Intel® Integrator Toolkit (ITK)

User Guide

October 1, 2019

intel.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN
WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
This document contains information on products in the design phase of development.

All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. All
dates specified are target dates, are provided for planning purposes only and are subject to change.

This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised
information will be published when the product is available. Verify with your local sales office that you have the latest datasheet before finalizing
a design.

Intel, Intel NUC, Intel Compute Stick, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

Intel® Integrator Toolkit User Guide

Contents

1 INTRODUCTION

1.1 Getting Started

1.2 Basic UEFI Shell Guide

2 FEATURES AND EXAMPLES

2.1 System Management BIOS (SMBIOS) Configuration
2.1.1 Setting or Deleting an SMBIOS Value
2.1.2 Printing the Current SMBIOS Configuration
2.1.3 Visual Example of Usages

2.2 OEM Windows Product Key Injection (OEM Activation 3.0)
2.2.1 Setting the Current OEM Windows Product Key Data
2.2.2 Deleting the Current OEM Windows Product Key Data
2.2.3 Printing the Current OEM Windows Product Key Data
2.2.4 Visual Example of Usages

2.3 Custom BIOS Update File Creation with Imported Features
2.3.1 Importing Features: Explanations, Examples, and Tips
2.3.1.1 Importing an Existing BIOS Update File
2.3.1.2 Importing the Current SMBIOS Configuration
2.3.1.3 Importing the Current OEM Windows Product Key Data
2.3.1.4 Importing the Current Custom Settings Configuration
2.3.1.5 Importing a Custom Logo/ Image/ Splash Screen File (.JPG)
2.3.2 Importing Features: Step-by-step Example

3 APPENDIX
3.1 Glossary of Flags (switches)
3.2 SMBIOS Chassis Type: Values and Meanings

3.3 Validated Products and Features List

Intel® Integrator Toolkit User Guide

0o N oG

©o o

10
10
11

12
12
12
13
14
14
15
16

17

17

18

18

Revision History

Description

Revision Date

Initial release.

January 18,2017

Small bug fix. Updated the validation list (Table 3.2).

January 20, 2017

Fixed issue where factory default SMBIOS values were not detected.

January 25,2017

Increased maximum SMBIOS string length to 40. Added screenshots.

February 3,2017

Small bug fixes.

February 8,2017

Added resolution restrictions to logo file (.JPG). Small bug fixes.

February 15,2017

Increased supported monitor types for logo file (max 60KB).

March 31,2017

Added support for SMBIOS 3.1.1 specification for Chassis Type

March 7, 2019

Modified validated product list

October 1, 2019

Intel® Integrator Toolkit User Guide

Introduction

1.1

1.2

Intel® Integrator Toolkit User Guide

The Intel® Integrator Toolkit (ITK) is a UEFI command line tool that is designed to assist
integrators with the process of customizing the BIOS of Intel® NUC or Intel® Compute Stick
products.

Section 1.1 gives a brief introduction on how to start using the tool, and Section 2 gives detailed
information on how to use certain features. Section 3.2 provides a table with the current
validated features for various Intel® NUC or Intel® Compute Stick products.

Getting Started

This section provides a high-level description of how to start using the Intel® Integrator Toolkit
(ITK). Before using this tool, Intel recommends updating the BIOS of the Intel® NUC or Intel®
Compute Stick to the latest version (http://downloadcenter.intel.com) and loading the default
settings (F9).

In order to use the tool, the ITK6.efi program must be placed on a FAT32 formatted USB drive.
Also, the system that is running this tool (an Intel® NUC or Intel® Compute Stick) must have the
internal UEFI shell enabled in the BIOS. This option can be found in in the BIOS options (F2) in
Advanced->Boot->Boot Configuration->Boot Devices orin Configuration
depending on your product.

Once the internal UEFI shell has been enabled, boot to the shell and navigate (cd) to the USB
drive’s directory that contains the ITK6.ef1 file (for more information on how use the internal
UEFI shell, go to Section 1.2). The tool is then run by typing “ITK6.efi" along with the various
flags and values depending on the feature that is being used.

The full list of features, as well as examples of how they are used, can be found in Section 2.

Note: This tool is only supported in a 64-bit internal UEFI shell.

