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1 
Introduction 

1.1 Overview 

This document is designed to aid the development of EFI drivers that follow the EFI Driver Model  
that is described in the Extensible Firmware Interface Specification, version 1.10 (hereafter referred 
to as the “EFI 1.10 Specification”). There are several different classes of EFI drivers and many 
variations of each of them. This document provides basic information for some of the most 
common classes of EFI drivers. Many other driver designs are possible. In addition, the design 
guidelines for the different driver-related protocols are covered, along with the design guidelines 
for PCI, USB, and SCSI buses. Finally, porting considerations for Itanium®-based platforms and 
EFI Byte Code (EBC) drivers and driver optimizations techniques are discussed.  

This document assumes that the reader is familiar with the following:   

• EFI 1.02 Specification 
• EFI 1.10 Specification 
• EFI 1.10.14.62 Sample Implementation 

 

The EFI 1.10.14.62 Sample Implementation is also referred to as the EFI Sample Implementation or 
the EFI  1.10 Sample Implementation throughout the remainder of this document. The EFI Sample 
Implementation supports the following operating systems:  

• Microsoft Windows NT* 4.0 
• Microsoft Windows* 2000 
• Microsoft Windows XP  

It has a build infrastructure that supports Intel® compilers and the following versions of Microsoft 
Visual Studio* or Visual C++*: 

• Microsoft Visual Studio .NET 2003 or 2002. These versions do not require service packs. It is 
recommended to use the Visual Studio .NET versions instead of Visual C++ 6.0. 

• Microsoft Visual C++ 6.0 with the Visual Studio 6.0 Service Pack 5 or later and the Visual 
C++ Processor Pack Download. These two service packs are available for download from: 

http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/default.aspx 

http://msdn.microsoft.com/vstudio/downloads/tools/ppack/download.aspx 

In general, this document will use the term Visual Studio to refer generically to any of the supported 
versions in the Visual Studio or Visual C++ tool chains. If required, the EFI Sample 
Implementation can be modified to support a wider variety of operating systems and tools chains. 
However, only the supported operating systems and tools chains will be discussed in this document 
as required. 

http://msdn.microsoft.com/vstudio/downloads/tools/ppack/download.aspx
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1.2 Organization of This Document 

This document is not intended to be read front to back. Instead, it is designed more as a cookbook 
for developing and implementing drivers. The first four chapters provide background information, 
chapter 5 provides the basic recipe for all drivers, and the remaining chapters provide detailed 
information for developing specific types of drivers. 

In general, driver writers should use this document in the following way: 

1. Read the first four chapters of this document before starting to code. 
2. Read chapter 5, which describes the general guidelines for designing all types of EFI drivers. 

Specifically, see section 5.2 for the general steps to follow when designing a driver. This 
section then points you to other sections in this document that contain the specific “recipe” for 
that particular type of EFI driver. 

3. Read the specific sections or chapters listed in section 5.2 that apply to your EFI driver.  
 

Table 1-1 describes the organization of this document. 

Table 1-1. Organization of the EFI 1.10 Driver Writer’s Guide 

Chapter Description 

1. Introduction Provides a brief overview of this document, its organization, 
and the conventions used in it.  

2. Foundation Describes the basic concepts in the EFI 1.10 Specification.  

3. Coding Conventions Describes the common coding conventions to use in an 
implementation of the EFI 1.10 Specification.  

4. EFI Services Describes the services available in the EFI 1.10 Specification 
and provides example code that uses these EFI services.  

5. General Driver Design Guidelines Gives general guidelines for designing all types of EFI drivers. 
Provides the basic “recipe” for developing a driver and points 
to later chapters or sections for more detailed information. 

6. Classes of EFI Drivers Describes the required and optional features and the subtypes 
for different types of drivers that follow the EFI Driver Model. 

7. Driver Entry Point Describes the entry point and optional features for the different 
classes of EFI drivers. 

8. Private Context Data Structures Introduces object-oriented programming techniques for 
managing controllers and the concept of private context data 
structures. 

9. Driver Binding Protocol Describes the requirements and features for the Driver Binding 
Protocol. This protocol provides services that can be used to 
connect a driver to a controller and disconnect a driver from a 
controller. 

10. Component Name Protocol Describes the requirements and features for the Component 
Name Protocol. This protocol provides a human-readable 
name for drivers and the devices that drivers manage. 

continued 
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 Table 1-1. Organization of the EFI 1.10 Driver Writer’s Guide (continued) 

Chapter Description 

11. Driver Configuration Protocol Describes the requirements and features for the Driver 
Configuration Protocol. This protocol allows the user to set the 
configuration options for the devices that drivers manage. 

12. Driver Diagnostics Protocol Describes the requirements and features for the Driver 
Diagnostics Protocol. This protocol allows diagnostics to be 
executed on the devices that drivers manage. 

13. Bus Specific Driver Override Protocol Describes the requirements and features for the Bus Specific 
Driver Override Protocol. This protocol matches one or more 
drivers to a controller. In general, this protocol applies only to 
bus types that provide containers for drivers on their child 
devices. 

14. PCI Driver Design Guidelines Describes the guidelines that apply specifically to the 
management of PCI controllers. 

15. USB Driver Design Guidelines Describes the guidelines that apply specifically to the 
management of USB controllers. 

16. SCSI Driver Design Guidelines Describes the guidelines that apply specifically to the 
management of SCSI controllers. 

17. Driver Optimization Techniques Describes several techniques to optimize an EFI driver. 

18. Itanium® Architecture Porting 
Considerations 

Describes guidelines to improve the portability of an EFI driver 
and the pitfalls that may be encountered when an EFI driver is 
ported to an Intel® Itanium® processor. 

19. EFI Byte Code Porting 
Considerations 

Describes considerations when writing drivers that may be 
ported to EFI Byte Code (EBC). 

20. Building EFI Drivers Describes how to write, compile, and package EFI drivers for 
the EFI 1.10 Sample Implementation environment. 

21. Testing and Debugging EFI Drivers Describes techniques to test and debug EFI drivers. 

A.  EFI Data Types Lists the set of base data types that are used in all EFI 
applications and EFI drivers and the modifiers that can be 
used in conjunction with the EFI data types. 

B. EFI Status Codes Lists the EFI_STATUS code values that may be returned by 

EFI Boot Services, EFI Runtime Services, and EFI protocol 
services. 

C. Quick Reference Guide Provides a summary of the services, protocols, macros, 
constants, and GUIDs that are available to EFI drivers. 

D. Disk I/O Protocol and Disk I/O Driver Provides the source files to the Disk I/O Protocol, the EFI 
Global Variable GUID, and the source files to the disk 
I/O driver.  

E. EFI 1.10.14.62 Sample Drivers Lists all the sample drivers that are available in the EFI Sample 
Implementation. 

F. Glossary Lists and defines the terms and acronyms used in this 
document. 
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1.3 Related Information 

The following publications and sources of information may be useful to you or are referred to by 
this specification:  

• Extensible Firmware Specification, ver. 1.02, Intel Corporation, 2001, 
http://developer.intel.com/technology/efi 

• Extensible Firmware Specification, ver. 1.10, Intel Corporation, 2002, 
http://developer.intel.com/technology/efi 

• EFI Driver Library Specification, ver. 1.11, Intel Corporation, 2003, 
http://developer.intel.com/technology/efi 

• EFI 1.10.14.62 Sample Implementation, Intel Corporation, 2003, 
http://developer.intel.com/technology/efi 

• EFI 1.1 Shell Commands Specification, ver. 0.3, Intel Corporation, 2003, 
http://developer.intel.com/technology/efi 

• Itanium® Processor Family System Abstraction Layer Specification, Intel Corporation, 
http://developer.intel.com/design/itanium/family 

• Intel® Itanium® Architecture Software Developer’s Manual, vols. 1–4, Intel Corporation, 
http://developer.intel.com/design/itanium/family 

• A Formal Specification of Intel® Itanium® Processor Family Memory Ordering, Intel 
Corporation, 
http://developer.intel.com/design/itanium/family 

• Microsoft Portable Executable and Common Object File Format Specification, Microsoft 
Corporation, 
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx 

• Developer’s Interface Guide for 64-bit Intel Architecture-based Servers, ver. 2.1, Compaq 
Computer Corporation, Dell Computer Corporation, Fujitsu Siemens Computers, Hewlett-
Packard Company, Intel Corporation, International Business Machines Corporation, and NEC 
Corporation, 2001,   
http://www.dig64.org/specifications 

• Code Complete, Steven C. McConnell, ISBN 1-55615-484-4 

http://developer.intel.com/technology/efi
http://developer.intel.com/technology/efi
http://developer.intel.com/technology/efi
http://developer.intel.com/technology/efi
http://developer.intel.com/technology/efi
http://developer.intel.com/design/itanium/family
http://developer.intel.com/design/itanium/family
http://developer.intel.com/design/itanium/family
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.dig64.org/specifications
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1.4 Conventions Used in This Document 

This document uses the typographic and illustrative conventions described below.  

1.4.1 Data Structure Descriptions 
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This 
distinction means that the low-order byte of a multibyte data item in memory is at the lowest 
address, while the high-order byte is at the highest address. Processors of the Itanium processor 
family may be configured for both “little endian” and “big endian” operation. All implementations 
designed to conform to this specification will use “little endian” operation. 

In some memory layout descriptions, certain fields are marked reserved. Software must initialize 
such fields to zero and ignore them when read. On an update operation, software must preserve 
any reserved field.  

1.4.2 Pseudo-Code Conventions 
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in 
this document are intended to be compiled directly. The code is presented at a level corresponding 
to the surrounding text.  

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an 
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In 
First Out (FIFO). 

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding 
style, particularly the indentation style, is used for readability and does not necessarily comply with 
an implementation of the Extensible Firmware Interface Specification. 
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1.4.3 Typographic Conventions 
This document uses the typographic and illustrative conventions described below: 

Plain text The normal text typeface is used for the vast majority of the 
descriptive text in a specification. 

Plain text (blue) In the electronic version of this specification, any plain text 
underlined and in blue indicates an active link to the cross-reference. 

Bold In text, a Bold typeface identifies a processor register name. In other 
instances, a Bold typeface can be used as a running head within a 
paragraph. 

Italic In text, an Italic typeface can be used as emphasis to introduce a new 
term or to indicate a manual or specification name. 

BOLD Monospace  Computer code, example code segments, and all prototype code 
segments use a BOLD Monospace typeface with a dark red color. 
These code listings normally appear in one or more separate 
paragraphs, though words or segments can also be embedded in a 
normal text paragraph.  

Italic Monospace In code or in text, words in Italic Monospace indicate 
placeholder names for variable information that must be supplied 
(i.e., arguments). 

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red 
color but is not bold or italicized indicate pseudo code or example 
code. These code segments typically occur in one or more separate 
paragraphs and can be outlined by a thin black border. 
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2 
Foundation 

There are several EFI concepts that are cornerstones for understanding EFI drivers. These concepts 
are defined in the EFI 1.10 Specification. However, programmers who are new to EFI may find the 
following introduction to a few of the key EFI concepts a helpful framework to keep in mind as 
they study the EFI 1.10 Specification. 

The basic concepts that are covered in the following sections include the following: 

• Objects managed by EFI-based firmware 
• EFI System Table 
• Handle database and protocols 
• EFI images 
• Events 
• Device paths 
• EFI Driver Model 
• Platform initialization 
• Boot manager and console management 

As each concept is discussed, the related application programming interfaces (APIs) will be 
identified along with references to the related sections in the EFI 1.10 Specification. One 
component that is distributed with the EFI 1.10 Sample Implementation is the EFI Shell. The EFI 
Shell is a special EFI application that provides the user with a command line interface. This 
command line interface provides commands that are useful in the development and testing of EFI 
drivers and EFI applications. In addition, the EFI Shell provides commands that can help illustrate 
many of the basic concepts that are described in the following sections. The useful EFI Shell 
commands will be identified as each concept is introduced. The EFI Shell commands are described 
in detail in the EFI 1.1 Shell Commands Specification. 

2.1 Objects Managed by EFI-Based Firmware 

There are several different types of objects that can be managed through the services provided by 
EFI. Figure 2-1 below shows the various object types. The most important ones for EFI drivers are 
the following: 

• EFI System Table 
• Memory 
• Handles 
• Images 
• Events 

Some EFI drivers may need to access environment variables, but most do not. Rarely do EFI 
drivers require the use of a monotonic counter, watchdog timer, or real-time clock. The EFI System 
Table is the most important data structure, because it provides access to all the services provided by 



EFI 1.10 Driver Writer’s Guide Draft for Review  

26 July 2004 Version 0.9 

EFI and access to all the additional data structures that describe the configuration of the platform. 
Each of these object types and the services that provide access to them will be introduced in the 
following sections. 

Environment 
Variables

EFI Objects

Handles 
and 

Protocols

Images Memory

Events

Time / Date Monotonic 
Counter

Watchdog 
Timer

EFI 
System 
Table

 

Figure 2-1.  Object Managed by EFI-Based Firmware 
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2.2 EFI System Table 

The EFI System Table is the most important data structure in EFI. From this one data structure, an 
EFI executable image can gain access to system configuration information and a rich collection of 
EFI services. These EFI services include the following: 

• EFI Boot Services 
• EFI Runtime Services 
• Protocol services 

The EFI Boot Services and EFI Runtime Services are accessed through the EFI Boot Services 
Table and the EFI Runtime Services Table, which are two of the data fields in the EFI System 
Table. The number and type of services that are available from these two tables is fixed for each 
revision of the EFI Specification. The EFI Boot Services and EFI Runtime Services are defined in 
the EFI 1.10 Specification, and the common uses of theses services by EFI drivers are presented in 
chapter 4 of the EFI 1.10 Specification.  

Protocol services are groups of related functions and data fields that are named by a Globally 
Unique Identifier (GUID; see Appendix A of the EFI 1.10 Specification). Protocol services are 
typically used to provide software abstractions for devices such as consoles, disks, and networks. 
They can also be used to extend the number of generic services that are available in the platform. 
Protocols are the basic building blocks that allow the functionality of EFI firmware to be extended 
over time. The EFI 1.10 Specification defines over 30 different protocols, and various 
implementations of EFI firmware and EFI drivers may produce additional protocols to extend the 
functionality of a platform.  

2.3 Handle Database 

The handle database is composed of objects called handles and protocols. Handles are a collection 
of one or more protocols, and protocols are data structures that are named by a GUID. The data 
structure for a protocol may be empty, may contain data fields, may contain services, or may 
contain both services and data fields. During EFI initialization, the system firmware, EFI drivers, 
and EFI applications will create handles and attach one or more protocols to the handles. 
Information in the handle database is “global” and can be accessed by any executable EFI image. 

The handle database is the central repository for the objects that are maintained by EFI-based 
firmware. The handle database is a list of EFI handles, and each EFI handle is identified by a 
unique handle number that is maintained by the system firmware. A handle number provides a 
database “key” to an entry in the handle database. Each entry in the handle database is a collection 
of one or more protocols. The types of protocols, named by GUID, that are attached to an EFI 
handle determine the handle type. An EFI handle may represent components such as the following: 

• Executable images such as EFI drivers and EFI applications 
• Devices such as network controllers and hard drive partitions 
• EFI services such as EFI Decompression and the EBC Virtual Machine 
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Figure 2-2 below shows a portion of the handle database. In addition to the handles and protocols, a 
list of objects is associated with each protocol. This list is used to track which agents are consuming 
which protocols. This information is critical to the operation of EFI drivers, because this 
information is what allows EFI drivers to be safely loaded, started, stopped, and unloaded without 
any resource conflicts.  
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Figure 2-2.  Handle Database 

Figure 2-3 below shows the different types of handles that may be present in the handle database 
and the relationships between the various handle types. The handle-related terms introduced here 
are used throughout the document. All handles reside in the same handle database and the types of 
protocols that are associated with each handle differentiate the handle type. 
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Figure 2-3.  Handle Types 

Table 2-1 describes the types of handles that are shown in Figure 2-3. 

Table 2-1. Description of Handle Types 

Type of Handle Description 

Agent handle This term is used by some of the EFI Driver Model–related services in the 
EFI 1.10 Specification. An agent is an EFI component that can consume a 
protocol in the handle database. An agent handle is a general term that can 
represent an image handle, a driver handle, or a driver image handle. 

Image handle Supports the Loaded Image Protocol. See chapter 7 of the EFI 1.10 
Specification. 

Driver handle Supports the Driver Binding Protocol. May optionally support the Driver 
Configuration Protocol, the Driver Diagnostics Protocol, and the Component 
Name Protocol. DIG64 requires these optional protocols for Itanium-based 
platforms. Other platform specifications may or may not require these protocols. 
See chapter 9 of the EFI 1.10 Specification. 

continued 
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Table 2-1. Description of Handle Types (continued) 

Type of Handle Description 

Driver image handle The intersection of image handles and driver handles. Supports both the 
Loaded Image Protocol and the Driver Binding Protocol. May optionally support 
the Driver Configuration Protocol, the Driver Diagnostics Protocol, and the 
Component Name Protocol. DIG64 requires these optional protocols for 
Itanium-based platforms. Other platform specifications may or may not require 
these protocols. See chapter 9 of the EFI 1.10 Specification. 

Controller handle If the handle represents a physical device, then it must support the Device Path 
Protocol. If the handle represents a virtual device, then it must not support the 
Device Path Protocol. In addition, a device handle must support one or more 
additional I/O protocols that are used to abstract access to that device. The list 
of I/O protocols that are defined in the EFI 1.10 Specification include the 
following: 

• Console Services: Simple Input Protocol, Simple Text Output Protocol, 
UGA Draw Protocol, UGA I/O Protocol, Simple Pointer Protocol, Serial I/O 
Protocol, and Debug Port Protocol 

• Bootable Image Services: Block I/O Protocol, Disk I/O Protocol, Simple File 
System Protocol, and Load File Protocol 

• Network Services: Network Interface Identifier Protocol, Simple Network 
Protocol, and PXE Base Code Protocol 

• PCI Services: PCI Root Bridge I/O Protocol, PCI I/O Protocol, and Device 
I/O Protocol 

• USB Services: USB Host Controller Protocol, USB I/O Protocol 

• SCSI Services: SCSI Pass Thru Protocol 

Device handle Term is used interchangeably with controller handle. 

Bus controller handle Managed by a bus driver or a hybrid driver that produces child handles. The 
term “bus” does not necessarily match the hardware topology. The term “bus” in 
this document is used from the software perspective, and the production of the 
software construct—which is called a child handle—is the only distinction 
between a controller handle and a bus controller handle. 

Child handle A type of controller handle that is created by a bus driver or a hybrid driver. See 
section 2.6 for the definition of bus driver and hybrid driver. The distinction 
between a child handle and a controller handle depends on the perspective of 
the driver that is using the handle. A handle would be a child handle from a bus 
driver’s perspective, and that same handle may be a controller handle from a 
device driver’s perspective. 

Physical controller handle A controller handle that represents a physical device that must support the 
Device Path Protocol. See chapter 8 of the EFI 1.10 Specification. 

Virtual controller handle A controller handle that represents a virtual device and does not support the 
Device Path Protocol. 

continued 
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Table 2-1. Description of Handle Types (continued) 

Type of Handle Description 

Service handle Does not support the Loaded Image Protocol, the Driver Binding Protocol, or 
the Device Path Protocol. Instead, it supports the only instance of a specific 
protocol in the entire handle database. This protocol provides services that may 
be used by other EFI applications or EFI drivers. The list of service protocols 
that are defined in the EFI 1.10 Specification include the Platform Driver 
Override Protocol, Unicode Collation Protocol, Boot Integrity Services Protocol, 
Debug Support Protocol, Decompress Protocol, and EFI Byte Code Protocol. 

2.4 Protocols 

The extensible nature of EFI is built, to a large degree, around protocols. EFI drivers are sometimes 
confused with EFI protocols. Although they are closely related, they are distinctly different. An EFI 
driver is an executable EFI image that installs a variety of protocols of various handles to 
accomplish its job. 

EFI protocols are a block of function pointers and data structures or APIs that have been defined by 
a specification. At a minimum, the specification will define a GUID. This number is the protocol’s 
real name and will be used to find this protocol in the handle database. The protocol also typically 
includes a set of procedures and/or data structures (called the protocol interface structure). The 
following is an example of a protocol definition from section 9.6 of the EFI 1.10 Specification. 
Notice that it defines two function definitions and one data field. 

GUID 
#define EFI_COMPONENT_NAME_PROTOCOL_GUID \ 
  { 0x107a772c,0xd5e1,0x11d4,0x9a,0x46,0x0,0x90,0x27,0x3f,0xc1,0x4d } 

Protocol Interface Structure 
typedef struct _EFI_COMPONENT_NAME_PROTOCOL { 
  EFI_COMPONENT_NAME_GET_DRIVER_NAME      GetDriverName; 
  EFI_COMPONENT_NAME_GET_CONTROLLER_NAME  GetControllerName; 
  CHAR8                                   *SupportedLanguages; 
} EFI_COMPONENT_NAME_PROTOCOL; 

 

Figure 2-4 below shows a single handle and protocol from the handle database that is produced by 
an EFI driver. The protocol is composed of a GUID and a protocol interface structure. Many times, 
the EFI driver that produces a protocol interface will maintain additional private data fields. The 
protocol interface structure itself simply contains pointers to the protocol function. The protocol 
functions are actually contained within the EFI driver. An EFI driver may produce one protocol or 
many protocols depending on the driver’s complexity.  



EFI 1.10 Driver Writer’s Guide Draft for Review  

32 July 2004 Version 0.9 

Handle

GUID

First Handle

Protocol Interface

. . .

Function Pointer 1

Function Pointer 2

. . .

. . .

EFI Driver

GUID 1

Function 1

Function 2

. . .

GUID 2

. . .

. . .

Private Data

Access 
Device or 
Services 

Produced by 
other EFI 
Drivers

 

Figure 2-4.  Construction of a Protocol 

Not all protocols are defined in the EFI 1.10 Specification. The EFI 1.10 Sample Implementation 
includes many protocols that are not part of the EFI 1.10 Specification. These protocols are 
necessary to provide all of the functionality in a particular implementation, but they are not defined 
in the EFI 1.10 Specification because they do not present an external interface that is required to 
support booting an OS or writing an EFI driver. The creation of new protocols is how EFI-based 
systems can be extended over time as new devices, buses, and technologies are introduced. 

The following are a few examples of protocols in the EFI 1.10 Sample Implementation that are not 
part of the EFI 1.10 Specification:  

• Varstore 

• ConIn 

• ConOut 

• StdErr 

• PrimaryConIn 

• VgaMiniPort 

• UsbAtapi 
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The EFI Application Toolkit also contains a number of EFI protocols, such as the following, that 
may be found on some platforms:  

• PPP Deamon 
• Ramdisk 
• TCP/IP 

The OS loader and drivers should not depend on these types of protocols because they are not 
guaranteed to be present in every EFI-compliant system. OS loaders and drivers should depend 
only on protocols that are defined in the EFI 1.10 Specification and protocols that are required by 
platform design guides such as DIG64. 

The extensible nature of EFI allows each platform to design and add its own special protocols. 
These protocols can be used to expand that capabilities of EFI and provide access to proprietary 
devices and interfaces in congruity with the rest of the EFI architecture. 

Because a protocol is “named” by a GUID, there should be no other protocols with that same 
identification number. Care must be taken when creating a new protocol to define a new GUID for 
it. EFI fundamentally assumes that a specific GUID will expose a specific protocol interface. 
Cutting and pasting an existing GUID or hand modifying an existing GUID creates the opportunity 
for a duplicate GUID to be introduced. A system containing a duplicate GUID may inadvertently 
find the new protocol and think that it is another protocol, which will mostly likely crash the 
system. These types of bugs are also very difficult to root cause. The versions of Microsoft Visual 
Studio that are referenced by the EFI 1.10 Sample Implementation’s RELNOTES.DOC include a 
GUIDGEN tool that can quickly generate a GUID definition that is suitable for including in the 
code. 

2.4.1 Working with Protocols 
Any EFI code can operate with protocols during boot time. However, after 
ExitBootServices() is called, the handle database is no longer available. There are several 
EFI boot time services for working with EFI protocols. Section 5.3 of the EFI 1.10 Specification 
discusses these Protocol Handler Services. These services are described in more detail in chapter 4 
of this document. 

2.4.2 Multiple Protocol Instances 
A handle may have many protocols attached to it. However, it may have only one protocol of each 
type. In other words, a handle may not have more than one of the exact same protocol. Otherwise, it 
would make requests for a particular protocol on a handle nondeterministic. 

However, drivers may create multiple “instances” of a particular protocol and attach each instance 
to a different handle. This scenario is the case with the PCI I/O Protocol, where the PCI bus driver 
installs a PCI I/O Protocol instance for each PCI device. Each “instance” of the PCI I/O Protocol is 
configured with data values that are unique to that PCI device, including the location and size of the 
EFI Option ROM (OpROM) image. 
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Also, each driver can install customized versions of the same protocol (as long as it is not on the 
same handle). For example, each EFI driver installs the Component Name Protocol on its driver 
image handle, yet when the EFI_COMPONENT_NAME_PROTOCOL.GetDriverName() 
function is called, each handle will return the unique name of the driver that owns that image 
handle. The EFI_COMPONENT_NAME_PROTOCOL.GetDriverName() function on the USB 
bus driver handle will return “USB bus driver” for the English language, but the 
EFI_COMPONENT_NAME_PROTOCOL.GetDriverName() function on the PXE driver handle 
will return “PXE base code driver.” 

2.4.3 Tag GUID 
A protocol may be nothing more than a GUID. This GUID is also known as a tag GUID. Such a 
protocol can still serve very useful purposes such as marking a device handle as special in some 
way or allowing other EFI images to easily find the device handle by querying the system for the 
device handles with that protocol GUID attached. 

The EFI 1.10 Sample Implementation uses the HOT_PLUG_DEVICE_GUID in this way to mark 
device handles that represent devices from a hot-plug bus such as USB. 

2.5 EFI Images 

This section describes the different types of EFI images. All EFI images contain a PE/COFF header 
that defines the format of the executable code (see the Microsoft Portable Executable and Common 
Object File Format Specification for more information). The code can be for IA-32, the Itanium 
processor, or EFI Byte Code. The header will define the processor type and the image type. 
Section 2.1.1 of the EFI 1.10 Specification defines the three processor types and the following three 
image types:   

• EFI applications 
• EFI Boot Service drivers  
• EFI Runtime drivers 

EFI images are loaded and relocated into memory with the Boot Service gBS->LoadImage(). 
There are several supported storage locations for EFI images, including the following: 

• Expansion ROMs on a PCI card 
• System ROM or system flash 
• A media device such as a hard disk, floppy, CD-ROM, or DVD 
• LAN boot server 

In general, EFI images are not compiled and linked at a specific address. Instead, they are compiled 
and linked such that relocation fix-ups are included in the EFI image, which allows the EFI image 
to be placed anywhere in system memory. The Boot Service gBS->LoadImage() does the 
following: 

• Allocates memory for the image being loaded 
• Automatically applies the relocation fix-ups to the image 
• Creates a new image handle in the handle database, which installs an instance of the 

EFI_LOADED_IMAGE_PROTOCOL 
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This instance of the EFI_LOADED_IMAGE_PROTOCOL contains information about the EFI image 
that was loaded. Because this information is published in the handle database, it is available to all 
EFI components. 

After an EFI image is loaded with gBS->LoadImage(), it can be started with a call to 
gBS->StartImage(). The header for an EFI image contains the address of the entry point that 
is called by gBS->StartImage(). The entry point always receives the following two 
parameters: 

• The image handle of the EFI image being started 
• A pointer to the EFI System Table 

These two items allow the EFI image to do the following: 

• Access all of the EFI services that are available in the platform. 
• Retrieve information about where the EFI image was loaded from and where in memory the 

image was placed.  

The operations that are performed by the EFI image in its entry point vary depending on the type of 
EFI image. Figure 2-5 below shows the various EFI image types and the relationships between the 
different levels of images. 
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Figure 2-5.  Image Types 
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Table 2-2 describes the types of images that are shown in Figure 2-5. 

Table 2-2. Description of Image Types 

Type of Image Description 

Application An EFI image of type 
EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION. This image is 

executed and automatically unloaded when the image exits or returns from its 
entry point. 

OS loader A special type of application that normally does not return or exit. Instead, it 
calls the EFI Boot Service gBS->ExitBootServices() to transfer 

control of the platform from the firmware to an operating system. 

Driver An EFI image of type 
EFI_IMAGE_SUBSYSTEM_BOOT_SERVICE_DRIVER or 
EFI_IMAGE_SUBSYSTEM_RUNTIME_DRIVER. If this image returns 
EFI_SUCCESS, then the image is not unloaded. If the image returns an error 
code other than EFI_SUCCESS, then the image is automatically unloaded 

from system memory. The ability to stay resident in system memory is what 
differentiates a driver from an application. Because drivers can stay resident in 
memory, they can provide services to other drivers, applications, or an 
operating system. Only the services produced by runtime drivers are allowed to 
persist past gBS->ExitBootServices(). 

Service driver A driver that produces one or more protocols on one or more new service 
handles and returns EFI_SUCESS from its entry point. 

Initializing driver A driver that does not create any handles and does not add any protocols to the 
handle database. Instead, this type of driver performs some initialization 
operations and returns an error code so the driver is unloaded from system 
memory. 

Root bridge driver A driver that creates one or physical controller handles that contain a Device 
Path Protocol and a protocol that is a software abstraction for the I/O services 
provided by a root bus produced by a core chipset. The most common root 
bridge driver is one that creates handles for the PCI root bridges in the platform 
that support the Device Path Protocol and the PCI Root Bridge I/O Protocol. 

EFI 1.02 driver A driver that follows the EFI 1.02 Specification. This type of driver does not use 
the EFI Driver Model. These types of drivers are not discussed in detail in this 
document. Instead, this document presents recommendations on converting 
EFI 1.02 drivers to drivers that follow the EFI Driver Model. 

continued 
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 Table 2-2. Description of Image Types (continued) 

Type of Image Description 

EFI Driver Model driver A driver that follows the EFI Driver Model that is described in detail in the EFI 
1.10 Specification. This type of driver is fundamentally different from service 
drivers, initializing drivers, root bridge drivers, and EFI 1.02 drivers because a 
driver that follows the EFI Driver Model is not allowed to touch hardware or 
produce device-related services in the driver entry point. Instead, the driver 
entry point of a driver that follows the EFI Driver Model is allowed only to 
register a set of services that allow the driver to be started and stopped at a 
later point in the system initialization process. 

Device driver A driver that follows the EFI Driver Model. This type of driver produces one or 
more driver handles or driver image handles by installing one or more instances 
of the Driver Binding Protocol into the handle database. This type of driver does 
not create any child handles when the Start() service of the Driver Binding 

Protocol is called. Instead, it only adds additional I/O protocols to existing 
controller handles. 

Bus driver A driver that follows the EFI Driver Model. This type of driver produces one or 
more driver handles or driver image handles by installing one or more instances 
of the Driver Binding Protocol in the handle database. This type of driver 
creates new child handles when the Start() service of the Driver Binding 

Protocol is called. It also adds I/O protocols to these newly created child 
handles. 

Hybrid driver A driver that follows the EFI Driver Model and shares characteristics with both 
device drivers and bus drivers. This distinction means that the Start() 

service of the Driver Binding Protocol will add I/O protocols to existing handles 
and it will create child handles. 

2.5.1 Applications 
An EFI application will start execution at its entry point and then execute until it returns from its 
entry point or it calls the Exit() boot service function. When it is done, the image is unloaded 
from memory. It does not stay resident in memory. Some examples of common EFI applications 
include the following: 

• EFI Shell 
• EFI Shell commands 
• Flash utilities 
• Diagnostic utilities 

It is perfectly acceptable to invoke EFI applications from inside other EFI applications. 
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2.5.2 OS Loader 
The EFI 1.10 Specification details a special type of EFI application called an OS boot loader. It is 
an EFI application that calls ExitBootServices(). ExitBootServices() is called when 
the OS loader has set up enough of the OS infrastructure that it is ready to assume ownership of the 
system resources. At ExitBootServices(), the EFI core will free all of its boot time services 
and drivers, leaving only the runtime services and drivers. 

2.5.3 Drivers 
EFI drivers are different from EFI applications in that unless there is an error returned from the 
driver’s entry point, the driver stays resident in memory. The EFI core firmware, the boot manager, 
or other EFI applications may load drivers. 

2.5.3.1 EFI 1.02 Drivers 
There are several types of EFI drivers. In EFI 1.02, drivers were constructed without a defined 
driver model. The EFI 1.10 Specification provides a driver model that replaces the way drivers 
were built in EFI 1.02 but that still maintains backward compatibility with EFI 1.02 drivers. 
EFI 1.02 immediately started the driver inside the entry point. This method meant that the driver 
would immediately search for supported devices, install the necessary I/O protocols, and start the 
timers that were needed to poll the devices. However, this method did not allow the system to have 
control over the driver loading and connection policies, so the EFI Driver Model was introduced in 
the EFI 1.10 Specification to resolve these issues. See section 1.6.1 of the EFI 1.10 Specification 
for details. 

The Floating Point Software Assist (FPSWA) driver is a common example of an EFI 1.02 driver; 
other EFI 1.02 drivers can be found in the EFI Application Toolkit 1.02.12.38. It is strongly 
recommended that EFI 1.02 drivers be converted to EFI 1.10 drivers that follow the EFI Driver 
Model. 

2.5.3.2 Boot Service and Runtime Drivers 
Boot time drivers are loaded into memory marked as EfiBootServicesCode, and they allocate 
their data structures from memory marked as EfiBootServicesData. These memory types are 
converted to available memory after gBS->ExitBootServices() is called.  

Runtime drivers are loaded in memory marked as EfiRuntimeServicesCode, and they 
allocate their data structures from memory marked as EfiRuntimeServicesData. These types 
of memory are preserved after gBS->ExitBootServices() is called. This preservation allows 
runtime driver to provide services to an operating system while the operating system is running. 
Runtime drivers must publish an alternative calling mechanism, because the EFI handle database 
does not persist into OS runtime. The most common examples of EFI runtime drivers are the 
Floating Point Software Assist driver (FPSWA.efi) and the network Universal Network Driver 
Interface (UNDI) driver. Other than these examples, runtime drivers are not very common and will 
not be discussed in detail. In addition, the implementation and validation of runtime drivers is much 
more difficult than boot service drivers because EFI supports the translation of runtime services and 
runtime drivers from a physical addressing mode to a virtual addressing mode.  
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2.6 Events and Task Priority Levels 

Events are another type of object that is managed through EFI services. They can be created and 
destroyed and are either in the waiting state or the signaled state. An EFI image can do any of the 
following: 

• Create an event. 
• Destroy an event. 
• Check to see if an event is in the signaled state. 
• Wait for an event to be in the signaled state.  
• Request that an event be moved from the waiting state to the signaled state.  

Because EFI does not support interrupts, it can present a challenge to driver writers who are 
accustomed to an interrupt-driven driver model. Instead, EFI supports polled drivers. The most 
common use of events by an EFI driver is the use of timer events that allows drivers to periodically 
poll a device. Figure 2-6 below shows the different types of events that are supported in EFI and the 
relationships between those events.  
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Figure 2-6.  Event Types 
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Table 2-3 describes the types of events that are shown in Figure 2-6. 

Table 2-3. Description of Event Types 

Type of Events Description 

Wait event An event whose notification function is executed whenever the event is checked 
or waited upon. 

Signal event An event whose notification function is scheduled for execution whenever the 
event goes from the waiting state to the signaled state. 

Exit Boot Services event A special type of signal event that is moved from the waiting state to the 
signaled state when the EFI Boot Service ExitBootServices() is 

called. This call is the point in time when ownership of the platform is 
transferred from the firmware to an operating system. The event’s notification 
function is scheduled for execution when ExitBootServices() 

is called. 

Set Virtual Address Map 
event 

A special type of signal event that is moved from the waiting state to the 
signaled state when the EFI Runtime Service 
SetVirtualAddressMap() is called. This call is the point in time when 

the operating system is making a request for the runtime components of EFI to 
be converted from a physical addressing mode to a virtual addressing mode. 
The operating system provides the map of virtual addresses to use. The event’s 
notification function is scheduled for execution when 
SetVirtualAddressMap() is called. 

Timer event A type of signal event that is moved from the waiting state to the signaled state 
when at least a specified amount of time has elapsed. Both periodic and one-
shot timers are supported. The event’s notification function is scheduled for 
execution when a specific amount of time has elapsed. 

Periodic timer event A type of timer event that is moved from the waiting state to the signaled state 
at a specified frequency. The event’s notification function is scheduled for 
execution when a specific amount of time has elapsed. 

One-shot timer event A type of timer event that is moved from the waiting state to the signaled state 
after the specified timer period has elapsed. The event’s notification function is 
scheduled for execution when a specific amount of time has elapsed. 
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The following three elements are associated with every event:   

• The Task Priority Level (TPL) of the event 
• A notification function 
• A notification context 

The notification function for a wait event is executed when the state of the event is checked or 
when the event is being waited upon. The notification function of a signal event is executed 
whenever the event transitions from the waiting state to the signaled state. The notification context 
is passed into the notification function each time the notification function is executed. The TPL is 
the priority at which the notification function is executed. Table 2-4 lists the four TPL levels that 
are defined in EFI. 

Table 2-4. Task Priority Levels Defined in EFI 

Task Priority Level Description 

TPL_APPLICATION The priority level at which EFI images are executed. 

TPL_CALLBACK The priority level for most notification functions. 

TPL_NOTIFY The priority level at which most I/O operations are performed. 

TPL_HIGH_LEVEL The priority level for the one timer interrupt supported in EFI. 
 

TPLs serve the following two purposes:   

• To define the priority in which notification functions are executed 
• To create locks 

In the first purpose, this mechanism is used only when more than one event is in the signaled state 
at the same time. In these cases, the notification function that has been registered with the higher 
priority will be executed first. Also, notification functions at higher priorities can interrupt the 
execution of notification functions executing at a lower priority. 

