

Intel® Optane™ Persistent

Memory

Start Up Guide

October 2020

Revision 2.0

Revision: 2.0 2

Contents

1 Getting Started .. 3

1.1 Basics ... 3
1.1.1 Operating Modes .. 3
1.1.2 Using Persistent Memory ... 4

1.2 Installation .. 4
1.2.1 System Requirements ... 5
1.2.2 Software and Firmware Requirements 5
1.2.3 Handling, Installation and Removal 6
1.2.4 DIMM Populations... 6
1.2.5 Documentation and Software Resources 9

2 Managing PMem .. 10

2.1 Discovery .. 10
2.2 Provisioning ... 11

2.2.1 Create Memory Allocation Goal .. 11
2.2.2 Persistent Memory and Namespace Management 13

2.3 Maintenance .. 17
2.3.1 Firmware Update .. 17
2.3.2 Adding New PMem .. 19
2.3.3 Moving PMem .. 19
2.3.4 Replacing PMem ... 19

2.4 Debug and Troubleshooting ... 20
2.4.1 Checking PMem Health ... 20
2.4.2 Diagnostics .. 21
2.4.3 Recovering from Issues ... 21
2.4.4 Temperature.. 22
2.4.5 Noncritical ... 22
2.4.6 Critical .. 23
2.4.7 Fatal ... 23
2.4.8 Non-functional ... 24
2.4.9 Busy ... 24
2.4.10 Unmanageable ... 25
2.4.11 Setup Issue ... 25
2.4.12 Population Issue .. 25
2.4.13 Missing Namespace .. 25
2.4.14 Dump Debug Log ... 26
2.4.15 Dump System Support Data .. 26

Revision: 2.0 3

1 Getting Started

Intel® Optane™ persistent memory represents a new class of memory and

storage technology architected specifically for data center usage. Platforms

based on the 2nd Gen and 3rd Gen Intel® Xeon® Scalable processors may be

populated with a combination of DRAM and Intel® Optane™ persistent memory.

This document will use “PMem” in reference to the Intel® Optane™ persistent

memory module.

1.1 Basics

Intel® Optane™ Persistent Memory modules support two modes: Memory

Mode, which is volatile, and App Direct mode, which is byte addressable

persistent memory. The modes determine which capabilities of the Intel

persistent memory module are active and available to software. With the Intel®

Optane™ PMem 100 series the two operating modes may be configured to run

concurrently.

1.1.1 Operating Modes

In Memory Mode, the DRAM acts as a cache for the most frequently accessed

data, while the Intel® Optane™ persistent memory provides large memory

capacity. Cache management operations are handled by the Intel® Xeon®

Scalable processor’s integrated memory controller.

When data is requested from memory, the memory controller first checks the

DRAM cache, and if the data is present, the response latency is identical to

DRAM. If the data is not in the DRAM cache, it is read from the Intel® Optane™

persistent memory with slightly longer latency.

The applications with consistent data retrieval patterns that the memory

controller can predict will have a higher cache hit-rate, and should see its

performance close to all-DRAM configurations, while workloads with highly-

random data access over a wide address range may see some performance

difference versus DRAM alone.

Data is volatile in Memory Mode; it will not be saved in the event of power loss.

Persistence is enabled in the second mode, called App Direct.

In App Direct Mode, applications and the Operating System are explicitly

aware there are two types of direct load/store memory in the platform and can

direct which type of data read or write is suitable for DRAM or Intel® Optane™

persistent memory.

Operations that require the lowest latency and don’t need permanent data

storage can be executed on DRAM, such as database “scratch pads”. Data that

needs to be made persistent or structures that are very large can be routed to

the Intel® Optane™ persistent memory. To make data persistent in memory,

you must use App Direct Mode.

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html

4 Revision : 2.0

App Direct mode requires an operating system or virtualization environment

enabled with a persistent memory-aware file system. Contact your OS

distributor for support details.

1.1.2 Using Persistent Memory

App Direct Mode may be used as Storage over App Direct, in which case, the

driver surfaces a traditional block storage interface transparent to applications,

so they do not need to be modified. Storage over App Direct is implemented

with copy on write optimization via a block translation table to provide power-

fail write atomicity.

Otherwise, applications can be modified to access App Direct capacity with

direct load/store mechanisms using a persistent memory aware file system.

This completely bypasses the kernel and provides the shortest code path to the

persistent memory. To learn more about using and programming for persistent

memory, refer to http://pmem.io/.

Warning: A backup of the persistent memory data sets to secondary storage is needed

so that the backup may be used to restore the original data sets after a data

loss event.

