Intel® Memory Drive Technology

Set Up and Configuration Guide

August 2019
Revision 012
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Initial release.</td>
<td>March 2017</td>
</tr>
<tr>
<td>002</td>
<td>Revised Set Up and Configuration guidelines</td>
<td>April 2017</td>
</tr>
</tbody>
</table>
| 003 | Corrected Download URL & command line
Revised Recommended Configuration
Included UEFI boot support | May 2017 |
| 004 | Highlighted supported OS
Re-ordered installation steps 3 & 4 | June 2017 |
| 005 | Added Common Error Code explanation
Added workloads classification for workload classes that do not benefit from Intel® Memory Drive Technology
Added a section for performance data collection (using automatic anonymous periodic statistics collection)
Added details of supported processor models for the New Intel® Xeon® Processor Scalable Family
Updates for Intel® Memory Drive Technology version 8.2.1455.x | July 2017 |
| 006 | Improved installation and configuration section, including screen shots
Added screenshots for boot and settings section
Added update and uninstallation instructions
Performance and benchmarking section | October 2017 |
| 007 | Removed dependency in UEFI Legacy VGA BIOS
Added section referring to out-of-the-box performance workload
Updates for Intel® Memory Drive Technology version 8.5.1955.x | January 2018 |
| 008 | Added support for "MDTxxxxxxxxxx" SKUs
Added support for Operating System in UEFI mode
Added documentation for new configuration options (F5)
Added instructions for collecting system information to obtain support
Added instructions for booting from the network using PXE
Updates for Intel® Memory Drive Technology version 8.6.2535.51 | August 2018 |
| 009 | Reference Link correction | September 2018 |
| 010 | Benchmarking Methodology Update | January 2019 |
| 011 | Minor documentation changes in Introduction, page 5 | February 2019 |
| 012 | Added Supported Processors information | August 2019 |

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

No computer system can provide absolute security. Requires an enabled Intel® processor, enabled chipset, firmware and/or software optimized to use the technologies. Consult your system manufacturer and/or software vendor for more information.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

For copies of this document, documents that are referenced within, or other Intel literature, please contact your Intel representative.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, Optane, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation. All rights reserved.
Figures

Figure 1: Memory Pool with Intel® Memory Drive Technology ... 5
Figure 2: Access to BIOS .. 9
Figure 3: License Activation through Web Site .. 27

Tables

Table 1: Error Codes ... 24
Table 2: Performance-optimized Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® E5 v3/v4 processors .. 32
Table 3: Performance-optimized Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® Scalable Processors .. 33
Table 4: Maximum Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® E5 v3/v4 processors .. 34
Table 5: Maximum Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® Scalable Processors .. 35
Introduction

The Intel® Optane™ SSD DC P4800X can be combined with Intel® Memory Drive Technology software to enable the expansion of system memory beyond DRAM; essentially using Intel® Optane™ SSD’s capacity as software-defined memory (SDM) with byte-addressable memory, instead of as block storage.

This document describes the setup, capabilities, and specifications of the Intel® Memory Drive Technology software.

The Intel® Memory Drive Technology implements software-defined memory (SDM) on-top of the Intel® Optane™ SSDs. Intel® Memory Drive Technology is optimized to take advantage of the latest Intel processors and Intel® Optane™ SSD’s unique features.

As shown in Figure 1, Intel® Memory Drive Technology executes directly on the hardware, and below the operating system, and allows for system memory to be assembled from DRAM and the PCIe-based Intel® SSD. It leverages economic benefit of SSDs, and operates transparently as volatile system memory. With Intel® Optane™ SSDs, it is available in 85GiB, 320GiB, 640GiB and 1.28TiB capacities.

Figure 1: Memory Pool with Intel® Memory Drive Technology

Intel® Memory Drive Technology offers these key features:

- Optimized for up to 8x system memory expansion over installed DRAM capacity
- Low latencies and close-to DRAM performance for SDM operations
- Consistent and reliable SDM Quality of Service
- High endurance
- Designed for high-concurrency and in-memory analytics workloads

1. For example: 128GiB DRAM can be expanded up to 1024GiB based on the capacity of installed NVMe media. Higher expansion ratios may be supported, with possibly suboptimal performance.
1 Installation and Configuration

1.1 Operating System Requirements
Intel® Memory Drive Technology supports Linux® x86 64 bit, kernel versions 2.6.32 or higher.

1. See Supported Linux distributions in “Specifications” section.
2. Intel® Memory Drive Technology also supports Open Source hypervisors such as KVM, as shipped with the major Linux distributions.

1.2 Available Product Varieties
Depending on the product SKU you have ordered, Intel Memory Drive Technology comes in two varieties: either preloaded with the software-defined memory (SDM) on the NVMe drive, or to be downloaded and installed separately.

The product SKU can be identified by running the command “nvme list” or according to the product labeling.

<table>
<thead>
<tr>
<th>SKU (Model String)</th>
<th>Intel Memory Drive Technology Software</th>
<th>License</th>
<th>Software Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDTxxxxxxxxxxxxx</td>
<td>Preloaded on the drive</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>SSDxxxxxxxxxxxxx</td>
<td>Installed separately</td>
<td>Separate license required</td>
<td>See section of “Reload / Installation of Intel Memory Drive Technology Software”</td>
</tr>
</tbody>
</table>

If you are using the SSDxxxxxxxxxxxx SKU, or if the preloaded software was accidently deleted or corrupted, please refer to the section of “Reload / Installation of Intel Memory Drive Technology Software”.

Install Intel Memory Drive Technology by connecting the Intel® Optane SSD to the appropriate PCIe slot in your system (please refer to your system’s manual for information on connecting NVMe SSDs).

For optimal performance, Intel strongly recommends installing at-least one Intel® Optane SSD per processor.
1.3 Configure BIOS to Support Intel® Virtualization Technology

System’s BIOS menus of the server onto which you install Intel® Memory Drive Technology might be different from the images below. Please verify the configuration of booting options in your system’s BIOS manual.

1. To enable VT, navigate from the Setup menu --> Advanced --> Processor Configuration, and set Intel® Virtualization Technology to Enabled.

2. To enable VT-D, navigate from the Setup menu --> Advanced --> Integrated IO configuration, and set Intel® Virtualization Technology for Direct I/O to Enabled.

3. Press <F10> to save changes in BIOS configuration

4. Press ‘Y’ to save and exit. Wait for the system to reboot.
2 Booting Intel® Memory Drive Technology

This section describes the options and steps required to deploy Intel® Memory Drive Technology.

The instructions below assume the Intel® Memory Drive Technology software is already installed on the NVMe device. If this is not the case, refer to the section "Reload / Installation of Intel Memory Drive Technology Software".

2.1 Boot order and software stack

Intel® Memory Drive Technology executes directly on the hardware and below the operating system, as described in the following diagram.

After Intel® Memory Drive Technology loads, the operating system is loaded.

2.2 Boot Options

Intel® Memory Drive Technology software image can be configured to load in the following ways:

1. **Booted from a local Intel® NVMe Optane drive**
 Intel® Memory Drive Technology installed locally on a bootable Intel® Optane SSD in the system. Booting from Intel® Optane SSD may require setting the system to boot using UEFI.

2. **Booted from the network using PXE**
 Intel® Memory Drive Technology software in this case will be stateless, and will load and run directly from the PXE image. Only Legacy boot (not UEFI) is supported for PXE boot.

3. **Booted from a local bootable flash media**
 Intel® Memory Drive Technology software installed locally to a bootable flash media (such as USB flash drive), where the system BIOS is configured to boot from that device.
2.3 Booting from a Local Intel® NVMe Optane Drive

Configure the system’s BIOS to boot from one of the Intel® Optane SSDs which have Intel® Memory Drive Technology installed, and once you have saved the new configuration, reboot your system.

System’s BIOS menus of the server onto which you install Intel® Memory Drive Technology might be different from the images below. Please verify the configuration of booting options in your system’s BIOS manual.

1. Reboot server.

2. To access the BIOS setup utility, press the <F2> key while the system running POST (options to continue and logo screen appears as in a figure below)

![Access to BIOS](image)

3. Navigate from the Setup menu -- > Boot Maintenance Manager -- > Advanced Boot Options:

 If the system is capable of booting directly from the NVMe (using UEFI), set the Boot mode to UEFI.

 If the option of booting from the NVMe is not available, set the Boot Mode to the Legacy.