In the second purpose, creating locks, it is possible for the code in normal context and the code in 
interrupt context to access the same data structure, because EFI does support a single timer 
interrupt. This access can cause issues if the updates to a shared data structure are not atomic. An 
EFI application or EFI driver that wants to guarantee exclusive access to a shared data structure can 
temporarily raise the task priority level to prevent simultaneous access from both normal context 
and interrupt context. A lock can be created by temporarily raising the task priority level to 
TPL_HIGH_LEVEL. This level will even block the one timer interrupt, but care must be taken to 
minimize the amount of time that the system is at TPL_HIGH_LEVEL, because all timer-based 
events are blocked during this time and any driver that requires periodic access to a device will be 
prevented from accessing its device. 
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2.7 EFI Device Paths 

EFI defines a Device Path Protocol that is attached to device handles in the handle database to help 
operating systems and their loaders identify the hardware that a device handle represents. The 
Device Path Protocol provides a unique name for each physical device in a system. The collection 
of Device Path Protocols for the physical devices managed by EFI-based firmware is called a name 
space. Modern operating systems tend to use ACPI and industry standard buses to produce a name 
space while the operating system is running. However, the ACPI name space is difficult to parse, 
and it would greatly increase the size and complexity of system firmware to carry an ACPI name 
space parser. Instead, EFI uses aspects of the ACPI name space that do not require an ACPI name 
space parser. This compromise keeps the size and complexity of system firmware to a minimum 
and provides a way for the operating system to create a mapping from EFI device paths to the 
operating system’s name space. 

A device path is a data structure that is composed of one or more device path nodes. Every device 
path node contains a standard header that includes the node’s type, subtype, and length. This 
standard header allows a parser of a device path to hop from one node to the next without having to 
understand every type of node that may be present in the system. Example 2-1 below shows the 
declaration of the standard header for an EFI device path. The device or bus-specific node data 
follows the Length field. The declaration of the PCI device path node is also shown in the 
example below. It contains the PCI-device-specific fields Function and Device. 
// 
// Generic device path node header 
// 
typedef struct  
  UINT8  Type; 
  UINT8  SubType; 
  UINT8  Length[2]; 
} EFI_DEVICE_PATH_PROTOCOL; 
 
// 
// PCI Device Path Node that includes a header and PCI-specific fields 
// 
typedef struct _PCI_DEVICE_PATH { 
  EFI_DEVICE_PATH_PROTOCOL        Header; 
  UINT8                           Function; 
  UINT8                           Device; 
} PCI_DEVICE_PATH; 

Example 2-1.  EFI Device Path Header 

A device path is position independent because it is not allowed to contain any pointer values. This 
independence allows device paths to be easily moved from one location to another and stored in 
nonvolatile storage. A device path is terminated by a special device path node called an end device 
path node. Table 2-5 lists the types of device path nodes that are defined in section 8.3 of the 
EFI 1.10 Specification.  
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Table 2-5. Types of Device Path Nodes Defined in EFI 1.10 Specification 

Type of Device Path Nodes Description 

Hardware device path node Used to describe devices on industry-standard buses that are directly 
accessible through processor memory or processor I/O cycles. These 
devices include memory-mapped devices and devices on PCI buses and PC 
card buses. 

ACPI device path node  Used to describe devices whose enumeration is not described in an 
industry-standard fashion. This type of device path is used to describe 
devices such as PCI root bridges and ISA devices. These device path nodes 
contain HID, CID, and UID fields that must match the HID, CID, and UID 
values that are present in the platform’s ACPI tables. 

Messaging device path node Used to describe devices on industry-standard buses that are not directly 
accessible through processor memory or processor I/O cycles. These 
devices are accessed by the processor through one or more hardware 
bridge devices that translate one industry-standard bus type to another 
industry-standard bus type. This type of device path is used to describe 
devices such as SCSI, Fibre Channel, 1394, USB, I2O, InfiniBand*, UARTs, 
and network agents. 

Media device path node Hard disk, CD-ROM, and file paths in a file system that support multiple 
directory levels. 

BIOS Boot Specification 
device path node 

Used to describe a device that has a type that follows the BIOS Boot 
Specification, such as floppies, hard disks, CD-ROMs, PCMCIA devices, 
USB devices, network devices, and Bootstrap Entry Vector (BEV) devices. 
These device path nodes are used only in a platform that supports BIOS INT 
services. 

End device path node Used to terminate a device path. 
 

Each of the device path node types also supports a vendor-defined node that is the extensibility 
mechanism for device paths. As new devices, bus types, and technologies are introduced into 
platforms, new device path nodes may have to be created. The vendor-defined nodes use a GUID to 
distinguish new device path nodes. When a device path node is created for a new device or bus 
type, the GUIDGEN tool should be used to create a new GUID. Care must be taken in the choice of 
the data fields used in the definition of a new device path node. As long as a device is not 
physically moved from one location in a platform to another location, the device path must not 
change across platform boots or system configuration changes. For example, the PCI device path 
node only contains a Device and a Function field. It does not contain a Bus field, because the 
addition of a device with a PCI-to-PCI bridge may modify the bus numbers of other devices in the 
platform. Instead, the device path for a PCI device is described with one or more PCI device path 
nodes that describe the path from the PCI root bridge, through zero or more PCI-to-PCI bridges, 
and finally the target PCI device. 

The EFI Shell is able to display a device path on a console as a string. The conversion of device 
path nodes to printable strings is not architectural. It is a feature that is implemented in the EFI 
Shell that allows developers to view device paths without having to manually translate hex dumps 
of the device path node data structures. Example 2-2 shows some example device paths from 
Itanium and IA-32 platforms. These device paths show standard and extended ACPI device path 
nodes being used for a PCI root bridge and an ISA floppy controller. PCI device path nodes are 
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used for PCI-to-PCI bridges, PCI video controllers, PCI IDE controllers, and PCI-to-LPC bridges. 
Finally, IDE messaging device path nodes are used to describe an IDE hard disk, and media device 
path nodes are used to describe a partition on an IDE hard disk. 
// 
// PCI Root Bridge #0 using an Extended ACPI Device Path 
// 
Acpi(HWP0002,PNP0A03,0) 
 
// 
// PCI Root Bridge #1 using an Extended ACPI Device Path 
// 
Acpi(HWP0002,PNP0A03,1) 
 
// 
// PCI Root Bridge #0 using a standard ACPI Device Path 
// 
Acpi(PNP0A03,0) 
 
// 
// PCI-to-PCI bridge device directly attached to PCI Root Bridge #0 
// 
Acpi(PNP0A03,0)/Pci(1E|0) 
 
// 
// A video adapter installed in a slot on the other side of a PCI-to-PCI bridge  
// that is attached to PCI Root Bridge #0. 
// 
Acpi(PNP0A03,0)/Pci(1E|0)/Pci(0|0) 
 
// 
// A PCI-to-LPC bridge device attached to PCI Root Bridge #0 
// 
Acpi(PNP0A03,0)/Pci(1F|0) 
// 
// A 1.44 MB floppy disk controller attached to a PCI-to-LPC bridge device  
// attached to PCI Root Bridge #0 
// 
Acpi(PNP0A03,0)/Pci(1F|0)/Acpi(PNP0604,0) 
 
// 
// A PCI IDE controller attached to PCI Root Bridge #0 
// 
Acpi(PNP0A03,0)/Pci(1F|1) 
 
// 
// An IDE hard disk attached to a PCI IDE controller attached to  
// PCI Root Bridge #0 
// 
Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Secondary,Master) 
 
// 
// Partition #1 of an IDE hard disk attached to a PCI IDE controller attached to 
// PCI Root Bridge #0 
// 
Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Secondary,Master)/HD(Part1,Sig00000000) 

Example 2-2.  Example Device Paths 
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2.7.1 How Drivers Use Device Paths 
EFI drivers that manage physical devices must be aware of device paths. When possible, EFI 
drivers treat device paths as opaque data structures. Device drivers do not operate on them at all. 
Root bridge drivers are required only to produce the device paths for the root bridges, which 
typically contain only a single ACPI device path node, and bus drivers usually just append a single 
device path node for a child device to the device path of the parent device. The bus drivers should 
not parse the contents of the parent device path. Instead, a bus driver appends the one device path 
node that it is required to understand to the device path of the parent device. 

For example, a SCSI driver that produces child handles for the disk devices on the SCSI channel 
will need to build a device path for each disk device. The device path will be constructed by 
appending a SCSI device path node to the device path of the SCSI controller itself. The SCSI 
device path node simply contains the Physical Unit Number (PUN) and Logical Unit Number 
(LUN) of the SCSI disk device, and the driver for a SCSI host adapter is already tracking that 
information. 

The mechanism described above allows the construction of device paths to be a distributed process. 
The bus drivers at each level of the system hierarchy are required only to understand the device 
path nodes for their child devices. Bus drivers understand their local view of the device path, and a 
group of bus drivers from each level of the system bus hierarchy work together to produce complete 
device paths for the console and boot devices that are used to install and boot operating systems.  

There are a number of EFI Library services that are available to help manage device paths. Please 
see the EFI Library Specification for more details. 

2.7.2 Considerations for Itanium® Architecture  
Device paths nodes can be any length, which can actually cause problems on Itanium-based 
platforms where all data that is accessed must be aligned on proper boundaries. A device path node 
that is not a multiple of 8 bytes in length will cause the device paths nodes that follow it to be 
unaligned. Care must be taken when using device paths to make sure an alignment fault is not 
generated. Device paths that are stored in environment variables are packed on purpose to reduce 
the amount of nonvolatile storage that is consumed by device paths. These device paths can be 
unpacked, so each device path node is guaranteed to be on an 8-byte boundary. However, there is 
no standard way to tell if a device path is packed, unpacked, aligned, or unaligned based on the 
device path contents alone. Instead, consumers of device paths should always take measures to 
guarantee that an alignment fault is never generated. The basic technique is to copy a device path 
node from a potentially unaligned device path into a device path node that is known to be aligned. 
Then, the device path node contents can be examined or updated and potentially copied back to the 
original device path. Some example of these operations can be found in section 18.1. 
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2.7.3 Environment Variables 
Device paths are also used when environment variables are built and stored in nonvolatile storage. 
There are a number of environment variables defined in section 3.2 of the EFI 1.10 Specification. 
These variables define the following: 

• Console input devices 
• Console output devices 
• Standard error devices 
• The drivers that need to be loaded prior to an OS boot 
• The boot selections that the platform supports   

The EFI boot manager, EFI utilities, and EFI-compliant operating systems manage these 
environment variables as operating systems are installed and removed from a platform. 

2.8 EFI Driver Model 

The EFI 1.10 Specification defines the EFI Driver Model. Drivers that follow the EFI Driver Model 
share the same image characteristics as EFI applications. However, the model allows EFI more 
control over drivers by separating the loading of drivers into memory from the starting and stopping 
of drivers. Table 2-6 lists the series of EFI Driver Model–related protocols that are used to 
accomplish this separation.  

Table 2-6. Protocols Used to Separate the Loading and Starting/Stopping of Drivers 

Protocol Description 

Driver Binding Protocol Provides functions for starting and stopping the driver, as well as a function 
for determining if the driver can manage a particular controller. The EFI 
Driver Model requires this protocol. 

Component Name Protocol Provides functions for retrieving a human-readable name of a driver and the 
controllers that a driver is managing. While the EFI 1.10 Specification lists 
this protocol as optional, the Developer’s Interface Guide for 64-bit Intel 
Architecture-based Servers (hereafter referred to as “DIG64 specification” or 
just “DIG64”) lists this protocol as required for Itanium-based platforms. 

Driver Diagnostics Protocol Provides functions for executing diagnostic functions on the devices that a 
driver is managing. While the EFI 1.10 Specification lists this protocol as 
optional, DIG64 lists this protocol as required for Itanium-based platforms. 

Driver Configuration Protocol Provides functions that allow the user to configure the devices that a driver 
is managing. It also allows a device to be placed in its default configuration. 
While the EFI 1.10 Specification lists this protocol as optional, DIG64 lists 
this protocol as required for Itanium-based platforms. 
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The new protocols are registered on the driver’s image handle. In the EFI Driver Model, the main 
goal of the driver’s entry point is to install theses protocols and exit successfully. At a later point in 
the system initialization, EFI can use these protocol functions to operate the driver. A more 
complex driver may produce more than one instance of the 
EFI_DRIVER_BINDING_PROTOCOL. In this case, the additional instances of the 
EFI_DRIVER_BINDING_PROTOCOL will be installed on new handles. These new handles may 
also optionally support the Component Name Protocol, Driver Configuration Protocol, and Driver 
Diagnostics Protocol. 

The EFI Driver Model follows the organization of physical/electrical architecture by defining the 
following two basic types of EFI boot time drivers:   

• Device drivers 
• Bus drivers 

A driver that has characteristics of both a device driver and a bus driver is known as a hybrid 
driver.  

Device drivers and bus drivers are distinguished by the operations that they perform in the 
Start() and Stop() services of the EFI_DRIVER_BINDING_PROTOCOL. By walking 
through the process of connecting a driver to a device, the roles and relationships of the bus drivers 
and device drivers will become evident; the following sections discuss these two driver types. 

2.8.1 Device Driver 
The Start() service a device driver will install the protocol(s) directly onto the controller handle 
that was passed into the Start() service. The protocol(s) installed by the device driver uses the I/O 
services that are provided by the bus I/O protocol that is installed on the controller handle. For 
example, a device driver for a PCI controller would use the services of the PCI I/O Protocol, and a 
device driver for a USB device would use the service of the USB I/O Protocol. This process is called 
“consuming the bus I/O abstraction.”  The following are the main objectives of the device driver:  

• Initialize the controller. 
• Install an I/O protocol on the device that can be used by the EFI system firmware to 

boot the operating system.  

It does not make sense to write device drivers for devices that cannot be used to boot a platform. 
Table 2-7 lists the standard I/O protocols that the EFI 1.10 Specification defines for different 
classes of devices. 

Table 2-7. I/O Protocols Used for Different Device Classes  

Class of Device Protocol Used 

Defined in this 
section in EFI 1.10 
Specification 

Media BLOCK_IO_PROTOCOL 11.6 

LAN NETWORK_INTERFACE_IDENTIFIER_PROTOCOL 

(also known as UNDI) 
15.2 

Console output SIMPLE_TEXT_OUTPUT_PROTOCOL 10.3 

continued 
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Table 2-7. I/O Protocols Used for Different Device Classes (continued) 

Class of Device Protocol Used 

Defined in this 
section in EFI 1.10 
Specification 

Console input SIMPLE_INPUT_PROTOCOL 10.2 

Root bus  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL Note  12.2 

Note Provided by the system firmware. Drivers that produce this protocol are a special case because it is the first device in 
the handle database (called a “root” device). Because of this, it does not follow all the normal EFI Driver Model rules 
and is not a good example driver to follow when making your own device drivers. 

 

The fundamental EFI definition of a device driver is that it does not create any child handles. This 
capability distinguishes a device driver from a bus driver. This definition has the potential to create 
some confusion because it is often reasonable to write a driver that creates child handles. This 
creation will make the driver a bus driver by definition, but it may not be managing a hardware bus 
in the classical sense (such as a PCI, SCSI, USB, or Fibre Channel bus). 

Just because a device driver does not create child handles does not mean that the device that a 
device driver is managing will never be a “parent.”  The protocol(s) produced by a device driver on 
a controller handle may be consumed by a bus driver that produces child handles. In this case, the 
controller handle that is managed by a device driver is a parent controller. This scenario happens 
quite often. For example, the EFI_USB_HC_PROTOCOL is produced by a device driver called the 
USB host controller driver. This protocol is consumed by the bus driver that is called the USB bus 
driver and that creates child handles that contain the USB_IO_PROTOCOL. The USB host 
controller driver that produced the EFI_USB_HC_PROTOCOL has no knowledge of the child 
handles that are produced by the USB bus driver. 

2.8.2 Bus Driver 
A bus driver is nearly identical to a device driver except that it creates child handles. This ability 
leads to several added features and responsibilities for a bus driver that will be addressed in detail 
throughout this document. For example, device drivers do not need to concern themselves with 
searching the bus. 

Just like a device driver, the Start() function of a bus driver will consume the parent bus I/O 
abstraction(s) and produce new I/O abstractions in the form of protocols. For example, the PCI bus 
driver consumes the services of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and uses these 
services to scan a PCI bus for PCI controllers. Each time that a PCI controller is found, a child 
handle is created and the EFI_PCI_IO_PROTOCOL is installed on the child handle. The services 
of the EFI_PCI_IO_PROTOCOL are implemented using the services of the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. As a second example, the USB bus driver uses the 
services of the EFI_USB_HC_PROTOCOL to discover and create child handles that support the 
EFI_USB_IO_PROTOCOL for each USB device on the USB bus. The services of the 
EFI_USB_IO_PROTOCOL are implemented using the services of the 
EFI_USB_HC_PROTOCOL. 

The following are the main objectives of the bus driver: 

• Initialize the bus controller. 
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• Determine how many children to create. For example, the PCI bus driver may discover and 
enumerate all PCI devices on the bus or only a single PCI device that is being used to boot. 
How a bus driver handles this step creates a basic subdivision in the types of bus drivers. A bus 
driver can do one of the following: 

 Create handles for all child controllers on the first call to Start().  

 Allow the handles for the child controllers to be created across multiple calls to Start().  

This second type of bus driver is very useful because it reduces the platform boot time. It 
allows a few child handles or even a single child handle to be created. On buses that take a long 
time to enumerate their children (for example, SCSI and Fibre Channel), multiple calls to 
Start() can save a large amount of time when booting a platform. 

• Allocate resources and create a child handle in the EFI handle database for one or more child 
controllers. 

• Install an I/O protocol on the child handle that abstracts the I/O operations that the controller 
supports (such as the PCI I/O Protocol or the USB I/O Protocol). 

• If the child handle represents a physical device, then install a Device Path Protocol (see 
chapter 8 in the EFI 1.10 Specification). 

• Load drivers from option ROMs if present. The PCI bus driver is the only bus driver that loads 
from option ROMs so far. 

Some common examples of EFI bus drivers include the following: 

• PCI bus driver  
• USB bus driver 
• SCSI bus drivers  

Because bus drivers are defined as drivers that produce child handles, there are some other drivers, 
such as the following, that unexpectedly qualify as bus drivers:  

• Serial driver: Creates a child handle and extends the Device Path Protocol to 
include a Uart() messaging device path node. 

• LAN driver: Creates a child handle and extends the Device Path Protocol to include a Mac() 
address messaging device path node. 

2.9 Simplified Connection Process  

All EFI drivers that adhere to the EFI Driver Model follow the same basic procedure. When the 
driver is loaded, it will install a Driver Binding Protocol on the image handle from which it was 
loaded. It may also update a pointer to the EFI_LOADED_IMAGE Protocol’s Unload() service. 
The driver will then exit from the entry point, leaving the code resident in system memory. 

The Driver Binding Protocol provides a version number and the following three services:  

• Supported() 

• Start() 
• Stop()   
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These services are available on the driver’s image handle after the entry point is exited. Later on 
when the system is “connecting” drivers to devices in the system, the driver’s Driver Binding 
Protocol Supported() service is called. The Supported() service is passed a controller 
handle. Quickly, the Supported() function will examine the controller handle to see if it 
represents a device that the driver knows how to manage. If so, it will return EFI_SUCCESS. The 
system will then start the driver by calling the driver’s Start() service, passing in the supported 
controller handle. The driver can later be disconnected from a controller handle by calling the 
Stop() service. 

This section will walk the reader through the connection process that a platform may undergo to 
connect the devices in the system with the drivers that are available in the system. This process will 
appear complex at first, but as the process continues, it will become evident that the same simple 
procedures are used to accomplish the complex task. This description does not go into all the details 
of the connection process but explains enough that the role of various drivers in the connection 
process can be clearly understood. This knowledge is fundamental to designing new EFI drivers. 

The EFI Boot Service ConnectController() clearly demonstrates the power of the EFI 
Driver Model. The EFI Shell command connect directly exposes much of the functionality of 
this boot service and provides a convenient way to explore the flexibility and control offered by 
ConnectController(). 

2.9.1 ConnectController() 
By passing the handle of a specific controller into ConnectController(), EFI will follow a 
specific process to determine which driver(s) will manage the controller. 

For reference, the following is the definition of ConnectController(): 

typedef 
EFI_STATUS 
ConnectController ( 
  IN EFI_HANDLE                ControllerHandle, 
  IN EFI_HANDLE               *DriverImageHandle    OPTIONAL, 
  IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath  OPTIONAL, 
  IN BOOLEAN                   Recursive 
  ); 

 

The connection is a two-phase process, as follows: 

• First phase:  Construct an ordered list of driver handles.  
• Second phase:  Try to connect the drivers to a controller in priority order from first to last. 

 

Table 2-8 lists the steps for phase one, which are known as the driver connection precedence rules. 
Much of this information is in section 5.3.1 of the EFI 1.10 Specification where the EFI Boot 
Service ConnectController()is discussed. 
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Table 2-8. Connecting Controllers:  Driver Connection Precedence Rules  

Step Type of Override Description 

1 Context override The parameter DriverImageHandle is an ordered list of image 

handles. The highest-priority driver handle is the first element of the list, 
and the lowest-priority driver handle is the last element of the list. The 
list is terminated with a NULL driver handle. This parameter is usually 
NULL and is typically only used to debug new drivers from the EFI 

Shell. These drivers are placed at the head of the ordered list of driver 
handles. 

2 Platform driver override If an EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL 
instance is present in the system, then the GetDriver() service of 

this protocol is used to retrieve an ordered list of image handles for 
ControllerHandle. The first driver handle returned from 
GetDriver() has the highest precedence, and the last driver 
handle returned from GetDriver() has the lowest precedence. 
The ordered list is terminated when GetDriver() returns 
EFI_NOT_FOUND. It is legal for no driver handles to be returned by 
GetDriver(). Any driver handles obtained from the 
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL are 

appended to the end of the ordered list of driver handles from the 
context override (step #1 above). 

3 Bus specific driver 
override 

If there is an instance of the 
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 
attached to ControllerHandle, then the GetDriver() 

service of this protocol is used to retrieve an ordered list of driver 
handles for ControllerHandle. The first driver handle returned 
from GetDriver() has the highest precedence, and the last driver 
handle returned from GetDriver() has the lowest precedence. 
The ordered list is terminated when GetDriver() returns 
EFI_NOT_FOUND. It is legal for no driver handles to be returned 
from GetDriver(). Any driver handles obtained from the 
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 

are appended to the end of the ordered list of driver handles that was 
produced from the context override and platform driver override 
(steps 1 and 2). In practice, this precedent option allows the EFI drivers 
that are stored in an option ROM of a PCI adapter to manage the PCI 
adapter. Even if drivers with higher versions are available, this rule 
exists to make sure that if a particular driver on a card requires a 
hardware modification to go with it, the driver will not get replaced by 
later versions of the driver that may not work with the hardware 
modification. 

continued 
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Table 2-8. Connecting Controllers:  Driver Connection Precedence Rules (continued) 

Step Type of Override Description 

4 Driver binding search The list of available driver handles can be found by using the boot 
service LocateHandle() with a SearchType of 
ByProtocol for the GUID of the 
EFI_DRIVER_BINDING_PROTOCOL. From this list, the driver 

handles found in steps 1, 2, and 3 above are removed. The remaining 
driver handles are sorted from highest to lowest based on the 
Version field of the EFI_DRIVER_BINDING_PROTOCOL 

instance that is associated with each driver handle. Any driver handles 
that are obtained from this search are appended to the end of the 
ordered list of driver handles started in steps 1, 2, and 3. In practice, 
this sorting means that a PCI adapter that does not have an EFI driver 
in its option ROM will be managed by the driver with the highest 
Version number. 

 

Phase two of the connection process is to simply check each driver in the ordered list to see if it 
supports the controller. This check is done by calling the Supported() service of the driver’s 
Driver Binding Protocol and passing in the ControllerHandle  and the 
RemainingDevicePath. If successful, the Start() service of the driver’s Driver Binding 
Protocol is called and passes in the ControllerHandle  and RemainingDevicePath.. 
Each driver in the list is given an opportunity to connect, even if a prior driver connected 
successfully. However, if a driver with higher priority had already connected and opened the parent 
I/O protocol with exclusive access, the other drivers would not be able to connect. 

One reason this type of connection process is used is because the order in which drivers are 
installed into the handle database is not deterministic. Drivers can be unloaded and reloaded later, 
which changes the order of the drivers in the handle database. 

These precedent rules assume that the relevant drivers to be considered are loaded into memory. 
This case may not be true for all systems. Large systems, for example, may limit “bootable” 
devices to a subset of the total number of devices in the system. 

The ConnectController() function can be called several times during the initialization of 
EFI. It is called before launching the boot manager to set the consoles. 

2.9.2 Loading EFI Option ROM Drivers 
The following is an interesting use case that tests these precedence rules. Assume that the following 
three identical adapters are in the system: 

• Adapter A: EFI driver Version 0x10 
• Adapter B: EFI driver Version 0x11 
• Adapter C:  No EFI driver  
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These three adapters have EFI drivers in the option ROM as defined below. When EFI connects, 
the drivers control the devices as follows: 

• EFI driver Version 0x10 manages Adapter A. 
• EFI driver Version 0x11 manages Adapter B and Adapter C. 

If the user then goes into the EFI Shell and soft loads EFI driver version 0x12, nothing will change 
until the existing drivers are disconnected and a reconnect is performed. This reconnection can be 
done in a variety of ways, but the EFI Shell command reconnect -r is the easiest. Now the 
drivers control the devices as follows: 

• EFI driver Version 0x10 manages Adapter A. 
• EFI driver Version 0x11 manages Adapter B. 
• EFI driver Version 0x12 manages Adapter C. 

An OEM can override this logic by implementing the Platform Driver Override Protocol. 

2.9.3 DisconnectController() 
DisconnectController() performs the opposite of ConnectController(). It requests 
drivers that are managing a controller to release the controller. 
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2.10 Platform Initialization 

Figure 2-7 shows the sequence of events that occur when an EFI-based system is booted. The 
following sections will describe each of these events in detail and how they relate to EFI drivers. 
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Figure 2-7.  Booting Sequence  

Figure 2-8 shows a possible system configuration. Each box represents a physical device (called a 
controller) in the system. Before the first EFI connection process is performed, none of these 
devices is registered in the handle database. The following sections describe the steps that the EFI 
Sample Implementation follows to initialize a platform and how drivers are executed, handles are 
created, and protocols are installed. 
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Figure 2-8.  Sample System Configuration  

At some point early in the boot process, EFI initialization will create handles and install the EBC 
Protocol and the Decompression Protocol in the handle database. These service protocols will be 
needed to run EFI drivers that may be compressed or compiled in an EBC format. For example, the 
handle database as viewed with the dh EFI Shell command might look like the following: 

Handle Database 
… 
  6: Ebc 
… 
  9: Image(Decompress) 
  A: Decompress 
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2.10.1 Connecting PCI Root Bridge(s) 
During EFI initialization, the system will load a root bridge driver for the root device, typically the 
PCI root bridge driver, with LoadImage(). Like all drivers, as it is loaded, EFI will create a 
handle in the handle database and attach an instance of the EFI_LOADED_IMAGE_PROTOCOL 
with the unique image information for the PCI root bridge driver. Because this driver is the system 
root driver, it does not follow the EFI Driver Model. When it is loaded, it does not install the 
following: 

• Driver Binding Protocol 
• Component Name Protocol 
• Driver Diagnostics Protocol 
• Driver Configuration Protocol  

Instead, it immediately uses its knowledge about the platform architecture to create handles for 
each PCI root bridge. This example shows only one PCI root bridge, but there can be many PCI 
root bridges in a system, especially in a data center server. It installs the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH_PROTOCOL on each 
handle. By not installing the Driver Binding Protocol, the PCI root bridge prevents itself from being 
disconnected or reconnected later on. For example, the handle database as viewed with the dh EFI 
Shell command might look like the following after the PCI root bridge driver is loaded and 
executed. This example shows an image handle that is a single controller handle with a PCI Root 
Bridge I/O Protocol and the Device Path Protocol. 

Handle Database 
… 
  B: Image(PcatPciRootBridge) 
  C: DevIo PciRootBridgeIo DevPath (Acpi(HWP0002,0,PNP0A03)) 

✏  NOTE  

PNP0A03 may appear in either _HID or _CID of the PCI root bridge device path node. This 
example is one where it is not in _HID. 

OS loaders need to access the boot devices to boot the OS. Such devices must have a Device Path 
Protocol, because the OS loader uses this protocol to determine the location of the boot device. 
Here at the root device, the Device Path Protocol contains a single ACPI node Acpi(HID, UID) 
or Acpi(HID, UID, CID). This node points the OS to the place in the ACPI name space 
where the PCI root bridge is completely described. The 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL provides PCI functions that are used by the PCI bus 
driver that is described in next section. 
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2.10.2 Connecting the PCI Bus 
EFI initialization will continue by loading the PCI bus driver. As its entry point is executed, the PCI 
bus driver installs the Driver Binding Protocol and Component Name Protocol. For example, the 
handle database as viewed with the dh EFI Shell command might look like the following after the 
PCI bus driver is loaded and executed. It contains one new driver image handle with the Loaded 
Image Protocol, Driver Binding Protocol, and Component Name Protocol. Because this driver does 
follow the EFI Driver Model, no new controller handles are produced when the driver is loaded and 
executed. They will not be produced until the driver is connected. 

Handle Database 
… 
14: Image(PciBus) DriverBinding ComponentName 

 

At some point later in the initialization process, EFI will use ConnectController() to 
attempt to connect the PCI root bridge controller(s) (handle #C). The system has several priority 
rules for determining what driver to try first, but in this case it will search the handle database for 
driver handles (handles with the Driver Binding Protocol). The search will find handle #14 and call 
the driver’s Supported() service, passing in controller handle #C. The PCI bus driver requires 
the Device Path Protocol and PCI Root Bridge I/O Protocol to be started, so the Supported() 
service will return EFI_SUCESS when those two protocols are found on a handle. After receiving 
EFI_SUCCESS from the Supported() service, ConnectController() will then call the 
Start() service with the same controller handle (#C). 

Because the PCI bus driver is a bus driver, the Start() service will use the PCI Root Bridge I/O 
Protocol functions to search the PCI bus for all PCI devices. For each PCI device/function that the 
PCI bus driver finds, it will create a child handle and install an instance of the PCI I/O Protocol on 
the handle. The handle is registered in the handle database as a “child” of the PCI root bridge 
controller. The PCI driver will also copy the device path from the parent PCI root bridge device 
handle and append a new PCI device path node Pci(Dev|Func). In cases where the PCI driver 
discovers a PCI-to-PCI bridge, the devices below the bridge will also be added as children to the 
bridge. In these cases, an extra PCI device path node will be added for each PCI-to-PCI bridge in 
between the PCI root bridge and the PCI device. For example, the handle database as viewed with 
the dh EFI Shell command might look like the following after the PCI bus driver is connected to 
the PCI root bridge. It shows the following: 

• Nine PCI devices were discovered. 
• The PCI device on handle #1B has an option ROM with an EFI driver. 
• That EFI driver was loaded and executed and is shown as handle #1C.  

Also notice that a single PCI card may have several EFI handles if they have multiple PCI 
functions. 
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Handle Database 
… 
 16: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(1|0)) 
 17: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(1|1)) 
 18: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(2|0)) 
 19: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(2|1)) 
 1A: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(2|2)) 
 1B: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(3|0)) 
 1C: Image(Acpi(HWP0002,0,PNP0A03)/Pci(3|0)) DriverBinding 
 1D: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(4|0)) 
 1E: PciIo DevPath (Acpi(HWP0002,100,PNP0A03)/Pci(1|0)) 
 1F: PciIo DevPath (Acpi(HWP0002,100,PNP0A03)/Pci(1|1)) 

2.10.3 Connecting Consoles 
At this point during the EFI initialization, EFI does not have a “console” device configured. This 
absence is because it is often a PCI device, and we have been waiting for the PCI bus driver to 
provide device handles for the console(s). Most EFI platforms will now follow a console 
connection strategy to connect the consoles in a consistent manner that is defined by the platform. 
This way the platform will be able to display messages to all of the selected consoles through the 
standard EFI mechanisms. Prior to this point, the platform messages, if any, were being displayed 
by platform-specific methods. 

2.10.4 Console Drivers 
Typical EFI consoles include the following:  

• UGA 
• USB keyboard 
• USB mouse 
• Serial ports  

Some systems may have other devices. Table 2-9 on the next page shows an example of drivers that 
are installed in the handle database from the system ROM. These drivers are in the system ROM 
because they are core devices built into the motherboard. If the devices were PCI cards, the USB 
host controller driver and the UGA draw driver may have been found in the EFI option ROMs of 
those cards. 
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2.10.5 Console Variables 
After loading these drivers in the handle database, the platform can connect the console devices that 
the user has selected. The device paths for these consoles will be stored in the ConIn, ConOut, 
and ErrOut global EFI variables (see section 3.2 in the EFI 1.10 Specification). For the purpose 
of this example, the variables have the following device paths: 
 
ErrOut = Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600N81)/ 

VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0) 
 
ConOut = Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600N81)/ 

VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0) 
 
ConIn  = Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600N81)/ 

VenMsg(Vt100+) 
 

Note the following: 

• The ErrOut and ConOut variables are compound device paths indicating that the EFI output 
is mirrored on two devices. This work is done by the console splitter driver when it is 
connected. The two devices are a serial terminal and a PCI video controller. 

• The ConIn variable contains a device path to a serial terminal. 

• The ErrOut variable is typically the same as the ConOut variable, but could be redirected to 
another device. It is important to check when developing EFI drivers because the DEBUG() 
output is typically directed to the ErrOut device and it may not always be the same device as 
the ConOut device. In this case, the two devices are a serial terminal and a PCI video 
controller. 

2.10.6 ConIn 
Now the system will connect the console devices using the device paths in the ConIn, ConOut, 
and ErrOut global EFI variables. The ConIn connection process will be discussed first. 
ConIn  = Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600 N81)/ 

VenMsg(Vt100+) 

The EFI connection process will search for the device in the handle database that has a device path 
the matches the following the closest.  
Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600 N81)/VenMsg(Vt100+) 

 

It will find handle #17 as the closest match. The portion of the device path that did not match 
(Uart(9600 N81)/VenMsg(Vt100+)) is called the remaining device path. 

17: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(1|1)) 
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EFI will call ConnectController(), passing in handle #17 and the remaining device path. 
The connection code will construct a list of all the drivers in the system and call each driver, 
passing handle #17 and the remaining device path into the Supported() service. The only 
driver installed in the handle database that will return EFI_SUCCESS for this device handle is 
handle #30: 
30: Image(Serial16550) DriverBinding ComponentName 

 

Now that ConnectController() has found a driver that supports handle #17, it will pass 
device handle #17 and the remaining device path Uart(9600 N81)/ VenMsg(Vt100+) into 
the serial driver’s Start() service. The serial driver will open the PCI I/O Protocol on handle #17 
and create a new child handle. The following will be installed onto the new child handle:  

• EFI_SERIAL_IO_PROTOCOL (defined in section 10.12 of the EFI 1.10 Specification)  

• EFI_DEVICE_PATH_PROTOCOL 

The device path for the child handle is generated by making a copy of the device path from the 
parent and appending the serial device path node Uart(9600 N81). Handle #3B shown below is 
the new child handle. 
3B: SerialIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/  

Uart(9600 N81)) 
 

That first call to ConnectController() has now been completed, but the Device Path 
Protocol on handle #3B does not completely match the ConIn device path, so the connection 
process will be repeated. This time the closest match for 
Acpi(HWP0002,0)/Pci(1|1)/Uart(9600 N81)/VenMsg(Vt100+) is the newly 
created device handle #3B. Now the remaining device path is VenMsg(Vt100+). The search for 
a driver that supports handle #3B will find the terminal driver, returning EFI_SUCCESS from the 
Supported() service.  

31: Image(Terminal) DriverBinding ComponentName 
 

This driver’s Start() service will open the EFI_SERIAL IO_PROTOCOL, create a new child 
handle, and install the following: 

• EFI_SIMPLE_INPUT_PROTOCOL 

• EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL  

• EFI_DEVICE_PATH_PROTOCOL  

The console protocols are defined in sections 10.2 and 10.3 of the EFI 1.10 Specification. The 
device path will be generated by making a copy of the device path from the parent and appending 
the terminal device path node VenMsg(Vt100+). VT100+ was chosen because that terminal type 
was specified in the remaining device path that was passed into the Start() service. Handle #3C 
show below is the new child handle.  
3C: Txtin Txtout DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/  

Uart(9600 N81)/VenMsg(Vt100+)) 
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The process still has not completely matched the ConIn device path, so the connection process 
will be repeated again. This time there is an exact match for 
Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600 N81)/VenMsg(Vt100+) with 
the newly created child handle #3C. Searching for a driver that will support this controller will find 
two driver handles that return EFI_SUCCESS to the Supported() service. The two driver 
handles are from the platform console management driver: 
32: Image(ConPlatform) DriverBinding ComponentName 
33: DriverBinding ComponentName 

 

Driver #32 will install a ConOut device GUID on the handle if the device path is listed in the 
ConOut global EFI variable. In our example, this case is true. Driver #32 will also install an 
ErrOut device GUID on the handle if the device path is listed in the ErrOut global EFI variable. 
This case is also true in our example. Therefore, handle #3C will have two new protocols on it: 
ConOut and StdErr. 
3C: Txtin Txtout ConOut StdErr DevPath (..art(9600 N81)/  

VenMsg(Vt100+)) 
 

Driver #33 will install a ConIn device GUID on the handle if the device path is listed in the 
ConIn global EFI variable (which it will because we started this connection process that way), so 
handle #3C will have the ConIn protocol attached. 
3C: Txtin Txtout ConIn ConOut StdErr DevPath (..art(9600  

N81)/VenMsg(Vt100+)) 
 

EFI uses these three protocols (ConIn, ConOut, and ErrOut) to mark devices in the system, 
which have been selected by the user as ConIn, ConOut, and StdErr. These protocols are 
actually just a GUID without any services or data. 

There are three other driver handles that will return EFI_SUCCESS from the Supported() 
service. These driver handles are from the console splitter drivers for the ConIn, ConOut, and 
ErrOut devices in the system. There is a fourth console splitter driver handle (which is not used 
on this handle) for devices that support the Simple Pointer Protocol. The three driver handles are 
listed below: 
34: Image(ConSplitter) DriverBinding ComponentName 
36: DriverBinding ComponentName 
37: DriverBinding ComponentName 

 

Remember that when the console splitter driver was first loaded, it created three virtual handles. It 
marked these three handles with protocols PrimaryStdErr, PrimaryConIn, and 
PrimaryConOut. These protocols are only GUIDs. They do not contain any services or data. 
38: Txtout PrimaryStdErr 
39: Txtin SimplePointer PrimaryConIn 
3A: Txtout PrimaryConOut UgaDraw 

 

The console splitter driver’s Supported() service for handle #34 examines the handle #3C for a 
ConIn Protocol. Having found it, it returns EFI_SUCCESS. The Start() service will then open 
the ConIn protocol on handle #3C such that the PrimaryConIn device handle #39 becomes a 
child controller and starts aggregating the SIMPLE_INPUT_PROTOCOL services. 
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The same thing happens for handle #36 with ConIn, except that the 
SIMPLE_TEXT_OUTPUT_PROTOCOL functionality on handle #3C is aggregated into the 
SIMPLE_TEXT_OUTPUT_PROTOCOL on the PrimaryConOut handle #3A.  

