omni-Path Architecture. If you are
interested in benchmarking the performance of your system,
these tips may help you obtain better performance.

Designing an IP or
LNet router on Intel®
OPA

Intel® Omni-Path IP and LNet Router
Design Guide

Describes how to install, configure, and administer an IPoIB
router solution (Linux* IP or LNet) for inter-operating
between Intel® Omni-Path and a legacy InfiniBand* fabric.

Building Containers
for Intel® OPA
fabrics

Building Containers for Intel® Omni-
Path Fabrics using Docker* and
Singularity* Application Note

Provides basic information for building and running Docker*
and Singularity* containers on Linux*-based computer
platforms that incorporate Intel® Omni-Path networking
technology.

Writing management
applications that
interface with Intel®
OPA

Intel® Omni-Path Management API
Programmer’s Guide

Contains a reference for programmers working with the
Intel® Omni-Path Architecture Management (Intel OPAMGT)
Application Programming Interface (API). The Intel OPAMGT
API is a C-API permitting in-band and out-of-band queries of
the FM's Subnet Administrator and Performance
Administrator.

Using NVMe* over
Fabrics on Intel®
OPA

Configuring Non-Volatile Memory
Express* (NVMe*) over Fabrics on
Intel® Omni-Path Architecture
Application Note

Describes how to implement a simple Intel® Omni-Path
Architecture-based point-to-point configuration with one
target and one host server.

Learning about new
release features,
open issues, and
resolved issues for a
particular release

Intel® Omni-Path Fabric Software Release Notes

Intel® Omni-Path Fabric Manager GUI Release Notes

Intel® Omni-Path Fabric Switches Release Notes (includes managed and externally-managed switches)

Intel® Omni-Path Fabric Unified Extensible Firmware Interface (UEFI) Release Notes

Intel® Omni-Path Fabric Thermal Management Microchip (TMM) Release Notes

Intel® Omni-Path Fabric Firmware Tools Release Notes

How to Search the Intel® Omni-Path Documentation Set

Many PDF readers, such as Adobe* Reader and Foxit* Reader, allow you to search
across multiple PDFs in a folder.

Follow these steps:

1. Download and unzip all the Intel® Omni-Path PDFs into a single folder.

2. Open your PDF reader and use CTRL-SHIFT-F to open the Advanced Search
window.

3. Select All PDF documents in...

4. Select Browse for Location in the dropdown menu and navigate to the folder
containing the PDFs.

5. Enter the string you are looking for and click Search.

Use advanced features to further refine your search criteria. Refer to your PDF reader
Help for details.

Intel® Omni-Path Fabric—Preface

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
10 Doc. No.: H76473, Rev.: 15.0

Cluster Configurator for Intel® Omni-Path Fabric

The Cluster Configurator for Intel® Omni-Path Fabric is available at: http://
www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-
configurator.html.

This tool generates sample cluster configurations based on key cluster attributes,
including a side-by-side comparison of up to four cluster configurations. The tool also
generates parts lists and cluster diagrams.

Documentation Conventions

The following conventions are standard for Intel® Omni-Path documentation:

• Note: provides additional information.

• Caution: indicates the presence of a hazard that has the potential of causing
damage to data or equipment.

• Warning: indicates the presence of a hazard that has the potential of causing
personal injury.

• Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this
guide. Links to websites are also shown in blue. For example:

See License Agreements on page 12 for more information.

For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as menu items, buttons,
check boxes, key names, key strokes, or column headings. For example:

Click the Start button, point to Programs, point to Accessories, and then click
Command Prompt.

Press CTRL+P and then press the UP ARROW key.

• Text in Courier font indicates a file name, directory path, or command line text.
For example:

Enter the following command: sh ./install.bin
• Text in italics indicates terms, emphasis, variables, or document titles. For

example:

Refer to Intel® Omni-Path Fabric Software Installation Guide for details.

In this document, the term chassis refers to a managed switch.

Procedures and information may be marked with one of the following qualifications:

• (Linux) – Tasks are only applicable when Linux* is being used.

• (Host) – Tasks are only applicable when Intel® Omni-Path Fabric Host Software or
Intel® Omni-Path Fabric Suite is being used on the hosts.

• (Switch) – Tasks are applicable only when Intel® Omni-Path Switches or Chassis
are being used.

• Tasks that are generally applicable to all environments are not marked.

Preface—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 11

http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-configurator.html
http://www.intel.com.

Best Practices

• Intel recommends that users update to the latest versions of Intel® Omni-Path
firmware and software to obtain the most recent functional and security updates.

• To improve security, the administrator should log out users and disable multi-user
logins prior to performing provisioning and similar tasks.

License Agreements

This software is provided under one or more license agreements. Please refer to the
license agreement(s) provided with the software for specific detail. Do not install or
use the software until you have carefully read and agree to the terms and conditions
of the license agreement(s). By loading or using the software, you agree to the terms
of the license agreement(s). If you do not wish to so agree, do not install or use the
software.

Technical Support

Technical support for Intel® Omni-Path products is available 24 hours a day, 365 days
a year. Please contact Intel Customer Support or visit http://www.intel.com/omnipath/
support for additional detail.

Intel® Omni-Path Fabric—Preface

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
12 Doc. No.: H76473, Rev.: 15.0

http://www.intel.com/omnipath/support
http://www.intel.com/omnipath/support

1.0 Intel® PSM2 API

This manual is a reference for programmers working with the Intel® PSM2 Application
Programming Interface (API). The Performance Scaled Messaging 2 API (PSM2 API) is
a low-level user-level communications interface.

For details about the other documents for the Intel® Omni-Path product line, refer to
Intel® Omni-Path Documentation Library on page 8.

Introduction

The Intel® Performance Scaled Messaging 2 (Intel® PSM2) API is a high-performance,
vendor-specific protocol that provides a low-level communications interface for the
Intel® Omni-Path family of products. PSM2 enables mechanisms necessary to
implement higher level communications interfaces in parallel environments.

PSM2 targets clusters of multicore processors and transparently implements two levels
of communication: inter-node communication and intra-node shared memory
communication.

Differences between PSM2 and PSM

The Intel® PSM2 interface differs from the Intel® True Scale PSM interface in the
following ways:

• PSM2 includes new features and optimizations for Intel® Omni-Path hardware and
processors.

• The PSM2 API was ported to directly use Intel® Omni-Path hardware, because
PSM2 uses kernel bypass mode to achieve higher performance.

• PSM2 supports a larger 96-bit tag format, while Intel® True Scale PSM only
supports 64-bit tags.

• PSM2 includes performance improvements specific to Intel® OPA and larger
workloads.

• PSM2 adjusted the field width for job rank numbers to accommodate jobs larger
than 64K ranks.

• PSM2 is actively under development and will continue to improve on Intel® OPA
platforms, while Intel® True Scale PSM is a legacy product that is maintained for
bug fixes only.

The following table indicates the compatibility of the MPI libraries with PSM and PSM2
versions and Intel® True Scale/Intel® Omni-Path hardware.

1.1

1.2

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 13

Table 1. PSM2 and PSM Compatibility Matrix

MPI Library PSM (Intel® True
Scale Hardware)

PSM-Compat (Intel®
Omni-Path Hardware)

PSM2 (Intel® Omni-
Path Hardware)

Recompiled for PSM2

Open MPI X X

MVAPICH2 X

Intel® MPI Library 5.1
Gold or later

X X

Legacy version

Open MPI X X

MVAPICH2 X X

Intel® MPI Library X X

Note: For details on supported versions of MPI Libraries, refer to the Intel® Omni-Path Fabric Software
Release Notes.

Compatibility

PSM2 can coexist with other Intel software distributions, such as OpenFabrics, which
allows applications to simultaneously target PSM2-based and non-PSM2-based
applications on a single node without changing any system-level configuration.

However, unless otherwise noted, PSM2 does not support running PSM2-based and
non-PSM2-based communication within the same user process.

PSM2 is currently a single-threaded library. This means that you cannot make any
concurrent PSM2 library calls. While threads may be a valid execution model for the
wider set of potential PSM2 clients, applications should currently expect better
effective use of Intel® Omni-Path resources (and hence better performance) by
dedicating a single PSM2 communication endpoint to every CPU core.

Except where noted, PSM2 does not assume a single program, multiple data (SPMD)
parallel model, and extends to multiple program, multiple data (MPMD) environments
in specific areas. However, PSM2 assumes the runtime environment to be
homogeneous on all nodes in bit width (64-bit only) and endianness (little or big), and
fails at startup if any of these assumptions do not hold.

Endpoint Communication Model

PSM2 follows an endpoint communication model where an endpoint is defined as an
object (or handle) instantiated to support sending and receiving messages to other
endpoints. In order to prevent PSM2 from being tied to a particular parallel model
(such as SPMD), you retain control over the parallel layout of endpoints. Opening
endpoints (psm2_ep_open) and connecting endpoints to enable communication
(psm2_ep_connect) are two decoupled mechanisms. If you do not dynamically
change the number of endpoints beyond parallel startup, you can combine both
mechanisms at startup. If you wish to manipulate the location and amount of
endpoints at runtime, you can do so by explicitly connecting sets or subsets of
endpoints.

1.3

1.4

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
14 Doc. No.: H76473, Rev.: 15.0

As a side effect, this greater flexibility allows you to manage a two-stage initialization
process. In the first stage of opening an endpoint (psm2_ep_open), you obtain an
opaque handle to the endpoint and a globally distributable endpoint identifier
(psm2_epid_t). Prior to the second stage of connecting endpoints
(psm2_ep_connect), you must distribute all relevant endpoint identifiers through an
out-of-band mechanism. Once the endpoint identifiers are successfully distributed to
all processes that wish to communicate, you connect all endpoint identifiers to the
locally opened endpoint (psm2_ep_connect). In connecting the endpoints, you
obtain an opaque endpoint address (psm2_epaddr_t), which is required for all PSM2
communication primitives.

PSM2 Components

PSM2 exposes a single endpoint initialization model, but enables various levels of
communication functionality and semantics through components. The first major
component available in PSM2 is PSM2 Matched Queues (Intel® PSM2 Component
Documentation on page 31). Matched Queues (MQ) present a queue-based
communication model with the distinction that queue consumers use a 3-tuple of
metadata to match incoming messages against a list of preposted receive buffers. The
MQ semantics are sufficiently akin to MPI to cover the entire MPI-1.2 standard. With
future releases of the PSM2 interface, more components may be exposed to
accommodate users who implement parallel communication models that deviate from
the Matched Queue semantics.

PSM2 and NVIDIA* CUDA* Support

PSM2 supports GPU buffer transfers through NVIDIA CUDA and GPUDirect* RDMA.
This support is integrated in conjunction with a CUDA-enabled Intel® Omni-Path HFI1
driver. To use this feature, both PSM2 and the HFI1 driver must be CUDA-enabled and
present in the system. When enabled, PSM2 helps accelerate transfers of GPU memory
buffers with Intel® Omni-Path HFIs. You must enable this feature both at compile time
and at runtime.

NOTE

Since there are additional checks in software critical paths, it is only recommended
that you only enable this feature if you need CUDA-based support.

By default, CUDA support is disabled. To enable it at runtime, refer to PSM2_CUDA and
PSM2_GPUDIRECT. These environment variables must be set before psm2_init() is
invoked, or before the application is launched. Additionally, if a CUDA-enabled MPI or
middleware application is used, then both the MPI and middleware need to be CUDA-
enabled.

When enabled, PSM2 will check the locality of all buffers passed into psm2_mq send
and receive operations. When appropriate, PSM2 in conjunction with the HFI1 driver
will enable the Intel® Omni-Path HFI to directly read from and write into the GPU
buffer. This enhanced behavior eliminates the need for an application or middleware to
move a GPU-based buffer to host memory before using it in a PSM2 operation,
providing a performance advantage.

CUDA support is limited to using a single GPU per process. You set up the CUDA
runtime and pre-select a GPU card (through the use of cudaSetDevice() or a
similar CUDA API) prior to calling psm2_init() or MPI_Init(), if using MPI. While

1.5

1.6

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 15

systems with a single GPU may not have this requirement, systems with multiple
GPUs may see non-deterministic results without proper initialization. Therefore, it is
strongly recommended that you initialize the CUDA runtime before the psm2_init()
or MPI_Init() call.

Notes for Middleware Developers

Since PSM2 checks the locality of GPU buffers, the middleware should not need to pre-
check the locality or move buffers to host before passing them into PSM2 APIs. Doing
so may cause performance degradation. If developers are adding CUDA support to
existing middlewares, Intel recommends minimal or no processing of the buffer before
passing into PSM2 APIs.

PSM2 APIs accept void* data types for buffer pointers, thus making it generic for both
host and GPU based buffers.

It is worth mentioning that some MPI implementations may require special handling
for collective operations. Some high-level middleware support may be necessary if
implementing support for collectives.

PSM2 Multi-Endpoint Functionality

PSM2 Multi-Endpoint (Multi-EP) functionality is part of the PSM2 API library, however,
it is not default behavior and must be enabled using the PSM2_MULTI_EP environment
variable.

By default, only one PSM2 endpoint may be opened in a process or MPI rank. Enabling
PSM2_MULTI_EP allows more than one PSM2 endpoint to be opened in a single
process and expands the behavior of several APIs, including psm2_init,
psm2_ep_open, and the psm2_mq_* APIs listed below.

PSM2 has added minimal thread safety for using with Multi-EP in a performant
manner. Along with each EP (endpoint) created, an associated MQ (matched queue) is
created, which tracks message completion and ordering. The following APIs have been
made thread-safe to allow for multiple threaded access, assuming each is called with a
different MQ.

Table 2. Intel® PSM2 Thread-Safe APIs

psm2_mq_cancel
psm2_mq_improbe
psm2_mq_improbe2
psm2_mq_imrecv
psm2_mq_ipeek
psm2_mq_ipeek2

psm2_mq_iprobe
psm2_mq_iprobe2
psm2_mq_irecv
psm2_mq_irecv2
psm2_mq_isend
psm2_mq_isend2

psm2_mq_send
psm2_mq_send2
psm2_mq_test
psm2_mq_test2
psm2_mq_wait
psm2_mq_wait2

Limitation

By default, PSM2 allows hardware context sharing to increase the number of local
ranks. This feature requires that the total number of connections is specified at job
startup. Since the Multi-EP feature allows the middleware or end user to dynamically
create and teardown endpoints, context sharing is disabled while Multi-EP is enabled.
This limits the number of local MPI ranks to the number of real hardware resources
exposed by the Intel® Omni-Path hfi1 driver. More information can be obtained on this

1.7

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
16 Doc. No.: H76473, Rev.: 15.0

topic in the Intel® Omni-Path Fabric Performance Tuning User Guide and Intel® Omni-
Path Fabric Host Software User Guide. However, by default, the number of endpoints
that can be opened is limited to the number of real CPU cores present on the machine.

Related Information

• Intel® MPI Library Multi-Thread (MT)

Intel® MPI MT design is motivated by the need to improve communication
throughput and concurrency in hybrid MPI applications on Intel hardware,
particularly when using Intel® Omni-Path Architecture (Intel® OPA). However, the
design is universal, so it can be used on any other hardware that is supported with
specific abstractions (Scalable Endpoints). The design is entirely based on the
Open Fabric Interface (OFI) libfabric concept of Scalable Endpoints (SEP).

For details, go to: https://software.intel.com/en-us/intel-mpi-library/
documentation

• OpenFabrics Alliance* (OFA) Open Fabric Interfaces libfabric

Starting with libfabric 1.5.0 release, the psm2 provider supports scalable
endpoints when running over newer PSM2 libraries that have the multi-EP feature
enabled. When the psm2 provider is initialized, it checks the feature set of the
underlying PSM2 library and turns on/off the scalable endpoint support
automatically. This is an unconditional dependency and the scalable endpoint
support does not work with older PSM2 libraries.

For details, go to: https://ofiwg.github.io/libfabric/

OFI PSM2 Multi-Endpoint Dependency

If you are using libfabric 1.6 or newer, and Intel® Omni-Path Software version
10.8.0.0.204 and newer, PSM2_MULTI_EP is enabled by default through the libfabric
PSM2 provider. This enables MPIs using libfabric 1.6 and newer to use multiple threads
per rank through MPI_THREAD_MULTIPLE.

For applications not intended to use PSM2_MULTI_EP, set PSM2_MULTI_EP=0 to
enable context sharing. Typically this is required when trying to use more than 1 MPI
rank or /dev/hfi1 context per CPU core and context exhaustion is seen.

For more information see:

• Driver Parameter Settings for the Intel® Xeon Phi™ x200 Product Family in the
Intel® Omni-Path Fabric Performance Tuning User Guide.

• Reviewing Context Sharing Error Messages in the Intel® Omni-Path Fabric Host
Software User Guide.

PSM2 Communication Progress Guarantees

PSM2 internally ensures progress of both intra-node and inter-node messages, but not
autonomously. This means that while performance does not depend greatly on how
you decide to schedule communication progress, explicit progress calls are required
for correctness. The psm2_poll function is available to make progress over all PSM2
components in a generic manner. For more information on making progress over many
communication operations in the MQ component, see MQ Progress Requirements on
page 34.

1.7.1

1.8

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 17

https://software.intel.com/en-us/intel-mpi-library/documentation
https://software.intel.com/en-us/intel-mpi-library/documentation
https://ofiwg.github.io/libfabric/

PSM2 Completion Semantics

PSM2 currently only implements the MQ component, which documents its own
message completion semantics (see MQ Completion Semantics on page 33).

PSM2 Error Handling

PSM2 exposes a list of user and runtime errors enumerated in psm2_error. While
most errors are fatal in that you are not expected to be able to recover from them,
PSM2 still allows some level of control. By default, PSM2 returns all errors, but as a
convenience, allows you to either defer errors internally to PSM2 or to have PSM2 call
a user-provided error callback function.

PSM2 attempts to deallocate its resources as a best effort, but exits are always non-
collective with respect to endpoints opened in other processes. You are expected to be
able to handle non-collective exits from any endpoint and cleanly and independently
terminate the parallel environment.

Local error handling can be handled in three modes, two of which are predefined PSM2
mechanisms:

• PSM2-internal error handler (PSM2_ERRHANDLER_PSM_HANDLER)

• No-op PSM2 error handler where errors are returned
(PSM2_ERRHANDLER_NO_HANDLER)

• User-registered error handlers

The default PSM2-internal error handler effectively frees you from explicitly handling
the return values of every PSM2 function, but may not return in a function determined
to have caused a fatal error.

The No-op PSM2 error handler bypasses all error handling functionality and always
returns the error. You can then use psm2_error_get_string to obtain a generic
string from an error code (compared to a more detailed error message available
through registering of error handlers).

For even more control, you can register your own error handlers to have access to
more precise error strings and selectively control when and when not to return to
callers of PSM2 functions. All error handlers shown defer error handling to PSM2 for
errors that are not recognized using psm2_error_defer. Deferring an error from a
custom error handler is equivalent to relying on the default error handler.

Errors and error handling can be individually registered either globally or per-
endpoint:

• Per-endpoint error handling captures errors for functions where the error scoping
is determined to be over an endpoint. This includes all communication functions
that include an EP or MQ handle as the first parameter.

• Global error handling captures errors for functions where a particular endpoint
cannot be identified or for psm2_ep_open, where errors (if any) occur before the
endpoint is opened.

1.9

1.10

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
18 Doc. No.: H76473, Rev.: 15.0

Error handling is controlled by registering error handlers
(psm2_error_register_handler). The global error handler can be set at any time
(even before psm2_init), whereas a per-endpoint error handler can be set as soon
as a new endpoint is successfully created. If a per-endpoint handle is not registered,
the per-endpoint handler inherits from the global error handler at time of open.

Environment Variables

This section describes how to control PSM2 behavior using environment variables.

PSM2_AVX512

Enables AVX512 support in PSM2 when set.