1.2 Installation

http://pmem.io/

Revision: 2.0 5

1.2.1 System Requirements

Intel® Optane™ persistent memory is designed for use with the 2nd and 3rd

Gen Intel® Xeon® Scalable Processors family and is enabled by a sub-set of

processors, primarily enabled by the Gold and Platinum tier models.

The Intel® Optane™ PMem 200 series is enabled with 3rd Gen Intel® Xeon®

Scalable Processors. The Intel® Optane™ PMem 100 series is enabled with the

2nd Gen Intel® Xeon® Scalable Processors. PMem modules are not enabled in

any other hardware combinations. Mixing PMem generations or product

capacity SKUs within a system is not supported. The DDR4 and provisioned

PMem module’s memory configuration shall be uniformly configured and

provisioned across all sockets.

Table 1 PMem and Processor Compatibility

Intel® Optane™ Persistent Memory Intel Xeon Scalable Processors

Intel® Optane™ PMem 100 series

2nd Gen Intel® Xeon® Scalable

Processors

Intel® Optane™ PMem 200 series

3rd Gen Intel® Xeon® Scalable

Processors

1.2.1.1 Intel Optane PMem 200 Series

The Intel PMem 200 series is enabled on four socket (4S) platforms with the

3rd Gen Intel® Xeon® Scalable Processors.

Workloads are optimized for the App Direct persistent memory mode. Memory

mode cannot be enabled on this platform and processor. The memory

frequency speed with installed PMem population is 2666 MT/s. See also Section

Recommended Topologies.

1.2.2 Software and Firmware Requirements

Note: Ensure to update to the latest SW/FW published by the OEM the platform of

choice.

Platform software and Intel® Optane™ persistent memory firmware alignment

is strongly recommended. The PMem active (operating) firmware version for all

installed modules must be the same prior to normal/runtime operations.

https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/2nd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/2nd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html

6 Revision : 2.0

The benefits of updating the software and firmware is to keep the platform

software current and compatible with other system modules. Updates may

include changes such as fixed issues, improved stability and security updates.

1.2.3 Handling, Installation and Removal

Industry standard DIMM practices and procedures must be followed while

handling, installing or removing PMem. While taking proper ESD (Electrostatic

Discharge) measures care must be taken not to stack modules together and to

handle only by the module edges, never with enough force to flex or bend the

module.

Modules removed and populated in another supported system must be re-

provisioned to reconfigure the PMem module. See Section 2.3 Maintenance.

1.2.4 DIMM Populations

1.2.4.1 Recommended Topologies

The following topologies are recommended per CPU socket. For multiple socket

systems, each socket should be populated identically. The part number must

be the same for all installed PMem. Populating both slots on a single channel

with PMem is not supported.

Note: DDR channel and DIMM slot nomenclatures may vary depending on platform

implementation. Guidance for PMem installation in first position (slot 0)

followed by the DIMM (slot 1). When one DIMM is used, it must be populated

furthest away from the CPU (slot 0) of the channel.

1.2.4.2 Intel Optane PMem 200 Series Topology

Note: Memory configuration enforcement and/or BIOS option settings may have

been adopted and implemented in the OEM vendor UEFI FW (BIOS) that may

issue warning or may even prevent boot. Contact the vendor for memory

population guidance and BIOS behavior and/or option settings support

information.

Revision: 2.0 7

6+6 (Six DDR4 DIMMs, Six PMem)

 Supported Mode: App Direct Only

 Memory frequency: 2666 MT/s

1.2.4.3 Intel Optane PMem 100 Series Topologies

6+6 (Six DDR4 DIMMs, Six PMem)

 Modes Supported: App Direct, Memory Mode

6+4 (Six DDR4 DIMMs, Four PMem)

 Modes Supported: App Direct, Memory Mode

8 Revision : 2.0

8+4 (Eight DDR4 DIMMs, Two PMem)

 Modes Supported: App Direct, Memory Mode

6+2 (Six DDR4 DIMMs, Two PMem)

 Modes Supported: App Direct, Memory Mode

4+2 (Four DDR4 DIMMs, Two PMem)

 Modes Supported: App Direct, Memory Mode

Revision: 2.0 9

6+1 (Six DDR4 DIMMs, One PMem)

 Modes Supported: App Direct Only

1.2.5 Documentation and Software Resources

Intel article (Linux* and Windows* Provisioning Examples):

https://software.intel.com/content/www/us/en/develop/articles/quick-start-

guide-configure-intel-optane-dc-persistent-memory-on-linux.html

Non-Volatile Device Control (ndctl) is recommended for creating namespaces

for the Linux operating system. It is available for download from GitHub* at

https://github.com/pmem/ndctl.

To learn more about persistent memory programming and the Persistent

Memory Development Kit (PMDK), visit: http://pmem.io/.