Basic UEFI Shell Guide

This section provides a basic guide on how to use the internal UEFI shell to run the Intel®
Integrator Toolkit. To scroll up or down within the shell, use the “Page Up” or “Page Down" keys.
Also, note that the UEFI shell has tab completion capabilities. More information about how to use
the EFl shell (including scripting) can be found at: https://software.intel.com/en-us/articles/efi-
shells-and-scripting.

Below are some useful commands that can be used to run ITK, as well as a visual walkthrough of
some of the commands in a common use case:

e ‘“map -r"refreshes the list of devices that are connected to the computer
o IfaUSBdrive with the ITK6.efi was plugged in after the computer booted,
this command must be used in order to access that USB drive

http://downloadcenter.intel.com/
https://software.intel.com/en-us/articles/efi-shells-and-scripting
https://software.intel.com/en-us/articles/efi-shells-and-scripting

e “fsX:"changes the current directory to the specified device “X"
o Depending on how many devices are connected to the computer, the “X" that
corresponds to the USB drive can vary
o Generally the last “£sX"” output from the “map -r" command will correspond
to the USB drive
o ForaUSBdrive, “fsx" should correspond to a “Removable HardDisk" which
can help discover which device needs to be accessed
e “1s"lists the contents of the current directory that you are within
o Thisis helpful when trying to locate the ITK6.ef1 file or any other files that
are being worked with
e ‘“cls”clears the screen
o This can be useful to speed up text output to the screen on some products

This visual walkthrough assumes that the downloaded ITK folder (unzipped) has been placed
onto a flash drive (that has been inserted into the system) and the internal UEFI shell has been
booted to by the user.

fsf:\> map -r
Device mapping table
fs0 :Removable BlockDevice - fAlias fbb0 blkO
PciRoot (0x0) /Pci (0x14. 0x0) /USE (0x1, 0x0)

blk0 :Removable BlockDevice - filias fob0 fsO
PciRoot (0x0) /Pci (0x14, 0x0) /USB (0x1, 0x0)
f6b0 :Removable BlockDevice - Alias fsO blkO
PciRoot (0x0) /Pci (0x14, 0x0) /USB (0x1, 0x0)

fs0:\> fs0:

fs0:\> Is
Directory of: fs0:\

02/03/17 04:21p <DIR> 4,096
0 File(s) 0 butes
1 Dir(s)

fs0:\> cd "Intel Integrator Toolkit 6.1.3°

fsf:\Intel Integrator Toolkit 6.1.3> Is
Directory of: fs0:\Intel Integrator Toolkit 6.1.

02/03/17 04:21p <DIR> 4,09
02/03/17 04:21p <DIR> o ..
01/25/17 03:99p r 688,171 Intel Integrator Toolkit User Guide.pdf
01/25/17 05:02p r 383.488 ITK6.efi
02/03/17 04:21p <DIR> 4,096
2 File(s) 1,071,659 bytes

3 Dir(s)

fs0:\Intel Integrator Toolkit 6.1.3> ITK6.efi -yourParameters_

Intel® Integrator Toolkit User Guide

Features and Examples

2.1

2.1.1

Intel® Integrator Toolkit User Guide

Intel® Integrator Toolkit contains the following features:

1. System Management BIOS (SMBIOS) Configuration

2. OEM Windows Product Key Injection (OEM Activation 3.0)

3. Custom BIOS Update File Creation with Imported Features (see below)
a. An existing BIOS update file (.BIO)

The current SMBIOS configuration

The current OEM Windows product key data

The current BIOS custom settings

An imported logo file (JPG)

© o 0T

A detailed explanation of each feature, as well as examples of how the features are invoked from
the command line, can be found in the corresponding section.

Note: Section 3.2 provides a table with the current validated features for various Intel® NUC or
Intel® Compute Stick products.

System Management BIOS (SMBIOS) Configuration

This feature is used to change system identification information that is stored within the BIOS.
This includes fields within the System Information and Chassis Information sections within the
BIOS as well as several OEM-specific strings.

Note: These SMBIOS configuration settings can be integrated en masse using a custom BIOS
flash update file (see Section 2.3).

The below subsections show how an SMBIOS value can be set, deleted or printed. Section 2.1.3
provides a visual walkthrough for a possible use case.

