Intel® Compute Card
CD1C32GK
CD1C64GK
CD1P64GK
Technical Product Specification

July 2018
Order Number: J46736-002

Intel® Compute Card CD1C32GK, CD1C64GK or CD1P64GK may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata, if any, are documented in Intel® Compute Card CD1C32GK, CD1C64GK or CD1P64GK Specification Updates.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Revision History</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>First release</td>
<td>August 2017</td>
</tr>
<tr>
<td>002</td>
<td>Added CD1C32GK as a new version, updated memory and storage sections, added table detailing measurements and tolerances</td>
<td>July 2018</td>
</tr>
</tbody>
</table>

Disclaimer

This product specification applies to only the standard Intel® Compute Card with BIOS identifier GKAPlCPX.86A.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

All Compute Cards are evaluated as Information Technology Equipment (I.T.E.) for installation in homes, offices, schools, computer rooms, and similar locations. The suitability of this product for other PC or embedded non-PC applications or other environments, such as medical, industrial, alarm systems, test equipment, etc. may not be supported without further evaluation by Intel.

Intel® Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families: Go to: Learn About Intel® Processor Numbers

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Intel, the Intel logo, Intel Celeron and Intel Pentium are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2018 Intel Corporation. All rights reserved.
Specification Changes or Clarifications

The table below indicates the Specification Changes or Specification Clarifications that apply to the Intel® Compute Card CD1C32GK, CD1C64GK and CD1P64GK.

<table>
<thead>
<tr>
<th>Specification Changes or Clarifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Errata

Preface

This Technical Product Specification (TPS) specifies the layout, components, connectors, power, environmental and BIOS features for the Intel® Compute Card CD1C32GK, CD1C64GK and CD1P64GK.

NOTE

In this document, the use of “Intel® Compute Card” will refer to the CD1C32GK, CD1C64GK and CD1P64GK versions of the Intel® Compute Card.

Intended Audience

The TPS is intended to provide detailed technical information about Intel® Compute Card CD1C32GK, CD1C64GK and CD1P64GK and its components to the vendors, system integrators, and other engineers and technicians who need this level of information. It is specifically not intended for general audiences.

What This Document Contains

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A description of the hardware used on Intel® Compute Card CD1C32GK, CD1C64GK and CD1P64GK</td>
</tr>
<tr>
<td>2</td>
<td>A technical description of the Intel® Compute Card CD1C32GK, CD1C64GK and CD1P64GK</td>
</tr>
<tr>
<td>3</td>
<td>The features supported by the BIOS Setup program</td>
</tr>
</tbody>
</table>

Typographical Conventions

This section contains information about the conventions used in this specification. Not all of these symbols and abbreviations appear in all specifications of this type.

Notes, Cautions, and Warnings

NOTE

Notes call attention to important information.

CAUTION

Cautions are included to help you avoid damaging hardware or losing data.
Other Common Notation

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Used after a signal name to identify an active-low signal (such as USBP0#)</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte (1,073,741,824 bytes)</td>
</tr>
<tr>
<td>GB/s</td>
<td>Gigabytes per second</td>
</tr>
<tr>
<td>Gb/s</td>
<td>Gigabits per second</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobyte (1024 bytes)</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobit (1024 bits)</td>
</tr>
<tr>
<td>kb/s</td>
<td>1000 bits per second</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte (1,048,576 bytes)</td>
</tr>
<tr>
<td>MB/s</td>
<td>Megabytes per second</td>
</tr>
<tr>
<td>Mb</td>
<td>Megabit (1,048,576 bits)</td>
</tr>
<tr>
<td>Mb/s</td>
<td>Megabits per second</td>
</tr>
<tr>
<td>TDP</td>
<td>Thermal Design Power</td>
</tr>
<tr>
<td>Xh</td>
<td>An address or data value ending with a lowercase h indicates a hexadecimal value.</td>
</tr>
<tr>
<td>x.x V</td>
<td>Volts. Voltages are DC unless otherwise specified.</td>
</tr>
<tr>
<td>*</td>
<td>This symbol is used to indicate third-party brands and names that are the property of their respective owners.</td>
</tr>
</tbody>
</table>
Contents

Revision History .. 2
- Specification Changes or Clarifications .. 3
- Errata .. 3

Preface .. 4
- Intended Audience .. 4
- What This Document Contains ... 4
- Typographical Conventions .. 4

Contents .. 6

1 **Product Description** .. 9
 1.1 Overview .. 9
 1.2 Version Summary .. 9
 1.3 Online Support .. 9
 1.4 Feature Summary ... 10
 1.4.1 Compute Card Exterior .. 11
 1.4.2 Block Diagram ... 12
 1.5 Operating System Overview .. 13
 1.6 Processor .. 13
 1.7 System Memory .. 13
 1.8 System Storage ... 14
 1.9 Processor Graphics Subsystem ... 14
 1.9.1 Integrated Graphics ... 14
 1.10 Wireless LAN Subsystem ... 15
 1.10.1 Wireless Network Module ... 15
 1.11 Authentication ... 15
 1.12 Power Management .. 16
 1.12.1 ACPI .. 16
 1.12.2 Hardware Support .. 18
 1.13 Intel® Security and Manageability Technologies .. 20
 1.13.1 Intel® Virtualization Technology .. 20
 1.13.2 Intel® Identity Protection Technology .. 21
 1.13.3 Intel® Platform Trust Technology (PTT) ... 21

2 **Technical Reference** ... 22
 2.1 Addressable Memory ... 22
 2.2 Connector ... 22
 2.2.1 Connector Interface Options .. 23
 2.2.2 Power On Straps and Select Signals .. 23
 2.2.3 Muxing Options ... 24
2.2.4 Connector Pinout ... 24
2.3 Power Considerations .. 26
2.4 Mechanical Considerations .. 26
 2.4.1 Form Factor ... 26
2.5 Thermal Considerations ... 29
2.6 Reliability .. 29
2.7 Environmental ... 30