Ipmctl is an open source utility for configuring and managing PMem. This utility

was created and is maintained by Intel. It is available for download from

GitHub*. at https://github.com/intel/ipmctl.

https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://github.com/intel/ipmctl
https://github.com/pmem/ndctl
http://pmem.io/
https://github.com/intel/ipmctl
https://github.com/intel/ipmctl

10 Revision : 2.0

2 Managing PMem

Intel Ipmctl is a platform utility for configuration and management capabilities

including discovery, provisioning, maintenance, and monitoring of the PMem

modules.

It supports the following functionality.

• Discovery

• Configuration

• Firmware management

• Security functionality management

• Health monitoring

• Performance tracking

• Debug and troubleshooting

For ipmctl details on release branches and its target PMem module refer to the

ipmctl GitHub* project.

Note: This document provides examples of essential PMem management

functionality from the perspective of the OS ipmctl command line utility.

ipmctl help

Example commands are formatted where [brackets] indicate optional items and

(parenthesis) indicate that a value is required. The binary executable name

“ipmctl” is omitted for simplicity.

2.1 Discovery

The Show Topology command displays both the PMem and DDR4 DRAM

DIMMs.

ipmctl show -topology

The Show Device command displays the PMem discovered in the system.

ipmctl show -dimm

To view detailed information about the PMem, add the all option.

ipmctl show -a -dimm

The Show Memory Resources command displays how the DDR/PMem capacity

is allocated at the system level.

ipmctl show -memoryresources

https://github.com/intel/ipmctl

Revision: 2.0 11

2.2 Provisioning

Provisioning Intel® Optane™ PMem is a two-step process. During this process,

a goal is specified and stored on the persistent memory modules for the BIOS

to read on the next reboot. A goal configures the PMem in Memory Mode, App

Direct mode. App Direct persistent memory regions may then be provisioned

with namespaces which the driver surfaces as a logical device.

The Intel Optane PMem 100 series may be configured to operate both modes

concurrently. Platforms with Intel Optane PMem 200 series cannot be

configured for concurrent modes. Memory Mode cannot be configured with the

3rd Gen Intel® Xeon® Scalable processors.

The installed DIMM population topology also impacts which modes are

supported; refer to the recommended topology figures previously shown.

Warning: Changing the memory configuration is a destructive operation which may

result in the loss of data stored in the persistent memory region of the PMem.

Therefore, existing data should be backed up to other storage prior to

provisioning if it needs to be preserved.

Persistent data is not explicitly cleared during provisioning. Metadata such as

file system and SW RAID should be deleted prior to provisioning. The PMem

module may be erased by destroying the cryptographic persistent memory key

and/or overwriting. Sanitize methods may be implemented in UEFI

environment by the OEM vendor. The Linux OS runtime environment provides

the ndctl-sanitize-command https://pmem.io/ndctl/ndctl-sanitize-dimm.html.

This command is rejected (unable) to sanitize the PMem module if Memory

Mode is configured.

2.2.1 Create Memory Allocation Goal

Use the Create Memory Allocation Goal command to create a new configuration

request.

Memory Mode 100%

Note: Memory Mode cannot be configured for the Intel Optane PMem 200 series for

platforms with the 3rd Gen Intel® Xeon® Scalable processors.

Any percentage of the PMem capacity across sockets can be provisioned in

Memory Mode. In this example, 100 represents the percentage of capacity to

be provisioned in Memory Mode.

ipmctl create -goal MemoryMode=100

https://pmem.io/ndctl/ndctl-sanitize-dimm.html

12 Revision : 2.0

App Direct Mode

PMem can be provisioned in App Direct mode with the interleaving enabled or

disabled for the persistent memory.

App Direct (Interleaved)

Interleaving increases the throughput of reads and writes to persistent

memory. The default Create Goal command creates an interleaved region

configured for App Direct mode. The following two commands are equivalent:

ipmctl create -goal

ipmctl create -goal PersistentMemoryType=AppDirect

App Direct (Not Interleaved)

To disable interleave, keep the App Direct capacity contained to each PMem,

specify PersistentMemoryType=AppDirectNotInterleaved.

ipmctl create -goal PersistentMemoryType=AppDirectNotInterleaved

Concurrent Operating Modes (Mixed Mode)

Note: Mixed Mode cannot be configured for the Intel Optane PMem 200 series with

the 3rd Gen Intel® Xeon® Scalable processors.