Setting or Deleting an SMBIOS Value

The general syntaxes for setting or deleting an SMBIOS value:
ITK6.efi -s -t system -f manufacturer -v myManufacturer

ITK6.efi -s -t system —-f manufacturer -d
Where:

e “-s"isthe flag for the SMBIOS Configuration feature

e “-t"is the flag for choosing which type of section the setting is within
o Avalueof “system” is for “System Information”
o Avalue of “chassis” is for “Chassis Information”
o Avalue of “oem" is for “OEM-specific Information”

e “—f"is the flag for choosing which field the setting is
o This can be one of many different options depending on the type (more
information can be found below in Table 2.1.7)
e “—v"is the flag for choosing the value for the setting
o This can either be a user-entered non-empty string of characters, or a number,
depending on the field (more information can be found below in Table 2.7.7)
o Inorder to enter in values with reserved UEFI characters, the input can be
surrounded with quotes. For example: <test> must be entered as “<test>"
o The length of the value cannot exceed 40 characters
e “-d"is the flag for deleting an SMBIOS value
o This flag is used in place of the “-v" flag
o This sets the specified SMBIOS value to an empty value

Field options are dependent on the type that has been selected. Also, the value that
can be entered depends upon the field option specified. Table 2.1.1 has been constructed
to provide a list of which fields can be changed within each type of section and examples of the
command.

Table 2.1.1: SMBIOS Configuration Options with Examples
Field Types* Example Command

Manufacturer system and chassis ITK6.efi -s -t system -f manufacturer -v myMan

Manufacturer** system and chassis ITK6.efi -s -t system -f manufacturer -d

Product Name system ITK6.efi -s -t system —-f product -v myProduct
Version system and chassis ITK6.efi -s -t system -f version -v myVersion
Serial Number system and chassis ITK6.efi -s -t system -f serial -v mySerial
SKU Number system ITK6.efi -s -t system —-f sku -v mySKU

Family system ITK6.efi -s -t system -f family -v myFamily
Asset Tag chassis ITK6.efi -s -t chassis -f asset -v myAsset
Chassis Type*** chassis ITK6.efi -s -t chassis -f type -v 3

OEM String 1 oem ITK6.efi -s -t oem -f oeml -v myString

OEM String 2 oem ITK6.efi -s -t oem —-f oem2 -v myString

OEM String 3 oem ITK6.efi -s -t ocem -f ocem3 -v myString

*This column represents the types that are compatible with the corresponding field. Any row that has more
than one compatible type can have the corresponding type changed in the example command (e.g. “-t
system” could be “~-t chassis” for the first row). Note that type system corresponds to “System
Information,” type chassis corresponds to “Chassis Information,” and type oem corresponds to “OEM-
specific Information.”

Intel® Integrator Toolkit User Guide 6

**This example includes the “-d" flag which signifies that the specified SMBIOS value should be deleted.

***Chassis Type must be a number between 1 and 29 which corresponds to a certain pre-defined type as
defined by the ACPI spec. A full list of what each number represents can be found in Section 3's Table 3.17.

2.1.2 Printing the Current SMBIOS Configuration

The current SMBIOS configuration can be printed by using the following syntax:

ITK6.efi -s -p

Where:

. -s" is the flag for the SMBIOS Configuration feature
e “—p"isthe flag for printing the current SMBIOS configuration

A list of the SMBIOS values will then be printed to the screen. If a text value has not been set it
will be blank by default. If the SMBIOS value is a numbered value (e.g. the chassis type) it will be a
default value depending on the product (e.g. “3"). See Table 3.1 for a full list of the meanings for
each chassis type value.

Intel® Integrator Toolkit User Guide 7

intel.

2.1.3 Visual Example of Usages

This section provides a visual example of how to use the SMBIOS Configuration feature. This
includes: setting, printing, and deleting values of the current SMBIOS configuration.

fs0:\> ITK6.efi -s -p
Integrator Toolkit (ITK) v6.1.3
Copyright (c) 2017 Intel Corporation. All rights reserved.

