Legal Information

This Command Line Interface Installation and User's Guide--CLI Version 2.3 document, as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Inte, Pentium, Xeon, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

† Other names and brands may be claimed as the property of others.

Copyright © 2004, 2005 Intel Corporation.
# Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Introduction</strong></td>
<td>5</td>
</tr>
<tr>
<td>Authentication and Encryption Support</td>
<td>6</td>
</tr>
<tr>
<td>CLI Features and Benefits</td>
<td>6</td>
</tr>
<tr>
<td>CLI’s Serial over LAN (SOL) Mode</td>
<td>6</td>
</tr>
<tr>
<td>Getting the Latest Information</td>
<td>7</td>
</tr>
<tr>
<td>Platform Compatibility and System Requirements</td>
<td>7</td>
</tr>
<tr>
<td><strong>Installing Command Line Interface</strong></td>
<td>8</td>
</tr>
<tr>
<td>Installing CLI Manually</td>
<td>8</td>
</tr>
<tr>
<td>Windows</td>
<td>8</td>
</tr>
<tr>
<td>Linux</td>
<td>8</td>
</tr>
<tr>
<td><strong>Using the Command Line Interface</strong></td>
<td>10</td>
</tr>
<tr>
<td>Using CLI Commands with dpccli (Platform Control Mode Only)</td>
<td>11</td>
</tr>
<tr>
<td>Using telnet for both Platform Control and SOL Modes</td>
<td>11</td>
</tr>
<tr>
<td><strong>The Console Interface (dpccli)</strong></td>
<td>13</td>
</tr>
<tr>
<td>dpccli Return Codes</td>
<td>13</td>
</tr>
<tr>
<td>The .dpcclirc Configuration File</td>
<td>14</td>
</tr>
<tr>
<td>Setting the HOME Environment Variable</td>
<td>14</td>
</tr>
<tr>
<td>The dpccli Command Syntax</td>
<td>15</td>
</tr>
<tr>
<td>Running dpccli Commands from a Script</td>
<td>17</td>
</tr>
<tr>
<td><strong>CLI Commands</strong></td>
<td>19</td>
</tr>
<tr>
<td>General CLI Commands</td>
<td>19</td>
</tr>
<tr>
<td>alarm -s</td>
<td>19</td>
</tr>
<tr>
<td>alarm -q</td>
<td>20</td>
</tr>
<tr>
<td>alarm -c</td>
<td>21</td>
</tr>
<tr>
<td>boot</td>
<td>21</td>
</tr>
<tr>
<td>clearlog</td>
<td>22</td>
</tr>
<tr>
<td>console</td>
<td>22</td>
</tr>
<tr>
<td>displaylog</td>
<td>22</td>
</tr>
<tr>
<td>exit or quit</td>
<td>23</td>
</tr>
<tr>
<td>help</td>
<td>23</td>
</tr>
<tr>
<td>id</td>
<td>24</td>
</tr>
<tr>
<td>Identify</td>
<td>24</td>
</tr>
<tr>
<td>interrupt -i nonmask [-console]</td>
<td>25</td>
</tr>
<tr>
<td>power</td>
<td>25</td>
</tr>
<tr>
<td>reset</td>
<td>25</td>
</tr>
<tr>
<td>sensors</td>
<td>26</td>
</tr>
<tr>
<td>service</td>
<td>27</td>
</tr>
<tr>
<td>set -T session {Prompt</td>
<td>Prefix}</td>
</tr>
<tr>
<td>shutdown</td>
<td>28</td>
</tr>
<tr>
<td>version</td>
<td>29</td>
</tr>
<tr>
<td><strong>CLI Firmware Configuration Commands</strong></td>
<td>29</td>
</tr>
<tr>
<td>Channel ID Mapping by Platform</td>
<td>29</td>
</tr>
<tr>
<td><strong>Platform Compatibility and System Requirements</strong></td>
<td>7</td>
</tr>
<tr>
<td>Installing Command Line Interface**</td>
<td>8</td>
</tr>
<tr>
<td>Installing CLI Manually</td>
<td>8</td>
</tr>
<tr>
<td>Windows</td>
<td>8</td>
</tr>
<tr>
<td>Linux</td>
<td>8</td>
</tr>
<tr>
<td><strong>Using the Command Line Interface</strong></td>
<td>10</td>
</tr>
<tr>
<td>Using CLI Commands with dpccli (Platform Control Mode Only)</td>
<td>11</td>
</tr>
<tr>
<td>Using telnet for both Platform Control and SOL Modes</td>
<td>11</td>
</tr>
<tr>
<td><strong>The Console Interface (dpccli)</strong></td>
<td>13</td>
</tr>
<tr>
<td>dpccli Return Codes</td>
<td>13</td>
</tr>
<tr>
<td>The .dpcclirc Configuration File</td>
<td>14</td>
</tr>
<tr>
<td>Setting the HOME Environment Variable</td>
<td>14</td>
</tr>
<tr>
<td>The dpccli Command Syntax</td>
<td>15</td>
</tr>
<tr>
<td>Running dpccli Commands from a Script</td>
<td>17</td>
</tr>
<tr>
<td><strong>CLI Commands</strong></td>
<td>19</td>
</tr>
<tr>
<td>General CLI Commands</td>
<td>19</td>
</tr>
<tr>
<td>alarm -s</td>
<td>19</td>
</tr>
<tr>
<td>alarm -q</td>
<td>20</td>
</tr>
<tr>
<td>alarm -c</td>
<td>21</td>
</tr>
<tr>
<td>boot</td>
<td>21</td>
</tr>
<tr>
<td>clearlog</td>
<td>22</td>
</tr>
<tr>
<td>console</td>
<td>22</td>
</tr>
<tr>
<td>displaylog</td>
<td>22</td>
</tr>
<tr>
<td>exit or quit</td>
<td>23</td>
</tr>
<tr>
<td>help</td>
<td>23</td>
</tr>
<tr>
<td>id</td>
<td>24</td>
</tr>
<tr>
<td>Identify</td>
<td>24</td>
</tr>
<tr>
<td>interrupt -i nonmask [-console]</td>
<td>25</td>
</tr>
<tr>
<td>power</td>
<td>25</td>
</tr>
<tr>
<td>reset</td>
<td>25</td>
</tr>
<tr>
<td>sensors</td>
<td>26</td>
</tr>
<tr>
<td>service</td>
<td>27</td>
</tr>
<tr>
<td>set -T session {Prompt</td>
<td>Prefix}</td>
</tr>
<tr>
<td>shutdown</td>
<td>28</td>
</tr>
<tr>
<td>version</td>
<td>29</td>
</tr>
<tr>
<td><strong>CLI Firmware Configuration Commands</strong></td>
<td>29</td>
</tr>
<tr>
<td>Channel ID Mapping by Platform</td>
<td>29</td>
</tr>
</tbody>
</table>

Command Line Interface Installation and User's Guide version 2.3 3
**About the CLI Network Proxy (dpcproxy)**

Changing the Persistent Arguments for the Network Proxy ................................. 47
  On Windows ................................................................................................. 47
  On Linux .................................................................................................... 48
Manually Starting the Installed Network Proxy .................................................... 48
  On Windows ................................................................................................. 48
  On Linux .................................................................................................... 48
Manually Installing the Network Proxy ............................................................... 49
  On Windows ................................................................................................. 49
  On Linux .................................................................................................... 49
The dpcproxy Command Syntax ......................................................................... 50

get –T BMC/network .......................................................................................... 30
get –T BMC/channel ......................................................................................... 32
get –T BMC/lanAlert ......................................................................................... 32
get –T BMC/lan ................................................................................................ 32
get –T BMC/modem ......................................................................................... 32
get –T BMC/terminal ....................................................................................... 32
get –T BMC/serialPage ..................................................................................... 33
get –T BMC/serialDialString .......................................................................... 33
get –T BMC/serial ........................................................................................... 33
get –T BMC/pefFilter ....................................................................................... 33
get –T BMC/pefPolicy ...................................................................................... 33
get –T BMC/sol ............................................................................................... 34
get –T BMC/user/<user id> ........................................................................... 34
get –T BMC/prp ............................................................................................... 34
get –T BMC/channellInfo ................................................................................. 34
set –T BMC/channel ......................................................................................... 35
set –T BMC/lanAlertEnable ............................................................................. 36
set –T BMC/lanAlert ....................................................................................... 36
set –T BMC/lan ............................................................................................... 37
set –T BMC/serialEnable ................................................................................ 38
set –T BMC/modem ........................................................................................ 38
set –T BMC/terminalEnable .......................................................................... 39
set –T BMC/serialPageEnable ........................................................................ 39
set –T BMC/serialDialString ........................................................................... 39
set –T BMC/SerialPageConf .......................................................................... 40
set –T BMC/serial ........................................................................................... 40
set –T BMC/pefFilter ....................................................................................... 43
set –T BMC/pefPolicy ...................................................................................... 43
set –T BMC/solEnable ..................................................................................... 44
set –T BMC/user ............................................................................................. 44
set –T BMC/userPrivilege .............................................................................. 44
set –T BMC/userEnable .................................................................................. 45
set –T BMC/prp ............................................................................................... 45
commit ............................................................................................................. 45
clear ............................................................................................................... 46
Introduction

The Command Line Interface (CLI) has two modes: Platform Control mode and Serial over LAN (SOL) Console Redirection mode. When CLI is in Platform Control mode, you can issue CLI commands to the remote system. When CLI is in SOL Console Redirection mode, you can perform, over a LAN connection, any activity you could at the remote system’s console, including viewing the remote system’s console output (SOL allows data from the server serial port to be redirected over the LAN). When in Platform Control mode, the CLI displays a unique prompt (dpccli>). When in SOL mode, the CLI does not display a prompt and all information displayed comes directly from the SOL character stream. See page 12 for information about switching between these two modes.

The CLI uses a network proxy (dpcproxy) that runs on the managing client system or on a central network proxy. The network proxy is automatically installed as part of the Intel Server Management installation process. Rebooting the server on which the proxy runs automatically starts the network proxy. (See page 29 for details on the network proxy.)

There are two basic ways to issue CLI commands through the network proxy to a remote server: by using CLI’s console interface, called dpccli; or by using telnet. Both methods are described in detail later in this section.

NOTES

In order to switch CLI to SOL mode, you must be using a telnet connection to the remote server. You cannot switch to SOL mode (or use CLI commands or options that start the remote server in SOL mode) if you are simply running dpccli to issue CLI commands to the remote server.

Note that Windows Hyperterminal is no longer supported for CLI or SOL.

CLI’s console interface, called dpccli, runs on the management console and enables communication between the management console and the network proxy, which in turn communicates to the managed server. Like the network proxy, the dpccli interface is automatically installed as part of the ISM installation process. (See page 11 for details on dpccli.)