3 Overview of BIOS Features ... 31
 3.1 Introduction .. 31
 3.2 BIOS Flash Memory Organization .. 31
 3.3 System Management BIOS (SMBIOS) 31
 3.4 Legacy USB Support ... 32
 3.5 BIOS Updates .. 32
 3.5.1 Language Support ... 32
 3.6 BIOS Recovery ... 33
 3.7 Boot Options ... 33
 3.7.1 Booting Without Attached Devices 33
 3.7.2 BIOS POST Hotkeys ... 34
 3.7.3 Changing the Default Boot Device During POST 34
 3.7.4 Power Button Menu ... 34
 3.7.5 BIOS Error Messages ... 35

Figures
 Figure 1. Top-Front View of Compute Card .. 11
 Figure 2. Bottom-Back View of Compute Card 11
 Figure 3. Block Diagram .. 12
 Figure 4. Compute Card Connector Pinout .. 24
 Figure 5. Intel® Compute Card Dimensions (Top and Left) 26
 Figure 6. Intel® Compute Card Dimensions (Bottom and Right) 27
 Figure 7. Intel® Compute Card Dimensions (Front and Back) 28
 Figure 8. Intel® Compute Card Dimensions (Connector) 28

Tables
 Table 1. Version Summary ... 9
 Table 2. Feature Summary ... 10
 Table 3. Effects of Pressing the Power Switch 16
 Table 4. Power States and Targeted System Power 17
 Table 5. Wake-up Devices and Events .. 18
 Table 6. Connector Interface Options .. 23
 Table 7. Power On Straps and Select Signals 23
 Table 8. Compute Card Connector Pinout .. 25
Table 9. Measurement with Maximum Tolerances ... 27
Table 10. Intel® Compute Card Weight Information ... 28
Table 11. Power Usage ... 29
Table 12. Skin Temperature Recommendations .. 29
Table 13. Environmental Specifications .. 30
Table 14. Acceptable Drives/Media Types for BIOS Recovery ... 33
Table 15. Boot Device Menu Options .. 34
Table 16. BIOS Error Messages ... 35
1 Product Description

1.1 Overview

The Intel® Compute Card requires a certified compatible device with a Compute Card slot in order to operate. For information on compatible devices for use with the Intel® Compute Card see www.intel.com/ComputeCard/.

1.2 Version Summary

There are three different versions of this model of Intel® Compute Card available which are summarized in Table 1. Unless otherwise noted in this document, not all features are available on all versions of the Intel® Compute Cards.

<table>
<thead>
<tr>
<th>Version</th>
<th>Processor</th>
<th>Memory</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1C32GK</td>
<td>Intel® Celeron® Processor N3350</td>
<td>2 GB</td>
<td>32 GB</td>
</tr>
<tr>
<td>CD1C64GK</td>
<td>Intel® Celeron® Processor N3450</td>
<td>4 GB</td>
<td>64 GB</td>
</tr>
<tr>
<td>CD1P64GK</td>
<td>Intel® Pentium® Processor N4200</td>
<td>4 GB</td>
<td>64 GB</td>
</tr>
</tbody>
</table>

1.3 Online Support

To find information about...

- Intel® Compute Card
- Intel® Compute Card CD1C32GK, CD1C64GK and CD1P64GK Support
- Available configurations for Intel® Compute Card

Visit this World Wide Web site:

- http://www.intel.com/ComputeCard
- http://ark.intel.com
1.4 Feature Summary

Table 2 summarizes the major features of the Intel® Compute Card.

Table 2. Feature Summary

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>94.5 millimeters by 55 millimeters by 5 millimeters (3.7205 inches by 2.1654 inches by 0.1969 inches)</th>
</tr>
</thead>
</table>
| Processor | • Soldered-down Intel® processor
 • Integrated graphics
 • Integrated memory controller
 • Integrated PCH |
| Memory | • Soldered-down LPDDR3 1866 MHz memory
 • 2 GB or 4 GB total memory |
| Graphics | Integrated graphics support with Intel® HD Graphics Technology |
| Audio | Intel® High Definition (Intel® HD) Audio |
| Storage | 32 GB or 64 GB soldered-down Embedded MultiMedia Card (eMMC) onboard storage |
| BIOS | • Intel® BIOS resident in the Serial Peripheral Interface (SPI) Flash device
 • Support for Advanced Configuration and Power Interface (ACPI), Plug and Play, and System Management BIOS (SMBIOS) |
| Wireless LAN| Soldered-down Intel® Dual Band Wireless-AC module
 • 802.11a/b/g/n, 802.11ac, Bluetooth® 4.2
 • Supports Miracast® and Miracast Sink |
| Advanced Technologies | • Intel® Virtualization Technology (VT-x)
 • Intel® Virtualization for Directed I/O (VT-d)
 • Intel® VT-x with Extended Page Tables (EPT)
 • Enhanced Intel® SpeedStep® Technology
 • Intel® Identity Protection Technology (Intel® IPT)
 • Intel® Platform Trust Technology (Intel® PPT) |
| Security and Reliability | • Intel® AES New Instructions
 • Execute Disable Bit |

To find information about...
Advanced Technologies
Security and Reliability
Visit this World Wide Web site:
http://www.intel.com/Support
1.4.1 Compute Card Exterior

Figures 1 and 2 show the exterior of the Intel® Compute Card.

Figure 1. Top-Front View of Compute Card

Figure 2. Bottom-Back View of Compute Card
1.4.2 Block Diagram

Figure 3 is a block diagram of the major functional areas of the Intel® Compute Card.
1.5 Operating System Overview

The Intel® Compute Cards CD1C32GK, CD1C64GK and CD1P64GK support the following Operating Systems (64-bit only).

- Windows® 10 Home
- Windows 10 Pro
- Windows 10 Enterprise
- Windows 10 Education
- Windows 10 IoT Enterprise
- Some Linux* operating systems may be supported. Check with the specific Linux distribution to make sure that support is available for this platform.