System Information:
Manufacturer: <>
Product Name: CmyProduct
Uersion: mylersion

Serial Mumber: mySerial
SKU Mumber : mySKU
Fanily: myFanily

Chassis Information:
Manufacturer: myHan
Uersion: myVersion
Serial Mumber: mySerial
Asset Tag: nufsset
Tupe: 3

DEM-specific Information:

OEM String 1: myString
OEM String 2: myString
OEM String 3: myString

fs0:\> ITK6.efi -s -t system -f manufacturer -v myMan
Integrator Toolkit (ITK) vb.1.3

Copyright (c) 2017 Intel Corporation. All rights reserved.

Successfully set SMBIOS value.

fs0:\> ITK6.efi -s -t system -f product -d
Integrator Toolkit (ITK) v6.1.3
Copyright (c) 2017 Intel Corporation. All rights reserved.

Successfully deleted SHBIOS value.

fs0:\> ITK6.efi -s -p |
Integrator Toolkit (ITK) v6.1.3
Copyright (c) 2017 Intel Corporation. All rights reserved.

System Information:

Manufacturer:

Product Name:

Uersion: mylersion
Serial Mumber: mySerial
SKU Mumber : mySKU
Fanily: myFanily

Chassis Information:
Manufacturer: myHan
Uersion: myVersion
Serial Mumber: mySerial
Asset Tag: nufsset
Tupe: 3

DEM-specific Information:
OEM String 1: myString
OEM String 2: myString
OEM String 3: myString

£50:\> _

Intel® Integrator Toolkit User Guide

2.2

2.2.1

OEM Windows Product Key Injection (OEM Activation 3.0)

This feature is used to inject a Windows product key into the BIOS for OEM activation. This tool
supports the OEM Activation 3.0 (OA 3.0) process as defined by Microsoft*. The data that this
feature injects will also be referred to as OA3 data or the Microsoft Data Management (MSDM)
table in either this document or the tool.

The OEM activation step that requires this BIOS injection tool can be found online
(https://technet.microsoft.com/en-us/library/dn621894.aspx). The required OEM product key
files (.BIN) that this tool injects can be obtained from Microsoft.

Note: This OEM product key data can be integrated en masse using a custom BIOS flash
update file (see Section 2.3).

The below subsections give guides on how to set the current OEM product key data, delete it, or
print it. Section 2.2.4 provides a visual walkthrough for a possible use case.

Setting the Current OEM Windows Product Key Data

Note: This tool will overwrite any existing OEM product key that is on the device.

The general syntax for setting the current OEM Windows product key data/ OA3 data is:

ITK6.efi -o -oid oemID -tid tableID -i myKey.bin

Where:
e “-0o"is the flag for the OEM Windows Product Key Injection feature
e “-0id"is the flag for the user's input of the OEM ID that will be associated with the key
o The OEM ID cannot be blank and can be at most six characters
e “-tid"is the flag for the user's input of the Table ID that will be associated with the key
o The Table ID cannot be blank and can be at most eight characters
e “-i"is the flag for choosing the OEM product key file to inject

o An OEM product key file (.BIN) can be obtained from Microsoft
o The OEM product key file must be exactly 49 bytes in size

Intel® Integrator Toolkit User Guide

https://technet.microsoft.com/en-us/library/dn621894.aspx

2.2.2

2.2.3

intel)

Deleting the Current OEM Windows Product Key Data

Note: Once the OEM Windows product key data has been deleted it cannot be recovered.

The syntax for deleting the current OEM Windows product key data (OA3 data) is:

ITK6.efi -o -d

Where:
e “-0"is the flag for the OEM Windows Product Key Injection feature
. “~d" is the flag for deleting the current OEM Windows product key data

Printing the Current OEM Windows Product Key Data
The syntax for printing the current OEM Windows product key data (OA3 data) is:

ITK6.efi -o -p

Where:
e “-0"is the flag for the OEM Windows Product Key Injection feature
. “—p" is the flag for printing the current OEM Windows product key data

Using this feature will print the OEM ID, table ID, version, type, and product key.

Intel® Integrator Toolkit User Guide

10

2.2.4

intel.

Visual Example of Usages

This section provides a visual example of how to use the OEM Windows Product Key Injection
feature. This includes: setting, printing, and deleting the current OEM Windows product key data.

fs0:\> ITK6.efi 0 —p
Integrator Toolkit (ITK) vb.1.3
Copyright {c) 2017 Intel Corporation. All rights reserved.