The following command assigns 60 percent of the available persistent memory

capacity to Memory Mode. The remainder is configured as an interleaved set

for App Direct mode.

ipmctl create -goal MemoryMode=60

The Show Memory Allocation Goal command displays a pending goal request

prior to reboot. In the case that a goal is not applied correctly, this command

returns the configuration request and status. “No result” is returned if the goal

was processed successfully during reboot.

ipmctl show -goal

The Delete Memory Allocation Goal command enables the removal of a pending

goal.

ipmctl delete -goal

2.2.1.1 Advanced Preferences

The APPDIRECT_GRANULARITY preference allows for adjusting the default

settings when creating a memory allocation goal. The default granularity for

Intel Optane PMem 200 series 1GiB. Therefore, the preference setting has been

removed in the ipmctl 2.00.00.xxxx release.

To view the current preferences, use the Show Preferences command.

ipmctl show -preferences

Revision: 2.0 13

To change preferences, use the Change Preferences command.

ipmctl set -preferences (Name=Value)

Preference Name Description Options

APPDIRECT_GRANULARITY The minimum App

Direct granularity

per PMem.

RECOMMENDED: Use the default

recommended App Direct granularity

of 32 GiB for Intel Optane PMem 100

series.

1: Allow 1 GiB App Direct granularity.

2.2.2 Persistent Memory and Namespace Management

Each OS vendor (OSV) provides native tools for persistent memory and

namespace management. Contact the OSV/ISV for more information.

Intel article (Linux* and Windows* examples):

https://software.intel.com/content/www/us/en/develop/articles/quick-start-

guide-configure-intel-optane-dc-persistent-memory-on-linux.html

The following sections provide Linux examples and references for detailed

explanation.

Linux References:

The official project documentation for ndctl.

http://pmem.io/ndctl/

The official project location for ndctl.

https://github.com/pmem/ndctl

Basic guide to getting started with persistent memory in Linux.

https://nvdimm.wiki.kernel.org/

2.2.2.1 Linux Command Line (ndctl) Overview

The ndctl is a utility library for managing the libnvdimm (non-volatile memory

device) sub-system in the Linux kernel. This library does not provide

functionality for memory allocation provisioning, the ipmctl create -goal

equivalent functionality.

The ndctl command line provides functions used for persistent memory and

namespace management, device list, update firmware and more.

2.2.2.2 Listing Regions

Man page: https://pmem.io/ndctl/ndctl-list.html

After the memory provisioning (goal processing) reboot, the newly created

DIMM-interleave-sets are represented as persistent memory “regions” of App

Direct capacity. Regions can be listed with the List Regions command.

ndctl list –-regions --human

https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
http://pmem.io/ndctl/
https://github.com/pmem/ndctl
https://nvdimm.wiki.kernel.org/
https://pmem.io/ndctl/ndctl-list.html

14 Revision : 2.0

Sample output:

[

 {

 "dev":"region1",

 "size":"756.00 GiB (811.75 GB)",

 "available_size":"756.00 GiB (811.75 GB)",

 "max_available_extent":"756.00 GiB (811.75 GB)",

 "type":"pmem",

 "iset_id":"0x6f3e7f4888992ccc",

 "persistence_domain":"memory_controller"

 },

 {

 "dev":"region0",

 "size":"756.00 GiB (811.75 GB)",

 "available_size":"756.00 GiB (811.75 GB)",

 "max_available_extent":"756.00 GiB (811.75 GB)",

 "type":"pmem",

 "iset_id":"0x1c9e7f487b952ccc",

 "persistence_domain":"memory_controller"

 }

]

To determine which PMem are part of a particular region, use the list command

with the regions and dimms modifiers. Each PMem will be listed within the

mappings group.

ndctl list –-regions --dimms

Sample output:

{

 "dimms":[

 {

 "dev":"nmem1",

 "id":"8680-a2-1730-000006a5",

 "handle":257,

 "phys_id":45

 },

 {

 "dev":"nmem3",

 "id":"8680-a2-1730-00000632",

 "handle":4353,

 "phys_id":69

 },

 {

 "dev":"nmem0",

 "id":"8680-a2-1730-0000059f",

 "handle":1,

 "phys_id":33

 },

 {

 "dev":"nmem2",

 "id":"8680-a2-1730-000004f3",

 "handle":4097,

 "phys_id":57

Revision: 2.0 15

 }

],

 "regions":[

 {

 "dev":"region5",

 "size":268435456000,

 "available_size":268435456000,

 "max_available_extent":268435456000,

 "type":"pmem",

 "iset_id":8743142107817513552,

 "mappings":[

 {

 "dimm":"nmem3",

 "offset":268435456,

 "length":134217728000,

 "position":1

 },

 {

 "dimm":"nmem2",

 "offset":268435456,

 "length":134217728000,

 "position":0

 }

]

 },

 {

 "dev":"region4",

 "size":268435456000,

 "available_size":0,

 "max_available_extent":0,

 "type":"pmem",

 "iset_id":8015984336272174284,

 "mappings":[

 {

 "dimm":"nmem1",

 "offset":268435456,

 "length":134217728000,

 "position":1

 },

 {

 "dimm":"nmem0",

 "offset":268435456,

 "length":134217728000,

 "position":0

 }

]

 “persistence_domain”:”memory_controller”

 }

]

}

16 Revision : 2.0

2.2.2.3 Creating Namespaces

Man page: https://pmem.io/ndctl/ndctl-create-namespace.html

Regions can then be divided into one or more namespaces in order for the

capacity to be surfaced to the Linux operating system and used by applications.