Handle #37 with StdErr also does the same thing; the SIMPLE_TEXT_OUTPUT_PROTOCOL 
functionality on handle #3C is aggregated into the SIMPLE_TEXT_OUTPUT_PROTOCOL on the 
PrimaryStdErr handle #38.  

The connection process has now been completed for ConIn because the device path that 
completely matched the ConIn device path and all the console-related services have been installed.  

2.10.7 ConOut 
As with ConIn, EFI will connect the ConOut devices using the device paths in the ConOut 
global EFI variable. If ConIn was not complicated enough, the ConOut global EFI device path in 
this example is a compound device path and indicates that the ConOut device is being mirrored 
with the console splitter driver to two separate devices.  
ConOut = Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600 N81)/ 

VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0) 
 

The EFI connection process will search the handle database for a device path that matches the first 
device path in the ConOut variable:  
Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600 N81)/VenMsg(Vt100+) 

 

Luckily, the device path already exists on handle #3C in its entirety thanks to the connection work 
done for ConIn. 
3C: Txtin Txtout ConIn ConOut StdErr DevPath (..art(9600  

N81)/VenMsg(Vt100+)) 
 

EFI will perform a ConnectController() on handle #3C. Because this step was done 
previously with ConIn, there is nothing more to be done here.  

The connection process has not yet been completed for ConOut because the device path is a 
compound device path and a second device needs to be connected:  
Acpi(HWP0002,0,PNP0A03)/Pci(4|0) 

 

The EFI connection process will search the handle database for a device path that matches 
Acpi(HWP0002,0,PNP0A03)/Pci(4|0). The device path already exists in its entirety on 
handle #1C and was created by the PCI bus driver when it started and exposed the PCI devices. 
1C: PciIo DevPath (Acpi(HWP0002,0,PNP0A03)/Pci(4|0)) 

 

EFI will perform a ConnectController() on handle #1C. Note that the device path is a 
complete match, so there is no remaining device path to pass in this time. 
ConnectController() constructs the prioritized list of drivers in the system and calls the 
Supported() service for each one, passing in the device handle #1C. The only driver that will 
return EFI_SUCCESS is the UGA driver. 

2E: Image(CirrusLogic5430) DriverBinding ComponentName  
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ConnectController() will Start() this driver and it will consume the device’s 
EFI_PCI_IO_PROTOCOL and install the EFI_UGA_DRAW_PROTOCOL onto the device 
handle #1C.  
1C: PciIo UGADraw DevPath (Acpi(HWP0002,0,PNP0A03)/  

Pci(4|0)) 
 

ConnectController() will continue to process its list of drivers and will find that the 
“GraphicsConsole” driver’s Supported() service will return EFI_SUCCESS. 

2D: Image(GraphicsConsole) DriverBinding ComponentName 
 

Next the graphics console driver’s Start() service will consume the 
EFI_UGA_DRAW_PROTOCOL and produce the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL on 
the same device handle #1C. 
1C: Txtout PciIo UgaDraw DevPath (Acpi(HWP0002,0,PNP0A03)/  

Pci(4|0)) 
 

ConnectController() will continue to process its list of drivers. This time, searching for a 
driver that will support this controller will find two driver handles that return EFI_SUCCESS to 
the Supported() service. These two driver handles are from the platform console management 
driver: 
32: Image(ConPlatform) DriverBinding ComponentName 

 

Driver handle #32 will install a ConOut device GUID on the handle if the device path is listed in 
the ConOut global EFI variable. In this example, this case is true. Driver #32 will also install an 
ErrOut device GUID on the handle if the device path is listed in the ErrOut global EFI variable. 
This case is also true in the example. Therefore, handle #1C has two new protocols on it: ConOut 
and ErrOut. 
1C: Txtout PciIo ConOut StdErr DevPath  

Acpi(HWP0002,0,PNP0A03)/Pci(4|0)) 

These two protocols (ConOut and ErrOut) are used to mark devices in the system that have been 
selected by the user as ConOut and StdErr. These protocols are actually just a GUID without 
any functions or data. 

There are two other driver handles that will return EFI_SUCCESS to the Supported() service. 
These driver handles are from the console splitter driver for the ConOut and ErrOut devices in 
the system. 
36: DriverBinding ComponentName 
37: DriverBinding ComponentName 

 

Remember that when the console splitter driver was first loaded, it created three virtual handles. It 
marked these three handles with protocols PrimaryStdErr, PrimaryConIn, and 
PrimaryConOut. These protocols are only GUIDs. They do not contain any services or data. 
38: Txtout PrimaryStdErr 
39: Txtin SimplePointer PrimaryConIn 
3A: Txtout PrimaryConOut UgaDraw 
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The console splitter driver’s Supported() service for driver handle #36 examines the 
handle #1C for a ConOut Protocol. Having found it, it returns EFI_SUCCESS. The Start() 
service will then open the ConOut protocol on device handle #1C such that the PrimaryConOut 
device handle #3A becomes a child controller and starts aggregating the 
SIMPLE_TEXT_OUTPUT_PROTOCOL services. 

The same thing happens for driver handle #37 with StdErr; the 
SIMPLE_TEXT_OUTPUT_PROTOCOL functionality on device handle #1C is aggregated into the 
SIMPLE_TEXT_OUTPUT_PROTOCOL on the PrimaryStdErr device handle #38.  

2.10.8 ErrOut 
In this example, ErrOut is the same as ConOut. So the connection process for ConOut is 
executed one more time. 
ErrOut = Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600 N81)/  

VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0) 

2.10.9 Loading Other Core Drivers 
After connecting the consoles, most platforms will typically load some additional core drivers, but 
this step is dependent on platform policy. For example, the EFI Sample Implementation loads the 
following drivers after consoles are connected: 

• Disk media support drivers (DiskIo, Partition, Fat) 
• Platform media drivers (for example, platform-specific bus drivers for SCSI and IDE; for this 

example, it will load “XyzScsi”) 
• LAN support 
• Core LAN drivers (XyzUndi) 
• LAN support drivers (BiosSnp16, Snp3264, PxeBc, PxeDhcp4, BIS) 
• FPSWA (Itanium architecture only) 

Remember that these drivers are only loaded. They are not connected to controllers until 
ConnectController() is called. 

2.10.10 Boot Manager Connect ALL 
On some platforms, the EFI boot manager may connect all drivers to all devices at this point in the 
platform initialization sequence. However, platform firmware can choose to connect the minimum 
number of drivers and devices that is required to establish consoles and gain access to the boot 
device. Performing the minimum amount of work is recommended to enable shorter boot times. 

If the platform firmware chooses to go into a “platform configuration” mode, then all the drivers 
should be connected to all devices. The following algorithm is used to connect all drivers to all 
devices. 

A search is made of the handle database for all root controller handles. These handles do not have a 
Driver Binding Protocol or the Loaded Image Protocol. They will have a Device Path Protocol, and 
they will not have any parent controllers. ConnectController() is called with the 
Recursive flag set to TRUE and a RemainingDevicePath of NULL for each of the root 
controllers. These settings cause all children to be produced by all bus drivers. As each bus is 
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expanded, if the bus supports storage devices for EFI drivers, then additional EFI drivers will be 
loaded from those storage devices (for example, option ROMs on PCI adapters). This process is 
recursive. Each time a child handle is created, ConnectController() is called again on that 
child handle, so all of those handle’s children will be produced. When the process is complete, then 
the entire tree of boot devices in the system hierarchy will be present in the handle database. 

2.10.11 Boot Manager Driver Option List 
The EFI boot manager loads the drivers that are specified by the DriverOrder and 
Driver#### environment variables. These environment variables are discussed in sections 3.1 
and 3.2 of the EFI 1.10 Specification. The EFI shell command bcfg can be used to add, remove, 
and display drivers to this list.  

Before the EFI boot manager loads each driver, it will use the device path stored in the 
Driver#### variable to connect the controllers and drivers that are required to access the driver 
option. This process is exactly the same as the process used for the console variables ErrOut, 
ConOut, and ConIn. 

If any driver in the DriverOrder list has a load attribute of 
LOAD_OPTION_FORCE_RECONNECT, then the EFI boot manager will use the 
DisconnectController() and ConnectController() boot services to disconnect and 
reconnect all the drivers in the platform. This load attribute allows the newly loaded drivers to be 
considered in the driver connection process.  

For example, if no driver in the DriverOrder list has the 
LOAD_OPTION_FORCE_RECONNECT load attribute, then it would be possible for a built-in 
system driver with a low version number to manage a device. Then, after loading a newer driver 
with a higher version number from the DriverOrder list, the driver with the lower version 
number will still manage the same device. However, if the newer driver in the DriverOrder list 
has a load attribute of LOAD_OPTION_FORCE_RECONNECT, then the EFI boot manager will 
disconnect and reconnect all the controllers, so the driver with the highest version number will 
manage the same device that the lower versioned driver was managing. Drivers that are added to 
the DriverOrder list should not set the LOAD_OPTION_FORCE_RECONNECT attribute unless 
they have to because the disconnect and reconnect process will increase the boot time. 

2.10.12 Boot Manager BootNext 
After connecting any drivers in the DriverOrder list, the EFI boot manager will attempt to boot 
the boot option that is specified by the BootNext environment variable. This environment 
variable is discussed in sections 3.1 and 3.2 of the EFI 1.10 Specification. This variable typically is 
not set, but if it is, EFI will delete the variable and then attempt to load the boot option that is 
described in the Boot#### variable pointed to by BootNext. 

Before the EFI boot manager boots the boot option, it will use the device path stored in the 
Boot#### variable to connect the controllers and drivers that are required to access the boot 
option. This process is exactly the same as the process that is used for the console variables 
ErrOut, ConOut, and ConIn. 
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2.10.13 Boot Manager Boot Option List 
The EFI boot manager will display the boot option menu and if the auto-boot TimeOut 
environment variable has been set, then the first boot option will be loaded when the timer expires. 
The boot options can be enumerated by the EFI boot manager by reading the BootOrder and 
Boot### environment variables. These environment variables are discussed in sections 3.1 
and 3.2 of the EFI 1.10 Specification. A boot option is typically an OS loader that never returns to 
EFI, but boot options can also be EFI applications like diagnostic utilities or the EFI Shell. If a boot 
option does return to the EFI boot manager, and the return status is not EFI_SUCCESS, then the 
EFI boot manager the next boot option will be processed. This process is repeated until an OS is 
booted, EFI_SUCESS is returned by a boot option or the list of boot options is exhausted. Once 
the boot process has halted, the EFI boot manager will typically provide a user interface that allows 
the user to manually boot an OS or manage the platform. 

The EFI boot manager will use the device path in each boot option to ensure that the device 
required to access the boot option has been added to the EFI handle database. This process is 
exactly the same as the process used for the console variables ErrOut, ConOut, and ConIn. 
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3 
Coding Conventions 

This section describes the coding conventions that are used in the EFI Sample Implementation. 
Most of the code that is distributed in the EFI Sample Implementation is implemented in the C 
programming language. One goal of the EFI Driver Model is to allow portable EFI drivers to be 
designed such that they can be easily compiled for various processor architectures. The processor 
architectures supported today include the following: 

• IA-32 
• Itanium architecture 
• EFI Byte Code (EBC) 

The EFI Byte Code virtual machine architecture was optimized with the C programming language 
in mind, so if an EFI driver writer wishes to design for portability, then the EFI driver must be 
implemented in the C programming language with no use of assembly language. As a result, the 
coding convention presented here concentrates on conventions for the C programming language. 
This coding convention is also used in the code examples presented throughout this document.  

EFI drivers are not required to use these coding conventions. There is no data that suggests that one 
code convention is better than another. However, there is a large body of data that suggests that the 
use of a consistent coding convention improves the efficiency of software development. There are 
many advantages to using a common coding convention, including the following: 

• Source code is easier to read.  
• Source code is easier to maintain. 
• It improves collaboration between developers. 
• EFI driver are easier to debug. 

Recommendations are presented for the naming of files, functions, macros, data types, variables, 
and constants. A consistent naming convention helps improve the readability of the code and it 
tends to make the code somewhat self documenting, which may help reduce the required comment 
overhead. In addition, a consistent function naming convention improves the readability of call 
stacks during debug. Conventions for the use of tabs, spaces, indentation, and comments are also 
presented along with templates for the various expressions and constructs that are available in the C 
programming language. Finally, the special considerations for implementing new EFI protocols, 
EFI GUIDs, and EFI drivers are presented.  

3.1 Indentation and Line Length 

Tabs are not used in any of the source files. Instead, spaces are used for all indentation. All code 
blocks are indented in increments of 2 spaces. This 2 space indentation is smaller than some other 
conventions that use 4 spaces, but this reduced indentation allows more code to be viewed on a 
single screen even when fairly deep nesting is used. 
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In general, the length of a line of code does not exceed 80 characters. This length is only a 
guideline, however. The main reason for defining a guideline on line length is so code can be easily 
viewed in a full-screen editor and formatted correctly when it is sent to a printer. 

3.2 Comments 

3.2.1 File Headers Comments 
Every .c and .h file has a file header comment block at the very top of the file. The file header 
comment block has the form shown in Example 3-1. 
 
/*++ 
 
Copyright (c) 2003 Xyz Corporation 
 
Module Name:   
 
  <<file name, e.g. Foo.c>> 
 
Abstract:      
 
  <<description of file contents>> 
 
--*/ 
 

Example 3-1.  File Header Comment Block for .C and .H Files 

Files with an extension of .inf are essentially a shorthand makefile that the build tools in the 
EFI Sample Implementation use to determine the source files and libraries that are required to build 
an EFI driver. Every .inf file has a file header comment block at the very top of the file as shown 
in Example 3-2.  
# 
# Copyright (c) 2003 Xyz Corporation 
# 
# Module Name: 
# 
#   <<file name, e.g. Make.inf>> 
#     
# Abstract: 
# 
#   <<description of the file contents, e.g. Makefile for Edk\Drivers\DiskIo>> 
# 

Example 3-2.  File Header Comment Block for .INF Files 
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3.2.2 Function Header Comments 
Each function has a comment block between the parameter declaration section of the function 
definition and the opening brace of the function body. The only exceptions are simple or small 
private functions. The function header comment block takes the form as shown in Example 3-3. 
EFI_STATUS 
Foo ( 
  IN UINTN  Arg1, 
  IN UINTN  Arg2 
  ) 
/*++ 
 
Routine Description:      
 
  <<description>> 
 
Arguments:  
 
  <<argument names and purposes>> 
 
Returns:  
 
  <<description of possible return values>> 
 
--*/ 
{ 
} 

Example 3-3.  Function Header Comment Block 

3.2.3 Internal Comments  
Internal code comments use C++ style (//) comment lines. A block of comment lines that contain 
text are preceded and followed by a blank comment line. A blank line may optionally follow a 
comment block. The blank line generally indicates that the comment is for a large block of code. If 
a comment block is not followed by a blank line, then the comment only applies to the next few 
lines of code. The comments are indented with the code. 

Comments are not placed on the same line as source code, but comments may be on the same line 
as data structures declarations and data structure initializations. Commenting is done as efficiently 
as possible because too many comments are as bad as too few. Comments are added to explain why 
things are done and the big picture of how a module works. Example 3-4 shows examples of 
internal comments.  
  // 
  // This is an example comment for the large block of code below 
  // 
 
  if (Test) { 
    // 
    // This is an example comment for the next code line 
    // 
    return Test; 
  } 

Example 3-4.  Internal Comments 
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3.2.4 What Is Commented 
The following things are commented in source code:  

• Complicated, tricky, or sensitive pieces of code. Making the code cleaner is often better than 
adding more comments. 

• Higher-level concepts in the code. Focus on the why and not the how. 
• Data structures and #define statements in include files. 

• The version number of any industry standard that is referenced by the code. 

3.2.5 What Is Not Commmented  
The following things are not commented in source code:  

• In general, a single line of code does not need a comment. 
• Where possible, the code is self documenting. Do not repeat the code or explain it in a 

comment. Instead, comments clarify the intent of the code or explain higher-level concepts. 
• Do not place markers in the code, such as a developer’s name or unusual patterns. They may 

have meaning to the developer but do not to other developers or projects.  
• Code is not removed or disabled by using comments. Instead, a source control system is used to 

maintain different source code file revisions. 

3.3 General Naming Conventions 

Good naming practice is used when declaring variable names. Studies show that programs with 
names that average 10 to 16 characters in length are the easiest to debug (Code Complete). 
Programs with names averaging 8 to 20 characters are almost as easy to debug. This name length is 
simply a guideline. The most important thing is that the name conveys a clear meaning of what it 
represents. 

Names are formed with a mix of upper and lower case text. Each word or concept starts with a 
capital letter and is followed by lower case letters for the rest of the word. Only the first letter of an 
acronym is capitalized. For example: 
   ThisIsAnExampleOfWhatToDoForPci 

Commonly used terms are not be overloaded when possible. For example, EFI has an event model, 
so creating a new abstraction called an “event” would have caused confusion. The goal is to use 
names such that other developers with very little context can understand what each name 
represents. 
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3.3.1 Abbreviations  
Table 3-1 describes a common set of abbreviations. Abbreviations do not have to be used, but if 
abbreviations are used, then the common one is selected. If new abbreviations are required, then 
making the abbreviation easy to remember is more important to the reader of the code than the 
writer of the code. New abbreviations are declared in a comment block at the top of the file. The 
translation table contains the new abbreviations and definitions. An attempt is made to not define 
new abbreviations to replace an existing abbreviation. For example, No is not redefined to mean 
Number, because Num is already defined as the supported abbreviation. 

Table 3-1. Common Abbreviations 

Abbreviation Description 

Ptr Pointer 

Str Unicode string 

Ascii ASCII string 

Len Length 

Arg Argument 

Max Maximum 

Min Minimum 

Char Character 

Num Number 

Temp Temporary 

Src Source 

Dst Destination 

BS EFI Boot Services Table 

RT EFI Runtime Table 

ST EFI System Table 

Tpl EFI Task Priority Level 

3.3.2 Acronyms  
The use of acronyms is limited. The idea is to code for a developer who will have to read and 
maintain the code. Making up a new vernacular to describe a module can lead to considerable 
confusion. If new acronyms are created, then they are fully defined in the documentation and each 
module that uses the acronym contains a comment with a translation table in the file header. 

The use of acronyms for industry standards is acceptable. Acronyms such as Efi, Pci, Acpi, Smbios, 
and Isa (capitalized to the variable naming convention) are used without defining their meaning. If 
an industry standard acronym is referenced, then the file header defines which revision of the 
specification is being assumed. For example, a PCI resource manager would state that it was coded 
to follow the PCI 2.2 specification. 
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3.4 Directory and File Names 

Directory names and file names follow the general naming conventions that were presented in the 
previous section. There are no artificial limits on the length of a directory name or a source file 
name. None of the build tools in the EFI Sample Implementation require the file names to follow 
the 8.3 naming convention. New code is added below the Edk directory in the EFI 1.10 Sample 
Implementation. Example 3-5 contains some example directory names and file names from the area 
of the source tree where new drivers, protocols, GUIDs, and libraries would be placed during 
development. This example shows the source files for the following: 

• The PCI video driver that produces the EFI_UGA_DRAW_PROTOCOL 

• The declaration of the EFI_BLOCK_IO_PROTOCOL 

• EFI_GLOBAL_VARABLE_GUID, which is used to access EFI variables  

• A few source files from the EFI Driver Library   

It is important for these directory and file name conventions to be followed when directories and 
files are created and when directory or file names are referenced from source files. These 
conventions will provide compatibility with case-sensitive file systems. 
Efi1.1\ 
  Edk\ 
    Drivers\ 
      CirrusLogic5430\ 
        CirrusLogic5430.c 
        CirrusLogic5430.h 
        CirrusLogic5430UgaDraw.c 
        ComponentName.c 
        Make.inf 
    Protocol\ 
      BlockIo\ 
        BlockIo.c 
        BlockIo.h 
    Guid\ 
      GlobalVariable\ 
        GlobalVariable.c 
        GlobalVariable.h 
    Lib\ 
      EfiDriverLib\ 
        EfiDriverLib.c 
        Make.inf 

Example 3-5.  Directory and File Names 
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3.5 Function Names and Variable Names 

Data variables and function names follow the general naming conventions. Each word or concept 
starts with a capital letter and is followed by lowercase letters. Macros, #define, and typedef 
declarations are all capital letters. Each word is separated by the underscore ‘_’ character. The use 
of ‘_t’ or ‘_T’ is discouraged. Example 3-6 shows some example function and variable names. 
#define THIS_IS_AN_EXAMPLE_OF_WHAT_TO_DO_FOR_PCI 1 
 
#define MY_MACRO(a) ((a) == 1) 
 
typedef struct { 
  UINT32  Age; 
  CHAR16  Name[32]; 
} MY_STRUCTURE; 
 
EFI_STATUS 
GetStructure ( 
  MY_STRUCTURE  *MyStructure 
) 
{ 
  EFI_STATUS  Status; 
  . . . 
} 

Example 3-6.  Function and Variable Names 

3.5.1 Hungarian Prefixes  
The Hungarian naming convention is generally discouraged in the coding conventions described 
here except for the global variable. The Hungarian naming convention is a set of detailed guidelines 
for naming variables and routines. The convention is widely used with the C programming 
language. The term “Hungarian” refers both to the fact that the names that follow the convention 
look like words from a foreign language and that the creator of the convention, Charles Simoyi, is 
originally from Hungary. The following is an example of a variable named with the “Hungarian” 
conventions: 

pachInsert  - A pointer to an array of characters to insert. 

Hungarian conventions are not recommended for the following reasons: 

• The abstraction of abstract data types is not covered. Instead, base types based on C 
programming language type–like integers and long integers are abstracted. As a result, the 
names are focused on data types instead of the object-oriented abstractions that they represent. 
This focus is of little value and forces manual type checking that can just as easily be 
accomplished by using a compiler with strong type checking or other source code analysis 
tools. 

• Hungarian combines data meaning with data representation. If a change is made to a data type, 
then all the variables of that data type have to be renamed. In addition, there is no mechanism 
to ensure that the names are accurate. 

• Studies have shown that Hungarian notation tends to encourage lazy variable names (Code 
Complete). It is common for developers to focus on the Hungarian prefix without putting effort 
into a good descriptive name. 
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3.5.2 Global Variables and Module Variables  
The only exception to the Hungarian prefix model is the prefixing of a global variable with a ‘g’ 
and a module variable with an ‘m.’  For example: 
gThisIsAGlobalVariableName   
mThisIsAModuleVariableName 

The use of global data is discouraged by this coding convention. The use of module variables is 
appropriate for solving specific programming issues. A module is defined to be a set of data and 
routines that act on that data. Thus, an EFI driver that produces a protocol can be thought of as a 
module. A complex protocol may be built out of several smaller modules. Any variable with scope 
outside of a single routine is prefixed by an ‘m’ or a ‘g.’ 

Some module variables and global variables will require a locking mechanism to guarantee that the 
variable is being accessed by only one agent at a time. The locking mechanism that is available to 
EFI drivers is discussed in detail in chapter 4 of this document. 

The difference between a module variable and a global variable is not always obvious. A module 
variable is accessed only by a small set of routines, typically within a single source file, that have 
strict rules for accessing the module variable. A global variable is accessed throughout the program, 
typically from multiple source files. Accessing a module variable would not be common over the 
life cycle of a program. New code, bug fixes, or new features would access the current routines that 
are used to abstract the module variable. The module variable would be easy to change, because it 
is accessed only from a small number of routines within a single source file. On the other hand, a 
global variable is accessed throughout the EFI driver and as the EFI driver evolves, more code will 
tend to access the global variable. Global variables and module variables are valid if they are being 
used to implement good information that is hiding in the design. 

3.6 Macro Names 

Macros use a different naming convention than functions. The main reason is the difference in the 
order of precedence that can occur between poorly constructed macros and functions. An overuse 
of parentheses is strongly encouraged, because it is very difficult to debug a precedence order bug 
in a macro. The following are examples of macro construction: 
#define BAD_MACRO(a, b) a*b 
#define GOOD_MACRO(a, b) ((a)*(b)) 

The following examples show the difference between BAD_MACRO() and GOOD_MACRO(): 

• BAD_MACRO (10, 2) and GOOD_MACRO (10, 2) both evaluate to 20. 

• BAD_MACRO (7+3, 2) evaluates to 7 + 3 * 2 = 7 + (3 * 2) = 7 + 6 = 13. 

• GOOD_MACRO (7+3, 2) evaluates to (7+3) * (2) = 10 * 2 = 20. 
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3.6.1 Macros as Functions 
It is recommended that all macros be constructed using the macro rules. Even with these 
recommendations, it is possible for a macro and an equivalent function to behave differently. All 
macros are designed so that they can be easily converted to an equivalent function implementation. 
Example 3-7 shows both good and bad examples of macros and their equivalent function 
implementations. 
#define BAD_MACRO(Value)  ((Value) == 1) || ((Value) == 2) 
 
#define GOOD_MACRO(Value)  ((Value) == 1) 
 
BOOLEAN 
BadMacro ( 
  UINTN Value 
) 
{ 
  return ((Value == 1) || (Value == 2)); 
} 
 
BOOLEAN 
GoodMacro ( 
  UINTN  Value 
) 
{ 
  return (Value == 1); 
} 

Example 3-7.  Macros as Functions 

When GOOD_MACRO(Value) and GoodMacro(Value) are called, the results are identical. 

When BAD_MACRO(Value) and BadMacro(Value) are called, the results are identical. 

When GOOD_MACRO(Value++) and GoodMacro(Value++) are called, the results are 
identical. 

When BAD_MACRO(Value++) and BadMacro(Value++) are called, the results are not 
identical when Value is zero. Also, when BAD_MACRO(Value++) is called, Value is 
incremented twice, and when BadMacro(Value++) is called, Value is incremented only once. 

3.7 Data Types 

The EFI coding convention defines a set of common data types that are used to ensure portability 
between different compilers and processor architectures. Any abstract type that is defined is 
constructed from other abstract types or from common EFI data types. The types int, unsigned, 
char, void, static, and long are not used in this coding convention.  

There is one exception to the preceding rules. The use of static is used for data but not for 
functions. The STATIC keyword is used to disable the static nature of function names to make 
their scope global to aid in debugging. This conversion does not influence the behavior of the 
program. Converting a static data type to nonstatic types can impact the way a program 
functions and thus the use of static for data is allowed. 
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Table 3-2 contains common data types that are referenced in the interface definitions defined in the 
EFI 1.10 Specification. Unless otherwise specified, all data types are naturally aligned. Structures 
are aligned on boundaries that are equal to the largest internal datum of the structure, and internal 
data is implicitly padded to achieve natural alignment.  

The mappings from these compiler-dependent types to the EFI base types are handled in a single 
include file called EfiBind.h. If a new compiler is used, then EfiBind.h may need to be 
updated, but once the mapping between the new compiler’s types and the EFI base types is made, 
all existing EFI source code should compile correctly. 

Table 3-2. Common EFI Data Types 

Mnemonic Description 

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other 

values are undefined. 

INTN Signed value of native width (4 bytes on IA-32, 8 bytes on Itanium architecture 
operations). 

UINTN Unsigned value of native width (4 bytes on IA-32, 8 bytes on Itanium architecture 
operations). 

INT8 1-byte signed value. 

UINT8 1-byte unsigned value. 

INT16 2-byte signed value. 

UINT16 2-byte unsigned value. 

INT32 4-byte signed value. 

UINT32 4-byte unsigned value. 

INT64 8-byte signed value. 

UINT64 8-byte unsigned value. 

CHAR8 1-byte character. 

CHAR16 2-byte character. Unless otherwise specified, all strings are stored in the  
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards. 

VOID Undeclared type. 

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified, 
aligned on a 64-bit boundary. 

EFI_STATUS Status code. Type INTN. 

EFI_HANDLE A collection of related interfaces. Type VOID *. 

EFI_EVENT Handle to an event structure. Type VOID *. 

continued 
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Table 3-2. Common EFI Data Types (continued) 

Mnemonic Description 

EFI_LBA Logical block address. Type UINT64. 

EFI_TPL Task priority level. Type UINTN.  

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Controller address. 

EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.  

EFI_IPv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address. 

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol 
address.  

<Enumerated Type> Element of an enumeration. Type INTN.  
 

Table 3-3 defines modifiers that are used in function and data declarations. The IN, OUT, and 
OPTIONAL modifiers are used only to qualify arguments to functions and therefore do not appear 
in data type declarations. The IN and OUT modifiers are placed at the beginning of the line before 
the data type of each function argument, and the OPTIONAL modifier is placed at the end of the 
line after the name of the function argument. The STATIC modifier is used to modify the scope of 
a function and can be overloaded to support debugging. The EFIAPI modifier is used to ensure 
that the correct calling convention that is defined in the EFI Specification is used between different 
modules that are not linked together. 

Table 3-3. Modifiers for Common EFI Data Types 

Mnemonic Description 

IN Datum is passed to the function. Placed at the beginning of a source 
line before the data type of the function argument. 

OUT Datum is returned from the function. Placed at the beginning of a 
source line before the data type of the function argument. 

OPTIONAL Datum that is passed to the function is optional, and a NULL may be 

passed if the value is not supplied. Placed at the end of a source line 
after the name of the function argument. 

STATIC The function has local scope. This modifier replaces the standard C 
static key word, so it can be overloaded for debugging. 

VOLATILE Declares a variable to be volatile and thus exempt from optimization to 
remove redundant or unneeded accesses. Any variable that 
represents a hardware device is declared as VOLATILE. 

CONST Declares a variable to be of type const. This modifier is a hint to the 

compiler to enable optimization and stronger type checking during 
compile time. 

EFIAPI Defines the calling convention for EFI interfaces. All EFI intrinsic 
services and any member function of a protocol use this modifier on 
the function definition. 
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3.7.1 Enumerations 
Example 3-8 is an example of a construction for an enumerated type. The names of the elements in 
the enumerated type follow the same naming convention as variables and functions. The enum is 
declared as a typedef with the name of the typedef following the standard all-capitalization 
rules. It is recommended that the last element of the enum be a member element that represents the 
maximum legal value for the enumeration. This representation allows for bounds checking on an 
enum to support debugging and sanity checking the value assigned to an enum. It is also 
recommended that the enum members be named carefully so that their names do not collide with 
other variable or function names. 
typedef enum { 
  EnumMemberOne, 
  EnumMemberTwo, 
  EnumMemberMax 
} ENUMERATED_TYPE; 

Example 3-8.  Enumerated Types 

3.7.2 Data Structures and Unions 
Example 3-9 is an example of a construction of a data structure and a union. The names of the field 
in the data structure and the union follow the same naming conventions as variable and functions. A 
struct or union is declared as a typedef with the name of the typedef following the 
standard all-capitalization rules.  
typedef struct { 
  UINT32  FieldOne; 
  UINT32  FieldTwo; 
  UINT32  FieldThree; 
} MY_STRUCTURE; 
 
typedef union { 
  UINT16  Integer; 
  CHAR16  Character; 
} MY_UNION; 

Example 3-9.  Data Structure and Union Types 

3.8 Constants 

Table 3-4 lists the constants that are available to all EFI drivers.  

Table 3-4. EFI Constants 

Mnemonic Description 

TRUE One 

FALSE Zero 

NULL VOID pointer to zero. 
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3.9 Include Files 

Include files contain a #ifndef and a #define statement at the start of the include file and a 
#endif statement as the last line of the file. The #ifndef and #define statements contain an 
all-uppercase version of the include file name, prefixed and postfixed by the ‘_’ character, which 
prevents duplicate definitions if the same include file is included by a different module. All C 
include files use the .h file extension. The example in Example 3-10 shows the include file 
SerialDriver.h. It contains #ifndef and #define statements of 
_EFI_SERIAL_DRIVER_H_. 
/*++ 
 
Copyright (c) 2003 Xyz Corporation 
 
Module Name: 
 
  SerialDriver.h 
 
Abstract: 
 
  Serial driver …. 
 
--*/ 
 
#ifndef _EFI_SERIAL_DRIVER_H_ 
#define _EFI_SERIAL_DRIVER_H_ 
 
// 
// Statements that include other header files 
// 
 
// 
// Simple defines of such items as status codes and macros 
// 
 
// 
// Type declarations 
// 
 
// 
// Function prototype declarations 
// 
 
#endif  

Example 3-10.  Include File 

The above comments suggest an order of declarations in an include file. Include files contain public 
declarations or private declarations, but not both. Include files do not contain code or declare 
storage for variables. Examples of public include files would be protocol definitions or industry 
standard specifications (such as EFI, ACPI, and SMBIOS). Private include files would contain 
static functions and internal data structure definitions. 
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3.10 Spaces in C Code 

Spacing guidelines are very important and greatly improve the readability of source code. The 
program shown in Example 3-11 is an example that uses poor spacing guidelines and is very 
difficult to follow (Dishonorable mention, Obfuscated C Code Contest, 1984. Author requested 
anonymity). 
int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hello,world!\n",'/'/'/' 
));}read(j,i,p){write(j/p+p,i---j,i/i);} 

Example 3-11.  Poor Spacing 

3.10.1 Vertical Spacing  
Blank lines are used to make code more readable and to group logically related sections together. 
The convention of one statement per line is followed. This convention is not followed in for 
loops, where the initial, conditional, and loop statements reside on a single source line. The if 
statement is not an exception to this guideline. The conditional expression and body go on separate 
lines. The open brace ({) is placed at the end of the first line of the construct. The close brace (}) 
and case labels are placed on their own line. The close brace does share a line with the else and 
else if constructs. 

3.10.2 Horizontal Spacing  
Spaces are placed around assignment operators, binary operators, after commas, and before an open 
parenthesis. Spaces are not placed around structure members, pointer operators, or before open 
brackets of array subscripts. It is also better to use extra parentheses in more complex expressions 
rather than to depend on in-depth knowledge of the precedence rules of C. In addition, continuation 
lines are formatted so that they line up with the portion of the preceding line that they continue. 
Example 3-12 contains several practical examples of these spacing conventions. 
Status = TestString (String, Index + 3, &Value); 
MinResult = MIN_EXAMPLE (Start, End); 
Data.Index 
Pointer->Index = *Ptr; 
Array[(Max + Min) / 2] 
Value = (GetData (BubbaBaes + BUBBA_HIGH_DATA) << 8) | 
         GetData (BubbaBaes + BUBBA_LOW_DATA) 
 

Example 3-12.  Horizontal Spacing Examples 
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3.11 Standard C Constructs 

The following sections describe the code conventions for the following C constructs: 

• Subroutines 
• Function calls 
• Boolean expressions 
• Conditional expressions 
• Loop expressions 
• Switch expressions 

3.11.1 Subroutines 
Function prototype declarations and function implementations use the same coding conventions. 
The first line is the data type of the return value, left justified. If the function is a protocol member, 
then the next line is EFIAPI. The next line is the name of the function that follows the function 
naming conventions, followed by a space and an open parenthesis. This line is followed by the 
argument list with one argument per line, indented by two spaces. The type names for each 
argument are aligned on the same column, and the beginning of the field name for each argument is 
also  aligned in the same column. The last argument is followed by a line with a close parenthesis 
that is also indented by two spaces. 

Each argument type definition is preceded by an IN and/or OUT modifiers. The modifiers are used 
to indicate whether the argument is an input or output variable. The IN variables are listed first 
followed by the OUT variables. If data is both passed in and passed out through a variable, then it is 
marked as both IN and OUT. A buffer that is passed into a routine that modifies the contents of the 
buffer is marked as both IN and OUT. Table 3-5 shows the code conventions that are used for IN 
and OUT. 

Table 3-5. IN and OUT Usage 

Mnemonic Description 

IN Passed by value. For C, this mnemonic is any argument whose name 
is not preceded by an asterisk (*). Placed at the beginning of a line 
containing a function argument. 

IN Passed by reference, and referenced data is not modified by the 
routine. An asterisk precedes the argument name. Placed at the 
beginning of a line containing a function argument. 

OUT Passed by reference, and the referenced data is modified by the 
routine. The passed-in state of the referenced data is not used by the 
routine. Placed at the beginning of a line containing a function 
argument. 

IN OUT Passed by reference, and the passed-in referenced data is consumed 
and then modified by the routine. Placed at the beginning of a line 
containing a function argument. 