When using telnet to connect to the remote server (to issue CLI commands and to operate in SOL mode), you must connect the telnet session to the dpcproxy by specifying (in the telnet command line) the port on which dpcproxy is listening (see page 11 for required telnet syntax).

A CLI session over dpccli requires a server name (or address) and login (user and password), which can be supplied as arguments to the dpccli command.

Once the CLI session over dpccli is running and the connection to the intended server is established, you can begin issuing CLI commands to that server at the dpccli prompt. If connecting via telnet, the same dpccli prompt is displayed when in Platform Control mode (default), and you can issue CLI commands at the dpccli prompt over telnet.

---

1 The Serial Over LAN mode is only supported on systems using the Sahalee BMC. SOL is not supported on systems that use only National Semiconductor’s PC87431x family of “mini” BMCs, or on systems with the Intel Management Module (IMM) connector when the IMM is not installed.
Authentication and Encryption Support

CLI supports IPMI 1.0/1.5 and IPMI 2.0, depending on which version of IPMI is on the target server. When communicating by IPMI 1.0/1.5, CLI uses the MD2 algorithm to authenticate packets. When using IPMI 2.0, CLI uses the HMAC-SHA1 algorithm to authenticate packets. You cannot control which packets are authenticated.

CLI supports different encryption algorithms depending on whether it is communicating in IPMI 1.0/1.5 or IPMI 2.0. In IPMI 1.5, the only packets that are ever encrypted are SOL packets. By default, all SOL packets are encrypted. In IPMI 2.0, all packets can be encrypted. The AES-CBC algorithm is used to encrypt packets.

By default, the only packets that are encrypted are the ones that are authenticated. You can, however, set CLI to encrypt all commands, or none. See page 50 for dpccli command syntax, including details on setting encryption.

CLI Features and Benefits

The ISM Command Line Interface (CLI) lets you control a server from the command line rather than from a graphical user interface. You can enter CLI commands at a command prompt or from a script file to do the following (note that this is not an exhaustive list; see page 17 for a complete list of CLI commands):

- Remotely power on or off a server
- Remotely reset the server
- Request machine identifiers
- Read sensor values
- Display the network configuration of the BMC
- IPMI 1.0, 1.5 and 2.0 authentication support
- Packet encryption based on IPMI version

You can also execute Perl scripts to issue commands to multiple remote servers. You can use any of the following consoles to launch dpccli or telnet and issue CLI commands:

- The Window’s command-line environment: Command Prompt
- A Linux command shell

CLI’s Serial over LAN (SOL) Mode

The Serial over LAN Console Redirection mode of CLI lets servers transparently redirect the serial character stream from the baseboard UART to and from the managing client system over the LAN. Serial over LAN has the following benefits compared to a serial interface:

- Eliminates the need for a serial concentrator
- Reduces the amount of cabling

---

2 The Serial Over LAN mode is not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs
- Allows remote management of servers without video, mouse, or keyboard (headless servers)

**NOTE**

The dpecli interface does not support formatted output. When using CLI in SOL Console Redirection mode, special characters may not appear properly formatted as they would at the server console. In order to view SOL data, a connection via telnet must be established.

### Getting the Latest Information

ISM components are frequently enhanced and updated to support new features and platforms. For updated information on such changes, see the Intel Server Management release note files [Release_Notes.htm](#). For information on using ISM Setup, refer to *Getting Started with Intel® Server Manager 8.40* manual on the ISM CD.

### Platform Compatibility and System Requirements

Before installing ISM on client or server systems, each must meet the requirements described in the *Getting Started with Intel® Server Manager 8.40* manual on the ISM CD.

**NOTE**

The Serial Over LAN mode is not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs
Installing Command Line Interface

The dpccli client program and network proxy components are automatically installed with the Intel® Server Manager installation. If you are not using the Intel Server Manager installer (i.e., you have not installed Intel Server Manager), you can install the dpccli components manually.

Installing CLI Manually

Windows
To install CLI manually on Windows, copy the binaries to a directory on the target system and then run the following commands.

```
dpcproxy -install
net start dpcproxy
```

Linux
To install CLI manually on Linux, use the Linux rpm -i command to install the rpm file from the ISM CD.

1. Open a terminal window.

2. Change the current directory to the CD directory containing the CLI RPM. For example, for CLI on Intel EM64T version of Red Hat Linux, go to:
   ```
   cd /mnt/cdrom/ism/Software/linux/RedHat/CLI/EM64T/el3.0
   ```

3. Install the CLI RPM:
   ```
   rpm -i CLI-<version>-<platform>.rpm
   ```

   The format of the rpm filename is CLI-<version>-<platform>.rpm. The location and filename for the RPM will depend on the Linux version.

   When you install the rpm manually, the dpcproxy is not started automatically. After installing you have to do the following:

1. Type
   ```
   cd /usr/local/cli
   ```

2. To start the proxy, type
   ```
   ./dpcproxy
   ```

3. Open another terminal window and type
   ```
   cd /usr/local/cli
   ```
4. To open a dpccli session, type
   ./dpccli
Using the Command Line Interface

As stated previously, there are two basic methods for issuing CLI commands to a remote server: through dpccli, or through telnet. Both methods are described below.

If you want to use CLI in SOL mode, you must connect to the remote server through telnet (SOL mode is not supported through dpccli). However, the dpccli command line options, which affect the behavior of the connection, cannot be used when connecting through telnet (because you are not using the dpccli command if you use telnet). So, you will need to decide which method to use, depending on what you want to do on the server. See page 13 for details on the dpccli command and its options.

NOTE

When using the Command Line Interface (CLI) with Serial over LAN Console Redirection from a management console running a supported version of Linux, the backspace key [Backspace] does not work. You must use [Control]-[Backspace] instead when using Command Line Interface (CLI) with Serial over LAN Console Redirection from a management console running a supported version of Linux. Other utilities (SPU and PCU) do not experience this issue.

NOTE

Both Platform Control mode and SOL mode\(^3\) use the network proxy to communicate to the remote managed server. This is because the telnet command described in this manual (see page 11) specifies using port 623 for telnet, which is the port on which the network proxy, dpcproxy, listens.

NOTE

Using dpccli or telnet, only four concurrent connections can be made to one server. This is because the dpcproxy connects directly to the BMC of the remote server, and the BMC only supports four concurrent connections. Upon attempting the fifth connection, the following is displayed approximately 15-20 seconds after entering the password:

Invalid Password
Connection Failed

followed by the operating system prompt. Note that any Out-of-Band connections to that server from other ISM applications (such as System Management) count toward the total of four connections to that server’s BMC.

\(^3\) The Serial Over LAN mode is not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs
Using CLI Commands with dpccli (Platform Control Mode Only)

NOTE
To start a CLI session with dpccli, the network proxy dpcproxy must be running, either on the managing console or a central network proxy system. However, by default you should not have to do anything for the network proxy to be running, because the ISM installation installs the network proxy and sets it up for automatic start upon reboot. See page 47 for details on the network proxy.

Using Windows Command Prompt
To connect to the server in Platform Control Mode and use CLI commands:
1. Enter the dpccli command and provide any command-line options (see page 15).
2. At the “Server:” prompt provide the IP Address or DNS Name of the server to which you want to connect.
3. Provide the IPMI username and password for the target system.
4. After authentication is performed, you will see a login successful message and the dpccli> prompt. You can now enter CLI commands.

Using Linux Shells
To connect to the server in Platform Control Mode and use CLI commands from your Linux command line shell:
1. Enter the following command and provide any command-line options (see page 15).
   /usr/local/cli/dpccli
2. At the “Server:” prompt provide the IP Address or DNS Name of the server to which you want to connect.
3. Provide the IPMI username and password for the target system.
4. After authentication is performed, you will see a login successful message and the dpccli> prompt. You can now enter CLI commands. If you want to use the “console” command to switch to SOL Console Redirection mode, you must first open a telnet session to the managed server, as described in Using telnet for both Platform Control and SOL Modes below.

Using telnet for both Platform Control and SOL Modes

NOTE
When using the Serial over LAN Console Redirection mode of Command Line Interface (CLI) from a management console running a supported version of Linux, the backspace key [Backspace] does not work. You must use [Control]-[Backspace] instead when using Command Line Interface (CLI) with Serial over LAN Console Redirection from a management console running a supported version of Linux. Other utilities (SPU and PCU) do not experience this issue.
Serial over LAN mode requires a telnet session from the managing console to the managed server, regardless of which operating system (Windows or Linux) you are running on either system. Start the telnet session to the remote server as described below.

1. At the operating system command prompt, type “telnet xxx.xxx.xxx.xxx 623 <Enter>”. The xxx represent the IP address of the system running the Network Proxy. This may be a central network server with the Proxy installed. If you are connecting to the local system, use “localhost” instead of the system’s IP Address. The 623 represents the default Port address required for CLI connections. If this port address has been changed while executing the dpcproxy command use that port address (see page 50 for dpcproxy syntax). Eg: telnet 10.7.162.58 623 or telnet localhost 623

2. At the “Server:” prompt provide the IP Address or DNS Name of the server to which you want to connect.

3. Provide the IPMI username and password for the target system.

After authentication is performed, you will see a login successful message and the dpccli prompt (even over telnet, CLI starts in Platform Control mode by default). You can now enter CLI commands (see page 17 for list of commands) or switch to SOL Console Redirection mode, as described below.

**NOTE**

*When using the BIOS setup utility on a remote server through an SOL connection, be aware that upon exiting the BIOS setup utility (by pressing F10), the SOL connection to the remote server will be lost and you will need to re-establish the SOL connection to the server.*

**Switching Between Platform Control Mode and SOL Console Redirection Mode**

When you use telnet as described above to connect to the remote server through the network proxy (due to the use of the port on which dpcproxy is listening), the CLI session starts in Platform Control Mode, in which CLI commands can be executed on the remote system. To switch to SOL Console Redirection mode, issue the CLI command “console” (see page 22). To exit SOL Console Redirection mode and return to Platform Control Mode, enter the tilde-period key sequence (~.). This switches the console back to Platform Control Mode. You can change the character sequence to switch modes by using the **redirectexit** option of the **dpcproxy** command (see page 50 for complete dpcproxy command syntax).

---

4 The Serial Over LAN mode is not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs

5 The Serial Over LAN mode is not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs
The Console Interface (dpccli)

As stated above, for a command prompt console such as a Linux shell, you must start dpccli before you can access the CLI commands. The dpccli executable file acts as an interface between the console and the network proxy. Once the interface is started, you can then connect to a server and enter commands.

The console interface is particularly useful in scripting environments that use standard console input and output. It is also useful as a simple interactive interface when formatted output is not required.

dpccli Return Codes

When it exits, dpccli will return a status code to the environment. Normal exits are performed by using the CLI commands exit or quit (see page 22) during a dpccli session. However, if the -e option is used when invoking the network proxy (dpcproxy), dpccli will exit abnormally whenever an error condition is encountered. If the -e option is not used, only the very last return code can be viewed (that is, if multiple errors occurred during the session, and you exit normally, you will only see the return code of the last error).