Installation of any of the above operating systems will require a compatible device with a Compute Card slot, the Compute Card plugged in, a mouse and keyboard along with a USB flash drive or USB optical drive. The USB flash drive or USB optical drive will need the operating system installation media.

To find information about...	Visit this World Wide Web site:
Intel® Compute Card drivers | http://downloadcenter.intel.com

1.6 Processor

The Intel® Compute Card has a soldered-down System-on-a-Chip (SoC), which consists of the following:

- Intel® Celeron® Processor N3350 on CD1C32GK
- Intel® Celeron® Processor N3450 on the CD1C64GK
- Intel® Pentium® Processor N4200 on the CD1P64GK
- Integrated Intel® HD Graphics 500 (CD1C32GK and CD1C64GK)
- Integrated Intel® HD Graphics 505 (CD1P64GK)
- Integrated memory controller
- Integrated PCH

1.7 System Memory

The Intel® Compute Card has soldered-down memory and supports the following memory features:

- LPDDR3 1866 MHz
- Single-Channel memory on CD1C32GK
- Dual-channel memory on CD1C64GK and CD1P64GK
- 2 GB memory on a single channel (2GB total memory) on CD1C32GK
- 2 GB memory per channel (4 GB total memory) on CD1C64GK and CD1P64GK
- Refer to Section 2.1 on page 22 for information on the total amount of addressable memory
1.8 System Storage

The Intel® Compute Card has soldered-down storage as follows:

- 32 GB Embedded Multi Media Card (eMMC) component on CD1C32GK
- 64 GB Embedded Multi Media Card (eMMC) component on CD1C64GK and CD1P64GK

1.9 Processor Graphics Subsystem

The Intel® Compute Card supports graphics through Intel® HD Graphics.

1.9.1 Integrated Graphics

The Intel® Compute Card supports integrated graphics via the processor. Two Digital Display Interface (DDI) lanes are available from the Compute Card connector. How the DDI lanes are used is dependent on the device the Compute Card is plugged into and how the lanes are configured. By default, the DDI lanes are configured as DisplayPort* 1.2. The DDI lane from the extended part of the connector can be configured as HDMI* 1.4b via DDI_Config.

- High-Bandwidth Digital Content Protection support for content protection
 - HDCP 1.4 supported via DisplayPort
 - HDCP 1.4 supported via HDMI
- Resolutions and refresh rates supported
 - Up to 4K @ 60Hz via DisplayPort
 - Up to 4K @ 30Hz via HDMI

See section 2.2 for more information on the connector and connector configuration options.

1.9.1.1 Intel® High Definition (Intel® HD) Graphics

The Intel® HD graphics controller features the following:

- 3D graphics hardware acceleration supporting DirectX*9.3/10/11.1/12, OpenCL 1.2, OGL ES 3.0, OpenGL 4.3
- Video decode hardware acceleration supporting H.264, HEVC/H265, JPEG, MJPEG, MPEG2, MVC, VC-1, WMV9, VP8 and VP9 formats
- Video encode hardware acceleration supporting H.264, HEVC/H265, JPEG, MJPEG, VP8, VP9 and MVC formats

1.9.1.2 Video Memory Allocation

Intel® Dynamic Video Memory Technology (DVMT) is a method for dynamically allocating system memory for use as graphics memory to balance 2D/3D graphics and system performance. If your computer is configured to use DVMT, graphics memory is allocated based on system requirements and application demands (up to the configured maximum amount). When memory is no longer needed by an application, the dynamically allocated portion of memory is returned to the operating system for other uses.
1.9.1.3 Integrated Audio

The following audio technologies are supported via the Digital Display Lanes using either DisplayPort or HDMI:

- AC3 - Dolby* Digital
- Dolby Digital Plus
- DTS-HD*
- LPCM, 192 kHz/16-bit or 176.4kHz/24-bit, 8 Channel
- Dolby TrueHD, DTS-HD Master Audio*

1.10 Wireless LAN Subsystem

The Intel® Compute Card wireless LAN subsystem consists of the following:

- Intel® Dual Band Wireless-AC 7265 module
- 1216 BGA soldered-down

For information about
Refer to
LAN software and drivers http://downloadcenter.intel.com

1.10.1 Wireless Network Module

The Dual Band Wireless-AC 7265 module provides hi-speed wireless connectivity with the following capabilities:

- 802.11a/b/g/n, 802.11ac
- 2.4 GHz, 5.0 GHz
- Two antennas incorporated inside the Compute Card
- Dual Mode Bluetooth 4.2
- Supports Miracast* and Miracast Sink

For information about
Refer to
Obtaining WLAN software and drivers http://downloadcenter.intel.com
Full Specifications http://intel.com/wireless

1.11 Authentication

The Intel® Compute Card and any device with a compatible slot for the Intel® Compute Card will use bidirectional authentication. The Compute Card will attempt to authenticate the compatible device and the compatible device will attempt to authenticate the Compute Card. The authentication uses digital keys, which are provisioned by default during manufacturing for every Compute Card and Compute Card compatible device. With this provisioning, the Intel® Compute Card will only work with correctly provisioned Intel® Compute Card slot compatible devices.
1.12 Power Management

Power management is implemented at several levels, including:

- Software support through Advanced Configuration and Power Interface (ACPI)
- Hardware support:
 - Power Input
 - Instantly Available PC technology
 - Wireless LAN wake capabilities
 - Wake from USB (When plugged into a compatible device)
 - Wake from S5

1.12.1 ACPI

ACPI gives the operating system direct control over the power management and Plug and Play functions of a computer. The use of ACPI with this Compute Card requires an operating system that provides full ACPI support. ACPI features include:

- Plug and Play (including bus and device enumeration)
- Power management control of individual devices
- A Soft-off feature that enables the operating system to power-off the computer
- Support for multiple wake-up events (see Table 5 on page 18)

Table 3 lists the system states based on how long the power switch is pressed, depending on how ACPI is configured with an ACPI-aware operating system. Support is only available when the Compute Card is plugged into a compatible device's Compute Card slot.