Just as an SSD can be carved into namespaces, persistent memory

namespaces represent the unit of storage that appears as a device that can be

used for I/O. To create a namespace, use the Create Namespace command.

ndctl create-namespace

The default syntax will create namespace with DAX support, mode=fsdax. A

DAX aware filesystem may subsequently be created on this namespace to

provide optimal application performance. The following example is equivalent

syntax to explicitly set the mode and also provides the optional syntax to

specify a target region.

ndctl create-namespace –-mode fsdax [--region (value)]

To create a Storage over App Direct namespace for use as a traditional block

storage device with power-fail write atomicity, use sector mode.

ndctl create-namespace –-mode sector [--region (value)]

Multiple namespaces may be created from the same region. Each namespace is

a minimum of 1 GiB (in bytes) and aligns to interleave-width and alignment;

for example, ‘--size=’ must align to interleave-width: 6 and alignment:

2097152. Sector namespaces may then be further subdivided by a partition

table.

To create multiple namespaces of specific capacity within a single region, use

the Create Namespace command with the Size option. The ---continue option

will create as many namespaces as possible within the given -bus and -region

filter restrictions.

2.2.2.4 Listing Namespaces

Man page: https://pmem.io/ndctl/ndctl-list.html

To display namespaces, use the List command. Namespaces are shown by

default without additional arguments.

ndctl list --human

https://pmem.io/ndctl/ndctl-create-namespace.html
https://pmem.io/ndctl/ndctl-list.html

Revision: 2.0 17

Sample output:

[

 {

 "dev":"namespace1.0",

 "mode":"fsdax",

 "map":"dev",

 "size":"744.19 GiB (799.06 GB)",

 "uuid":"56ca2d82-36fc-4bf6-b434-b5315957f5ca",

 "blockdev":"pmem1"

 },

 {

 "dev":"namespace0.0",

 "mode":"fsdax",

 "map":"dev",

 "size":"744.19 GiB (799.06 GB)",

 "uuid":"5ec652fa-3642-4e93-ad76-90d70872f3a3",

 "blockdev":"pmem0"

 }

]

2.2.2.5 Delete Configuration

The current configuration can be deleted by first disabling and destroying

namespaces and then disabling the active regions. When a namespace is

destroyed, the capacity is returned to the underlying region and may be used

in the creation of new namespaces.

2.3 Maintenance

This section describes some common maintenance operations.

2.3.1 Firmware Update

The Show Device Firmware command using ipmctl.

ipmctl show -firmware

This command displays up to two firmware versions per PMem considering that

updating the firmware requires a power cycle. The active firmware is the

firmware that is currently executing. The “staged” firmware is stored on the

PMem and staged for execution after the next power cycle.

If for any reason the firmware update fails to load properly after the power

cycle, the firmware will fall back to the previously active version.

Note: Only one firmware is allowed to be staged per power cycle. Therefore, if a

version is already staged, power cycle before attempting to stage a new

version.

18 Revision : 2.0

The Update Firmware command provides an examine option which validates a

firmware image file and may be used prior to loading the image.

ipmctl load -source (firmware file) -examine -dimm

Load the firmware image on the PMem using the Update Firmware command.

It is recommended that all PMem in the system have the same firmware

version, although updating the firmware on individual PMem is also supported.

ipmctl load -source (firmware file) -dimm

In case the PMem firmware is busy processing a long-operation command

request, such as Address Range Scrub (ARS), it will not be possible to update

the firmware and an error will be returned.

Check that the new firmware was staged properly using the Show Device

Firmware command and then power cycle the system. Before using the PMem,

verify that the new firmware is now successfully executing on all PMem using

the Show Device Firmware command.

Linux Workarounds for ARS Operation

To wait for completion of an active Linux ARS long operation(s) and then

proceed with the Update Firmware command, use the following command:

ndctl wait-scrub; ipmctl load -source (firmware file) -dimm

Note: ARS may take hours to days depending on the persistent memory

configuration and capacity. In such case, it may be preferable to disable the

ARS at boot via the kernel boot command line parameter.

The disable ARS process command will require adding a kernel boot parameter,

rebooting the OS and then the firmware update. After verifying the firmware

updated successfully, ensure to remove the added kernel boot command entry

to restore the original (default) ARS state setting and execution of ARS

operations.