4. Press <F10> to save changes in the BIOS configuration.

5. Press ‘Y’ to save and exit. Wait for the system to reboot.

 *If boot mode changes were made, you’ll be required to save BIOS configuration and Reboot.

6. Re-enter the BIOS setup utility, press <F2> while system performs POST.
7. Navigate from the **Setup menu** -- > **Boot Maintenance Manager** -- > **Change Boot Order**:

If the system is capable of booting directly from the NVMe device (using UEFI), assign the highest boot sequence priority to the **UEFI Misc Device** by moving it to the first position in the list.

If the option of booting from the NVMe device is not available, assign the highest boot sequence priority to the **USB Flash Drive** by moving it to the first position in the list.

8. Select menu option **Save changes and Exit this sub-menu** and press **Enter**.

2.4 Booting from the Network Using PXE

2.4.1 Obtain Latest Intel® Memory Drive Technology Installer

1. Boot to your Linux® OS system.

2. Download the Intel® Memory Drive Technology software installer from https://www.memorydrv.com/downloads/latest to a directory on the Linux system. The file name has the following format: `imdt_installer-x.x.x.x.sh` (e.g. `imdt_installer-8.6.2535.19.sh`).

 a. If the server is not connected to the internet:

 Open following link from a system connected to internet: https://www.memorydrv.com/downloads/latest and download `imdt_installer-x.x.x.x.sh` file.

 Copy the `imdt_installer-x.x.x.x.sh` file to a directory on the target Linux server.

 b. If the server is connected to the internet, the installer can be downloaded directly to a directory on the target Linux server using the **`wget` command line utility**:

      ```
      ```

3. Change the file to have executable permissions:

   ```
   # chmod +x imdt_installer-* .sh
   ```
2.4.2 Image Preparation

On a system booted with any Linux 64bit OS, use the previously downloaded installer to generate the Intel® Memory Drive Technology boot image.

```
# ./imdt_installer-x.x.x.sh bo -p imdt_pxe.img
```

An image file named "imdt_pxe.img" will be created.

To customize the image for size, boot device, log device, and other properties – please contact support.

2.4.3 PXE Configuration Instructions

If your PXE environment is set up, skip the instructions in this section.

2. Copy the file memdisk from the directory \bios\memdisk in the zip file you downloaded to the default tftpboot directory (usually /tftpboot).
3. Copy the file pxelinux.0 from the directory \bios\core in the zip file you downloaded to the same directory.
4. Copy the PXE boot image created in the previous section. Image Preparation* to the same directory
5. Configure DHCP to provision the pxelinux.0 file to the target server(s). Instructions vary by DHCP server.
6. In the directory /tftpboot/pxelinux.cfg on the tftp server, create a text file named default (or name it as the MAC address of the machine that will boot IMDT), and edit it to have the following content:

```plaintext
default imdt
label imdt
kernel memdisk
append initrd=imdt_pxe.img
```

2.4.4 Configure a Server to Boot with Intel® Memory Drive Technology

1. Copy the Intel® Memory Drive Technology image you have created to the necessary location on your tftp server, to be loaded with the PXE request from the server.
2. Set PXE as the first boot device in the boot order of the system.
 This can be achieved using the BIOS setup utility, or with IPMI or other similar mechanism used for remote management of your servers.
3. Restart the server.

The server will load with Intel® Memory Drive Technology, followed by a boot of the Linux operating system (the default for IMDT is to load the operating system from the first local hard drive).
2.5 Booting from a local bootable flash media

If the option of rebooting from the NVMe device is not available, install the Intel® Memory Drive Technology software on a local bootable flash media (such as USB flash drive):

1. Refer to section "Reload / Installation of Intel Memory Drive Technology Software" to obtain the latest Intel® Memory Drive Technology software (and licenses if necessary, depending on the model you are using).

2. Install a bootable flash media in the system.

3. Run the installer with the following options and follow the on-screen instructions to accept the terms when prompted:

```bash
# ./imdt_installer-x.x.x.x.sh in
```

Please take a moment to read the below
===
Welcome to Intel Memory Drive Technology version 8.6.2535.19 !
--
* By installing and/or using this software you acknowledge that you have read and agreed to the agreement published at https://www.memorydrv.com/EULA.

* Parts of this program, as provided in binary form, include open source code under one or more open source licenses. For further details and notices please see https://www.memorydrv.com/opensource.
===
Type "accept" to accept the terms and conditions above: accept
Terms and conditions accepted.

4. Select the device(s) on which to install Intel Memory Drive Technology:

```
Intel Memory Drive Technology version 8.6.2535.19 found the following bootable media:
##  Block Device   Vendor and Model Number  Serial Number     Size (GB/GiB)
01  /dev/sdb        USB DISK 2.0            07A70E137887CD50  1.003 / 0.979
```

Please select devices to install Intel Memory Drive Technology:
- device list (1,3,4 or 1-3 or combination of both e.g. 1,2-4,5)
- all devices (a)

Devices (q or <ENTER> to quit): a
/dev/sdb (USB DISK 2.0 07A70E137887CD50): installing..
/dev/sdb (USB DISK 2.0 07A70E137887CD50): done.
Installing Intel Memory Drive Technology tools...
Intel Memory Drive Technology tools requires SUID permission to run as non-root user.
Allow Intel Memory Drive Technology tools to be run by all users (recommended) [N/y] ?y
Intel Memory Drive Technology tools installation is complete.

5. Configure the system BIOS to boot from the selected flash media device (e.g. USB drive in this example)

6. Reboot the system
3 Intel® Memory Drive Technology Boot, Settings, and Diagnostics Menu

This chapter describes the boot process of Intel® Memory Drive Technology; it includes screenshots, as well as the interactive user settings and diagnostic options available during the boot process.

It is important to note that for data centers in which KVM console access is not available, Intel® Memory Drive Technology can be configured so that those outputs and controls are available through the Serial over Lan (SOL).

3.1 Boot Process

With BIOS set to boot Intel® Memory Drive Technology, upon reboot, your system will first show the BIOS POST screens, and will then show the following screens as it goes through the different stages of loading and booting Intel® Memory Drive Technology:

(1) Intel® Memory Drive Technology loading

(2) Intel® Memory Drive Technology boot starting

(3) Intel® Memory Drive Technology welcome screen

Use Arrows, PgUp and PgDn to scroll.

To prevent welcome screen from showing in subsequent boots, press <F7>.

To continue, press <F8>.

Note: It is also possible to accept the EULA via the operating system, by using the Intel® Memory Drive Tool: “# imdtctl –tcs”.

Welcome to Memory Drive Technology version R2.1.0902.02

For installation instructions, visit https://www.memory.com/

What’s new with this release?

Welcome Guest Operating System

Windows 7 Professional x64 (64-bit), 2 (8612428*10), 4 (8612428*10), 8 (8612428*10)

Welcome Guest Boot Loader

Post Operating Boot Loader

Use Arrows, PgUp and PgDn to scroll.
At this stage the system displays:

1. Configuration information.
2. Warning messages, if any (displayed in Yellow font), provide notifications about deviations from best practices and recommendations.
3. A prompt (in Yellow font) to press <F5> to optionally enter the Intel® Memory Drive Technology settings and diagnostics menu will be displayed. If no action is taken, after timeout, the Linux OS will be booted from the device defined in the configuration. For more information about Intel® Memory Drive Technology settings and diagnostics see section “System Settings and Diagnostics”.

OS loads from the defined device

3.2 Verifying Successful Installation

1. After the operating system is loaded, you can verify successful installation by checking that all system memory is available using the ‘free’ command:

   ```bash
   # free -g
   total   used    free   shared  buff/cache available
   Mem:    752     22     730      0        0       730
   Swap:   0       0       0       0
   ```

2. In addition, if Intel® Memory Drive Technology Tools were already installed (see section “Installing Intel Memory Drive Technology Tools”), you can run the following command:

   ```bash
   # imdversion -vvvv
   Intel Memory Drive Technology: 8.6.2535.19 (Jul 23 2018 17:03:18)
   System configuration:
   Boards: 3
   1 x Proc + I/O + Memory
   2 x NVM devices (Intel MDTPED1K375GA)
   Processors: 2, Cores: 36, Threads: 72
   Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz Stepping 04
   Memory (MB): 713728 (of 910715), Cache: 184820, Private: 12167
   1 x 182272MB [195301/ 1056/11973]
   1 x 265728MB [357707/91882/ 97] 0301:00.0#1
   1 x 265728MB [357707/91882/ 97] 0303:00.0#1
   Boot device: [HDD1] ATA INTEL SSDSCKJ3B24
   Supported until: Unlimited
   ```
In the example above, Intel® Memory Drive Technology expanded the system memory from 128 GiB to 697 GiB, where 119.5 GiB are contributed by DRAM and 577.5 GiB contributed by Intel® Optane™ SSD. Part of the devices' capacity (60.5 GiB in that case) was allocated to be used by Intel® Memory Drive Technology software, its data structure, cache and endurance protection.