Options:

• 1 enabled (default)

• 0 disabled

Default: PSM2_AVX512=1 (enabled)

PSM2_CONNECT_TIMEOUT

Overrides the End-point connection timeout to allow for handling systems that may
have a slow startup time. This value will override the timeout passed in by calls to
psm2_ep_connect and psm2_ep_connect2. Values are presented in seconds.
Values used outside the valid range will be adjusted to fit within the valid range.

Options:

• 0 Disabled

• 1 Sets the timeout value to 2 seconds.

• Enter a timeout value from 2 (minimum) to 9,223,372,036 (maximum) in seconds

NOTE

Though the timeout value used by the environment value is in seconds, the value
passed in through the psm2_ep_connect API is in nanoseconds. Internally the
timeout value is converted to nanoseconds. The upper limit of
PSM2_CONNECT_TIMEOUT is the maximum value in seconds that can be represented
by an int64_t in C.

Default: The value passed in by psm2_ep_connect and psm2_ep_connect2.

PSM2_CUDA

Enables CUDA* support in PSM2 when set. Requires libpsm2 to be compiled with
CUDA* support.

For additional details, see the Intel® Omni-Path Fabric Performance Tuning User
Guide.

1.11

1.11.1

1.11.2

1.11.3

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 19

NOTE

If GPU buffers are used in the workloads and PSM2_CUDA is not set to 1, undefined
behavior will result.

Default: PSM2_CUDA=0

PSM2_DEVICES

PSM2 implements the following devices for communication: self, shm, and hfi. For
PSM2 jobs that do not require shared-memory communications, PSM2_DEVICES can
be specified as self, hfi. Similarly, for shared-memory only jobs, the hfi device can
be disabled. You must ensure that the endpoint IDs passed in psm2_ep_connect do
not require a device that has been explicitly disabled. In some instances, enabling only
the devices that are required may improve performance.

Default: PSM2_DEVICES="self,shm,hfi"
For shared-memory only jobs: PSM2_DEVICES="shm,self"

PSM2_DISABLE_CCA

Disables use of Congestion Control Architecture (CCA).

Options:

• 1 disabled

• 0 enabled (default)

Default: PSM2_DISABLE_CCA=0 (enabled)

PSM2_GPUDIRECT

GPUDirect* RDMA is a technology that enables a direct path for data exchange
between a graphics processing unit (GPU) and a third-party peer device using
standard features of PCI Express. For more information, see the NVIDIA* CUDA*
toolkit documentation: http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

Enables GPUDirect* RDMA support when set and allows direct data exchange between
GPU and HFI. For complete operation, you also need the appropriate hfi1 driver
support. For details, see the Intel® Omni-Path Fabric Software Installation Guide.

Default: PSM2_GPUDIRECT=0

PSM2_GPUDIRECT_RECV_THRESH

Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the
GPUDirect* RDMA feature will not be used on the receive side of a connection.

To enable the GPUDirect* RDMA feature for all message sizes, set the environment
variable to UINT_MAX. (Note: This is the default for
PSM2_GPUDIRECT_RECV_THRESH)

1.11.4

1.11.5

1.11.6

1.11.7

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
20 Doc. No.: H76473, Rev.: 15.0

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

Range: 0 to (232-1)

Default: PSM2_GPUDIRECT_RECV_THRESH=UINT_MAX

PSM2_GPUDIRECT_SEND_THRESH

Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the
GPUDirect* RDMA feature will not be used on the send side of a connection.

Range: 0 to (232-1)

Default: PSM2_GPUDIRECT_SEND_THRESH=30000

PSM2_IB_SERVICE_ID

Sets IB Service ID for path resolution. Using this overrides value set by the options
used by applications or upper layer transports.

If you pass in a value with psm2_ep_open in the psm2_ep_open_opts structure,
then the default of HFI_DEFAULT_SERVICE_ID or 0x1000117500000000ULL is
replaced. If the environment variable here is listed, it replaces the default or any value
passed in.

Default: PSM2_IB_SERVICE_ID=0x1000117500000000ULL

PSM2_MAX_CONTEXTS_PER_JOB

Maximum number of contexts that a job opens.

If required for resource sharing in batch systems, users can restrict the number of
Intel® Omni-Path contexts that are made available on each node of an MPI job by
setting that number in the PSM2_MAX_CONTEXTS_PER_JOB environment variable. The
default is to use all possible contexts.

Default: PSM2_MAX_CONTEXTS_PER_JOB=all available

PSM2_MAX_PENDING_SDMA_REQS

Sets maximum pending SDMA requests.

Range = 8 to sdma_comp_size - 1, where sdma_comp_size is the number of
entries in the SDMA request ring. Any other value is replaced with the default value.

Default: PSM2_MAX_PENDING_SDMA_REQS=8

PSM2_MEMORY

Memory usage mode. Controls the amount of memory used for MQ entries by setting
the number of entries. Setting this value also sets PSM2_MQ_RECVREQS_MAX and
PSM2_MQ_RNDV_HFI_THRESH to preset internal values, see Options for details.

Options:

1.11.8

1.11.9

1.11.10

1.11.11

1.11.12

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 21

NOTE

You must enter the desired option as text, not a numerical value.

• min = reserves memory to hold 65536 pending requests

• normal = reserves memory to hold 1048576 pending requests

• large = reserves memory to hold 16777216 pending requests

Default: PSM2_MEMORY=normal

PSM2_MQ_RECVREQS_MAX

Sets the maximum number of irecv requests pending completion. Setting this value
overrides the PSM2_MAX_PENDING_SDMA_REQS default for any mode.

• PSM2_MQ_RECVREQS_MAX must be a power-of-two (2n) value.

• When PSM2_MEMORY is min or normal, PSM2_MQ_RECVREQS_MAX must be at
least 1024.

• When PSM2_MEMORY is large, PSM2_MQ_RECVREQS_MAX must be at least
8192.

Default: PSM2_MQ_RECVREQS_MAX=1048576

PSM2_MQ_RNDV_HFI_THRESH

Sets the eager-SDMA-to-rendezvous switchover threshold in bytes. Rendezvous should
be used for larger messages and uses DMA for both transmit and receive. Smaller
values lead to increased bandwidth, larger values lead to increased latency. Tuning
this value is complex and very dependent on PSM2_MQ_RNDV_HFI_WINDOW.

Options:

• Any value between 1 and 4GB; larger values may simply disable the threshold
entirely.

Default (varies by CPU family):

• Intel® Xeon® Processor: PSM2_MQ_RNDV_HFI_THRESH=64000
• Intel® Xeon Phi™ Processor: PSM2_MQ_RNDV_HFI_THRESH=200000

PSM2_MQ_RNDV_HFI_WINDOW

Sets the windowing size in bytes for how large messages are split for transmission.

Larger values may reduce CPU loading, smaller values may provide better distribution
of bandwidth in workloads with many simultaneous destinations like an MPI collective
operation, but will increase CPU loading. Additionally when PSM2_MULTIRAIL is active,
this value controls the granularity at which messages are striped between HFIs.

Options:

• Any value between 1 and 4MB; page aligned values work best.

Defaults (varies by CPU family):

1.11.13

1.11.14

1.11.15

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
22 Doc. No.: H76473, Rev.: 15.0

• Intel® Xeon® Processor: PSM2_MQ_RNDV_HFI_WINDOW=131072
• Intel® Xeon Phi™ Processor: PSM2_MQ_RNDV_HFI_WINDOW=4194304

PSM2_MQ_EAGER_SDMA_SZ

Sets the PIO-to-eager-SDMA switchover threshold in bytes. Eager SDMA is a mode in
which only the transmit side uses DMA, but the reception is still CPU driven. This mode
has better bandwidth but worse latency than PIO. This is why there are different
defaults for blocking vs non-blocking. It is assumed that if users are extremely
sensitive to latency, blocking messages will be used, and thus a higher threshold is
used so PIO is active for longer. Setting this value will override any difference between
non-blocking and blocking, setting all modes to the same threshold.

NOTE

If this value is set higher than PSM2_MQ_RNDV_HFI_THRESH, then it is effectively
disabled. It is recommended to not set PSM2_MQ_EAGER_SDMA_SZ to a value higher
than PSM2_MQ_RNDV_HFI_THRESH; instead, a user should set both to maintain
appropriate ranges.

Options:

• Any value between 1 and 4GB.

Default (varies by CPU family and message type):

• Blocking Messages:

— Intel® Xeon® Processor: PSM2_MQ_EAGER_SDMA_SZ=34000
— Intel® Xeon Phi™ Processor: PSM2_MQ_EAGER_SDMA_SZ=200000

• Non-Blocking messages:

— Intel® Xeon® Processor: PSM2_MQ_EAGER_SDMA_SZ=16000
— Intel® Xeon Phi™ Processor: PSM2_MQ_EAGER_SDMA_SZ=65536

PSM2_MQ_RNDV_SHM_THRESH

Sets the threshold (in bytes) for shared memory eager-to-rendezvous switchover.

Default: PSM2_MQ_RNDV_SHM_THRESH=16000

PSM2_MQ_SENDREQS_MAX

Sets the maximum number of isend requests pending completion. Setting this value
overrides the PSM2_MAX_PENDING_SDMA_REQS default for any mode.

• PSM2_MQ_SENDREQS_MAX must be a power-of-two (2n) value.

• When PSM2_MEMORY is min or normal, PSM2_MQ_SENDREQS_MAX must be at
least 1024.

• When PSM2_MEMORY is large, PSM2_MQ_SENDREQS_MAX must be at least
8192.

Default: PSM2_MQ_SENDREQS_MAX=1048576

1.11.16

1.11.17

1.11.18

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 23

PSM2_MTU

Sets PSM2 MTU to user-specified size, if defined. The default behavior is controlled by
driver or switch. PSM2 does not query the path record unless PSM2_PATH_REC is
enabled. This environment variable, when defined, overrides the path record value
only allowing selections of MTU values equal to or less than that maximum indicated
by the path records.

Valid values are 1-7, 256-8192, 10240. Using bad values will silently use the smaller
of the internal default of 8192 or the network configured value. Values 1-7 are indexes
into this table:

• 1 = 256

• 2 = 512

• 3 = 1024

• 4 = 2048

• 5 = 4096

• 6 = 8192

• 7 = 10240

Default: PSM2_MTU=Automatic based on network configs, typically
8192.

PSM2_MULTI_EP

Enables more than one PSM2 endpoint to be opened in a process.

Options:

• 0 Disabled (default).

• 1 Enabled.

PSM2_MULTIRAIL

Enables multi-rail capability so a process can use multiple network interface cards to
transfer messages. The PSM2 multi-rail feature can be applied to a single fabric with
multiple ports (multiple HFIs), or multiple fabrics. For more detail on this feature
please see the Intel® Omni-Path Fabric Host Software User Guide, Multi-Rail Support
in PSM2.

Options:

• 0 Multi-rail capability disabled (default).

• 1 Enable multi-rail capability and use all available HFI(s) in the system.

• 2 Enable multi-rail within a single NUMA socket capability.

PSM2 looks for at least one available HFI(s) in the same NUMA socket on which
you pin the task. If no such HFIs are found, PSM2 falls back to
PSM2_MULTIRAIL=1 behavior and uses any other available HFI(s). You are
responsible for physical placement of HFI(s). Job launchers, middleware, and end

1.11.19

1.11.20

1.11.21

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
24 Doc. No.: H76473, Rev.: 15.0

users are responsible for correctly affinitizing MPI ranks and processes for best
performance. For details, see the Intel® Omni-Path Fabric Performance Tuning
User Guide.

Default: PSM2_MULTIRAIL=0x0=Disabled

PSM2_MULTIRAIL_MAP

Tells PSM2 which unit/port pair is used to set up a rail.

If only one rail is specified, it is equivalent to a single-rail case. The Unit/Port is
specified instead of using Unit/Port assigned by the hfi1 driver. PSM2 scans the
above pattern until a violation or error is encountered, and uses the information it has
gathered.

NOTE

PSM2_MULTIRAIL_MAP overrides any auto-selection and affinity logic in PSM2,
regardless of whether PSM2_MULTIRAIL on page 24 is set to 1 or 2. For details, see
the Intel® Omni-Path Fabric Host Software User Guide.

Options: unit:port,unit:port,unit:port,...
• unit starts from 0.

• port is always 1.

• Multiple specifications are separated by a comma.

PSM2_PATH_NO_LMC_RANGE

Disables LMC route dispersion for messages within the defined size range, inclusive of
the range value itself. Invalid ranges or values will cause the default value to be used.

Options: low_value:high_value
• Any decimal values between 0 and 4 GB can be used.

• low_value and high_value must be separated by a colon.

Default: 4294967295:4294967295

PSM2_PATH_REC

Sets mechanism to query HFI path record.

Options:

• NONE Default same as previous instances. Utilizes static data.

• OPP Use OFED Plus Plus library to do path record queries.

• UMAD Use raw libibumad interface to form and process path records.

Default: PSM2_PATH_REC=NONE

1.11.22

1.11.23

1.11.24

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 25

PSM2_PATH_SELECTION

Policy to use if multiple paths are available between endpoints. For details, see the
Intel® Omni-Path Fabric Host Software User Guide, Routing section.

Options:

• adaptive
• static_src
• static_dest
• static_base
Default: PSM2_PATH_SELECTION=adaptive

PSM2_PKEY

HFI Partition Key to use for endpoint.

Valid values are controlled by the Fabric Manager. The default value is intended to
match stock installation for Fabric Manager. Setting this value will override values set
inside of the psm2_ep_open_opts structure. This value will be configured
automatically if PSM2_PATH_REC is enabled.

Options:

Any 16-bit value configured by the Fabric Manager administrator.

Default: 0x8001. This is the default value for application traffic.

PSM2_RANKS_PER_CONTEXT

Provides an alternate way of specifying how PSM should use contexts. The variable is
the number of ranks that share each hardware context. The supported values include:

• 1 no context sharing

• 2 2-way context sharing

• 3 3-way context sharing

• 4 4-way context sharing

• 8 8-way context sharing (maximum)

The same value of PSM2_RANKS_PER_CONTEXT must be used for all ranks on a node,
and typically, you use the same value for all nodes in that job.

Default:

If this value is not set, then by default PSM2 assigns one context per rank when
possible. However, if too many MPI ranks are present, then context sharing is enabled
to be able to give each rank a portion of a context. The value is determined by the
number of ranks present at job launch. Since context sharing impacts performance by
way of limiting queue sizes, PSM2 only enables the minimum required level of context
sharing to evenly spread the ranks among the contexts and retain what performance
is possible.

1.11.25

1.11.26

1.11.27

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
26 Doc. No.: H76473, Rev.: 15.0

PSM2_RCVTHREAD

PSM2 uses an extra background thread per rank to make MPI communication progress
more efficiently. This thread does not aggressively compete with resources against the
main computation thread, but can be disabled by setting PSM2_RCVTHREAD=0.

Default: PSM2_RCVTHREAD=0x1

PSM2_RCVTHREAD_FREQ

PSM2_RCVTHREAD_FREQ controls the timeout of polling of the receiver thread.
The syntax is:

 PSM2_RCVTHREAD_FREQ=min_freq[:max_freq[:shift_freq]]

Default value: PSM2_RCVTHREAD_FREQ=10:100:1. If any value is outside the range,
these default values will be used.

Allowed values:

min_freq: [0 - 1000]
max_freq: [min - 1000]

These values of min_freq and max_freq are frequency in Hz (times per
second) and specify the duration of sleeps between thread wakeups. For
example, values of 10:100 mean that timeouts start at 100 milliseconds
but can go as small as 10 milliseconds. Providing an empty value, or
min_freq equal to 0 or max_freq equal to 0 will result in no timeouts.

shift_freq: [0 - 10] shift_freq controls how aggressively the timeout is adjusted in the
specified range; the number entered specifies a power of 2 (2shift_freq)
that is used to multiply the currently selected timeout value in the specified
range. Adjustment means that timeout is reduced when work is found
continually pending or queued and increased when work is found not to be
pending.

PSM2_RTS_CTS_INTERLEAVE

Interleave the handling of Ready-to-Send (RTS) packets with Clear-to-Send (CTS)
packets in the PSM2 rendezvous protocol. This improves link bandwidth by reducing
link idle time for many-senders to one-receiver communication patterns.

Options:

• 1 enabled

• 0 disabled (default)

Default: PSM2_RTS_CTS_INTERLEAVE=0 (disabled)

PSM2_SHAREDCONTEXTS

Enable shared contexts. Context sharing is on by default.

Default (either option works):

• PSM2_SHAREDCONTEXTS=1
• PSM2_SHAREDCONTEXTS=YES
To explicitly disable context sharing, set this environment variable in one of the two
following ways:

1.11.28

1.11.29

1.11.30

1.11.31

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 27

• PSM2_SHAREDCONTEXTS=0
• PSM2_SHAREDCONTEXTS=NO

PSM2_SHAREDCONTEXTS_MAX

Deprecated.

See PSM2_MAX_CONTEXTS_PER_JOB for details.

PSM2_TID

TID (Token ID) protocol flags. A value of 0 disables the protocol.

Default: PSM2_TID=0x1

PSM2_TID_SENDSESSION_MAX

Controls the maximum number of TID send descriptor objects that PSM2 will create.
The actual number of TID send descriptors created by PSM2 is determined by number
of simultaneous sends and may be less than this value.

If a sender needs a TID send descriptor but none are available, PSM2 will issue a
warning, Non-fatal temporary exhaustion of send tid dma descriptors,
and the send will retry when a descriptor becomes available. Increasing the value of
PSM2_TID_SENDSESSION_MAX can improve performance and reduce the frequency
of, or eliminate, these warnings entirely.

Setting this value overrides the default maximum number of TID send descriptors
determined by PSM2_MEMORY.

The maximum value for PSM2_TID_SENDSESSION_MAX is 1073741824 (230). Value
must be a power of two (2n).

Defaults:

• 1 – when PSM2_MEMORY=min
• 8192 – when PSM2_MEMORY=normal
• 16384 – when PSM2_MEMORY=large

PSM2_TRACEMASK

Depending on the value of the tracemask, various parts of PSM2 output debugging
information. With a default value of 0x1, informative messages are printed; this value
should be considered a minimum. At 0x101, startup and finalization messages are
added to the output. At 0x1c3, every communication event is logged and should hence
be used for extreme debugging only.

Default: PSM2_TRACEMASK=0x1

HFI Environment Variables

The following HFI environment variables are also related to PSM2 functionality.

1.11.32

1.11.33

1.11.34

1.11.35

1.12

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
28 Doc. No.: H76473, Rev.: 15.0

HFI_DISABLE_MMAP_MALLOC

Disable mmap for malloc().

Uses glibc mallopt() to disable all uses of mmap by setting M_MMAP_MAX to 0 and
M_TRIM_THRESHOLD to -1. Refer to the Linux* man page for mallopt() for details.

Default: HFI_DISABLE_MMAP_MALLOC=NO

NOTE

Choosing YES may reduce the memory footprint required by your program, at the
potential expense of increasing CPU overhead associated with memory allocation and
memory freeing. The default NO option is better for performance.

HFI_NO_CPUAFFINITY

Prevents PSM2 from setting affinity.

During initialization with HFI_NO_CPUAFFINITY unset, if the "affinity" option is
passed to the psm2_ep_open() call, PSM2 may set affinity based on the affinity hints
from the driver.

With HFI_NO_CPUAFFINITY set, PSM2 does not set affinity regardless of the
aforementioned "affinity" option. This allows either user applications to control affinity
or the OS to automatically choose affinity.

Default: HFI_NO_CPUAFFINITY is unset.

HFI_UNIT

Device Unit number. Used to restrict the number of contexts used on an Intel® Omni-
Path unit. When context sharing is enabled on a system with multiple Intel® Omni-
Path boards (units) and the HFI_UNIT environment variable is set, the number of
Intel® Omni-Path contexts made available to MPI jobs are restricted to the number of
contexts available on that unit.