OPTIONAL If argument is a NULL pointer, it is not present. If the value is not 
NULL, it is a valid argument. Placed at the end of a line containing a 

function argument. 
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Function implementations are then followed by a function comment header and the function body. 
The function body starts with the declaration of all the local variables that are used in the function. 
Local variable declarations may not be spread throughout the function. There is one local variable 
declared per line, indented by two spaces. Like the argument declarations, local variable names are 
aligned in the same column. Local variables declarations are not commented. Instead, they have 
self-describing names. If comments are required for complex local variable declarations, then the 
comments are placed in the include file that defines the complex data type, or the comments are 
placed in the function’s comment header. Local variables are not initialized as part of their 
declaration. Instead, the local variables are initialized as part of the code body that follows the local 
variable declarations. Example 3-13 shows an example of the function prototype and function 
implementation. 
// 
// Function Prototype Declaration 
// 
EFI_STATUS 
EFIAPI 
FooName ( 
  IN     UINTN  Arg1, 
  IN     UINTN  Arg2, OPTIONAL 
  OUT    UINTN  *Arg3, 
  IN OUT UINTN  *Arg4 
  ); 
 
// 
// Function Implementaion 
// 
EFI_STATUS 
EFIAPI 
FooName ( 
  IN     UINTN  Arg1, 
  IN     UINTN  Arg2, OPTIONAL 
  OUT    UINTN  *Arg3, 
  IN OUT UINTN  *Arg4 
  ) 
/*++ 
 
Routine Description:  
 
  <<description>> 
 
Arguments:   
 
  <<argument names and purposes>> 
 
Returns:   
 
  <<description of possible return values>> 
 
--*/ 
{ 
  UINTN  LocalOne; 
  UINTN  LocalTwo; 
  UINTN  LocalThree; 
  . . . 
} 

Example 3-13.  C Subroutine 
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3.11.2 Calling Functions 
Function calls contain the function name, followed by a space and an open parenthesis. If all the 
arguments fit on one line, then the arguments are separated by commas on that line. If the 
arguments do not all fit on the same line, then each argument is placed on its own line, indented 
two spaces from the first character of the function being called. Example 3-14 shows the code 
conventions for calling functions. 
  // 
  // Function and arguments fit on a single line 
  // 
  Foo (A, B, C); 
 
  // 
  // Function and arguments do not fit on a single line 
  // 
  Status = BlockIo->ReadBlocks ( 
                      BlockIo, 
                      MediaId, 
                      Lba, 
                      BufferSize, 
                      Buffer 
                      ); 

Example 3-14.  Calling Functions 

3.11.3 Boolean Expressions 
Boolean tests are constructed using the following conventions. Boolean values and variables of type 
BOOLEAN do not require explicit comparisons to TRUE or FALSE. Non-Boolean values or 
variables use comparison operators (==, !=, >, <, >=, <=). A comparison of any pointer to zero is 
done with the NULL constant. Example 3-15 shows an example of the code conventions for 
Boolean expressions. 
BOOLEAN  Done; 
UINTN    Index; 
VOID     *Ptr;   
 
// 
//           Incorrect                           Correct 
//   =======================             ========================= 
     if (Index) {                        if (Index != 0) { 
     if (!Index) {                       if (Index == 0) { 
     if (Done == TRUE) {                 if (Done) { 
     if (Done == FALSE) {                if (!Done) { 
     if (Ptr) {                          if (Ptr != NULL) {  
     if (Ptr == 0) {                     if (Ptr == NULL) { 

Example 3-15.  Boolean Expressions 
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3.11.4 Conditional Expressions 
Example 3-16 contains examples of the coding conventions for condition expressions, including the 
following: 

• An if construct 
• An if/else construct 
• An if/else if/else construct 
• A nested if construct 

The if statement is followed by an open brace ({) even if the body contains only one statement. 
The body is indented two spaces, and the close brace (}) is placed on its own line and shares the 
same indentation as the if statement. The close brace (}) may optionally be followed by an else 
if or an else statement and an additional open brace ({). The body for the else if and the 
else statements are also indented by two spaces. 
// 
// IF construct 
// 
if (A > B) { 
  IamTheCode (); 
} 
 
// 
// IF / ELSE construct 
// 
if (Pointer == NULL) { 
  IamTheCode (); 
} else { 
  IamTheCode (); 
} 
 
// 
// IF / ELSE IF / ELSE construct 
// 
if (Done == TRUE) { 
  IamTheCode(); 
} else if (A < B) { 
  IamTheCode(); 
} else { 
  IamTheCode(); 
} 
 
// 
// Nested IF construct 
// 
if (A > 10) { 
  if (A > 20) { 
    IamTheCode (); 
  } else { 
    if (A == 15) { 
      IamTheCode (); 
    } else { 
      IamTheCode (); 
    } 
  } 
} 

Example 3-16.  Conditional Expressions 
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3.11.5 Loop Expressions 
Example 3-17 contains examples of the coding conventions for loop expressions, including the 
following:  

• A while loop 

• A do loop 

• A for loop  

• A nested for loop   

The loop statements are followed by an open brace ({) on the same line even if the body contains 
only one statement. The body is indented two spaces, and the close brace (}) is placed on its own 
line and shares the same indentation as the loop statement. 
// 
// WHILE Loop construct 
// 
while (Pointer != NULL) { 
  IamTheCode(); 
} 
 
// 
// DO Loop construct 
// 
do { 
  IamTheCode(); 
} while (A < B); 
 
// 
// FOR Loop construct 
// 
for (Index = 0; Index < MAX_INDEX; Index++) { 
  IamTheCode(Index); 
} 
 
// 
// Nested Loop construct 
// 
for (Column = 0; Column < MAX_COLUMN; Column++) { 
  for (Ror = 0; Row < MAX_ROW; Row++) { 
    IamTheCode(Index); 
  } 
} 

Example 3-17.  Loop Expressions 
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3.11.6 Switch Expressions 
Example 3-18 contains an example of a switch statement. The switch statement is followed by 
an open brace ({) on the same line. The case statements and default statements are placed on 
their own lines at the same indentation level as the switch statement. The body of the case 
statements and default statements are indented two spaces, and the close brace (}) is placed on 
its own line and shares the same indentation as the switch statement. 
switch (Variable) { 
 
case 1: 
  IamTheCode (); 
  break; 
 
case 2: 
  IamTheCode (); 
  break; 
 
default: 
  IamTheCode (); 
  break; 
} 

Example 3-18.  Switch Expressions 

3.11.7 Goto Expressions 
In general, the goto construct is not used. However, it is acceptable to use goto for error 
handling and thus exiting a routine in an error case. A goto allows the error exit code to be 
contained in one place at the end of a routine. This location reduces software life cycle maintenance 
issues, as there can be one copy of error cleanup code per routine. If a goto is not used for this 
case, then the error cleanup code tends to get replicated multiple times, which tends to induce errors 
in code maintenance. The goto follows the normal rules for C code. The labels are left justified. 
Example 3-19 shows the code convention for goto expressions. 
{ 
  EFI_STATUS  Status; 
 
  . . . 
  Status = IAmTheCode (); 
  if (EFI_ERROR (Status)) { 
    goto ErrorExit; 
  } 
 
  IDoTheWork (); 
 
ErrorExit: 
  . . . 
  return Status; 
} 

Example 3-19.  Goto Expressions 
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3.12 EFI File Templates 

This section contains templates and guidelines for creating files for EFI protocols, EFI GUIDs, and 
EFI drivers. The naming conventions for the driver entry point and the functions exported by a 
driver that are presented here will guarantee that a unique name is produced for every function, 
which aides in call stack analysis when root-causing driver issues. The following expressions are 
used throughout this section to show where protocol names, GUID names, function names, and 
driver names should be substituted in a file template: 

<<ProtocolName>> Represents the name of a protocol that follows the function 
or variable naming convention, which capitalizes only the 
first letter of each word (e.g., DiskIo). 

<<PROTOCOL_NAME>> Represents the name of a protocol that follows the data 
structure naming convention, which capitalizes all the 
letters and separates each word with an underscore ‘_’ (e.g., 
DISK_IO). 

<<FunctionNameN>> Represents the nth name of  the protocol member functions 
that follow the function or variable naming convention, 
which capitalizes only the first letter of each word 
(e.g., ReadDisk). 

<<FUNCTION_NAMEn>> Represents the nth name of  the protocol member functions 
that follows the data structure naming convention, which 
capitalizes all the letters and separates each word with an 
underscore ‘_’ (e.g., READ_DISK). 

<<GuidName>> Represents the name of a GUID that follows the function or 
variable naming convention, which capitalizes only the first 
letter of each word (e.g., GlobalVariable). 

<<GUID_NAME>> Represents the name of a GUID that follows the data 
structure naming convention, which capitalizes all the 
letters and separates each word with an underscore ‘_’ 
(e.g., GLOBAL_VARIABLE). 

<<DriverName>> Represents the name of a driver that follows the function or 
variable naming convention, which capitalizes only the first 
letter of each word (e.g., Ps2Keyboard). 

<<DRIVER_NAME>> Represents the name of a driver that follows the data 
structure naming convention, which capitalizes all the 
letters and separates each word with an underscore ‘_’ (e.g., 
PS2_KEYBOARD). 

<<DriverVersion>> Value that represents the version of the driver. Values from 
0x0–0x0f and 0xfffffff0–0xffffffff are reserved for EFI 
drivers that are written by OEMs for integrated devices. 
Values from 0x10–0xffffffef are reserved for EFI drivers 
that are written by IHVs. 
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<<ProtocolNameCn>> Represents the nth name of a protocol that is consumed by 
an EFI driver and follows the function or variable naming 
convention, which capitalizes only the first letter of each 
word (e.g., DiskIo). 

<<PROTOCOL_NAME_CN>> Represents the nth name of a protocol that is consumed by 
an EFI driver and follows the data structure naming 
convention, which capitalizes all the letters and separates 
each word with an underscore ‘_’ (e.g., DISK_IO). 

<<ProtocolNamePm>> Represents the mth name of a protocol that is produced by 
an EFI driver and follows the function or variable naming 
convention, which capitalizes only the first letter of each 
word (e.g., DiskIo). 

<<PROTOCOL_NAME_PM>> Represents the mth name of a protocol that is produced by 
an EFI driver and follows the data structure naming 
convention, which capitalizes all the letters and separates 
each word with an underscore ‘_’ (e.g., DISK_IO). 

3.12.1 Protocol File Templates 
Protocols are placed in the directory \Efi1.1\Edk\Protocol\<<ProtocolName>>. These 
directories contain a <<ProtocolName>>.c and a <<ProtocolName>>.h file. The 
<<ProtocolName>>.h file has the contents shown in Example 3-20. The file header comments 
and function header comments have been omitted from this template. The GUID shown is an illegal 
GUID that is composed of all zeros. Every new protocol must generate a new GUID. GUIDGEN, 
which is shipped with Microsoft Visual Studio, can be used to generate new GUIDs. The 
<<ProtocolName>>.c file has the contents shown in Example 3-21. The file header comments 
have also been removed from this template. The full source to the Disk I/O Protocol is included in 
Appendix D for reference.  
#ifndef __EFI_<<PROTOCOL_NAME>>_H__ 
#define __EFI_<<PROTOCOL_NAME>>_H__ 
 
#define EFI_<<PROTOCOL_NAME>>_PROTOCOL_GUID \ 
  { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } 
 
EFI_INTERFACE_DECL (_EFI_<<PROTOCOL_NAME>>_PROTOCOL); 
 
typedef 
EFI_STATUS 
(EFIAPI *EFI_<PROTOCOL_NAME>>_<<PROTOCOL_FUNCTION_NAME1>>) ( 
  IN EFI_<<PROTOCOL_NAME>>_PROTOCOL *This, 
  // 
  // Place additional function arguments here. 
  // 
  ); 
 
typedef 
EFI_STATUS 
(EFIAPI *EFI_<PROTOCOL_NAME>>_<<PROTOCOL_FUNCTION_NAME2>>) ( 
  IN EFI_<<PROTOCOL_NAME>>_PROTOCOL *This, 
  // 
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  // Place additional function arguments here. 
  // 
  ); 
 
// . . . 
 
typedef 
EFI_STATUS 
(EFIAPI *EFI_<PROTOCOL_NAME>>_<<PROTOCOL_FUNCTION_NAMEn>>) ( 
  IN EFI_<<PROTOCOL_NAME>>_PROTOCOL *This, 
  // 
  // Place additional function arguments here. 
  // 
  ); 
 
typedef struct _EFI_<<PROTOCOL_NAME>>_PROTOCOL { 
  EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME1>>  <<FunctionName1>>; 
  EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME2>>  <<FunctionName2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAMEn>>  <<FunctionNameN>>; 
  // 
  // Place protocol data fields here 
  // 
} EFI_<<PROTOCOL_NAME>>_PROTOCOL; 
 
extern EFI_GUID gEfi<<ProtocolName>>ProtocolGuid; 
 
#endif 

Example 3-20.  Protocol Include File 

 
#include "Efi.h" 
#include EFI_PROTOCOL_DEFINITION (<<ProtocolName>>) 
 
EFI_GUID gEfi<<ProtocolName>>ProtocolGuid = EFI_<<PROTOCOL_NAME>>_PROTOCOL_GUID; 
 
EFI_GUID_STRING (&gEfi<<ProtocolName>>ProtocolGuid, "ShortString", 
"LongString"); 

Example 3-21.  Protocol C File 
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3.12.2 GUID File Templates 
GUIDs and their associated data structures are declared just like protocols. The only difference is 
that GUIDs are placed in the directory \Efi1.1\Edk\Guid\<<GuidName>>. These 
directories contain a <<GuidName>>.c and a <<GuidName>>.h file. The 
<<GuidName>>.h file has the contents shown in Example 3-22. The file header comments have 
been omitted from this template. The GUID shown is an illegal GUID that is composed of all zeros. 
The GUIDGEN tool can be used to generate new GUIDs. The <<GuidName>>.c file has the 
contents shown in Example 3-23. The file header comments have also been omitted from this 
template. The full source to the EFI global variable GUID is included in Appendix D for reference. 
GUIDs are added to the \Efi1.1\Edk\Guid\<<GuidName>> directory when a GUID is 
required by more than one EFI component. If a GUID is required only by a single EFI driver, then 
it can be declared with the source code to the EFI driver. 
#ifndef __<<GUID_NAME>>_H__ 
#define __<<GUID_NAME>>_H__ 
 
#define EFI_<<GUID_NAME>>_GUID \ 
  { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } 
 
typedef struct { 
  // 
  // Place GUID specific data fields here 
  // 
} EFI_<<GUID_NAME>>_GUID; 
 
extern EFI_GUID gEfi<<GuidName>>Guid; 
 
#endif 

Example 3-22.  GUID Include File 

 
#include "Efi.h" 
#include EFI_GUID_DEFINITION (<<GuidName>>) 
 
EFI_GUID gEfi<<GuidName>>Guid = EFI_<<GUID_NAME>>_GUID; 
 
EFI_GUID_STRING (&gEfi<<GuidName>>Guid, "", ""); 

Example 3-23.  GUID C File 

3.12.3 Including a Protocol or a GUID 
Any code that produces or consumes a protocol must include the protocol definitions, and any code 
that produces or consumes a GUID must include the GUID definitions. A protocol can be included 
by using the EFI_PROTOCOL_DEFINITION () macro. However, it is recommended that 
aliases of this macro be used that advertise if the protocol is being consumed or produced. The 
EFI_PROTOCOL_CONSUMER () macro is used by EFI drivers to include protocol definitions 
that are consumed, and the EFI_PROTOCOL_PRODUCER () macro is used by EFI drivers to 
include protocol definitions that are produced. There is no difference between these two macros in 
function, but they could potentially be used by source code analysis tools in the future to examine 
the relationships between various EFI drivers. A GUID is included by using the 
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EFI_GUID_DEFINITION () macro. Example 3-24 shows the different macros that can be used 
to include the Block I/O Protocol and the EFI global variable GUID. 
#include EFI_PROTOCOL_DEFINITION (BlockIo) 
#include EFI_PROTOCOL_PRODUCER (BlockIo) 
#include EFI_PROTOCOL_CONSUMER (BlockIo) 
#include EFI_GUID_DEFINITION (GlobalVariable) 

Example 3-24.  Including a Protocol or a GUID 

3.12.4 EFI Driver Template 
EFI drivers are placed below the \Efi1.1\Edk\Drivers\ directory. The directory structure in 
this area does not have to be flat. Closely related drivers may be placed in subdirectories. The 
directory name for an EFI driver is typically of the form <<DriverName>>. For example, the 
PS/2* keyboard driver is in the \Efi1.1\Edk\Drivers\Ps2Keyboard directory. 

Simple EFI drivers will typically have the following two files in their driver directory:   

• <<DriverName>>.h  

• <<DriverName>>.c  

The <<DriverName>>.h file includes the standard EFI include files, the EFI Driver Library 
declarations, and any protocol or GUID files that the driver either consumes or produces. In 
addition, the <<DriverName>>.h file contains the function prototypes of all the public APIs 
that are produced by the driver. The <<DriverName>>.c file contains the driver entry point. If 
an EFI driver produces the Driver Binding Protocol, then the <<DriverName>>.c file typically 
contains the Supported(), Start(), and Stop() services. The <<DriverName>>.c file 
may also contain the services for the protocol(s) that the EFI driver produces. Complex EFI drivers 
that produce more than one protocol may be broken up into multiple source files. The natural 
organization is to place the implementation of each protocol that is produced in a separate file of 
the form <<ProtocolName>>.c or <<DriverName>><<ProtocolName>>.c. For 
example, the disk I/O driver produces the Driver Binding Protocol, the Disk I/O Protocol, and the 
Component Name Protocol. The DiskIo.c file contains the Driver Binding Protocol and Disk 
I/O Protocol implementations. The ComponentName.c file contains the implementation of the 
Component Name Protocol. 

3.12.5 <<DriverName>>.h File 
Example 3-25 below shows the main include file for an EFI driver that consumes n protocols and 
produces m protocols. The file header comments and the function prototypes for the exported APIs 
have been omitted in this template. The full source to the include file for the disk I/O driver is 
included in Appendix D for reference. An EFI driver include file contains the following: 

• #ifndef / #define for the driver include file 

• #include statements for the standard EFI and EFI Driver Library include files. 

• #include statements for all the protocols and GUIDs that are consumed by the driver. 

• #include statements for all the protocols and GUIDs that are produced by the driver. 

• #define for a unique signature that is used in the private context data structure (see 
chapter 8). 
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• typedef struct for the private context data structure (see chapter 8). 

• #define statements to retrieve the private context data structure from each protocol that is 
produced (see chapter 8). 

• extern statements for the global variables that the driver produces. 

• Function prototype for the driver’s entry point. 
• Function prototypes for all of the APIs in the produced protocols 
• #endif statement for the driver include file 

 
#ifndef __EFI_<<DRIVER_NAME>>_H__ 
#define __EFI_<<DRIVER_NAME>>_H__ 
 
#include "Efi.h" 
#include "EfiDriverLib.h" 
 
// 
// Driver Consumed Protocol Prototypes 
// 
#include EFI_PROTOCOL_CONSUMER (<<ProtocolNameC1>>) 
#include EFI_PROTOCOL_CONSUMER (<<ProtocolNameC2>>) 
// . . . 
#include EFI_PROTOCOL_CONSUMER (<<ProtocolNameCn>>) 
 
// 
// Driver Produced Protocol Prototypes 
// 
#include EFI_PROTOCOL_PRODUCER (<<ProtocolNameP1>>) 
#include EFI_PROTOCOL_PRODUCER (<<ProtocolNameP2>>) 
// . . . 
#include EFI_PROTOCOL_PRODUCER (<<ProtocolNamePm>>) 
 
// 
// Private Data Structure 
// 
#define <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE  EFI_SIGNATURE_32 
('A','B','C','D') 
 
typedef struct { 
  UINTN                   Signature; 
  EFI_HANDLE              Handle; 
 
  // 
  // Pointers to consumed protocols 
  // 
  EFI_<<PROTOCOL_NAME_C1>>_PROTOCOL  *<<ProtocolNameC1>>; 
  EFI_<<PROTOCOL_NAME_C2>>_PROTOCOL  *<<ProtocolNameC2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME_Cn>>_PROTOCOL  *<<ProtocolNameCn>>; 
 
  // 
  // Produced protocols 
  // 
  EFI_<<PROTOCOL_NAME_P1>>_PROTOCOL  <<ProtocolNameP1>>; 
  EFI_<<PROTOCOL_NAME_P2>>_PROTOCOL  <<ProtocolNameP2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME_Pm>>_PROTOCOL  <<ProtocolNamePm>>; 
 
  // 
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  // Private functions and data fields 
  // 
} <<DRIVER_NAME>>_PRIVATE_DATA; 
 
#define <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_P1>>_THIS(a) \ 
  CR(                                                                 \ 
    a,                                                                \ 
    <<DRIVER_NAME>>_PRIVATE_DATA,                                     \ 
    <<ProtocolNameP1>>,                                               \ 
    <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE                            \ 
  ) 
 
#define <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_P2>>_THIS(a) \ 
  CR(                                                                 \ 
    a,                                                                \ 
    <<DRIVER_NAME>>_PRIVATE_DATA,                                     \ 
    <<ProtocolNameP2>>,                                               \ 
    <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE                            \ 
  ) 
 
// . . . 
 
#define <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pm>>_THIS(a) \ 
  CR(                                                                 \ 
    a,                                                                \ 
    <<DRIVER_NAME>>_PRIVATE_DATA,                                     \ 
    <<ProtocolNamePm>>,                                               \ 
    <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE                            \ 
  ) 
 
// 
// Required Global Variables 
// 
extern EFI_DRIVER_BINDING_PROTOCOL       g<<DriverName>>DriverBinding; 
 
// 
// Optional Global Variables 
// 
extern EFI_COMPONENT_NAME_PROTOCOL       g<DriverName>>ComponentName; 
extern EFI_DRIVER_CONFIGURATION_PROTOCOL g<DriverName>>DriverConfiguration; 
extern EFI_DRIVER_DIAGNOSTICS_PROTOCOL   g<DriverName>>DriverDiagnostics; 
 
// 
// Function prototype for the driver’s entry point 
// 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ); 
 
// 
// Function ptototypes for the APIs in the Produced Protocols 
// 
 
#endif 

Example 3-25.  Driver Include File Template 
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3.12.6 <<DriverName>>.c File 
The template in Example 3-26 below shows the main source file for an EFI driver. The file header 
comments and function header comments have been omitted in this template. This template 
contains empty protocol functions. The functions from the various protocols that an EFI driver may 
produce are discussed in later chapters. The full source to the include file for the disk I/O driver is 
included in Appendix D for reference. An EFI source file contains the following: 

• #include statement for <<DriverName>>.h. 

• Global variable declarations 
• Declaration of the EFI driver’s entry point function 
• The EFI driver entry point function 
• The Supported(), Start(), and Stop() functions 

• Implementation of the APIs from the produced protocols 
 
 

#include "<<DriverName>>.h" 
 
EFI_DRIVER_BINDING_PROTOCOL g<<DriverName>>DriverBinding = { 
  <<DriverName>>DriverBindingSupported, 
  <<DriverName>>DriverBindingStart, 
  <<DriverName>>DriverBindingStop, 
  <<DriverVersion>>, 
  NULL, 
  NULL 
}; 
 
EFI_DRIVER_ENTRY_POINT (<<DriverName>>DriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  return EfiLibInstallAllDriverProtocols ( 
           ImageHandle,  
           SystemTable,  
           &g<<DriverName>>DriverBinding, 
           ImageHandle, 
           &g<<DriverName>>ComponentName, 
           &g<<DriverName>>DriverConfiguration, 
           &g<<DriverName>>DriverDiagnostics 
           ); 
} 
 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
} 
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EFI_STATUS 
EFIAPI 
<<DriverName>>DriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
} 
 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverBindingStop ( 
  IN  EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  UINTN                        NumberOfChildren, 
  IN  EFI_HANDLE                   *ChildHandleBuffer 
  ) 
{ 
} 
 
// 
// Implementations of the APIs in the produced protocols 
// The following template is for the mth function of the nth protocol produced 
// It also shows how to retrieve the private context structure from this arg 
// 
EFI_STATUS 
EFIAPI 
<<DriverName>><<ProtocolNamePn>><<FunctionNameM>> ( 
  IN EFI_<<PROTOCOL_NAME_PN>>_PROTOCOL *This, 
  // 
  // Additional function arguments here. 
  // 
  ) 
{ 
  <<DRIVER_NAME>>_PRIVATE_DATA  *Private; 
 
  // 
  // Use This pointer to retrieve the private context structure 
  // 
  Private = <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pn>>_THIS (This); 
} 

Example 3-26.  Driver Implementation Template 
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3.12.7 <<ProtocolName>>.c or <<DriverName>><<ProtocolName>>.c File  
More complex EFI drivers may break the implementation into several source files. The natural 
boundary is to implement one protocol per file. The template in Example 3-27 below shows the 
main source file for one protocol of an EFI driver. The file header comments and function header 
comments have been omitted in this template. This template shows only empty protocol functions. 
The functions from the various protocols that an EFI driver may produce are discussed in later 
chapters. The full source to the Component Name Protocol for the disk I/O driver is included in 
Appendix D for reference. An EFI protocol source file contains the following: 

• #include statement for <<DriverName>>.h.. 

• Global variable declaration. This declaration applies only to protocols such as the Component 
Name, Driver Configuration, and Driver Diagnostics Protocols. Protocols that produce I/O 
services should never be declared as a global variable. Instead, they are declared in the private 
context structure that is dynamically allocated in the Start() function (see chapter 8). 

• Implementation of the APIs from the produced protocols. 
 

#include "<<DriverName>>.h" 
 
// 
// Protocol Global Variables 
// 
EFI_<<PROTOCOL_NAME_PN>>_PROTOCOL g<<DriverName>><<ProtocolNamePn>> = { 
  // . . . 
}; 
 
// 
// Implementations of the APIs in the produced protocols 
// The following template is for the mth function of the nth protocol produced 
// It also shows how to retrieve the private context structure from the This arg 
// 
EFI_STATUS 
EFIAPI 
<<DriverName>><<ProtocolNamePn>><<FunctionName1M>> ( 
  IN EFI_<<PROTOCOL_NAME_PN>>_PROTOCOL *This, 
  // 
  // Additional function arguments here. 
  // 
  ) 
{ 
  <<DRIVER_NAME>>_PRIVATE_DATA  Private; 
 
  // 
  // Use This pointer to retrieve the private context structure 
  // 
  Private = <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pn>>_THIS (This); 
} 

Example 3-27.  Protocol Implementation Template 
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3.12.8 EFI Driver Library 
Most EFI drivers use the EFI Driver Library because it simplifies the implementation and reduces 
the size of both the source code and the executable. All EFI drivers that use the EFI Driver Library 
must include the EfiDriverLib.h file. There are three different library initialization functions 
that are available from the EFI Driver Library. All three of these functions initialize the global 
variables gST, gBS, and gRT. These three global variables are pointers to the EFI System Table, 
the EFI Boot Services Table, and the EFI Runtime Services Table, respectively. There are also a 
number of function and macros available from the EFI Driver Library. They are all documented in 
the EFI Driver Library Specification. The code fragment in Example 3-28 below shows examples 
of the different EFI Driver Library initialization functions. The first example is typically used by 
services drivers that do not follow the EFI Driver Model. The second example is typically used by 
simple EFI drivers that follow the EFI Driver Model and do not produce the optional driver-related 
protocols. The last example is typically used by more complex EFI drivers that follow the EFI 
Driver Model and produce at least one of the optional driver-related protocols. 
// 
// Initialize a service driver 
// 
EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
// 
// Initialize a simple EFI driver that follows the EFI Driver Model 
// 
EfiLibInstallDriverBinding ( 
  ImageHandle, 
  SystemTable, 
  gDiskIoDriverBinding, 
  ImageHandle 
  ); 
 
// 
// Initialize a complex EFI driver that follows the EFI Driver Model 
// 
EfiLibInstallAllDriverProtocols ( 
  ImageHandle, 
  SystemTable, 
  gDiskIoDriverBinding, 
  ImageHandle, 
  gDiskIoComponentName, 
  gDiskIoDriverConfiguration, 
  gDiskIoDriverDiagnostics 
  ); 

Example 3-28.  Initializing the EFI Driver Library 
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4 
EFI Services 

An EFI driver has a number of EFI Boot Services and EFI Runtime Services that are available to 
perform its functions. These services can be grouped into the following three areas:   

• Commonly used services 
• Rarely used services 
• Services that should not be used from an EFI driver   

Table C-1, Table C-2, and Table C-3 in Appendix C list each of these categories. The full function 
prototypes and descriptions for each of the services and their arguments described in this chapter 
are available in chapters 5 and 6 of the EFI 1.10 Specification. 

4.1 Services That EFI Drivers Commonly Use 

Table 4-1 contains the list of EFI services that are commonly used by EFI drivers. The following 
sections provide a brief description of each service along with code examples on how they are 
typically used by EFI drivers. This table is also present in Appendix C for reference purposes. 

Table 4-1. EFI Services That Are Commonly Used by EFI Drivers 

Type Service Type Service 

BS gBS->AllocatePool() BS gBS->InstallMultipleProtocolInterfaces() 

BS gBS->FreePool() BS gBS->UninstallMultipleProtocolInterfaces() 

BS gBS->AllocatePages() BS gBS->LocateHandleBuffer() 

BS gBS->FreePages() BS gBS->LocateProtocol() 

BS gBS->SetMem() BS gBS->OpenProtocol() 

BS gBS->CopyMem() BS gBS->CloseProtocol() 

  BS gBS->OpenProtocolInformation() 

BS gBS->CreateEvent()   

BS gBS->CloseEvent() BS gBS->RaiseTPL() 

BS gBS->SignalEvent() BS gBS->RestoreTPL() 

BS gBS->SetTimer()   

BS gBS->CheckEvent() BS gBS->Stall() 
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4.1.1 Memory Services 

4.1.1.1 gBS->AllocatePool() and gBS->FreePool() 
These services are used by EFI drivers to allocate and free small buffers that are guaranteed to be 
aligned on an 8-byte boundary. These services are ideal for allocating and freeing data structures. 
Because the allocated buffers are guaranteed to be on an 8-byte boundary, an alignment fault will 
not be generated on Itanium-based platforms as long as all the fields of the data structure are natural 
aligned (not packed). 

When a buffer is allocated on an IA-32 platform, the buffer will be allocated below 4 GB, so it is 
guaranteed to be accessible by an IA-32 processor that is executing in flat physical mode. When a 
buffer is allocated on an Itanium-based platform, the buffer will be allocated somewhere in the 
64-bit address space that is available to the Itanium processor in physical mode. This location 
means that buffers above 4 GB may be allocated on Itanium-based platforms if there is system 
memory above 4 GB. It is important to note that care must be taken when pointers are converted on 
Itanium-based platforms. All EFI drivers must be aware that pointers may contain values above 
4 GB, and care must be taken to never strip the upper address bits. If the upper address bits are 
stripped, then the driver will work on IA-32 systems and Itanium-based platforms with small 
memory configurations, but not on Itanium-based platforms with larger memory configurations.  

EFI Boot Service drivers will typically allocate and free buffers of type 
EfiBootServicesData, and EFI runtime drivers will typically allocate and free buffers of type 
EfiRuntimeServicesData. Most drivers that follow the EFI Driver Model will allocate 
private context structures in their Start() function and will free them in their Stop() function. 
EFI drivers may also dynamically allocate and free buffers as different I/O operations are 
performed. To prevent memory leaks, every allocation operation must have a corresponding free 
operation. The code fragment in Example 4-1 shows how these services can be used to allocate and 
free a buffer for a data structure from EfiBootServicesData memory. In addition, it shows 
how the same allocations can be performed using services from the EFI Driver Library. The EFI 
Driver Library provides services that reduce the size of the driver and make the driver code easier 
to read and maintain. 
EFI_STATUS      Status; 
IDE_BLK_IO_DEV  *IdeBlkIoDevice; 
 
// 
// Allocate a buffer for a data structure 
// 
Status = gBS->AllocatePool ( 
                EfiBootServicesData, 
                sizeof (IDE_BLK_IO_DEV), 
                (VOID**)&IdeBlkIoDevice 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Allocate the same buffer using an EFI Library Function 
// 
IdeBlkIoDevice = EfiLibAllocatePool (sizeof (IDE_BLK_IO_DEV)); 
if (IdeBlkIoDevice == NULL) { 
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  return EFI_OUT_OF_RESOURCES; 
} 
 
// 
// Allocate the same buffer using an EFI Library Function that also 
// initializes the contents of the buffer with zeros 
// 
IdeBlkIoDevice = EfiLibAllocateZeroPool (sizeof (IDE_BLK_IO_DEV)); 
if (IdeBlkIoDevice == NULL) { 
  return EFI_OUT_OF_RESOURCES; 
} 
 
// 
// Free the allocated buffer  
// 
Status = gBS->FreePool (IdeBlkIoDevice); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-1.  Allocate and Free Pool 

4.1.1.2 gBS->AllocatePages() and gBS->FreePages() 
These services are used by EFI drivers to allocate and free larger buffers that are guaranteed to be 
aligned on a 4 KB boundary. These services allow buffers to be allocated at any available address, 
at specific addresses, or below a specific address. However, EFI drivers should not make any 
assumptions about the organization of system memory, so allocating from specific addresses or 
below specific addresses is strongly discouraged. As a result, buffers are typically allocated with an 
allocation type of AllocateAnyPages, and allocation types of AllocateMaxAddress and 
AllocateAddress are not used.  

When an allocation type of AllocateAnyPages is used on IA-32 platforms, the buffer will be 
allocated below 4 GB, so it is guaranteed to be accessible by an IA-32 processor that is executing in 
flat physical mode. When an allocation type of AllocateAnyPages is used on Itanium-based 
platforms, the buffer will be allocated somewhere in the 64-bit address space that is available to the 
Itanium processor in physical mode. This location means that buffers above 4 GB may be allocated 
on Itanium-based platforms if there is system memory above 4 GB. It is important to note this 
possible allocation because care must be taken when the physical address is converted to a pointer 
on Itanium-based platforms. All EFI drivers must be aware that pointers may contain values above 
4 GB, and care must be taken to never strip the upper address bits. If the upper address bits are 
stripped, then the driver will work on IA-32 systems and Itanium-based platforms with small 
memory configurations, but not on Itanium-based platforms with larger memory configurations.  

EFI Boot Service drivers will typically allocate and free buffers of type 
EfiBootServicesData, and EFI runtime drivers will typically allocate and free buffers of type 
EfiRuntimeServicesData. To prevent memory leaks, every allocation operation must have a 
corresponding free operation. The code fragment in Example 4-2 shows how these services can be 
used to allocate and free a buffer for a data structure from EfiBootServicesData memory.  
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EFI_STATUS            Status; 
EFI_PHYSICAL_ADDRESS  PhysicalBuffer; 
UINTN                 Size; 
VOID                  *Buffer; 
 
// 
// Allocate the number of pages to hold Size bytes and return in PhysicalBuffer 
// 
Status = gBS->AllocatePages( 
                AllocateAnyPages, 
                EfiBootServicesData, 
                EFI_SIZE_TO_PAGES(Size), 
                &PhysicalBuffer 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Convert the physical address to a pointer. This mechanism is the best one 
// that works on all IA-32 and Itanium-based platforms. 
// 
Buffer = (VOID *)(UINTN)PhysicalBuffer; 
 
// 
// Free the allocated buffer 
// 
Status = gBS->FreePages (RomBuffer, EFI_SIZE_TO_PAGES(RomBarSize)); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-2.  Allocate and Free Pages 
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4.1.1.3 gBS->SetMem() 
This service is used to initialize the contents of a buffer with a specified value. EFI drivers most 
commonly use this service to zero an allocated buffer, but it can be used to fill a buffer with other 
values too. The code fragment in Example 4-3 shows the same example from Example 4-1, but it 
uses this service to zero the contents of the allocated buffer. 
EFI_STATUS      Status; 
IDE_BLK_IO_DEV  *IdeBlkIoDevice; 
 
// 
// Allocate a buffer for a data structure 
// 
Status = gBS->AllocatePool ( 
                EfiBootServicesData, 
                sizeof (IDE_BLK_IO_DEV), 
                (VOID**)&IdeBlkIoDevice 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Zero the contents of the allocated buffer 
// 
gBS->SetMem (IdeBlkIoDevice, sizeof (IDE_BLK_IO_DEV), 0); 

Example 4-3.  Allocate and Free Buffer 

4.1.1.4 gBS->CopyMem() 
This service copies a buffer from one location to another. This service handles both aligned and 
unaligned buffers, and it even handles the rare case when buffers are overlapping. In the 
overlapping case, the requirement is that the destination buffer on exit from this service matches the 
contents of the source buffer on entry to this service. The code fragment in Example 4-4 shows how 
this service is typically used. 
EFI_STATUS    Status; 
MY_STRUCTURE  *SourceStructure; 
MY_STRUCTURE  *DestinationStructure; 
 
// 
// Allocate a buffer for the destination buffer 
// 
DestinationStructure = EfiLibAllocatePool (sizeof (MY_STRUCTURE)); 
if (DestinationStructure == NULL) { 
  return EFI_OUT_OF_RESOURCES; 
} 
 
// 
// Copy the source buffer to the destination buffer 
// 
gBS->CopyMem (DestinationBuffer, SourceBuffer, sizeof (MY_STRUCTURE)); 

Example 4-4.  Allocate and Copy Buffer 



EFI 1.10 Driver Writer’s Guide Draft for Review  

106 July 2004 Version 0.9 

4.1.2 Handle Database and Protocol Services 

4.1.2.1 gBS->InstallMultipleProtocolInterfaces() and 
gBS->UninstallMultipleProtocolInterfaces() 

These services are used to do the following: 

• Add handles to the handle database. 
• Remove handles from the handle database. 
• Add protocols to an existing handle in the handle database. 
• Remove protocols from an existing handle in the handle database.  

A handle in the handle database contains one or more protocols. A handle is not allowed to have 
zero protocols, and a handle is not allowed to have more than one instance of the same protocol on 
the same handle. A handle is added to the handle database when the first protocol is added. A 
handle is removed from the handle database when the last protocol is removed from the handle. 
These services support adding and removing more than one protocol at a time. If one protocol fails 
to be added to a handle, then none of the protocols are added to the handle. If one protocol fails to 
be removed from a handle, then none of the protocols are removed from the handle. The protocols 
are represented by a pointer to a protocol GUID and a pointer to the protocol interface. These 
services will parse pairs of arguments until a NULL pointer for the protocol GUID parameter is 
encountered. It is recommended that these services be used instead of 
gBS->InstallProtocolInterface() and 
gBS->UninstallProtocolInterface() because it results in small executables with 
source code that is easier to read. In addition, the 
gBS->InstallMultipleProtocolInterfaces() service will check to see if the same 
device path is being installed onto more than one handle in the handle database. This operation is 
not legal, so this additional error checking was added to section 5.3.1 of the EFI 1.10 Specification.  