3. NVMe* SMART attributes are accessible in-band using the command below.

```bash
# imdtctl --pinfo=0
Device info:
  Board number: 0
  Device number: 0
  Device type: 0 (NVMe)
  Device address: 0301:00.0#1
  PCI VID:DID: 8086:2701
  PCI SVID:SDID: 8086:3904
  NUMA node: 1
Controller ID:
  Serial Number (SN): PHKS74400082375AGN
  Model Number (MN): INTEL MDTPD3K375GA
  Firmware Number (FR): E2010435
  Number of Namespaces (NN): 1
Namespace ID:
  Namespace Size (NSZE): 732585168
  Namespace Capacity (NCAP): 732585168
  Namespace Utilization (NUSE): 732585168
SMART / Health Information Log:
  Critical Warning: 0x0
  Composite Temperature: 45 C
  Available Spare: 100%
  Available Spare Threshold: 0%
  Percentage Used: 0%
  Data Units Read: 187746525
  Data Units Written: 113015731
  Host Read Commands: 234690435
  Host Write Commands: 1412683200
  Controller Busy Time: 1105
  Power Cycles: 99
  Power On Hours: 311
  Unsafe Shutdowns: 95
  Media and Data Integrity Errors: 0
  Number of Error Information Log Entries: 0
License info:
  Device provisioned license
```

3.3 System Settings and Diagnostics

Intel® Memory Drive Technology provides a menu through which the user can modify a number of settings that can only be set during boot time, and persist them for subsequent boots. Additionally, there are diagnostics tools that can extract information for support purposes before the operating system loads, and those too are available in the "Diagnostics" menu.

To go into the System Settings and Diagnostics menu, you should press `<F5>` when prompted during the loading of Intel® Memory Drive Technology (see the end of “Boot Process” section).

In the Settings and Diagnostics menu, there are 5 tabs. Use the Page-Up and Page-Down keys to switch tabs, and follow the context-action menu at the bottom of the screen for actions you can take at each point, and for context-related help.
“System” tab

In the “System” tab, the following can be set:

1. The total system memory available to the operating system (use the default or set it manually).
2. The amount of DRAM used (typically only changed for benchmarking)
3. To avoid system hang, the system can be set to auto-restart in the event of critical failure of a system component.
4. Toggle the diagnostics device between “Persistent” (Default) or “Serial”
5. Define the console redirection and terminal type
6. Toggle boot mode between ”Auto-Detect” (Default), ”UEFI” or “Legacy”
7. Toggle the display of the welcome screen between “always” and “only after updates”
8. Select the NUMA layout that Intel® Memory Drive Technology will present to the operating system

When setting the System Memory, selecting the “Default” instructs Intel® Memory Drive Technology to set the number to the optimal value for performance.

You may switch this setting to “Manual” and set any other value from the range allowed by the system.

Setting a higher number than the default value allows for larger system memory capacity, but at the expense of performance.
When setting the Board Memory used, selecting the “Default” instructs Intel® Memory Drive Technology to use the maximum amount of physical memory (DRAM) available.

You may switch this setting to “Manual” and set for a lower value, which is typically used for benchmarking to compare to a NATIVE (DRAM-only) system.

Intel® Memory Drive Technology can present the added memory gained from the Intel® Optane™ SSDs as:

1. “Unify Remote Memory domains” - present a processor-less (memory-only) NUMA domain, which is the default
2. “Expand local memory domains” - to expand each processor’s memory domain with a portion of the memory made available by Intel® Optane™ SSD and Intel® Memory Drive Technology
The “Expand local memory domains” option is recommended for applications like the SAP HANA* in-memory database.

Consult application-specific documentation for the appropriate choice for your application.

"Hardware" tab

In the “Hardware” tab, the following can be set:
1. Intel’s processor(s): Hyperthreading
2. Turbo-boost
3. Hardware virtualization support
4. Enable or disable the use of Intel® Optane™ SSDs with valid Intel® Memory Drive Technology license as storage devices
To enable the use of untested PCI-Express cards as I/O and compute devices, use the "Devices" tab.

"Devices" tab

In the "Devices" tab, you can enable/disable some of the PCIe devices to be visible or not by the OS.

"Boot" tab

In the "Boot" tab, select the device to load the operating system from.

The boot device can be an optical device or a disk connected directly to the system, a SAN-connected device, a NIC if booting the OS over PXE, etc.
“Diagnostic” tab

In the “Diagnostic” tab, select which diagnostics tests to run (or run “all tests”).

The test results will be presented on-screen (see next screenshot). Go back to the “Diagnostics” tab and select to save the test results to a USB Flash Drive or to upload them to an FTP server using TFTP (this option requires a DHCP server on your network to assign an IP address to the diagnostics utility).

Review the diagnostic test results on-screen and navigate using the keyboard arrows and page-up/page-down keys.

To save the diagnostics results, press <ESC> to go back to the “Diagnostics” tab and choose the option you desire under “Export Results”.

![Diagnostic tab screenshot](image)
4 Installing Intel Memory Drive Technology Tools

Intel® Memory Drive Technology provides a set of tools which can provide you with valuable system information, command line configuration, as well as collecting performance-related statistics.

For installing the tools:

1. Log in to the system as root.
2. Download the Intel® Memory Drive Technology software installer from https://www.memorydrv.com/downloads/latest to a directory on the target Linux server (file name format: imdt_installer-x.x.x.x.sh). It can be downloaded using the wget command line utility as follows:

3. Navigate to the directory to which you downloaded the files in step 2.
4. Make the installer file executable:

 # chmod +x imdt_installer-x.x.x.x.sh

5. Run the installer as follows:

 # ./imdt_installer-x.x.x.x.sh in -t

6. Read and accept the terms, by typing 'accept':

 Please take a moment to read the below
 ==
 Welcome to Intel Memory Drive Technology version 8.6.2535.19 !
 ==
 * By installing and/or using this software you acknowledge that you have read and agreed to the agreement published at https://www.memorydrv.com/EULA.
 * Parts of this program, as provided in binary form, include open source code under one or more open source licenses. For further details and notices please see https://www.memorydrv.com/opensource.
 ==
 Type "accept" to accept the terms and conditions above: accept
 Terms and conditions accepted.
 Installing Intel Memory Drive Technology tools...

7. Decide if you want to grant all users permissions to run the tools:

 Intel Memory Drive Technology tools requires SUID permission to run as non-root user.
 Allow Intel Memory Drive Technology tools to be run by all users (recommended) [N/y] ?y

8. Select the location to install the tools to (default is under /usr/local), where files would be installed under the "etc" and "bin" sub-directories:

 Please enter absolute install path for Memory Drive Technology imdt tools [/usr/local]:
 Intel Memory Drive Technology tools installation is complete.
5 Updating Intel® Memory Drive Technology

Intel releases new versions of Intel® Memory Drive Technology and Intel® Memory Drive Technology tools from time to time, to include bug fixes, new features, and performance enhancements. The latest generally-available software revision can always be found at https://www.memorydrv.com/downloads/latest.