1. Add Kernel Boot Command Line Entry:

nfit.no_init_ars

2. Reboot Linux.

3. Verify that an ARS long operation(s) is not currently active.

ipmctl show -d ARSStatus -dimm

4. Stage the firmware, using the Update Firmware command.

ipmctl load -source (firmware file) -dimm

Revision: 2.0 19

5. Check that the new firmware was staged properly using the Show Device

Firmware command and then power cycle the system.

ipmctl show -dimm -firmware

6. Verify a successful firmware update using the Show Device Firmware

command.

7. Remove the “nfit.no_init_ars” kernel boot command line entry and reboot

the OS in order to restore the default Linux background ARS operation

setting.

2.3.2 Adding New PMem

Adding new PMem module(s) to a system that is already configured provides

for a few choices depending on the current configuration, the platform settings,

and the desired usage of the new PMem.

New PMem will be used in Memory Mode if the platform supports it. The newly

added PMem can be configured for use in a different mode leaving the existing

PMem as they were. Or the new and existing PMem can be configured for use

in a different mode together.

Refer to the provisioning section for detailed steps.

2.3.3 Moving PMem

The information that describes how the PMem are provisioned and interleaved

together along with the namespace information is physically stored on the

PMem. Therefore, it is possible to move PMem from one system to another and

retain the configuration and any data stored in the persistent memory.

However, if the PMem are configured with interleaved App Direct Mode

capacity, the PMem must be put into the new system so they can be

interleaved in the same way as they were in the previous system. Therefore, it

is necessary to install them in an identical system, ensure that the same

position relative to the CPU, memory controller, and memory channel is

maintained. UEFI FW (BIOS) version and settings duplicate that of the

originating system platform.

PMem modules that are configured for use in only Memory Mode or App Direct

Mode that is not interleaved can be installed in any order in the new system

and the configuration and data stored on the PMem will be applied.

2.3.4 Replacing PMem

Any App Direct capacity that is interleaved requires that all of the PMem

modules in the interleave set (generally all the PMem installed on a specific

CPU) are present and functional in order to access the persistent data.

Therefore, if it becomes necessary to replace a PMem, further actions are

required to maintain the persistent data before replacing the PMem.

20 Revision : 2.0

Before removing the PMem, the data must be backed up to other storage and

all existing namespaces must be deleted. If the same memory configuration is

desired after replacing the PMem, dump the current configuration to a file using

the Dump Memory Allocation Settings command.

ipmctl dump -destination (file) -system -config

Then replace the PMem and load the configuration as a new memory allocation

goal using the Load Memory Allocation Settings command.

ipmctl load -source (file) -goal

Because this creates a new memory allocation goal, a reboot is necessary to

map the capacity into the system physical address space. After the reboot,

proceed with creating namespaces as desired and restoring the existing data to

the new namespaces.

2.4 Debug and Troubleshooting

This section provides information about some common operations that may be

required to debug or troubleshoot an issue with a PMem.

2.4.1 Checking PMem Health

The Show Device command return data includes the “HealthState” and

HealthStateReason attributes.

ipmctl show -a -dimm

Display select attributes with a comma separated list.

ipmctl show -d HealthState,HealthStateReason -dimm

For additional health statistics, use the Show Sensor command.

ipmctl show -a -sensor

Sensors are reported for the following health data.

Sensor Name Description

Health The current PMem health as reported in the SMART log

MediaTemperature The current PMem media temperature in Celsius

ControllerTemperature The current PMem controller temperature in Celsius

PercentageRemaining Percentage of life remaining

LatchedDirtyShutdownCount The number of shutdowns without notification over the

lifetime of the PMem

UnlatchedDirtyShutdownCount The number of shutdowns without notification over the

lifetime of the PMem. This counter is the same as

LatchedDirtyShutdownCount, except it will always be

incremented on a dirty shutdown even if Latch System

Shutdown Status was not enabled

Revision: 2.0 21

Sensor Name Description

PowerOnTime The total power-on time over the lifetime of the PMem

UpTime The total power-on time since the last power cycle of the

PMem

PowerCycles The number of power cycles over the lifetime of the PMem

FwErrorCount The total number of firmware error log entries

PMem support alarm thresholds for the percentage value of expected life span

remaining, the temperature of the Intel® Optane™ Media, and the temperature

of the controller. These are customizable using the Change Sensor Settings

command.

ipmctl set -sensor (sensor) NonCriticalThreshold=(value)

EnabledState=(0|1)

If enabled, the PMem will send an alarm when the reading exceeds the

threshold and the sensor status will change to a non-critical state.