Table 3. Effects of Pressing the Power Switch

<table>
<thead>
<tr>
<th>If the system is in this state...</th>
<th>...and the power switch is pressed for</th>
<th>...the system enters this state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off (ACPI G2/G5 – Soft off)</td>
<td>Less than four seconds</td>
<td>Power-on (ACPI G0 – working state)</td>
</tr>
<tr>
<td>On (ACPI G0 – working state)</td>
<td>Less than four seconds</td>
<td>Soft-off/Standby (ACPI G1 – sleeping state) Note</td>
</tr>
<tr>
<td>On (ACPI G0 – working state)</td>
<td>More than six seconds</td>
<td>Fail safe power-off and then restart (ACPI G2/G5 – Soft off)</td>
</tr>
<tr>
<td>Sleep (ACPI G1 – sleeping state)</td>
<td>Less than four seconds</td>
<td>Wake-up (ACPI G0 – working state)</td>
</tr>
<tr>
<td>Sleep (ACPI G1 – sleeping state)</td>
<td>More than six seconds</td>
<td>Power-off and then restart (ACPI G2/G5 – Soft off)</td>
</tr>
</tbody>
</table>

Note: Depending on power management settings in the operating system.
1.12.1.1 System States and Power States

Under ACPI, the operating system directs all system and device power state transitions. The operating system puts devices in and out of low-power states based on user preferences and knowledge of how devices are being used by applications. Devices that are not being used can be turned off. The operating system uses information from applications and user settings to put the system as a whole into a low-power state.

Table 4 lists the power states supported by the Compute Card along with the associated system power targets. See the ACPI specification for a complete description of the various system and power states.

Table 4. Power States and Targeted System Power

<table>
<thead>
<tr>
<th>Global States</th>
<th>Sleeping States</th>
<th>Processor States</th>
<th>Device States</th>
<th>Targeted System Power (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0 – working state</td>
<td>S0 – working</td>
<td>C0 – working</td>
<td>D0 – working state.</td>
<td>Full power</td>
</tr>
<tr>
<td>G1 – sleeping state</td>
<td>S3 – Suspend to RAM.</td>
<td>No power</td>
<td>D3 – no power except for wake-up logic.</td>
<td>Power < 5 W (Note 2)</td>
</tr>
<tr>
<td></td>
<td>Context saved to RAM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1 – sleeping state</td>
<td>S4 – Suspend to disk.</td>
<td>No power</td>
<td>D3 – no power except for wake-up logic.</td>
<td>Power < 5 W (Note 2)</td>
</tr>
<tr>
<td></td>
<td>Context saved to disk.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2/S5</td>
<td>S5 – Soft off. Context</td>
<td>No power</td>
<td>D3 – no power except for wake-up logic.</td>
<td>Power < 5 W (Note 2)</td>
</tr>
<tr>
<td></td>
<td>not saved. Cold boot is required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3 – mechanical off</td>
<td>No power to the system.</td>
<td>No power</td>
<td>D3 – no power for wake-up logic.</td>
<td>No power to the system. Service can be performed safely.</td>
</tr>
<tr>
<td>AC power is disconnected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Total system power is dependent on the system configuration and peripherals powered by the system power supply.
2. Dependent on the standby power consumption of wake-up devices used in the system.
1.12.1.2 Wake-up Devices and Events

Table 5 lists the devices or specific events that can wake the Compute Card from specific states.

Table 5. Wake-up Devices and Events

<table>
<thead>
<tr>
<th>Devices/events that wake up the system...</th>
<th>...from this sleep state</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power switch</td>
<td>S3, S4, S5</td>
<td>Only supported if compatible device has a power switch</td>
</tr>
<tr>
<td>RTC alarm</td>
<td>S3, S4, S5</td>
<td></td>
</tr>
<tr>
<td>Wireless LAN</td>
<td>S3, S4, S5</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td>S3, S4</td>
<td>Wake S4 controlled by BIOS option. Only supported if compatible device has USB ports.</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>PCIe controller on slot</td>
<td>S3, S4, S5</td>
<td>Only supported if compatible device has support for wake events</td>
</tr>
</tbody>
</table>

Notes:
1. Monitor will remain in “sleep” state from S3 resume.
2. “S5 WoL after G3” only supported w/Deep Sleep disabled
3. Wake from S4 only supported w/Deep Sleep disabled.
4. Wake from device/event not supported immediately upon return from AC loss.

NOTE

The use of these wake-up events from an ACPI state requires an operating system that provides full ACPI support. In addition, software, drivers, and peripherals must fully support ACPI wake events.

1.12.2 Hardware Support

Power management hardware features include the following when the Compute Card is plugged into a compatible device's slot:

- Wake from Power Button signal
- Instantly Available PC technology
- Wired LAN wake capabilities
- Wake from USB
- Wake from S5

NOTE

The use of Wake from USB from an ACPI state requires an operating system that provides full ACPI support.
1.12.2.1 Instantly Available PC Technology

Instantly Available PC technology enables the Compute Card to enter the ACPI S3 (Suspend-to-RAM) sleep-state. While in the S3 sleep-state, the computer will appear to be off (the power supply is off, and the front panel off). When signaled by a wake-up device or event, the system quickly returns to its last known wake state. Table 5 on page 18 lists the devices and events that can wake the Compute Card from the S3 state when the Compute Card is plugged into a compatible device.

The use of Instantly Available PC technology requires an operating system.

1.12.2.2 Wired LAN Wake Capabilities

Wired LAN wake capabilities enable remote wake-up of the Compute Card through a network. The Wired LAN subsystem monitors network traffic at the Media Independent Interface. Upon detecting a Magic Packet* frame, the Wired LAN subsystem asserts a wake-up signal that powers up the Compute Card. This feature is only available when plugged into a compatible device that has support for Wired LAN.