If you would like to set the -e option for the network proxy, see page 47 for information on setting persistent arguments (arguments that will be read whenever the network proxy is restarted upon reboot).

To view the return code upon exiting dpccli (either by using the exit or quit command, or because of an error), type one of the following commands at the command prompt, depending on your operating system:

- **Linux:** echo $?
- **Windows:** echo %errorlevel%

The following are the status codes dpccli will return (non-zero values for the return code indicate an error condition was encountered):

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
<th>Suggested Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Success</td>
<td>No action necessary.</td>
</tr>
<tr>
<td>1</td>
<td>Connection lost to proxy</td>
<td>Restart dpccli session or telnet session, depending on which you were using.</td>
</tr>
<tr>
<td>2</td>
<td>Login failed</td>
<td>Retry login.</td>
</tr>
<tr>
<td>3</td>
<td>Unrecognized command</td>
<td>Retype command (this error will be displayed if command is mistyped).</td>
</tr>
<tr>
<td>4</td>
<td>Command failed</td>
<td>Retype command. May need to restart the network proxy and try the command again.</td>
</tr>
<tr>
<td>5</td>
<td>Invalid Arguments</td>
<td>Retype command and arguments (this error will be displayed if argument is mistyped).</td>
</tr>
<tr>
<td>6</td>
<td>Unknown error</td>
<td>Contact system administrator.</td>
</tr>
</tbody>
</table>
The .dpcclirc Configuration File

In situations where you regularly start the dpccli console interface, you can set up a configuration file of common command-line options (note that this is not the same as the “input file” described for the -i option on page 15). Thus you avoid having to enter the options each time at the command line. For example, you could put in this file the network address of a centralized network proxy using the -P option. Each time you start dpccli it reads the configuration file, and it would get the network proxy from the file.

NOTE

The .dpcclirc file is only referenced when the dpccli command is launched from an operating system command prompt. If you use telnet to connect to the managed server, as described on page 11, the .dpcclirc file will not be referenced.

By default dpccli looks for a file named .dpcclirc, first in the directory specified in the HOME environment variable (see below) and then in the current working directory. You can explicitly specify the file name and its path on the command line with the -r option.

NOTE

Options specified on the dpccli command line (see page 15) always take precedence over options specified in the configuration file. Not all dpccli options are supported from .dpcclirc. The supported options are:

- a, c, I, v, i, o, p, P, s, and u.

Command text is not processed through the configuration file. Any option not understood or supported is silently ignored. Thus, you can insert blank lines or comments that start with a non-option letter, for example, # in the file.

When creating the configuration file, enter each option on a separate line. Each line must begin with an option letter optionally preceded by the hyphen character. Follow the option with any argument that applies (note that there must be a space between the option and its argument; for example, -s server_name). See the options listed on page 15.

Setting the HOME Environment Variable

NOTE

The HOME environment variable may already be in use by other applications. Verify that HOME is not being used before changing this setting.

In Linux

As stated above, by default dpccli looks for a file named .dpcclirc, first in the directory specified in the HOME environment variable and then in the current working directory.

To set the HOME environment variable, do one of the following:

---

6 This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs
• To temporarily set the HOME variable (until next reboot), type the following command:
  ```
  export HOME=<path>
  ```
• To permanently set the HOME variable, edit the `/etc/profile` script and add the line
  ```
  export HOME=<path>.
  ```

**In Windows**

Access the System Properties dialog by right-clicking the My Computer icon on the desktop and selecting Properties. Click the Advanced tab, then select Environment Variables. From there add the variable HOME, and define the path as desired.

### The `dpccli` Command Syntax

The `dpccli` command line syntax is as follows:

```
dpccli {[-?] | [-h]} | {[-s server] [-u user] [-p password]
  [-a alternatePort] [-r rcFile] [text]...}
```

**NOTE**

The first text encountered on the command line that is not associated with a command-line option (i.e., the `[text]` option referenced above) is interpreted as the start of text to be sent to the network proxy. Therefore you must place this text last on the command line.

**NOTE**

It is recommended that the `-o outputFile` option be used with the `-i inputFile` option. If you do not use `-i` when using `-o`, CLI may appear to hang (even though it is working properly) because all output is being directed to the file specified in the `-o` option instead of to the console.

### The `dpccli` Command-line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-?</code> or <code>-h</code></td>
<td>Displays command usage. Any other options specified with this option are ignored.</td>
</tr>
<tr>
<td><code>-s server</code></td>
<td>Specifies the IP Address or DNS hostname associated with the Network Interface Card (NIC) used by the Baseboard Management Controller (BMC). For <code>server</code>, specify either an IP Address or DNS hostname. If you do not specify this option, you will be prompted for the information.</td>
</tr>
<tr>
<td><code>-u user</code></td>
<td>Specifies the Intelligent Platform Management Interface (IPMI) username associated with this session. For <code>user</code>, specify a valid username associated with the managed server. If you do not specify this option, you will be prompted for the information. Note that if you are using a null user and password, supply <code>&quot;&quot;</code> for the user name (e.g., <code>dpccli -s server_name -u &quot;&quot; -p &quot;&quot;)</code>.</td>
</tr>
<tr>
<td><code>-p password</code></td>
<td>Specifies the IPMI password associated with this session and user. For <code>password</code>, specify the password associated with the username. If you do not use this option, you will be prompted for the information. Note that if you are using a null user and password, supply <code>&quot;&quot;</code> for the password (e.g., <code>dpccli -s server_name -u &quot;&quot; -p &quot;&quot;)</code>.</td>
</tr>
<tr>
<td><code>-i inputFile</code></td>
<td>Specifies an input file to be read as standard input. For <code>inputFile</code>, specify any text file. When the end of file is reached, the dpccli session ends unless you have also used</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>-I</td>
<td>Causes the dpccli session to continue as an interactive session after all characters in the input file (specified with the -i command-line option) have been processed. The interactive mode continues after processing all characters read from an input file and/or any text specified at the command line. This is the default mode if an input file and/or text is not specified on the command line.</td>
</tr>
<tr>
<td>-o outputFile</td>
<td>Specifies an output file in which to capture standard output. For outputFile, specify any text file. If you do not use this option, all standard output arrives at the console. It is recommended that the [-o outputFile] option be used with the [-i inputFileName] option. If you do not use [-i] when using [-o], CLI may appear to hang (even though it is working properly) because all output is being directed to the file specified in the -o option instead of to the console.</td>
</tr>
<tr>
<td>-c</td>
<td>Forces the BMC session into Serial over LAN mode. In Serial over LAN mode, data is passed unaltered from the managed server to the console. If you do not use this command-line option, Platform Control Mode is the default mode. <strong>Note:</strong> This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs</td>
</tr>
<tr>
<td>-v</td>
<td>Causes session progress messages to be sent to standard error (i.e. verbose output). Additionally, any non-zero exit condition prints an associated error message. This behavior is also the default behavior during any interactive session.</td>
</tr>
<tr>
<td>-P networkProxy</td>
<td>Specifies the IP Address or DNS hostname of the system running the network proxy (dpcproxy). The system whose IP Address or hostname you supply for networkProxy is the system that the client (your console system) will contact to look for the network proxy service. By default, the IP Address is the local host (127.0.0.1). Note that unless the -a flag is also used (to specify a particular port to use), the console system will attempt to communicate to the remote proxy through the default dpcproxy port of 623.</td>
</tr>
<tr>
<td>-a alternatePort</td>
<td>Specifies an alternate network proxy port number. By default, the port number is 623. If you have changed the port on which dpcproxy is listening (by using the dpcproxy command with the -p option; see page 50), you must supply the -a option with the new port number in your dpccli command.</td>
</tr>
<tr>
<td>-r rcFile</td>
<td>Specifies an alternate dpccli configuration file. By default, dpccli first looks for a file named .dpcclirc in the directory specified by the environment variable HOME (see page 14) and then in the current working directory. This option specifies the path including filename, which can be different than .dpcclirc. For information on dpccli configuration files, see page 14.</td>
</tr>
</tbody>
</table>
Running dpccli Commands from a Script

In order to scan multiple servers for information or to monitor their health, dpccli can be executed as part of a user created script. The following is an example of how input and output files could be used to query a server and save the information to a file which could then be parsed for data.

Sample input file:

```
111.112.113.20
(null user name. carriage return only, no spaces or tabs)
(null password. carriage return only, no spaces or tabs)
sensors -v
get -T BMC/network/1
```

Script command to execute.

```
./dpccli -i inputfilename -o outputfilename
```

Output file created based on the sample input file above.

```
Server: 111.112.113.20
user name:
Password:
Login successful
dpccli> sensors -v
  04/08/02 | 06:56:18 | Baseboard 1.25V | ok |    1.24 | Volts
  04/08/02 | 06:56:18 | Baseboard 2.5V  | ok |    2.47 | Volts
  04/08/02 | 06:56:18 | Baseboard 3.3V  | ok |    3.29 | Volts
  04/08/02 | 06:56:18 | Baseboard 3.3VS | ok |    3.28 | Volts
  04/08/02 | 06:56:18 | Baseboard 5.0V  | ok |    4.97 | Volts
  04/08/02 | 06:56:18 | Baseboard 12V   | ok |   11.97 | Volts
  04/08/02 | 06:56:18 | Baseboard -12V | ok |  -11.97 | Volts
  04/08/02 | 06:56:19 | Baseboard VBAT | ok |    3.07 | Volts
  04/08/02 | 06:56:19 | Processor VRM  | ok |    1.45 | Volts
  04/08/02 | 06:56:19 | Baseboard Temp | ok |   30.00 | Celsius
  04/08/02 | 06:56:19 | FntPnl Amb Temp| ok |   28.00 | Celsius
  04/08/02 | 06:56:19 | Processor1 Temp| ok |   37.00 | Celsius
  04/08/02 | 06:56:19 | Processor2 Temp| ok |   36.00 | Celsius
  04/08/02 | 06:56:19 | PwrDstBd Temp | ok |   27.00 | Celsius
  04/08/02 | 06:56:19 | PwrDstBrd Fan | ok |   7320.00 | RPM
  04/08/02 | 06:56:19 | System Fan 3   | ok |   3872.00 | RPM
  04/08/02 | 06:56:19 | System Fan 1   | ok |   5852.00 | RPM
```

dpccli> get -T BMC/network/1
IP Address: 111.112.113.20
IP Address Source: static
MAC Address: 00:03:47:A4:FC:7D
Subnet Mask: 255.255.255.0
Gateway: 111.112.113.20
dpccli> exit
CLI Commands

General CLI Commands

The following CLI commands are for general use, except where noted. A further section, CLI Firmware Configuration Commands, follows this section, and describes commands specific to configuring the target system’s firmware.

alarm -s

This command is available only on servers configured specifically with hardware for telephone company (telco) alarm capabilities.