Current Imjected OEM Windows Product Key (0A3) & MSDM Table:
OEM 1D:

Table ID:
Version: 0

Tupe: 0
Product Key:

fs0:\> ITK6.efi -0 -oid oenlD -tid tablelD -i nyKey.hin
Integrator Toolkit (ITK) v6.1.3
Copyright {c) 2017 Intel Corporation. All rights reserved.

The OEM product key was successfully injected.

fs0:\> ITK6.efi -0 -p
Integrator Toolkit (ITK) v6.1.3
Copyright {c) 2017 Intel Corporation. All rights reserved.

Current Inmjected OEM Windows Product Key (0A3) & MSDM Table:
OEM ID: oenlD
Table ID: tablelD

Uersion: 1
Type: 1

Product Key: AARAA-AARARA-ARAAA-ARRAR-AAARA

fs0:\> ITK6.efi o
Integrator Toolkit (ITK) uvb.1.3
Copyright (c) 2017 Intel Corporation. All rights reserved.

The injected OEM product key (DA3) was successfully removed.

fs0:5> ITE6.efi -0

Integrator Toolkit (ITK) vb.1.3
Copyright (c) 2017 Intel Corporation. All rights reserved.

Current Injected OEM Windows Product Key (0A3) & MSDM Table:
OEM ID:
Tahle ID:

Uersion: 0
Tupe: 0
Product Key:

fs0:\> _

Intel® Integrator Toolkit User Guide 11

2.3

2.3.1

2.3.1.1

Custom BIOS Update File Creation with Imported Features

Note: The custom BIOS creation feature is not supported for Intel® Compute Stick
STK1A[x]32SC or Intel® Compute Stick STCK1A[x]FC products.

Note: Portions of this feature are not supported for certain products. See Table 3.2 (Section
3.2) which provides a table with the current features that are supported for various Intel® NUC
or Intel® Compute Stick products.

This feature is used to create a custom BIOS flash update file (.BIO) with various imported
features. The following subsections will go over what can be added to a custom BIOS update file,
examples of how each feature is imported, and some tips to ensure correct functionality. Also,
there will be a subsection that gives a step-by-step example of how to create a custom BIOS
update file from an existing BIOS update file along with four imported features.

Importing Features: Explanations, Examples, and Tips

Below is an overview of what can be added to the custom BIOS update file. The following
subsections will provide a more detailed overview of each feature that can be imported, as well
as some notes about possible restrictions. See Section 2.3.2 for a textual and visual walkthrough
of a possible use case for importing a download .BIO as well as importing four features to a
custom BIOS file.

Initially, a custom BIOS update file can contain one of the below choices (1-2) below:

1. An existing BIOS update file
a. This updates the BIOS major revision as well as applying the imported features
b. A BIOS update file can be found at http://downloadcenter.intel.com

2. No existing BIOS update file
a. Applies just the imported features (does not update the BIOS major revision)
b. This provides a faster update process

Once it is decided whether an existing BIOS update file will be used or not, the created custom
BIOS update file must have at least one of the following features (1-4) added to it:

The current SMBIOS configuration

The current OEM Windows product key data (OA3 data)
The current BIOS custom settings

An imported logo/ image/ splash screen file (JPG)

PN =

Importing an Existing BIOS Update File

Using the flag “-ib" will import a downloaded BIOS update file into your custom BIOS update
file. Having an imported BIOS update file allows the ability to update the BIOS major revision as
well as importing at least one of the features in the below subsections. If there is no imported
BIOS update file then the custom BIOS update file will not update the BIOS major revision. The
imported BIOS update file should be a .BIO file that corresponds to the product that the custom
BIOS update file is being created for. For example, if a user is creating a custom BIOS update file
for an Intel® NUC Kit NUC6i5SY[x] then the imported BIOS update file should be for Intel® NUC

Intel® Integrator Toolkit User Guide 12

http://downloadcenter.intel.com/

intel.

Kit NUC6i5SY[x]. The latest BIOS update files for all products can be downloaded at
http://downloadcenter.intel.com.