NOTE

The Intel® PSM2 implementation has a limit of four (4) HFIs.

Default: HFI_UNIT is unset. All available contexts from all units are autodetected and
used, and are made available to MPI jobs.

HFI_SL

HFI outgoing ServiceLevel number.

Setting this value will override values set inside of the psm2_ep_open_opts
structure.

Options:

0 to 31 - Check with system administrator for valid values.

1.12.1

1.12.2

1.12.3

1.12.4

Intel® PSM2 API—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 29

Default: 0

Intel® Omni-Path Fabric—Intel® PSM2 API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
30 Doc. No.: H76473, Rev.: 15.0

2.0 Intel® PSM2 Component Documentation

The Intel® PSM2 Matched Queues (MQ) interface implements a queue-based
communication model with the distinction that queue message consumers use a 3-
tuple of metadata to match incoming messages against a list of preposted receive
buffers. These semantics are consistent with those presented by MPI-1.2, and all the
features and side-effects of message passing find their way into matched queues.

There is currently a single MQ context. If need be, MQs may expose a function to
allocate more than one MQ context in the future. Since an MQ is implicitly bound to a
locally opened endpoint handle, all MQ functions use an MQ handle instead of an EP
handle as a communication context.

MQ Tag Matching

NOTE

Tag matching is different in PSM2 compared to the original version. PSM2 tags are 96-
bit values of type psm2_mq_tag_t. The behavior of send and receive tags and tag
selectors is the same, and any 64-bit tags used in existing code are automatically
padded to 96 bits within PSM2. The functions designed for 64-bit tags remain in PSM2
and can exist within the same program. Since these two types of functions can
operate on the same MQ, care should be taken to avoid unintentional tag matches.
Intel recommends that you use a single tag size within a single program.

Users of PSM2 can interpret the 96-bit tag type as a sequence of three 32-bit integers,
or any other convenient interpretation scheme. The extended tags can be helpful in
high node-count environments.

A successful MQ tag match requires a 3-tuple of unsigned 96-bit ints, two of which are
provided by the receiver when posting a receive buffer (psm2_mq_irecv and
psm2_mq_irecv2) and the last is provided by the sender as part of every message
sent (psm2_mq_send and psm2_mq_isend). Since MQ is a receiver-directed
communication model, the tag matching done at the receiver involves matching a sent
message send tag (stag) with the tag (rtag) and tag selector (rtagsel) attached to
every preposted receive buffer. The incoming stag is compared to the posted rtag but
only for significant bits set in the rtagsel. The rtagsel can be used to mask off
parts (or even all) of the bitwise comparison between sender and receiver tags. A
successful match causes the message to be received into the buffer with which the tag
is matched. If the incoming message is too large, it is truncated to the size of the
posted receive buffer. The bitwise operation corresponding to a successful match and
receipt of an expected message amounts to the following expression evaluating as
true:

((stag ^ rtag) & rtagsel) == 0

2.1

Intel® PSM2 Component Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 31

You must encode (pack) into the 96-bit unsigned integers, including employing the
rtagsel tag selector as a method to wildcard part or all of the bits significant in the
tag matching operation. For example, MPI could use a triple based on context (MPI
communicator), source rank, and send tag.

The following code example shows how the triple can be packed into 96 bits:

// 96-bit send tag formed by packing the triple:
// (context_id_32bits | source_rank_32bits | send_tag_32bits)
stag = ((((context_id)&0xffffffffULL)<<64)| \
(((source_rank)&0xffffffffULL)<<32)| \
(((send_tag)&0xffffffffULL)));

Similarly, the receiver applies the rtag matching bits and rtagsel masking bits
against a list of send tags and returns the first successful match. Zero bits in the
tagsel can be used to indicate wildcarded bits in the 96-bit tag, which can be useful
for implementing MPI's MPI_ANY_SOURCE and MPI_ANY_TAG. Following the example
bit splicing in the previous stag example:

// Example MPI implementation
// where MPI_COMM_WORLD implemented as 0x3333
// MPI_Irecv source_rank=MPI_ANY_SOURCE,
// tag=7, comm=MPI_COMM_WORLD
rtag = 0x000033330000000000000007; // 0x00003333 00000000 00000007
rtagsel = 0xffffffff00000000ffffffff; // 0xffffffff 00000000 ffffffff
// MPI_Irecv source_rank=3, tag=MPI_ANY_TAG,
// comm=MPI_COMM_WORLD
rtag = 0x000033330000000300000000; // 0x00003333 00000003 00000000
rtagsel = 0xffffffffffffffff80000000; // 0xffffffff ffffffff 80000000, can’t
ignore sign bit in tag
// MPI_Irecv source_rank=MPI_ANY_SOURCE,
// tag=MPI_ANY_TAG, comm=MPI_COMM_WORLD
rtag = 0x000033330000000000000000; // 0x00003333 00000000 00000000
rtagsel = 0xffffffff0000000080000000; // 0xffffffff 00000000 80000000, can’t
ignore sign bit in tag

Applications that do not follow tag matching semantics can simply always pass a value
of 0 for rtagsel, which always yields a successful match to the first preposted buffer.
If a message cannot be matched to any of the preposted buffers, the message is
delivered as an unexpected message.

MQ Message Reception

MQ messages are either received as expected or unexpected:

• The received message is expected if the incoming message tag matches the
combination of tag and tag selector of at least one of the user-provided receive
buffers preposted with psm2_mq_irecv or psm2_mq_irecv2.

• The received message is unexpected if the incoming message tag doesn't match
any combination of tag and tag selector from all the user-provided receive buffers
preposted with psm2_mq_irecv or psm2_mq_irecv2.

The difference between psm2_mq_irecv() and psm2_mq_irecv2() is that
psm2_mq_irecv() does not specify where the message should come from; it purely
relies on the tag matching mechanism and the message could come from any other
source process. However, psm2_mq_irecv2() has an additional argument to specify
the source process, where only messages from this specified process can match the

2.2

Intel® Omni-Path Fabric—Intel® PSM2 Component Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
32 Doc. No.: H76473, Rev.: 15.0

receiving operation. One special case for psm2_mq_irecv2() is to specify
PSM2_MQ_TAG_ANY for the source process argument, which is equivalent to
psm2_mq_irecv(). Therefore, psm2_mq_irecv() is equivalent to a call to
psm2_mq_irecv2() with PSM2_MQ_TAG_ANY as the source value.

Unexpected messages are messages buffered by the MQ library until a receive buffer
that can match the unexpected message is provided. With Matched Queues and MPI
alike, unexpected messages can occur as a side-effect of the programming model,
whereby the arrival of messages can be slightly out of step with receive buffer
ordering. Unexpected messages can also be triggered by the difference between the
rate at which a sender produces messages and the rate at which a paired receiver can
post buffers and hence consume the messages.

In all cases, too many unexpected messages can negatively affect performance. Use
some of the following mechanisms to reduce the effect of added memory allocations
and copies that result from unexpected messages:

• If and when possible, receive buffers should be posted as early as possible and
ideally before calling into the progress engine.

• Use rendezvous messaging that can be controlled with PSM2_MQ_RNDV_HFI_SZ
and PSM2_MQ_RNDV_SHM_SZ options. These options default to values determined
to make effective use of bandwidth, and hence not advisable for all communication
message sizes. However, rendezvous messaging inherently prevents unexpected
messages by synchronizing the sender with the receiver.

• The amount of memory that is allocated to handle unexpected messages can be
bounded by adjusting the Global PSM2_MQ_MAX_SYSBUF_MBYTES option.

• MQ statistics, such as the amount of received unexpected messages and the
aggregate amount of unexpected bytes are available in the psm2_mq_stats
structure.

Whenever a match occurs, whether the message is expected or unexpected, you must
ensure that the message is not truncated. Message truncation occurs when the size of
the preposted buffer is less than the size of the incoming matched message. MQ
correctly handles message truncation by always copying the appropriate amount of
bytes as to not overwrite any data. While it is valid to send less data than the amount
of data that has been preposted, messages that are truncated are marked
PSM2_MQ_TRUNCATION as part of the error code in the message status structure
(psm2_mq_status_t).

The psm2_mq_status_t structure also returns the source ID of the message. During
PSM2 initialization time, each process registers an application interpreted ID. When a
message from that process is received by any other process, the application
interpreted ID is returned in the status structure so that application can interpret
where the message comes from. The source ID is returned in the status structure,
regardless of which receiving function is used to receive the message. If a process did
not register such ID, the default ID is -1.

MQ Completion Semantics

Message completion in Matched Queues follows local completion semantics. When
sending an MQ message, it is deemed complete when MQ guarantees that the source
data has been sent and that the entire input source data memory location can be
safely overwritten. As with standard Message Passing, MQ does not make any remote
completion guarantees for sends. MQ does however, allow a sender to synchronize

2.3

Intel® PSM2 Component Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 33

with a receiver to send a synchronous message which sends a message only after a
matching receive buffer has been posted by the receiver
(PSM2_MQ_FLAG_SENDSYNC).

A receive is deemed complete after it has matched its associated receive buffer with
an incoming send and that the data from the send has been completely delivered to
the receive buffer.

MQ Progress Requirements

You must explicitly ensure progress on MQs for correctness. The progress requirement
holds even if certain areas of the MQ implementation require less network attention
than others, or if progress may internally be guaranteed through interrupts. The main
polling function, psm2_poll, is the most general form of ensuring progress on a given
endpoint. Calling psm2_poll ensures that progress is made over all the MQs and
other components instantiated over the endpoint passed to psm2_poll.

While psm2_poll is the only way to directly ensure progress, other MQ functions
conditionally ensure progress depending on how they are used:

• psm2_mq_wait and psm2_mq_wait2 employ polling and wait until the request is
completed. For blocking communication operations where the caller is waiting on a
single send or receive to complete, psm2_mq_wait or psm2_mq_wait2 usually
provides the best responsiveness in terms of latency.

• psm2_mq_test and psm2_mq_test2 test a particular request for completion, but
never directly or indirectly ensure progress because they only test the completion
status of a request, nothing more. See functional documentation for
psm2_mq_test and psm2_mq_test2 for details.

• psm2_mq_ipeek and psm2_mq_ipeek2 ensure progress if and only if the MQ's
completion queue is empty. These functions do not ensure progress as long as the
completion queue is non-empty. If you always aggressively process all elements of
the MQ completion queue as part of your own progress engine, you indirectly
always ensure MQ progress. The ipeek or ipeek2 mechanism is the preferred
way for ensuring progress when many non-blocking requests are in flight, since
these functions return requests in the order in which they complete. Depending on
how communication is initiated and completed, this may be preferable to calling
other progress functions on individual requests.

• psm2_mq_iprobe, psm2_mq_iprobe2, psm2_mq_improbe, and
psm2_mq_improbe2 ensure progress if matching request wasn't found after the
first attempt.

2.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
34 Doc. No.: H76473, Rev.: 15.0

3.0 Intel® PSM2 Component Functional
Documentation

PSM2 Initialization and Maintenance

Data Structures

psm2_optkey

Option key/pair structure. Currently only used in MQ.

struct psm2_optkey
Data Fields:

uint32_t key Option key.

void * value Key value.

psm2_info_query_arg

Union for info query arg type.

union psm2_info_query_arg
Data Fields:

uint32_t unit The desired unit.

uint32_t port The desired port.

size_t length Typically the length of the out variable.

psm2_mq_t mq The match queue.

psm2_epaddr_t epaddr The end point address.

enum psm2_info_query_thresh_et
mstq

The desired threshold.

Defines

Table 3. Initialization and Maintenance Defines

Define Description

#define PSM2_VERNO Header-defined Version number.

#define PSM2_VERNO_MAJOR Header-defined Major Version Number.

#define PSM2_VERNO_MINOR Header-defined Minor Version Number.

continued...

3.1

3.1.1

3.1.2

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 35

Define Description

#define PSM2_ERRHANDLER_DEFAULT Legacy value; included for backwards compatibility.
Use PSM2_ERRHANDLER_PSM_HANDLER instead.

#define PSM2_ERRHANDLER_NOP Legacy value; included for backwards compatibility.
Use PSM2_ERRHANDLER_NO_HANDLER instead.

#define PSM2_ERRHANDLER_PSM_HANDLER PSM2 error handler as explained in PSM2 Error
Handling.

#define PSM2_ERRHANDLER_NO_HANDLER Bypasses the default PSM2 error handler and returns
all errors (this is the default).

#define PSM2_ERRSTRING_MAXLEN Maximum error string length.

Typedefs

Table 4. Initialization and Maintenance Typedefs

Typedef Description

typedef enum psm2_error See also: psm2_error.

typedef psm2_error_token
*psm2_error_token_t

Error handling opaque token. A token is required for
users that register their own handlers and wish to
defer further error handling to PSM2.

typedef
psm2_error_t(*psm2_ep_errhandler_t)
(psm2_ep_t ep, const psm2_error_t error,
const char *error_string,
psm2_error_token_t token)

Error handling function. Users can handle errors
explicitly instead of relying on PSM2's own error
handler. There is one global error handler and error
handlers that can be individually set for each opened
endpoint. By default, endpoints inherit the global
handler registered at the time of open.
Parameters:
• ep

Handle associated to the endpoint over which the
error occurred or NULL if the error is being
handled by the global error handler.

• error
PSM2 error identifier.

• error_string
A descriptive error string of maximum length
PSM2_ERRSTRING_MAXLEN.

• token
Opaque PSM2 token associated with the
particular event that generated the error. The
token can be used to extract the error string and
can be passed to psm2_error_defer to defer
any remaining or unhandled error handling to
PSM2.

Postcondition: If the error handler returns, the
error returned is propagated to the caller.

typedef enum psm2_info_query_et See also: psm2_info_query_et.

typedef enum psm2_info_query_config See also: psm2_info_query_config.

typedef enum psm2_info_query_thresh_et See also: psm2_info_query_thresh_et.

typedef union psm2_info_query_arg See also: union psm2_info_query_arg.

3.1.3

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
36 Doc. No.: H76473, Rev.: 15.0

Enumerations

Error Type Enumerations

enum psm2_error {PSM2_OK, PSM2_OK_NO_PROGRESS, PSM2_PARAM_ERR,
PSM2_NO_MEMORY, PSM2_INIT_NOT_INIT, PSM2_INIT_BAD_API_VERSION,
PSM2_NO_AFFINITY, PSM2_INTERNAL_ERR, PSM2_OPT_READONLY,
PSM2_TIMEOUT, PSM2_TOO_MANY_ENDPOINTS, PSM2_IS_FINALIZED,
PSM2_EP_WAS_CLOSED, PSM2_EP_NO_DEVICE, PSM2_EP_UNIT_NOT_FOUND,
PSM2_EP_DEVICE_FAILURE, PSM2_EP_NO_PORTS_AVAIL,
PSM2_EP_NO_NETWORK, PSM2_EP_INVALID_UUID_KEY, PSM2_EPID_UNKNOWN,
PSM2_EPID_UNREACHABLE, PSM2_EPID_INVALID_NODE,
PSM2_EPID_INVALID_MTU, PSM2_EPID_INVALID_UUID_KEY,
PSM2_EPID_INVALID_VERSION, PSM2_EPID_INVALID_CONNECT,
PSM2_EPID_ALREADY_CONNECTED,PSM2_EPID_NETWORK_ERROR,
PSM2_MQ_INCOMPLETE, PSM2_MQ_TRUNCATION, PSM2_ERROR_LAST}

Table 5. Error Type Enumerators

Enumerator Description

PSM2_OK Interface-wide "ok", guaranteed to be 0.

PSM2_OK_NO_PROGRESS No events progressed on psm2_poll (not fatal).

PSM2_PARAM_ERR Error in a function parameter.

PSM2_NO_MEMORY PSM2 ran out of memory.

PSM2_INIT_NOT_INIT PSM2 has not been initialized by psm2_init.

PSM2_INIT_BAD_API_VERSION API version passed in psm2_init is incompatible.

PSM2_NO_AFFINITY PSM2 could not set affinity.

PSM2_INTERNAL_ERR PSM2 unresolved internal error.

PSM2_OPT_READONLY PSM2 option is a read-only option.

PSM2_TIMEOUT PSM2 operation timed out.

PSM2_TOO_MANY_ENDPOINTS Too many endpoints.

PSM2_IS_FINALIZED PSM2 is finalized.

PSM2_EP_WAS_CLOSED Endpoint was closed.

PSM2_EP_NO_DEVICE PSM2 could not find an Intel® Omni-Path Unit.

PSM2_EP_UNIT_NOT_FOUND User passed a bad unit number.

PSM2_EP_DEVICE_FAILURE Failure in initializing endpoint.

PSM2_EP_NO_PORTS_AVAIL No free ports could be obtained.

PSM2_EP_NO_NETWORK Could not detect network connectivity.

PSM2_EP_INVALID_UUID_KEY Invalid unique job-wide UUID Key.

PSM2_EPID_UNKNOWN Endpoint connect status unknown (because of other
failures or if connect attempt timed out).

PSM2_EPID_UNREACHABLE Endpoint could not be reached by any PSM2
component.

continued...

3.1.4

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 37

Enumerator Description

PSM2_EPID_INVALID_NODE At least one of the connecting nodes was
incompatible in endianess.

PSM2_EPID_INVALID_MTU At least one of the connecting nodes provided an
invalid MTU.

PSM2_EPID_INVALID_UUID_KEY At least one of the connecting nodes provided a bad
key.

PSM2_EPID_INVALID_VERSION At least one of the connecting nodes is running an
incompatible PSM2 protocol version.

PSM2_EPID_INVALID_CONNECT At least one node provided garbled information.

PSM2_EPID_ALREADY_CONNECTED EPID was already connected.

PSM2_EPID_NETWORK_ERROR EPID is duplicated, network connectivity problem.

PSM2_MQ_INCOMPLETE MQ non-blocking request is incomplete.

PSM2_MQ_TRUNCATION MQ message has been truncated at the receiver.

PSM2_ERROR_LAST Reserved value, indicates highest ENUM value for
psm2_error.

Query Enumerations

enum psm2_query {PSM2_INFO_QUERY_NUM_UNITS,
PSM2_INFO_QUERY_NUM_PORTS, PSM2_INFO_QUERY_UNIT_STATUS,
PSM2_INFO_QUERY_UNIT_PORT_STATUS,
PSM2_INFO_QUERY_NUM_FREE_CONTEXTS, PSM2_INFO_QUERY_NUM_CONTEXTS,
PSM2_INFO_QUERY_CONFIG, PSM2_INFO_QUERY_THRESH,
PSM2_INFO_QUERY_DEVICE_NAME, PSM2_INFO_QUERY_MTU,
PSM2_INFO_QUERY_LINK_SPEED, PSM2_INFO_QUERY_NETWORK_TYPE,
PS2M_INFO_QUERY_LAST}

Table 6. Query Enumerators

Enumerator Input Description Query Output

PSM2_INFO_QUERY_NUM_UNITS Number of inputs: 0 Returns the number of
units. out parameter
should point to a
uint32_t.

PSM2_INFO_QUERY_NUM_PORTS Number of inputs: 0 Returns the number of
ports. out parameter
should point to a
uint32_t.

PSM2_INFO_QUERY_UNIT_STATUS Number of inputs: 1
Input the unit for which status is desired
(use psm2_info_query_arg_t.unit).

Returns zero, when the
unit is not active.
Returns non-zero when
the unit is active. out
parameter should point
to a uint32_t.

PSM2_INFO_QUERY_UNIT_PORT_ST
ATUS

Number of inputs: 2
Input the unit (use
psm2_info_query_arg_t.unit) and
the port (use
psm2_info_query_arg_t.port) for
which status is desired.

Returns zero, when the
unit is not active.
Returns non-zero when
the unit is active. out
parameter should point
to a uint32_t.

continued...