2.4.2 Diagnostics

Beyond checking the health information, diagnostics are provided to perform

more detailed checks of the PMem using the Run Diagnostic command.

ipmctl start -diagnostic

2.4.3 Recovering from Issues

As PMem modules near the end of their lifespan or encounter issues, recovery

actions may be required to bring the module and the overall system back to a

functional state. Refer to the following sections to determine how best to

handle different types of issues based on the current state.

Table 2 Issue Categories

Issue How to tell

Temperature ipmctl show -a -sensor MediaTemperature

ipmctl show -a -sensor ControllerTemperature

Noncritical ipmctl show -dimm: HealthState = Noncritical

Critical

ipmctl show -dimm: HealthState = Critical

Fatal

ipmctl show -dimm: HealthState = Fatal

Non-functional ipmctl show -dimm: HealthState = Non-functional

Busy

ipmctl show -dimm: ARSStatus = In progress

ipmctl show -dimm OverwriteStatus=In progress

Unmanageable ipmctl show -dimm: HealthState = Unmanageable

Setup issue ipmctl show -dimm: ConfigurationStatus = Failed

Population issue ipmctl show -dimm: PopulationViolation = Yes

22 Revision : 2.0

Issue How to tell

Missing

namespace

ipmctl show -namespace

 or native OS NVDIMM command/tool

2.4.4 Temperature

Note: Environmental effects such as changes to Media and Controller temperature do

not change the firmware SMART Health Status (HS). A temperature alarm trip

may exist in any SMART Health Status (HS) or ipmctl HealthState.

When nearing the temperature alarm threshold, the module should be cooled

immediately to avoid further remediation such as throttling or shutdown. In the

event of temperature exceeding an alarm threshold an alert is triggered (if

enabled).

ipmctl show -a -sensor MediaTemperature

ipmctl show -a -sensor ControllerTemperature

2.4.5 Noncritical

There are two indications that a PMem module may be at risk.

1. The firmware SMART health status changes to Noncritical. When this

happens, an alert is triggered (if enabled).

2. The ipmctl reported HealthState is Noncritical.

When Noncritical state occurs, investigate to identify possible causes.

Review Health State/Status Reason(s)

ipmctl show -d HealthStateReason -dimm

Table 3 Noncritical HealthStatusReason

Meaning Maintenance Action

0% < Percentage

Remaining ≤ 1%

Remaining lifespan is minimal.

Plan maintenance to backup persistent data and replace the

impacted module.

Package Sparing has

happened

Informational only, no remedial maintenance action is

available. This HSR bit will remain set for the remaining life of

the module. Continue to monitor the module for secondary

reasons associated with the Noncritical health state, including

monitoring for percentage remaining.

CAP Self-Test1 returns a

warning and last test was

Normal

Plan maintenance to backup persistent data and replace the

impacted module.

CAP Self-Test

communication failure

Before power cycle, backup persistent data and power cycle

to determine if self-test communication is restored.

1 CAP Self-Test warning means the Power Loss Capacitor has degraded to low levels but is

not in a state that will result in data loss.

Revision: 2.0 23

2.4.6 Critical

When the firmware SMART health status changes to Critical, features or

performance are degraded due to a failure and it is at risk of data loss/failure.

This is indicated in one of the following ways.

1. The firmware SMART health status changes to critical. When this happens,

an alert is triggered (if enabled).

2. The ipmctl reported HealthState is Critical.

When Critical state occurs, investigate to identify possible causes.

Review Health State/Status Reason(s)

ipmctl show -d HealthStateReason -dimm

Table 4 Critical HealthStatusReason

Meaning Maintenance Action

Percentage Remaining 0 Before power cycle, backup persistent data and

replace the impacted module.
Die Failure

AIT DRAM failure occurred

CAP Self-Test fails1

Performance Degraded

CAP Self-Test communication

failure

Before power cycle, backup persistent data and power

cycle to determine if self-test communication is

restored. If issue persists, replace the impacted

module.

1 CAP Self-Test fails means the Power Loss Capacitor has degraded, this state can

result in data loss on the next power cycle.

2.4.7 Fatal

When a PMem module fails, any persistent data stored on the module is

inaccessible and the module must be replaced or removed in order to restore

overall system functionality.

When Fatal state occurs, communication may still be possible via SMBus to

retrieve status reason and/or logs.

1. The firmware SMART health status changes to Fatal. When this happens,

no alert is triggered because the DDRT link is taken down by firmware.

2. The ipmctl reported HealthState is Fatal.

Review Health State Reason(s)

ipmctl show -d HealthStateReason -dimm

24 Revision : 2.0

Table 5 Fatal HealthStatusReason

Meaning Maintenance Action

Critical internal state failure1 If possible, backup persistent data and replace

the impacted module. Persistent data is

typically no longer accessible.