Once Intel® Memory Drive Technology is already installed and running on the system, updating to the latest version of Intel® Memory Drive Technology is a simple process. The process below updates both Intel® Memory Drive Technology and Intel® Memory Drive Technology tools:

1. Before starting the update, please make sure that Intel® Memory Drive Technology is running and that you have supported OS installed as explained in “Operating System Requirements” section.
2. Log in to the system as root.
3. Download the Intel® Memory Drive Technology software installer from https://www.memorydrv.com/downloads/latest to a directory on the target Linux server (file name format: imdt_installer-x.x.x.x.sh). It can be downloaded using the wget command line utility as follows:

   ```
   ```

4. Navigate to the directory that contains the files you downloaded in step 3.
5. Make the installer file executable:

   ```
   # chmod +x imdt_installer-x.x.x.x.sh
   ```
6. Launch the license installation utility with the update flag, and follow on-screen instructions,

   ```
   # ./imdt_installer-x.x.x.x.sh up
   ```

 Please take a moment to read the below
 ==
 Welcome to Intel Memory Drive Technology version 8.6.2535.19 !
 * By installing and/or using this software you acknowledge that you have read and agreed to the agreement published at https://www.memorydrv.com/EULA.
 * Parts of this program, as provided in binary form, include open source code under one or more open source licenses. For further details and notices please see https://www.memorydrv.com/opensource.
 Type "accept" to accept the terms and conditions above: accept
 Terms and conditions accepted.
 Intel Memory Drive Technology update details:
 * Current version: "8.6.2535.14"
 * Target version: "8.6.2535.19"

 Notes:
 * Make sure the system's power source is reliable.
 * The update will need about 32MB available in the current directory.
 * Save all of your work, and close all open programs to prevent data loss.
 * Run the update program from the system console. Do not run the update program remotely.
 * Do not turn off or suspend the computer until the update has been completed. IF YOU TURN OFF OR SUSPEND THE COMPUTER WHILE THE UPDATE IS STILL IN PROGRESS, the system may become unusable.
* When the update is complete, you may reboot the system.

Press "u" to update, any other key to exit:
The update of Intel® Memory Drive Technology is now complete. The new version of Intel® Memory Drive Technology will be loaded and used once you reboot the system.

7. Press 'u' to start the update process

 Writing part 1 out of 7: 100%
 Writing part 2 out of 7: 100%
 Writing part 3 out of 7: 100%
 Writing part 4 out of 7: 100%
 Writing part 5 out of 7: 100%
 Writing part 6 out of 7: 100%
 Writing part 7 out of 7: 100%

 Intel Memory Drive Technology update is complete.
 Installing Intel Memory Drive Technology tools...
 Intel Memory Drive Technology tools requires SUID permission to run as non-root user.
 Allow Intel Memory Drive Technology tools to be run by all users (recommended) [N/y]? y
 Memory Drive Technology tools update is complete.

8. Please reboot the system. The update of Intel® Memory Drive Technology is now complete. The new version of Intel® Memory Drive Technology will be loaded and used once you reboot the system.
6 Troubleshooting

6.1 If Installation Fails

Please ensure that you are using a supported OS distribution and certified Intel NVMe SSDs. See "Specifications" section.

6.1.1 Common Installation Error Codes

During the boot process, Intel® Memory Drive Technology may issue warnings and errors to the console, in many cases using error codes. Table 1 below lists the most common error codes, their explanations, and suggested path to resolution.

Table 1: Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
<th>Proposed process for handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Boot devices are not detected</td>
<td>Contact Intel Support</td>
</tr>
<tr>
<td>500</td>
<td>Intel® Memory Drive Technology license not found</td>
<td>Refer to "Reload / Installation of Intel Memory Drive Technology Software" section. If licenses expired - obtain new licenses</td>
</tr>
<tr>
<td>70x</td>
<td>More than one USB Flash Drive has Intel® Memory Drive Technology Installed. This error only happens when booting in Legacy mode.</td>
<td>Remove all removable media that installed with Intel® Memory Drive Technology software, and reinstall it again on one device only.</td>
</tr>
<tr>
<td>1257</td>
<td>Selected OS boot device is not bootable</td>
<td>Press F5 at the boot prompt of Intel® Memory Drive Technology and select it in the boot menu</td>
</tr>
<tr>
<td>801</td>
<td>Boot mode set to UEFI, while operating system installed in Legacy</td>
<td>Change boot mode to auto</td>
</tr>
<tr>
<td>802</td>
<td>Boot mode set to Legacy, while operating system installed in UEFI</td>
<td>Change boot mode to auto</td>
</tr>
</tbody>
</table>
6.2 Data Collection for Issue Escalation

Based on the case you are facing, collect the relevant information and report to your support contact.

<table>
<thead>
<tr>
<th>Case 1 – Intel® Memory Drive Technology does not boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Take a console screenshot depicting the point when Intel® Memory Drive Technology boot stopped</td>
</tr>
<tr>
<td>• Boot to native, and run the installer as follows:</td>
</tr>
<tr>
<td>./imdt_installer-x.x.x.x.sh si -s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 2 – Intel® Memory Drive Technology boot but OS does not boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>In addition to the above, boot Intel® Memory Drive Technology, use F5 to enter Intel® Memory Drive Technology Settings menu and run diagnostics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 3 – Intel® Memory Drive Technology boots and OS boots, problem happens after boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>In addition to the above, after Intel® Memory Drive Technology and OS booted, execute the following and follow the instructions:</td>
</tr>
<tr>
<td>./imdt_installer-x.x.x.x.sh si -s</td>
</tr>
</tbody>
</table>
7 Reload / Installation of Intel Memory Drive Technology Software

Back up all data before beginning Intel® Memory Drive Technology Software setup. Intel® Memory Drive Technology configures PCIe-based Solid State Drive as a part of main (volatile) memory pool.

Following are the steps to set up Intel® Memory Drive Technology software for Linux® OS:

This manual refers to Intel® Xeon® E5 v4 based system running CentOS 7. If your platform is based on other architecture, BIOS Setup Menu options might be different, please refer to the specific system manual to configure BIOS options properly.

Before starting the installation routine please verify the Linux OS meets requirements.

Install certified PCIe-based Intel® SSD/SSDs into the target server. For optimal performance install at-least one SSD per processor.

7.1 Obtaining the Latest Version of the Intel® Memory Drive Technology Software

1. Log in to the system as the root user.

2. Download the Intel® Memory Drive Technology software installer from https://www.memorydrv.com/downloads/latest to a directory on the target Linux server. The file name has following format: imdt_installer-x.x.x.x.sh (eg. imdt_installer-8.6.2535.19.sh).

 a. If the server is not connected to the internet:

 Open following link from a system connected to internet:
 Copy the imdt_installer-x.x.x.x.sh file to a directory on the target Linux server.

 b. If the server is connected to the internet, the installer can be downloaded directly to a directory on the target Linux server using the wget command line utility:

3. Navigate to the directory that contains the file downloaded in step 4.

4. Make the installer file executable:

 # chmod +x imdt_installer-x.x.x.x.sh

If you are using the embedded model (i.e. NVMe model name starts with "MDT"), you can skip to the software installation in "Installing Intel® Memory Drive Technology Software" section, otherwise continue to the following section to obtain the licenses.

7.2 Obtaining a license for Intel® Memory Drive Technology Software

This step is required for Intel® Optane SSDs with SKU SSDxxxxxxx only.

Make sure you have been provided by Intel with software serial number per every PCIe-SSD. The Software serial number has following format: XXXX-XXXXXXX (e.g. JUST-EXAMPLE1).

If you have not yet obtained software serial numbers, please obtain them from your Intel reseller.
1. Execute the license installation utility, and follow the instructions:

```
# ./imdt_installer-x.x.x.sh in -n
```

Intel Memory Drive Technology version x.x.x.x found the following NVMe SSDs:

<table>
<thead>
<tr>
<th>#</th>
<th>Block Device</th>
<th>Vendor and Model Number</th>
<th>Serial Number</th>
<th>Size (GB/GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>/dev/nvme0n1</td>
<td>Intel SSDPED1K375GA</td>
<td>FUK5795000S375AGN</td>
<td>375 / 349</td>
</tr>
<tr>
<td>02</td>
<td>/dev/nvme1n1</td>
<td>Intel SSDPED1K375GA</td>
<td>FUK5795000U375AGN</td>
<td>375 / 349</td>
</tr>
</tbody>
</table>

Please select devices for license generation:
- device list (1,3,4 or 1-3 or combination of both e.g. 1,2-4,5)
- all devices (a or <ENTER>)

Devices (q to quit):

Please enter software serial numbers provided by Intel one at a time (press <ENTER> to finish):

The software serial number has following format: XXXX-XXXXXXX (e.g. JUST-EXAMPLE1).

Please enter your email address (press <ENTER> to finish):

Please enter your email address. License file will be sent to this email address.

Repeat your email address (press <ENTER> to finish):

Repeat your email address for verification.