An example of the syntax for creating a custom .BIO which imports a downloaded BIOS update
file can be found below:

ITK6.efi -b -x myCustomBio.bio -ib DownloadedBio.bio {other}

Where:

e “-b"is the flag for the BIOS Update File Creation feature
e “-x"is the flag for choosing the name of the BIOS update file that will be exported
o Ifthe current directory already has a file with that filename, there is a choice to
either overwrite the existing file or exit the program
o Note that “.bio"” must be appended to the end of the filename
e “-ib"is the flag for choosing the existing BIOS update file's data that will be imported
o This flag is optional depending on if the user desires that the target’'s BIOS
major revision will be updated by the custom BIOS update file
o Theimported .BIO file should be the latest BIOS that is available for the
product at http://downloadcenter.intel.com
o Note that “.bio"” must be appended to the end of the filename
e “{other}"is meant to represent the other parameters that the user might add
o Note that at least one other feature must be imported into the BIOS update
file (see the following sections for the other features that can be added)

2.3.1.2 Importing the Current SMBIOS Configuration

Using the flag “-1is" will import the current SMBIOS configuration of the system into the newly
created custom BIOS update file. See Section 2.1 for more info on how to configure the current
SMBIOS configuration. The flag for this import feature can be combined with others to import
multiple features at the same time into a BIOS update file (see Section 2.3.2 for an example). This
custom BIOS update file can then be used to update another system to apply the imported
SMBIOS configuration.

An example of the syntax for creating a custom .BIO which imports the current SMBIOS
configuration can be found below:

ITK6.efi -b -x myCustomBio.bio -is

Where:

e “-b"is the flag for the BIOS Update File Creation feature
e “-x"is the flag for choosing the name of the BIOS update file that will be exported
o If the current directory already has a file with that filename, there is a choice to
either overwrite the existing file or exit the program
o Note that “.bio" must be appended to the end of the filename
e “-is"isthe flag for choosing if the current SMBIOS configuration should be imported
o To modify the current SMBIOS configuration, see Section 2.1

Intel® Integrator Toolkit User Guide 13

http://downloadcenter.intel.com/
http://downloadcenter.intel.com/

intel.

2.3.1.3 Importing the Current OEM Windows Product Key Data

Using the flag “- 10" will import the current OEM Windows product key data (OA3.0 data) of the
system into the newly created BIOS update file. See Section 2.2 for more info on how to change
the current OEM Windows product key data. The flag for this import feature can be combined
with others to import multiple features at the same time into a BIOS update file (see Section 2.3.2
for an example). This custom BIOS update file can then be used to update another system to
apply the import OEM Windows product key data.

An example of the syntax for creating a custom .BIO which imports the current OEM Windows
product key data can be found below:

ITK6.efi -b -x myCustomBio.bio -io

Where:
e “-p"is the flag for the BIOS Update File Creation feature
e “—x"is the flag for choosing the name of the BIOS update file that will be exported

o Ifthe current directory already has a file with that filename, there is a choice to
either overwrite the existing file or exit the program
o Note that “.bio"” must be appended to the end of the filename
e “-io"is the flag for choosing if the current OEM product key data should be imported
o Ensure that the current OEM product key data is correct before importing it
o To modify the current OEM product key data, see Section 2.2

2.3.1.4 Importing the Current Custom Settings Configuration

Using the flag “-ic" will import the current BIOS custom settings configuration of the system into
the newly created BIOS update file. The flag for this import feature can be combined with others
to import multiple features at the same time into a BIOS update file (see Section 2.3.2 for an
example). This custom BIOS update file can then be used to update another system to apply the
BIOS custom settings configuration.

An example of the syntax for creating a custom .BIO which imports the current BIOS custom
settings configuration can be found below:

ITK6.efi -b -x myCustomBio.bio -ic

Where:
e “-p"is the flag for the BIOS Update File Creation feature
e “—x"is the flag for choosing the name of the BIOS update file that will be exported

o Ifthe current directory already has a file with that filename, there is a choice to
either overwrite the existing file or exit the program

o Note that “.bio" must be appended to the end of the filename

e “-ic"is the flag for choosing if the current BIOS custom settings should be imported

o See the two bolded notes below about product compatibility information as
well as BIOS custom settings limitations

o Ensure the current BIOS custom settings are correct before importing them

o To modify the current BIOS custom settings, press F2 while booting the unit

Intel® Integrator Toolkit User Guide 14

2.3.1.5

Note: A BIOS update file with BIOS custom settings can only be used to update the same
product. For example, if the BIOS update file is created from an Intel® NUC Kit NUC6i5SY that
file should only be used to update another Intel® NUC Kit NUC6i5SY. Doing otherwise can
cause your system to become inoperable.