EFI drivers are required to add the EFI_DRIVER_BINDING_PROTOCOL to the handle database 
in their driver entry point. They may also add the following in the driver entry point: 

• EFI_DRIVER_CONFIGURATION_PROTOCOL 
• EFI_DRIVER_DIAGNOSTICS_PROTOCOL 

• EFI_COMPONENT_NAME_PROTOCOL  

These protocols are optional for some platforms and required for others. For example, DIG64 
requires these protocols for Itanium-based platforms. If an EFI driver is unloadable, then the 
protocols that were added in the driver entry point must be removed in the driver’s Unload() 
function. The code fragment in Example 4-5 shows how these services would be used in a driver 
entry point and Unload() function.  
EFI_DRIVER_BINDING_PROTOCOL  gMyDriverBinding = { 
  MySupported, 
  MyStart, 
  MyStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_COMPONENT_NAME_PROTOCOL  gMyComponentName = { 
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  MyGetDriverName, 
  MyGetControllerName, 
  “eng” 
}; 
 
EFI_HANDLE  ImageHandle; 
 
// 
// Install the Driver Binding Protocol and the Component Name Protocol 
// onto the image handle that is passed into the driver entry point 
// 
Status = gBS->InstallMultipleProtocolInterfaces ( 
                &ImageHandle, 
                &gEfiDriverBindingProtocolGuid, &gMyDriverBinding, 
                &gEfiComponentNameProtocolGuid, &gMyComponentName, 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Uninstall the Driver Binding Protocol and the Component Name Protocol 
// from the handle that is passed into the Unload() function. 
// 
Status = gBS->UninstallMultipleProtocolInterfaces ( 
                ImageHandle, 
                &gEfiDriverBindingProtocolGuid, &gMyDriverBinding, 
                &gEfiComponentNameProtocolGuid, &gMyComponentName, 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-5.  Install Driver Protocols 

EFI device drivers will add protocols for I/O services to existing handles in the handle database in 
their Start() function and will remove those same protocols from those same handles in their 
Stop() function. EFI bus drivers may add protocols to existing handles, but they are also 
responsible for creating handles for the child device on that bus. This responsibility means that the 
EFI bus driver will typically add the EFI_DEVICE_PATH_PROTOCOL and an I/O abstraction for 
the bus type that the bus driver manages. For example, the PCI bus driver will create child handles 
with both the EFI_DEVICE_PATH_PROTOCOL and the EFI_PCI_IO_PROTOCOL. The bus 
driver may also optionally add the EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL to 
the child handles. The code fragment in Example 4-6 shows an example of a how a child handle 
can be created and additional protocols added and then destroyed. 
EFI_HANDLE  ChildHandle; 
 
// 
// Add Device Path Protocol and Block I/O Protocol to a new handle 
// 
ChildHandle = NULL; 
Status = gBS->InstallMultipleProtocolInterfaces ( 
                &ChildHandle, 
                &gEfiDevicePathProtocol, DevicePath, 
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                &gEfiBlockIoProtocol,    BlockIo 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Add the Disk I/O Protocol to the new handle created in the previous call 
// 
Status = gBS->InstallMultipleProtocolInterfaces ( 
                &ChildHandle, 
                &gEfiDiskIoProtocol, DiskIo 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Remove Device Path Protocol, Block I/O Protocol, and Disk I/O Protocol 
// from the handle created above. Because this call will remove all the 
// protocols from the handle, the handle will be removed from the handle 
// database 
// 
Status = gBS->UnistallMultipleProtocolInterfaces ( 
                ChildHandle, 
                &gEfiDevicePathProtocolGuid, DevicePath, 
                &gEfiBlockIoProtocolGuid,    BlockIo, 
                &gEfiDiskIoProtocolGuid,     DiskIo 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-6.  Install I/O Protocols 

Some EFI device drivers will add protocols to handles in the handle database with a NULL protocol 
interface. This case is known as a tag GUID because there are no data fields or services associated 
with the GUID. The code fragment in Example 4-7 shows an example of a how a tag GUID for hot-
plug devices can be added and removed from a controller handle in the handle database. 
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EFI_HANDLE  ControllerHandle; 
 
// 
// Add the hot-plug device GUID to ControllerHandle 
// 
Status = gBS->InstallMultipleProtocolInterfaces ( 
                &ControllerHandle, 
                &gEfiHotPlugDeviceGuid, NULL, 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Remove the hot-plug device GUID from ControllerHandle 
// 
Status = gBS->UninstallMultipleProtocolInterfaces ( 
                ControllerHandle, 
                &gEfiHotPlugDeviceGuid, NULL, 
                NULL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-7.  Install Tag GUID 

✏ NOTE 

When an attempt is made to remove a protocol interface from a handle in the handle database, the 
EFI core firmware will check to see if any other EFI drivers are currently using the services of the 
protocol that is about to be removed. If EFI drivers are using that protocol interface, then the EFI 
core firmware will attempt to stop those EFI drivers with a call to 
gBS->DisconnectController(). If the call to gBS->DisconnectController() 
fails, then the EFI core firmware will have to call gBS->ConnectController() to put the 
handle database back into the same state that it was in prior to the original call to 
gBS->UninstallMultipleProtocolInterfaces(). This call to 
gBS->ConnectController() has the potential to cause re-entrancy issues in EFI drivers 
that must be handled in the EFI driver. Please see chapter 21 for recommendations on how to test 
EFI drivers.  
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4.1.2.2 gBS->LocateHandleBuffer() 
This service retrieves a list of handles that meet a search criterion from the handle database. The 
following are the search options: 

• Retrieve all the handles in the handle database. 
• Retrieve the handles that support a specific protocol. 
• Retrieve the handles that are in the notified state based on a prior 

gBS->RegisterProtocolNotify(). 

It is not recommended that EFI drivers use gBS->RegisterProtocolNotify(), so only the 
first two cases will be covered here. The buffer that is returned by this service is allocated by the 
service, so an EFI driver that uses this service is responsible for freeing the returned buffer when 
the EFI driver no longer requires its contents. This service, along with 
gBS->ProtocolsPerHandle() and gBS->OpenProtocolInformation(), can be 
used to traverse the contents of the entire handle database. The algorithm for performing this 
traversal is in section 5.3.1 of the EFI 1.10 Specification. 

The code fragment in Example 4-8 shows how all the handles in the handle database can be 
retrieved.  
EFI_STATUS  Status; 
UINTN       HandleCount; 
EFI_HANDLE  *HandleBuffer; 
 
// 
// Retrieve the list of all the handles in the handle database. The number 
// of handles in the handle database is returned in HandleCount, and the 
// array of handle values is returned in HandleBuffer. 
// 
Status = gBS->LocateHandleBuffer ( 
                AllHandles, 
                NULL, 
                NULL, 
                &HandleCount, 
                &HandleBuffer 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Free the array of handles that was allocated by gBS->LocateHandleBuffer() 
// 
gBS->FreePool (HandleBuffer); 

Example 4-8.  Locate All Handles 
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The code fragment in Example 4-9 shows how all the handles that support the Block I/O Protocol 
can be retrieved and how the individual Block I/O Protocol instances can be retrieved using 
gBS->OpenProtrocol(). 
EFI_STATUS             Status; 
UINTN                  HandleCount; 
EFI_HANDLE             *HandleBuffer; 
UINTN                  Index; 
EFI_BLOCK_IO_PROTOCOL  *BlockIo; 
 
// 
// Retrieve the list of handles that support the Block I/O Protocol from 
// the handle database. The number of handles that support the Block I/O 
// Protocol is returned in HandleCount, and the array of handle values is 
// returned in HandleBuffer. 
// 
Status = gBS->LocateHandleBuffer ( 
                ByProtocol, 
                &gEfiBlockIoProtocolGuid, 
                NULL, 
                &HandleCount, 
                &HandleBuffer 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Loop through all the handles that support the Block I/O Protocol, and 
// retrieve the instance of the Block I/O Protocol. 
// 
for (Index = 0; Index < HandleCount; Index++) { 
  Status = gBS->OpenProtocol ( 
                  HandleBuffer[Index], 
                  &gEfiBlockIoProtocolGuid, 
                  (VOID **)&BlockIo, 
                  ImageHandle, 
                  NULL, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
  // 
  // BlockIo can be used here to make block I/O service requests. 
  // 
 
} 
// 
// Free the array of handles that was allocated by gBS->LocateHandleBuffer() 
// 
gBS->FreePool (HandleBuffer); 

Example 4-9.  Locate Block I/O Protocol Handles 



EFI 1.10 Driver Writer’s Guide Draft for Review  

112 July 2004 Version 0.9 

4.1.2.3 gBS->LocateProtocol() 
This service finds the first instance of a protocol interface in the handle database. This service is 
typically used by EFI drivers to retrieve service protocols on service handles that are guaranteed to 
have at most one instance of the protocol in the handle database. The list of service protocols that 
are defined in the EFI 1.10 Specification includes the following: 

• EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL  
• EFI_UNICODE_COLLATION_PROTOCOL  
• EFI_BIS_PROTOCOL 
• EFI_DEBUG_SUPPORT_PROTOCOL 
• EFI_DECOMPRESS_PROTOCOL 
• EFI_EBC_PROTOCOL 

If there is a chance that more than one instance of a protocol may exist in the handle database, then 
gBS->LocateHandleBuffer() should be used. This service also supports retrieving 
protocols that have been notified with gBS->RegisterProtocolNotify(). It is not 
recommended that EFI drivers use gBS->RegisterProtocolNotify(), so this case will not 
be covered here. The code fragment in Example 4-10 shows how this service can be used to retrieve 
the EFI_DECOMPRESS_PROTOCOL. 
EFI_STATUS               Status; 
EFI_DECOMPRESS_PROTOCOL  *Decompress; 
 
Status = gBS->LocateProtocol( 
                &gEfiDecompressProtocolGuid,  
                NULL,  
                (VOID **)&Decompress 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-10.  Locate Decompress Protocol 

4.1.2.4 gBS->OpenProtocol() and gBS->CloseProtocol() 
These two services are used by EFI drivers to acquire and release the protocol interfaces that the 
EFI drivers require to produce their services. These services are some of the more complex services 
in EFI, but using them correctly is required for EFI drivers to produce their I/O abstractions and 
work well with other EFI drivers. EFI applications and EFI OS loaders can also use these services, 
but the discussion here will concentrate on the different ways that EFI drivers use these services. 

gBS->OpenProtocol() is typically used by the Supported() and Start() functions of 
an EFI driver to retrieve a protocol interface that is installed on a handle in the handle database. A 
brief description of the parameters and return codes is presented here. A more complete description 
can be found in section 5.3.1 of the EFI 1.10 Specification. The function prototype of this service is 
shown below for reference. 
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typedef 
EFI_STATUS 
(EFIAPI *EFI_OPEN_PROTOCOL) ( 
  IN  EFI_HANDLE  Handle, 
  IN  EFI_GUID    *Protocol, 
  OUT VOID        **Interface OPTIONAL, 
  IN  EFI_HANDLE  AgentHandle, 
  IN  EFI_HANDLE  ControllerHandle, 
  IN  UINT32      Attributes 
  ); 

The only OUT parameter is the pointer to the protocol interface. All the other parameters are IN 
parameters that tell the EFI core why the protocol interface is being retrieved and by whom. The 
EFI core uses these IN parameters to track how each protocol interface is being used. This tracking 
information can be retrieved by using the gBS->OpenProtocolInformation() service. 
AgentHandle and ControllerHandle describe who is opening the protocol interface, and 
the Attributes parameter tells why the protocol interface is being opened. For EFI drivers, the 
AgentHandle parameter is typically the DriverBindingHandle field from the 
EFI_DRIVER_BINDING_PROTOCOL. Also, Handle and ControllerHandle are typically 
the same handle. The only exception is when a bus driver is opening a protocol on behalf of a child 
controller. The attributes that are used by EFI drivers are listed below. It is very important that EFI 
drivers use the correct attributes when a protocol interface is opened. 

TEST_PROTOCOL Tests to see if a protocol interface is present on a handle. 
Typically used in the Supported() service of an EFI driver. 

GET_PROTOCOL Retrieves a protocol interface from a handle. 

BY_DRIVER Retrieves a protocol interface from a handle and marks that 
interface so it cannot be opened by other EFI drivers or EFI 
applications unless the other EFI driver agrees to release the 
protocol interface. This attribute is the most commonly used. 

BY_DRIVER | EXCLUSIVE  
Retrieves a protocol interface from a handle and marks the 
interface so it cannot be opened by other EFI drivers or EFI 
applications. This protocol will not be released until the driver 
that opened this attribute chooses to close it. This attribute is 
used very rarely. 

BY_CHILD_CONTROLLER  
Only used by bus drivers. A bus driver is required to open the 
parent I/O abstraction on behalf of each child controller that the 
bus driver produces. This requirement allows the EFI core to 
keep track of the parent/child relationships no matter how 
complex the bus hierarchies become. 

The status code returned is also very important and must be examined by EFI drivers that use this 
service. The typical return codes are listed below.  

EFI_SUCCESS The protocol interface was retrieved. 
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EFI_UNSUPPORTED The protocol interface is not present on the handle. 

EFI_ALREADY_STARTED 
The EFI driver has already retrieved the protocol interface. 

EFI_ACCESS_DENIED A different EFI driver has already retrieved the protocol 
interface. 

EFI_INVALID_PARAMETER  
One of the parameters is invalid. 

The gBS->CloseProtocol() service removes an element from the list of agents that are 
consuming a protocol interface. EFI drivers are required to close each protocol that they open, 
which is typically done in the Stop() function. 

The code fragment in Example 4-11 shows the most common use of these services. This example 
shows a stripped-down version of a Support() function for a PCI device driver. It opens the PCI 
I/O Protocol BY_DRIVER, and then closes it if the open operation worked. If this driver wanted to 
open the PCI I/O Protocol exclusively, then an attribute of BY_DRIVER | EXCLUSIVE should 
be used. There are only a very few instances where BY_DRIVER | EXCLUSIVE should be used. 
These are cases where an EFI driver actually wants to gain exclusive access to a protocol, even if it 
requires stopping other EFI drivers to do so. This operation can be dangerous if the system requires 
the services produced by the EFI drivers that are stopped. One example is the debug port driver that 
opens the Serial I/O Protocol with the BY_DRIVER | EXCLUSIVE attribute. This attribute 
allows a debugger to take control of a serial port even if it is being used as a console device. If this 
device is the only console device in the system, then the user will lose the only console device 
when the debug port driver is started. 
EFI_STATUS 
XyzDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath 
  ) 
 
{ 
  EFI_STATUS           Status; 
  EFI_PCI_IO_PROTOCOL  *PciIo; 
 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle, 
                  &gEfiPciIoProtocolGuid, 
                  (VOID **)&PciIo, 
                  This->DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                 ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  gBS->CloseProtocol ( 
         ControllerHandle, 
         &gEfiPciIoProtocolGuid, 
         This->DriverBindingHandle, 
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         ControllerHandle 
         ); 
 
  return Status; 
} 

Example 4-11.  Open Protocol BY_DRIVER 

The code fragment in Example 4-12 shows the same example as above, but it tests only for the 
presence of the PCI I/O Protocol using the TEST_PROTOCOL attribute. When TEST_PROTOCOL 
is used, the protocol does not have to be closed because a protocol interface is not returned when 
this open mode is used. 
EFI_STATUS 
XyzDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath 
  ) 
 
{ 
  EFI_STATUS           Status; 
 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle, 
                  &gEfiPciIoProtocolGuid, 
                  NULL, 
                  This->DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_TEST_PROTOCOL 
                 ); 
  return Status; 
} 

Example 4-12.  Open Protocol by TEST_PROTOCOL 

The code fragment in Example 4-13 shows the same example as above, but it retrieves the PCI I/O 
Protocol using the GET_PROTOCOL attribute. When GET_PROTOCOL is used, the protocol does 
not have to be closed.  

✏ NOTE 

It can be dangerous to use this open mode because a protocol may be removed at any time, and a 
driver that uses GET_PROTOCOL may attempt to use a stale protocol interface. There are a few 
places where it has to be used. An EFI driver should be designed to use BY_DRIVER as its first 
choice. However, there are cases where a different EFI driver has already opened the protocol that 
is required BY_DRIVER. The next best choice is to use GET_PROTOCOL. This scenario may occur 
when protocols are layered on top of each other, so that each layer uses the services of the layer 
immediately below. Each layer immediately below is opened BY_DRIVER. If a layer ever needs to 
skip around a layer to a lower-level service, then it is safe to use GET_PROTOCOL because the 
driver will be informed through the layers if the lower-level protocol is removed. 

The best example of this case in the EFI Sample Implementation is the FAT driver. The FAT driver 
uses the services of the Disk I/O Protocol to access the contents of the disk. However, the Disk I/O 
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Protocol does not have a flush service. Only the Block I/O Protocol has a flush service. The disk 
I/O driver opens the Block I/O Protocol BY_DRIVER, so the FAT driver is not allowed to also 
open the Block I/O Protocol BY_DRIVER. Instead, the FAT driver must use GET_PROTOCOL. 
This method is safe because the FAT driver will be indirectly notified if the Block I/O Protocol is 
removed when the Disk I/O Protocol is removed in response to the Block I/O Protocol being 
removed. 
EFI_STATUS 
XyzDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath 
  ) 
 
{ 
  EFI_STATUS           Status; 
  EFI_PCI_IO_PROTOCOL  *PciIo; 
 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle, 
                  &gEfiPciIoProtocolGuid, 
                  (VOID **)&PciIo, 
                  This->DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                 ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Use the services of the PCI I/O Protocol here 
  // 
} 

Example 4-13.  Open Protocol by GET_PROTOCOL 

The code fragment in Example 4-14 shows an example of a PCI bus driver opening the PCI Root 
Bridge I/O Protocol on behalf of a child PCI controller. This example shows the 
BY_CHILD_CONROLLER attribute being used. This attribute is typically used in the Start() 
function after the child handle has been created using 
gBS->InstallMultipleProtocolInterfaces(). 
EFI_DRIVER_BINDING_PROTOCOL      gPciBusDriverBinding; 
 
EFI_STATUS                       Status; 
EFI_HANDLE                       ChildHandle; 
EFI_DEVICE_PATH_PROTOCOL         *DevicePath; 
EFI_PCI_IO_PROTOCOL              *PciIo; 
EFI_HANDLE                       ControllerHandle; 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *PciRootBridgeIo; 
 
ChildHandle = NULL; 
Status = gBS->InstallMultipleProtocolInterfaces ( 
                &ChildHandle,              
                &gEfiDevicePathProtocolGuid,  DevicePath, 
                &gEfiPciIoProtocolGuid,       PciIo, 
                NULL 
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                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
Status = gBS->OpenProtocol ( 
                ControllerHandle,            
                &gEfiPciRootBridgeIoProtocolGuid,  
                (VOID **)&PciRootBridgeIo, 
                gPciBusDriverBinding.DriverBindingHandle, 
                ChildHandle,    
                EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-14.  Open Protocol BY_CHILD_CONTROLLER 

4.1.2.5 gBS->OpenProtocolInformation() 
The handle database contains the following: 

• List of handles 
• List of protocols on each handle 
• List of agents that are currently using each protocol 

This service retrieves the list of agents that are currently using a specific protocol interface that is 
registered in the handle database. An agent is an EFI driver or an EFI application that is using the 
services of a protocol interface. The gBS->OpenProtocol() service adds agents to the list, and 
the gBS->CloseProtocol() service removes agents from the list. An EFI driver will typically 
use this service to find the list of child handles that the EFI driver may have produced in previous 
calls to the Start(). The return buffer is allocated by the service, so the caller must free the 
buffer when the caller does not need the return buffer anymore. The code fragment in 
Example 4-15 retrieves the list of agents that are using the Serial I/O Protocol on a controller 
handle. This step is followed by a loop that counts the number of children that have been produced 
from the Serial I/O Protocol. The final step is to free the return buffer. This algorithm can be used 
by bus drivers that produce at most one child handle, and they need to check to see if a child handle 
has already been produced. 
EFI_STATUS                           Status; 
EFI_HANDLE                           ControllerHandle; 
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY  *OpenInfo; 
UINTN                                EntryCount; 
UINTN                                Index; 
UINTN                                NumberOfChildren; 
 
Status = gBS->OpenProtocolInformation ( 
                ControllerHandle, 
                &gEfiSerialIoProtocolGuid,   
                &OpenInfo, 
                &EntryCount 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
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for (Index = 0, NumberOfChildren = 0; Index < EntryCount; Index++) { 
  if (OpenInfo[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) { 
    NumberOfChildren++; 
  } 
} 
 
gBS->FreePool (OpenInfoBuffer); 

Example 4-15.  Open Protocol Information 

4.1.3 Task Priority Level Services 

4.1.3.1 gBS->RaiseTPL() and gBS->RestoreTPL() 
These two services are used to raise and restore the Task Priority Level (TPL) of the system. The 
most common use of these services is to implement a simple lock, or critical section, on global data 
structures. EFI runs on one thread on one processor. However, EFI does support a single timer 
interrupt. Because EFI code can run in interrupt context, it is possible that a global data structure 
can be accessed from both normal context and interrupt context. As a result, global data structures 
must be protected by a lock. The code fragment in Example 4-16 shows how these services can be 
used to implement a lock when the contents of a global variable are modified. The timer interrupt is 
blocked at EFI_TPL_HIGH_LEVEL, so most locks raise to this level.  
UINT32  gCounter; 
 
EFI_TPL  OldTpl; 
 
//   
// Raise the Task Priority Level to EFI_TPL_HIGH_LEVEL to block timer 
// interrupts 
// 
OldTpl = gBS -> RaiseTPL(EFI_TPL_HIGH_LEVEL); 
 
// 
// Increment the global variable now that it is safe to do so. 
// 
gCounter++ 
 
//   
// Restore the Task Priority Level to its original level 
// 
gBS -> RestoreTPL(OldTpl); 

Example 4-16.  Global Lock 

These services are also used to raise the TPL during a blocking I/O transaction. Most drivers are 
required to raise the TPL to EFI_TPL_NOTIFY during blocking I/O operations. See 
Example 4-19 below for an example of a keyboard driver that raises the TPL while a check is made 
to see if a key has been pressed. 
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4.1.4 Event Services 

4.1.4.1 gBS->CreateEvent(), gBS->SetTimer(), gBS->SignalEvent(), and 
gBS->CloseEvent() 

The gBS->CreateEvent() and gBS->CloseEvent() services are used to create and 
destroy events. The following two basic types of events can be created: 

• EVT_NOTIFY_SIGNAL  

• EVT_NOTIFY_WAIT  

The type of event determines when an event’s notification function is invoked. The notification 
function for signal type events are invoked when the event is placed into the signaled state with a 
call to gBS->SignalEvent(). The notification function for wait type events are invoked when 
the event is passed to the gBS->CheckEvent() or gBS->WaitForEvent() services.  

Some EFI drivers need to place their controllers in a quiescent state or perform other controller-
specific actions at the time that an operating system is about to take full control of the platform. In 
this case, the EFI driver should create a signal type event that is notified when 
gBS->ExitBootServices() is called by the operating system. The notification function for 
this type of event is not allowed to use any of the EFI Memory Services either directly or indirectly 
because using those services may modify the memory map, which will force an error to be returned 
from gBS->ExitBootServices(). The code fragment in Example 4-17 shows how an Exit 
Boot Services event can be created and destroyed along with the skeleton of the notification 
function that is invoked when the Exit Boot Services event is signaled. This event is automatically 
signaled by EFI firmware when gBS->ExitBootServices() is called by an OS loader or an 
OS kernel. The notification function that is registered in gBS->CreateEvent() is called when 
the event is signaled. 
VOID 
EFIAPI 
NotifyExitBootServices ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  // 
  // Put driver-specific actions here. 
  // No EFI Memory Service may be used directly or indirectly. 
  // 
} 
 
EFI_STATUS  Status; 
EFI_EVENT   *ExitBootServicesEvent; 
 
// 
// Create an Exit Boot Services event. 
//  
Status = gBS->CreateEvent ( 
                EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES, 
                EFI_TPL_NOTIFY, 
                NotifyExitBootServices, 
                NULL, 
                &ExitBootServicesEvent 
                ); 
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if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Destroy the Exit Boot Services event 
// 
Status = gBS->CloseEvent (ExitBootServicesEvent); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-17.  Exit Boot Services Event 

EFI runtime drivers may need to be notified when the operating system sets up virtual mappings for 
all the EFI runtime mapping. In this case, the EFI driver should create a signal type event that is 
notified when gBS->SetVirtualAddressMap() is called by the operating system. This call 
allows the EFI runtime driver to convert pointers from physical addresses to virtual addresses. The 
notification function for this type of event is not allowed to use any of the EFI Boot Services, EFI 
Console Services, or EFI Protocol Services either directly or indirectly because those services are 
no longer available when gRT->SetVirtualAddressMap() is called. Instead, this type of 
notification function typically uses gRT->ConvertPointer() to convert pointers within data 
structures that are managed by the EFI runtime driver from physical addresses to virtual addresses. 
The code fragment in Example 4-18 shows how a Set Virtual Address Map event can be created 
and destroyed along with the skeleton of the notification function that is invoked when the Set 
Virtual Address Map event is signaled. As an example, this notification function converts a single 
global pointer from a physical address to a virtual address. This event is automatically signaled by 
EFI firmware when gRT->SetVirtualAddressMap() is called by an OS loader or an OS 
kernel. The notification function that is registered in gBS->CreateEvent() is called when the 
event is signaled.  
VOID  *gGlobalPointer; 
 
VOID 
EFIAPI 
NotifySetVirtualAddressMap ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  gRT->ConvertPointer ( 
         EFI_OPTIONAL_POINTER,  
         (VOID **)&gGlobalPointer 
         ); 
} 
 
EFI_STATUS  Status; 
EFI_EVENT   *SetVirtualAddressMapEvent; 
 
// 
// Create a Set Virtual Address Map event. 
//  
Status = gBS->CreateEvent ( 
                EFI_EVENT_SIGNAL_SET_VIRTUAL_ADDRESS_MAP, 
                EFI_TPL_NOTIFY, 
                NotifySetVirtualAddressMap, 
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                NULL, 
                &SetVirtualAddressMapEvent 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Destroy the Set Virtual Address Map event 
// 
Status = gBS->CloseEvent (SetVirtualAddressMapEvent); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-18.  Set Virtual Address Map Event 

Some EFI drivers need to be notified on a periodic basis to poll a device. A good example is the 
USB bus driver, which needs to periodically check the status of all the ports to see if a USB device 
has been added or removed. Other drivers may need to be notified once after a specific period of 
time. A good example of this second scenario is the ISA floppy driver than needs to turn off the 
floppy drive motor if there are no read or write operations for a few seconds. These EFI drivers 
would use the gBS->CreateEvent() and gBS->CloseEvent() services to create and 
destroy the event and the gBS->SetTimer() to arm a periodic timer or a one-shot timer. See 
section 4.4.2 for examples on how to create periodic timer events and one-shot timer events. 

Wait events are the last type of event that will be discussed here. Wait events are typically produced 
by protocols that abstract I/O services for controllers that provide input services. These protocols 
will contain an EFI_EVENT data field that is signaled by the EFI driver when the input is 
available. The following protocols in the EFI 1.10 Specification use this mechanism:  

• EFI_SIMPLE_INPUT_PROTOCOL (section 10.2 in the EFI 1.10 Specification) 

• EFI_SIMPLE_POINTER_PROTOCOL (section 10.10 in the EFI 1.10 Specification) 

• EFI_SIMPLE_NETWORK_PROTOCOL (section 15.1 in the EFI 1.10 Specification) 

The code fragment in Example 4-19 shows an example of a wait event that is created by a keyboard 
driver that produces the EFI_SIMPLE_INPUT_PROTOCOL. The first part of the code fragment is 
the event notification function that is called when the wait event is waited on with the 
gBS->CheckEvent() or the gBS->WaitForEvent() services. The second part of the code 
fragment is the code that would be in the Start() and Stop() functions that create and destroy 
the wait event. Typically, an EFI application or the EFI boot manager will call 
gBS->CheckEvent() or gBS->WaitForEvent() to see if a key has been pressed on a input 
device that supports the EFI_SIMPLE_INPUT_PROTOCOL. This call to 
gBS->CheckEvent() or gBS->WaitForEvcent() will cause the notification function of 
the wait event in the EFI_SIMPLE_INPUT_PROTOCOL to be executed. The notification function 
checks to see if a key has been pressed on the input device. If the key has been pressed, then the 
wait event is signaled with a call to gBS->SignalEvent(). If the wait event is signaled, then 
the EFI application or EFI boot manager will get an EFI_SUCCESS return code, and the EFI 
application or EFI boot manager can call the ReadKeyStroke() service of the 
EFI_SIMPLE_INPUT_PROTOCOL to read the key that was pressed. 
VOID  
EFIAPI 
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KeyboardWaitForKey ( 
  IN  EFI_EVENT  Event, 
  IN  VOID       *Context 
  ) 
{ 
  EFI_TPL  OldTpl; 
 
  //   
  // Raise the Task Priority Level to EFI_TPL_NOTIFY to perform blocking I/O 
  // 
  OldTpl = gBS->RaiseTPL (EFI_TPL_NOTIFY); 
 
  // 
  // Call an internal function to see if a key has been pressed 
  //   
  if (!EFI_ERROR (KeyboardCheckForKey (Context))) { 
    // 
    // If a key has been pressed, then signal the wait event 
    // 
    gBS->SignalEvent (Event); 
  } 
   
  //   
  // Restore the Task Priority Level to its original level 
  // 
  gBS -> RestoreTPL (OldTpl); 
   
  return; 
} 
 
EFI_STATUS                 Status; 
EFI_SIMPLE_INPUT_PROTOCOL  *SimpleInput; 
 
// 
// Create a wait event for a Simple Input Protocol 
//  
Status = gBS->CreateEvent ( 
                EFI_EVENT_NOTIFY_WAIT, 
                EFI_TPL_NOTIFY, 
                KeyboardWaitForKey, 
                &SimpleInput, 
                &SimpleInput.WaitForKey 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Destroy the wait event 
// 
Status = gBS->CloseEvent (SimpleInput.WaitForKey); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-19.  Wait for Event 
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4.1.4.2 gBS->CheckEvent() 
This service checks to see if an event is in the waiting state or the signaled state. EFI drivers will 
typically use this service to see if a one-shot timer event or a wait event is in the signaled state. For 
example, the PXE base code driver and the terminal driver create a one-shot timer event and they 
both use this service to see if a transaction has timed out. The console splitter driver uses this 
service to see if a key has been pressed or a pointer device has been moved on one of the input 
devices that it is managing. The code fragment in Example 4-20 creates a one-shot timer event and 
uses gBS->CheckEvent() to wait until the timer expires. 
EFI_STATUS  Status; 
EFI_EVENT   TimerEvent; 
 
Status = gBS->CreateEvent ( 
                EFI_EVENT_TIMER | EFI_EVENT_NOTIFY_WAIT, 
                EFI_TPL_NOTIFY, 
                NULL, 
                NULL, 
                &TimerEvent 
                ); 
 
Status = gBS->SetTimer ( 
                TimerEvent, 
                TimerRelative, 
                40000000  // 4 seconds in the future 
                ); 
 
do { 
  Status = gBS->CheckEvent (TimerEvent); 
} while (EFI_ERROR (Status)); 

Example 4-20.  Wait for a One-Shot Timer Event 

4.1.5 Delay Services 

4.1.5.1 gBS->Stall() 
This service waits for a specified number of microseconds. The range of supported delays is from 
1 µS to 4294 seconds. However, the delays passed into this service should be short and are typically 
in the range of a few microseconds to a few milliseconds. See section 4.4.2 for examples of how 
this service can be used. 
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4.2 Services That EFI Drivers Rarely Use 

Table 4-2 contains the list of EFI services that are rarely used by EFI drivers. The following 
sections provide a brief description of each service, why they are rarely used, and a code example 
on how they are typically used by EFI drivers. This table is also present in Appendix C for 
reference purposes. 

Table 4-2. EFI Services That Are Rarely Used by EFI Drivers 

Type Service Type Service 

BS gBS->ReinstallProtocolInterface() BS gBS->LoadImage() 

BS gBS->LocateDevicePath() BS gBS->StartImage() 

  BS gBS->UnloadImage() 

BS gBS->ConnectController() BS gBS->Exit() 

BS gBS->DisconnectController()   

  BS gBS->InstallConfigurationTable() 

RT gRT->GetVariable()   

RT gRT->SetVariable() RT gRT->GetTime() 

    

BS gBS->GetNextMonotonicCount() BS gBS->CalculateCrc32() 

RT gRT->GetNextHighMonotonicCount()   

  RT gRT->ConvertPointer() 

4.2.1 Handle Database and Protocol Services 

4.2.1.1 gBS->ReinstallProtocolInterface() 
This service should be used only to indicate media change events and when a device path is 
modified or updated. This service applies to the following: 

• The Block I/O Protocol when the media in a removable media device is changed   
• The Serial I/O Protocol when its attributes are modified with a call to SetAttributes()  

• The Simple Network Protocol when the MAC address of the network interface is modified with 
a call to StationAddress() 

 

This service is basically a series of the following calls, in the order listed: 
1. UninstallProtocolInterface(), which may cause DisconnectController() 

to be called 
2. InstallProtocolInterface()  
3. ConnectConroller() to allow controllers that had to release the protocol a chance to 

connect to it again 

The code fragment in Example 4-21 shows what an EFI driver that produces the Block I/O Protocol 
would do when the media in a removable media device is changed. The exact same protocol is 
reinstalled onto the controller handle. 
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EFI_STATUS             Status; 
EFI_HANDLE             ControllerHandle; 
EFI_BLOCK_IO_PROTOCOL  *BlockIo; 
  
Status = gBS->ReinstallProtocolInterface ( 
                ControllerHandle,  
                &gEfiBlockIoProtocolGuid,  
                BlockIo,  
                BlockIo 
                ); 

Example 4-21.  Reinstall Protocol Interface 

✏ NOTE 

This service can cause reentrancy problems if not handled correctly. If a driver makes a request 
that requires a protocol of a parent device to be updated, then that protocol will be removed and 
reattached. The driver making the request may not realize that the request will cause the driver to 
be completely stopped and completely restarted when the request to the parent device is made. For 
example, consider a terminal driver that wants to change the baud rate on the serial port. The baud 
rate is changed with a call to the Serial I/O Protocol’s SetAttribute(). This call changes the 
baud rate, which is reflected in the device path of the serial device, so the Device Path Protocol is 
reinstalled by the SetAttributes() service. This reinstallation will force the terminal driver to 
be disconnected. The terminal driver will then attempt to connect to the serial device again, but the 
baud rate will be the one that the terminal driver expects, so the terminal driver will not need to set 
the baud rate again. Any consumer of a protocol that supports this media change concept needs to 
be aware that the protocol can be reinstalled at any time and care must be taken in the design of 
drivers that use this type of protocol. 

4.2.1.2 gBS->LocateDevicePath() 
This service locates a device handle that supports a specific protocol and has the closest matching 
device path. This service is useful when an EFI driver needs to find an I/O abstraction for one of its 
parent controllers. Normally, an EFI driver will use the services on the ControllerHandle that 
is passed into the Supported() and Start() functions of the EFI driver’s 
EFI_DRIVER_BINDING_PROTOCOL. However, if an EFI driver needs to use services from a 
parent controller, this function can be used to find the handle of a parent controller. For example, a 
PCI device driver will normally use the PCI I/O Protocol to manage a PCI controller. If the PCI 
device driver needs the services of the PCI Root Bridge I/O Protocol of which the PCI controller is 
a child, then the gBS->LocateDevicePath() function can be used to find the parent handle 
that supports the PCI Root Bridge I/O Protocol, and then the gBS->OpenProtocol() service 
can be used to retrieve the PCI Root Bridge I/O Protocol interface. This operation is not 
recommended because a parent bus driver typically owns the parent I/O abstractions. Directly using 
a parent I/O may cause unintended side effects. The code fragment in Example 4-22 demonstrates 
this example.  

Section 14.4.2 contains another example that shows the recommended method for a PCI driver to 
access the resources of different PCI controllers without using the PCI Root Bridge I/O Protocol. 
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EFI_STATUS                       Status; 
EFI_GUID                         gEfiDevicePathProtocolGuid; 
EFI_GUID                         gEfiPciRootBridgeIoProtocolGuid; 
EFI_DRIVER_BINDING_PROTOCOL      *This; 
EFI_HANDLE                       ControllerHandle; 
EFI_DEVICE_PATH_PROTOCOL         *DevicePath; 
EFI_HANDLE                       ParentHandle; 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *PciRootBridgeIo; 
 
// 
// Retrieve the Device Path Protocol instance on ControllerHandle 
// 
Status = gBS->OpenProtocol ( 
                ControllerHandle, 
                &gEfiDevicePathProtocolGuid, 
                &DevicePath, 
                This->DriverBindingHandle, 
                ControllerHandle, 
                EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
 
// 
// Find a parent controller that supports the PCI Root Bridge I/O Protocol 
// 
Status = gBS->LocateDevicePath ( 
                 &gEfiPciRootBridgeIoProtocolGuid, 
                 &DevicePath, 
                 &ParentHandle 
                 ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Get the PCI Root Bridge I/O Protocol instance on ParentHandle 
// 
Status = gBS->OpenProtocol ( 
                 ParentHandle, 
                 &gEfiPciRootBridgeIoProtocolGuid, 
                 &PciRootBridgeIo, 
                 This->DriverBindingHandle, 
                 ControllerHandle, 
                 EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                 ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 4-22.  Locate Device Path 



 Draft for Review EFI Services 

Version 0.9 July 2004 127 

4.2.1.3 gBS->ConnectController() and gBS->DisconnectController() 
These services are used by EFI drivers that are bus drivers for bus types with hot-plug capabilities 
that are supported in the preboot environment. The only bus driver in the EFI Sample 
Implementation that uses these services is the USB bus driver. The USB bus driver does not create 
any child handles in its Start() function. Instead, it registers a periodic timer event. Each time 
the timer period expires, the timer event’s notification function is called, and that notification 
function examines all the USB hubs to see if any USB devices have been added or removed. If a 
USB device has been added, then a child handle is created, and gBS->ConnectController() 
is called so the USB device drivers can connect to the newly added USB device. If a USB device 
has been removed, then gBS->DisconnectController() is called to stop the USB device 
drivers from managing the USB device that was just removed. Just because a bus is capable of 
supporting hot-plug events does not necessarily mean that the EFI driver for that bus type must 
support those hot-plug events. Support for hot-plug events in the preboot environment is dependent 
on the platform requirements for each bus type. The code fragment in Example 4-23 shows how 
these services could be used from the USB bus driver. 
EFI_STATUS  Status; 
BOOLEAN     HotAdd; 
BOOLEAN     HotRemove; 
EFI_HANDLE  ChildHandle; 
 
// 
// If ChildHandle is a device that was just hot added, then recursively  
// connect all drivers to ChildHandle 
// 
if (HotAdd == TRUE) { 
  Status = gBS->ConnectController( 
                  ChildHandle, 
                  NULL, 
                  NULL, 
                  TRUE 
                  ); 
} 
 
// 
// If ChildHandle is a device that was just removed, then recursively  
// disconnect all drivers from ChildHandle 
// 
if (HotRemove == TRUE) { 
  Status = gBS->DisconnectController( 
                  ChildHandle, 
                  NULL, 
                  NULL 
                  ); 
} 

Example 4-23.  Connect and Disconnect Controller 
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The gBS->DisconnectController() service may also be used from unloadable EFI drivers 
to disconnect the EFI driver from the device it is managing in its Unload() function. The code 
fragment in Example 4-24 shows one algorithm that an Unload() function can use to disconnect 
the driver from all the devices in the system. It retrieves the list of all the handles in the handle 
database and disconnects the EFI driver from each of those handles and frees the buffer containing 
the list handles. 
EFI_STATUS  Status; 
EFI_HANDLE  ImageHandle; 
EFI_HANDLE  *DeviceHandleBuffer; 
UINTN       DeviceHandleCount; 
UINTN       Index; 
 
Status = gBS->LocateHandleBuffer ( 
                AllHandles, 
                NULL, 
                NULL, 
                &DeviceHandleCount, 
                &DeviceHandleBuffer 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
for (Index = 0; Index < DeviceHandleCount; Index++) { 
  Status = gBS->DisconnectController ( 
                  DeviceHandleBuffer[Index], 
                  ImageHandle, 
                  NULL 
                  ); 
} 
 
gBS->FreePool(DeviceHandleBuffer); 

Example 4-24.  Disconnect Controller 

4.2.2 Image Services 

4.2.2.1 gBS->LoadImage(), gBS->StartImage(), gBS->UnloadImage(), and 
gBS->Exit() 

EFI drivers should not call gBS->Exit(). Instead, they should just return a status code from their 
driver entry point. 