Selected NVMe, serial numbers, and email were saved to imdt.list.

Would you like to submit this information for activation (requires Internet access)? [Y/n]

a. If the server is connected to the internet, select YES [Y] to enable the Intel® Memory Drive Technology software activation directly from the installer when, and it will automatically proceed.

b. In case the server is not connected to the internet, or you choose to activate license through the website, you should select NO [N] and transfer imdt.list file to the system connected to the internet, and proceed to step 8.

2. For manual web-based activation, point your internet browser to https://www.memorydrv.com/activate, and select the “New license” tab. Submit the imdt.list, together with your email address.

Figure 3: License Activation through Web Site
3. Check the mail box for an email from support@memorydrv.com; if the activation process was successful, license file/files will be enclosed and will be used in the next steps. The license file has following format: IMDT_Licenses-IMDTxxxxxxx.txt (the email may provide information for further assistance).

4. Copy received License files to a directory on the target Linux server (same directory containing imdt_installer-x.x.x.x.sh file)

The generated licenses are unique and locked to the specific SSDs you activated them for.

7.3 Installing Intel® Memory Drive Technology Software

1. **Install** the Intel® Memory Drive Technology software (provided by support@memorydrv.com) to the selected Intel SSDs. The process may take few minutes as the SSDs will be formatted during this process.

 If you are using the embedded model (i.e. NVMe SKU “MDTxxxxxxxx”), run the following command:

   ```
   # ./imdt_installer-x.x.x.x.sh in -n
   ```

 Otherwise, run the following command with the license file you have obtained in the previous section:

   ```
   # ./imdt_installer-x.x.x.x.sh in -n IMDT_Licenses-IMDTxxxxxxx.txt
   ```

2. Review and accept the terms and conditions by typing “accept”:

 Please take a moment to read the below
 ==
 Welcome to Intel Memory Drive Technology version 8.6.2535.19 !
 ==
 * By installing and/or using this software you acknowledge that you have
 read and agreed to the agreement published at
 https://www.memorydrv.com/EULA.

 * Changelog is available at

 * Parts of this program, as provided in binary form, include open source
 code under one or more open source licenses. For further details and
 notices please see https://www.memorydrv.com/opensource.

 Type “accept” to accept the terms and conditions above: accept

 Terms and conditions accepted.

3. Verify the list of devices to install:

 Intel Memory Drive Technology NVMe SSD licensing status:

<table>
<thead>
<tr>
<th>#</th>
<th>Block Device</th>
<th>Vendor and Model Number</th>
<th>Serial Number</th>
<th>Size (GB/GiB)</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>/dev/nvme0n1</td>
<td>Intel SSDPED1K187GA</td>
<td>FUKS643600KL187AGN</td>
<td>187 / 174</td>
<td>Available</td>
</tr>
<tr>
<td>02</td>
<td>/dev/nvme3n1</td>
<td>Intel SSDPED1K187GA</td>
<td>FUKS6436007X187AGN</td>
<td>187 / 174</td>
<td>Available</td>
</tr>
</tbody>
</table>

 Press ‘y’ to install available licenses and Memory Drive Technology:

4. Press [y] to install the available licenses and the Intel® Memory Drive Technology software. The installer will report once the installation process successfully completed.

 Starting license and software installation...
 ==
 -=-
 == Installation status=-
 -=-

 /dev/nvme0n1
 [=-] (100%) Done
5. **Intel® Memory Drive Technology Tools** were installed at /usr/local/[bin,etc] during installation of **Intel® Memory Drive Technology**.

 Installing Intel Memory Drive Technology tools...

6. Decide if you want to grant all users permissions to run the tools:

 Intel Memory Drive Technology tools requires SUID permission to run as non-root user. Allow Intel Memory Drive Technology tools to be run by all users (recommended) [N/y] y

7. Select the location to install the tools to (default is under /usr/local), where files would be installed under the "etc" and "bin" sub-directories:

 Please enter absolute install path for Memory Drive Technology imdt tools [/usr/local]:

 Intel Memory Drive Technology tools installation is complete.

8. If you need to manually install the tools for any reason – see “Installing Intel Memory Drive Technology Tools” section.
8 Workload and Platform Selection

8.1 Workloads that Benefit Most from Intel® Memory Drive Technology

Intel® Memory Drive Technology takes advantage of one or more of the following workload attributes:

1. Predictable or probability-based memory access patterns, such as accesses to structured arrays - handled by *prefetch* algorithms. For example, row- or column-store in-memory databases used in analytics workloads.

2. Highly concurrent memory access such as parallel throughput workloads - handled through asynchronous memory load. For example, container-based virtual-shared web-hosting server, or a multi-threaded key-value cache such as *memcached*.

3. CPU intensive workloads - handled by optimizing the memory to CPU affinity throughout the run. For example, multi-threaded linear algebra workloads with large matrices, or parallel statistics calculations on large data.

8.1.1 Examples of applications best-fitting Intel® Memory Drive Technology

1. Row- or column-store in-memory databases used in analytics workloads, such as MySQL®.

2. Different application classes which fit the high concurrency
 a. Multi-tenant workloads, such as Container-based virtual-shared web-hosting server, or Virtualization-based partitioning for example with KVM.
 b. Multi-threaded key-value cache such as *memcached*.
 c. Distributed/shared data grids and frameworks such as Apache Spark, Apache Ignite, Aerospike, or Redis.

3. Multi-threaded or multi-process linear algebra workloads with large matrices, or high performance computing workloads using OpenMP, or parallel statistics calculations on large data.

8.2 Workloads that do not Benefit from Intel® Memory Drive Technology

1. Low-concurrency workloads (e.g. serial workloads: single process, single threaded) - with low concurrency workloads, even if Intel® Memory Drive Technology can prefetch or try asynchronous memory management, there is only one execution thread, and wait-time for memory will reduce the compute efficiency of the workloads.

2. Workloads bound by memory bandwidth - stressing the memory bandwidth: Intel® Optane™ memory’s bandwidth of approximately 2GB/s would be reached. Even if four Intel® Optane™ SSDs are installed, the total aggregate bandwidth would be approx. 8GB/s. This would be much lower than two Intel® Xeon® processors memory bandwidth of >100GB/s on their memory controllers’ link to DRAM.

3. Workloads with a high frequency of system calls may suffer from the virtualization overhead.
8.2.1 Examples of Workloads which do not suit Intel® Memory Drive Technology

1. A serial program using an interpreted language, traversing a graph data structure with less than 1K of data for each vertex or edge.
2. A program resembling the “stream” memory bandwidth benchmark, constantly accessing memory and doing little compute on the fetched memory before moving over to consume new memory.

8.3 Recommended Hardware Configuration

1. Strongly recommended: Attach equal number of drives to each socket (consult system manual for PCIe to socket mapping). Less than one drive per socket would result in inferior performance.
2. Multiple SSDs can be installed with Intel® Memory Drive Technology software, and can be aggregated to improve performance (optimize for the highest aggregated 4K IOPS across all devices used by Intel® Memory Drive Technology).
3. One smaller capacity drive per each socket will yield better performance than a single larger capacity drive attached to one of multiple sockets. For example, in a dual socket system, two SSD drives with Intel® Memory Drive Technology with capacity of 320GiB attached to each socket, would perform better than a single 640GiB SSD drive attached to one of the sockets.

8.4 DRAM to SSD Ratio for Intel® Memory Drive Technology

Intel® Memory Drive Technology uses part of the overall capacity (DRAM + Intel® Memory Drive Technology) for caching, prefetching, and endurance protection. Thus, adding capacity in either DRAM or Intel® Memory Drive Technology may result in lower increase or no increase at all in the system memory available for the OS. This can be overridden by changing Intel® Memory Drive Technology system memory settings at boot time (F5 – System Settings) from Automatic to Manual. For example, when set to Automatic:

1. With two 320GiB drives on a system with 128GiB of DRAM, a DRAM capacity increase to 192GiB, will result in improved performance, however the system memory available for the OS will remain the same.
2. With 128GiB of DRAM on a system with three 320GiB drives, an increase in number of drives to four, will result in improved performance, however the system memory available for the OS will remain the same.

Tables 2 and 3 indicate the total SDM capacity for specific DRAM and Intel® Optane™ SSD configurations, optimized for performance. Using a higher number of devices for the same total capacity increases performance. Tables 4 and 5 indicate the total maximum SDM capacity that can be achieved; however it may result in sub-optimal performance.