1 Critical internal state failure is non-recoverable and data loss has occurred or is

imminent.

2.4.8 Non-functional

Persistent data is not accessible in this state.

When the ipmctl HealthState is Non-functional, the PMem module is detected

and manageable, though some commands and capabilities may be limited. The

PMem module has limited communication or another error preventing complete

functionality. Common causes include:

• DDRT memory interface training failure

• Expected region mapping to SPA range unable to be found

Some ipmctl commands may be able to communicate with the module via

SMBus.

When Non-functional state occurs, investigate to identify possible causes:

1. A power cycle may recover from select PMem firmware errors.

2. Possible UEFI FW memory margining DDRT training errors may be found

by examining the system initialization BIOS serial log.

3. Review the firmware BootStatus:

ipmctl show -d BootStatus -dimm <DimmID>

⎯ Media Not Ready: firmware did not complete media training

⎯ Media Error: firmware detected an error during media training

⎯ Media Disabled: firmware disabled media due to a critical issue

⎯ FW Assert: firmware reported an assert during initialization

2.4.9 Busy

When a long operation such as an Address Range Scrub (ARS) or security

overwrite is running, some Intel® Optane™ PMem functionality may be limited.

Once the long operation is complete, the functionality will be restored.

How to tell:

ipmctl show -d ARSStatus -dimm

ipmctl show -d OverwriteStatus -dimm

Revision: 2.0 25

2.4.10 Unmanageable

Manageability is the ability for the host software to manage a PMem module.

An Unmanageable HealthState can occur when the PMem module has an

incompatible firmware API version or hardware revision or is unresponsive.

If the Intel® Optane™ PMem firmware is incompatible with the software, refer

to the Software Installation section to install a compatible version of the

firmware and software.

Manageability is determined by the interface format code, the vendor identifier,

device identifier and the firmware API version. Running the quick health

diagnostic may help identify the reason for the incompatibility.

If the vendor or device information is incorrect or the firmware API version is

unavailable, and the device is a PMem module, it is likely the module is not

responding. This could occur at runtime, for example, if the PMem module is

shut down due to a thermal issue. Cooling down the PMem module and

restarting may resolve the Unmanageable state. If the module is not

responding due to a hardware failure, the module will need to be replaced or

removed in order to restore overall system functionality.

2.4.11 Setup Issue

Provisioning is an interaction between the software, the platform firmware, and

metadata stored on the PMem modules during a system reboot. While unlikely,

it is possible that an incompatibility exists, or a hardware failure occurs that

results in a configuration status issue as reported in the Show Device

command. Run the platform configuration diagnostic to get more details about

the cause of the failure.

If the issue is the result of old metadata stored on the PMem modules, re-

provisioning the modules may fix the issue. If it is necessary to

recover/override the Platform Configuration Data refer to the ipmctl Delete

Platform Configuration Data command.

If the issue is the result of a PMem module failure, refer to the preceding

sections to determine the correct actions.

2.4.12 Population Issue

The topology or memory population is expected to align to one of the

documented POR memory configurations for DDR4 and Intel® Optane™ PMem

modules. Contact the server platform vendor for memory population guidance.

2.4.13 Missing Namespace

Persistent memory namespaces are the unit of storage that appear as a logical

device to the OS which can be used for I/O. One or more missing namespaces

could be caused by the following.

https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Debug/ipmctl-run-diagnostic.txt
https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Debug/ipmctl-run-diagnostic.txt
https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Debug/ipmctl-delete-pcd.txt
https://github.com/intel/ipmctl/blob/master/Documentation/ipmctl/Debug/ipmctl-delete-pcd.txt

26 Revision : 2.0

1. The Linux software is waiting for an address range scrub long operation to

complete before surfacing the namespaces to the OS. In this case, wait

for the long operation to complete before attempting to use the

namespace.

2. One or more PMem modules contributing capacity to the namespace are

security locked with a passphrase. The namespaces will not be surfaced to

the OS until the underlying modules are unlocked or security is disabled

by removing the passphrase.

3. One or more PMem modules contributing capacity to the namespace has

encountered an issue and the persistent memory capacity is not available.

Refer to the preceding sections to determine the correct action.

2.4.14 Dump Debug Log

Occasionally, PMem encounter an error that requires debug information to be

gathered for offline analysis. This can be done using the Dump Debug Log

command. This debug log is also referred to as the Firmware Debug Log.

dump -destination (file) -debug -dimm (DimmID)

The Firmware Debug Log is in binary form and it is not encrypted or signed.

2.4.15 Dump System Support Data

The Dump Support Data command provides functionality to create and save

platform level support data to a file for off-line analysis by support personnel.

Support data includes system log(s), error log(s), sensor information and

diagnostic results.

dump -destination (file) -support