NOTE
This command not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs. Issuing this command causes an “error COMMAND IS INVALID” message to be returned.

Syntax:
alarm -s -a id -l severity

Description:
The –s option designates this command as the “set alarm” command. This command adds a single Telco alarm record to the Telco alarm database. The generator ID for CLI will always be 41h. The following is an example of an alarm command to add a new alarm:

alarm -s -a 25 -l MJR

Options (all required):

-s Specifies “set alarm” command.
-a Sets alarm ID.
-l Sets alarm severity. Possible severities are MJR (major), MNR (minor), and CRT (critical).

After every set alarm command, you should see one of the following five messages.

New alarm added to BMC TAM alarm database.
Request alarm matches existing BMC TAM alarm database record.
Request alarm updated an existing BMC TAM alarm database record.
BMC TAM alarm database is full. Request alarm record bumped because of lower priority.
BMC TAM alarm database is full. Request alarm record bumped existing record.
alarm -q

This command is available only on servers configured specifically with hardware for telephone company (telco) alarm capabilities.

NOTE

This command not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs. Issuing this command causes the error message “There are no records in the BMC TAM alarm database to be displayed” to appear.

Syntax:
alarm -q [-g id [ -o id ] [-a id ] | [-p] | [ -l severity]

Description:
The –q option designates this command as the “query alarm” command. This command queries Telco alarm records in the alarm database based on the options entered by the user. Other than –q, no options are required and all of the other options can be specified.

Options:

[-q] Specifies “query alarm” command.
[-g] Query against the generator ID specified.
[-o] Query against the software originator ID specified.
[-a] Query against the alarm ID specified.
[-p] Query only alarms that are related to power.
[-l] Query against the severity specified. Severities are MJR (major), MNR (minor), and CRT (critical).

This command will display all records that match the query criteria. The following is an example of an input and output sequence.

alarm -q -l MJR

AlarmGenID=4 AlarmSW=Y AlarmSWID=5 AlarmID=1 AlarmSev=MJR AlarmPWR=N
AlarmGenID=3 AlarmSW=N AlarmSWID=NA AlarmID=2 AlarmSev=MJR AlarmPWR=N
AlarmGenID=2 AlarmSW=N AlarmSWID=NA AlarmID=3 AlarmSev=MJR AlarmPWR=Y
**alarm -c**

This command is available only on servers configured specifically with hardware for telephone company (telco) alarm capabilities.

**NOTE**

*This command not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs. Issuing this command causes the error message “There are no records in the BMC TAM alarm database to be displayed” to appear.*

**Syntax:**

```
alarm -c [-g id [-o id] [-a id]] | [-l severity] | all
```

**Description:**

The –c option designates this command as the “clear alarm” command. This command clears all Telco records in the Telco alarm database based on the options entered by the user. Other than –c, no options are required. If the –a option is specified, then the –g and –o options must also be specified.

**Options:**

[-c] Specifies “clear alarm” command.

[-g] Clears alarm for the generator ID specified.

[-o] Clears alarm for the software originator ID specified.

[-a] Clears alarm for the alarm ID specified. If the –a option is specified, then the –g and –o options must also be specified.

[-l] Clears alarm for the severity specified. Severities are MJR (major), MNR (minor), and CRT (critical).

This command will display the alarm id of every record it removes. The following is an example input and output sequence.

```
alarm –c –g 4 –o 5 –a 1
Alarm ID 1 cleared (Generator ID 4)
```

**boot**

**Syntax:**

```
boot  -s normal | service [-f] [-console]
```

**Description:**

Sets the IPMI boot options and then resets the system. By default, the boot command attempts a graceful shutdown of the operating system before executing the IPMI reset command. If the specified boot option is unavailable, the server will boot using the boot order set in its BIOS.

**Options:**

- **normal** Boots the server from the hard drive.
- **service** Boots the server from the Service Partition.
- **[-f]** Forces a boot without a graceful shutdown.
This command-option combination can only be used over a telnet session to the remote server (see page 11). Switches the session to Serial over LAN mode after successfully executing the IPMI reset command. You will see the BIOS output and other boot messages as if sitting at the managed server. If you specify a service option along with the -c option, the CLI opens a connection with the Remote Service Agent (RSA) running on the service partition instead of establishing a Serial over LAN session. Then you can interact with RSA using the Service command (see page 27).

Note: This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.

---

clearlog

Syntax:
clearlog

Description:
Clears the System Event Log.

---

console

Syntax:
cconsole

Description:
This command-option combination can only be used over a telnet session to the remote server (see page 11). Switches the CLI from Platform Control mode to Serial over LAN Console Redirection mode.

In Serial over LAN Console Redirection mode, the character stream is passed unaltered allowing you to view directly the output of the console serial port of the server. Switching into this mode causes any output data that was received and buffered while CLI was in command mode to be displayed.

You can switch from Serial over LAN Console Redirection mode back to CLI command mode by typing a tilde followed by a period (~.). To escape the tilde and send it to the console, type a second tilde.

NOTE
This command not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.

---

displaylog

Syntax:
displaylog [-F format] [-O filename] [-n number]

**Description:**
Displays System Event Log (SEL) records. Each record displays on a single line and uses the following format:

```
Record # | Date Time | Sensor | Event description
```

**Options:**

[-F format] When csv is specified for format, displays the record using a comma-separated format.

Fields are separated by a single comma, as in the following example:

```
09/13/01,10:08:55,Voltage,#02,ok,5.2,Volts
09/13/01,10:08:55,Temperature,#12,critical,102,Degrees Celsius
```

Values for format:

- csv: specifies comma separated values
- dsv: specifies delimiter separated values (default); see default example above
- hex: specifies hexadecimal values

[-O filename] Saves data to specified filename.

[-n number] Specifies the most recent number of events to display. If you do not use this option, all SEL records are displayed.

**NOTE**

*When saving SEL files using the -O filename option, the file will be saved to the system where the dpcproxy is running. Example: If connected to a remote DPCProxy the saved SEL files will be placed on the remote system (where the dpcproxy is running) rather than the local system.*

*Any path specified must exist on the system on which the proxy is running.*

**exit or quit**

**Syntax:**

```
exit
quit
```

**Description:**
Terminates the CLI session. Either command closes all IPMI sessions associated with the user of the network proxy as well as closing the network proxy socket.

**help**

**Syntax:**

```
help [-C CLIcommand]
```
**Description:**
Displays how to use the specified CLI command. If you do not specify a CLI command, abbreviated usage information is displayed for all CLI commands.

**Options:**

```
[-C CLIcommand] Any valid CLI command.
```

**id**

**Syntax:**
```
id
```

**Description:**
Displays the 16-byte system Globally Unique Identifier (GUID) of the managed server in the conventional GUID format; for example, 422e7704-23f5-4706-a943-a7859c073aed.

**Identify**

**NOTE**
This command not supported on systems that use National Semiconductor's PC87431x family of "mini" BMCs.

**Syntax:**
```
identify [-on [seconds]] [-off] [-s]
```

**Description:**
Causes the server to signal its physical location with a blinking LED or beep. Use this command to locate a server in a rack of servers.

**Options:**

```
[-on [seconds]] Specifies the number of seconds to blink the LED or sound the beep. If you do not provide a value for seconds, the default is 15 seconds. If you provide the value 0 for seconds, the server will identify itself indefinitely. The maximum value for seconds is 255. Not all servers support specifying the number of seconds.

[-off] Turns off the blinking LED or beep. This option has no effect if the specified server is not currently identifying itself.

[-s] Displays the current LED state as either ON (Application), ON (Button), or OFF.
```
interrupt -i nonmask [-console]

Syntax:
interrupt -i nonmask [-console]

Description:
Forces the Baseboard Management Controller (BMC) to generate an IPMI diagnostic interrupt.

Options:
[-console] This command-option combination can only be used over a telnet session to the remote server (see page 11). Switches the session to Serial over LAN mode after successfully executing the IPMI diagnostic interrupt command.

Note: This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.

power

Syntax:
power {-on [-console]} | -off | -state

Description:
Initiates a power up or power down sequence on the managed server. To perform a graceful shutdown\(^7\), the Platform Instrumentation (PI) software must be installed on the server.

Options:
[-console] This command-option combination can only be used over a telnet session to the remote server (see page 11). Switches the session to Serial over LAN mode after successfully executing the IPMI power-on command.

Note: This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.

-state Displays the current power state of the managed server.

reset

Syntax:
reset [-console]

Description:
Performs a platform reset. To perform a graceful shutdown, the Platform Instrumentation (PI) software must be installed on the server.

\(^7\) Graceful shutdown not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.
Options:

This command-option combination can only be used over a telnet session to the remote server (see page 11). Switches the session to Serial over LAN mode after successfully executing the IPMI reset command.

Note: This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.

sensors

Syntax:
sensors [-v] [-F format] [-f threshold] [T sensor]

Description:
Displays the current status of platform sensors using the following default delimiter-separated format (see -F format below):

| Date | Time | Sensor Type | Sensor # | Status | Value | Units |

Options:

[-v] Displays all information fields (date, time, sensor type, etc.) if they are available, as in the following example:

09/13/01 | 10:08:55 | Voltage | #02 | ok | 5.2 | Volts
09/13/01 | 10:08:55 | Temperature | #12 | critical | 102 | Degrees Celsius

[-F format] When csv is specified for format, displays the record using a comma-separated format.

Fields are separated by a single comma, as in the following example:

09/13/01,10:08:55,Voltage,#02,ok,5.2,Volts
09/13/01,10:08:55,Temperature,#12,critical,102,Degrees Celsius

Values for format:

- csv: specifies comma separated values
- dsv: specifies delimiter separated values (default); see example in command description above

[-f threshold] Filters the display based on threshold. All sensors that are at the threshold and above will be displayed. OK includes all levels. CR displays CR and NR. Specify one of the following for this minimum threshold:

- ok Operating in normal ranges.
- nc Non-critical condition caused by a sensor outside of its normal ranges.
- cr Critical condition that is potentially fatal to the system caused by a sensor exceeding its specified ratings.
- nr Non-recoverable condition that has potential to damage hardware.
unspec Unspecified status indicating a fault whose severity is unknown.

[-T sensor] Specifies the sensor group to display. If you do not specify a sensor group, the command displays all groups for which there is information. Specify one of the following for sensor:

volt
temp
time
fan

service

Syntax:

service {-console | -exit | -ftp {start | stop}}

Description:

This command-option combination can only be used over a telnet session to the remote server (see page 11). After booting from the Service Partition (see the boot command with the service option), this command lets you interact with the Remote Service Agent (RSA) that is running from the managed server’s Service Partition.

Options:

-console Switches the CLI session to RSA console mode. In this mode the RSA starts and redirects a DOS command window through the Command Line Interpreter parser. In this mode, the character stream is passed unaltered to and from the RSA. You can switch out of RSA console mode and return to CLI command mode by typing a tilde followed by a period (~.) To escape the tilde and have it sent to the console, supply a second tilde. Switching out of RSA console mode does not close the RSA-DOS console connection, which can be established again by issuing another service console command.

