INTEL® VIRTUAL RAID ON CPU LINUX PERFORMANCE

NSG Host Storage Software
Legal Disclaimers

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

Intel, the Intel logo, Intel Optane, Xeon, and others are trademarks of Intel Corporation in the U.S. and/or other countries.

© 2018 Intel Corporation.

*Other names and brands may be claimed as the property of others.
Performance – RAID vs Pass-thru
RHEL7.4 with Intel® SSD DC P4510¹
(4k Random)

- Pass-thru raw data:
 - 4k Rand Write: 84k IOPS
 - 4k Rand Mixed: 183k IOPS
 - 4k Rand Read: 645k IOPS

- 4-Disk RAID0 Read: 2.5M IOPS

- Physical CPU Cores Used:
 - 4-Disk RAID0 Read: 4.7 Cores
 - 4-Disk RAID5 Write: 1.2 Cores

52 total physical cores on this 2 socket, Intel® Xeon® 8170 based system

See appendix for footnotes
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.
Performance – RAID vs Pass-thru
RHEL7.4 with Intel® SSD DC P4510²
(128k Seq., 1 Worker)

Pass-thru raw data:
- 128k Seq. Write: 1.7GB/s
- 128k Seq. Read: 2.7 GB/s

4-Disk RAID 0 Read: 6.8 GB/s

Physical CPU Cores Used:
- 4-Disk RAID0 Read: 0.3 Cores
- 4-Disk RAID5 Write: 1.0 Cores

52 total physical cores on this 2 socket, Intel® Xeon® 8170 based system

See appendix for footnotes.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.
Performance – RAID vs Pass-thru
RHEL7.4 with Intel® Optane™ SSD DC P4800X³
(4k Random)

- Pass-thru raw data:
 - 4k Rand Write: 558k IOPS
 - 4k Rand Mixed: 506k IOPS
 - 4k Rand Read: 586k IOPS

- 4-Disk RAID0 Read: 2.3M IOPS

- Physical CPU Cores Used:
 - 4-Disk RAID0 Read: 3.4 Cores
 - 4-Disk RAID5 Write: 3.3 Cores

52 total physical cores on this 2 socket, Intel® Xeon®
8170 based system

See appendix for footnotes.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing as of September 12, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.
Performance – RAID vs Pass-thru
RHEL7.4 with Intel® Optane™ SSD DC P4800X⁴
(128 Seq., 1 Worker)

- Pass-thru raw data:
 - 128k Seq. Write: 1.7GB/s
 - 128k Seq. Read: 2.7 GB/s
- 4-Disk RAID 0 Read: 8.1 GB/s
- Physical CPU Cores Used:
 - 4-Disk RAID0 Read: 0.5 Cores
 - 4-Disk RAID5 Write: 0.9 Cores

52 total physical cores on this 2 socket, Intel® Xeon®
8170 based system

See appendix for footnotes.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing as of September 12, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.
Performance – NVMe* RAID vs SATA RAID
RHEL7.4 with Intel® SSD DC P4510/S4500
(4k Random)

Pass-Thru Data

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Intel® VROC</th>
<th>Intel® RSTe SATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k Ran Write</td>
<td>84k IOPS</td>
<td>36k IOPS</td>
</tr>
<tr>
<td>4k Ran Read</td>
<td>621k IOPS</td>
<td>76k IOPS</td>
</tr>
</tbody>
</table>

4 Disk RAID 0 Read Comparison:
- Intel VROC (NVMe*): 2.1M IOPS
- Intel RSTe (SATA): 264k IOPS

52 total physical cores on this 2 socket, Intel® Xeon® 8170 based system

See appendix for footnotes.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

* Other names and brands may be claimed as property of others.
Performance – RAID vs Pass-thru
RHEL7.4 with Intel® SSD DC P4510/S4500
(128 Seq., 1 Worker)

4 Disk RAID 0 Read Comparison:
- Intel VROC (NVMe®): 6.8 GB/s
- Intel RSTe (SATA): 1.2 GB/s

52 total physical cores on this 2 socket, Intel® Xeon® 8170 based system

Pass-Thru Data

<table>
<thead>
<tr>
<th></th>
<th>Intel® VROC</th>
<th>Intel® RSTe SATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k Ran Write</td>
<td>1.7 GB/s</td>
<td>0.4 GB/s</td>
</tr>
<tr>
<td>4k Ran Read</td>
<td>2.7 GB/s</td>
<td>0.5 GB/s</td>
</tr>
</tbody>
</table>

See appendix for footnotes.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.
* Other names and brands may be claimed as property of others.
Appendix

1. **System configuration**: Intel® Server Board S2600WFT family, Intel® Xeon® 8170 Series Processors, 26cores@ 2.1GHz, RAM 192GB , BIOS Release 7/09/2018, BIOS Version: SE5C620.86B.00.01.0014.070920180847
 - OS: RedHat* Linux 7.4, kernel- 3.10.0-693.33.1.el7.x86_64, mdadm - v4.0 - 2018-01-26 Intel build: RSTe_5.4_WW4.5, Intel ® VROC Pre-OS version 5.3.0.1039, 4x Intel® SSD DC P4510 Series 2TB drive firmware: VDV10131, Retimer
 - BIOS setting: Hyper-threading enabled, Package C-State set to C6(non retention state) and Processor C6 set to enabled, P-States set to default and SpeedStep and Turbo are enabled
 - Workload Generator: FIO 3.3, RANDOM: Workers-24, IOdepth- 256, No Filesystem, CPU Affinitized
 - Pass Thru Baseline: 1x Intel® SSD DC P4510 Series, 2 TB, Firmware: VDV10120, SSDPE2KX020T8

Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

2. **System configuration**: Intel® Server Board S2600WFT family, Intel® Xeon® 8170 Series Processors, 26cores@ 2.1GHz, RAM 192GB , BIOS Release 7/09/2018, BIOS Version: SE5C620.86B.00.01.0014.070920180847
 - OS: RedHat* Linux 7.4, kernel- 3.10.0-693.33.1.el7.x86_64, mdadm - v4.0 - 2018-01-26 Intel build: RSTe_5.4_WW4.5, Intel ® VROC Pre-OS version 5.3.0.1039, 4x Intel® SSD DC P4510 Series 2TB drive firmware: VDV10131, Retimer
 - BIOS setting: Hyper-threading enabled, Package C-State set to C6(non retention state) and Processor C6 set to enabled, P-States set to default and SpeedStep and Turbo are enabled
 - Workload Generator: FIO 3.3, SEQUENTIAL: Workers-1, IOdepth- 128, No Filesystem, CPU Affinitized
 - Pass Thru Baseline: 1x Intel® SSD DC P4510 Series, 2 TB, Firmware: VDV10120, SSDPE2KX020T8

Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

3. **System configuration**: Intel® Server Board S2600WFT family, Intel® Xeon® 8170 Series Processors, 26cores@ 2.1GHz, RAM 192GB , BIOS Release 06/26/2018, BIOS Version: SE5C620.86B.00.01.0014.070920180847
 - OS: RedHat* Linux 7.4, kernel- 3.10.0-693.33.1.el7.x86_64, mdadm - v4.0 - 2018-01-26 Intel build: RSTe_5.4_WW4.5, Intel ® VROC Pre-OS version 5.4.0.1039, 4x Intel® SSD DC P4800X Series 375GB drive firmware: E2010423, Retimer
 - BIOS setting: Hyper-threading enabled, Package C-State set to C6(non retention state) and Processor C6 set to enabled, P-States set to default and SpeedStep and Turbo are enabled
 - Workload Generator: FIO 3.6, RANDOM: Workers-8, IOdepth- 256, No Filesystem, CPU Affinitized
 - Pass-Thru Baseline: 1x Intel® SSD DC P4800X Series, 375 GB, Firmware: E2010423, SSDPE21K375GA

Performance results are based on testing as of September 12, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.
Appendix cont.

4. System configuration: Intel® Server Board S2600WFT family, Intel® Xeon® 8170 Series Processors, 26cores@ 2.1GHz, RAM 192GB , BIOS Release 06/26/2018, BIOS Version: SE5C620.86B.00.01.0014.070920180847
OS: RedHat® Linux 7.4, kernel- 3.10.0-693.33.1.el7.x86_64, mdadm - v4.0 - 2018-01-26 Intel build: RSTe_5.4_WW4.5, Intel® VROC Pre-OS version 5.4.0.1039, 4x Intel® SSD DC P4800X Series 375GB drive firmware: E2010423, Retimer
BIOS setting: Hyper-threading enabled, Package C-State set to C6(non retention state) and Processor C6 set to enabled, P-States set to default and SpeedStep and Turbo are enabled
Workload Generator: FIO 3.6, SEQUENTIAL: Workers-1, Ioddepth- 128, No Filesystem, CPU Affinitized
Pass Thru Baseline: 1x Intel® SSD DC P4800X Series, 375 GB, Firmware: E2010423, SSDPE21K375GA)
Performance results are based on testing as of September 12, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

5. System configuration: Intel® Server Board S2600WFT family, Intel® Xeon® 8170 Series Processors, 26cores@ 2.1GHz, RAM 192GB , BIOS Release 7/09/2018, BIOS Version: SE5C620.86B.00.01.0014.070920180847
OS: RedHat® Linux 7.4, kernel- 3.10.0-693.33.1.el7.x86_64, mdadm - v4.0 - 2018-01-26 Intel build: RSTe_5.4_WW4.5, Intel® VROC Pre-OS version 5.3.0.1039, 4x Intel® SSD DC P4510 Series 2TB drive firmware: VDV10131, 4x Intel® SSD DC S4500 Series 3.8TB drive firmware: SCV10121, Retimer
BIOS setting: Hyper-threading enabled, Package C-State set to C6(non retention state) and Processor C6 set to enabled, P-States set to default and SpeedStep and Turbo are enabled
Workload Generator: FIO 3.3, RANDOM: Workers-16, Ioddepth- 256, No Filesystem, CPU Affinitized
Pass Thru Baseline: 1x Intel® SSD DC P4510 Series, 2 TB, Firmware: VDV10131, SSDPE2KX020T8; 1x Intel® SSD DC S4500 Series, 3.8TB, Firmware: SCV10120, SSDPE2KX020T8
Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

OS: RedHat® Linux 7.4, kernel- 3.10.0-693.33.1.el7.x86_64, mdadm - v4.0 - 2018-01-26 Intel build: RSTe_5.4_WW4.5, Intel® VROC Pre-OS version 5.3.0.1039, 4x Intel® SSD DC P4510 Series 2TB drive firmware: VDV10131, 4x Intel® SSD DC S4500 Series 3.8TB drive firmware: SCV10121, Retimer
BIOS setting: Hyper-threading enabled, Package C-State set to C6(non retention state) and Processor C6 set to enabled, P-States set to default and SpeedStep and Turbo are enabled
Workload Generator: FIO 3.3, SEQUENTIAL: Workers-1, Ioddepth- 128, No Filesystem, CPU Affinitized
Pass Thru Baseline: 1x Intel® SSD DC P4510 Series, 2 TB, Firmware: VDV10131, SSDPE2KX020T8; 1x Intel® SSD DC S4500 Series, 3.8TB, Firmware: SCV10120, SSDPE2KX020T8
Performance results are based on testing as of October 5, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.