1.12.2.3 Wireless LAN Wake Capabilities

Wireless LAN wake capabilities enable remote wake-up of the Compute Card through a network. The Wireless LAN subsystem monitors network traffic at the Media Independent Interface. Upon detecting a Magic Packet* frame, the Wireless LAN subsystem asserts a wake-up signal that powers up the Compute Card.

1.12.2.4 Wake from USB

USB activity wakes the Compute Card from an ACPI S3 and S4 states.

NOTE

Wake from USB requires the use of a USB peripheral that is plugged into a compatible device that supports Wake from USB.

1.12.2.5 Wake from S5

When the RTC Date and Time is set in the BIOS, the Compute Card will automatically wake from an ACPI S5 state.
1.13 Intel® Security and Manageability Technologies

Intel® Security and Manageability Technologies provides tools and resources to help small business owners and IT organizations protect and manage their assets in a business or institutional environment.

NOTE

Software with security and/or manageability capability is required to take advantage of Intel® platform security and/or management technologies.

1.13.1 Intel® Virtualization Technology

Intel® Virtualization Technology (Intel VT) is a hardware-assisted technology that, when combined with software-based virtualization solutions, provides maximum system utilization by consolidating multiple environments into a single server or client.

NOTE

A processor with Intel VT does not guarantee that virtualization will work on your Compute Card. Intel VT requires enabling software and/or operating system, device drivers, and applications designed for this feature.

<table>
<thead>
<tr>
<th>For information about</th>
<th>Refer to</th>
</tr>
</thead>
</table>

1.13.1.1 Intel® Virtualization Technology for Directed I/O

Intel® Virtualization Technology for Directed I/O (VT-d) allows addresses in incoming I/O device memory transactions to be remapped to different host addresses. This provides Virtual Machine Monitor (VMM) software with:

- Improved reliability and security through device isolation using hardware assisted remapping.
- Improved I/O performance and availability by direct assignment of devices.

1.13.1.2 Intel® VT-x with Extended Page Tables

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.
1.13.2 Intel® Identity Protection Technology

Intel® Identity Protection Technology (Intel IPT) provides a simple way for websites and enterprises to validate that a user is logging in from a trusted computer. This is accomplished by using the Trusted Execution Engine embedded in the chipset to generate a six-digit number that, when coupled with a user name and password, will generate a One-Time Password (OTP) when visiting Intel IPT-enabled websites. Intel IPT eliminates the need for the additional token or key fob required previously for two-factor authentication.

<table>
<thead>
<tr>
<th>For information about</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Identity Protection Technology</td>
<td>http://ipt.intel.com</td>
</tr>
</tbody>
</table>

1.13.3 Intel® Platform Trust Technology (PTT)

Intel® Platform Trust Technology (PTT) is a firmware based TPM 2.0 implementation integrated in the Trusted Execution Engine (TXE) for credential storage and key management. It provides a secure trust element to meet Microsoft Windows® 10 requirements for TPM 2.0 and Measured Boot for systems on which TPM 2.0 is required by Microsoft.
2 Technical Reference

2.1 Addressable Memory

The Intel® Compute Card utilizes up to 4 GB of addressable system memory. Typically the address space that is allocated for PCI Conventional bus add-in cards, PCI Express configuration space, BIOS (SPI Flash device), and chipset overhead resides above the top of DRAM (total system memory). On a system that has 4 GB of system memory installed, it is not possible to use all of the installed memory due to system address space being allocated for other system critical functions. These functions include the following:

- 64 Mb BIOS/SPI Flash device
- Local APIC (19 MB)
- Direct Media Interface (40 MB)
- PCI Express configuration space (256 MB)
- SoC base address registers PCI Express ports (up to 256 MB)
- Integrated graphics shared memory (64 MB)

The Intel® Compute Card provides the capability to reclaim the physical memory overlapped by the memory mapped I/O logical address space. Physical memory is remapped from the top of usable DRAM boundary to the 4 GB boundary to an equivalent sized logical address range located just above the 4 GB boundary. All installed system memory can be used when there is no overlap of system addresses.

2.2 Connector

This section describes the connector available on the Intel® Compute Card. The connector is separated into two sections: a Type C-compliant portion and an extended portion. The Type C portion supports Type C-compliant connections including video with audio and USB. The extended portion supports video with audio, USB, and PCIe. Power is supplied to the card from the device the Compute Card is plugged into using the Type C portion of the connector.
2.2.1 Connector Interface Options

The connector has several interface options that are listed in table 6.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Type C Only Option A</th>
<th>Type C Only Option B</th>
<th>Type C + Extension Option A</th>
<th>Type C + Extension Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Display Interface (DDI)</td>
<td>4 lanes</td>
<td>2 lanes</td>
<td>4 lanes over Type C</td>
<td>2 lanes over Type C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 lanes over extension</td>
<td>4 lanes over extension</td>
</tr>
<tr>
<td>USB 3.0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>USB 2.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PCI Express or SATA</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Power</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- 2 lanes of DDI supports 1080P and 4 lanes of DDI supports 4K with DisplayPort 1.2
- Either DisplayPort or HDMI can be configured over DDI on the connector extension
- Only DisplayPort is supported over DDI on the Type C portion of the connector

2.2.2 Power On Straps and Select Signals

The connector has power on straps and select signals to define the interface. The options that are listed in table 7.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1_SEL*</td>
<td>PCE Express / SATA</td>
<td>VDM</td>
</tr>
<tr>
<td>PE2_SEL*</td>
<td>PCE Express / SATA</td>
<td>VDM</td>
</tr>
<tr>
<td>GbE_PE_SEL</td>
<td>LAN / PCI Express</td>
<td>Select VDM</td>
</tr>
<tr>
<td>PE_Wake#</td>
<td>PCIe Wake Event</td>
<td>VDM</td>
</tr>
<tr>
<td>CLK_REQ2#</td>
<td>PCIe Clock Request</td>
<td>Pin / Signal</td>
</tr>
<tr>
<td>CLK_REQ1#</td>
<td>PCIe Clock Request</td>
<td>Pin / Signal</td>
</tr>
<tr>
<td>DDI_Config**</td>
<td>DDI DP / HDMI Select</td>
<td>Pin / Signal</td>
</tr>
<tr>
<td>DDI_HPD</td>
<td>DDI Hot Plug Detect</td>
<td>Pin / Signal</td>
</tr>
</tbody>
</table>

*PE1_SEL and PE2_SEL support PCI Express / SATA selection
**DDI_Config supports DP++ (DP/HDMI select)
2.2.3 Muxing Options

HSIO1_RX/TX and HSIO2_RX/TX can be selected for either PCI Express or Serial ATA (SATA) operation. The device must send the appropriate VDM during power on negotiation to select the desired operating mode.