Note: This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.

(exit Closes the RSA-DOS console connection and returns the CLI session to CLI command mode.

-ftp start Instructs the RSA to start the FTP server. Once the FTP server is started, standard OS FTP clients can be used to directly transfer files to and from the Service Partition. An FTP client is not built into the CLI command parser. The FTP server cannot be started while an RSA console session is active. Attempting to do so generates an error message from the CLI parser. The default ftp user name is “ftpuser” and the default ftp password is “ftp1234”.

-ftp stop Instructs the RSA to stop the FTP server.
set –T session {Prompt | Prefix}

Syntax:
set –T session {Prompt=text | Prefix=text}

Description:
Defines the CLI command-line prompt and the prefix that is applied to CLI command responses. By default, the command-line prompt is “dpccli”, and the default response prefix is an empty string.

Options:
prompt=text Changes the CLI prompt to text.
prefix=text Changes the response prefix to text.
text The prompt or prefix text. You can supply any literal text characters plus the system variable $system, $time, and $date. These variables resolve to the hostname or IP Address, the system time, and date, respectively. The time and date reflect current time for the system that is hosting the network proxy.

Example:
set –T session Prompt=$system>

shutdown

Syntax:
shutdown [-f] [-r]

Description:
Shuts down or resets the managed system, depending on which option is selected. By default, the software will attempt a graceful shutdown. Performing a graceful O/S shutdown requires a proprietary O/S agent be present. If this agent is not present or unable to respond after 7 seconds, an error message will be displayed for the user and the command will terminate (no reset or power off performed). Graceful shutdown commands will not perform hard resets or power off if O/S shutdown does not complete. This model varies from previous implementations of graceful shutdown requests.

Options:
[f] Forces a power off without performing a graceful shutdown. A graceful shutdown requires Intel Server Management to be installed on the server.
[r] Causes the software to attempt a graceful shutdown and then execute the IPMI reset command.

8 Graceful shutdown not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.
version

Syntax:
version

Description:
Displays the version of the active network proxy (dpcproxy).

CLI Firmware Configuration Commands

This section describes CLI commands that are used to configure the target system’s firmware. These commands allow you to update and display BMC configuration data. The set command could potentially cause the BMC to be configured incorrectly and in some cases could cause a lost connection of the current session. It could also cause another user currently connected to this system to lose their connection. For this reason, this command only temporarily sets the arguments. You will see a warning after every set. You must issue the commit command to force the entries into the BMC. You may also issue the clear command at any time to clear the temporary values. These commands will only be available on CLI version 2.1 and higher.

Channel ID Mapping by Platform

Some CLI firmware configuration commands require you to supply a channel ID number. You can use the get -T BMC/channelInfo command to obtain channel ID information for the system to which you are connected. See page 34 for information on get -T BMC/channelInfo.

Alternatively, you can use the channel ID reference Tables 1 and 3 below. Recently, Intel changed its mapping of channel IDs. Table 1 and Table 2 display the older mapping and the platforms that support it (note that Table 2 is not an exhaustive list, but includes only the more recent of those platforms). Table 3 and Table 4 display the newer channel ID mapping and the platforms that support it.

NOTE

Systems containing the PC87431M mini-Baseboard Management Controller (mBMC) from National Semiconductor have only one LAN channel unless the Intel Management Module is installed. The IMM is not available on some systems with the mBMC.

The Channel ID mapping tables below display only the channel ID numbers that are relevant to the CLI firmware configuration commands.

Table 1. Older Channel ID Mapping

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Medium Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serial</td>
</tr>
<tr>
<td>6</td>
<td>NIC 2</td>
</tr>
<tr>
<td>7</td>
<td>NIC 1</td>
</tr>
</tbody>
</table>
Table 2. Platforms Using Older Channel ID Mapping

<table>
<thead>
<tr>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH4</td>
</tr>
<tr>
<td>SPSH4</td>
</tr>
<tr>
<td>SRSH4</td>
</tr>
<tr>
<td>SCB2</td>
</tr>
<tr>
<td>SDS2</td>
</tr>
<tr>
<td>SE7500WV2</td>
</tr>
<tr>
<td>SHG2</td>
</tr>
<tr>
<td>SE7501WV2</td>
</tr>
<tr>
<td>SE7501BR2</td>
</tr>
<tr>
<td>SE7501HG2</td>
</tr>
<tr>
<td>SR870BN4</td>
</tr>
<tr>
<td>SR870BH2</td>
</tr>
</tbody>
</table>

Table 3. Newer Channel ID Mapping

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Medium Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NIC 1</td>
</tr>
<tr>
<td>2</td>
<td>NIC 2</td>
</tr>
<tr>
<td>3</td>
<td>IMM Advanced Edition NIC</td>
</tr>
<tr>
<td>5</td>
<td>Serial</td>
</tr>
</tbody>
</table>

Table 4. Platforms Using Newer Channel ID Mapping

<table>
<thead>
<tr>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE7520AF2</td>
</tr>
<tr>
<td>SE7520BD2</td>
</tr>
<tr>
<td>SE7520JR2</td>
</tr>
<tr>
<td>SE7320SP2</td>
</tr>
<tr>
<td>SE7525GP2</td>
</tr>
<tr>
<td>SE7320VP2</td>
</tr>
<tr>
<td>SE7221BA1</td>
</tr>
<tr>
<td>SE7221BK1</td>
</tr>
<tr>
<td>SR4850HW4</td>
</tr>
<tr>
<td>SR6850HW4</td>
</tr>
<tr>
<td>SE8500HW4</td>
</tr>
</tbody>
</table>

get –T BMC/network

Syntax:
get -T BMC/network/<channel id> [Address=mac+ip+subnet+gateway]

Description:
The `get -T BMC/network` command displays the network configuration of the BMC. This includes the MAC address, IP address and source (static, DHCP, BIOS, other), subnet mask, and gateway IP address. Without arguments, all network information is displayed. Optionally, the user can specify which network configuration information is of interest. If you do not specify a channel id, the current channel is used. See page 34 for information on `get -T BMC/channelInfo` command or see page 29 for channel ID mapping information in this guide.
get –T BMC/channel

Syntax:
get -T BMC/channel/<channel ID>

Description:
The `get –T BMC/channel` command displays the BMC channel settings. If you do not specify a channel id, the current channel is used. See page 34 for information on `get -T BMC/channelInfo` command or see page 29 for channel ID mapping information in this guide.

get –T BMC/lanAlert

Syntax:
get -T BMC/lanAlert/<channel ID> [AlertIndex=<value>]

Description:
The `get –T BMC/lanAlert` command displays the BMC LAN alert settings. If you do not specify a channel id, the current channel is used. See page 34 for information on `get -T BMC/channelInfo` command or see page 29 for channel ID mapping information in this guide. For AlertIndex, the default value is zero (0).

get –T BMC/lan

Syntax:
get -T BMC/lan/<channel ID>

Description:
The `get –T BMC/lan` command displays the BMC LAN settings. If you do not specify a channel id, the current channel is used. See page 34 for information on `get -T BMC/channelInfo` command or see page 29 for channel ID mapping information in this guide.

get –T BMC/modem

Syntax:
get -T BMC/modem/<channel ID>

Description:
The `get –T BMC/modem` command displays the BMC modem settings.

get –T BMC/terminal

Syntax:
get -T BMC/terminal/<channel ID>

Description:
The `get –T BMC/terminal` command displays the BMC terminal settings.
get –T BMC/serialPage

Syntax:
get –T BMC/serialPage/<channel ID> [PageSelector=<value>]

Description:
The get –T BMC/serialPage command displays the BMC serial paging settings on the specified channel.

going to BMC/serialDialString

Syntax:
get –T BMC/serialDialString/<channel ID> DialStringIndex=<value>

Description:
The get –T BMC/serialDialString command displays the dial strings that are to be destinations for alerts sent as dial pages on the specified channel. Note that the argument DialStringIndex is required.

going to BMC/serial

Syntax:
get –T BMC/serial/<channel ID>

Description:
The get –T BMC/serial command displays the BMC serial settings.

going to BMC/pefFilter

Syntax:
get –T BMC/pefFilter

Description:
The get –T BMC/pefFilter command displays the BMC PEF settings. If you do not specify a channel id, the current channel is used. See page 34 for information on get -T BMC/channelInfo command or see page 29 for channel ID mapping information in this guide.

going to BMC/pefPolicy

Syntax:
get –T BMC/pefPolicy

Description:
The get –T BMC/pefPolicy command displays the PEF policy table settings. If you do not specify a channel id, the current channel is used. See page 34 for information on get -T BMC/channelInfo command or see page 29 for channel ID mapping information in this guide.
get –T BMC/sol
Syntax:
get –T BMC/sol
Description:
The get –T BMC/sol command displays the BMC SOL settings.

get –T BMC/user/<user id>
Syntax:
get –T BMC/user/<user id> [ChannelID=<value>]
Description:
The get –T BMC/user command displays the BMC user settings for the specified user. If you do not specify a user id, the user that is connected to the current session is displayed. See page 34 for information on get -T BMC/channelInfo command or see page 29 for channel ID mapping information in this guide.

get –T BMC/prp
Syntax:
get –T BMC/prp
Description:
The get –T BMC/prp command displays the BMC power settings.

get –T BMC/channelInfo
Syntax:
get –T BMC/channelInfo
Description:
The get -T BMC/channelInfo command lists the supported channels and their medium type. It displays channels that are LAN, serial, system interface (KCS), or PCI SMBus. It also displays which LAN is NIC1, NIC2, advanced card NIC, or if it is the only supported NIC on a PC87431x system. Finally, it lists which LAN channel you are currently connected to. This command is helpful in determining which channel id to display or configure when executing a firmware configuration display or firmware configuration command. The following is an example output from an IPMI 1.5 system.