Actual system memory capacity may vary by ±3% compared to the tables below. Some valid, but less frequent, configurations are not listed above. For example, it is allowed to have a quad-socket system with less than 2TB system memory, or an octa-socket system with less than 8TB system memory.
Table 2: Performance-optimized Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® E5 v3/v4 processors

<table>
<thead>
<tr>
<th>Optimized Devices</th>
<th>DRAM Size (GIB)</th>
<th>Sockets</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>8</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Channels</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total size (GIB)</td>
<td></td>
<td>DIMM size (GIB)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total size (GIB)</td>
<td>64</td>
<td>128</td>
<td>192</td>
<td>256</td>
<td>384</td>
<td>512</td>
<td>768</td>
<td>1024</td>
<td>1536</td>
<td>2048</td>
<td>3072</td>
</tr>
</tbody>
</table>

2	85	170	186	298	362	426	554	682	938
3	85	255	279	383	447	511	639	767	1023
4	85	340	373	437	532	596	724	852	1108
5	85	425	466	466	466	681	809	937	1193
6	85	510	512	559	559	766	894	1022	1278
7	85	595	512	652	652	652	979	1107	1363
8	85	680	512	745	745	745	1064	1192	1448

2	320	640	512	698	698	698	1024	1152	1408	1664	2176
3	320	960	512	1024	1048	1048	1472	1728	1984	2496	
4	320	1280	512	1024	1397	1397	1397	2048	2304	2816	
5	320	1600	512	1024	1536	1746	1746	1746	2624	3136	
6	320	1920	512	1024	1536	2048	2095	2095	2944	3456	
7	320	2240	512	1024	1536	2048	2445	2445	2445	3776	
8	320	2560	512	1024	1536	2048	2794	2794	2794	4096	

2	640	1280	512	1024	1397	1397	1397	2048	2304	2816
3	640	1920	512	1024	1536	2048	2095	2095	2944	3456
4	640	2560	512	1024	1536	2048	3729	3729	3729	4096
5	640	3200	512	1024	1536	2048	3072	3492	3492	3492
6	640	3840	512	1024	1536	2048	3072	4096	4191	4191
7	640	4480	512	1024	1536	2048	3072	4096	4889	4889
8	640	5120	512	1024	1536	2048	3072	4096	5588	5588

2	1280	2560	512	1024	1536	2048	2794	2794	2794	4096
3	1280	3840	512	1024	1536	2048	3072	4096	4191	4191
4	1280	5120	512	1024	1536	2048	3072	4096	5588	5588
5	1280	6400	512	1024	1536	2048	3072	4096	6144	6985
6	1280	7680	512	1024	1536	2048	3072	4096	6144	8192
7	1280	8960	512	1024	1536	2048	3072	4096	6144	8979
8	1280	10240	512	1024	1536	2048	3072	4096	6144	8192
9	1280	12800	512	1024	1536	2048	3072	4096	6144	8192
10	1280	15360	512	1024	1536	2048	3072	4096	6144	8192
11	1280	17920	512	1024	1536	2048	3072	4096	6144	8192
12	1280	20480	512	1024	1536	2048	3072	4096	6144	8192

Numbers in green indicate that the full capacity of DRAM and Intel® Optane™ memory can be used.
<table>
<thead>
<tr>
<th>Devices</th>
<th>Device Size (GIB)</th>
<th>Total size (GIB)</th>
<th>96</th>
<th>192</th>
<th>384</th>
<th>768</th>
<th>1536</th>
<th>3072</th>
<th>384</th>
<th>768</th>
<th>1536</th>
<th>3072</th>
<th>6144</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>85</td>
<td>170</td>
<td>266</td>
<td>362</td>
<td>554</td>
<td>938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>255</td>
<td>279</td>
<td>447</td>
<td>639</td>
<td>1023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>340</td>
<td>373</td>
<td>532</td>
<td>724</td>
<td>1108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>425</td>
<td>466</td>
<td>666</td>
<td>809</td>
<td>1193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>85</td>
<td>510</td>
<td>559</td>
<td>559</td>
<td>894</td>
<td>1278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>85</td>
<td>595</td>
<td>652</td>
<td>652</td>
<td>979</td>
<td>1363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>85</td>
<td>680</td>
<td>745</td>
<td>745</td>
<td>1064</td>
<td>1448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2	320	640	698	698	1024	1408	2176	
3	320	960	768	1048	1048	1728	2496	
4	320	1280	768	1397	1397	2048	2816	4352
5	320	1600	768	1536	1746	1746	3136	4672
6	320	1920	768	1536	2095	2095	3456	4992
7	320	2240	768	1536	2445	2445	3776	5312
8	320	2560	768	1536	2794	2794	4096	5632

2	640	1280	768	1397	1397	2048	2816	
3	640	1920	768	1536	2095	2095	3456	
4	640	2560	768	1536	2794	2794	4096	5632
5	640	3200	768	1536	3072	3492	3492	6272
6	640	3840	768	1536	3072	4191	4191	6912
7	640	4480	768	1536	3072	4889	4889	7552
8	640	5120	768	1536	3072	5588	5588	8192

2	1280	2560	768	1536	2794	2794	4096	
3	1280	3840	768	1536	3072	4191	4191	8192
4	1280	5120	768	1536	3072	5588	5588	8192
5	1280	6400	768	1536	3072	6144	6985	6985
6	1280	7680	768	1536	3072	6144	8382	8382
7	1280	8960	768	1536	3072	6144	9779	9779
8	1280	10240	768	1536	3072	6144	11176	11176
10	1280	12800	768	1536	3072	6144	12288	12288
12	1280	15360	768	1536	3072	6144	12288	16764
14	1280	17920	768	1536	3072	6144	12288	19558
16	1280	20480	768	1536	3072	6144	12288	22352

Numbers in green indicate that the full capacity of DRAM and Intel® Optane™ memory can be used.
Table 4: Maximum Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® E5 v3/v4 processors

<table>
<thead>
<tr>
<th>Devices</th>
<th>Device Size (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max DRAM Channels</td>
<td>2</td>
</tr>
<tr>
<td>Sockets</td>
<td>4</td>
</tr>
<tr>
<td>DPC</td>
<td>1</td>
</tr>
<tr>
<td>DIMM size (GiB)</td>
<td>8</td>
</tr>
<tr>
<td>Total size (GiB)</td>
<td>32</td>
</tr>
</tbody>
</table>

*Numbers in green indicate that the full capacity of DRAM and Intel® Optane™ memory can be used.

Set Up and Configuration Guide
August 2019
33566-012US
Table 5: Maximum Software-defined Memory (SDM) capacity for Intel® Optane™ SSDs and Intel® Xeon® Scalable Processors

Devices	Device Size (GIB)	DRAM	DIMM size (GIB)	Total size (GIB)	2	2	2	2	2	2	2	2	4	4	4	4	4	8	8	8	8	8
2	320	640	1280	2656	320	736	832	1024	1408	2176	192	384	768	1536	3072	384	768	1536	3072	6144		
3	320	960	1280	2016	320	1056	1152	1344	1728	2496	192	384	768	1536	3072	384	768	1536	3072	6144		
4	320	1280	1600	1972	420	1696	1792	1984	2368	3136	1792	1984	2368	3136	4672							
5	320	1920	2240	2016	520	2016	2112	2304	2688	3456	2112	2304	2688	3456	4992							
7	320	2240	2560	2336	720	2336	2432	2624	3008	3776	2432	2624	3008	3776	5312							
8	320	2560	6144	2656	820	2656	2752	2944	3328	4096	2752	2944	3328	4096	5632							

2	640	1280	2016	1376	22016	1376	1472	1664	2048	2816	1472	1664	2048	2816	4352
3	640	1920	2016	1696	3200	1696	1792	1984	2368	3136	1792	1984	2368	3136	4672
4	640	2560	2560	2016	6400	2560	2752	2944	3328	4096	2752	2944	3328	4096	5632
5	640	3200	3200	2016	6400	3200	3296	3392	3584	3968	3324	3584	3968	4736	6272
6	640	3840	4480	2016	6400	3840	3936	4032	4224	4608	3840	4032	4224	4608	5376
7	640	4480	4480	2016	6400	4480	4576	4672	4864	5248	4480	4576	4672	5248	5312
8	640	5120	5120	2016	6400	5120	5216	5312	5504	5888	5120	5216	5312	5504	5888