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
38 Doc. No.: H76473, Rev.: 15.0

Enumerator Input Description Query Output

PSM2_INFO_QUERY_NUM_FREE_CON
TEXTS

Number of inputs: 1
Input the unit for which the number of
free contexts is desired (use:
psm2_info_query_arg_t.unit)

Returns the number of
free contexts. out
parameter should point
to a uint32_t.

PSM2_INFO_QUERY_NUM_CONTEXTS Number of inputs: 1
Input the unit for which the number of
contexts is desired (use:
psm2_info_query_arg_t.unit)

Returns the number of
contexts. out parameter
should point to a
uint32_t.

PSM2_INFO_QUERY_CONFIG Number of inputs: 2
Input the mq (use:
psm2_info_query_arg_t.mq) and the
ep address (use:
psm2_info_query_arg_t.epaddr) for
the desired connection.

Returns a bit mask
containing bits defining
the configuration. See
Configuration
Enumerations for a
description of the bits.
out parameter should
point to a uint32_t.

PSM2_INFO_QUERY_THRESH Number of inputs: 3
Input the mq (use:
psm2_info_query_arg_t.mq), the ep
address (use:
psm2_info_query_arg_t.epaddr)
and the specific msg size query (use:
psm2_info_query_arg_t.mstq) for
the desired connection.

Returns the message size
threshold. out
parameter should point
to a uint32_t.

PSM2_INFO_QUERY_DEVICE_NAME Number of inputs: 3
Input the mq (use:
psm2_info_query_arg_t.mq) and the
ep address (use:
psm2_info_query_arg_t.epaddr)
associated with the connection for which
device name is wanted. Also input the
length of the output buffer that will
receive the device name (use:
psm2_info_query_arg_t.length).

Returns the device
name. out parameter
should point to a char
array of length bytes
long.

PSM2_INFO_QUERY_MTU Number of inputs: 2
Input the mq (use:
psm2_info_query_arg_t.mq) and the
ep address (use:
psm2_info_query_arg_t.epaddr) for
the desired connection.

Returns the MTU. out
parameter should point
to a uint32_t.

PSM2_INFO_QUERY_LINK_SPEED Number of inputs: 2
Input the mq (use:
psm2_info_query_arg_t.mq) and the
ep address (use:
psm2_info_query_arg_t.epaddr) for
the desired connection.

Returns the link speed.
out parameter should
point to a uint32_t.

PSM2_INFO_QUERY_NETWORK_TYPE Number of inputs: 1
Input the length of the output buffer that
will receive the output (use:
psm2_info_query_arg_t.length).

Returns the network
type. out parameter
should point to a char
array of length bytes
long.

Configuration Enumerations

The PSM2_INFO_QUERY_CONFIG enumeration defines bit mask values that identify
the configuration of the end point being used for the info query call. Subsequent calls
to info query calls for configuration-specific information should only be sent if the

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 39

configuration indicates that the information applies. See Table 8 for information on the
PSM2_INFO_QUERY_THRESH_ET enumeration that identifies acceptable queries for
each configuration and sub-configuration.

enum psm2_info_query_config {PSM2_INFO_QUERY_CONFIG_IPS,
PSM2_INFO_QUERY_CONFIG_AMSH, PSM2_INFO_QUERY_CONFIG_SELF,
PSM2_INFO_QUERY_CONFIG_CUDA, PSM2_INFO_QUERY_CONFIG_PIO,
PSM2_INFO_QUERY_CONFIG_DMA, PSM2_INFO_QUERY_CONFIG_GDR_COPY}

Table 7. Configuration Enumerators

Enumerator Description

PSM2_INFO_QUERY_CONFIG_IPS The end point corresponds to an HFI device.

PSM2_INFO_QUERY_CONFIG_AMSH The endpoint corresponds to shared memory on the
same host.

PSM2_INFO_QUERY_CONFIG_SELF The endpoint corresponds to a connection for self.

PSM2_INFO_QUERY_CONFIG_CUDA The endpoint is on an NVIDIA* GPU.

PSM2_INFO_QUERY_CONFIG_PIO The endpoint corresponds to an HFI device and PIO
is enabled.

PSM2_INFO_QUERY_CONFIG_DMA The endpoint corresponds to an HFI device and send
DMA is enabled.

PSM2_INFO_QUERY_CONFIG_GDR_COPY The endpoint corresponds to an NVIDIA* GPU, and
GDR copy is enabled.

Threshold Enumerations

These threshold queries are supported for the IPS config only.

psm2_info_query_thresh_et {PSM2_INFO_QUERY_THRESH_IPS_PIO_DMA,
PSM2_INFO_QUERY_THRESH_IPS_TINY,
PSM2_INFO_QUERY_THRESH_IPS_PIO_FRAG_SIZE,
PSM2_INFO_QUERY_THRESH_IPS_DMA_FRAG_SIZE,
PSM2_INFO_QUERY_THRESH_IPS_RNDV}

NOTE

All of the following enumerator constants (PSM2_INFO_QUERY_THRESH_IPS *) apply
to the IPS configuration. Use PSM2_INFO_QUERY_CONFIG to determine if IPS is
associated with the endpoint.

Table 8. Threshold Enumerators

Enumerator Description

PSM2_INFO_QUERY_THRESH_IPS_PIO_DMA Indicates at what message size the send transport
transitions from PIO to DMA. Note that this threshold
query may be meaningless if PIO or DMA is disabled.
Use PSM2_INFO_QUERY_CONFIG to determine if PIO
or DMA is enabled.

PSM2_INFO_QUERY_THRESH_IPS_TINY Messages with messages sizes less than or equal to
the tiny threshold will be sent by tiny message.

continued...

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
40 Doc. No.: H76473, Rev.: 15.0

Enumerator Description

PSM2_INFO_QUERY_THRESH_IPS_PIO_FRAG_SIZE Messages with message sizes greater than tiny, but
less than or equal to frag_size will be sent by short
message. Messages that are greater than the
frag_size, but less than RNDV will be sent by eager
message.

PSM2_INFO_QUERY_THRESH_IPS_DMA_FRAG_SIZE Messages with message sizes greater than tiny, but
less than or equal to frag_size will be sent by short
message. Messages that are greater than the
frag_size, but less than RNDV will be sent by eager
message.

PSM2_INFO_QUERY_THRESH_IPS_RNDV Messages with messages sizes greater than or equal
to RNDV will be sent by the rendezvous protocol
message.

Functions

Table 9. Initialization and Maintenance Functions

Function Description

psm2_init (int *api_verno_major, int
*api_verno_minor)

Initialize PSM2 interface.
For details, see psm2_init.

psm2_finalize (void) Finalize PSM2 interface.
For details, see psm2_finalize.

psm2_error_register_handler (psm2_ep_t
ep, const psm2_ep_errhandler_t
errhandler)

PSM2 error handler registration.
For details, see psm2_error_register_handler.

psm2_error_defer (psm2_error_token_t
err_token)

PSM2 deferred error handler.
For details, see psm2_error_defer.

psm2_error_get_string (psm2_error_t
error)

Get generic error string from error.
For details, see psm2_error_get_string.

Table 10. Query Functions

Function Description

psm2_error_t
psm2_info_query(psm2_info_query_t query,
void *out, size_t nargs,
psm2_info_query_arg_t args[]);

The Query function allows a client to query the psm2
for various information
For details, see psm2_info_query() on page 44.

psm2_init

Syntax

psm2_error_t psm2_init (int *api_verno_major, int
*api_verno_minor)

Call to initialize the PSM2 library for a desired API revision number.

3.1.5

3.1.5.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 41

Parameters

api_verno_major As input, a pointer to an integer that holds
PSM2_VERNO_MAJOR. As output, the pointer is updated with the
major revision number of the loaded library.

api_verno_minor As input, a pointer to an integer that holds
PSM2_VERNO_MINOR. As output, the pointer is updated with the
minor revision number of the loaded library.

Precondition

You have not called any other PSM2 library call except
psm2_error_register_handler to register a global error handler.

Warning

PSM2 initialization is a precondition for all functions used in the PSM2 library.

Returns

PSM2_OK The PSM2 interface could be opened and the
desired API revision can be provided.

PSM2_INIT_BAD_API_VERSION The PSM2 library is not compatible with the desired
API version.

Example

// In this example, we want to handle our own errors before doing init,
// since we don't want a fatal error if Intel® Omni-Path is not found.
// Note that @ref psm2_error_register_handler
// (and @ref psm2_uuid_generate)
// are the only functions that can be called before @ref psm2_init

int try_to_initialize_psm() {
 int verno_major = PSM2_VERNO_MAJOR;
 int verno_minor = PSM2_VERNO_MINOR;
 int err = psm2_error_register_handler(NULL, //Global handler
 PSM2_ERRHANDLER_NO_HANDLER);//return errors
 if (err) {
 fprintf(stderr, "Couldn't register global handler: %s\n",
 psm2_error_get_string(err));
 return -1;
 }

 err = psm2_init(&verno_major, &verno_minor);
 if (err || verno_major > PSM2_VERNO_MAJOR) {
 if (err)
 fprintf(stderr, "PSM2 initialization failure: %s\n",
 psm2_error_get_string(err));
 else
 fprintf(stderr, "PSM2 loaded an unexpected/unsupported "
 "version (%d.%d)\n", verno_major, verno_minor);
 return -1;
 }

 // We were able to initialize PSM2 but defer all further error
 // handling since most of the errors beyond this point are fatal.

 int err = psm2_error_register_handler(NULL, // Global handler

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
42 Doc. No.: H76473, Rev.: 15.0

 PSM2_ERRHANDLER_PSM_HANDLER); //
 if (err) {
 fprintf(stderr, "Couldn't register global errhandler: %s\n",
 psm2_error_get_string(err));
 return -1;
 }
 return 1;
}

psm2_finalize

Syntax

psm2_error_t psm2_finalize (void)

Finalize PSM2 interface. Single call to finalize PSM2 and close all unclosed endpoints.

Postcondition

You guarantee not to make any further PSM2 calls, including psm2_init.

Returns

PSM2_OK Always returns PSM2_OK.

psm2_error_register_handler

Syntax

psm2_error_t psm2_error_register_handler (psm2_ep_t ep, const
psm2_ep_errhandler_t errhandler)

PSM2 error handler registration. Function to register error handlers on a global basis
and on a per-endpoint basis. PSM2_ERRHANDLER_PSM_HANDLER and
PSM2_ERRHANDLER_NO_HANDLER are special pre-defined handlers to respectively
enable use of the default PSM2-internal handler or the no-handler that disables
registered error handling and returns all errors to the caller (both are documented in
PSM2 Error Handling on page 18).

Parameters

ep Handle of the endpoint over which the error handler should be
registered. With ep set to NULL, the behavior of the global error
handler can be controlled.

errhandler Handler to register. Can be a user-specific error handling function or
PSM2_ERRHANDLER_PSM_HANDLER or
PSM2_ERRHANDLER_NO_HANDLER.

Remarks

When ep is set to NULL, this is the only function that can be called before
psm2_init.

3.1.5.2

3.1.5.3

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 43

psm2_error_defer

Syntax

psm2_error_t psm2_error_defer (psm2_error_token_t err_token)

PSM2 deferred error handler.

Function to handle fatal PSM2 errors if no error handler is installed or if you wish to
defer further error handling to PSM2. Depending on the type of error, PSM2 may or
may not return from the function call.

Parameters

err_token Error token initially passed to error handler.

Precondition

The function is called because PSM2 is designated to handle an error case.

Postcondition

The function may or may not return depending on the error.

psm2_error_get_string

Syntax

const char* psm2_error_get_string (psm2_error_t error)

Get generic error string from error. Function to return the default error string
associated to a PSM2 error. While a more detailed and precise error string is usually
available within error handlers, this function is available to obtain an error string out
of an error handler context or when a no-op error handler is registered.

Parameters

error PSM2 error.

psm2_info_query()

The psm2_info_query() function allows a client to query psm2 for various information.

Syntax

psm2_error_t psm2_info_query(psm2_info_query_t, void *out,
 size_t nargs, psm2_info_query_arg_t [])

Parameters

query Identifies the exact information that the client requests. See Table 6 on page
38 for the queries that are supported.

3.1.5.4

3.1.5.5

3.1.5.6

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
44 Doc. No.: H76473, Rev.: 15.0

out Identifies where the psm2_info_query() function will deliver the information
that is requested. See Table 6 on page 38 for the exact type that the out
parameter should point to.

nargs Identifies the number of input arguments. See the input parameter column of
Table 6 on page 38 for the number of input arguments for each query.

args Represents an array of unions that particularly qualify the query. See Table 6
on page 38 for a description of each input argument.

Example

int main(int argc, char **argv){
 psm2_info_query_arg_t args[3];
 uint32_t num_units;

 /* First, test those queries that do not require any initialization. */
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_NUM_UNITS, &num_units, 0, args))
 {
 printf("Number of units: %d\n", num_units);
 }
 else
 {
 printf("Could not get the number of units.\n");
 }
}

See Sample Code on page 88 for a more comprehensive code example.

PSM2 Device Endpoint Management

Data Structures

psm2_ep_open_opts

Endpoint Open Options. These options are available for opening a PSM2 endpoint.
Each is individually documented. Setting each option to -1 or passing NULL as the
options parameter in psm2_ep_open instructs PSM2 to use implementation-defined
defaults.

Additional details are documented in the psm2_ep_open Options section.

Data Fields:

Field Description

int64_t timeout Timeout in nanoseconds to open device.

int unit Intel® Omni-Path Unit ID to open on.
Note: The Intel® PSM2 implementation has a limit of
four (4) HFIs.

int affinity How PSM2 should set affinity.

int shm_mbytes Megabytes used for intra-node communication.

continued...

3.2

3.2.1

3.2.1.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 45

Field Description

int sendbufs_num Preallocated send buffers.

uint64_t network_pkey Network Protection Key (v1.01).

int port Intel® Omni-Path port to use. Range = 1 to N.

int outsl Intel® Omni-Path SL to use when sending packets.

uint64_t service_id Intel® Omni-Path Service ID to use for endpoint.

psm2_path_res_t path_res_type Path resolution type.

int senddesc_num Preallocated send descriptors.

int imm_size Immediate data size for endpoint.

Defines

Table 11. Endpoint Defines

Define Description

#define PSM2_EP_OPEN_AFFINITY_SKIP Disable setting affinity.

#define PSM2_EP_OPEN_AFFINITY_SET Enable setting affinity unless already set.

#define PSM2_EP_OPEN_AFFINITY_FORCE Enable setting affinity regardless of current affinity
setting.

#define PSM2_EP_OPEN_PKEY_DEFAULT Default protection key.

#define PSM2_EP_CLOSE_GRACEFUL Graceful close mode in psm2_ep_close.

#define PSM2_EP_CLOSE_FORCE Forceful close mode in psm2_ep_close.

Typedefs

Table 12. Endpoint Typedefs

Typedef Description

typedef psm2_ep *psm2_ep_t Local endpoint handle (opaque). Handle is returned
when a new local endpoint is created. The handle is
a local handle to be used in all communication
functions and is not intended to globally identify the
opened endpoint in any way.
All open endpoint handles can be globally identified
using the endpoint id integral type (psm2_epid_t)
and all communication must use an endpoint address
(psm2_epaddr_t) that can be obtained by
connecting a local endpoint to one or more endpoint
identifiers.

typedef uint64_t psm2_epid_t Endpoint ID. Integral type of size 8 bytes that can be
used to globally identify a successfully opened
endpoint. Although the contents of the endpoint id

continued...

3.2.2

3.2.3

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
46 Doc. No.: H76473, Rev.: 15.0

Typedef Description

integral type remains opaque, unique network ID
and Intel® Omni-Path port number can be extracted
using psm2_epid_nid and psm2_epid_port.

typedef psm2_epaddr *psm2_epaddr_t Endpoint Address (opaque). Remote endpoint
addresses are created when you bind an endpoint ID
to a particular endpoint handle using
psm2_ep_connect. A given endpoint address is
only guaranteed to be valid over a single endpoint.

typedef uint8_t psm2_uuid_t[16] PSM2 Unique UID (UUID). PSM2 type equivalent to
the DCE-1 uuid_t, used to uniquely identify an
endpoint within a particular job. Since PSM2 does not
participate in job allocation and management, you
must generate a unique ID to associate endpoints to
a particular parallel or collective job. See also:
psm2_uuid_generate.

Functions

Table 13. Endpoint Functions

Function Description

psm2_epid_nid (psm2_epid_t epid) Get Endpoint identifier's Unique Network ID.

psm2_epid_port (psm2_epid_t epid) Get Endpoint identifier's Intel® Omni-Path port.

psm2_epid_context (psm2_epid_t epid) Get Endpoint identifier's Intel® Omni-Path context
number.

psm2_map_nid_hostname(int num, const
uint64_t *nids, const char **hostnames)

Provide a mapping from network ID (LID) to
hostnames.
For details, see psm2_map_nid_hostname.

psm2_ep_num_devunits (uint32_t
*num_units)

List the number of available Intel® Omni-Path units.
For details, see psm2_ep_num_devunits.

psm2_uuid_generate (psm2_uuid_t
uuid_out)

Utility to generate UUIDs for psm2_ep_open.
For details, see psm2_uuid_generate.

psm2_ep_open_opts_get_defaults (struct
psm2_ep_open_opts *opts);

Endpoint open default options.
For details, see psm2_ep_open_opts_get_defaults.

psm2_ep_open (const psm2_uuid_t
unique_job_key, const struct
psm2_ep_open_opts *opts, psm2_ep_t *ep,
psm2_epid_t *epid)

Intel® Omni-Path endpoint creation.
For details, see psm2_ep_open.

psm2_ep_epid_share_memory (psm2_ep_t ep,
psm2_epid_t epid, int *result)

Endpoint shared memory query.
For details, see psm2_ep_epid_share_memory.

psm2_ep_close (psm2_ep_t ep, int mode,
int64_t timeout)

Close endpoint.
For details, see psm2_ep_close.

psm2_ep_connect (psm2_ep_t ep, int
num_of_epid, const psm2_epid_t
*array_of_epid, const int
*array_of_epid_mask, psm2_error_t
*array_of_errors, psm2_epaddr_t
*array_of_epaddr, int64_t timeout)

Connect one or more remote endpoints to a local
endpoint.
For details, see psm2_ep_connect.

continued...

3.2.4

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 47

Function Description

psm2_ep_disconnect (psm2_ep_t ep, int
num_of_epaddr, const psm2_epaddr_t
*array_of_epaddr, const int
*array_of_epaddr_mask, psm2_error_t
*array_of_errors, int64_t timeout)

Disconnect one or more remote endpoints from a
local endpoint.
For details, see psm2_ep_disconnect.

psm2_poll (psm2_ep_t ep) Ensure endpoint communication progress.
For details, see psm2_poll.

psm2_epaddr_setlabel (psm2_epaddr_t
epaddr, const char *epaddr_label_string)

Set a user-determined ep address label.
For details, see psm2_epaddr_setlabel.

psm2_ep_query (int *num_of_epinfo,
psm2_epinfo_t *array_of_epinfo)

Query PSM2 for endpoint information.
For details, see psm2_ep_query.

psm2_ep_epid_lookup (psm2_epid_t epid,
psm2_epconn_t *epconn)

Query PSM2 for endpoint connections.
For details, see psm2_ep_epid_lookup.

psm2_ep_epid_lookup2 (psm2_ep_t ep,
psm2_epid_t epid, psm2_epconn_t *epconn)

Query specified PSM2 endpoint for its connections.
For details, see psm2_ep_epid_lookup2.

psm2_epaddr_to_epid
(psm2_epaddr_to_epid)

Get PSM2 epid for given epaddr.
For details, see psm2_epaddr_to_epid.

psm2_map_nid_hostname

Syntax

psm2_error_t psm2_map_nid_hostname(int num, const uint64_t *nids, const char
**hostnames)

Provide a mapping from Network ID (LID) to hostnames.

Since PSM2 does not assume or rely on the availability of an external network ID-to-
hostname mapping service, users can provide one or more of these mappings. The
psm2_map_nid_hostname function allows a list of network ids to be associated with
hostnames.