<table>
<thead>
<tr>
<th>Channel #</th>
<th>Medium Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serial</td>
</tr>
<tr>
<td>3</td>
<td>PCI SMBus</td>
</tr>
<tr>
<td>4</td>
<td>System Interface</td>
</tr>
<tr>
<td>6</td>
<td>LAN [NIC 2]</td>
</tr>
<tr>
<td>7</td>
<td>LAN [NIC 1] * current channel</td>
</tr>
</tbody>
</table>
set –T BMC/channel

Syntax:
set -T BMC/channel/<channel ID> [options]

where <options> can be:
[AuthCallback=<value>]
[AuthUser=<value>]
[AuthOperator=<value>]
[AuthAdmin=<value>]
[MsgAuth=Enable|Disable]
[UserLevelAuth=Enable|Disable]
[AccessMode=Disabled|PreBoot|Always|Shared]
[PrivilegeLevel=Callback|User|Operator|Admin]

Description:
The set –T BMC/channel command allows the user to configure IPMI channel settings. You can modify any of the following options on the channel. If you do not specify a channel id, the current channel will be used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication types for callback</td>
<td>AuthCallback</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication types for user</td>
<td>AuthUser</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication types for operator</td>
<td>AuthOperator</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication types for administrator</td>
<td>AuthAdmin</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Per message authentication</td>
<td>MsgAuth</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>User Level Authentication</td>
<td>UserLevelAuth</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Access Mode</td>
<td>AccessMode</td>
<td>Disabled, PreBoot, Always, Shared</td>
</tr>
<tr>
<td>Privilege level</td>
<td>PrivilegeLevel</td>
<td>Callback, User, Operator, Admin</td>
</tr>
</tbody>
</table>
set –T BMC/lanAlertEnable

**Syntax:**

```
set –T BMC/lanAlertEnable/<channel ID> GatewayIP=<ip address> GatewayMAC=<mac address> CommunityString=<value> BackupGatewayIP=<ip address> BackupGatewayMAC=<mac address>
```

**Description:**

The `set –T BMC/lanAlertEnable` command is used to enable LAN alerts on a channel. The following arguments are all required. If you do not specify a channel id, the current channel will be used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway IP address</td>
<td>GatewayIP</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Gateway MAC address</td>
<td>GatewayMAC</td>
<td>Valid MAC address</td>
</tr>
<tr>
<td>Community string</td>
<td>CommunityString</td>
<td>ASCII string of up to 18 bytes</td>
</tr>
<tr>
<td>Backup gateway ip</td>
<td>BackupGatewayIP</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Backup gateway mac</td>
<td>BackupGatewayMAC</td>
<td>Valid MAC address</td>
</tr>
</tbody>
</table>

set –T BMC/lanAlert

**Syntax:**

```
set –T BMC/lanAlert/<channel ID> AlertIndex=<value> AlertIP=<ip address> AlertMAC=<mac address> UseBackupGateway=Enable|Disable AlertAck=Enable|Disable RetryCount=<value> RetryInterval=<value>
```

**Description:**

The `set –T BMC/lanAlert` command is used to configure LAN alert destinations for a channel. The following arguments are required. If you do not specify a channel id, the current channel will be used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert Destination index</td>
<td>AlertIndex</td>
<td>Decimal value; for BMC, must be in the range 0-0xF</td>
</tr>
<tr>
<td>Alert destination ip address</td>
<td>AlertIP</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Alert MAC address</td>
<td>AlertMAC</td>
<td>Valid MAC address, Resolve, Broadcast</td>
</tr>
<tr>
<td>Use backup gateway (enable, disable)</td>
<td>UseBackupGateway</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Alert acknowledge</td>
<td>AlertAck</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Retry count</td>
<td>RetryCount</td>
<td>Decimal value between 0 and 7</td>
</tr>
<tr>
<td>Retry interval</td>
<td>RetryInterval</td>
<td>Decimal value between 1 and 255</td>
</tr>
</tbody>
</table>
set –T BMC/lan

**Syntax:**

```
set –T BMC/lan/<channel ID> [<options>]
```

where `<options>` can be:

- `[AuthCallback=<value>]`
- `[AuthUser=<value>]`
- `[AuthOperator=<value>]`
- `[AuthAdmin=<value>]`
- `[IP=<ip address>]`
- `[IPSource=Static|DHCP|BIOS|BMC|Other]`
- `[Subnet=<ip address>]`
- `[Arp=Enable|Disable]`
- `[ArpInterval=<value>]`
- `[GatewayIP=<ip address>]`
- `[GatewayMAC=<mac address>]`
- `[BackupGatewayIP=<ip address>]`
- `[BackupGatewayMAC=<mac address>]`
- `[CommunityString=<value>`

**Description:**

The `set –T BMC/lan` command provides another way to configure most of the settings previously discussed. The following arguments are all optional. If you do not specify a channel id, the current channel will be used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication type for callback</td>
<td>AuthCallback</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication type for user</td>
<td>AuthUser</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication type for operator</td>
<td>AuthOperator</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication type for administrator</td>
<td>AuthAdmin</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Ip address</td>
<td>IP</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>IP address source</td>
<td>IPSource</td>
<td>Static, DHCP, BIOS, BMC_Other</td>
</tr>
<tr>
<td>Subnet address</td>
<td>Subnet</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Gratuitous arp enable</td>
<td>Arp</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Gratuitous arp interval</td>
<td>ArpInterval</td>
<td>Number of seconds</td>
</tr>
<tr>
<td>Gateway ip address</td>
<td>GatewayIP</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Gateway mac address</td>
<td>GatewayMAC</td>
<td>Valid MAC Address</td>
</tr>
<tr>
<td>Backup gateway ip</td>
<td>BackupGatewayIP</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Backup gateway mac</td>
<td>BackupGatewayMAC</td>
<td>Valid MAC Address</td>
</tr>
<tr>
<td>Community string</td>
<td>CommunityString</td>
<td>Up to a 18 byte ASCII string</td>
</tr>
</tbody>
</table>
set –T BMC/serialEnable

Syntax:
set –T BMC/serialEnable/<channel ID>
PrivilegeLevel=Callback|User|Operator|Admin
ConnectionMode=Modem|Direct BaudRate=9600|19200|38400|57600|115200

Description:
The *set –T BMC/serialEnable* command is used to enable a serial/modem channel. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privilege level limit</td>
<td>PrivilegeLevel</td>
<td>Callback, User, Operator, Admin</td>
</tr>
<tr>
<td>Connection mode</td>
<td>ConnectionMode</td>
<td>Modern, Direct</td>
</tr>
<tr>
<td>BAUD rate</td>
<td>BaudRate</td>
<td>9600, 19200, 38400, 57600, 115200</td>
</tr>
</tbody>
</table>

set –T BMC/modem

Syntax:
set –T BMC/modem/<channel ID>  InitString=<value>
EscapeCommand=<value> HangupCommand=<value> DialCommand=<value>
RingDeadTime=<value> RingDuration=<value> PhoneNumber=<value>

Description:
The *set –T BMC/modem* command is used to configure the modem settings on a channel. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init string</td>
<td>InitString</td>
<td>Init String</td>
</tr>
<tr>
<td>Escape command</td>
<td>EscapeCommand</td>
<td>Escape Command</td>
</tr>
<tr>
<td>Hang-up command</td>
<td>HangupCommand</td>
<td>Hang-up Command</td>
</tr>
<tr>
<td>Dial command</td>
<td>DialCommand</td>
<td>Dial Command</td>
</tr>
<tr>
<td>Ring dead time</td>
<td>RingDeadTime</td>
<td>Ring Dead Time</td>
</tr>
<tr>
<td>Ring duration</td>
<td>RingDuration</td>
<td>Ring Duration</td>
</tr>
<tr>
<td>System phone number</td>
<td>PhoneNumber</td>
<td>System Phone Number</td>
</tr>
</tbody>
</table>
**set –T BMC/terminalEnable**

**Syntax:**
```
set –T BMC/terminalEnable/<channel ID> LineEdit=Enable|Disable
DeleteControl=BSB|DEL Echo=Enable|Disable Handshake=Enable|Disable
OutputSeq=CRLF|NULL|CR|LFCR|LF InputSeq=CR|NULL
```

**Description:**
The `set –T BMC/terminalEnable` command is used to enable terminal mode on a serial channel. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Edit Enable</td>
<td>LineEdit</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Delete Control</td>
<td>DeleteControl</td>
<td>BSB, DEL</td>
</tr>
<tr>
<td>Echo Enable</td>
<td>Echo</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Handshake Enable</td>
<td>Handshake</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Output Newline Sequence</td>
<td>OutputSeq</td>
<td>CRLF, NULL, CR, LFCR, LF</td>
</tr>
<tr>
<td>Input Newline Sequence</td>
<td>InputSeq</td>
<td>CR, NULL</td>
</tr>
</tbody>
</table>

**set –T BMC/serialPageEnable**

**Syntax:**
```
set –T BMC/serialPageEnable/<channel ID> PageBlackout=<value>
CommunityString=<value>
```

**Description:**
The `set –T BMC/serialPageEnable` command is used to enable serial paging on a serial channel. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page blackout</td>
<td>PageBlackout</td>
<td>Decimal value in the range 0-255</td>
</tr>
<tr>
<td>Community String</td>
<td>CommunityString</td>
<td>ASCII string up to 18 bytes</td>
</tr>
</tbody>
</table>

**set –T BMC/serialDialString**

**Syntax:**
```
set –T BMC/serialDialString/<channel ID> DialStringIndex=<value>
DialString=<value>
```

**Description:**
The `set –T BMC/serialDialString` command is used to define dial strings that are to be destinations for alerts sent as dial pages. The following arguments are required.
<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial String index</td>
<td>DialStringIndex</td>
<td>Decimal value for the dial string index</td>
</tr>
<tr>
<td>Dial string</td>
<td>DialString</td>
<td>ASCII string of variable length</td>
</tr>
</tbody>
</table>

**set –T BMC/SerialPageConf**

**Syntax:**

```
set -T BMC/SerialPageConf/<channel ID> PageSelector=<value> DialStringSelector=<value> StopBits=1|2 DataBits=7|8 Parity=None|Odd|Even BaudRate=9600|19200|38400|57600|115200
```

**Description:**

The `set –T BMC/serialPageConf` command is used to configure serial pages on a channel. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Destination Selector</td>
<td>PageSelector</td>
<td>Decimal value</td>
</tr>
<tr>
<td>Dial String Selector</td>
<td>DialStringSelector</td>
<td>Decimal value</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>StopBits</td>
<td>1, 2</td>
</tr>
<tr>
<td>Data Bits</td>
<td>DataBits</td>
<td>7, 8</td>
</tr>
<tr>
<td>Parity</td>
<td>Parity</td>
<td>None, Odd, Even</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>BaudRate</td>
<td>9600, 19200, 38400, 57600, 115200</td>
</tr>
</tbody>
</table>

**set –T BMC/serial**

**Syntax:**

```
set -T BMC/serial/<Channel ID> [options]
```

where `<options>` can be:

- `[AuthCallback=<value>]`
- `[AuthUser=<value>]`
- `[AuthOperator=<value>]`
- `[AuthAdmin=<value>]`
- `[TerminalMode=Enable|Disable]`
- `[ConnectionMode=Modem|Direct]`
- `[InactivityTimeout=<value>]`
- `[ModemCallback=Enable|Disable]`
- `[CloseDCDLoss=Enable|Disable]`
- `[InactivityTimeoutEnabled=Enable|Disable]`
- `[BaudRate=9600|19200|38400|57600|115200]`
- `[DTRHangup=Enable|Disable]`
[FlowControl=None|RTSCTS|XONXOFF]
[MUXDCDLoss=Enable|Disable]
[MUXBaseboardBMC=Enable|Disable]
[MUXBMCMuxboard=Enable|Disable]
[PingMUX=Enable|Disable]
[PingEnabled=Enable|Disable]
[PingCallback=Enable|Disable]
[ConnectionModeSharing=Enable|Disable]
[RingDeadTime=<value>]
[RingDurationTime=<value>]
[InitString=<value>]
[EscapeCommand=<value>]
[HangupCommand=<value>]
[DialCommand=<value>]
[PageBlackoutInterval=<value>]
[CommunityString=<value>]
[RetryInterval=<value>]
[LineEdit=Enable|Disable]
[DeleteControl=BSB|DEL]
[Echo=Enable|Disable]
[Handshake=Enable|Disable]
[OutputSeq=CRLF|NULL|CR|LF|CR|LF]
[InputSeq=CR|NULL]
[PhoneNumber=<value>]

**Description:**

The `set -T BMC/serial` command can be used to configure many of the settings mentioned above individually. The following arguments are all optional.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Type for callback</td>
<td>AuthCallback</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication Type for user</td>
<td>AuthUser</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication Type for operator</td>
<td>AuthOperator</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Authentication Type for Administrator</td>
<td>AuthAdmin</td>
<td>None, Straight, MD5, MD2</td>
</tr>
<tr>
<td>Terminal Mode enable or disable</td>
<td>TerminalMode</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Connection Mode</td>
<td>ConnectionMode</td>
<td>Modem, Direct</td>
</tr>
<tr>
<td>Inactivity Timeout</td>
<td>InactivityTimeout</td>
<td>Decimal value in the range 0-450</td>
</tr>
<tr>
<td>Modem Enabled Callback</td>
<td>ModemCallback</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Close on DCD Loss</td>
<td>CloseDCDLoss</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Inactivity Timeout Enabled</td>
<td>InactivityTimeoutEnabled</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Values/Options</td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>BaudRate</td>
<td>9600, 19200, 38400, 57600, 115200</td>
</tr>
<tr>
<td>DTR Hang-up enable</td>
<td>DTRHangup</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Flow Control</td>
<td>FlowControl</td>
<td>None, RTSCTS, XONXOFF</td>
</tr>
<tr>
<td>MUX switch on DCD Loss</td>
<td>MUXDCDLoss</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>MUX Baseboard to BMC Switch</td>
<td>MUXBaseboardBMC</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>MUX BMC to Baseboard Switch</td>
<td>MUXBMCMBaseboard</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Ping Before MUX Switch</td>
<td>PingMUX</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Ping Enabled</td>
<td>PingEnabled</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Ping During Callback</td>
<td>PingCallback</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Connection Mode String</td>
<td>ConnectionModeSharing</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Ring Dead Time</td>
<td>RingDeadTime</td>
<td>Decimal value between 0 and 7999</td>
</tr>
<tr>
<td>Ring Duration Time</td>
<td>RingDurationTime</td>
<td>Decimal value between 0 and 31000</td>
</tr>
<tr>
<td>Modem Init String</td>
<td>InitString</td>
<td>ASCII string of variable length</td>
</tr>
<tr>
<td>Modem Escape Command</td>
<td>EscapeCommand</td>
<td>ASCII string of variable length</td>
</tr>
<tr>
<td>Modem Hang-up Command</td>
<td>HangupComamand</td>
<td>ASCII string of variable length</td>
</tr>
<tr>
<td>Modem Dial Command</td>
<td>DialCommand</td>
<td>ASCII string of variable length</td>
</tr>
<tr>
<td>Page Blackout Interval</td>
<td>PageBlackoutInterval</td>
<td>Decimal value in the range 0-255</td>
</tr>
<tr>
<td>Community String</td>
<td>CommunityString</td>
<td>ASCII string up to 18 bytes</td>
</tr>
<tr>
<td>Call Retry Interval</td>
<td>RetryInterval</td>
<td>Decimal value in the range 0-255</td>
</tr>
<tr>
<td>Terminal Line Edit Enable</td>
<td>LineEdit</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Terminal Delete Control</td>
<td>DeleteControl</td>
<td>BSB, DEL</td>
</tr>
<tr>
<td>Terminal Echo Enable</td>
<td>Echo</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Terminal Handshake Enable</td>
<td>Handshake</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Terminal Output Newline Sequence</td>
<td>OutputSeq</td>
<td>CRLF, NULL, CR, LF</td>
</tr>
<tr>
<td>Terminal Input Newline Sequence</td>
<td>InputSeq</td>
<td>CR, NULL</td>
</tr>
<tr>
<td>System Phone Number</td>
<td>PhoneNumber</td>
<td>Numeric string up to 32 bytes, also allows ((, ', - , and ) )</td>
</tr>
</tbody>
</table>
set –T BMC/pefFilter

Syntax:
set –T BMC/pefFilter/<FilterTableIndex>
Actions=DIAGINT | PCYCLE | RESET | PDOWN | ALERT | NONE
PolicyNumber=<value>

Description:
The set –T BMC/pefFilter command is used to configure the PEF filters. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions</td>
<td>Actions</td>
<td>DIAGINT</td>
</tr>
<tr>
<td>Policy Number</td>
<td>PolicyNumber</td>
<td>Decimal value</td>
</tr>
</tbody>
</table>

set –T BMC/pefPolicy

Syntax:
set –T BMC/pefPolicy/<PolicyTableIndex>
PolicyEnabled=Enable | Disable
PolicyNumber=<value>
Policy=ALWAYS | NEXT_E | STOP | NEXT_C | NEXT_T
ChannelID=<value>
DestinationTable=<value>

Description:
The set –T BMC/pefPolicy command is used to configure the PEF policy table entries, which govern actions taken when events defined by the event filters occur. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Enabled</td>
<td>PolicyEnabled</td>
<td>Enable</td>
</tr>
<tr>
<td>Policy Number</td>
<td>PolicyNumber</td>
<td>Decimal value</td>
</tr>
<tr>
<td>Policy</td>
<td>Policy</td>
<td>ALWAYS, NEXT_E, STOP, NEXT_C, NEXT_T</td>
</tr>
<tr>
<td>Channel #</td>
<td>ChannelID</td>
<td>Decimal value</td>
</tr>
<tr>
<td>Destination Table Index</td>
<td>DestinationTable</td>
<td>Decimal value</td>
</tr>
</tbody>
</table>
set –T BMC/solEnable

Syntax:
```bash
set –T BMC/solEnable SOL=Enable|Disable
PrivilegeLevel=User|Operator|Admin
BaudRate=9600|19200|38400|57600|115200  RetryCount=<value>
RetryInterval=<value>
```

Description:
The `set –T BMC/solEnable` command is used to configure the Serial Over LAN (SOL) settings. Note that SOL is not supported on mBMC systems, so entering this command on a mBMC system will result in a message stating the specified command is not supported. The following arguments are required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable or Disable</td>
<td>SOL</td>
<td>Enable, Disable</td>
</tr>
<tr>
<td>Privilege Level</td>
<td>PrivilegeLevel</td>
<td>User, Operator, Admin</td>
</tr>
<tr>
<td>BAUD rate</td>
<td>BaudRate</td>
<td>9600, 19200, 38400, 57600, 115200</td>
</tr>
<tr>
<td>Retry Count</td>
<td>RetryCount</td>
<td>Decimal value</td>
</tr>
<tr>
<td>Retry Interval</td>
<td>RetryInterval</td>
<td>Decimal value in the range 0-2559</td>
</tr>
</tbody>
</table>

set –T BMC/user

Syntax:
```bash
set –T BMC/user/<user id> UserName=<value> Password=<value>
```

Description:
The `set –T BMC/user` command is used to configure the user settings. The following arguments are required. If the user id is not specified, the user connected to the current session is used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>UserName</td>
<td>ASCII string</td>
</tr>
<tr>
<td>Password</td>
<td>Password</td>
<td>ASCII string</td>
</tr>
</tbody>
</table>

set –T BMC/userPrivilege

Syntax:
```bash
set –T BMC/userPrivilege/<user id> ChannelID=<value>
PrivilegeLevel=Callback|User|Operator|Admin|None
```

Description:
The `set –T BMC/userPrivilege` command is used to configure the user access settings per channel. Note that the channel privilege level overrides user privilege levels. The following arguments are required. If the user id is not specified, the user connected to the current session is used.
<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel ID</td>
<td>ChannelID</td>
<td>Decimal value</td>
</tr>
<tr>
<td>Privilege Level Limit</td>
<td>PrivilegeLevel</td>
<td>Callback, User, Operator, Admin, None</td>
</tr>
</tbody>
</table>

**set –T BMC/userEnable**

**Syntax:**

```plaintext
set -T BMC/userEnable/<user id> UserStatus=Enable|Disable
```

The `set –T BMC/userEnable` command is used to enable or disable a user. The following argument is required. If the user id is not specified, the user connected to the current session is used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>User status</td>
<td>UserStatus</td>
<td>Enable</td>
</tr>
</tbody>
</table>

**set –T BMC/prp**

**Syntax:**

```plaintext
set -T BMC/prp PowerRestorePolicy=Off|On|Restore
```

**Description:**

The `set –T BMC/prp` command is used to configure power settings in the server management firmware. The following argument is required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power restore policy</td>
<td>PowerRestorePolicy</td>
<td>Off, On, Restore</td>
</tr>
</tbody>
</table>

**commit**

**Syntax:**

```plaintext
commit
```

**Description:**

The `commit` command permanently sets all temporary values set by the above commands. If for any reason, the set fails to set one of the values, it will continue on and attempt to set as many as possible. If the setting of a value causes the connection to be lost, an attempt will be made to reestablish the session and the remaining values will be set. If that attempt fails, the values will not be set and the remaining temporary values will be lost.
clear

Syntax:
clear

Description:
The `clear` command clears all temporary values set by the above commands.
The ISM installation automatically installs and starts the network proxy that enables Command Line Interface and Serial over LAN\(^9\). The proxy is named \textit{dpcproxy}. Ordinarily it starts running automatically on reboot and you do not need to do anything to start it. By default, the network proxy starts with no command line arguments supplied. However, you can change the persistent arguments that are read whenever \texttt{dpcproxy} automatically starts (see page 50 for details on \texttt{dpcproxy}’s command line arguments). You can also manually start and stop the installed network proxy and check to see if it is running.

In addition, on Windows systems you can manually install the network proxy as a service (for example, on a system on which you have not installed ISM). Linux does not require daemons to be formally installed like Windows services. And, on either operating system, you can start the network proxy in the foreground without installing it, provided \texttt{dpcproxy} is not currently running in the background on the same port as the foreground process.

These actions are all described in the following sections, depending on your operating system.