EFI drivers do not normally load and unload other EFI drivers or EFI applications. However, there 
are two exceptions. The first exception is that bus drivers that can load, start, and potentially unload 
EFI drivers that are stored in containers on the child devices of the bus. For example, the PCI bus 
driver loads and starts EFI drivers that are stored in PCI option ROMs.  

The second exception is for devices that have an EFI driver that manages the device and an EFI 
application that provides the user interface that is used to configure the device. In this case, the 
implementation of the SetOptions() service in the 
EFI_DRIVER_CONFIGURATION_PROTOCOL uses the gBS->LoadImage() and 
gBS->StartImage() services to load and execute the EFI application to configure the device. 
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4.2.3 Variable Services 

4.2.3.1 gRT->GetVariable() and gRT->SetVariable() 
These services are used to get and set EFI variables. When variables are stored, there are attributes 
that describe the visibility and persistence of the variable. These attributes can be combined 
different types of variables. The legal combinations of attributes include the following: 

BOOTSERVICE_ACCESS The variable is available for read and write access in the preboot 
environment before gBS->ExitBootServices() is called. 
The variable is not available after 
gBS->ExitBootServices() is called, and contents are 
also lost on the next system reset or power cycle. These types of 
variables are typically used to share information among different 
preboot components. 

BOOTSERVICE_ACCESS | RUNTIME_ACCESS 
The variable is available for read and write access in the preboot 
environment before gBS->ExitBootServices() is called. 
It is available for read-only access from the OS runtime 
environment after gBS->ExitBootServices() is called. 
The contents are lost on the next system reset or power cycle. 
These types of variable are typically used to share information 
among different preboot components and pass read-only 
information to the operating system. 

NON_VOLATILE | BOOTSERVICE_ACCESS 
The variable is available for read and write access in the preboot 
environment before gBS->ExitBootServices() is called, 
and the contents are persistent across system resets and power 
cycles. These types of variables are typically used to share 
persistent information among different preboot components. 

NON_VOLATILE | BOOTSERVICE_ACCESS | RUNTIME_ACCESS 
The variable is available for read and write access in both the 
preboot environment and the OS runtime environment. The 
contents are persistent across system resets and power cycles. 
These types of variables are typically used to share persistent 
information among preboot components and the operating 
system. 

The code fragment in Example 4-25 shows how a fixed-sized EFI variable can be read and written. 
A variable name is a combination of a GUID and a Unicode string. The GUID allows private 
variables to be managed by different vendors. Section 3.2 of the EFI 1.10 Specification defines one 
GUID that is used to access EFI variables. This example shows how the fixed-size EFI variable 
BootNext can be accessed. 
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EFI_STATUS  Status; 
UINT32      Attrubutes; 
UINTN       DataSize; 
UINT16      BootNext; 
 
DataSize = sizeof (UINT16); 
Status = gRT->GetVariable ( 
                L"BootNext",  
                &gEfiGlobalVariableGuid,  
                &Attributes,  
                &DataSize,  
                &BootNext 
                ); 
 
BootNext = 2; 
Status = gRT->SetVariable ( 
                L”BootNext”,  
                &gEfiGlobalVariableGuid, 
                EFI_VARIABLE_NON_VOLATILE |  
                  EFI_VARIABLE_BOOTSERVICE_ACCESS |  
                  EFI_VARIABLE_RUNTIME_ACCESS, 
                sizeof (UINT16),  
                &BootNext 
                ); 

Example 4-25.  Reading and Writing Fixed-Size EFI Variables 

The code fragment in Example 4-26 shows how a memory buffer for the variable-sized EFI 
variable Driver001C can be allocated. The variable is then read into the allocated buffer and 
written to the EFI variable Driver001D. Finally, the allocated buffer is freed. 
EFI_STATUS  Status; 
UINT32      Attrubutes; 
UINTN       DataSize; 
VOID        *Data; 
 
DataSize = 0; 
Status = gRT->GetVariable ( 
                L"Driver001C",  
                &gEfiGlobalVariableGuid,  
                &Attributes,  
                &DataSize,  
                Data 
                ); 
if (Status != EFI_BUFFER_TOO_SMALL) { 
  return Status; 
} 
 
Data = EfiLibAllocatePool (DataSize); 
if (Data == NULL) { 
  return EFI_OUT_OF_RESOURCES; 
} 
 
Status = gRT->GetVariable ( 
                L"Driver001C",  
                &gEfiGlobalVariableGuid,  
                &Attributes,  
                &DataSize,  
                Data 
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                ); 
if (EFI_ERROR (Status)) {   
  return Status; 
} 
 
Status = gRT->SetVariable ( 
                L"Driver001D",  
                &gEfiGlobalVariableGuid, 
                EFI_VARIABLE_NON_VOLATILE |  
                  EFI_VARIABLE_BOOTSERVICE_ACCESS |  
                  EFI_VARIABLE_RUNTIME_ACCESS, 
                DataSize,  
                Data 
                ); 
 
gBS->FreePool (Data); 

Example 4-26.  Reading and Writing Variable-Sized EFI Variables 

4.2.4 Time Services 

4.2.4.1 gRT->GetTime() 
This service is typically only accurate to about 1 second. As a result, EFI drivers should not use this 
service to poll or wait for an event from a device. Instead, the gBS->Stall() service and the 
gBS->SetTimer() services provide time services with much higher accuracy. This service 
should be used only when the current time and date are required such as recording the time and date 
of a critical error. See section 4.4.3 for more details on the time-related services that are provided 
by EFI. 

4.2.5 Virtual Memory Services 

4.2.5.1 gRT->ConvertPointer() 
This service is never used by EFI Boot Service drivers and is sometimes used by EFI runtime 
drivers. Example 4-18 shows an example of how an EFI runtime driver might use this service. 

4.2.6 Miscellaneous Services 

4.2.6.1 gBS->InstallConfigurationTable() 
This service is used to add, update, or remove an entry in the list of configuration tables that is 
maintained in the EFI System Table. These configuration tables are typically used to pass 
information from the EFI environment into an operating system environment. EFI Boot Service 
drivers are destroyed at gBS->ExitBootServices(), so they do not typically need to pass 
any information to an operating system. EFI runtime drivers continue to persist after 
gBS->ExitBootServices(), so they may need to pass information to an operating system so 
that the operating system can use the services that the EFI runtime driver produced. Typically, only 
the class of EFI runtime drivers that need to pass information to the operating system will use this 
service. The code fragment in Example 4-27 shows how an UNDI driver can add, update, and 
remove a configuration table. The first parameter is a pointer to the Network Interface Identifier 
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(NII) GUID, and the second parameter is a pointer to the data structure that is associated with the 
NII GUID. 
EFI_STATUS  Status; 
NII_TABLE   *UndiData; 
 
// 
// Add or update a configuration table 
// 
Status = gBS->InstallConfigurationTable ( 
                &gEfiNetworkInterfaceIdentifierProtocolGuid_31, 
                UndiData 
                ); 
 
// 
// Remove a configuration table 
// 
Status = gBS->InstallConfigurationTable ( 
                &gEfiNetworkInterfaceIdentifierProtocolGuid_31, 
                NULL 
                ); 

Example 4-27.  Install Configuration Table 

4.2.6.2 gBS->CalculateCrc32() 
This service is used by the EFI core to maintain the checksum of the EFI System Table, EFI Boot 
Services Table, and EFI Runtime Services Table. It is also used by a few EFI drivers including the 
Console Splitter and the Partition driver for Guided Partition Table (GPT) disk. If an EFI driver 
requires the use of 32-bit CRCs, the size of the EFI driver can be reduced by using this EFI boot 
service. The code fragment in Example 4-28 shows how this service can be used to calculate a 
32-bit CRC value for Size bytes of a buffer that has a header of type EFI_TABLE_HEADER. 
EFI_TABLE_HEADER is defined in section 4.2 of the EFI 1.10 Specification, and it is the standard 
header used for the EFI System Table, EFI Boot Services Table, EFI Runtime Services Table, and 
GPT related structures. 
EFI_STATUS        Status; 
UINT32            Crc; 
EFI_TABLE_HEADER  *Header; 
UINT32            Size; 
 
Header->CRC32 = 0; 
Status = gBS->CalculateCrc32( 
                (VOID *)Header,  
                Size,  
                &Crc 
                ); 
Hdr->CRC32 = Crc; 

Example 4-28.  Computing 32-bit CRC Values 

This service can also be used to verify a 32-bit CRC value. The code fragment in Example 4-29 
shows how the 32-bit CRC for a buffer of Size bytes with an EFI_TABLE_HEADER can be 
validated. It returns TRUE if the 32-bit CRC is good. Otherwise, it returns FALSE. 
EFI_STATUS        Status; 
UINT32            OriginalCrc; 
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UINT32            Crc; 
EFI_TABLE_HEADER  *Header; 
UINT32            Size; 
 
OriginalCrc = Header->CRC32; 
Header->CRC32 = 0; 
Status = gBS->CalculateCrc32( 
                (VOID *)Header,  
                Size,  
                &Crc 
                ); 
Hdr->CRC32 = OriginalCrc; 
 
if (OriginalCrc == Crc) { 
  return TRUE; 
} else { 
  return FALSE; 
} 

Example 4-29.  Validating 32-bit CRC Values 

4.2.6.3 gBS->GetNextMonotonicCount() and 
gRT->GetNextHighMonotonicCount() 

These services provide a 64-bit monotonic counter that is guaranteed to increase. They are not used 
by any of the drivers in the EFI Sample Implementation.  

4.3 Services That EFI Drivers Should Not Use 

Table 4-3 lists the EFI services that should not be used by EFI drivers. The following sections 
describe why each of these functions should not be used. This table is also present in Appendix C 
for reference purposes. 

Table 4-3. EFI Services That Should Not Be Used by EFI Drivers 

Type Service Type Service 

BS gBS->GetMemoryMap() RT gRT->SetVirtualAddressMap() 

    

BS gBS->ExitBootServices() RT gRT->GetNextVariableName() 

    

BS gBS->InstallProtocolInterface() RT gRT->SetTime() 

BS gBS->UninstallProtocolInterface() RT gRT->GetWakeupTime() 

BS gBS->HandleProtocol() RT gRT->SetWakeupTime() 

BS gBS->LocateHandle()   

BS gBS->RegisterProtocolNotify() RT gRT->ResetSystem() 

BS gBS->ProtocolsPerHandle() BS gBS->SetWatchDogTimer() 

    

BS gBS->WaitForEvent()   
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4.3.1 Memory Services 

4.3.1.1 gBS->GetMemoryMap() 
EFI drivers should not use this service because EFI drivers should not depend upon the physical 
memory map of the platform. The gBS->AllocatePool() and gBS->AllocatePages() 
services allow an EFI driver to allocate system memory. The gBS->FreePool() and 
gBS->FreePages() allow an EFI driver to free previously allocated memory. If there are 
limitations on the memory areas that a specific device may use, then those limitations should be 
managed by a parent I/O abstraction that understands the details of the platform hardware. For 
example, PCI device drivers should use the services of the PCI I/O Protocol to manage DMA 
buffers. The PCI I/O Protocol is produced by the PCI bus driver that uses the services if the PCI 
Root Bridge I/O Protocol to manage DMA buffers. The PCI Root Bridge I/O Protocol is chipset 
and platform specific, so the component that produces the PCI Root Bridge I/O Protocol 
understands what memory regions can be used for DMA operations. By pushing the responsibility 
into the chipset- and platform-specific components, the PCI device drivers and PCI bus drivers are 
easier to implement and are portable across a wide variety of platforms. 

4.3.2 Image Services 

4.3.2.1 gBS->ExitBootServices() 
This service is used only by EFI OS loaders or OS kernels. It hands control of the platform from the 
EFI to an OS. After this call, the EFI Boot Services are no longer available, and all memory in use 
by EFI Boot Service drivers is considered to be available memory. If this call is made by an EFI 
Boot Service driver, it would essentially destroy itself.  

4.3.3 Handle Database and Protocol Services 

4.3.3.1 gBS->InstallProtocolInterface() 
This service adds one protocol interface to an existing handle or creates a new handle. This service 
has been replaced by the gBS->InstallMultipleProtocolInterfaces() service, so all 
EFI drivers should use the newer service. Using this replacement service provides additional 
flexibility and additional error checking and produces smaller EFI drivers. 

4.3.3.2 gBS->UninstallProtocolInterface() 
This service removes one protocol interface from a handle in the handle database. The functionality 
of this service has been replaced by gBS->UninstallMultipleProtocolInterfaces(). 
This service uninstalls one or more protocol interfaces from the same handle. Using this 
replacement service provides additional flexibility and produces smaller EFI drivers. 



 Draft for Review EFI Services 

Version 0.9 July 2004 135 

4.3.3.3 gBS->HandleProtocol() 
EFI drivers must not use this service because they will not be compliant with the EFI Driver Model 
if they do, which could introduce interoperability issues. Instead, gBS->OpenProtocol() 
should be used because it provides the equivalent functionality, and it allows the EFI core to track 
the agents that are using different protocol interfaces in the handle database.  

4.3.3.4 gBS->LocateHandle() 
This service returns an array of handles that support the specified protocol. This service requires the 
caller to allocate the return buffer. The gBS->LocateHandleBuffer() service is easier to use 
and produces smaller executables because it allocates the return buffer for the caller.  

4.3.3.5 gBS->RegisterProtocolNotify() 
This service registers an event that is to be signaled whenever an interface is installed for a 
specified protocol. Using this service is strongly discouraged. This service was previously used by 
EFI drivers that follow the EFI 1.02 Specification, and it provided a simple mechanism for drivers 
to layer on top of another driver. Chapter 9 of the EFI 1.10 Specification instead defines the EFI 
Driver Model, which provides a much more flexible mechanism. 

4.3.3.6 gBS->ProtocolsPerHandle() 
This service retrieves the list of protocols that are installed on a handle. Because EFI drivers should 
already know what protocols are installed on the handles that the EFI driver is managing, this 
service should not be used. This service is typically used by EFI applications that need to traverse 
the entire handle database.  

4.3.4 Event Services 

4.3.4.1 gBS->WaitForEvent() 
This service waits for an event in an event list to be signaled. EFI drivers are typically waiting only 
for a single event to enter the signaled state, so the gBS->CheckEvent() service should be used 
instead.  

4.3.5 Virtual Memory Services 

4.3.5.1 gBS->SetVirtualAddressMap() 
This service is also used only by EFI OS loaders or OS kernels for operating systems that wish to 
call EFI Runtime Services using virtual addresses. This service must be called after 
gBS->ExitBootServices() is called. As a result, it is not legal for EFI drivers to call this 
service.  
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4.3.6 Variables Services 

4.3.6.1 gRT->GetNextVariableName() 
This service is used to walk the list of EFI variables that are maintained through the EFI Variable 
Services. Most EFI drivers should already know the EFI variables they want to access, so there is 
no need for an EFI driver to walk the list of all the EFI variables. 

4.3.7 Time Services 

4.3.7.1 gRT->SetTime(), gRT->GetWakeupTime(), and 
gRT->SetWakeupTime() 

EFI drivers should not modify the system time or the wakeup timer. The management of these 
timer services should be left to the EFI boot manager, an OEM-provided utility, or an 
operating system. 

4.3.8 Miscellaneous Services 

4.3.8.1 gBS->SetWatchdogTimer() 
The watchdog timer is managed from the EFI boot manager, so EFI drivers should not use 
this service. 

4.3.8.2 gRT->ResetSystem() 
System resets should be managed from the EFI boot manager or OEM-provided utilities. EFI 
drivers should not use this service. The only exceptions in the EFI Sample Implementation are 
the keyboard drivers that detect the CTRL-ALT-DEL key sequence to reset the platform. 

4.4 Time-Related Services 

There are several different time-related services that are available to EFI drivers, and they are listed 
below in Table 4-4. The time-related services that should not be used by EFI drivers are discussed 
in section 4.4.2 and include the following: 

• gRT->SetTime() 

• gRT->GetWakeupTime() 

• gRT->SetWakeupTime() 

• gBS->SetWatchDogTimer()  

Because EFI drivers should not use these services, they will not be discussed. Omitting the four 
services above leaves the following three time-related services that EFI drivers can use: 

• gBS->SetTimer()   

• gBS->Stall()  

• gRT->GetTime()  
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The gBS->SetTimer() and gBS->Stall() services are commonly used, but the 
gRT->GetTime() service is rarely used.  

If an EFI driver requires highly accurate short delays, then the gBS->Stall() service should be 
used. If an EFI driver needs to periodically synchronize with a device, then the 
gBS->SetTimer() service should be used with an event. If an EFI driver needs to know the 
current time and date, then the gRT->GetTime() service should be used. 

Table 4-4. Time-Related EFI Services 

Type Service Type Service 

BS gBS->SetTimer() RT gRT->GetWakeupTime() 

BS gBS->Stall() RT gRT->SetWakeupTime() 

RT gRT->GetTime() BS gBS->SetWatchDogTimer() 

RT gRT->SetTime()   

4.4.1 Stall Service 
The gBS->Stall() service is the time-related service with the highest accuracy. The stall times 
can range from 1 µS to about 4294 seconds. Most implementations of the stall service use a 
calibrated software loop, so they are very accurate. This service is a good one to use when an EFI 
driver requires a short delay. For example, an EFI driver may send a command to a controller and 
then wait for the command to complete. Because all EFI drivers are polled, the EFI driver could use 
the stall service inside a loop to periodically check for the completion status (see Example 4-30). 
Another good use of the stall service is for hardware devices that require delays between register 
accesses. Here, a fixed stall value would be used, and the stall value would be based in a hardware 
specification for the device that is being accessed (see Example 4-31). One disadvantage of the stall 
service is that other EFI components cannot execute while a stall is being executed. If long delays 
are required and it makes sense to defer the completion of an I/O operation, then the timer event 
services described in the next section should be used. 
EFI_STATUS           Status; 
UINTN                TimeOut; 
EFI_PCI_IO_PROTOCOL  PciIo; 
UITN8                Value; 
 
// 
// Loop waiting for the register at Offset 0 of Bar #0 of PciIo to become 0xE0. 
// Wait 10 uS between each check of this register, and time out if it does 
// not become 0 after 100 mS. 
// 
TimeOut = 0; 
do { 
  // 
  // Wait 10 uS 
  // 
  gBS->Stall(10); 
 
  // 
  // Increment TimeOut by the number of stalled uS 
  // 
  TimeOut = TimeOut + 10; 
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  // 
  // Do a single 8 bit read from BAR #0, Offset 0 into Value  
  // 
  Status = PciIo->Io.Read ( 
                       PciIo,               // This 
                       EfiPciIoWidthUint8,  // Width 
                       0,                   // BarIndex 
                       0,                   // Offset 
                       1,                   // Count 
                       &Value               // Buffer 
                       ); 
} while (Value != 0xE0 && TimeOut <= 100000); 
 
if (Value != 0xE0) { 
  return EFI_TIMEOUT; 
} 
 
return EFI_SUCCESS; 

Example 4-30.  Stall Loop 

 

EFI_STATUS           Status; 
EFI_PCI_IO_PROTOCOL  PciIo; 
UITN8                Value; 
 
// 
// This example shows a stall of 1000 uS between two register writes to the 
// same register. The 1000 uS is based on a hardware requirement for the    
// device being accessed. 
// 
 
// 
// Do a single 8 bit write to BAR #1, Offset 0x10 of 0xAA  
// 
Value = 0xAA; 
Status = PciIo->Io.Write ( 
                     PciIo,               // This 
                     EfiPciIoWidthUint8,  // Width 
                     1,                   // BarIndex 
                     0x10,                // Offset 
                     1,                   // Count 
                     &Value               // Buffer 
                     ); 
 
// 
// Wait 1000 uS 
// 
gBS->Stall(1000); 
 
// 
// Do a single 8-bit write to BAR #1, Offset 0x10 of 0x55  
// 
Value = 0x55; 
Status = PciIo->Io.Write ( 
                     PciIo,               // This 
                     EfiPciIoWidthUint8,  // Width 
                     1,                   // BarIndex 
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                     0x10,                // Offset 
                     1,                   // Count 
                     &Value               // Buffer 
                     ); 

Example 4-31.  Stall Service 

4.4.2 Timer Events 
The timer event services allow an EFI driver to wait for a specified period of time before a 
notification function is called. This service is a good choice for EFI drivers that need to defer the 
completion of an I/O operation, thus allowing other EFI components to continue to execute while 
the EFI driver waits for the specified period of time. The time is specified in 100 nS units. This unit 
may give the appearance of having better accuracy than the gBS->Stall() service, which has an 
accuracy of 1 µS, but that is not the case. The EFI core uses a single timer interrupt to determine 
when to signal timer events. The resolution of timer events is completely dependent on the 
frequency of the timer interrupt that is used by the EFI core. In most systems, the timer interrupt is 
generated every 10 to 50 mS, but the EFI 1.10 Specification does not require any specific interrupt 
rate. This lack of specificity means that a periodic timer that is set with a 100 nS period will 
actually get called only every 10 mS to 50 mS, which is why the gBS->Stall() service is a 
much better choice for short delays.  

However, there are cases when timer events work very well. One example is the USB bus driver. 
This driver is required to periodically check the status of all the USB hubs to see if any USB 
devices have been attached or removed. This operation does not need to be performed very 
frequently, so the timer events work very well. Example 4-32 shows how to set up a periodic timer 
event with a period of 100 mS. This period is similar to what the USB bus driver would use. 
Another good example is a floppy driver. This driver needs to manage the drive motor on the 
floppy drive so that it is automatically turned off if there are no floppy transactions for a period of 
time. Example 4-33 shows how to set up a timer event that will fire 4 seconds in the future. If a 
timer like this is rearmed every time a floppy transaction is performed, then the notification 
function for this timer could be used to turn off the floppy drive motor. 
// 
// This is the notification function used in the peridic timer example below. 
// An EFI driver will perform a driver-specific operation inside this function 
// The Context parameter will typically contain a private context structure for 
// a device that is managed by the EFI driver. 
// 
VOID 
TimerHandler ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
 
{ 
} 
 
EFI_STATUS  Status; 
EFI_EVENT   TimerEvent; 
VOID        *Context; 
 
// 
// Create a timer event that will call the notification function TimerHandler() 
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// at a TPL level of EFI_TPL_NOTIFY when the timer fires. A context can be  
// passed into the notification function when the timer fires, and that context 
// is specified by the VOID pointer Context. When the event is created, it is 
// returned in TimerEvent. 
// 
Status = gBS->CreateEvent ( 
                EFI_EVENT_TIMER | EFI_EVENT_NOTIFY_SIGNAL, 
                EFI_TPL_NOTIFY, 
                TimerHandler, 
                Context, 
                &TimerEvent 
                ); 
 
// 
// Set the timer value for the event created above to be a periodic timer with 
// a period of 100 mS. The timer values are specified in 100 nS units. 
// The notification function TimerHandler() will be called every 100 mS, and 
// Context will be passed to the notification function. 
// 
Status = gBS->SetTimer ( 
                TimerEvent, 
                TimerPeriodic, 
                1000000  // Every 100 mS 
                ); 

Example 4-32.  Starting a Periodic Timer 

// 
// This is the notification function used in the one-shot timer example below. 
// An EFI driver will perform a driver-specific operation inside this function. 
// The Context parameter will typically contain a private context structure for 
// a device that is managed by the EFI driver. 
// 
VOID 
TimerHandler( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
 
{ 
} 
 
EFI_STATUS  Status; 
EFI_EVENT   TimerEvent; 
VOID        *Context; 
 
// 
// Create a timer event that will call the notification function TimerHandler() 
// at a TPL level of EFI_TPL_NOTIFY when the timer fires. A context can be  
// passed into the notification function when the timer fires, and that context 
// is specified by the VOID pointer Context. When the event is created, it is 
// returned in TimerEvent. 
// 
Status = gBS->CreateEvent ( 
                EFI_EVENT_TIMER | EFI_EVENT_NOTIFY_SIGNAL, 
                EFI_TPL_NOTIFY, 
                TimerHandler, 
                Context, 
                &TimerEvent 
                ); 
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// 
// Set the timer value for the event created above to be a one-shot timer with 
// a delay of 4 seconds. The timer values are specified in 100 nS units. 
// The notification function TimerHandler() will be called 4 seconds after this 
// call returns, and Context will be passed to the notification function. 
// 
Status = gBS->SetTimer ( 
                TimerEvent, 
                TimerRelative, 
                40000000  // 4 seconds in the future 
                ); 

Example 4-33.  Arming a One-Shot Timer 

Once an EFI driver is finished with an event timer, the timer must be stopped. The 
gBS->SetTimer() service can be used to cancel the event timer, and the 
gBS->CloseEvent() service can be used to free the event that was allocated in 
gBS->CreateEvent(). If the timer was created in the 
EFI_DRIVER_BINDING_PROTOCOL.Start() function, then this operation would be 
performed in the EFI_DRIVER_BINDING_PROTOCOL.Stop() function. If the timer was 
created in the driver’s entry point, then this operation would be performed in the driver’s unload 
function if the driver has an unload function. Example 4-34 below shows how to cancel and free the 
timer event that was created for the examples in Example 4-32 and Example 4-33. 
EFI_STATUS  Status; 
EFI_EVENT   TimerEvent; 
 
Status = gBS->SetTimer ( 
                TimerEvent, 
                TimerCancel, 
                0 
                ); 
 
Status = gBS->CloseEvent ( 
                TimerEvent 
                ); 

Example 4-34.  Stopping a Timer 

4.4.3 Time and Date Services 
Example 4-35 shows two examples of the gRT->GetTime() service. The first retrieves the 
current time and date in an EFI_TIME structure and it retrieves the capabilities of the real-time 
clock hardware in an EFI_TIME_CAPABILITIES structure. The second example just retrieves 
the current time and date in an EFI_TIME structure and does not retrieve the capabilities of the 
real time clock hardware. See the EFI 1.10  Specification for a detailed description of this service 
and its associated data structures. 
EFI_STATUS             Status; 
EFI_TIME               Time; 
EFI_TIME_CAPABILITIES  TimeCapabilities; 
  
Status = gRT->GetTime ( 
                &Time,  
                &TimeCapabilities 
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                ); 
 
Status = gRT->GetTime ( 
                &Time,  
                NULL // Capabilities is optional and may be NULL 
                ); 

Example 4-35.  Time and Date Services 

4.5 EFI Driver Library 

Table C-4 in Appendix C contains the list of EFI Driver Library Services that are available to EFI 
drivers. The details of these services can be found in the EFI 1.10 Driver Library Specification. 
These library services aid in the development of EFI drivers in several ways:   

• These library services have been tested in a wide variety of driver types, so they are well 
validated.  

• The EFI Driver Library is a lightweight library that helps reduce driver size compared to other 
EFI libraries.  

• The EFI Driver Library is designed to complement the services that are already provided by the 
EFI Boot Services Table, the EFI Runtime Services Table, and the various protocol services. 
By using the combination of all of these services and the EFI Driver Library, the driver writer 
can concentrate on implementing the code that directly applies to the device being managed.  
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5 
General Driver Design Guidelines 

This chapter contains general guidelines for the design of all types of EFI drivers. Specific 
guidelines for PCI drivers, USB drivers, and SCSI drivers are presented in later chapters. 

5.1 General Porting Considerations  

Some EFI drivers are ported from IA-32 BIOS designs or older EFI 1.02 drivers. The process of 
porting a driver from one environment to another is often done to save time and leverage resources. 
If the port is done before obtaining a complete understanding of the target environment, the final 
driver may have remnants of the previous design that may not belong in the new environment. This 
section describes the practical porting issues (design and coding) that should be carefully reviewed 
before porting a driver. 

5.1.1 How to Implement Features in EFI  
The first column of Table 5-1 describes functions that a typical driver performs. The second column 
briefly describes how this function is implemented in EFI and references the section in this guide 
that specifically addresses each issue. This list of driver operations is not exhaustive. 

Table 5-1. Mapping Operations to EFI Drivers 

Operation Recommended EFI Method 

Find devices that the driver supports Do not search. An EFI driver is passed a controller handle to 
evaluate along with a partial device path. See chapter 6. 

Perform DMA Use the DMA-related services from the PCI I/O Protocol. See 
section 14.5. 

Access PCI configuration header Use PCI I/O Protocol services. Never directly access I/O ports 
0xCF8 or 0xCFC. See chapter 14 and section 17.2. 

Access PCI I/O ports Use PCI I/O Protocol services. Never use IN or OUT instructions. 

See chapter 14 and section 17.2. 

Access PCI memory Use PCI I/O Protocol services. Never use pointers to directly access 
memory-mapped I/O resources on a bus. See chapter 14 and 
section 17.2. 

Hardware interrupts EFI does not support hooking interrupts. Instead, EFI drivers are 
expected to either perform block I/O where they must complete their 
I/O operation and poll their device as required to complete it, or they 
can create a periodic timer event to allow the EFI driver to 
periodically get control to check the status of the devices it is 
managing. See section 4.4.2 and section 5.6.  

continued 
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Table 5-1. Mapping Operations to EFI Drivers (continued) 

Operation Recommended EFI Method 

Calibrated stalls Do not use hardware devices to perform calibrated stalls. Instead, 
use the gBS->Stall() service for short delays that are 

typically less than 10 mS, and one-shot timer events for long delays 
that are typically greater than 10 mS. The gRT->GetTime() 

service should not be used for delays in EFI drivers. See 
section 4.4.1.  

Get keyboard input from user Use console services from the SetOptions() service of the 

Driver Configuration Protocol. Do not use console services 
anywhere else in the driver because console services may not be 
available when the driver executes. See chapter 11.  

Display text Use console services from the SetOptions() service of the 

Driver Configuration Protocol. Do not print messages from anywhere 
else in the driver because the console services may not be available 
when the driver executed. The DEBUG() macro can be used to 

send debug messages to the standard error console device. See 
chapter 11 and section 21.7. 

Diagnostics Implement the Driver Diagnostics Protocol. See chapter 12.  

Flash utility Write an EFI utility to reprogram the flash device.  

Prepare controllers for use by an OS The OS-present drivers should not make assumptions about the 
state of a controller. It should not assume that the controller was 
touched by an EFI driver before the OS was booted. If a specific 
state is required, then the driver can use an Exit Boot Services 
event to put the controller into the required state. See section 7.1.3. 

5.2 Design and Implementation of EFI Drivers 

The following is the list of basic steps that a driver writer should follow when designing and 
implementing an EFI driver. 

1. Determine the class of EFI driver that needs to be developed. The different classes are listed in 
Table 5-3 below and are described in more detail in chapter 6 of this document. 

Table 5-2. Classes of EFI Drivers to Develop 

Class of Driver 
For more information, 
see sections… 

Device driver 6.1 and 9 

Bus driver that can produce one or all child handles Note 1  6.2, 6.2.6, and 9 

Bus driver that produces all child handles in the first call to Start() 6.2, 6.2.7, and 9 

Bus driver that produces at most one child handle in Start() 6.2, 6.2.8, and 9 

continued 
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Table 5-2. Classes of EFI Drivers to Develop (continued) 

Class of Driver 
For more information, 
see sections… 

Bus driver that produces no child handles in Start() 6.2, 6.2.9, and 9 

Bus driver that produces child handles with multiple parent controllers 6.2, 6.2.10, and 9 

Hybrid driver that can produce one or all child handles Note 2  6.3, 6.2.6, and 9 

Hybrid driver that produces all child handles in the first call to 
Start() 

6.3, 6.2.7, and 9 

Hybrid driver that produces at most one child handle in Start() 6.3, 6.2.8, and 9 

Hybrid driver that produces no child handles in Start() 6.3, 6.2.9, and 9 

Hybrid driver that produces child handles with multiple parent 
controllers 

6.3, 6.2.10, and 9 

Service driver 6.4 and 7.3  

Root bridge driver 6.5 and 7.4 

Initializing driver 6.6 and 7.2 

 Notes: 

1 This bus driver type is recommended because it will enable faster boot times. 

2 This hybrid driver type is recommended because it will enable faster boot times. 
 
 

2. Is the EFI driver unloadable?    The answer to this question is typically yes. See section 7.1.2 
for details on how to enable this feature. 

3. Is the EFI driver going to produce the Component Name Protocol?  See chapter 10. This step is 
strongly recommended for all drivers. 

4. Is the EFI driver going to produce the Driver Configuration Protocol?  See chapter 11. This step 
is recommended. 

5. Is the EFI driver going to produce the Driver Diagnostics Protocol?  See chapter 12. This step 
is recommended. 

6. If the EFI driver is a bus driver for a bus type that supports storage of EFI drivers with the child 
devices, then the Bus Specific Driver Override Protocol must be implemented by the bus 
driver. See chapter 13. 

7. Is the EFI driver going to require an Exit Boot Services event?  See section 7.1.3. 
8. Is the EFI driver a runtime driver?  See section 7.5 and section 20.1. 
9. Is the EFI driver going to require a Set Virtual Address Map event?  See section 7.5. 
10. If the EFI driver follows the EFI Driver Model, then identify the I/O-related protocols that the 

driver needs to consume. Based on the list of consumed protocols and the criteria for these 
protocol interfaces, determine how many instances of the Driver Binding Protocol need to be 
produced. See sections 6.1.5 and 6.2.5. 

11. If the EFI driver follows the EFI Driver Model, then identify the I/O-related protocols that the 
driver needs to produce. All device drivers, bus drivers, and hybrid drivers will use this method. 

12. Implement the driver’s entry point. See chapter 7. 
13. Design the private context data structure. See chapter 8. 
14. If the EFI driver follows the EFI Driver Model, then implement the Supported(), 

Start(), and Stop() services of each Driver Binding Protocol. See chapter 9. 
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15. Implement functions for each produced protocol. See the EFI 1.10 Specification for details on 
the protocols that are being produced. 

16. Is the EFI driver for a PCI-related device?  See chapter 14. 
17. Is the EFI driver for a USB-related device?  See chapter 15. 
18. Is the EFI driver for a SCSI-related device?  See chapter 16. 
19. Is the EFI driver going to see a native driver for the Itanium processor?  See chapter 18. 
20. Is the EFI driver going to be an EBC driver?  See chapter 19. 
21. Design for maximum portability. See the porting considerations for Itanium architecture and 

EBC in chapter 18 and chapter 19. 
22. Design for small code size and improved performance. See chapter 17. 

5.3 Maximize Platform Compatibility 

EFI drivers should make as few assumptions about a system’s architecture as possible. Minimizing 
the number of assumptions will maximize the EFI driver’s platform compatibility. It will also 
reduce the amount of driver maintenance when a driver is deployed on new systems. 

5.3.1 Do Not Make Assumptions about System Memory Configurations 
Do not make any assumptions about the system memory configuration, including memory 
allocations and memory that is used for DMA buffers. There may be unexpected gaps in the 
memory map, and entire memory regions may be missing. 

EFI is designed for a wide variety of platforms. As such, portable drivers should not have artificial 
hard-coded limits; instead, they should rely on published specifications, EFI, and the system 
firmware to provide them with the platform limitations and platform resources, including the 
following: 

• The number of adapters that can be supported in a system 
• The type of adapter that can be supported on each bus 
• The available memory resources   

In addition, drivers should not make assumptions on a platform. Instead, they should make sure 
they support all the cases that are allowed by the EFI 1.10 Specification. For example, memory will 
not always be available beneath the 4 GB boundary (some systems may not have any memory 
under 4 GB at all) and drivers have to be designed to be compatible with these types of system 
configurations. As another example, some systems do not support PC-AT* legacy hardware and 
drivers should not expect them to be present. 
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The gBS->AllocatePool() service does not allow the caller to specify a preferred address, so 
this service is always safe to use and will have no impact on platform compatibility. The 
gBS->AllocatePages() service does have a mode that allows a specific address to be 
specified or a range of addresses to be specified. The allocation type of AllocateAnyPages is 
safe to use and will increase platform compatibility. The allocation types of 
AllocateMaxAddress and AllocateAddress may reduce platform compatibility. 

An EFI driver should never directly allocate a memory buffer for DMA access. The EFI driver 
cannot know enough about the system architecture to predict what system memory areas are 
available for DMA. Instead, an EFI driver should use the services that are provided for the I/O bus 
to allocate and free buffers available for DMA. There should also be services to initiate and 
complete DMA transactions. For example, the PCI Root Bridge I/O Protocol and PCI I/O Protocol 
both provide services for PCI DMA operations. As additional I/O bus types with DMA capabilities 
are introduced, new protocols that abstract the DMA services will have to be added. 

5.3.2 Do Not Use Any Hard-Coded Limits 
EFI drivers should not use fixed-size arrays. Instead, memory resources should be dynamically 
allocated using the gBS->AllocatePages() and gBS->AllocatePool() services. 

5.3.3 Do Not Make Assumptions about I/O Subsystem Configurations 
EFI drivers should not assume there is a fixed or maximum number of controllers in a system. All 
EFI drivers that follow the EFI Driver Model should be designed to manage any number of 
controllers even if the driver writer is convinced there will only be a fixed number of controllers. 
This design will maximize the compatibility of the EFI driver, especially on multi-bus-set (ECR 
pending at PCI SIG) PCI systems that may contain hundreds of PCI slots. Chapter 8 introduces the 
private context data structure, which is a lightweight mechanism that allows an EFI driver to be 
designed with no limitations on the number of controllers that the EFI driver can manage. 

5.3.4 Maximize Source Code Portability 
EFI drivers should be designed to maximize source code portability. Today, the processor targets 
include the following: 

• IA-32 
• Itanium processor 
• EBC virtual machine 

It is possible to write a single driver that can be compiled for all three of these processor targets. It 
is also possible that the list of processor targets may grow over time. As a result, assembly language 
is discouraged.  