Note: Not all custom settings can be altered by the custom BIOS update file. For example, the
password settings and boot order will not be updated. Additionally, many generations of
products have restricted settings that cannot be altered through the BIOS update file process
(e.g. some CPU settings). It is always best practice to verify that the settings are being updated
correctly on a test unit before mass integration.

Importing a Custom Logo/ Image/ Splash Screen File (.JPG)

Using the flag “-i1" will import a custom logo/ image/ splash screen from a file (.JPG) into the
newly created BIOS update file. The flag for this import feature can be combined with others to
import multiple features at the same time into a BIOS update file (see Section 2.3.2 for an
example). This custom BIOS update file can then be used to update another system to modify the
splash screen with the imported image file (JPG).

Note: Some image editing programs can produce an incompatible .JPEG file. A best known
method to fix this issue is to reopen the image with Microsoft Paint and then save the image.

An example of the syntax for creating a custom .BIO which imports the custom logo/ image/
splash screen file (.JPG) can be found below:

ITK6.efi -b -x myCustomBio.bio —-il myLogo.jpg

Where:
e “-b"is the flag for the BIOS Update File Creation feature
e “-x"is the flag for choosing the name of the BIOS update file that will be exported
o Ifthe current directory already has a file with that filename, there is a choice to
either overwrite the existing file or exit the program
o Note that “.bio"” must be appended to the end of the filename
e “-il"isthe flag for choosing the logo file (.JPG) to import

o The max size of the file (.JPG) is 60KB

o The minimum resolution is 120 x 120 pixels

o The maximum resolution is 1920 x 1080 pixels

o Note that “. jpg"” must be appended to the end of the filename

o Inorder to revert back to the default logo of your product use one of the
included images within the Intel_Default_Splash_Screen folder (e.g. “-il
Intel Default Splash Screen\NUC\Intel NUC Default 512x384.j

pg")

Intel® Integrator Toolkit User Guide 15

intel)

2.3.2 Importing Features: Step-by-step Example

The ideal steps to create a BIOS update file from an existing BIOS update file as well importing all
four features, as seen in Section 2.3.1, can be found below with a visual walkthrough (a similar
strategy can be used for other configurations albeit with some modified steps):

. Update the product with the latest BIOS from http://downloadcenter.intel.com
2. Place the downloaded BIOS update file (.BIO) and the logo file (.JPG) onto the USB drive
that contains the ITK6.efi file
a. These will imported by the tool in a later step
3. Load the default BIOS settings
a. Bootinto the BIOS (F2) and then hit F9 to load defaults
Set the BIOS custom settings to the desired configuration
Save the BIOS custom settings (F10) and then reboot
Verify that the settings are the desired configuration
Reboot to the internal UEFI shell
Use the tool to set the SMBIOS configuration (Section 2.1)
a. Verify that the SMBIOS is configured correctly with the print option
9. Use the tool to set the OEM Windows product key data (Section 2.2)
a. Verify that the OEM product key is configured correctly with the print option
10. Use the tool to create the custom BIOS update file from the existing .BIO file as well as

© N O U A

all four imported features with the following syntax:
ITK6.efi -b -x myCustomBio.bio -ib DownloadedBio.bio -is -io -ic
-id -il myLogo.jpg
a. Note that DownloadedBio.bio and myLogo.jpg were acquired in Step 2.
11. Update a different unit with the file
a. Ensure that the different unit has a different configuration (e.g. BIOS version,
SMBIOS, OEM product key data, BIOS custom settings, and logo)
b. See the first note in Section 2.3.1.4 about product compatibility
12. Verify that the BIOS version, SMBIOS, OEM product key data, BIOS custom settings, and
the logo were updated correctly
a. Seethe second note in Section 2.3.1.4 about BIOS setting restrictions
13. Now that the custom BIOS update file has been tested it can now be used for mass
integration

f50:7> ITK6.efi -b -x myCustomBio.bio -ib K¥Y0042.bio -is -io -ic -il myLogo. jpg

Creating a custom BIOS update file

(-x myCustomBio.bio) from an imported BIOS
(-ib KY0042.bio) that includes the imported
features of: the current SMBIOS configuration

(-1s), the current OEM product key data (-1i0),
the current BIOS custom settings configuration
(-ic), and an imported logo (-i1 myLogo. jpg).