This function is not mandatory for correct operation but may allow PSM2 to provide
better diagnostics when remote endpoints are unavailable and can otherwise only be
identified by their Network ID.

Parameters

num Number elements in nid and hostnames arrays.

nids User-provided array of network IDs (that is, Intel® Omni-Path LIDs),
should be obtained by calling psm2_epid_nid on each epid.

hostnames User-provided array of hostnames (array of NULL-terminated strings)
where each hostname index maps to the provided nid hostname.

Warning

Duplicate nids may be provided in the input nids array, only the first corresponding
hostname is remembered.

3.2.4.1

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
48 Doc. No.: H76473, Rev.: 15.0

Precondition

You may or may not have already provided a hostname mappings.

Postcondition

You may free any dynamically allocated memory passed to the function.

psm2_ep_num_devunits

Syntax

psm2_error_t psm2_ep_num_devunits (uint32_t *num_units)

List the number of available Intel® Omni-Path units. Function used to determine the
amount of locally available Intel® Omni-Path units. For N units, valid unit numbers in
psm2_ep_open are 0 to N-1.

Returns

PSM2_OK Unless you have not called psm2_init.

psm2_uuid_generate

Syntax

void psm2_uuid_generate (psm2_uuid_t uuid_out)

Utility to generate UUIDs for psm2_ep_open. This function is available as a utility for
generating unique job-wide ids. See discussion in psm2_ep_open for further
information.

Remarks

This function does not require PSM2 to be initialized.

psm2_ep_open_opts_get_defaults

Syntax

psm2_error_t psm2_ep_open_opts_get_defaults (struct psm2_ep_open_opts *opts);

Function used to initialize the set of endpoint options to their default values for use in
psm2_ep_open.

Parameters

opts Endpoint Open options.

3.2.4.2

3.2.4.3

3.2.4.4

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 49

Warning

For portable operation, you should always call this function prior to calling
psm2_ep_open.

Returns

PSM2_OK If result could be updated.

PSM2_INIT_NOT_INIT If PSM2 has not been initialized.

PSM2_PARAM_ERR If user passes invalid parameters to the API.

psm2_ep_open

Syntax

psm2_error_t psm2_ep_open (const psm2_uuid_t unique_job_key, const
struct psm2_ep_open_opts *opts, psm2_ep_t *ep, psm2_epid_t *epid)

Endpoint creation.

Function used to create a new local communication endpoint on an Intel® Omni-Path
HFI. The returned endpoint handle is required in all PSM2 communication operations,
as PSM2 can manage communication over multiple endpoints. An opened endpoint has
no global context until you connect the endpoint to other global endpoints by way of
psm2_ep_connect. All local endpoint handles are globally identified by endpoint IDs
(psm2_epid_t) which are also returned when an endpoint is opened. It is assumed
that you can provide an out-of-band mechanism to distribute the endpoint IDs in order
to establish connections between endpoints (see psm2_ep_connect for more
information).

Parameters

unique_job_key Endpoint key, to uniquely identify the endpoint's job. You must
ensure that the key is globally unique over a period long enough
to prevent duplicate keys over the same set of endpoints (see
additional details in the following paragraphs).

opts Open options of type psm2_ep_open_opts (see
psm2_ep_open_opts_get_defaults). Note that this
parameter can also be NULL. Refer to the example in psm2_init.

ep User-supplied storage to return a pointer to the newly created
endpoint. The returned pointer of type psm2_ep_t is a local
handle and cannot be used to globally identify the endpoint.

epid User-supplied storage to return the endpoint ID associated to the
newly created local endpoint returned in the ep handle. The
endpoint ID is an integral type suitable for uniquely identifying
the local endpoint.

3.2.4.5

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
50 Doc. No.: H76473, Rev.: 15.0

PSM2 does not internally verify the consistency of the uuid. You must ensure that the
uuid is unique enough not to collide with other currently-running jobs. Use one of the
following mechanisms to obtain a uuid:

1. Use the supplied psm2_uuid_generate utility.

2. Use an OS or library-specific uuid generation utility that complies with OSF DCE
1.1, such as uuid_generate on Linux* or uuid_create on FreeBSD*.

See: http://www.opengroup.org/onlinepubs/009629399/uuid_create.htm.

3. Manually pack a 16-byte string using a utility such as /dev/random or other source
with enough entropy and proper seeding to prevent two nodes from generating
the same uuid_t.

Options

The following options are relevant when opening an endpoint:

• timeout establishes the amount of nanoseconds to wait before failing to open a
port (with -1, defaults to 30 secs).

• unit sets the unit number to use to open a port (with -1, PSM2 determines the
best unit to open the port). If HFI_UNIT is set in the environment, this setting is
ignored.

• affinity enables or disables PSM2 setting processor affinity. The option can be
controlled to either disable (PSM2_EP_OPEN_AFFINITY_SKIP) or enable the
affinity setting only if it is already unset (PSM2_EP_OPEN_AFFINITY_SET) or
regardless of affinity begin set or not (PSM2_EP_OPEN_AFFINITY_FORCE). If
HFI_NO_CPUAFFINITY is set in the environment, this setting is ignored.

• shm_mbytes sets a maximum amount of megabytes that can be allocated to each
local endpoint ID connected through this endpoint (with -1, defaults to 10 MB).

• sendbufs_num sets the number of send buffers that can be pre-allocated for
communication (with -1, defaults to 512 buffers of MTU size).

• network_pkey sets the protection key to employ for point-to-point PSM2
communication. Unless a specific value is used, this parameter should be set to
PSM2_EP_OPEN_PKEY_DEFAULT.

• port sets the Intel® Omni-Path port to use. Range = 1 to N.

• outsl sets the Intel® Omni-Path SL to use when sending packets. Range = 0 to
31. Check with your network administrator for details.

• service_id sets the Intel® Omni-Path Service ID to use for an endpoint. Used
for path resolution. Default is 0x1000117500000000ULL

See PSM2_IB_SERVICE_ID for more details.

• path_res_type sets the path resolution type. Values include:

— PSM2_PATH_RES_NONE (default)

— PSM2_PATH_RES_OPP
— PSM2_PATH_RES_UMAD
See PSM2_PATH_REC for more details.

• senddesc_num sets preallocated send descriptors. Default = 1048576 (1 Million).

See PSM2_MQ_RNDV_HFI_THRESH for more details.

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 51

http://www.opengroup.org/onlinepubs/009629399/uuid_create.htm

• imm_size sets the immediate data send size not requiring a buffer. Default = 128
bytes.

Precondition

Depending on the environment variable PSM2_MULTI_EP being set and its contents,
support for opening multiple endpoints is either enabled or disabled.

Warning

By default, PSM2 limits the user to calling psm2_ep_open only once per process and
subsequent calls will fail. To enable creation of multiple endpoints per process, you
must properly set the environment variable PSM2_MULTI_EP before calling
psm2_init.

Returns

PSM2_PARAM_ERR If user passes invalid parameters to the API.

Example

// In order to open an endpoint and participate in a job, each endpoint has
// to be distributed a unique 16-byte UUID key from an out-of-band source.
// Presumably this can come from the parallel spawning utility either
// indirectly through an implementors own spawning interface or as in this
// example, the UUID is set as a string in an environment variable
// propagated to all endpoints in the job.

int try_to_open_psm2_endpoint(psm2_ep_t *ep, // output endpoint handle
 psm2_epid_t *epid, // output endpoint identifier
 int unit) // unit of our choice
{
 psm2_ep_open_opts epopts;
 psm2_uuid_t job_uuid;
 char *c;

 // Let PSM2 assign its default values to the endpoint options.
 psm2_ep_open_opts_get_defaults(&epopts);

 // We want a stricter timeout and a specific unit
 epopts.timeout = 15*1e9; // 15 second timeout
 epopts.unit = unit; // We want a specific unit, -1 would let PSM2
 // choose the unit for us.
 // We’ve already set affinity, don’t let PSM2 do so if it wants to.
 if (epopts.affinity == PSM2_EP_OPEN_AFFINITY_SET)
 epopts.affinity = PSM2_EP_OPEN_AFFINITY_SKIP;

 // ENDPOINT_UUID is set to the same value in the environment of all the
 // processes that wish to communicate over PSM2 and was generated by
 // the process spawning utility.
 c = getenv("ENDPOINT_UUID");
 if (c && *c)
 implementor_string_to_16byte_packing(c, job_uuid);
 else {
 fprintf(stderr, "Can't find UUID for endpoint\n);
 return -1;
 }

 // Assume we don't want to handle errors here.
 psm2_ep_open(job_uuid, &epopts, ep, epid);
 return 1;
}

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
52 Doc. No.: H76473, Rev.: 15.0

psm2_ep_epid_share_memory

Syntax

psm2_error_t psm2_ep_epid_share_memory (psm2_ep_t ep, psm2_epid_t
epid, int *result)

Endpoint shared memory query. Function used to determine if a remote endpoint
shares memory with a currently opened local endpoint.

Parameters

ep Endpoint handle.

epid Endpoint ID.

result Is non-zero if the remote endpoint shares memory with the local endpoint
ep, or zero otherwise.

Returns

PSM2_OK If result could be updated.

PSM2_EPID_UNKNOWN If the epid is not recognized.

psm2_ep_close

Syntax

psm2_error_t psm2_ep_close (psm2_ep_t ep, int mode, int64_t timeout)

Close endpoint.

Parameters

ep Endpoint handle.

mode One of PSM2_EP_CLOSE_GRACEFUL or PSM2_EP_CLOSE_FORCE.

If mode is PSM2_EP_CLOSE_GRACEFUL, before closing the endpoint, the
function attempts to disconnect from any other endpoints that are
connected, and also waits for connected endpoints to disconnect. If the
timeout is reached and there are still unresolved open connections, the
endpoint is closed as if mode was set to PSM2_EP_CLOSE_FORCE.

If mode is PSM2_EP_CLOSE_FORCE, the endpoint is closed without
ensuring that any open connections are successfully disconnected.

3.2.4.6

3.2.4.7

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 53

timeout How long to wait in nanoseconds for negotiated disconnects to succeed. If
mode is PSM2_EP_CLOSE_GRACEFUL, 0 waits forever. -1 lets the function
decide using an internal heuristic. If mode is PSM2_EP_CLOSE_FORCE, this
parameter is ignored.

The following error is returned, others are handled by the per-endpoint error handler:

Returns

PSM2_OK Endpoint was successfully closed without force or successfully closed with
force within the supplied timeout.

psm2_ep_connect

Syntax

psm2_error_t psm2_ep_connect (psm2_ep_t ep, int num_of_epid, const
psm2_epid_t *array_of_epid, const int *array_of_epid_mask,
psm2_error_t *array_of_errors, psm2_epaddr_t *array_of_epaddr,
int64_t timeout)

Connect one or more remote endpoints to a local endpoint. Function to non-
collectively establish a connection to a set of endpoint IDs and translate endpoint IDs
into endpoint addresses. Establishing a remote connection with a set of remote
endpoint IDs does not imply a collective operation and you are free to connect unequal
sets on each process. Similarly, a given endpoint address does not imply that a
pairwise communication context exists between the local endpoint and remote
endpoint.

Parameters

ep Endpoint handle.

num_of_epid The number of endpoints to connect to, which also
establishes the amount of elements contained in all of the
function's array-based parameters.

array_of_epid User-allocated array that contains num_of_epid valid
endpoint identifiers. Each endpoint id (or epid) has been
obtained through an out-of-band mechanism and each
endpoint must have been opened with the same uuid key.

array_of_epid_mask User-allocated array that contains num_of_epid integers.
This array of masks allows users to select which of the epids
in array_of_epid should be connected. If the integer at
index i is zero, PSM2 does not attempt to connect to the epid
at index i in array_of_epid. If this parameter is NULL,
PSM2 tries to connect to each epid.

array_of_errors User-allocated array of at least num_of_epid elements. If
the function does not return PSM2_OK, this array can be
consulted for each endpoint not masked off by

3.2.4.8

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
54 Doc. No.: H76473, Rev.: 15.0

array_of_epid_mask to know why the endpoint could not
be connected. Endpoints that could not be connected
because of an unrelated failure are marked as
PSM2_EPID_UNKNOWN. If the function returns PSM2_OK, the
errors for all endpoints also contain PSM2_OK.

array_of_epaddr User-allocated array of at least num_of_epid elements of
type psm2_epaddr_t. Each successfully connected endpoint
is updated with an endpoint address handle that corresponds
to the endpoint id at the same index in array_of_epid.
Handles are only updated if the endpoint could be connected
and if its error in array_of_errors is PSM2_OK.

timeout Timeout in nanoseconds after which connection attempts are
abandoned. Setting this value to 0 disables timeout and
waits until all endpoints have been successfully connected or
until an error is detected.

Precondition

You have opened a local endpoint and obtained a list of endpoint IDs to connect to a
given endpoint handle using an out-of-band mechanism not provided by PSM2.

Postcondition

If the connect is successful, array_of_epaddr is updated with valid endpoint
addresses.

If unsuccessful, you can query the return status of each individual remote endpoint in
array_of_errors.

You can call into psm2_ep_connect many times with the same endpoint ID and the
function is guaranteed to return the same output parameters. PSM2 does not keep any
reference to the arrays passed into the function and the caller is free to deallocate
them.

The error value with the highest importance is returned by the function if some portion
of the communication failed. Users should always refer to individual errors in
array_of_errors whenever the function cannot return PSM2_OK.

Returns

PSM2_OK The entire set of endpoint IDs were successfully connected and endpoint
addresses are available for all endpoint IDs.

Example

int connect_endpoints(psm2_ep_t ep, int numep, const psm2_epid_t
 *array_of_epid, psm2_epaddr_t
**array_of_epaddr_out)
{
 psm2_error_t *errors = (psm2_error_t *)
 calloc(numep, sizeof(psm2_error_t));
 if (errors == NULL)

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 55

 return -1;

 psm2_epaddr_t *all_epaddrs =
 (psm2_epaddr_t *) calloc(numep, sizeof(psm2_epaddr_t));
 if (all_epaddrs == NULL)
 return -1;
 psm2_ep_connect(ep, numep, array_of_epid,
 NULL, // We want to connect all epids, no mask needed
 errors,
 all_epaddrs,
 30*e9); // 30 second timeout, <1 ns is forever
 *array_of_epaddr_out = all_epaddrs; free(errors);
 return 1;
}

psm2_ep_disconnect

Syntax

psm2_error_t psm2_ep_disconnect (psm2_ep_t ep, int num_of_epaddr,
psm2_epaddr_t *array_of_epaddr, const int *array_of_epaddr_mask,
psm2_error_t *array_of_errors, int64_t timeout)

Disconnect one or more remote endpoints from a local endpoint. Function to non-
collectively disconnect a connection to a set of endpoint addresses and free each of
the endpoint addresses if there are no incoming connections to that endpoint address.
After disconnecting, the application cannot send messages to the remote processes
again and PSM2 is restored back to the state before calling psm2_ep_connect. The
application must call psm2_ep_connect to establish the connections again.

Parameters

ep Endpoint handle.

num_of_epaddr The number of endpoint addresses to disconnect from,
which also indicates the amount of elements contained in
all of the function's array-based parameters.

array_of_epaddr User-allocated array that contains num_of_epaddr valid
endpoint addresses. Each endpoint address (or epaddr)
has been obtained through a previous psm2_ep_connect
call.

array_of_epaddr_mask User-allocated array that contains num_of_epaddr
integers. This array of masks allows users to select which
of the epaddresses in array_of_epaddr should be
disconnected. If the integer at index i is zero, PSM2 does
not attempt to disconnect to the epaddr at index i in
array_of_epaddr. If this parameter is NULL, PSM2 tries
to disconnect all epaddr in array_of_epaddr.

array_of_errors User-allocated array of at least num_of_epaddr
elements. If the function does not return PSM2_OK, this
array can be consulted for each endpoint address not
masked off by array_of_epaddr_mask to know why the

3.2.4.9

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
56 Doc. No.: H76473, Rev.: 15.0

endpoint could not be disconnected. Any endpoint address
that could not be disconnected because of an unrelated
failure is marked as PSM2_EPID_UNKNOWN. If the function
returns PSM2_OK, the errors for all endpoint addresses
also contain PSM2_OK.

timeout Timeout in nanoseconds after which disconnection
attempts are abandoned. Setting this value to 0 disables
timeout and waits until all endpoints have been
successfully disconnected or until an error is detected.

Precondition

You have established the connections with previous psm2_ep_connect calls.

Postcondition

If the disconnect is successful, the corresponding epaddr in array_of_epaddr is
reset to NULL pointer.

If unsuccessful, you can query the return status of each individual remote endpoint in
array_of_errors.

PSM2 does not keep any reference to the arrays passed into the function and the
caller is free to deallocate them.

The error value with the highest importance is returned by the function if some portion
of the communication failed. Refer to individual errors in array_of_errors
whenever the function cannot return PSM2_OK.

Returns

PSM2_OK The entire set of endpoint IDs were successfully disconnected and endpoint
addresses are freed by PSM2.

Example

int disconnect_endpoints(psm2_ep_t ep, int num_epaddr, const psm2_epaddr_t
 *array_of_epaddr)
{
 psm2_error_t *errors = (psm2_error_t *)
 calloc(num_epaddr, sizeof(psm2_error_t));
 if (errors == NULL)
 return -1;

 psm2_ep_disconnect(ep, num_epaddr, array_of_epaddr,
 NULL, // We want to disconnect all epaddrs, no mask needed,
 errors,
 30*e9); // 30 second timeout, <1 ns is forever

 free(errors);
 return 1;
}

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 57

psm2_poll

Syntax

psm2_error_t psm2_poll (psm2_ep_t ep)

Ensure endpoint communication progress.

Function to ensure progress for all PSM2 components instantiated on an endpoint
(currently, this only includes the MQ component). The function never blocks and is
typically required in two cases:

• Allowing all PSM2 components instantiated over a given endpoint to make
communication progress. Refer to MQ Progress Requirements on page 34 for a
detailed discussion on MQ-level progress issues.

• Cases where users write their own synchronization primitives that depend on
remote communication, such as spinning on a memory location whose new value
depends on ongoing communication.

The poll function does not block, but you can rely on the PSM2_OK_NO_PROGRESS
return value to control polling behavior in terms of frequency (poll until an event
happens) or execution environment (poll for a while but yield to other threads of CPUs
are oversubscribed).

Returns

PSM2_OK Some communication events were progressed.

PSM2_OK_NO_PROGRESS Polling did not yield any communication progress.

psm2_epaddr_setlabel

Syntax

void psm2_epaddr_setlabel (psm2_epaddr_t epaddr, const char *epaddr_label_string)

Set a user-determined ep address label.

Parameters

epaddr Endpoint address, obtained from psm2_ep_connect.

epaddr_label_string User-allocated string to print when identifying endpoint in
error handling or other verbose printing. You must allocate
the NULL-terminated string since PSM2 only keeps a
pointer to the label. If you do not explicitly set a label for
each endpoint, endpoints identify themselves as
hostname:port.

3.2.4.10

3.2.4.11

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
58 Doc. No.: H76473, Rev.: 15.0

psm2_ep_query

Syntax

psm2_error_t psm2_ep_query(int *num_of_epinfo, psm2_epinfo_t *array_of_epinfo)

Function to query PSM2 for endpoint information. This allows retrieval of endpoint
information in cases where the caller does not have access to the results of
psm2_ep_open. In the default single-rail mode, PSM2 uses a single endpoint. If either
multi-rail mode or multi-endpoint mode is enabled, PSM2 uses multiple endpoints.

Parameters

num_of_epinfo On input, sizes the available number of entries in
array_of_epinfo.

On output, specifies the returned number of entries in
array_of_epinfo.

array_of_epinfo Returns endpoint information structures.

Precondition

PSM2 is initialized and the endpoint has been opened.