An EFI driver should also never directly access any system chipset resources. Directly accessing 
these resources will limit the compatibility of the EFI driver to systems only with that specific 
chipset. Instead, the EFI Boot Services, EFI Runtime Services, and various protocol services should 
be used to access the system resources that are required by an EFI driver. Putting effort into source 
code portability will help maximize future platform compatibility. 
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5.4 EFI Driver Model 
The EFI Driver Model goes a long way in addressing many of the potential platform differences 
and opens up a powerful way for drivers to interact with the user regardless of the platform 
specifics. The EFI Driver Model works with existing and future bus types. EFI drivers will 
typically be written to follow the EFI Driver Model. 

The basic structure of an EFI driver that follows the EFI Driver Model is defined by several basic 
driver protocols. Each of the protocols adds standard interface functions that are coded in the EFI 
driver. An EFI driver needs to implement the following EFI Driver Model–related protocols 
and services: 

• EFI_LOADED_IMAGE_PROTOCOL.Unload() 

• EFI_DRIVER_BINDING_PROTOCOL.Supported() 

• EFI_DRIVER_BINDING_PROTOCOL.Start() 

• EFI_DRIVER_BINDING_PROTOCOL.Stop() 

• EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions() 

• EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionValid() 
• EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults() 

• EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics() 

• EFI_COMPONENT_NAME_PROTOCOL.GetDriverName() 

• EFI_COMPONENT_NAME_PROTOCOL.GetControllerName() 

5.5 Use the EFI Software Abstractions 

EFI drivers shall use software abstractions that are provided by EFI and avoid the temptation of 
internal routines, unless EFI does not provide a suitable alternative. These software abstractions 
include the following: 

• EFI Boot Services such as gBS->SetMem() and gBS->CopyMem() 

• EFI Runtime Services such as gRT->GetVariable()  

• EFI protocols such as the PCI I/O and Simple Text Output Protocols 

This recommendation serves several purposes. By using the software abstractions provided by the 
platform vendor, the EFI driver will maximize its platform compatibility. The platform vendor can 
also optimize the services that are provided by the platform, so the performance of the EFI driver 
improves by using these services. Chapter 19 discusses the EBC porting considerations, and one of 
the most important considerations is the performance of an EBC driver because EBC code is 
interpreted. The performance of an EBC driver can be greatly improved by calling system services 
instead of using internal functions. 

5.6 Use Polling Device Drivers  

EFI drivers are not designed to be high-performance drivers, but rather to provide basic boot 
support for OS loaders. For this reason, EFI does not support an interrupt model for the device 
drivers. Instead, all EFI drivers operate in a polled mode. EFI drivers that implement blocking I/O 
services can simply poll the I/O device until the I/O request is complete. EFI drivers that implement 
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nonblocking I/O can create a periodic timer event to poll a device at periodic intervals. The interval 
should be set to the largest possible period for the EFI driver to complete its I/O services in a 
reasonable period of time. The overall performance of an EFI-enabled platform will degrade if too 
many EFI drivers create high-frequency periodic timer events. It is recommended that the period of 
a periodic timer event be at least 10 mS. In general, they should be as large as possible based upon 
a specific device’s timing requirements, and most drivers can use events with timer periods in the 
range of 100 mS to several seconds. EFI drivers should also not spend a lot of time in their event 
notification functions, because this blocks the normal execution mode of the system. An EFI driver 
using a periodic timer event can always save some state information and wait for the next timer tick 
if the driver needs to wait for a device to respond. The ISA floppy driver and USB bus driver are 
examples of drivers in the EFI 1.10 Sample Implementation that use timer events. 

5.6.1 Use Events and Task Priority Levels 
The TPLs provide a mechanism for code to run at a higher priority than application code. So, one 
can be running the EFI Shell, and an EFI device driver can have a timer event fire and gain control 
to go poll its device. The TPL_CALLBACK level is typically used for deferred software calls, and 
TPL_NOTIFY is typically used by device drivers. TPL_HIGH_LEVEL is typically used for locks 
on shared data structures. 

Drivers may use events and TPLs if they perform nonblocking I/O. If they perform blocking I/O, 
then they will not use events. They may still use the gBS->RaiseTPL() and 
gBS->RestoreTPL() for critical sections. 

Driver diagnostics are typically just applications. They will not normally need to use TPLs or 
events unless the diagnostics is testing the TPL or event mechanisms in EFI. There is one 
exception. If a diagnostic needs to guarantee that EFI’s timer interrupt is disabled, then the 
diagnostic can raise the TPL to TPL_HIGH_LEVEL. If this level is required, then it should be done 
for the shortest possible time interval. 

5.7 Design to Be Re-entrant  

If a system contains multiple controllers of the same type from the same vendor, it is quite possible 
that a single driver could install an instance of the controller’s I/O protocol on a handle for each 
device. Each instance of the protocol would call the same driver functions, but the data would be 
unique to the instance (or context) of the protocol. This design concept is important for all EFI 
drivers. 

The practical manifestation of this requirement is that all the data that must be local to the instance 
(context) of the protocol must not be stored in global variables. Instead, data is collected into a 
private context data structure and each time that an I/O protocol is installed onto a handle, a new 
version of the structure is allocated from memory. This concept is described in detail in chapter 8. 
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5.8 Avoid Function Name Collisions between Drivers  

Compilers and linkers will guarantee that there are no name collisions within a driver, but the 
compilers and linkers cannot check for name collisions between drivers. This inability to check is a 
concern only when debuggers are used that can perform source-level debugging or can display 
function names. Section 3.12 introduced templates that help avoid function name collisions 
between drivers. The guidelines in the templates should be followed. 

5.9 Manage Memory Ordering Issues in the DMA and Processor 

Not all processors have strongly ordered memory models. This distinction means that the order in 
which memory transactions are presented in the source code may not be the same when the code is 
executed. Normally, this order is not an issue, because the processor and the compiler will 
guarantee that the code will execute as the developer expects. However, EFI drivers that use DMA 
buffers that are simultaneously accessed by both the processor and the DMA bus master may run 
into issues if either the processor or the DMA bus master or both are weakly ordered. The DMA 
bus master must solve its own ordering issues, but the EFI driver writer is responsible for managing 
the processor’s ordering issues. 

The EFI 1.10 Sample Implementation contains a macro called MEMORY_FENCE() that guarantees 
that all the transactions in the source code prior to the MEMORY_FENCE() macro are completed 
before the code after the MEMORY_FENCE() macro is executed. This macro can be used in an EFI 
driver that accesses a buffer at the same time that a DMA bus master is accessing that same buffer. 
The EFI driver will insert these macros at the appropriate points in the code where all the processor 
transactions need to be completed before the next processor transaction is performed. For example, 
if a buffer contains a data structure and that data structure contains a valid bit and additional data 
fields that describe an I/O operation that the DMA bus master needs to perform, then the EFI driver 
would want to update the additional data fields before setting the valid bit. The EFI driver would 
use the MEMORY_FENCE() macro just before and just after the valid bit is written to the buffer. 

This issue is not present in IA-32 or EBC virtual machines because these two processor types are 
strongly ordered. However, Itanium-based platforms are weakly ordered, so this macro must be 
used for native drivers for the Itanium processor. It is recommended that these macros be used 
appropriately in all driver types to maximize the EFI driver’s platform compatibility. 

5.10 Do Not Store EFI Drivers in Hidden Option ROM Regions  

Some option ROMs may use paging or other techniques to load and execute code that was not 
visible to the system firmware when measuring the visible portion of the option ROM. This 
technique is discouraged because it is typically the bus driver’s responsibility to extract the option 
ROM contents when a bus is enumerated. If code is required to access hidden portions of an option 
ROM, then the bus driver would not have the ability to extract the additional option ROM contents. 
This inability means that the EFI drivers in an option ROM must be visible without accessing a 
hidden portion of an option ROM. However, if there is a safe mechanism to access the hidden 
portions of the option ROM after the EFI drivers have been loaded and executed, then the EFI 
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driver may choose to access those contents. For example, nonvolatile configuration information, 
utilities, or diagnostics can be stored in the hidden option ROM regions. 

5.11 Store Configuration Settings on the Same FRU as the EFI Driver 

The configuration for an EFI driver should be stored on the same Field Replaceable Unit (FRU) as 
the EFI driver. If an EFI driver is stored on the motherboard, then their configuration information 
can be stored in EFI variables. If an EFI driver is stored in an add-in card, then their configuration 
information should be stored in the NVRAM provided on the add-in card. 

5.11.1 Benefits 
This method ensures that it is possible to statically (while the FRU is being designed) determine the 
maximum configuration storage that is required for the FRU. In particular, if option cards were to 
store their configuration in EFI variables, the amount of variable storage could not be statically 
calculated, because it generally is not possible to know ahead of time what set of option cards may 
be installed in a system. The result would be that add-in cards could not be used in otherwise 
functional systems due to lack of EFI variable storage space. 

Storing EFI variables in the same FRU as the EFI driver reduces the amount of stale data that is left 
in EFI variables. If an option card was to store its data in EFI variables and then be removed, there 
is no automatic cleanup mechanism to purge the EFI variables that are associated with that card. 

Storing EFI variables in the same FRU as the EFI driver also ensures that the configuration stays 
with the FRU. It enables centralized configuration of add-in cards. For example, if an IT 
department is configuring 50 like systems, it can configure all 50 in the same system and then 
disburse them to the systems, rather than configuring each system separately. Further, it can 
maintain preconfigured spares. 

5.11.2 Update Configurations at OS Runtime Using an OS-Present Driver 
If an end-user or developer wants to configure an add-in card while the OS is running, it is possible 
to update the configuration to the card using EFI variables. Add-in cards are typically supplied with 
OS-present drivers. For most operating systems, it is actually preferable to access the card using the 
OS-driver and for that driver to update the card. 

5.12 Do Not Use Hard-Coded Device Path Nodes  

The ACPI() node in the EFI Device Path Protocol identifies the PCI root bridge in the ACPI 
namespace. The ACPI Specification allows _HID to describe vendor-specific capability and _CID 
to describe compatibility. Therefore, there is no requirement for all platforms to use the PNP0A03 
identifier in the _HID to identify the PCI root bridge. The following are the only requirements for 
the PCI root bridge:  

• The PNP0A03 identifier must appear in _HID if a vendor-specific capability does not need to 
be described. 

• The PNP0A03 identifier must appear in _CID if _HID contains a vendor-specific identifier.  
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To avoid problems with platform differences, EFI drivers should not create EFI device paths from 
hard-coded information. Instead, EFI bus drivers should append new device path nodes to the 
device path from the parent device handle. 

5.12.1 PNPID Byte Order for EFI 
The ACPI PNPID format (byte order) follows the original EISA ID format. EFI also uses PNPID in 
the device path ACPI nodes. However, for a given string, ACPI and EFI do not generate the same 
numbers. For example: 
HID = “PNP0501” 
ACPI = 0x0105D041 
EFI = 0x050141D0 

This difference means that operating systems that try to match the EFI ACPI device path node to 
the ACPI name space must perform a translation. 

5.13 Do Not Cause Errors on Shared Storage Devices  

In a cluster configuration, multiple devices may be connected to a shared storage. In such 
configurations, the EFI driver should not cause errors that can be seen by the other devices that are 
connected to storage. 

On a boot or reboot, there shall be no writes to shared storage without user acknowledgement. Any 
writes to shared storage by an EFI driver may corrupt shared storage as viewed by another system. 
As a result, all outstanding I/O in the controller’s buffers shall be cleared, and any internal caches 
shall also be cleared. Any I/O operations that occur after a reboot may corrupt shared storage. 

There must not be an excessive number of bus or device resets. Device resets have an impact on 
shared storage as viewed by other systems. For a single reset, this impact is negligible. Larger 
numbers of resets may be seen as a device failure by another system. 

Disk signatures must not be changed without warning the user. If there is an impact to the user, then 
that impact should be displayed along with the warning. Clusters may make an assumption about 
disk signatures on shared storage. 

The discovery process must not impact other systems accessing the storage. A long discovery 
process may “hold” drives and look like a failure of shared storage. 
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5.14 Convert Bus Walks 

In EFI, the EFI bus drivers find, enumerate, and expose devices using the bus’s standard I/O 
protocol. For example, the PCI bus driver exposes devices on the PCI bus that have device handles 
that support the PCI I/O Protocol. The USB bus driver exposes USB devices that have a handle that 
supports the USB I/O Protocol. The list of device handles that support a specific bus I/O protocol 
can be discovered using the gBS->LocateHandleBuffer() service. Not only is this method 
faster than a classical bus walk, but it will work even when a system contains multiple PCI buses.  

5.14.1 Example 
Example 5-1 shows an example of converting a bus walk on the PCI bus. In this example, use EFI 
Boot Services to obtain all the handles that support the PCI I/O Protocol and then examine the 
configuration space for the vendor ID (VID) and device ID (DID). Note that the code below could 
be used in a flash utility to discover all the cards in the system. 
EFI_STATUS             Status; 
UINTN                  HandleCount; 
EFI_HANDLE             *HandleBuffer; 
UINTN                  Index; 
EFI_PCI_IO_PROTOCOL    *PciIo; 
PCI_TYPE00             Pci; 
 
// 
// Retrieve the list of handles that support the PCI I/O Protocol from 
// the handle database. The number of handles that support the PCI I/O 
// Protocol is returned in HandleCount, and the array of handle values is 
// returned in HandleBuffer. 
// 
Status = gBS->LocateHandleBuffer ( 
                ByProtocol, 
                &gEfiPciIoProtocolGuid, 
                NULL, 
                &HandleCount, 
                &HandleBuffer 
                ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Loop through all the handles that support the PCI I/O Protocol, and 
// retrieve the instance of the PCI I/O Protocol. 
// 
for (Index = 0; Index < HandleCount; Index++) { 
  Status = gBS->OpenProtocol ( 
                  HandleBuffer[Index], 
                  &gEfiPciIoProtocolGuid, 
                  (VOID **)&PciIo, 
                  ImageHandle, 
                  NULL, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    continue; 
  } 
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  DEBUG ((D_INIT, “DrvUtilApp: Call Pci.Read \n”)); 
  Status = PciIo->Pci.Read ( 
                        PciIo,  
                        EfiPciIoWidthUint8,  
                        0,  
                        sizeof (Pci),  
                        &Pci 
                        ); 
 
  if (EFI_ERROR (Status)) { 
    Status = EFI_UNSUPPORTED; 
    DEBUG ((D_INIT, “DrvUtilApp: Return Value = %r\n”,Status)); 
  } else { 
 
    // 
    // Check for desired attributes: 
    //  Pci.Hdr.VendorId 
    //  Pci.Hdr.DeviceId 
    // 
 
    if ((Pci.Hdr.VendorId != XYZ_VENDOR_ID) ||  
        (Pci.Hdr.DeviceId != XYZ_DEVICE_ID)) { 
      DEBUG((D_INIT, “DrvUtilApp: This DH not ours: %d\n”, HandleBuffer[Index])); 
    } else { 
      DEBUG((D_INIT, “DrvUtilApp: FOUND! %d\n”, HandleBuffer[Index])); 
    } 
  } 
} 
// 
// Free the array of handles that was allocated by gBS->LocateHandleBuffer() 
// 
gBS->FreePool (HandleBuffer); 

Example 5-1.  PCI Bus Walk Example 

5.15 Do Not Have Any Console Display or Hot Keys  

PC BIOS legacy option ROMs would typically display banners. The header displays the driver 
name and version information. Some BIOS drivers inform the user of a “hot key” that would be 
checked during the boot sequence that would allow customers to enter into the driver’s 
configuration options. This type of interaction created several problems: 

• Displaying the banner and waiting long enough to detect a key press increases boot time. On 
systems where there could be hundreds of PCI cards, this time can add up. Even the time to 
simply print a header can take too long, because some systems may require the console text to 
flow out to a serial port that could be configured at 9600 baud. 

• The user is rarely ready to interact with the boot driver at just the right moment and often has to 
reboot the system multiple times to read the display banner or press the key at the right time to 
enter the driver configuration utility. On larger systems, the system boot can take many 
minutes. 

• The amount of text “spew” can be confusing to a user watching the boot sequence. Each driver 
can have its own unique way of presenting the information. When many cards are all displaying 
their own unique header information to the screen at once, there is a significant risk of 
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confusing the user with too much information that is only informational and not significant to 
the health of the system. Also, the text can unnecessarily fill console logs and potentially break 
scripts when a new card is added to a system that was monitoring the console text. 

• On fast systems, the header text is displayed but erased by a later driver so quickly that the user 
cannot read it. 

• In EFI, the driver may be initialized before the console output and standard error devices. In 
such cases, the data will not be visible or will crash the system. When EFI option ROM drivers 
are loaded, the console has not been connected because the console may in fact be controlled by 
one of the EFI option ROM drivers. In such cases, printing may in fact call a NULL function 
and crash the system. 

For these reasons, the EFI driver model requires that no console I/O operations take place in the 
EFI Driver Binding Protocol functions. A reasonable exception to this rule is to use the DEBUG()  
macro to display progress information during driver development and debug. Using the DEBUG() 
macro allows the code for displaying the data to be easily removed for a production build of the 
driver. 

Use of the DEBUG() macro should be limited to “debug releases” of a driver. This strategy will 
typically work if the driver is loaded after the EFI console is connected. However, some firmware 
implementations may load the option ROM drivers before the EFI console is connected (because 
console drivers may live in option ROMs). In such cases, the ConOut and StdErr fields of the 
EFI system table may be NULL, and printing will crash the system. The DEBUG() macro should 
check to see if the field is NULL before using those services. 

Tip: The EFI 1.10.14.59 Sample Implementation fixed a bug in the print function that is used 
by EFI drivers so that print format strings using %s would print a Unicode string rather than an 
ASCII string as it did earlier. To avoid problems on systems that may not have the fix, consider 
using %a or %S instead of %s, where %S prints a Unicode string and %a prints an ASCII string. 

Chapter 9 of the EFI 1.10 Specification provides several other protocols to assist in interacting with 
the user—the EFI Driver Configuration Protocol and EFI Driver Diagnostics Protocol. 

5.16 Offer Alternatives to Function Key 

The EFI console may be connected through a serial port. In such cases, it is sensitive to the correct 
terminal emulator configuration. If the user has not correctly configured the terminal emulator to 
match the terminal settings in EFI (PC ANSI, VT100, VT100+, or VT-UTF8), they may not be able 
to correctly use some of the keys (function keys, arrow keys, page up/down, insert/delete, and 
backspace) or be able to display colors and see the correct cursor positioning. To better support 
users, it is recommended that EFI configuration protocols and EFI applications create user 
interfaces that are not solely dependent on these keys but instead offer alternatives for these keys. 
Also, it is important to note that the Simple Input Protocol does not support the CTRL or ALT keys 
because these keys are not available with remote terminals such as terminal emulators and telnet. 
Table 5-3 below shows one possible set of alternate key sequences for function keys, arrow keys, 
page up/down keys, and the insert/delete keys. Each configuration protocol and application will 
have to decide if alternate key sequences are supported and which alternate mappings should be 
used. Table 5-3 lists the EFI Scan Code from the Simple Input Protocol and the alternate key 
sequence that can be used to produce that scan code. Most of these key sequences are directly 
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supported in the EFI 1.10.14.62 Sample Implementation, which means that the developer does not 
need to do anything special to support these key sequences on a remote terminal. The ones labeled 
as “No” are not directly supported in the EFI 1.10.14.62 Sample Implementation, so those key 
sequences will have to be parsed to be interpreted by the configuration protocol or application. 

Table 5-3. Alternate Key Sequences for Remote Terminals 

 

EFI Scan Code 

 

Key Sequence 

Supported in 
EFI 1.10.14.62? 

SCAN_NULL   

SCAN_UP ‘^’ No 

SCAN_DOWN ‘v’ or ‘V’ No 

SCAN_RIGHT ‘>’ No 

SCAN_LEFT ‘<’ No 

SCAN_HOME ESC h Yes 

SCAN_END ESC k Yes 

SCAN_INSERT ESC + Yes 

SCAN_DELETE ESC - Yes 

SCAN_PAGE_UP ESC ? Yes 

SCAN_PAGE_DOWN ESC / Yes 

SCAN_F1 ESC 1 Yes 

SCAN_F2 ESC 2 Yes 

SCAN_F3 ESC 3 Yes 

SCAN_F4 ESC 4 Yes 

SCAN_F5 ESC 5 Yes 

SCAN_F6 ESC 6 Yes 

SCAN_F7 ESC 7 Yes 

SCAN_F8 ESC 8 Yes 

SCAN_F9 ESC 9 Yes 

SCAN_F10 ESC 0 Yes 

ESC ESC Yes 
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5.17 Do Not Assume EFI Will Execute All Drivers  

Typically, the same vendor that produces an EFI driver will also have to produce an OS-present 
driver for all the operating systems that the vendor chooses to support. Because EFI provides a 
mechanism to reduce the boot time by running the minimum set of drivers that are required to 
connect the console and boot devices, not all EFI drivers may be executed on every boot. For 
example, the system may have three SCSI cards but only needs to install the driver on one SCSI 
bus to boot the OS. 

This minimum set of drivers means that the OS-present driver may be handed a controller that may 
be in several different states. It may still be in the power-on reset state, it may have been managed 
by an EFI driver for a short period of time and released, and it may have been managed by an EFI 
driver right up to the point in time where firmware hands control of the platform to the operating 
system. 

The OS-present driver must accept controllers in all of these states. This acceptance requires the 
OS-present driver to make very few assumptions about the state of the controller it manages.  

OS drivers shall not make assumptions that the EFI driver has initialized or configured the device in 
any way. Also, I/O hot-plug does not involve EFI driver execution, so the OS driver must be able to 
initialize and operate the driver without EFI support. 
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6 
Classes of EFI Drivers 

The different classes of EFI drivers are introduced in chapter 2. These driver classes will be 
discussed throughout this document, but an emphasis is placed on drivers that follow the EFI Driver 
Model because these drivers are the most commonly implemented. The drivers that follow the EFI 
Driver Model include the following: 

• Device drivers 
• Bus drivers 
• Hybrid drivers 

There are actually several subtypes and optional features for these classes of drivers. This chapter 
introduces the subtypes and optional features of drivers that follow the EFI Driver Model. 
Understanding the different classes of EFI drivers will help driver writers identify the class of 
driver to implement and the algorithms that are used in their implementation. The less common 
service drivers, root bridge drivers, and initializing drivers are also discussed. 

The chapters that follow describe a driver’s entry point in detail, including the various optional 
features that may be enabled in the entry point. The driver entry point chapter is followed by a 
chapter on using object-oriented programming techniques to help design good data structures in 
drivers that follow the EFI Driver Model. This chapter is followed by a chapter on the Driver 
Binding Protocol and chapters on the optional protocols such as Component Name, Driver 
Configuration, Driver Diagnostics, Bus Specific Driver Override, and Platform Driver Override. 

6.1 Device Drivers 

All device drivers that follow the EFI Driver Model share a set of common characteristics. The 
following two sections describe the required and optional features for device drivers. These sections 
are followed by a detailed description of device drivers that produce a single instance of the Driver 
Binding Protocol and device drivers that produce multiple instances of the Driver Binding Protocol. 
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6.1.1 Required Device Driver Features 
Device drivers are required to implement the following features:   

• Installs one or more instances of the EFI_DRIVER_BINDING_PROTOCOL in the driver’s 
entry point. 

• Manages one or more controller handles. Even if a driver writer is convinced that the driver 
will manage only a single controller, the driver should be designed to manage multiple 
controllers. The overhead for this functionality is low, and it will make the driver more 
portable. 

• Does not produce any child handles. This feature is the main distinction between device drivers 
and bus drivers. 

• Ignores the RemainingDevicePath parameter that is passed into the Supported() and 
Start() services of EFI_DRIVER_BINDING_PROTOCOL. 

• Consumes one or more I/O-related protocols from a controller handle. 
• Produces one or more I/O-related protocols on the same controller handle. 

6.1.2 Optional Device Driver Features 
The following is the list of features that device drivers can optionally implement:   

• Installs one or more instances of the EFI_COMPONENT_NAME_PROTOCOL in the driver’s 
entry point. Implementing this feature is strongly recommended. It allows a driver to provide 
human-readable names for the name of the driver and the controllers that the driver is 
managing. Some platform design guides such as DIG64 require this feature. 

• Installs one or more instances of the EFI_DRIVER_CONFIGURATION_PROTOCOL in the 
driver’s entry point. If a driver has any configurable options, then this protocol is required. 
Some platform design guides such as DIG64 require this feature. 

• Installs one or more instances of the EFI_DRIVER_DIAGNOSTICS_PROTOCOL in the 
driver’s entry point. If a driver wishes to provide diagnostics for the controllers that the driver 
manages, then this protocol is required. This protocol is the only mechanism that is available to 
a driver when the driver wants to alert the user of a problem that was detected with a controller. 
Some platform design guides such as DIG64 require this feature. 

• Provides an EFI_LOADED_IMAGE_PROTOCOL.Unload() service, so the driver can be 
dynamically unloaded. It is recommended that this feature be implemented during driver 
development, driver debug, and system integration. It is strongly recommended that this service 
remain in drivers for add-in adapters to help debug interaction issues during system integration. 

• Creates an Exit Boot Services event in the driver’s entry point. This feature is required only if 
the driver is required to place the devices it manages in a specific state just before control is 
handed to an operating system. 

• Creates a Set Virtual Address Map event in the driver’s entry point. This feature is required 
only for a device driver that is also an EFI runtime driver. 

6.1.3 Device Drivers with One Driver Binding Protocol 
Most device drivers produce a single instance of the EFI_DRIVER_BINDING_PROTOCOL. 
These drivers are the simplest that follow the EFI Driver Model, and all other driver types have 
their roots in this type of device driver.  
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A device driver is loaded into memory with the gBS->LoadImage() Boot Service and invoked 
with the gBS->StartImage() Boot Service. The gBS->LoadImage() service automatically 
creates an image handle and installs the EFI_LOADED_IMAGE_PROTOCOL onto the image 
handle. The EFI_LOADED_IMAGE_PROTOCOL describes the location where the device driver 
was loaded and the location in system memory where the device driver was placed. The 
Unload() service of the EFI_LOADED_IMAGE_PROTOCOL is initialized to NULL by 
gBS->LoadImage(). This setting means that by default the driver is not unloadable. The 
gBS->StartImage() service transfers control to the driver’s entry point as described in the 
PE/COFF header of the driver image. The driver entry point is responsible for installing the 
EFI_DRIVER_BINDING_PROTOCOL onto the driver’s image handle. Figure 6-1 below shows 
the state of the system before a device driver is loaded, just before it is started, and after the driver’s 
entry point has been executed. 

Driver Image Handle

EFI_LOADED_IMAGE_PROTOCOL
Unload() = <<DriverName>>Unload()

EFI_DRIVER_BINDING_PROTOCOL
Supported()
Start()
Stop()

Image Handle

EFI_LOADED_IMAGE_PROTOCOL
Unload() = NULL

gBS->LoadImage()

gBS->StartImage()

 

Figure 6-1.  Device Driver with Single Driver Binding Protocol 

Figure 6-2 below is the same as the figure above, except this device driver has also implemented all 
the optional features. This difference means the following: 

• Additional protocols are installed onto the driver’s image handle. 
• An Unload() service is registered in the EFI_LOADED_IMAGE_PROTOCOL.  

• An Exit Boot Services event and Set Virtual Address Map event have been created. 
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Figure 6-2.  Device Driver with Optional Features 

Table 6-1 below lists the device drivers from the EFI 1.10 Sample Implementation that produce a 
single instance of the EFI_DRIVER_BINDING_PROTOCOL. 

Table 6-1. Device Drivers with One Driver Binding Protocol 

AtapiPassThru PciVgaMiniPort Usb\UsbBot WinNtThunk\SimpleFileSystem 

CirrusLogic5430 Ps2Keyboard Usb\UsbCbi WinNtThunk\Uga 

Console\GraphicsConsole Ps2Mouse Usb\UsbKb BiosInt\BiosKeyboard 

DiskIo PxeBc Usb\UsbMassStorage BiosInt\BiosVga 

FileSystem\Fat PxeDhcp4 Usb\UsbMouse BiosInt\BiosVgaMiniPort 

IsaFloppy ScsiDisk VgaClass  

PcatIsaAcpi Snp32_64 WinNtThunk\BlockIo  

PcatIsaAcpiBios Usb\Uhci WinNtThunk\Console  
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6.1.4 Device Drivers with Multiple Driver Binding Protocols 
A more complex device driver is one that produces more than one instance of the 
EFI_DRIVER_BINDING_PROTOCOL. The first instance of the 
EFI_DRIVER_BINDING_PROTOCOL is installed onto the driver’s image handle, and the 
additional instances of the EFI_DRIVER_BINDING_PROTOCOL are installed onto newly created 
driver binding handles. 

Figure 6-3 below shows the state of the handle database before a driver is loaded, before it is 
started, and after its driver entry point has been executed. This specific driver produces three 
instances of the EFI_DRIVER_BINDING_PROTOCOL. 

Driver Image Handle

EFI_LOADED_IMAGE_PROTOCOL
Unload() = <<DriverName>>Unload()

EFI_DRIVER_BINDING_PROTOCOL
Supported()
Start()
Stop()

Image Handle

EFI_LOADED_IMAGE_PROTOCOL
Unload() = NULL

gBS->LoadImage()

gBS->StartImage()
Driver Handle

EFI_DRIVER_BINDING_PROTOCOL
Supported()
Start()
Stop()

Driver Handle

EFI_DRIVER_BINDING_PROTOCOL
Supported()
Start()
Stop()

 

Figure 6-3.  Device Driver with Multiple Driver Binding Protocols 
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Any device driver that produces multiple instances of the EFI_DRIVER_BINDING_PROTOCOL 
can be broken up into multiple drivers, so each driver produces a single instance of the 
EFI_DRIVER_BINDING_PROTOCOL. However, there are a few advantages for a driver to 
produce multiple instances of the EFI_DRIVER_BINDING_PROTOCOL. The first is that it may 
reduce the overall size of the drivers. If two related drivers are combined and those two drivers can 
share internal functions, the executable image size of the single driver may be smaller than the sum 
of the two individual drivers. The other reason to combine drivers is to help manage platform 
features. A single platform features may require several drivers. If the drivers are separated, then 
multiple drivers have to be added or removed to add or remove that single feature.  

There is only one device driver in the EFI 1.10 Sample Implementation that produces multiple 
instances of the EFI_DRIVER_BINDING_PROTOCOL, and it is the console platform driver in the 
\Efi1.1\Edk\Console\ConPlatform directory. This driver implements the platform 
policy for managing multiple console input and console out devices. It produces one 
EFI_DRIVER_BINDING_PROTOCOL for the console output devices, and another 
EFI_DRIVER_BINDING_PROTOCOL for the console input devices. The management of console 
devices needs to be centralized, so it makes sense to combine these two functions into a single 
driver so the platform vendor needs to update only one driver to adjust the platform policy for 
managing console devices. 

6.1.5 Device Driver Protocol Management 
Device drivers consume one or more I/O-related protocols and use the services of those protocols to 
produce one or more I/O-related protocols. The Supported() and Start() functions of the 
EFI_DRIVER_BINDING_PROTOCOL are responsible for opening the I/O-related protocols that 
are being consumed using the EFI Boot Service gBS->OpenProtocol(). The Stop() 
function is responsible for closing the consumed I/O-related protocols using 
gBS->CloseProtocol(). A protocol can be opened in several different modes, but the most 
common is BY_DRIVER. When a protocol is opened BY_DRIVER, a test is made to see if that 
protocol is already being consumed by any other drivers. The open operation will succeed only if 
the protocol is not being consumed by any other drivers. This use of the 
gBS->OpenProtocol() service is how resource conflicts are avoided in the EFI Driver Model. 
However, it requires that every driver present in the system to follow the driver interoperability 
rules for all resource conflicts to be avoided. 

Figure 6-4 below shows the image handle for a device driver as gBS->LoadImage() and 
gBS->StartImage() are called. In addition, it shows the states of three different controller 
handles as the EFI_DRIVER_BINDING_PROTOCOL services Supported(), Start(), and 
Stop() are called. Controller Handle 1 and Controller Handle 3 pass the Supported() test, 
so the Start() function can be called. In this case, the Supported() service tests to see if the 
controller handle supports Protocol A. Start() is then called for Controller Handle 1 and 
Controller Handle 3. In the Start() function, Protocol A is opened BY_DRIVER, and 
Protocol B is installed onto the same controller handle. The implementation of Protocol B will use 
the services of Protocol A to produce the services of Protocol B. All drivers that follow the EFI 
Driver Model must support the Stop() service. The Stop() service must put the handles back 
into the same state they were in before Start() was called, so the Stop() service uninstalls 
Protocol B and closes Protocol A. 
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Figure 6-4.  Device Driver Protocol Management 

Figure 6-5 below shows a more complex device driver that requires Protocol A and Protocol B to 
produce Protocol C. Notice that the controller handles that support neither Protocol A nor 
Protocol B, only Protocol A, or only Protocol B do not pass the Supported() test. Also notice 
that Controller Handle 6 already has Protocol A opened BY_DRIVER, so this device driver that 
requires both Protocol A and Protocol B will not pass the Supported() test either. This example 
highlights some of the flexibility of the EFI Driver Model. Because the Supported() and 
Start() services are functions, a driver writer can implement simple or complex algorithms to 
test if the driver supports a specific controller handle.  
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Figure 6-5.  Complex Device Driver Protocol Management 

The best way to design the algorithm for the opening protocols is to write a Boolean expression for 
the protocols that a device driver consumes. Then, expand this Boolean expression into the sum of 
products form. Each product in the expanded expression requires its own 
EFI_DRIVER_BINDING_PROTOCOL. This scenario is another way that a device driver may be 
required to produce multiple instances of the EFI_DRIVER_BINDING_PROTOCOL. The 
Supported() service for each EFI_DRIVER_BINDING_PROTOCOL will attempt to open each 
protocol in a product term. If any of those open operations fail, then Supported() fails. If all the 
opens succeed, then the Supported() test passes. The Start() function should open each 
protocol in the product term, and the Stop() function should close each protocol in the product 
term. 

For example, the two examples above would have the following Boolean expressions: 

 (Protocol A) 

 (Protocol A AND Protocol B) 
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These two expressions have only one product term, so only one 
EFI_DRIVER_BINDING_PROTOCOL is required. A more complex expression would be 
as follows: 

 (Protocol A AND (Protocol B OR Protocol C)) 

If this Boolean expression is expanded into a sum of product form, it would yield the following: 

 ((Protocol A AND Protocol C) OR (Protocol B AND Protocol C)) 

This expression would require a driver with two instances of the 
EFI_DRIVER_BINDING_PROTOCOL. One would test for Protocol A and Protocol C, and the 
other would test for Protocol B and Protocol C. 

6.2 Bus Drivers 

All bus drivers that follow the EFI Driver Model share a set of common characteristics. The 
following two sections describe the required and optional features for bus drivers. These sections 
are followed by a detailed description of bus drivers that do the following: 

• Produce a single instance of the Driver Binding Protocol 
• Produce multiple instances of the Driver Binding Protocol 
• Produce all of their child devices in their Start() function 

• Are able to produce a single child device in their Start() function 

• Produce at most one child device from their Start() function 

• Bus drivers for hot-plug bus types that do not produce any child devices in their Start() 
function 

• Produce child devices with multiple parent devices 

6.2.1 Required Bus Driver Features 
Bus drivers are required to implement the following features:   

• Installs one or more instances of the EFI_DRIVER_BINDING_PROTOCOL in the driver’s 
entry point. 

• Manages one or more controller handles. Even if a driver writer is convinced that the driver 
will manage only a single bus controller, the driver should be designed to manage multiple bus 
controllers. The overhead for this functionality is low, and it will make the driver more 
portable. 

• Produces any child handles. This feature is the key distinction between device drivers and bus 
drivers. 

• Consumes one or more I/O-related protocols from a controller handle. 
• Produces one or more I/O-related protocols on each child handle. 
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6.2.2 Optional Bus Driver Features 
Bus drivers can optionally implement the following features:   

• Installs one or more instances of the EFI_COMPONENT_NAME_PROTOCOL in the driver’s 
entry point. The implementation of this feature is strongly recommended. It allows a driver to 
provide human-readable names for the driver and the controllers that the driver is managing. 
Bus drivers should also provide names or the child handles created by the bus driver. Some 
platform design guides such as DIG64 require this feature. 

• Installs one or more instances of the EFI_DRIVER_CONFIGURATION_PROTOCOL in the 
driver’s entry point. If a driver has any configurable options for the controller or the children, 
then this protocol is required. Some platform design guides such as DIG64 require this feature. 

• Installs one or more instances of the EFI_DRIVER_DIAGNOSTICS_PROTOCOL in the 
driver’s entry point. If a driver wishes to provide diagnostics for the controllers for the children 
that the driver manages, then this protocol is required. This protocol is the only mechanism that 
is available to a driver when the driver wants to alert the user of a problem that was detected 
with a controller. Some platform design guides such as DIG64 require this feature. 

• Provides an EFI_LOADED_IMAGE_PROTOCOL.Unload() service, so the driver can be 
dynamically unloaded. It is recommended that this feature be implemented during driver 
development, driver debug, and system integration. It is strongly recommended that this service 
remain in drivers for add-in adapter to help debug interaction issues during system integration. 

• Parses the RemainingDevicePath parameter that is passed into the Supported() and 
Start() services of the EFI_DRIVER_BINDING_PROTOCOL. 

• Installs an EFI_DEVICE_PATH_PROTOCOL on each child handle that is created. This feature 
is required only if the child handle represents a physical device. If child handle represents a 
virtual device, then an EFI_DEVICE_PATH_PROTOCOL is not required. 

• Creates an Exit Boot Services event in the driver’s entry point. This feature is required only if 
the driver is required to place the devices it manages in a specific state just before control is 
handed to an operating system. 

• Creates a Set Virtual Address Map event in the driver’s entry point. This feature is required 
only for a device driver that is also an EFI runtime driver. 
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6.2.3 Bus Drivers with One Driver Binding Protocol 
The driver entry point of a bus driver is very similar to the driver entry point of a device driver. The 
discussion in section 6.1.3 applies equally well to both bus drivers and device drivers. The 
differences between bus drivers and device drivers are exposed in the implementations of the 
EFI_DRIVER_BINDING_PROTOCOL. The following sections describe the behaviors of the 
Start() function of the EFI_DRIVER_BINDING_PROTOCOL for each type of bus driver.  