Display options for the connector extension can be selected for either HDMI or DisplayPort using DDI_Config.

2.2.4 Connector Pinout

The Intel® Compute Card has a single connector that supports the following signals shown in Table 8.

![Figure 4. Compute Card Connector Pinout](image)
<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>GND</td>
<td>C1</td>
<td>GND</td>
<td>B12</td>
<td>GND</td>
<td>A1</td>
<td>GND</td>
</tr>
<tr>
<td>D2</td>
<td>DDI2_L1-</td>
<td>C2</td>
<td>DDI2_L0-</td>
<td>B11</td>
<td>RX1+</td>
<td>A2</td>
<td>TX1+</td>
</tr>
<tr>
<td>D3</td>
<td>DDI2_L1+</td>
<td>C3</td>
<td>DDI2_L0+</td>
<td>B10</td>
<td>RX1-</td>
<td>A3</td>
<td>TX1-</td>
</tr>
<tr>
<td>D4</td>
<td>PE_RST#</td>
<td>C4</td>
<td>RSVD1</td>
<td>B9</td>
<td>Vbus</td>
<td>A4</td>
<td>Vbus</td>
</tr>
<tr>
<td>D5</td>
<td>DDI_Config</td>
<td>C5</td>
<td>DDI_HPD</td>
<td>B8</td>
<td>SBU2</td>
<td>A5</td>
<td>CC1</td>
</tr>
<tr>
<td>D6</td>
<td>DDI_L2-</td>
<td>C6</td>
<td>DDI_L3-</td>
<td>B7</td>
<td>USB1_D1-</td>
<td>A6</td>
<td>USB1_D1+</td>
</tr>
<tr>
<td>D7</td>
<td>DDI_L2+</td>
<td>C7</td>
<td>DDI_L3+</td>
<td>B6</td>
<td>USB1_D1+</td>
<td>A7</td>
<td>USB1_D1-</td>
</tr>
<tr>
<td>D8</td>
<td>CLK_REQ2#</td>
<td>C8</td>
<td>CLK_REQ1#</td>
<td>B5</td>
<td>CC2</td>
<td>A8</td>
<td>SBU1</td>
</tr>
<tr>
<td>D9</td>
<td>GND</td>
<td>C9</td>
<td>GND</td>
<td>B4</td>
<td>Vbus</td>
<td>A9</td>
<td>Vbus</td>
</tr>
<tr>
<td>D10</td>
<td>HSIO1_TX-</td>
<td>C10</td>
<td>HSIO1_RX-</td>
<td>B3</td>
<td>TX2-</td>
<td>A10</td>
<td>RX2-</td>
</tr>
<tr>
<td>D11</td>
<td>HSIO1_TX+</td>
<td>C11</td>
<td>HSIO1_RX+</td>
<td>B2</td>
<td>TX2+</td>
<td>A11</td>
<td>RX2+</td>
</tr>
<tr>
<td>D12</td>
<td>RefCLK1-</td>
<td>C12</td>
<td>RefCLK2-</td>
<td>B1</td>
<td>GND</td>
<td>A12</td>
<td>GND</td>
</tr>
<tr>
<td>D13</td>
<td>RefCLK1+</td>
<td>C13</td>
<td>RefCLK2+</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D14</td>
<td>HSIO2_TX-</td>
<td>C14</td>
<td>HSIO2_RX-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D15</td>
<td>HSIO2_TX+</td>
<td>C15</td>
<td>HSIO2_RX+</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D16</td>
<td>GND</td>
<td>C16</td>
<td>GND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D17</td>
<td>SMLINK_DATA</td>
<td>C17</td>
<td>SMLINK_CLK</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D18</td>
<td>USB3_D-</td>
<td>C18</td>
<td>AUX2/Data2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D19</td>
<td>USB3_D+</td>
<td>C19</td>
<td>AUX2+/Clk2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D20</td>
<td>RSVD2</td>
<td>C20</td>
<td>GND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D21</td>
<td>RSVD3</td>
<td>C21</td>
<td>RSVD4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D22</td>
<td>SS_RX-</td>
<td>C22</td>
<td>SS_TX-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D23</td>
<td>SS_RX+</td>
<td>C23</td>
<td>SS_TX+</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D24</td>
<td>GND</td>
<td>C24</td>
<td>GND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
2.3 Power Considerations

The Compute Card requires a DC input via the Type C portion of the connector supplied over the connector via USB Power Delivery Protocol from the device that the Compute Card is plugged into:

- Voltage: 12 V +/-5%
- Current (RMS max): 1.67 A
- Current (Peak): 2.62 A

2.4 Mechanical Considerations

2.4.1 Form Factor

Figure 5, Figure 6, Figure 7 and Figure 8 illustrate the mechanical form factor for the Intel® Compute Card. Dimensions are given in millimeters.
Table 9 lists the measurements and tolerances of the Intel® Compute Card. All numbers are in millimeters (mm):

Table 9. Measurement with Maximum Tolerances

<table>
<thead>
<tr>
<th>Description</th>
<th>Width</th>
<th>Length</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>55.00</td>
<td>94.50</td>
<td>5.00</td>
</tr>
<tr>
<td>Tolerance +</td>
<td>0.10</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>Tolerance -</td>
<td>0.12</td>
<td>0.25</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Figure 7. Intel® Compute Card Dimensions (Front and Back)

Figure 8. Intel® Compute Card Dimensions (Connector)

Table 10. Intel® Compute Card Weight Information

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Card only</td>
<td>44.5g</td>
</tr>
<tr>
<td>Compute Card in 5 pack box</td>
<td>680.4g</td>
</tr>
</tbody>
</table>
2.5 Thermal Considerations

The fundamental design of the Intel® Compute Card relies on the installed device for proper cooling and due to the wide variety of potential environmental conditions, no specific cooling design details are provided in this document. The following sections address the primary considerations for proper cooling of the Compute Card.