2	1280	2560	2560	2016	6400	1280	22016	1376	1472	1664	2048	2816
3	1280	3840	3840	2016	6400	1280	3840	3936	4032	4224	4608	5376
4	1280	5120	5120	2016	6400	1280	5120	5216	5312	5504	5888	5312
5	1280	6400	6400	2016	6400	1280	6400	6048	6592	6784	7168	6144
6	1280	7680	7680	2016	6400	1280	7680	6048	6872	7008	7336	6144
7	1280	8960	8960	2016	6400	1280	8960	6048	7[19]5	8192	8496	6144
8	1280	10240	10240	2016	6400	1280	10240	6048	9[19]5	10480	10848	6144
10	1280	12800	12800	2016	6400	1280	12800	6048	13[19]4	14336	14736	6144
12	1280	15360	15360	2016	6400	1280	15360	6048	15[19]7	16512	16912	6144
14	1280	17920	17920	2016	6400	1280	17920	6048	17[19]4	19344	19744	6144
16	1280	20480	20480	2016	6400	1280	20480	6048	20[19]8	23552	23952	6144

*Numbers in green indicate that the full capacity of DRAM and Intel® Optane™ memory can be used.

§
9 Performance and Benchmarking

Like with any technology, there are correct and incorrect ways to use Intel® Memory Drive Technology. This chapter describes best-practices for using Intel® Memory Drive Technology in order to achieve the best possible performance out of a system using Intel® Memory Drive Technology, for a given hardware configuration.

9.1 End User License Agreement

Please be sure to read the End User License Agreement (EULA) before executing or publishing benchmark results, to make sure you are complying with all rules and regulations. A copy of the EULA can be found here: www.memorydrv.com/EULA

9.2 Setting up the Hardware and Software Stacks

Please make sure to follow the manufacturer’s manual with regards to optimal system configuration for performance (e.g. number of DIMMs per channel, BIOS performance settings, etc.)

Please make sure to follow the guidelines listed in section of “Recommended Hardware Configuration” 8.3, so that the hardware will be properly set up. Further, please make sure you follow the rest of the guidelines in “9 Workload and Platform Selection” with regards to fitting classes of workload to use with Intel® Memory Drive Technology, OS and memory allocator settings, application settings, etc.

Once the hardware is ready, please keep in mind:

1. If using multiple machines for benchmark/comparison, there should not be any difference between the machines other than the amount of DRAM (for example, OS version and settings, BIOS version and settings, etc. must all be the same).

2. If using the same machine for comparing Intel® Memory Drive Technology to non-Intel® Memory Drive Technology, then either (1) use the software options to limit the amount of DRAM available to Intel® Memory Drive Technology (See section “System Settings and Diagnostics”, under “System Settings” for “Board Memory” settings), or, (2) if you prefer to physically reduce the amount of memory on the server, please make sure that you keep an optimized setup (if you are reducing 768GB in 24 x 32GB DIMMs to have only 128GB, make sure that you follow Intel's guidelines for your server model in terms of DIMM population (you will need to use multiple smaller DIMMs to populate same number of channels etc.)

9.3 Optimized Workload Settings

This section lists generic recommendations for software stack setup in an environment using Intel® Memory Drive Technology

9.3.1 Memory Settings, Memory Allocators

It is recommended that memory allocators be configured to use large pages (as example Linux Transparent Huge Pages (THP)), while correctly configuring them to (1) save on memory use, and (2) avoid memory fragmentation. For example, if your application was precompiled with the default libc allocator or with jemalloc, or makes use of them using the OS dynamic linker, please use the following guidelines:

1. For jemalloc, ensure THP operation is maintained by running the command:

 # ln -sf 'lg_dirty_mult:-1' /etc/malloc.conf

2. For libc, the following environment variables may be useful to increase memory allocation size by the application, and to reduce virtualization overheads:

 # export MALLOC_TOP_PAD==$((16777216))
 # export MALLOC_TRIM_THRESHOLD==$((16777216))
9.3.2 Application Settings

Parallelism or concurrency yield great benefits with Intel® Memory Drive Technology. Make sure your application is configured to use many threads where available, in order to process data. CPU over-subscription increases the throughput of the product, as it allows issuing multiple fetch requests from the Intel® Optane™ SSD concurrently.

9.4 Out-of-the-box Workloads

In order to easily test the performance of the system, an out-of-the-box workload is provided.

9.4.1 Large Memory Compute Intensive Workload

This large memory workload demonstrates multiplication of very large matrices, which is the corner stone of many algorithms, leveraging Intel® Math Kernel Library (MKL).

The workload can be used to test your system performance for:

- **Memory Replacement**: Performing an “apples-to-apples” comparison of (1) a "Native" (i.e. DRAM only) system, with (2) a system using lower DRAM augmented with Intel® Optane™ SSD and Intel® Memory Drive Technology, where “(2)” would be a cost-effective alternative to DRAM

- **Memory Expansion**: validate that a workload with a memory footprint higher than DRAM capacity can successfully execute with near-DRAM performance by expanding the system memory with Intel® Optane™ SSDs and Intel® Memory Drive Technology

To perform the test:

1. Obtain and configure the publicly available workload (See https://github.com/ScaleMP/SEG_SGEMM)
2. Run the workload on a “Native” (i.e. DRAM only) system, and collect the results
3. Run the workload on a system with Intel® Optane™ SSDs and Intel® Memory Drive Technology configured, and collect the results
9.5 Intel® Memory Drive Technology Tuning

Virtually all server systems these days use Non-Uniform Memory Architecture (NUMA). By default, most Xeon-based servers would present N number of NUMA nodes where N is the number of Xeon sockets in the system. While this architecture is widespread, some applications were programmed to be NUMA-aware, while others are not, and some applications execute faster with a lower number of NUMA domain. The default for Intel® Memory Drive Technology is to present N+1 NUMA domains (the existing N on the server, plus the added memory from Intel® Optane™ SSD and Intel® Memory Drive Technology). Use “Expand local memory domains” in F5 (System Settings) to reduce the number of NUMA nodes from N+1 to N. Some Linux kernels may not support allocation of hugepages for the added node, and use of hugepages is recommended with Intel® Memory Drive Technology for popular applications, such as Oracle.

Additionally, some applications are inherently not-NUMA aware, for example serial applications having only one execution thread. For this kind of applications, it is recommended that you execute the following command to disable NUMA awareness (the below is not needed when using “Expand local memory domains” in F5 - System Settings):

```
# idmtctl --nna=on
```

9.6 Performance Data Collection

Intel® Memory Drive Technology provides tools for collecting performance-related statistics. The tools are installed into /usr/local/{etc,bin} on the machine the installer was running on. To manually install the tools see “Installing Intel Memory Drive Technology Tools” section.

To activate periodic statistics data collection, use the following command, which records the counters every 60 seconds into a /tmp/stats (make sure this directory is not ramfs/tmpfs, but rather a directory located on a direct-attached storage device):

```
# mkdir /tmp/stats; cd /tmp/stats; imdtstat --outfile 60
```

To start the performance collection at boot, add the following to your crontab file (with crontab -e):

```
@reboot (cd /tmp/stats && /usr/local/bin/imdtstat --outfile 60)
```

After workload is completed, share a zipped/tar archive of the files collected, or the target directory (/tmp/stats in the example above), and share it with the Intel support team.
9.7 Benchmarking Methodology

The combination of Intel® Optane™ SSD and Intel® Memory Drive Technology is aimed at providing DRAM-like functionality and performance. In light of that, there are two main relevant user benefits:

- **Reduce** memory spend: by replacing most DRAM with IMDT -> **Memory Replacement**
- **Increase** memory capacity: by expanding beyond DRAM capacity -> **Memory Expansion**

This section provides detailed instructions on benchmarking each use case.

<table>
<thead>
<tr>
<th>Memory Replacement</th>
<th>Memory Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce Memory Spend by replacing most DRAM with IMDT</td>
<td>Increase Memory Capacity by expanding beyond DRAM< capability</td>
</tr>
<tr>
<td>VS. DRAM VS. DRAM IMPT</td>
<td>VS. DRAM VS. DRAM IMPT</td>
</tr>
</tbody>
</table>

In cases where an application requires a large amount of memory, which can still be accomplished using DRAM but for a high cost; it is possible replace most of that DRAM with IMDT to achieve a significantly improved overall solution cost.