(Section 2.3.1)

Intel® Integrator Toolkit User Guide 16

http://downloadcenter.intel.com/

3 Appendix

3.1 Glossary of Flags (switches)

Table 3.1 provides a comprehensive list of iTK6.EFI programming switches

Flags (switches)

=S

-t

-f

-V

-d

-0
-oid

-tid

Intel® Integrator Toolkit User Guide

SMBIOS Configuration

is the flag for the SMBIOS Configuration feature

is the flag for choosing which type of section the setting is within (System,
Chassis or OEM)

is the flag for choosing which field (Manufacturer, Product, Version, Serial #, Sku
#, Family)

Is the flag for choosing the value for the field above
Is the flag for deleting an SMBIOS value
Is the flag for printing to screen of SMBIOS fields

OEM Configuration

Is the flag for the OEM Windows Product Key Injection feature

Is the flag for the user’s input of the OEM ID that will be associated with the key
Is the flag for the user’s input of the Table ID that will be associated with the key
Is the flag for choosing the OEM product key file to inject

BIOS Creation Configuration

Is the flag for the BIOS Update File Creation feature

Is the flag for choosing the name of the BIOS update file that will be exported

Is the flag for choosing the existing BIOS update file's data that will be imported
Is the flag to import OEM information

Is the flag to import Custom BIOS settings

Is the flag for choosing if the current SMBIOS configuration should be imported
Is the flag to set custom BIOS settings as default values

Is the flag for choosing the logo file (JPG) to import

17

3.2

3.3

intel)

SMBIOS Chassis Type: Values and Meanings

The table below contains translations of chassis type values to their meanings as per the ACPI

spec (see Section 2.1).

Table 3.2: Chassis Type: Values and Meanings

Value Meaning
1 None/ Other
2 Unknown
3 Desktop
4 Low-Profile Desktop
5 Pizza Box
6 Mini Tower
7 Tower
8 Portable
9 Laptop
10 Notebook
11 Handheld
12 Docking Station
13 All-in-one
14 Sub-Notebook
15 Space Saving

Value

16

17

20

21

22

23

24

25

26

27

28

29

Meaning
Lunch Box
Main Server Chassis
Expansion Chassis
Sub Chassis
Expansion Chassis
Peripheral Chassis
RAID Chassis
Rack Mount Chassis
Sealed-Case PC
Multi-System Chassis
Compact PCI
Advanced TCA
Blade

Blade Enclosure

Validated Products and Features List

With a few exception (shown in Tables 3.3a and 3.3b below), all Intel NUC products support

all the following features:

Edit SMBIOS Data
Edit OA3 Data
Create Customer BIO
Add SMBIOS Data
Add OA3 Data

Add Custom Settings
Add Logo File

Intel® Integrator Toolkit User Guide

18

Note: Only use features that are tested to be working for your product. Using features that
are not tested to be working correctly for a product has the possibility of making your device
inoperable.

Table 3.3a: Products with Limited ITK Functionality

Edit Edit Create Add Add
Product Name SMBIOS OA3 Customer SMBIOS Custom
Data Data .BIO Data Settings
DE3815TYKHE v v v v v v x
DC53427HYE* v v v v v x x
DC3217IYE* v v 4 v v x x
STK2M[x]64CC v v v v v x v
STKTA[x]32SC v v x x x x x
STCKITA[X]FC v v x x x x x

Table 3.3b: Unsupported Products

Edit Edit Create Add Add

Product Name SMBIOS (0% Customer SMBIOS Custom

Data . Settings
NUCS8i7INX,
NUCS8i5INX, x x x x x x x
NUCS8i3INx
NUC8CCHKR, < M " " M M "
NUC8CCHB

Intel® Integrator Toolkit User Guide 19