Power is dissipated from both faces of the Compute Card, however the bottom surface is in direct contact with the CPU and as such receives the majority of the total power. Table 11 lists different power measurements taken on the Compute Card.

<table>
<thead>
<tr>
<th>Type</th>
<th>Full Load</th>
<th>4K Video</th>
<th>4K Streamed Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>8.979 W</td>
<td>7.475 W</td>
<td>7.427 W</td>
</tr>
<tr>
<td>CPU Package Power</td>
<td>5.999 W</td>
<td>5.206 W</td>
<td>5.734 W</td>
</tr>
<tr>
<td>Other Components Power</td>
<td>2.98 W</td>
<td>2.269 W</td>
<td>1.693 W</td>
</tr>
</tbody>
</table>

Direct conductive contact with the Compute Card surfaces will typically provide the best overall heat dissipation, however it is possible to achieve desirable performance levels with convection only cooling. With the use of either conductive or convective cooling, skin temperatures must be taken into consideration. The Compute Card is capable of operating within all critical component temperature specifications while producing surface skin temperatures that may violate typical safety guidelines or requirements. Acceptable skin temperature limits vary with intended use conditions. Reference IEC 60950-1 INFORMATION TECHNOLOGY EQUIPMENT - SAFETY for guidance.

Surface temperatures based on actual use of the Compute Card shown in Table 12 are recommended.

<table>
<thead>
<tr>
<th>Usage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Compute Card can be removed from the device by a user</td>
<td>55 °C</td>
</tr>
<tr>
<td>The Compute Card is embedded in a device and cannot be removed by a user</td>
<td>70 °C</td>
</tr>
</tbody>
</table>

2.6 Reliability

The Mean Time Between Failures (MTBF) prediction is calculated using component and subassembly random failure rates. The MTBF prediction is used to estimate repair rates and spare parts requirements. The MTBF for the Intel® Compute Card is 66,076 hours.
2.7 Environmental

Table 13 lists the environmental specifications for the Intel® Compute Card.

Table 13. Environmental Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Non-Operating</td>
<td>-40 °C to +60 °C</td>
</tr>
<tr>
<td>Operating</td>
<td>Ambient operating temperature limitations are a function of the slot design and as such a specific number cannot be provided</td>
</tr>
<tr>
<td>Shock</td>
<td></td>
</tr>
<tr>
<td>Unpackaged</td>
<td>80cm drop</td>
</tr>
<tr>
<td>Packaged</td>
<td>Half sine 2 millisecond</td>
</tr>
<tr>
<td>Product Weight (pounds)</td>
<td>Free Fall (inches)</td>
</tr>
<tr>
<td><20</td>
<td>36</td>
</tr>
<tr>
<td>21-40</td>
<td>30</td>
</tr>
<tr>
<td>41-80</td>
<td>24</td>
</tr>
<tr>
<td>81-100</td>
<td>18</td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
</tr>
<tr>
<td>Unpackaged</td>
<td>5 Hz to 20 Hz: 0.01 g² Hz sloping up to 0.02 g² Hz</td>
</tr>
<tr>
<td></td>
<td>20 Hz to 500 Hz: 0.02 g² Hz (flat)</td>
</tr>
<tr>
<td>Packaged</td>
<td>5 Hz to 40 Hz: 0.015 g² Hz (flat)</td>
</tr>
<tr>
<td></td>
<td>40 Hz to 500 Hz: 0.015 g² Hz sloping down to 0.00015 g² Hz</td>
</tr>
</tbody>
</table>

1 The operating and non-operating environment must avoid condensing humidity.
3 Overview of BIOS Features

3.1 Introduction

The Intel® Compute Card uses an Intel® BIOS that is stored in the Serial Peripheral Interface Flash Memory (SPI Flash) and can be updated using a disk-based program. The SPI Flash contains the BIOS Setup program, POST, the PCI auto-configuration utility, and Plug and Play support. The initial production BIOS is identified as GKAPLCPX.86A.

The BIOS Setup program can be used to view and change the BIOS settings for the computer, and to update the system BIOS. The BIOS Setup program is accessed by pressing the <F2> key after the Power-On Self-Test (POST) memory test begins and before the operating system boot begins.

3.2 BIOS Flash Memory Organization

The Serial Peripheral Interface Flash Memory (SPI Flash) includes a 128 Mb (16384 KB) flash memory device.

3.3 System Management BIOS (SMBIOS)

SMBIOS is a Desktop Management Interface (DMI) compliant method for managing computers in a managed network.

The main component of SMBIOS is the Management Information Format (MIF) database, which contains information about the computing system and its components. Using SMBIOS, a system administrator can obtain the system types, capabilities, operational status, and installation dates for system components. The MIF database defines the data and provides the method for accessing this information. The BIOS enables applications such as third-party management software to use SMBIOS. The BIOS stores and reports the following SMBIOS information:

- BIOS data, such as the BIOS revision level
- Fixed-system data, such as peripherals, serial numbers, and asset tags
- Resource data, such as memory size, cache size, and processor speed
- Dynamic data, such as event detection and error logging

Non-Plug and Play operating systems require an additional interface for obtaining the SMBIOS information. The BIOS supports an SMBIOS table interface for such operating systems. Using this support, an SMBIOS service-level application running on a non-Plug and Play operating system can obtain the SMBIOS information. Additional information can be found in the BIOS under the Additional Information header under the Main BIOS page.
3.4 Legacy USB Support

Legacy USB support enables USB devices to be used even when the operating system’s USB drivers are not yet available. Legacy USB support is used to access the BIOS Setup program, and to install an operating system that supports USB. By default, Legacy USB support is set to Enabled. In order to boot to a USB device, the Compute Card must be plugged into a compatible device with USB ports.