Returns

PSM2_OK Indicates success.

PSM2_PARAM_ERR If input num_if_epinfo is less than or equal to zero.

PSM2_EP_WAS_CLOSED If PSM2 endpoint is closed or does not exist.

psm2_ep_epid_lookup

Syntax

psm2_error_t psm2_ep_epid_lookup(psm2_epid_t epid, psm2_epconn_t *epconn)

Function to query PSM2 for endpoint connections. This allows retrieval of endpoint
connections in cases where the caller does not have access to the results of
psm2_ep_connect. The epid values can be found using psm2_ep_query so that
each PSM2 process can determine its own epid. These values can then be distributed
across the PSM2 process so that each PSM process knows the epid for all other PSM2
processes.

Parameters

epid Endpoint ID of a PSM2 process.

epconn Returns connection information for the specified PSM2 process.

3.2.4.12

3.2.4.13

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 59

Precondition

PSM2 is initialized and the endpoint has been connected to this epid.

Returns

PSM2_OK Indicates success.

PSM2_EP_WAS_CLOSED If PSM2 endpoint is closed or does not exist.

PSM2_EPID_UNKNOWN If the epid is not recognized.

psm2_ep_epid_lookup2

Syntax

psm2_error_t psm2_ep_epid_lookup2(psm2_ep_t ep, psm2_epid_t epid, psm2_epconn_t
*epconn)

Function to query PSM2 endpoint for its connections.

NOTE

This function is similar to psm2_ep_epid_lookup, however, it contains an extra
endpoint parameter which limits the lookup to that single ep.

Parameters

ep PSM2 endpoint handle.

epid Endpoint ID of a PSM2 process.

epconn Returns connection information for the specified PSM2 process.

Returns

PSM2_OK Indicates success.

PSM2_EP_WAS_CLOSED If PSM2 endpoint is closed or does not exist.

PSM2_EPID_UNKNOWN If the epid is not recognized.

PSM2_PARAM_ERR If output epconn is NULL.

psm2_epaddr_to_epid

Syntax

psm2_error_t psm2_epaddr_to_epid(psm2_epaddr_t epaddr, psm2_epid_t *epid)

3.2.4.14

3.2.4.15

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
60 Doc. No.: H76473, Rev.: 15.0

Get PSM2 epid for given epaddr.

Parameters

epaddr Endpoint address.

epid Returns endpoint ID of a PSM2 process.

Returns

PSM2_OK Indicates success.

PSM2_PARAM_ERR If input epaddr or output epconn is NULL.

PSM2 Matched Queues

Modules

PSM2 Matched Queue Options.

Data Structures

Table 14. Matched Queues Data Structures

Data Structure Description

psm2_mq_status MQ Non-blocking operation status structure.
For details, see psm2_mq_status on page 61.

psm2_mq_stats MQ statistics structure.
For details, see MQ Statistics Structure on page 62.

psm2_tag_t MQ 96-bit tag structure
For details, see psm2_tag_t on page 62.

psm2_mq_status2_t MQ status structure for 96-bit (psm2_tag_t) non-
blocking operations.
For details, see psm2_mq_status2 on page 63.

psm2_mq_status

 struct psm2_mq_status

MQ Non-blocking operation status structure

Message completion status for asynchronous communication operations. For wait and
test functions, MQ fills in the structure upon completion. Upon completion, receive
requests fill in every field of the status structure while send requests only return a
valid error_code and context pointer.

Data Fields:

3.3

3.3.1

3.3.2

3.3.2.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 61

Field Description

uint64_t msg_tag Sender's original message tag (receive reqs only).

uint32_t msg_length Sender's original message length (receive reqs only).

uint32_t nbytes Actual number of bytes transferred (receive reqs
only).

psm2_error_t error_code MQ error code for communication operation.

void *context User-associated context for send or receive.

MQ Statistics Structure

struct psm2_mq_stats

MQ statistics structure

Data Fields:

Field Description

uint64_t rx_user_bytes Bytes received into a matched user buffer.

uint64_t rx_user_num Messages received into a matched user buffer.

uint64_t rx_sys_bytes Bytes received into an unmatched system buffer.

uint64_t rx_sys_num Messages received into an unmatched system buffer.

uint64_t tx_num Total Messages transmitted (shm and hfi).

uint64_t tx_eager_num Messages transmitted eagerly.

uint64_t tx_eager_bytes Bytes transmitted eagerly.

uint64_t tx_rndv_num Messages transmitted using expected TID
mechanism.

uint64_t tx_rndv_bytes Bytes transmitted using expected TID mechanism.

uint64_t tx_shm_num Messages transmitted (shm only).

uint64_t rx_shm_num Messages received through shm.

uint64_t rx_sysbuf_num Number of system buffers allocated.

uint64_t rx_sysbuf_bytes Bytes allocated for system buffers

uint64_t _reserved[16] Internally reserved for future use.

psm2_tag_t

struct psm2_tag_t

MQ 96-bit tag structure

Data Fields:

Field Description

uint32_t tag[3] Message tag bits. The backwards-compatible 64-bit
component of the tag is stored in tag[0] and tag[1].

3.3.2.2

3.3.2.3

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
62 Doc. No.: H76473, Rev.: 15.0

psm2_mq_status2

struct psm2_mq_status2

MQ Non-blocking operation status structure

Message completion status for asynchronous communication operations. For wait and
test functions, MQ fills in the structure upon completion. Upon completion, receive
requests fill in every field of the status structure while send requests only return a
valid error_code and context pointer.

Data Fields:

Field Description

psm2_epaddr_t msg_peer Remote peer's epaddr.

psm2_mq_tag_t msg_tag Sender's original message tag.

uint32_t msg_length Sender's original message length (receive reqs only).

uint32_t nbytes Actual number of bytes transferred (receive reqs
only).

psm2_error_t error_code MQ error code for communication operation.

void * context User-associated context for send or receive.

Defines

Table 15. Matched Queues Defines

#define PSM2_MQ_ORDERMASK_NONE Reserved for future tag order mask support.

#define PSM2_MQ_ORDERMASK_ALL Reserved for future tag order mask support.

#define PSM2_MQ_FLAG_SENDSYNC MQ Send Force synchronous send.

#define PSM2_MQ_REQINVALID MQ request completion value.

#define PSM2_MQ_NUM_STATS How many stats are currently used in
psm2_mq_stats.

#define PSM2_MQ_ANY_ADDR psm2_epaddr_t that matches any epaddr in the MQ.

Typedefs

Typedef Description

typedef psm2_mq *psm2_mq_t MQ handle (opaque). Handle returned when a new
Matched Queue is created (psm2_mq_init).

typedef struct psm2_mq_status
psm2_mq_status_t

MQ Non-blocking operation status for 64-bit tagged
operations. Message completion status for
asynchronous communication operations. For wait
and test functions, MQ fills in the structure upon
completion. Other than error_code and context
guaranteed to be valid for send and recv operations,
other struct members are only defined for posted
receives.

continued...

3.3.2.4

3.3.3

3.3.4

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 63

Typedef Description

typedef struct psm2_mq_status2
psm2_mq_status_t

MQ Non-blocking operation status for 96-bit tagged
operations. Message completion status for
asynchronous communication operations. For wait
and test functions, MQ fills in the structure upon
completion. Other than error_code and context
guaranteed to be valid for send and recv operations,
other struct members are only defined for posted
receives.

typedef struct psm2_mq_stats
psm2_mq_stats_t

Statistics for messages send and received over a
given MQ.

typedef psm2_mq_req *psm2_mq_req_t PSM2 Communication handle (opaque).

Functions

Table 16. Matched Queue Functions

Function Description

psm2_mq_init (psm2_ep_t ep, uint64_t
ignored, const struct psm2_optkey *opts,
int numopts, psm2_mq_t *mq)

Initialize the MQ component for MQ communication.
For details, see psm2_mq_init.

psm2_mq_finalize (psm2_mq_t mq) Finalize (close) an MQ handle.
For details, see psm2_mq_finalize.

psm2_mq_irecv (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, uint32_t flags,
void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection
criteria.
For details, see psm2_mq_irecv.

psm2_mq_irecv2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, uint32_t flags,
void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection
criteria, it only matches message from the specified
src process. Source matching is optional. Uses 96-bit
psm2_mq_tag_t instead of 64-bit tag.
For details, see psm2_mq_irecv2.

psm2_mq_send (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
uint64_t stag, const void *buf, uint32_t
len)

Send a blocking MQ message.
For details, see psm2_mq_send.

psm2_mq_send2 (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
psm2_mq_tag_t *stag, const void *buf,
uint32_t len)

Send a blocking MQ message.
For details, see psm2_mq_send2.

psm2_mq_isend (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
uint64_t stag, const void *buf, uint32_t
len, void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message.
For details, see psm2_mq_isend.

psm2_mq_isend2 (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
psm2_mq_tag_t *stag, const void *buf,
uint32_t len, void *context,
psm2_mq_req_t *req)

Send a non-blocking MQ message.
For details, see psm2_mq_isend2.

psm2_mq_iprobe (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, psm2_mq_status_t
*status)

Try to probe if a message is received to match tag
selection criteria.
For details, see psm2_mq_iprobe.

continued...

3.3.5

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
64 Doc. No.: H76473, Rev.: 15.0

Function Description

psm2_mq_iprobe2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel,
psm2_mq_status2_t *status)

Try to probe if a message from the specified src
process is received to match tag selection criteria.
Source matching is optional. Uses 96-bit
psm2_mq_tag_t instead of 64-bit tag.
For details, see psm2_mq_iprobe2.

psm2_mq_improbe (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, psm2_mq_req_t
*req, psm2_mq_status_t *status)

Probe for a matching message, and if found, remove
the message from the MQ; the message can be
retrieved through the req.
For details, see psm2_mq_improbe.

psm2_mq_improbe2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, psm2_mq_req_t
*req, psm2_mq_status2_t *status)

Probe for a matching message, and if found, remove
the message from the MQ; the message can be
retrieved through the req.
For details, see psm2_mq_improbe2.

psm2_mq_imrecv(psm2_mq_t mq, uintew_t
flags, void *buf, uint32_t len, void
*context, psm2_mq_req_t *req)

Retrieves both 64-bit and 96-bit tagged messages,
through the psm2_mq_req_t, matched by a previous
call to psm2_mq_improbe() or
psm2_mq_improbe2().
For details, see psm2_mq_imrecv.

psm2_mq_ipeek (psm2_mq_t mq,
psm2_mq_req_t *req, psm2_mq_status_t
*status)

Query for non-blocking requests ready for
completion.
For details, see psm2_mq_ipeek.

psm2_mq_ipeek2 (psm2_mq_t mq,
psm2_mq_req_t *req, psm2_mq_status2_t
*status)

Query for 96-bit psm2_mq_tag_t nonblocking
requests ready for completion.
For details, see psm2_mq_ipeek2.

psm2_mq_wait (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Wait until a non-blocking request completes.
For details, see psm2_mq_wait.

psm2_mq_wait2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Wait until a 96-bit psm2_mq_tag_t non-blocking
request completes.
For details, see psm2_mq_wait2.

psm2_mq_test (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Test if a non-blocking request is complete.
For details, see psm2_mq_test.

psm2_mq_test2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Test if a 96-bit psm2_mq_tag_t non-blocking request
completes.
For details, see psm2_mq_test2.

psm2_mq_cancel (psm2_mq_req_t *req) Cancel a preposted request.
For details, see psm2_mq_cancel.

psm2_mq_get_stats (psm2_mq_t mq,
psm2_mq_stats_t *stats)

Retrieve statistics from an instantiated MQ.
For details, see psm2_mq_get_stats.

psm2_mq_init

Syntax

psm2_error_t psm2_mq_init (psm2_ep_t ep, uint64_t ignored,
const struct psm2_optkey *opts, int numopts, psm2_mq_t *mq)

Initialize the MQ component for MQ communication. This function provides the
Matched Queue handle necessary to perform all Matched Queue communication
operations.

3.3.5.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 65

Parameters

ep Endpoint over which to initialize Matched Queue.

ignored This parameter is ignored in psm2_mq_init(). A future version of
psm2_mq_init() may support a tag order mask functionality.

opts Set of options for Matched Queue.

numopts Number of options passed.

mq User-supplied storage to return the Matched Queue handle associated to
the newly created Matched Queue.

Parameters

This function can be called many times to retrieve the MQ handle associated to an
endpoint, but options are only considered the first time the function is called.

Postcondition

You obtain a handle to an instantiated Match Queue.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK A new Matched Queue has been instantiated across all the members of the
group.

Example

int try_open_endpoint_and_initialize_mq(
 psm2_ep_t *ep, // endpoint handle
 psm2_epid_t *epid, // unique endpoint ID
 psm2_uuid_t job_uuid, // unique job uuid, for ep_open
 psm2_mq_t *mq, // MQ handle initialized on endpoint 'ep'
 uint64_t communicator_bits) // Where we store our communicator or
 // context bits in the 64-bit tag.
{
 // Simplifed open, see psm2_ep_open documentation for more info
 psm2_ep_open(job_uuid,
 NULL, // no options
 ep, epid);

 // We initialize a matched queue by telling PSM2 the bits that are
 // order-significant in the tag. Point-to-point ordering is not
 // maintained between senders where the communicator bits are not
 // the same.
 psm2_mq_init(ep,
 communicator_bits,
 NULL, // no other MQ options
 0, // 0 options passed
 mq); // newly initialized matched Queue

 return 1;
}

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
66 Doc. No.: H76473, Rev.: 15.0

psm2_mq_finalize

Syntax

psm2_error_t psm2_mq_finalize (psm2_mq_t mq)

Finalize (close) an MQ handle.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK A given Matched Queue has been freed and use of the future use of the
handle produces undefined results.

psm2_mq_irecv

Syntax

psm2_error_t psm2_mq_irecv (psm2_mq_t mq, uint64_t rtag,
uint64_t rtagsel, uint32_t flags, void *buf, uint32_t len,
void *context, psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection criteria. Function to receive a
non- blocking MQ message by providing a preposted buffer. For every MQ message
received on a particular MQ, the tag and tagsel parameters are used against the
incoming message's send tag as described in MQ Tag Matching on page 31.

Parameters

mq Matched Queue handle.

rtag Receive tag.

rtagsel Receive tag selector.

flags Receive flags (None currently supported).

buf Receive buffer.

len Receive buffer length.

context User context pointer, available in psm2_mq_status_t upon completion.

req PSM2 MQ Request handle created by the preposted receive, to be used for
explicitly controlling message receive completion.

Precondition

The supplied receive buffer is given to MQ to match against incoming messages unless
it is cancelled via psm2_mq_cancel before any match occurs.

3.3.5.2

3.3.5.3

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 67

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The receive buffer has successfully been posted to the MQ.

psm2_mq_irecv2

Syntax

psm2_error_t psm2_mq_irecv2 (psm2_mq_t mq, psm2_epaddr_t src,
psm2_mq_tag_t *rtag, psm2_mq_tag_t *rtagsel, uint32_t flags, void
*buf, uint32_t len, void *context, psm2_mq_req_t *req)

Post a receive to a Matched Queue with source and tag selection criteria. Function to
receive a nonblocking MQ message by providing a preposted buffer. Only for every MQ
message received from the specified source process on a particular MQ, the src, tag,
and tagsel parameters are used against the incoming message's send tag as
described in MQ Tag Matching on page 31.

If argument src is NULL pointer, then every MQ message received from any process is
used to do the matching, which is equivalent to psm2_mq_irecv.

Parameters

mq Matched Queue handle.

src Source EP address; PSM2_MQ_ANY_ADDR can allow a match on any sender.

rtag Receive tag pointer.

rtagsel Receive tag selector pointer.

flags Receive flags (None currently supported).

buf Receive buffer.

len Receive buffer length.

context User context pointer, available in psm2_mq_status2_t upon completion.

req PSM2 MQ Request handle created by the preposted receive, to be used for
explicitly controlling message receive completion.

3.3.5.4

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
68 Doc. No.: H76473, Rev.: 15.0

Postcondition

The supplied receive buffer is given to MQ to match against incoming messages unless
it is cancelled via psm2_mq_cancel before any match occurs.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The receive buffer has successfully been posted to the MQ.

psm2_mq_send

Syntax

psm2_error_t psm2_mq_send (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, uint64_t stag, const void *buf, uint32_t len)

Send a blocking MQ message. Function to send a blocking MQ message, whereby the
message is locally complete and the source data can be modified upon return.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it
has matched the send with a receive buffer.

stag Message Send Tag.

buf Source buffer pointer.

len Length of message starting at buf.

Postcondition

The source buffer is reusable and the send is locally complete.

NOTE

This send function has been implemented to best suit MPI_Send.

3.3.5.5

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 69

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully sent.

psm2_mq_send2

Syntax

psm2_error_t psm2_mq_send2 (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, psm2_mq_tag_t *stag, const void *buf, uint32_t len)

Send a blocking MQ message. Function to send a blocking MQ message, whereby the
message is locally complete and the source data can be modified upon return.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it
has matched the send with a receive buffer.

stag Message Send Tag pointer.

buf Source buffer pointer.

len Length of message starting at buf.

Postcondition

The source buffer is reusable and the send is locally complete.

NOTE

This send function has been implemented to best suit MPI_Send.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

3.3.5.6

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
70 Doc. No.: H76473, Rev.: 15.0

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully sent.

psm2_mq_isend

Syntax

psm2_error_t psm2_mq_isend (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, uint64_t stag, const void *buf, uint32_t len,
void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message. Function to initiate the send of a non-blocking MQ
message. You must ensure that the source data remains unmodified until the send is
locally completed through a call such as psm2_mq_wait or psm2_mq_test.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that
it has matched the send with a receive buffer.

stag Message Send Tag.

buf Source buffer pointer.

len Length of message starting at buf.

context Optional user-provided pointer available in psm2_mq_status_t when the
send is locally completed.

req PSM2 MQ Request handle created by the non-blocking send, to be used for
explicitly controlling message completion.

Postcondition

The source buffer is not reusable and the send is not locally complete until its request
is completed by either psm2_mq_test or psm2_mq_wait.

NOTE

This send function has been implemented to suit MPI_Isend.

3.3.5.7

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 71

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully initiated.

Example

psm2_mq_req_t
non_blocking_send(const psm2_mq_t mq, psm2_epaddr_t dest_ep,
 const void *buf, uint32_t len,
 int context_id, int send_tag, const my_request_t *req)
{
 psm2_mq_req_t req_mq;
 // Set up our send tag, assume that "my_rank" is global and
 // represents the rank of this process in the job
 uint64_t tag = (((context_id & 0xffff) << 48) |
 ((my_rank & 0xffff) << 32) |
 ((send_tag & 0xffffffff)));

 psm2_mq_isend(mq, dest_ep,
 0, // no flags
 tag,
 buf,
 len,
 req, // this req is available in psm2_mq_status_t when one
 // of the synchronization functions is called.
 &req_mq);
 return req_mq;
}

psm2_mq_isend2

Syntax

psm2_error_t psm2_mq_isend2 (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, psm2_mq_tag_t *stag, const void *buf, uint32_t len,
void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message. Function to initiate the send of a non-blocking MQ
message. You must ensure that the source data remains unmodified until the send is
locally completed through a call such as psm2_mq_wait2 or psm2_mq_test2.

Parameters

mq Matched Queue handle.

dest Destination EP address.

flags Message flags, currently:

3.3.5.8

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
72 Doc. No.: H76473, Rev.: 15.0

PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that
it has matched the send with a receive buffer.

stag Message Send Tag pointer.

buf Source buffer pointer.

len Length of message starting at buf.

context Optional user-provided pointer available in psm2_mq_status2_t when the
send is locally completed.

req PSM2 MQ Request handle created by the non-blocking send, to be used for
explicitly controlling message completion.

Postcondition

The source buffer is not reusable and the send is not locally complete until its request
is completed by either psm2_mq_test2 or psm2_mq_wait2.