In order to benchmark such a scenario, an “apples-to-apples” comparison is suitable, where the same system should be used, where a DRAM-only configuration (e.g. 1.5TB DRAM), would be compared to a 4x expansion (384GB DRAM + 2 X 640GB IMDT devices).

Achieving near DRAM performance, would demonstrate significant cost savings.

To ensure apples-to-apples comparison, it is important to use the same number of DIMMs, to achieve the same memory bandwidth; this can be obtained by using smaller DIMMs, or in an easier way to reduce the amount of DRAM used as a system configuration parameter (See Setting up the Hardware and Software Stacks’).

In certain cases, an application requires that all data would reside in-memory, otherwise it would not be able to process it (e.g. in-memory databases). In other cases, although an application does not fit into the memory of one server, it is possible for the application to span across multiple servers, but this results in low utilization of CPUs and/or I/O.

The goal here is to demonstrate that a server with higher amount of memory (i.e. expanded with IMDT), can successfully run the workload that is otherwise not possible to run on a server with a smaller amount of memory, and while doing so within acceptable level of performance.

To evaluate DRAM vs. IMDT, use the same machine for comparison

- Ensure optimal hardware configuration (DIMMs per channel, etc.)
- Control DRAM usage via IMDT settings (total memory should be Identical)
- Successfully complete running large workload with IMDT, while failing with DRAM-only
- Ability to increased CPU utilization, get more done on same node (e.g. run more VMs on it)
9.7.1 Detailed steps

Memory Replacement
Reduce Memory Spend by replacing most DRAM with IMDT

| VS. | DRAM | IMDT |

Memory Expansion
Increase Memory Capacity by expanding beyond DRA< capability

| VS. | DRAM | IMDT |

A Install all the required HW (DRAM + Optane/IMDT)

B Run DRAM-only
- Boot native with full DRAM; once system is up:
 - Before testing: collect system info \((\text{imdt_installer.sh si } -s)\)
 - Run the performance test, collect metrics and performance results
 - After testing: immediately collect system info again

C Configure IMDT
- Boot IMDT – Press F5:
 - Limit System Memory to the DRAM size (e.g.: 1.5 TB)
 - Limit Board Memory to 1/4 of the DRAM size (e.g.: 384GB)
 - Save settings and continue to boot

D Run IMDT
- Once system is up in IMDT mode:
 - Before testing: collect system info \((\text{imdt_installer.sh si } -s)\)
 - Run the performance test, collect metrics and performance results
 - After testing: immediately collect system info again

E Compare results and benefits between the DRAM-only and IMDT runs
9.7.2 Expected Result Spectrum

Intel® Memory Drive Technology was architected, designed, and implemented to provide close-to-DRAM performance. Thus, most testing and validation is focused on comparing the performance of specific workloads when using a DRAM-only system (a.k.a. “Native” or “bare-metal” system) and a system using mixed DRAM and Intel® Memory Drive Technology. The native setup serves as a “glass ceiling” of sorts and Intel® Memory Drive Technology is expected to deliver at least 75% of that performance for fitting workloads (Intel® Memory Drive Technology has even shown to sometimes perform even better than DRAM for some workloads).

While some customers focus on the performance of the workload, it is also commonplace to see benchmarks focus on value, e.g. price/performance, overall cost reduction/savings, etc. For example, a customer might wish to compute the overall cost to run a given application requiring 40TB of memory and generating a minimal throughput of 10M transactions per second.

9.7.3 Choice of Workload for Benchmark

Review "Workloads that Benefit Most from Intel® Memory Drive Technology" section of this document; it is recommended that you ensure that your intended workload indeed qualifies as a workload fitting use of Intel® Memory Drive Technology. Additionally, make sure that you have all the information needed to optimally configure your workload (increase thread-count, etc.)
10 Uninstalling Intel® Memory Drive Technology

To use Intel® Optane™ SSDs as storage devices, after they were used with Intel® Memory Drive Technology, change the boot order to load the operating system instead of loading Intel® Memory Drive Technology (which was loaded either from USB Flash Drive or the NVMe drives). You may need to format the device to remove partitions created by Intel® Memory Drive Technology installer.

The Intel® Memory Drive Technology Tools require manual removal. Use the command below to remove Intel® Memory Drive Technology Tools:

```bash
# rm /usr/local/{bin,etc}/imdt*
```
11 Specifications

<table>
<thead>
<tr>
<th>Capacity</th>
<th>85GiB, 320GiB, 640GiB, 1.28TiB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factors</td>
<td>PCIe* 3.0 x4 Add-in-Card (AIC); Half-height, Half-length, Low-profile U.2 (2.5-inch x 15mm height)</td>
</tr>
<tr>
<td>Boot Option</td>
<td>Intel® Memory Drive Technology software3 supports UEFI boot, or alternatively requires a bootable media. Supported protocols: IDE, UHCI, and EHCI.</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>Intel Memory Drive Technology supports Legacy and UEFI Mode for the operating system. RHEL/CentOS* 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 SLES* 11 SP4, 12, 12 SP1, 12 SP2 Ubuntu* 16.04-18.10 For an updated list of operating systems, please refer to latest release notes (imdt-x.x.x.x.rel_notes.pdf) at: https://www.memorydrv.com/downloads/latest Intel® Memory Drive Technology software3 supports UEFI boot, or alternatively requires a bootable media. Supported protocols: IDE, UHCI, and EHCI.</td>
</tr>
<tr>
<td>Operating Systems (Basic installation and compatibility)</td>
<td>Open SuSE: ver. 10 to 11 (SUSE10-11)</td>
</tr>
<tr>
<td>Operating Systems (Basic installation)</td>
<td>Fedora* Core: ver. 4 to 29 (FC4-29) Citrix XenServer: 7.5 (XEN)</td>
</tr>
<tr>
<td>Supported Processors</td>
<td>Intel® Core™ i7-98xx, i7-78xx Intel® Core™ i9-99xx, i9-98xx, i9-79xx Intel® Xeon® E5-x6xx v3 or later, E7-x8xx v3 or later Intel® Xeon® Processor Scalable Performance Family</td>
</tr>
<tr>
<td>Maximum Processor Sockets</td>
<td>8</td>
</tr>
<tr>
<td>Maximum Software-defined Memory</td>
<td>64 TiB1</td>
</tr>
<tr>
<td>Recommended DRAM Expansion</td>
<td>Up to 8x4</td>
</tr>
<tr>
<td>Power</td>
<td>Refer to Intel® Optane™ SSD P4800X Series Product Specification</td>
</tr>
<tr>
<td>Temperature Specification</td>
<td>Refer to Intel® Optane™ SSD P4800X Series Product Specification</td>
</tr>
<tr>
<td>Data Retention</td>
<td>Power off – Not Applicable, IMDT Memory is volatile.</td>
</tr>
<tr>
<td>Hot-plug</td>
<td>Hot-plug is not supported Other PCIe NVMe SSD hot plug support capability is same as non IMDT mode</td>
</tr>
<tr>
<td>Intel® VROC/VMD Technology</td>
<td>Supported</td>
</tr>
<tr>
<td>Compliance</td>
<td>Refer to Intel® Optane™ SSD P4800X Series Product Specification</td>
</tr>
<tr>
<td>Certifications and Declarations</td>
<td>UL*, CE*, C-Tick*, BSMI*, KCC*, VCCI*, CAN/CSA*</td>
</tr>
<tr>
<td>Product Ecological Compliance</td>
<td>RoHS*, WEEE*</td>
</tr>
</tbody>
</table>

NOTES:

1. GiB = 1,073,741,824 bytes, TiB = 1,099,511,627,776 bytes
2. Total physical capacity is 375GB or 750GB. Total usable capacity towards extended memory is 320 GiB or 640 GiB respectively.
3. Technology licensed from ScaleMP*
4. For example: 128GiB DRAM can be expanded up to 1024GiB based on the capacity of NVMe media installed. Higher expansion ratios may be supported, with possibly suboptimal performance
5. Local ambient temperature is measured at the inlet to the SSD
6. LFM (Linear Feet per Minute) airflow measured at the approach area of the SSD
7. CFM (Cubic Feet per Minute) airflow measured at the approach area of the SSD
8. Please contact your Intel representative for details on the non-operating temperature range