Legacy USB support operates as follows:
1. When you apply power to the computer, legacy support is disabled.
2. POST begins.
3. Legacy USB support is enabled by the BIOS allowing you to use a USB keyboard to enter and configure the BIOS Setup program and the maintenance menu.
4. POST completes.
5. The operating system loads. While the operating system is loading, USB keyboards and mice are recognized and may be used to configure the operating system. (Keyboards and mice are not recognized during this period if Legacy USB support was set to Disabled in the BIOS Setup program.)
6. After the operating system loads the USB drivers, all legacy and non-legacy USB devices are recognized by the operating system, and Legacy USB support from the BIOS is no longer used.

3.5 BIOS Updates

The BIOS can be updated using either of the following utilities, which are available on the Intel® World Wide Web site:

- Intel® Express BIOS Update Utility, which enables automated updating while in the Windows environment. Using this utility, the BIOS can be updated from a file on a hard disk, a USB drive (a flash drive or a USB hard drive), or a CD-ROM, or from the file location on the Web.
- Intel® F7 switch during POST allows a user to select where the BIOS .bio file is located and perform the update from that location/device.

All utilities verify that the updated BIOS matches the target system to prevent accidentally installing an incompatible BIOS.

NOTE

Review the instructions distributed with the upgrade utility before attempting a BIOS update. The Compute Card must be plugged into a compatible device in order to update the BIOS.

For information about	Refer to

3.5.1 Language Support

The BIOS Setup program and help messages are supported in US English. Check the Intel® web site for support.
3.6 BIOS Recovery

It is unlikely that anything will interrupt a BIOS update; however, if an interruption occurs, the BIOS could be damaged. Table 14 lists the drives and media types that can and cannot be used for BIOS recovery. The BIOS recovery media plugged into a compatible device does not need to be made bootable.

Table 14. Acceptable Drives/Media Types for BIOS Recovery

<table>
<thead>
<tr>
<th>Media Type (Note)</th>
<th>Can be used for BIOS recovery?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard disk drive (connected to USB)</td>
<td>Yes</td>
</tr>
<tr>
<td>USB flash drive</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NOTE

Supported file systems for BIOS recovery:

- NTFS (sparse, compressed, or encrypted files are not supported)
- FAT32
- FAT16
- FAT12
- ISO 9660

For information about BIOS recovery, refer to:

3.7 Boot Options

In the BIOS Setup program, the user can choose to boot from local storage or removable storage. The default setting is for the local storage to be the first boot device. For removable storage use the Compute Card must be plugged into a compatible device.

3.7.1 Booting Without Attached Devices

For use in embedded applications, the BIOS has been designed so that after passing the POST, the operating system loader is invoked even if the following devices are not present in a compatible device:

- Video display
- Keyboard
- Mouse
3.7.2 BIOS POST Hotkeys

The following hot keys are supported during boot when the Compute Card is plugged into a compatible device with a keyboard attached to the device.

- [F2] Enter BIOS Setup
- [F7] Update BIOS
- [F10] Enter Boot Menu

3.7.3 Changing the Default Boot Device During POST

When the Compute Card is plugged into a compatible device with a keyboard attached to the device, pressing the <F10> key during POST causes a boot device menu to be displayed. This menu displays the list of available boot devices. Table 15 lists the boot device menu options.

<table>
<thead>
<tr>
<th>Boot Device Menu Function Keys</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><↑> or <↓></td>
<td>Selects a default boot device</td>
</tr>
<tr>
<td><Enter></td>
<td>Exits the menu, and boots from the selected device</td>
</tr>
<tr>
<td><Esc></td>
<td>Exits the menu and boots according to the boot priority defined through BIOS setup</td>
</tr>
</tbody>
</table>

3.7.4 Power Button Menu

The Power Button Menu is accessible via the following sequence when the Compute Card is plugged into a compatible device that has a power button:

1. System is in S4/S5
2. User pushes the power button and holds it down. Hold the button for 3 seconds, then release the button immediately
3. If the power button is held for longer than 3 seconds the user make invoke the 4-second shutdown override

If this boot path is taken, the BIOS will use default settings, ignoring settings in NVRAM or setup where possible. At the point where Setup Entry/Boot would be in the normal boot path, the BIOS will display the following prompt and wait for a keystroke:

- [ESC] Normal Boot
- [4] Clear Trusted Platform Module (Warning: Data encryption with the TPM will no longer be accessible if the TPM is cleared)
- [F2] Intel BIOS
- [F4] BIOS Recovery
- [F7] Update BIOS
- [F10] Enter Boot Menu
3.7.5 BIOS Error Messages

Table 16 lists the error messages and provides a brief description of each. The Compute Card must be plugged into a compatible device with a display attached in order to view the below messages.

Table 16. BIOS Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS Battery Low</td>
<td>The battery may be losing power.</td>
</tr>
<tr>
<td>CMOS Checksum Bad</td>
<td>The CMOS checksum is incorrect. CMOS memory may have been corrupted. Run Setup to reset values.</td>
</tr>
<tr>
<td>CMOS Time and Data Not Set</td>
<td>The data and time are not set in CMOS. Set the correct time and data in BIOS Setup.</td>
</tr>
<tr>
<td>No Boot Device Available</td>
<td>System did not find a device to boot.</td>
</tr>
<tr>
<td>Compute Card Thermal Sensor Failure</td>
<td>The thermal sensor in the Compute Card to measure skin temperature is not functioning and may not provide temperature data to the slot device.</td>
</tr>
<tr>
<td>Processor Thermal Trip</td>
<td>The processor has exceeded a safe operating temperature which caused the system to shut down.</td>
</tr>
</tbody>
</table>