NOTE

This send function has been implemented to suit MPI_Isend.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The message has been successfully initiated.

psm2_mq_iprobe

Syntax

psm2_error_t psm2_mq_iprobe (psm2_mq_t mq, uint64_t rtag,
uint64_t rtagsel, psm2_mq_status_t *status)

Try to probe if a message is received to match tag selection criteria.

Function to verify whether a message matching the supplied tag and tag selectors has
been received. The function is not fully matched until you provide a buffer with the
successfully matching tag selection criteria through psm2_mq_irecv. Probing for
messages may be useful if the size of the message to be received is unknown, in
which case its size is available in the msg_length member of the returned status.

3.3.5.9

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 73

Parameters

mq Matched Queue handle.

rtag Message receive tag.

rtagsel Message receive tag selector.

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The iprobe is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The iprobe is unsuccessful and status is unchanged.

psm2_mq_iprobe2

Syntax

psm2_error_t psm2_mq_iprobe2 (psm2_mq_t mq, psm2_epaddr_t src,
psm2_mq_tag_t *rtag, psm2_mq_tag_t *rtagsel, psm2_mq_status2_t *status);

Try to probe if a message is received to match tag selection criteria. If src is
PSM2_MQ_ANY_ADDR, messages from all remote processes are used for the matching.

Function to verify whether a message matching the supplied tag and tag selectors has
been received. The function is not fully matched until you provide a buffer with the
successfully matching tag selection criteria through psm2_mq_irecv2. Probing for
messages may be useful if the size of the message to be received is unknown, in
which case its size is available in the msg_length member of the returned status.

Parameters

mq Matched Queue handle.

src Source EP address.

rtag Message receive tag pointer.

rtagsel Message receive tag selector pointer.

3.3.5.10

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
74 Doc. No.: H76473, Rev.: 15.0

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The iprobe2 is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The iprobe2 is unsuccessful and status is unchanged.

psm2_mq_improbe

Syntax

psm2_mq_improbe (psm2_mq_t mq, uint64_t rtag, uint64_t rtagsel,
psm2_mq_req_t *req, psm2_mq_status_t *status)

Probe for a matching message, and if found, remove the message from the MQ; the
message can be retrieved through the req.

Parameters

mq Matched Queue handle.

rtag Message receive tag.

rtagsel Message receive tag selector.

req PSM2 MQ Request handle, to be used for receiving the matched message.

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

3.3.5.11

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 75

PSM2_OK The improbe is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The improbe is unsuccessful and status is unchanged.

psm2_mq_improbe2

Syntax

psm2_mq_improbe2 (psm2_mq_t mq, psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, psm2_mq_req_t *req, psm2_mq_status2_t *status)

Probe for a matching message, and if found, remove the message from the MQ; the
message can be retrieved through the req.

Parameters

mq Matched Queue handle.

rtag Message receive tag pointer.

rtagsel Message receive tag selector pointer.

req PSM2 MQ Request handle, to be used for receiving the matched message.

status Upon return, status is filled with information regarding the matching send.

Remarks

• Function ensures progress if matching request was not found after the first
attempt.

• This function may be called simultaneously from multiple threads as long as
different MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The improbe2 is successful and status is updated if non-
NULL.

PSM2_MQ_INCOMPLETE The improbe2 is unsuccessful and status is unchanged.

psm2_mq_imrecv

Syntax

psm2_mq_imrecv (psm2_mq_t mq, uintew_t flags, void *buf,
uint32_t len, void *context, psm2_mq_req_t *req)

3.3.5.12

3.3.5.13

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
76 Doc. No.: H76473, Rev.: 15.0

psm2_mq_imrecv() retrieves both 64-bit and 96-bit tagged messages through the
req handle returned by the appropriate improbe function.

Parameters

mq Matched Queue handle.

flags Receive flags (None currently supported).

buf Receive buffer.

len Receive buffer length.

context User context pointer, available in psm2_mq_status_t upon completion.

req PSM2 MQ Request handle created by the preposted receive, to be used for
explicitly controlling message receive completion.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

PSM2_OK The function is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE The function is unsuccessful and status is unchanged.

psm2_mq_ipeek

Syntax

psm2_error_t psm2_mq_ipeek (psm2_mq_t mq, psm2_mq_req_t *req, psm2_mq_status_t
*status)

Query for non-blocking requests ready for completion.

Function to query a particular MQ for non-blocking requests that are ready for
completion. Requests "ready for completion" are not actually considered complete by
MQ until they are returned to the MQ library through psm2_mq_wait or
psm2_mq_test.

If you can deal with consuming request completions in the order in which they
complete, this function can be used both for completions and for ensuring progress.
The latter requirement is satisfied when you peek an empty completion queue as a
side effect of always aggressively peeking and completing all of an MQ's requests
ready for completion.

3.3.5.14

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 77

Parameters

mq Matched Queue handle.

req MQ non-blocking request.

status Optional MQ status, can be NULL.

Postcondition

You have ensured progress if the function returns PSM2_MQ_INCOMPLETE.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The peek is successful and req is updated with a request
ready for completion. If status is non-NULL, it is also
updated.

PSM2_MQ_INCOMPLETE The peek is not successful, meaning that there are no
further requests ready for completion. The contents of req
and status remain unchanged.

Example

// Example that uses psm2_mq_ipeek to make progress instead of psm2_poll
// We return the amount of non-blocking requests that we've completed
int main_progress_loop(psm2_mq_t mq)
{
 int num_completed = 0;
 psm2_mq_req_t req;
 psm2_mq_status_t status;
 psm2_error_t err;
 my_request_t *myreq;

 do {
 err = psm2_mq_ipeek(mq, &req,
 NULL); // No need for status in ipeek here
 if (err == PSM2_MQ_INCOMPLETE)
 return num_completed;
 else if (err != PSM2_OK)
 goto errh; num_completed++;

 // We obtained 'req' at the head of the completion queue.
 // We can now free the request with PSM2 and obtain our
 // original request from the status' context
 err = psm2_mq_test(&req, // is marked as invalid
 &status); // we need the status
 myreq = (my_request_t *) status.context;

 // handle the completion for myreq whether myreq is a
 // posted receive or a non-blocking send.

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
78 Doc. No.: H76473, Rev.: 15.0

 }
 while (1);
}

psm2_mq_ipeek2

Syntax

psm2_error_t psm2_mq_ipeek2 (psm2_mq_t mq, psm2_mq_req_t *req, psm2_mq_status2_t
*status)

Query for non-blocking requests ready for completion.

Function to query a particular MQ for non-blocking requests that are ready for
completion. Requests "ready for completion" are not actually considered complete by
MQ until they are returned to the MQ library through psm2_mq_wait2 or
psm2_mq_test2.

If you can deal with consuming request completions in the order in which they
complete, this function can be used both for completions and for ensuring progress.
The latter requirement is satisfied when you peek an empty completion queue as a
side effect of always aggressively peeking and completing all of an MQ's requests
ready for completion.

Parameters

mq Matched Queue handle.

req MQ non-blocking request.

status Optional MQ status, can be NULL.

Postcondition

You have ensured progress if the function returns PSM2_MQ_INCOMPLETE.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The peek is successful and req is updated with a request
ready for completion. If status is non-NULL, it is also
updated.

PSM2_MQ_INCOMPLETE The peek is not successful, meaning that there are no
further requests ready for completion. The contents of req
and status remain unchanged.

3.3.5.15

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 79

psm2_mq_wait

Syntax

psm2_error_t psm2_mq_wait (psm2_mq_req_t *request, psm2_mq_status_t *status)

Wait until a non-blocking request completes. Function to wait on requests created
from either preposted receive buffers or non-blocking sends. This is the only blocking
function in the MQ interface and it polls until the request is complete as per the
progress semantics explained in MQ Progress Requirements on page 34.

Parameters

request MQ non-blocking request.

status Updated if non-NULL when request successfully completes.

Precondition

You have obtained a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv
and you pass a pointer to enough storage to write the output of a
psm2_mq_status_t or NULL if status is to be ignored.

Since MQ internally ensures progress, you need not ensure that progress is made prior
to calling this function.

Postcondition

The request is assigned the value PSM2_MQ_REQINVALID and all associated MQ
request storage is released back to the MQ library.

Remarks

This function ensures progress on the endpoint as long as the request is incomplete.
The status can be NULL, in which case no status is written upon completion. If
request is PSM2_MQ_REQINVALID, the function returns immediately.

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

psm2_mq_wait2

Syntax

psm2_error_t psm2_mq_wait2 (psm2_mq_req_t *request, psm2_mq_status2_t *status)

3.3.5.16

3.3.5.17

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
80 Doc. No.: H76473, Rev.: 15.0

Wait until a non-blocking request completes. Function to wait on requests created
from either preposted receive buffers or non-blocking sends. This is the only blocking
function in the MQ interface and it polls until the request is complete as per the
progress semantics explained in MQ Progress Requirements on page 34.

Parameters

request MQ non-blocking request.

status Updated if non-NULL when request successfully completes.

Precondition

You have obtained a valid MQ request by calling psm2_mq_isend2 or
psm2_mq_irecv2 and you pass a pointer to enough storage to write the output of a
psm2_mq_status2_t or NULL if status is to be ignored.

Since MQ internally ensures progress, you need not ensure that progress is made prior
to calling this function.

Postcondition

The request is assigned the value PSM2_MQ_REQINVALID and all associated MQ
request storage is released back to the MQ library.

Remarks

This function ensures progress on the endpoint as long as the request is incomplete.
The status can be NULL, in which case no status is written upon completion. If
request is PSM2_MQ_REQINVALID, the function returns immediately.

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

psm2_mq_test

Syntax

psm2_error_t psm2_mq_test (psm2_mq_req_t *request, psm2_mq_status_t *status)

Test whether a non-blocking request is complete. Function to test requests created
from either preposted receive buffers or non-blocking sends for completion. Unlike
psm2_mq_wait, this function tests requests for completion and never ensures
progress directly or indirectly. If you choose to exclusively test requests for
completion, you must ensure progress, using functions described in MQ Progress
Requirements on page 34.

3.3.5.18

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 81

It can be useful to construct higher-level completion tests over arrays to test some,
all, or any request that has completed. If you are testing arrays of requests for
completion, Intel recommends that you only ensure progress once, for better
performance.

Parameters

request MQ non-blocking request.

status Updated if non-NULL and the request successfully completes.

Precondition

You obtain a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv and pass
a pointer to enough storage to write the output of a psm2_mq_status_t or NULL if
status is to be ignored.

You must ensure progress on the Matched Queue if psm2_mq_test is exclusively used
for guaranteeing request completions.

Postcondition

If the request is complete, the request is assigned the value PSM2_MQ_REQINVALID
and all associated MQ request storage is released back to the MQ library. If the
request is incomplete, the contents of request are unchanged.

You must ensure progress on the Matched Queue if psm2_mq_test is exclusively used
for guaranteeing request completions.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following two errors are always returned. Other errors are handled by the PSM2
error handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

PSM2_MQ_INCOMPLETE The request is not complete and request is unchanged.

Example

// Function that returns the first completed request in an array
// of requests.
void * user_testany(psm2_ep_t ep, psm2_mq_req_t *allreqs, int nreqs)
{
 int i;
 void *context = NULL;

 // Ensure progress only once
 psm2_poll(ep);

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
82 Doc. No.: H76473, Rev.: 15.0

 // Test for at least one completion and return its context
 psm2_mq_status_t stat;
 for (i = 0; i < nreqs; i++) {
 if (psm2_mq_test(&allreqs[i], &stat) == PSM2_OK) {
 context = stat.context;
 break;
 }
 }
 return context;
}

psm2_mq_test2

Syntax

psm2_error_t psm2_mq_test2 (psm2_mq_req_t *request, psm2_mq_status2_t *status)

Test whether a non-blocking request is complete. Function to test requests created
from either preposted receive buffers or non-blocking sends for completion. Unlike
psm2_mq_wait2, this function tests request for completion and never ensures
progress directly or indirectly. If you choose to exclusively test requests for
completion, you must ensure progress, using functions described in MQ Progress
Requirements on page 34.

It can be useful to construct higher-level completion tests over arrays to test some,
all, or any request that has completed. If you are testing arrays of requests for
completion, Intel recommends that you only ensure progress once, for better
performance.

Parameters

request MQ non-blocking request.

status Updated if non-NULL and the request successfully completes.

Precondition

You obtain a valid MQ request by calling psm2_mq_isend2 or psm2_mq_irecv2 and
pass a pointer to enough storage to write the output of a psm2_mq_status2_t or
NULL if status is to be ignored.

You must ensure progress on the Matched Queue if psm2_mq_test2 is exclusively
used for guaranteeing request completions.

Postcondition

If the request is complete, the request is assigned the value PSM2_MQ_REQINVALID
and all associated MQ request storage is released back to the MQ library. If the
request is incomplete, the contents of request are unchanged.

You must ensure progress on the Matched Queue if psm2_mq_test2 is exclusively
used for guaranteeing request completions.

3.3.5.19

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 83

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

The following two errors are always returned. Other errors are handled by the PSM2
error handler (psm2_error_register_handler).

PSM2_OK The request is complete or the value of request was
PSM2_MQ_REQINVALID.

PSM2_MQ_INCOMPLETE The request is not complete and request is unchanged.

psm2_mq_cancel

Syntax

psm2_error_t psm2_mq_cancel (psm2_mq_req_t *req)

Cancel a preposted request. Function to cancel a preposted receive request returned
by psm2_mq_irecv.

It is currently illegal to cancel a send request initiated with psm2_mq_isend.

Precondition

You have obtained a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv
and you pass a pointer to enough storage to write the output of a
psm2_mq_status_t or NULL if status is to be ignored.

Postcondition

Whether the cancel is successful or not, you return the request to the library using
psm2_mq_test or psm2_mq_wait.

Remarks

This function may be called simultaneously from multiple threads as long as different
MQ arguments are used in each of the calls.

Returns

Only the following errors can be returned directly, without being handled by the error
handler (psm2_error_register_handler).

PSM2_OK The request could be successfully cancelled such that the
preposted receive buffer could be removed from the
preposted receive queue before a match occurred. The
associated request remains unchanged and you must still
return the storage to the MQ library.

3.3.5.20

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
84 Doc. No.: H76473, Rev.: 15.0

PSM2_MQ_INCOMPLETE The request could not be successfully cancelled since the
preposted receive buffer has already matched an incoming
message. The request remains unchanged.

psm2_mq_get_stats

Syntax

psm2_mq_get_stats (psm2_mq_t mq, psm2_mq_stats_t *stats)

Retrieve statistics from an instantiated MQ.

Parameters

mq Matched Queue handle.

stats MQ Stats handle.

PSM2 Matched Queue Options

MQ options can be modified at any point at runtime, unless otherwise noted. The
following example shows how to retrieve the current message size at which messages
are sent as synchronous.

uint32_t get_hfirv_size(psm2_mq_t mq)
{
 uint32_t rvsize;
 psm2_getopt(mq, PSM2_MQ_RNDV_HFI_SZ, &rvsize);
 return rvsize;
}

Defines

Table 17. Matched Queue Options Defines

Define Description

#define PSM2_MQ_RNDV_HFI_SZ [uint32_t] Size at which to start enabling rendezvous
messaging for Intel® Omni-Path messages. If unset,
defaults to values between 56000 and 72000
depending on the system configuration.

#define PSM2_MQ_RNDV_SHM_SZ [uint32_t] Size at which to start enabling rendezvous
messaging for shared memory (intra-node)
messages. If unset, defaults to 64000 bytes.

#define PSM2_MQ_MAX_SYSBUF_MBYTES [uint32_t] Maximum amount of bytes to allocate for
unexpected messages. Messages that would cause
memory allocation to exceed this amount are
dropped.

3.3.5.21

3.3.6

3.3.6.1

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 85

Functions

Table 18. Matched Queue Options Functions

Function Description

psm2_mq_getopt (psm2_mq_t mq, int
option, void *value)

Get an MQ option. For details, see:
psm2_mq_getopt.

psm2_mq_setopt (psm2_mq_t mq, int
option, const void *value)

Set an MQ option. For details, see:
psm2_mq_setopt.

psm2_mq_getopt

Syntax

psm2_error_t psm2_mq_getopt (psm2_mq_t mq, int option, void *value)

Get an MQ option. Function to retrieve the value of an MQ option.

Parameters

mq Matched Queue handle.

option Index of option to retrieve. Possible values are:

• PSM2_MQ_RNDV_HFI_SZ
• PSM2_MQ_RNDV_SHM_SZ
• PSM2_MQ_MAX_SYSBUF_MBYTES

value Pointer to storage that can be used to store the value of the option to be
set. You must ensure that the pointer points to a memory location large
enough to accommodate the value associated to the type. Each option
documents the size associated to its value.

Returns

PSM2_OK If option could be retrieved.

PSM2_PARAM_ERR If the option is not a valid option number.

psm2_mq_setopt

Syntax

psm2_error_t psm2_mq_setopt (psm2_mq_t mq, int option, const void *value)

Set an MQ option. Function to set the value of an MQ option.

Parameters

mq Matched Queue handle.

3.3.6.2

3.3.6.2.1

3.3.6.2.2

Intel® Omni-Path Fabric—Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
86 Doc. No.: H76473, Rev.: 15.0

option Index of option to retrieve. Possible values are:

• PSM2_MQ_RNDV_HFI_SZ
• PSM2_MQ_RNDV_SHM_SZ
• PSM2_MQ_MAX_SYSBUF_MBYTES

value Pointer to storage that contains the value to be updated for the supplied
option number. You must ensure that the pointer points to a memory
location with a correct size.

Returns

PSM2_OK If option could be retrieved.

PSM2_PARAM_ERR If the option is not a valid option number.

PSM2_OPT_READONLY If the option to be set is a read-only option (currently no MQ
options are read- only).

Intel® PSM2 Component Functional Documentation—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 87

4.0 Intel® PSM2 Sample Program

This section describes a sample program that can be used to verify basic PSM2
functionality, similar to Hello World code.

Prerequisites

To run the sample program, you need a built copy of PSM2 in your local directory.

Setting Up the Program

1. Start two instances of this program from the same working directory. These
processes can execute on the same host, or on two hosts connected with Intel®
Omni-Path Architecture (Intel® OPA).

2. Compile using this command:

gcc psm2-demo.c -o psm2-demo -lpsm2

3. Run one instance as a server process using the command:

./psm2-demo -s

4. Run the other instance as a client process using the command:

./psm2-demo

Sample Code

/*
 PSM2 example program.
 Start two instances of this program from the same working directory.
 These processes can execute on the same host, or on two hosts connected with
 OPA.