\textbf{NOTE}
\begin{quote}
\textit{The network proxy installs as a single executable file (\texttt{dpcproxy.exe} on Windows and \texttt{dpcproxy} on Linux) and it can be run from any directory. The default client port of 623 is a privileged port. Unless you change the port by using the \texttt{-p} command-line option (see table on page 50), the proxy will require root/administrative privileges to start. You can install the network proxy locally on each managed server or on a central proxy server.}
\end{quote}

\section*{Changing the Persistent Arguments for the Network Proxy}

By default, the network proxy starts with no command line arguments (see page 50 for details on \texttt{dpcproxy}’s command line arguments). However, you can add arguments to the automatic start process for the network proxy, which will be read whenever the system is rebooted (i.e., persist across system boots). For the changes to take effect, you must restart the network proxy. If you do not choose to reboot the server, manually restart the network proxy using the instructions in section Manually Starting the Installed Network Proxy on page 49.

\section*{On Windows}

To view the current persistent arguments, issue the following command at the command prompt:
\begin{verbatim}
dpcproxy -viewarg
\end{verbatim}

To change the persistent arguments for the network proxy, issue the following command at the command prompt:
\begin{verbatim}
dpcproxy -argchg arguments
\end{verbatim}

\(^9\) Serial Over LAN mode not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.
For example,

dpcproxy -argchg -p 623

See page 50 for information on dpcproxy command line syntax and its valid arguments.

On Linux

Edit the file /etc/rc.d/init.d/cliservice to supply command line arguments to the dpcproxy command in this file. Arguments supplied in the cliservice file will be used whenever the network proxy is restarted upon reboot. For the changes to take effect, you must restart the network proxy. If you do not choose to reboot the server, manually restart the network proxy using the instructions in section Manually Starting the Installed Network Proxy on page 49.

To add command line arguments, edit the following line /usr/local/cli/dpcproxy in the /etc/rc.d/init.d/cliservice file, adding options as desired from the syntax table on page 50. The following is an example of an edited cliservice command file (see page 50 for details on dpcproxy’s command line arguments):

/usr/local/cli/dpcproxy -p 623 -e

Manually Starting the Installed Network Proxy

If the installed dpcproxy service/daemon is currently stopped (either intentionally or because of a problem), and you want to restart it without rebooting the system, use one of the following methods:

On Windows

From Windows, you can start, stop, and check on the network proxy using any of the following methods:

- Use the Service Control Manager to view the status, start, or stop the “ISM DPC Proxy.”
- Use the Control Panel to access the Administrative Tools window. From that window double-click on Services. The network proxy appears as “ISM DPC Proxy.” From the Services window you can stop, start, and change properties of the service.
- From a command prompt you can use the net start command with no argument to list the services currently running. To start and stop the service use the following commands (note that you cannot supply dpcproxy command line arguments as part of the net start commands below):
  
  net start dpcproxy
  net stop dpcproxy

On Linux

From a Linux console you can start, stop and check on the network proxy as follows:

- Check that the proxy is running with the command
  
  /etc/rc.d/init.d/cliservice status

- If the proxy is not running, you can start it with the command
  
  /etc/rc.d/init.d/cliservice start
If the proxy is running, you can stop it with the command
/etc/rc.d/init.d/cliservice stop
If the proxy is currently running, you can restart it with the command
/etc/rc.d/init.d/cliservice restart

Manually Installing the Network Proxy

As stated above, the ISM install automatically installs the network proxy as a service (Windows) or daemon (Linux). However, you can manually install the service/daemon as well. For example, you may want to use the network proxy on a system where you have not installed ISM, or you may need to reinstall the network proxy at a later time.

On Windows

1. If you have not installed ISM on the system, copy the file dpcproxy.exe from the ISM CD to any directory on the system.
2. Change directory to the location of the dpcproxy.exe file on the system (the default ISM install directory is c:\Progam Files\Intel\servermanagement6\bin).
3. Use the following dpcproxy command (see page 50 for details) to manually install the network proxy as a Windows service.
   dpcproxy -install

Once the network proxy is installed as a Windows service, you must then start the service (see page 48).

On Linux

If you have not installed ISM on the system, then from the ISM CD, run the rpm file associated with CLI by typing rpm -i filename. The naming convention for the CLI rpm file is as follows (depending on 32-bit or 64-bit platform):

ia32: CLI-<release>-1.i386.rpm
ia64: CLI-<release>-1.ia64.rpm

Once the rpm command completes, CLI is fully installed (but not started) on the Linux system. If you have already installed ISM on the system, no further installation action is required before starting the network proxy. See page 48 for information on starting the network proxy on Linux.
The dpcproxy Command Syntax

Ordinarily you won’t need to enter a dpcproxy command, because the ISM installation starts the proxy as an automatic service or daemon. However, if you need to restart or reinstall the service, or supply persistent arguments to the automatic service/daemon (see page 47), use the command syntax described here.

Command line syntax is as follows, and each option is described in the table below.

```
```

NOTES

The -install and -uninstall options are only applicable to Windows, as they formally install or uninstall the network proxy as a Windows service. In addition, the -argchg and -viewarg options are also only applicable in Windows (see table below).

If you did not use the ISM install program to install the network proxy (i.e., you performed a manual install of dpcproxy), you must either update your path to include the directory in which the dpcproxy executable resides, or you must make that directory the current working directory before executing the dpcproxy command.

The dpcproxy Command-line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-? or -h</td>
<td>Displays a usage message and exits. If you specify either of these options, all other options and input text are ignored.</td>
</tr>
<tr>
<td>-f</td>
<td>Runs the network proxy in the foreground. <strong>Required at the command prompt,</strong> unless using only the -?, -h, -argchg, -viewarg, -install, or -uninstall options. For example, <code>dpcproxy -f -p 623</code>. Note that when supplying options in the Windows Service Control Manager or the Linux script <code>cliservice</code>, the -f option <strong>cannot</strong> be used.</td>
</tr>
<tr>
<td>-p port</td>
<td>Specifies an alternate port at which the network proxy listens for incoming client connections. By default, the network proxy listens on port 623, which is a privileged port in most operating systems.</td>
</tr>
<tr>
<td>-L</td>
<td>Forces the network proxy to accept connections only from the local host address (127.0.0.1). This option prevents this instance of the network proxy from providing services to systems other than the local system.</td>
</tr>
<tr>
<td>-l language</td>
<td>Localizes (displays in a specific language) messages and dates sent to a network proxy client. If you do not use this option, the network proxy detects the language from the Operating System. If a language is not specified on the command line the detected language is not a language supported by CLI, the network proxy defaults to English. Use the following codes to set the language (the first value is for Linux, the second for Windows):</td>
</tr>
<tr>
<td></td>
<td>en_US or enu - English</td>
</tr>
<tr>
<td></td>
<td>de_DE or deu - German</td>
</tr>
<tr>
<td></td>
<td>ko_KR or kor - Korean</td>
</tr>
<tr>
<td></td>
<td>es_ES or esp - Spanish</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>zh-CN or chs</td>
<td>Chinese</td>
</tr>
<tr>
<td>-d logdir</td>
<td>Keeps a debug log file in the directory logdir. If you do not use this option, debug information is not logged.</td>
</tr>
<tr>
<td>-u</td>
<td>Turns off Serial over LAN data encryption for this instance of dpcproxy. With encryption off, all serial data transferred over the LAN is sent without encryption. <strong>Note:</strong> This command option not supported on systems that use National Semiconductor’s PC87431x family of “mini” BMCs.</td>
</tr>
<tr>
<td>-nv</td>
<td>Sets non-verbose mode. No messages will be returned to the client. Only data from the commands will be returned.</td>
</tr>
<tr>
<td>-e</td>
<td>Sets “exit after error.” If an error is encountered, close the client session.</td>
</tr>
<tr>
<td>-la attempts</td>
<td>Sets the number of login attempts to allow. If -e is specified as well, the -la argument is ignored and the session is closed on the first failure. &lt;attempts&gt; is the number of attempts before failing.</td>
</tr>
<tr>
<td>-argchg arguments</td>
<td>Windows Only. Persistently changes the startup arguments for the dpcproxy service (i.e., the command line options that will be used with the dpcproxy command when it is started upon reboot). Note that you must either stop and restart the network proxy or reboot the server on which the proxy is running for the changes to take effect. Valid arguments are -p, -L, -l, -d, -u, -nv, -e, -la from this table. Note that only the argument specified at the command line is stored. All previously stored arguments are cleared. For example, if -p and -u options are currently stored, and you enter -argchg -d, the -p and -u arguments are cleared and only the -d argument is stored. To clear all stored arguments, enter the -argchg option with no arguments.</td>
</tr>
<tr>
<td>-viewarg</td>
<td>Windows Only. Lists the current persistent arguments to be used with the dpcproxy command when the service is started upon reboot.</td>
</tr>
<tr>
<td>-redirectexit exit characters</td>
<td>Changes the character sequence that exits out of SOL mode. By default the two characters are tilde-period (~.). See page 12 for more information about switching modes. The exit characters argument must be exactly two characters in length.</td>
</tr>
<tr>
<td>-encrypt [ALL</td>
<td>NONE]</td>
</tr>
<tr>
<td>-a</td>
<td>Linux Only. Keeps the entries in local Linux ARP table active for current connections to the BMC. If the BMC is unable to respond to the ARP request (usually due to increasing the gratuitous ARP interval on the BMC), the proxy will prevent the Linux OS from making this entry become stale. This argument will only work if the proxy is on the same subnet as the BMC.</td>
</tr>
<tr>
<td>-g</td>
<td>Linux Only. Causes the proxy to respond on behalf of the BMC for any ARP request from an OS or a switch. This does not need to be the proxy that is currently handling connections to the BMC. This argument will only work if the proxy is on the same subnet as the BMC. It is acceptable though for the proxy handling the connections to these BMC’s be on a different subnet.</td>
</tr>
<tr>
<td>-s</td>
<td>Changes the prompt from dpccli&gt; to the server name or IP Address that was entered while trying to connect.</td>
</tr>
</tbody>
</table>
| -install [arguments] | Windows Only. Installs the proxy as a Windows service. You can use this option only in a Windows environment. You can also specify the other options to be used each time the proxy starts. Enter other options after the -install option, if desired. Valid arguments are -p, -L, -l, -d, -u, -nv, -e, -la from this table. Once it is installed, the service will be started automatically (with specified options) every time the system starts up. **NOTE:** When using the -install option, the current working directory MUST be the directory in which the dpcproxy.exe file is located (that is, you must run the dpcproxy -
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>install command from the directory where the dpcproxy.exe file is located). The proxy service is installed with an executable path specifying the current working directory. So, if you are in c:\mypath, and the dpcproxy.exe file is c:\different_path, the service will look for the dpcproxy.exe file in c:\mypath, and will not find it.</td>
</tr>
</tbody>
</table>
| -uninstall | Windows Only. Removes the proxy from the Windows service control manager database. You can use this option only in a Windows environment. After removal, the proxy is no longer an installed service. Make sure to stop the service before you uninstall it.  
Note: Depending on the version of operating system you are running, you may need to reboot the system in order to fully delete the service. |