 Compile with: gcc psm2-demo.c -o psm2-demo -lpsm2
 Run as: ./psm2-demo -s # this is the server process
 and: ./psm2-demo # this is the client process

 Copyright(c) 2015-2018 Intel Corporation.
*/
#include <stdio.h>
#include <psm2.h> /* required for core PSM2 functions */
#include <psm2_mq.h> /* required for PSM2 MQ functions (send, recv, etc) */
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

#define BUFFER_LENGTH 80
#define CONNECT_ARRAY_SIZE 8

4.1

4.2

4.3

Intel® Omni-Path Fabric—Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
88 Doc. No.: H76473, Rev.: 15.0

void die(char *msg, int rc){
 fprintf(stderr, "%s: %d\n", msg, rc);
 exit(1);
}

/* Helper functions to find the server's PSM2 endpoint identifier (epid). */
psm2_epid_t find_server(){
 FILE *fp = NULL;
 psm2_epid_t server_epid = 0;

 printf("PSM2 client waiting for epid mapping file to appear...\n");
 while (!fp){
 sleep(1);
 fp = fopen("psm2-demo-server-epid", "r");
 }
 fscanf(fp, "%lx", &server_epid);
 fclose(fp);
 printf("PSM2 client found server epid = 0x%lx\n", server_epid);
 return server_epid;
}

void write_epid_to_file(psm2_epid_t myepid) {
 FILE *fp;

 fp = fopen("psm2-demo-server-epid", "w");
 if (!fp){
 fprintf(stderr,
 "Exiting, couldn't write server's epid mapping file: ");
 die(strerror(errno), errno);
 }
 fprintf(fp, "0x%lx", myepid);
 fclose(fp);
 printf("PSM2 server wrote epid = 0x%lx to file.\n", myepid);
 return;
}

int main(int argc, char **argv){
 psm2_info_query_arg_t args[3];
 uint32_t num_units;

/* First, test those queries that do not require any initialization. */
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_NUM_UNITS,
 &num_units, 0, args))
 {
 printf("Number of units: %d\n", num_units);
 }
 else
 {
 printf("Could not get the number of units.\n");
 }

 uint32_t num_ports;

 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_NUM_PORTS,
 &num_ports, 0, args))
 {
 printf("Number of ports: %d\n", num_ports);
 }
 else
 {
 printf("Could not get the number of ports.\n");
 }

 uint32_t i;
 for (i=0;i < num_units;i++)
 {
 uint32_t status=0;
 args[0].unit = i;
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_UNIT_STATUS,

Intel® PSM2 Sample Program—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 89

 &status, 1, args))
 {
 printf("Status of unit: %d, is: %d\n", i, status);
 }
 else
 {
 printf("Could not get the status of unit: %d.\n");
 }
 uint32_t contexts=0;
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_NUM_CONTEXTS,
 &contexts, 1, args))
 {
 printf("Unit: %d, has: %d contexts\n", i, contexts);
 }
 else
 {
 printf("Could not get the number of contexts of "
 "unit: %d.\n");
 }
 uint32_t free_contexts=0;
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_NUM_FREE_CONTEXTS,
 &free_contexts, 1, args))
 {
 printf("Number of free contexts of unit: %d, is: "
 "%d\n", i, free_contexts);
 }
 else
 {
 printf("Could not get the number of free contexts of unit: %d.\n");
 }
 }

 struct psm2_ep_open_opts o;
 psm2_uuid_t uuid;
 psm2_ep_t myep;
 psm2_epid_t myepid;
 psm2_epid_t server_epid;
 psm2_epid_t epid_array[CONNECT_ARRAY_SIZE];
 int epid_array_mask[CONNECT_ARRAY_SIZE];
 psm2_error_t epid_connect_errors[CONNECT_ARRAY_SIZE];
 psm2_epaddr_t epaddr_array[CONNECT_ARRAY_SIZE];
 int rc;
 int ver_major = PSM2_VERNO_MAJOR;
 int ver_minor = PSM2_VERNO_MINOR;
 char msgbuf[BUFFER_LENGTH];
 psm2_mq_t q;
 psm2_mq_req_t req_mq;
 int is_server = 0;

 if (argc > 2){
 die("To run in server mode, invoke as ./psm2-demo -s\n" \
 "or run in client mode, invoke as ./psm2-demo\n" \
 "Wrong number of args", argc);
 }

 is_server = argc - 1; /* Assume any command line argument is -s */

 memset(uuid, 0, sizeof(psm2_uuid_t)); /* Use a UUID of zero */

 /* Try to initialize PSM2 with the requested library version.
 * In this example, given the use of the PSM2_VERNO_MAJOR and MINOR
 * as defined in the PSM2 headers, ensure that we are linking with
 * the same version of PSM2 as we compiled against. */

 if ((rc = psm2_init(&ver_major, &ver_minor)) != PSM2_OK){
 die("couldn't init", rc);
 }
 printf("PSM2 init done.\n");

 /* Setup the endpoint options struct */
 if ((rc = psm2_ep_open_opts_get_defaults(&o)) != PSM2_OK)

Intel® Omni-Path Fabric—Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
90 Doc. No.: H76473, Rev.: 15.0

 {
 die("couldn't set default opts", rc);
 }
 printf("PSM2 opts_get_defaults done.\n");

 /* Attempt to open a PSM2 endpoint. This allocates hardware resources. */
 if ((rc = psm2_ep_open(uuid, &o, &myep, &myepid)) != PSM2_OK)
 {
 die("couldn't psm2_ep_open()", rc);
 }
 printf("PSM2 endpoint open done.\n");

 if (is_server){
 write_epid_to_file(myepid);
 } else {
 server_epid = find_server();
 }

 if (is_server){
 /* Server does nothing here. A connection does not have to be
 * established to receive messages. */
 printf("PSM2 server up.\n");
 } else
 {
 /* Setup connection request info */
 /* PSM2 can connect to a single epid per request,
 * or an arbitrary number of epids in a single connect call.
 * For this example, use part of an array of
 * connection requests. */
 memset(epid_array_mask, 0, sizeof(int) * CONNECT_ARRAY_SIZE);
 epid_array[0] = server_epid;
 epid_array_mask[0] = 1;

 /* Begin the connection process.
 * note that if a requested epid is not responding,
 * the connect call will still return OK.
 * The errors array will contain the state of individual
 * connection requests. */
 if ((rc = psm2_ep_connect(myep,
 CONNECT_ARRAY_SIZE,
 epid_array,
 epid_array_mask,
 epid_connect_errors,
 epaddr_array,
 0 /* no timeout */
)) != PSM2_OK)
 {
 die("couldn't ep_connect", rc);
 }
 printf("PSM2 connect request processed.\n");

 /* Now check if our connection to the server is ready */
 if (epid_connect_errors[0] != PSM2_OK)
 {
 die("couldn't connect to server", epid_connect_errors[0]);
 }
 printf("PSM2 client-server connection established.\n");
 }

 /* Setup our PSM2 message queue */
 if ((rc = psm2_mq_init(myep, PSM2_MQ_ORDERMASK_NONE, NULL, 0, &q))
 != PSM2_OK)
 {
 die("couldn't initialize PSM2 MQ", rc);
 }
 printf("PSM2 MQ init done.\n");

 if (is_server)
 {
 /* Post the receive request */
 if ((rc = psm2_mq_irecv(q,

Intel® PSM2 Sample Program—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 91

 0xABCD, /* message tag */
 (uint64_t)-1, /* message tag mask */
 0, /* no flags */
 msgbuf, BUFFER_LENGTH,
 NULL, /* no context to add */
 &req_mq /* track irecv status */
)) != PSM2_OK)
 {
 die("couldn't post psm2_mq_irecv()", rc);
 }
 printf("PSM2 MQ irecv() posted\n");

 /* Wait until the message arrives */
 if ((rc = psm2_mq_wait(&req_mq, NULL)) != PSM2_OK)
 {
 die("couldn't wait for the irecv", rc);
 }
 printf("PSM2 MQ wait() done.\n");
 printf("Message from client:\n");
 printf("%s", msgbuf);

 unlink("psm2-demo-server-epid");
 }
 else
 {
 /* Say hello */
 snprintf(msgbuf, BUFFER_LENGTH,
 "Hello world from epid=0x%lx, pid=%d.\n",
 myepid, getpid());

 if ((rc = psm2_mq_send(q,
 epaddr_array[0], /* destination epaddr */
 0, /* no flags */
 0xABCD, /* tag */
 msgbuf, BUFFER_LENGTH
)) != PSM2_OK)
 {
 die("couldn't post psm2_mq_isend", rc);
 }
 printf("PSM2 MQ send() done.\n");
 }
 if (!is_server) {
 uint32_t psm_config;
 args[0].mq = q;
 args[1].epaddr = epaddr_array[0];
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_CONFIG,
 &psm_config, 2, args))
 {
 printf("PSM config: 0x%x\n", psm_config);
 }
 else
 {
 printf("Could not get the PSM config.\n");
 }

 {
 uint32_t msg_sz_thresh;
 struct mask_and_thresh
 {
 enum psm2_info_query_thresh_et thresh;
 uint32_t mask;
 } mandt[] =
 {
 { PSM2_INFO_QUERY_THRESH_IPS_PIO_DMA, PSM2_INFO_QUERY_CONFIG_IPS |
 PSM2_INFO_QUERY_CONFIG_PIO |
 PSM2_INFO_QUERY_CONFIG_DMA },
 { PSM2_INFO_QUERY_THRESH_IPS_TINY, PSM2_INFO_QUERY_CONFIG_IPS },
 { PSM2_INFO_QUERY_THRESH_IPS_PIO_FRAG_SIZE, PSM2_INFO_QUERY_CONFIG_IPS |
 PSM2_INFO_QUERY_CONFIG_PIO },
 { PSM2_INFO_QUERY_THRESH_IPS_DMA_FRAG_SIZE, PSM2_INFO_QUERY_CONFIG_IPS |
 PSM2_INFO_QUERY_CONFIG_DMA },

Intel® Omni-Path Fabric—Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
92 Doc. No.: H76473, Rev.: 15.0

 { PSM2_INFO_QUERY_THRESH_IPS_RNDV, PSM2_INFO_QUERY_CONFIG_IPS }
 };
 int i;

 for (i=0;i < sizeof(mandt)/ sizeof(mandt[0]);i++)
 {
 if ((psm_config & mandt[i].mask) == mandt[i].mask)
 {
 args[2].mstq = mandt[i].thresh;

 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_THRESH,
 &msg_sz_thresh, 3, args))
 printf("msg sz thresh for: %d, is: %d\n",
 mandt[i].thresh,msg_sz_thresh);
 else
 printf("Could not get msg sz thresh for: %d.\n",
 mandt[i].thresh);
 }
 else
 printf("Config 0x%x, does not permit info query for "
 "thresh: %d\n", psm_config, mandt[i].thresh);
 }
 }

 {
 char dev_name[128];

 args[2].length = sizeof(dev_name);
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_DEVICE_NAME,
 &dev_name, 3, args))
 printf("hfi device name: %s\n", dev_name);
 else
 printf("Could not get hfi device name.\n");
 }

 {
 uint32_t mtu;

 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_MTU, &mtu, 2, args))
 printf("mtu: %d\n", mtu);
 else
 printf("Could not get mtu.\n");
 }

 {
 uint32_t link_speed;

 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_LINK_SPEED,
 &link_speed, 2, args))
 printf("link speed: %d\n", link_speed);
 else
 printf("Could not get link speed.\n");
 }

 {
 char network_type[128];

 args[0].length = sizeof(network_type);
 if (PSM2_OK == psm2_info_query(PSM2_INFO_QUERY_NETWORK_TYPE,
 &network_type, 1, args))
 printf("network type: %s\n", network_type);
 else
 printf("Could not get network type.\n");
 }
 }

 /* Close down the MQ */
 if ((rc = psm2_mq_finalize(q)) != PSM2_OK){
 die("couldn't psm2_mq_finalize()", rc);
 }
 printf("PSM2 MQ finalized.\n");

Intel® PSM2 Sample Program—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 93

 /* Close our ep, releasing all hardware resources.
 * Try to close all connections properly */
 if ((rc = psm2_ep_close(myep, PSM2_EP_CLOSE_GRACEFUL,
 0 /* no timeout */)) != PSM2_OK){
 die("couldn't psm2_ep_close()", rc);
 }
 printf("PSM2 ep closed.\n");

 /* Release all local PSM2 resources */
 if ((rc = psm2_finalize()) != PSM2_OK){
 die("couldn't psm2_finalize()", rc);
 }
 printf("PSM2 shut down, exiting.\n");

 return 0;
}

Sample Output

The following is example output from the server:

-bash-4.2$./example -s
Number of units: 1
Number of ports: 1
Status of unit: 0, is: 1
Unit: 0, has: 44 contexts
Number of free contexts of unit: 0, is: 44
PSM2 init done.
PSM2 opts_get_defaults done.
PSM2 endpoint open done.
PSM2 server wrote epid = 0x20302 to file.
PSM2 server up.
PSM2 MQ init done.
PSM2 MQ irecv() posted
PSM2 MQ wait() done.
Message from client:
Hello world from epid=0x10302, pid=21972.
PSM2 MQ finalized.
PSM2 ep closed.
PSM2 shut down, exiting.

The following is example output from the client:

-bash-4.2$./example
Number of units: 1
Number of ports: 1
Status of unit: 0, is: 1
Unit: 0, has: 44 contexts
Number of free contexts of unit: 0, is: 44
PSM2 init done.
PSM2 opts_get_defaults done.
PSM2 endpoint open done.
PSM2 client waiting for epid mapping file to appear...
PSM2 client found server epid = 0x20302
PSM2 connect request processed.
PSM2 client-server connection established.
PSM2 MQ init done.
PSM2 MQ send() done.
PSM config: 0x31
msg sz thresh for: 0, is: 16000
msg sz thresh for: 1, is: 8
msg sz thresh for: 2, is: 9664
msg sz thresh for: 3, is: 10240
msg sz thresh for: 4, is: 64000
hfi device name: hfi1_0

4.4

Intel® Omni-Path Fabric—Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer's Guide April 2020
94 Doc. No.: H76473, Rev.: 15.0

mtu: 10240
link speed: 100
network type: Intel(R) OPA
PSM2 MQ finalized.
PSM2 ep closed.
PSM2 shut down, exiting.

Intel® PSM2 Sample Program—Intel® Omni-Path Fabric

Intel® Performance Scaled Messaging 2 (PSM2)
April 2020 Programmer's Guide
Doc. No.: H76473, Rev.: 15.0 95

	Revision History
	Contents
	Tables

	Preface
	Intended Audience
	Intel® Omni-Path Documentation Library
	How to Search the Intel® Omni-Path Documentation Set

	Cluster Configurator for Intel® Omni-Path Fabric
	Documentation Conventions
	Best Practices
	License Agreements
	Technical Support

	1.0 Intel® PSM2 API
	1.1 Introduction
	1.2 Differences between PSM2 and PSM
	1.3 Compatibility
	1.4 Endpoint Communication Model
	1.5 PSM2 Components
	1.6 PSM2 and NVIDIA* CUDA* Support
	1.7 PSM2 Multi-Endpoint Functionality
	1.7.1 OFI PSM2 Multi-Endpoint Dependency

	1.8 PSM2 Communication Progress Guarantees
	1.9 PSM2 Completion Semantics
	1.10 PSM2 Error Handling
	1.11 Environment Variables
	1.11.1 PSM2_AVX512
	1.11.2 PSM2_CONNECT_TIMEOUT
	1.11.3 PSM2_CUDA
	1.11.4 PSM2_DEVICES
	1.11.5 PSM2_DISABLE_CCA
	1.11.6 PSM2_GPUDIRECT
	1.11.7 PSM2_GPUDIRECT_RECV_THRESH
	1.11.8 PSM2_GPUDIRECT_SEND_THRESH
	1.11.9 PSM2_IB_SERVICE_ID
	1.11.10 PSM2_MAX_CONTEXTS_PER_JOB
	1.11.11 PSM2_MAX_PENDING_SDMA_REQS
	1.11.12 PSM2_MEMORY
	1.11.13 PSM2_MQ_RECVREQS_MAX
	1.11.14 PSM2_MQ_RNDV_HFI_THRESH
	1.11.15 PSM2_MQ_RNDV_HFI_WINDOW
	1.11.16 PSM2_MQ_EAGER_SDMA_SZ
	1.11.17 PSM2_MQ_RNDV_SHM_THRESH
	1.11.18 PSM2_MQ_SENDREQS_MAX
	1.11.19 PSM2_MTU
	1.11.20 PSM2_MULTI_EP
	1.11.21 PSM2_MULTIRAIL
	1.11.22 PSM2_MULTIRAIL_MAP
	1.11.23 PSM2_PATH_NO_LMC_RANGE
	1.11.24 PSM2_PATH_REC
	1.11.25 PSM2_PATH_SELECTION
	1.11.26 PSM2_PKEY
	1.11.27 PSM2_RANKS_PER_CONTEXT
	1.11.28 PSM2_RCVTHREAD
	1.11.29 PSM2_RCVTHREAD_FREQ
	1.11.30 PSM2_RTS_CTS_INTERLEAVE
	1.11.31 PSM2_SHAREDCONTEXTS
	1.11.32 PSM2_SHAREDCONTEXTS_MAX
	1.11.33 PSM2_TID
	1.11.34 PSM2_TID_SENDSESSION_MAX
	1.11.35 PSM2_TRACEMASK

	1.12 HFI Environment Variables
	1.12.1 HFI_DISABLE_MMAP_MALLOC
	1.12.2 HFI_NO_CPUAFFINITY
	1.12.3 HFI_UNIT
	1.12.4 HFI_SL

	2.0 Intel® PSM2 Component Documentation
	2.1 MQ Tag Matching
	2.2 MQ Message Reception
	2.3 MQ Completion Semantics
	2.4 MQ Progress Requirements

	3.0 Intel® PSM2 Component Functional Documentation
	3.1 PSM2 Initialization and Maintenance
	3.1.1 Data Structures
	3.1.2 Defines
	3.1.3 Typedefs
	3.1.4 Enumerations
	3.1.5 Functions
	3.1.5.1 psm2_init
	3.1.5.2 psm2_finalize
	3.1.5.3 psm2_error_register_handler
	3.1.5.4 psm2_error_defer
	3.1.5.5 psm2_error_get_string
	3.1.5.6 psm2_info_query()

	3.2 PSM2 Device Endpoint Management
	3.2.1 Data Structures
	3.2.1.1 psm2_ep_open_opts

	3.2.2 Defines
	3.2.3 Typedefs
	3.2.4 Functions
	3.2.4.1 psm2_map_nid_hostname
	3.2.4.2 psm2_ep_num_devunits
	3.2.4.3 psm2_uuid_generate
	3.2.4.4 psm2_ep_open_opts_get_defaults
	3.2.4.5 psm2_ep_open
	3.2.4.6 psm2_ep_epid_share_memory
	3.2.4.7 psm2_ep_close
	3.2.4.8 psm2_ep_connect
	3.2.4.9 psm2_ep_disconnect
	3.2.4.10 psm2_poll
	3.2.4.11 psm2_epaddr_setlabel
	3.2.4.12 psm2_ep_query
	3.2.4.13 psm2_ep_epid_lookup
	3.2.4.14 psm2_ep_epid_lookup2
	3.2.4.15 psm2_epaddr_to_epid

	3.3 PSM2 Matched Queues
	3.3.1 Modules
	3.3.2 Data Structures
	3.3.2.1 psm2_mq_status
	3.3.2.2 MQ Statistics Structure
	3.3.2.3 psm2_tag_t
	3.3.2.4 psm2_mq_status2

	3.3.3 Defines
	3.3.4 Typedefs
	3.3.5 Functions
	3.3.5.1 psm2_mq_init
	3.3.5.2 psm2_mq_finalize
	3.3.5.3 psm2_mq_irecv
	3.3.5.4 psm2_mq_irecv2
	3.3.5.5 psm2_mq_send
	3.3.5.6 psm2_mq_send2
	3.3.5.7 psm2_mq_isend
	3.3.5.8 psm2_mq_isend2
	3.3.5.9 psm2_mq_iprobe
	3.3.5.10 psm2_mq_iprobe2
	3.3.5.11 psm2_mq_improbe
	3.3.5.12 psm2_mq_improbe2
	3.3.5.13 psm2_mq_imrecv
	3.3.5.14 psm2_mq_ipeek
	3.3.5.15 psm2_mq_ipeek2
	3.3.5.16 psm2_mq_wait
	3.3.5.17 psm2_mq_wait2
	3.3.5.18 psm2_mq_test
	3.3.5.19 psm2_mq_test2
	3.3.5.20 psm2_mq_cancel
	3.3.5.21 psm2_mq_get_stats

	3.3.6 PSM2 Matched Queue Options
	3.3.6.1 Defines
	3.3.6.2 Functions
	3.3.6.2.1 psm2_mq_getopt
	3.3.6.2.2 psm2_mq_setopt

	4.0 Intel® PSM2 Sample Program
	4.1 Prerequisites
	4.2 Setting Up the Program
	4.3 Sample Code
	4.4 Sample Output