Table 6-2 below lists the bus drivers from the EFI 1.10 Sample Implementation that produce a 
single instance of the EFI_DRIVER_BINDING_PROTOCOL. 

Table 6-2. Bus Drivers with One Driver Binding Protocols 

DebugPort Partition SerialMouse BiosInt\BiosSnp16 

IsaBus PciBus Undi  

IsaSerial ScsiBus WinNtThunk\SerialIo  

6.2.4 Bus Drivers with Multiple Driver Binding Protocols 
The driver entry point of a bus driver is very similar to the driver entry point of a device driver. The 
discussion in section 6.1.4 applies equally well to both bus drivers and device drivers. The 
differences between bus drivers and device drivers are exposed in the implementations of the 
EFI_DRIVER_BINDING_PROTOCOL. The following sections describe the behaviors of the 
Start() function of the EFI_DRIVER_BINDING_PROTOCOL for each type of bus driver.  

There is only one bus driver in the EFI 1.10 Sample Implementation that produces multiple 
instances of the EFI_DRIVER_BINDING_PROTOCOL, and this driver is the console splitter 
driver. This driver multiplexes multiple console output and console input devices into a single 
virtual console device. It produces instances of the EFI_DRIVER_BINDING_PROTOCOL for the 
following: 

• Console output devices 
• Standard error device 
• Console input device 
• Simple pointer devices 

This driver is an example of a single feature that can be added or removed from a platform by 
adding or removing a single component. It could have been implemented as four different drivers, 
but there were many common functions between the drivers, so it also saved code space to combine 
these four functions.  
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6.2.5 Bus Driver Protocol and Child Management 
The management of I/O-related protocols by a bus driver is very similar to the management of I/O-
related protocol for device drivers that is described in section 6.1.5. A bus driver opens one or more 
I/O-related protocols on the controller handle for the bus controller, and it creates one or more child 
handles and installs one or more I/O-related protocols. If the child handle represents a physical 
device, then a Device Path Protocol must also be installed onto the child handle. The child handle is 
also required to open the parent I/O protocol with an attribute of BY_CHILD_CONTROLLER. 

Some types of bus drivers can produce a single child handle each time Start() is called, but only 
if the RemainingDevicePath passed into Start() represents a valid child device. This 
distinction means that it may take multiple calls to Start() to produce all the child handles. If 
RemainingDevicePath is NULL, than all of the remaining child handles will be created at 
once. When a bus driver opens an I/O-related protocol on the controller handle, it will typically use 
an open mode of BY_DRIVER. However, depending on the type of bus driver, a return code of 
EFI_ALREADY_STARTED from gBS->OpenProtocol()may be acceptable. If a device driver 
gets this return code, then the device driver should not manage the controller handle. If a bus driver 
gets this return code, then it means that the bus driver has already connected to the controller handle 
at some point in the past.  

Figure 6-6 below shows a simple bus driver that consumes Protocol A from a bus controller handle 
and creates N child handles with a Device Path Protocol and Protocol B. The Stop() function 
is responsible for destroying the child handles by removing Protocol B and the Device Path 
Protocol. Protocol A is first opened BY_DRIVER so Protocol A cannot be requested by any other 
drivers. Then, as each child handle is created, the child handle opens Protocol A 
BY_CHILD_CONTROLLER. Using this attribute records the parent-child relationship in the handle 
database, so this information can be extracted if needed. The parent-child links are used by 
gBS->DisconnectController() when a request is made to stop a bus controller. 
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Figure 6-6.  Bus Driver Protocol Management 

The following sections describe the subtle differences in the child handle creation for each of the 
bus driver types. 

6.2.6 Bus Drivers That Produce One Child in Start() 
If the RemainingDevicePath parameter passed into Supported() and Start() is NULL, 
then the bus driver must produce child handles for all the children. If RemainingDevicePath 
is not NULL, then the bus driver should parse RemainingDevicePath and attempt to produce 
only the one child device that is described by RemainingDevicePath. If the driver does not 
recognize the device path node in RemainingDevicePath, or if the device that is described by 
the device path node does not match any of the children that are currently attached to the bus 
controller, then the Supported() and Start() services should fail. If the 
RemainingDevicePath is recognized and the device path node does match a child device that 
is attached to the bus controller, then a child handle should be created for that one child device. 
This step does not make sense for all bus types, because some bus types require the entire bus to be 
enumerated to produce even a single child. In these cases, the RemainingDevicePath should 
be ignored. 
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If a bus type has the ability to produce a child handle without enumerating the entire bus, then this 
ability should be implemented. Implementing this feature will provide faster boot times and is one 
of the major advantages of the EFI Driver Model. The EFI boot manager may pass the 
RemainingDevicePath of the console device and boot devices to 
gBS->ConnectController(), and gBS->ConnectController() will pass this same 
RemainingDevicePath into the Supported() and Start() services of the 
EFI_DRIVER_BINDING_PROTOCOL. This design allows the minimum number of drivers to be 
started to boot an operating system. This process can be repeated, so one additional child handle 
can be produced in each call to Start(). Also, a few child handles can be created from the first 
few calls to Start() and then a RemainingDevicePath of NULL may be passed in, which 
would required the rest of the child handle to be produced. For example, most SCSI buses do not 
need to be scanned to create a handle for a SCSI device whose SCSI PUN and SCSI LUN is known 
ahead of time. By starting only the single hard disk on a SCSI channel that is required to boot an 
operating system, the scanning of all the other SCSI devices can be eliminated. 

Table 6-3 below lists the bus drivers from the EFI 1.10 Sample Implementation that can produce a 
single child handle in the Start() service of the EFI_DRIVER_BINDING_PROTOCOL. 

Table 6-3. Bus Drivers That Produce One Child in Start() 

Ide PciBus ScsiBus WinNtThunk\WinNtBusDriver 

6.2.7 Bus Drivers That Produce All Children in Start() 
If a bus driver is always required to enumerate all of its child devices, then the 
RemainingDevicePath parameter should be ignored in the Supported() and Start() 
services of the EFI_DRIVER_BINDING_PROTOCOL. All of the child handles should be 
produced in the first call to Start(). 

Table 6-4 below lists the bus drivers from the EFI 1.10 Sample Implementation that produce all of 
the child handles in the first call to the Start() service of the 
EFI_DRIVER_BINDING_PROTOCOL. 

Table 6-4. Bus Drivers That Produce All Children in Start() 
Console\ConSplitter IsaBus Partition  
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6.2.8 Bus Drivers That Produce at Most One Child in Start() 
Some bus drivers are for bus controllers that have only a single port, so they have at most one child 
handle. If RemainingDevicePath is NULL, then that one child handle should be produced. If 
RemainingDevicePath is not NULL, then the RemainingDevicePath should be parsed to 
see if it matches a device path node that the bus driver knows how to produce. 

For example, a serial port can have only one device attached to it. This device may be a terminal, a 
mouse, or a drill press, for example. The driver that consumes the Serial I/O Protocol from a handle 
must create a child handle with the produced protocol that uses the services of the Serial I/O 
Protocol. 

Table 6-5 below lists the bus drivers from the EFI 1.10 Sample Implementation that produce at 
most one child handle in a call to the Start() service of the 
EFI_DRIVER_BINDING_PROTOCOL. 

Table 6-5. Bus Drivers That Produce at Most One Child in Start() 

Console\Terminal IsaSerial Undi BiosInt\BiosSnp16 

DebugPort SerialMouse WinNtThunk\SerialIo  

6.2.9 Bus Drivers That Produce No Children in Start() 
If a bus controller supports hot-plug devices and the EFI driver wants to support hot-plug events, 
then no child handles should be produced in Start(). Instead, a periodic timer event should be 
created, and each time the notification function for the periodic timer event is called, the bus driver 
should check to see if any devices have been hot added or hot removed from the bus. Any devices 
that were already plugged into the bus when the driver was first started will look like they were just 
hot added, so the child handles for the devices that were already plugged into the bus will be 
produced the first time the notification function is executed. 

The USB bus driver is the only driver in the EFI 1.10 Sample Implementation that produces no 
children in the Start() service of the EFI_DRIVER_BINDING_PROTOCOL. This driver is in 
the \Efi1.1\Edk\Drivers\Usb\UsbBus directory. 

6.2.10 Bus Drivers That Produce Children with Multiple Parents 
Sometimes a bus driver may produce a child handle, and that child handle will actually use the 
services of multiple parent controllers. This design is useful when a group of parent controllers 
needs to be multiplexed. The bus driver in this case would manage multiple parent controllers and 
produce a single child handle. The services produced on that single child handle would make use of 
the services from each of the parent controllers. Typically, the child device is a virtual device, so a 
Device Path Protocol would not be installed onto the child handle. 

The console splitter bus driver is the only driver in the EFI 1.10 Sample Implementation that 
produces children with multiple parent controllers in the Start() service of the 
EFI_DRIVER_BINDING_PROTOCOL. This driver is in the 
\Efi1.1\Edk\Drivers\Console\ConSplitter directory. 
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6.3 Hybrid Drivers 

This driver type has features of both a device driver and a bus driver. The main distinction between 
a device driver and a bus driver is that a bus driver creates child handles and a device driver does 
not create any child handles. In addition, a bus driver is allowed only to install produced protocols 
on the newly created child handles. A hybrid driver does the following: 

• Creates new child handles. 
• Installs produced protocols on the child handles. 
• Installs produced protocols onto the bus controller handle. 

A driver for a single-channel PCI SCSI host controller is a hybrid driver. It produces the SCSI Pass 
Thru Protocol on the controller handle for the PCI SCSI host controller, and it creates child handles 
for SCSI disk devices and installs the Device Path Protocol and the Block I/O Protocol. 

Table 6-6 below lists the hybrid drivers from the EFI 1.10 Sample Implementation. 

Table 6-6. Hybrid Drivers 

Console\Terminal Ide Usb\UsbBus WinNtThunk\WinNtBusDriver 

6.3.1 Required Hybrid Driver Features 
Hybrid drivers are required to implement the following features:   

• Installs one or more instances of the EFI_DRIVER_BINDING_PROTOCOL in the driver’s 
entry point. 

• Manages one or more controller handles. Even if a driver writer is convinced the driver will 
manage only a single bus controller, the driver should be designed to manage multiple bus 
controllers. The overhead for this functionality is low, and it will make the driver more 
portable. 

• Produces child handles. This feature is the key distinction between device drivers and bus 
drivers. 

• Consumes one or more I/O-related protocols from a controller handle. 
• Produces one or more I/O-related protocols on the same controller handle. 
• Produces one or more I/O-related protocols on each child handle. 
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6.3.2 Optional Hybrid Driver Features 
Hybrid drivers can optionally implement the following features:   

• Installs one or more instances of the EFI_COMPONENT_NAME_PROTOCOL in the driver’s 
entry point. Implementing this feature is strongly recommended. It allows a driver to provide 
human-readable names for the driver and the controllers that the driver is managing. Hybrid 
drivers should also provide names for the child handles created by the hybrid driver. Some 
platform design guides such as DIG64 require this feature. 

• Installs one or more instances of the EFI_DRIVER_CONFIGURATION_PROTOCOL in the 
driver’s entry point. If a driver has any configurable options for the controller or the children, 
then this protocol is required. Some platform design guides such as DIG64 require this feature. 

• Installs one or more instances of the EFI_DRIVER_DIAGNOSTICS_PROTOCOL in the 
driver’s entry point. If a driver wishes to provide diagnostics for the controllers for the children 
that the driver manages, then this protocol is required. This protocol is the only mechanism that 
is available to a driver when the driver wants to alert the user of a problem that was detected 
with a controller. Some platform design guides such as DIG64 require this feature. 

• Provides an EFI_LOADED_IMAGE_PROTOCOL.Unload() service, so the driver can be 
dynamically unloaded. It is recommended that this feature be implemented during driver 
development, driver debug, and system integration. It is strongly recommended that this service 
remain in drivers for add-in adapter to help debug interaction issues during system integration. 

• Installs an EFI_DEVICE_PATH_PROTOCOL on each child handle that is created. This feature 
is required only if the child handle represents a physical device. If a child handle represents a 
virtual device, then an EFI_DEVICE_PATH_PROTOCOL is not required. 

• Creates an Exit Boot Services event in the driver’s entry point. This feature is required only if 
the driver is required to place the devices it manages in a specific state just before control is 
handed to an operating system. 

• Creates a Set Virtual Address Map event in the driver’s entry point. This feature is required 
only for a device driver that is also an EFI runtime driver. 
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6.4 Service Drivers 

A service driver does not manage any devices and it does not produce any instances of the 
EFI_DRIVER_BINDING_PROTOCOL. It is a simple driver that produces one or more protocols 
on one or more new service handles. These service handles do not have a Device Path Protocol 
because they do not represent physical devices. The driver entry point returns EFI_SUCCESS after 
the service handles are created and the protocols are installed, which leaves the driver resident in 
system memory. 

Table 6-7 below lists the service drivers from the EFI 1.10 Sample Implementation. 

Table 6-7. Service Drivers 

Bis DebugSupport Decompress Ebc 

6.5 Root Bridge Drivers 

A root bridge driver does not produce any instances of the EFI_DRIVER_BINDING_PROTOCOL. 
It is responsible for initializing and immediately creating physical controller handles for the root 
bridge controllers in a platform. The driver must install the Device Path Protocol onto the physical 
controller handles because the root bridge controllers represent physical devices. 

Table 6-8 below lists the root bridge drivers from the EFI 1.10 Sample Implementation. 

Table 6-8. Root Bridge Drivers 

PcatPciRootBridge WinNtThunk\WinNtPciRootBridge BiosInt\Disk 

6.6 Initializing Drivers 

An initializing driver does not create any handles and it does not add any protocols to the handle 
database. Instead, this type of driver performs some initialization operations and returns an error 
code so the driver is unloaded from system memory. There are no drivers in the EFI 1.10 Sample 
Implementation of this type. 
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7 
Driver Entry Point 

This chapter covers the entry point for the different classes of EFI drivers and their optional 
features. The most common class of EFI driver is one that follows the EFI Driver Model. This class 
of driver will be discussed first, followed by the other major types of drivers and the optional 
features that drivers may choose to implement. Following are the classes of EFI drivers that will 
be discussed:   

• Device, bus, and hybrid drivers that follows the EFI Driver Model 
• Initializing driver 
• Service driver 
• Root bridge driver 

Unloadable drivers, Exit Boot Services events, and Set Virtual Address Map events will also 
be discussed. 

The driver entry point is the function that is called when an EFI driver is loaded and started with the 
gBS->LoadImage() and gBS->StartImage() services. EFI drivers use the PE/COFF 
image format that is defined in the Microsoft Portable Executable and Common Object File Format 
Specification. This format supports a single entry point in the code section of the image. The 
gBS->StartImage() service transfers control to the EFI driver at this entry point. 

Example 7-1 below shows the entry point to an EFI driver called Abc. This example will be 
expanded upon as each of EFI driver classes and features are discussed. The entry point to an EFI 
driver is identical to the standard EFI image entry point that is discussed in section 4.1 of the 
EFI 1.10 Specification. The image handle of the EFI driver and a pointer to the EFI System Table 
are passed into every EFI driver. The image handle allows the EFI driver to discover information 
about itself, and the pointer to the EFI System Table allows the EFI driver to make EFI Boot 
Service and EFI Runtime Service calls. The EFI driver can use the EFI Boot Services to access the 
protocol interfaces that are installed in the handle database, which allows the EFI driver to use the 
services that are provided through the various protocol interfaces. The driver entry point is 
preceded by the macro EFI_DRIVER_ENTRY_POINT() which declares the driver entry point so 
source-level debugging is enabled in all build environments.  
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
} 

Example 7-1.  Generic Entry Point 
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7.1 EFI Driver Model Driver Entry Point  

Drivers that follow the EFI Driver Model are not allowed to touch any hardware in their driver 
entry point. In fact, these types of drivers do very little in their driver entry point. They are simply 
required to register interfaces in the handle database by installing protocols. This design allows 
these types of drivers to be loaded at any point in the system initialization sequence because their 
driver entry points depend only on a few of the EFI Boot Services. The protocol interfaces that are 
installed in the driver entry point are used at a later time to initialize, configure, or diagnose the 
console and boot devices that required to boot an operating system.  

All EFI drivers that follow the EFI Driver Model must install one or more instances of the Driver 
Binding Protocol onto handles in the handle database. The first Driver Binding Protocol is typically 
installed onto the image handle for the EFI driver. All additional instances of the Driver Binding 
Protocol should be installed onto new handles. 

EFI drivers may optionally support the following: 

• Component Name Protocol 
• Driver Configuration Protocol 
• Driver Diagnostics Protocol 

Some platform specifications, such as DIG64, require these optional protocols. 

EFI Driver Library Services are provided to simplify the driver entry point of an EFI driver. The 
examples in this section make use of the two EFI Driver Library Services shown in Example 7-2 
below. The first library function initializes the EFI Driver Library and installs the Driver Binding 
Protocol onto the handle specified by DriverBindingHandle. DriverBindingHandle is 
typically the same as ImageHandle, but if it is NULL, then the Driver Binding Protocol is 
installed onto a newly created handle. The second library function also initializes the EFI Driver 
Library and it installs all the driver-related protocols onto the handle specified by 
DriverBindingHandle. The optional driver-related protocols are defined to be OPTIONAL 
because they can be NULL if a driver does not wish to produce that specific optional protocol. Once 
again, the DriverBindingHandle is typically the same as ImageHandle, but if it is NULL, 
then all the driver-related protocols will be installed onto a newly created handle. 
EFI_STATUS 
EfiLibInstallDriverBinding ( 
  IN EFI_HANDLE                         ImageHandle, 
  IN EFI_SYSTEM_TABLE                   *SystemTable, 
  IN EFI_DRIVER_BINDING_PROTOCOL        *DriverBinding, 
  IN EFI_HANDLE                         DriverBindingHandle 
  ); 
 
EFI_STATUS 
EfiLibInstallAllDriverProtocols ( 
  IN EFI_HANDLE                         ImageHandle, 
  IN EFI_SYSTEM_TABLE                   *SystemTable, 
  IN EFI_DRIVER_BINDING_PROTOCOL        *DriverBinding, 
  IN EFI_HANDLE                         DriverBindingHandle, 
  IN EFI_COMPONENT_NAME_PROTOCOL        *ComponentName,        OPTIONAL 
  IN EFI_DRIVER_CONFIGURATION_PROTOCOL  *DriverConfiguration,  OPTIONAL 
  IN EFI_DRIVER_DIAGNOSTICS_PROTOCOL    *DriverDiagnostics     OPTIONAL 
  ); 

Example 7-2.  Driver Library Functions 
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Example 7-3 below shows an example of the entry point to the Abc driver that installs the Driver 
Binding Protocol gAbcDriverBindingProtocol and the Component Name Protocol 
gAbcComponentName onto the Abc driver’s image handle and does not install any of the other 
optional driver-related protocols. This driver simply returns the status from the EFI Driver Library 
function EfiLibInstallAllDriverProtocols(). See chapter 9 for details on the services 
and data fields that are produced by the Driver Binding Protocol. 
EFI_DRIVER_BINDING_PROTOCOL gAbcDriverBinding = { 
  AbcDriverBindingSupported, 
  AbcDriverBindingStart, 
  AbcDriverBindingStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_COMPONENT_NAME_PROTOCOL gAbcComponentName = { 
  AbcComponentNameGetDriverName, 
  AbcComponentNameGetControllerName, 
  "eng" 
}; 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  // 
  // Initialize a simple EFI driver that follows the EFI Driver Model 
  // 
  return EfiLibInstallAllDriverProtocols ( 
           ImageHandle,                // Driver’s image handle 
           SystemTable,                // EFI System Table Pointer 
           &gAbcDriverBinding,         // Required parameters 
           ImageHandle,                // Handle for driver-related protocols 
           &gAbcComponentName,         // Component Name Procol. May be NULL. 
           NULL,                       // Configuration Protocol. May be NULL. 
           NULL                        // Diagnostics Protocol. May be NULL. 
           ); 
 
} 

Example 7-3.  Simple EFI Driver Model Driver Entry Point 

Example 7-4 below shows another example of the entry point to the Abc driver that installs the 
Driver Binding Protocol gAbcDriverBindingProtocol onto the Abc driver’s image handle 
and the optional driver-related protocols. This driver returns the status from the EFI Driver Library 
function EfiLibInstallAllDriverProtocols(). This library function is used if one or 
more of the optional driver related protocols are being installed. 

See chapters 9, 10, 11, and 12 respectively for details on the services and data fields produced by 
the Driver Binding Protocol, Component Name Protocol, Driver Configuration Protocol, and Driver 
Diagnostics Protocol. 
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EFI_DRIVER_BINDING_PROTOCOL gAbcDriverBinding = { 
  AbcDriverBindingSupported, 
  AbcDriverBindingStart, 
  AbcDriverBindingStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_COMPONENT_NAME_PROTOCOL gAbcComponentName = { 
  AbcComponentNameGetDriverName, 
  AbcComponentNameGetControllerName, 
  "eng" 
}; 
 
EFI_DRIVER_CONFIGURATION_PROTOCOL gAbcDriverConfiguration = { 
  AbcDriverConfigurationSetOptions, 
  AbcDriverConfigurationOptionsValid, 
  AbcDriverConfigurationForceDefaults, 
  "eng" 
}; 
 
EFI_DRIVER_DIAGNOSTICS_PROTOCOL gAbcDriverDiagnostics = { 
  AbcDriverDiagnosticsRunDiagnostics, 
  "eng" 
}; 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  // 
  // Initialize a complex EFI driver that follows the EFI Driver Model 
  // 
  return EfiLibInstallAllDriverProtocols ( 
           ImageHandle,                // Driver’s image handle 
           SystemTable,                // EFI System Table Pointer 
           &gAbcDriverBinding,         // Required parameters 
           ImageHandle,                // Handle for driver-related protocols 
           &gAbcComponentName,         // Component Name Procol. May be NULL. 
           &gAbcDriverConfiguration,   // Configuration Protocol. May be NULL. 
           &gAbcDriverDiagnostics      // Diagnostics Protocol. May be NULL. 
           ); 
} 

Example 7-4.  Complex EFI Driver Model Driver Entry Point 



 Draft for Review Driver Entry Point 

Version 0.9 July 2004 181 

7.1.1 Multiple Driver Binding Protocols  
If an EFI driver supports more than one parent I/O abstraction, then the driver should produce a 
Driver Binding Protocol for each of the parent I/O abstractions. For example, an EFI driver could 
be written to support more than one type of hardware device (for example, ISA and PCI). If code 
can be shared for the common features of a hardware device, then such a driver should save space 
and reduce maintenance. The only two drivers in the EFI 1.10 Sample Implementation that produce 
more than one Driver Binding Protocol are the console platform driver and the console splitter 
driver. These drivers contain multiple Driver Binding Protocols because they depend on multiple 
console-related parent I/O abstractions. 

The first Driver Binding Protocol is typically installed onto the image handle of the EFI driver, and 
additional Driver Binding Protocols are installed onto new handles. The EFI Driver Library 
functions that were used in the previous two examples support the creation of new handles by 
passing in a NULL for the fourth argument. Example 7-5 below shows the driver entry point for a 
driver that produces two instances of the Driver Binding Protocol. The optional driver-related 
protocols are installed onto the image handle with the first Driver Binding Protocol. See chapters 9, 
10, 11, and 12 respectively for details on the services and data fields produced by the Driver 
Binding Protocol, Component Name Protocol, Driver Configuration Protocol, and Driver 
Diagnostics Protocol. 
EFI_DRIVER_BINDING_PROTOCOL gAbcFooDriverBinding = { 
  AbcFooDriverBindingSupported, 
  AbcFooDriverBindingStart, 
  AbcFooDriverBindingStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_DRIVER_BINDING_PROTOCOL gAbcBarDriverBinding = { 
  AbcBarDriverBindingSupported, 
  AbcBarDriverBindingStart, 
  AbcBarDriverBindingStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_COMPONENT_NAME_PROTOCOL gAbcFooComponentName = { 
  AbcFooComponentNameGetDriverName, 
  AbcFooComponentNameGetControllerName, 
  "eng" 
}; 
 
EFI_DRIVER_CONFIGURATION_PROTOCOL gAbcFooDriverConfiguration = { 
  AbcFooDriverConfigurationSetOptions, 
  AbcFooDriverConfigurationOptionsValid, 
  AbcFooDriverConfigurationForceDefaults, 
  "eng" 
}; 
 
EFI_DRIVER_DIAGNOSTICS_PROTOCOL gAbcFooDriverDiagnostics = { 
  AbcFooDriverDiagnosticsRunDiagnostics, 
  "eng" 
}; 
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EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS  Status; 
 
  // 
  // Install first Driver Binding Protocol and the rest of the driver-related  
  // protocols onto the driver’s image handle 
  // 
  Status = EfiLibInstallAllDriverProtocols ( 
             ImageHandle,                  // Driver’s image handle 
             SystemTable,                  // EFI System Table Pointer 
             &gAbcFooDriverBinding,        // Driver Binding Protocol 
             ImageHandle,                  // Handle for driver-related 
                                           // protocols 
             &gAbcFooComponentName,        // Component Name Protocol 
             &gAbcFooDriverConfiguration,  // Configuration Protocol 
             &gAbcFooDriverDiagnostics     // Diagnostics Protocol 
             ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Install second Driver Binding Protocol onto a new handle 
  // 
  return EfiLibInstallAllDriverProtocols ( 
           ImageHandle,           // Driver’s image handle 
           SystemTable,           // EFI System Table Pointer 
           gAbcBarDriverBinding,  // Driver Binding Protocol 
           NULL,                  // Handle for driver-related protocols 
           NULL,                  // Component Name Protocol. May be NULL. 
           NULL,                  // Configuration Protocol. May be NULL. 
           NULL                   // Diagnostics Protocol. May be NULL. 
           ); 
} 

Example 7-5.  Multiple Driver Binding Protocols 
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7.1.2 Adding the Unload Feature  
Any EFI driver can be made unloadable. This feature is useful for some driver classes, but it may 
not be useful at all for other driver classes. It does not make sense to add the unload feature to an 
initializing driver because this class of driver will return an error from the driver entry point, which 
will force the EFI Image Services to automatically unload the initializing driver. 

It usually does not make sense for root bridge drivers or service drivers to add the unload feature. 
These classes of driver typically produce protocols that are consumed by other EFI drivers to 
produce basic console functions and boot device abstractions. If a root bridge driver or a service 
driver is unloaded, then any EFI driver that was using the protocols from those drivers would start 
to fail. If a root bridge driver or service driver can guarantee that it is not being used by any other 
EFI components, then they may be unloaded without any adverse side effects. 

The Unload() function can be very helpful. It allows the “unload” command in the EFI Shell to 
completely remove an EFI driver image from memory and remove all of the driver’s handles and 
protocols from the handle database. If a driver is suspected of causing a bug, it is often helpful to 
“unload” the driver from the EFI Shell and then proceed to run tests knowing that the driver is no 
longer present in the platform. In these cases, the Unload() feature is superior to simply stopping 
the driver with the disconnect EFI Shell command. If a driver is just disconnected, then the EFI 
Shell commands connect and reconnect may inadvertently restart the driver. 

The unload feature is also very helpful when testing and developing new versions of the driver. The 
old version can be completely unloaded (removed from the system) and new versions of the driver, 
which may have the same version number, can safely be installed in the system without concerns 
that the older version of the driver may get invoked during the next connect or reconnect operation. 

Because Unload() completely removes the driver from system memory, it might not be possible 
to load it back into the system. For example, if the driver is stored in system firmware or in a PCI 
option ROM, no method may be available for reloading the driver without completely rebooting 
the system. 

The Unload() service is one of the fields in the EFI_LOADED_IMAGE_PROTOCOL. This 
protocol is automatically created and installed when an EFI image is loaded with the EFI Boot 
Service LoadImage(). When the EFI_LOADED_IMAGE_PROTOCOL is created by 
LoadImage(), the Unload() service is initialized to NULL. It is the driver entry point’s 
responsibility to register the Unload() function in the EFI_LOADED_IMAGE_PROTOCOL. 

It is recommended that EFI drivers that follow the EFI Driver Model add the unload feature. This 
feature is very useful during driver development, driver debug, and system integration. It is strongly 
recommended that this service remain in drivers for add-in adapters to help debug interaction issues 
during system integration. 

Example 7-6 below shows the same driver entry point from Example 7-3 with the unload feature 
added. Only a template for the Unload() function is shown in this example because the 
implementation of this service will vary from driver to driver. The Unload() service is 
responsible for cleaning up everything that the driver has done since it was initialized. This 
responsibility means that the Unload() service should do the following: 

• Free any resources that were allocated.  
• Remove any protocols that were added.  
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• Destroy any handles that were created.  

If for some reason the Unload() service does not want to unload the driver at the time the 
Unload() service is called, it can return an error and the driver will not be unloaded. The only 
way that a driver is actually unloaded is if the Unload() service has been registered in the 
EFI_LOADED_IMAGE_PROTOCOL and the Unload() service returns EFI_SUCCESS. 
EFI_DRIVER_BINDING_PROTOCOL gAbcDriverBinding = { 
  AbcDriverBindingSupported, 
  AbcDriverBindingStart, 
  AbcDriverBindingStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_COMPONENT_NAME_PROTOCOL gAbcComponentName = { 
  AbcComponentNameGetDriverName, 
  AbcComponentNameGetControllerName, 
  "eng" 
}; 
 
EFI_STATUS  
EFIAPI 
AbcUnload ( 
  IN EFI_HANDLE  ImageHandle 
  ) 
{ 
  return EFI_SUCCESS; 
} 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS                 Status; 
  EFI_LOADED_IMAGE_PROTOCOL  *LoadedImage; 
 
  // 
  // Retrieve the Loaded Image Protocol from image handle 
  // 
  Status = gBS->OpenProtocol ( 
                  ImageHandle, 
                  &gEfiLoadedImageProtocolGuid, 
                  (VOID **)&LoadedImage, 
                  ImageHandle, 
                  ImageHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
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  // Fill in the Unload() service of the Loaded Image Protocol 
  // 
  LoadedImage->Unload = AbcUnload; 
 
  // 
  // Initialize a simple EFI driver that follows the EFI Driver Model 
  // 
  return EfiLibInstallAllDriverProtocols ( 
           ImageHandle,                // Driver’s image handle 
           SystemTable,                // EFI System Table Pointer 
           &gAbcDriverBinding,         // Required parameters 
           ImageHandle,                // Handle for driver related protocols 
           &gAbcComponentName,         // Component Name Procol. May be NULL. 
           NULL,                       // Configuration Protocol. May be NULL. 
           NULL                        // Diagnostics Protocol. May be NULL. 
           ); 
} 

Example 7-6.  Add the Unload Feature 

Example 7-7 below shows one possible implementation of the Unload() function for an EFI 
driver that follows the EFI Driver Model. It finds all the devices it is managing and disconnects the 
driver from those devices. Then, the protocol interfaces that were installed in the driver entry point 
must be removed. The example shown here matches the driver entry point from Example 7-4. 
There are many possible algorithms that can be implemented in the unload service. A driver may 
choose to be unloadable if and only if it is not managing any devices at all. A driver may also 
choose to internally keep track of the devices it is managing, so it can selectively disconnect itself 
from those devices when it is unloaded. 
EFI_STATUS  
EFIAPI 
AbcUnload ( 
  IN EFI_HANDLE  ImageHandle 
  ) 
{ 
  EFI_STATUS  Status; 
  EFI_HANDLE  *DeviceHandleBuffer; 
  UINTN       DeviceHandleCount; 
  UINTN       Index; 
 
  // 
  // Get the list of all the handles in the handle database. 
  // If there is an error getting the list, then the unload operation fails.  
  // 
  Status = gBS->LocateHandleBuffer ( 
                AllHandles, 
                NULL, 
                NULL, 
                &DeviceHandleCount, 
                &DeviceHandleBuffer 
                ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
   
  // 
  // Disconnect the driver specified by ImageHandle from all the devices in the 
  // handle database. 
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  // 
  for (Index = 0; Index < DeviceHandleCount; Index++) { 
    Status = gBS->DisconnectController ( 
                    DeviceHandleBuffer[Index], 
                    ImageHandle, 
                    NULL 
                    ); 
  } 
 
  // 
  // Free the buffer containing the list of handles from the handle database 
  //     
  if (DeviceHandleBuffer != NULL) { 
    gBS->FreePool(DeviceHandleBuffer); 
  } 
 
  // 
  // Uninstall all the protocols that were installed in the driver entry point 
  //   
  Status = gBS->UninstallMultipleProtocolInterfaces ( 
                  ImageHandle, 
                  &gEfiDriverBindingProtocolGuid, &gAbcDriverBinding, 
                  &gEfiComponentNameProtocolGuid, &gAbcComponentName, 
                  &gEfiDriverConfigurationProtocolGuid, &gAbcDriverConfiguration, 
                  &gEfiDriverDiagnosticsProtocolGuid, &gAbcDriverDiagnostics 
                  NULL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Do any additional cleanup that is required for this driver 
  // 
 
  return EFI_SUCCESS; 
} 

Example 7-7.  Unload Function 

7.1.3 Adding the Exit Boot Services Feature  
Some EFI drivers may need to put their devices into a known state prior to booting an operating 
system. This case is considered to be very rare because the OS-present drivers should not depend 
on an EFI driver running at all. Not depending on a running EFI driver means that an OS-present 
driver should be able to handle the following: 

• A device in its power-on reset state 
• A device that was recently hot added while the OS is running 
• A device that was managed by an EFI driver up to the point where the OS was booted 
• A device that was managed for a short period of time by an EFI driver 

None of the drivers in the EFI Sample Implementation use the feature described here. It is 
documented here to show what is possible if this feature is ever required. 

In the rare case where an EFI driver is required to place a device in a known state before booting an 
operating system, the driver can use a special event type called an Exit Boot Services event. This 
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event is signaled when an OS loader or OS kernel calls the EFI Boot Service 
gBS->ExitBootServices(). This call is the point in time where the system firmware still 
owns the platform, but the system firmware is just about to transfer system ownership to the 
operating system. In this transition time, no modifications to the EFI memory map are allowed (see 
section 5.1 of the EFI 1.10 Specification). This requirement means that the notification function for 
an Exit Boot Services event is not allowed to directly or indirectly allocate or free and memory 
through the EFI Memory Services. 

Example 7-8 below shows the same example from Example 7-3, but an Exit Boot Services event is 
also created. The template for the notification function for the Exit Boot Services event is also 
shown. This notification function will typically contain code to find the list of device handles that 
the driver is currently managing, and it will then perform operations on those handles to make sure 
they are in the proper OS handoff state. Remember that no memory allocation or free operations 
can be performed from this notification function. 
EFI_DRIVER_BINDING_PROTOCOL gAbcDriverBinding = { 
  AbcDriverBindingSupported, 
  AbcDriverBindingStart, 
  AbcDriverBindingStop, 
  0x10, 
  NULL, 
  NULL 
}; 
 
EFI_COMPONENT_NAME_PROTOCOL gAbcComponentName = { 
  AbcComponentNameGetDriverName, 
  AbcComponentNameGetControllerName, 
  "eng" 
}; 
 
VOID 
EFIAPI 
AbcNotifyExitBootServices ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  // 
  // Put driver-specific actions here. 
  // No EFI Memory Service may be used directly or indirectly. 
  // 
} 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS  Status; 
  EFI_EVENT   *ExitBootServicesEvent; 
 
  // 
  // Create an Exit Boot Services event. 
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  //  
  Status = gBS->CreateEvent ( 
                  EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES, 
                  EFI_TPL_NOTIFY, 
                  AbcNotifyExitBootServices, 
                  NULL, 
                  &ExitBootServicesEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status;  
  } 
 
  // 
  // Initialize a simple EFI driver that follows the EFI Driver Model 
  // 
  return EfiLibInstallAllDriverProtocols ( 
           ImageHandle,                // Driver’s image handle 
           SystemTable,                // EFI System Table Pointer 
           &gAbcDriverBinding,         // Required parameters 
           ImageHandle,                // Handle for driver-related protocols 
           &gAbcComponentName,         // Component Name Procol. May be NULL. 
           NULL,                       // Configuration Protocol. May be NULL. 
           NULL                        // Diagnostics Protocol. May be NULL. 
           ); 
 
} 

Example 7-8.  Adding the Exit Boot Services Feature 

If an EFI driver supports both the unload feature and the Exit Boot Services feature, then the 
Unload() function must destroy the Exit Boot Services event by calling 
gBS->CloseEvent(). In this case, the Exit Boot Services event would likely be declared as a 
global variable, so the event could easily be destroyed in the Unload() function. Example 7-9 
below shows a driver that supports both the unload service and an Exit Boot Services event. 
EFI_EVENT  *gExitBootServicesEvent; 
 
VOID 
EFIAPI 
AbcNotifyExitBootServices ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  // 
  // Put driver-specific actions here. 
  // No EFI Memory Service may be used directly or indirectly. 
  // 
} 
 
EFI_STATUS  
EFIAPI 
AbcUnload ( 
  IN EFI_HANDLE  ImageHandle 
  ) 
{ 
  gBS->CloseEvent (gExitBootServicesEvent); 
} 
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EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS                 Status; 
  EFI_LOADED_IMAGE_PROTOCOL  *LoadedImage; 
 
  // 
  // Initialize the EFI Driver Library 
  // 
  EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
  // 
  // Create an Exit Boot Services event. 
  //  
  Status = gBS->CreateEvent ( 
                  EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES, 
                  EFI_TPL_NOTIFY, 
                  AbcNotifyExitBootServices, 
                  NULL, 
                  &gExitBootServicesEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status;  
  } 
 
  // 
  // Retrieve the Loaded Image Protocol from image handle 
  // 
  Status = gBS->OpenProtocol ( 
                  ImageHandle, 
                  &gEfiLoadedImageProtocolGuid, 
                  (VOID **)&LoadedImage, 
                  ImageHandle, 
                  ImageHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Fill in the Unload() service of the Loaded Image Protocol 
  // 
  LoadedImage->Unload = AbcUnload; 
 
  return EFI_SUCCESS; 
} 

Example 7-9.  Add the Unload and Exit Boot Services Event Feature 
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7.2 Initializing Driver Entry Point 

Example 7-10 below shows a template for an initializing driver called Abc. This driver initializes 
one or more components in the platform and exits. It does not produce any services that are 
required after the entry point has been executed. This type of driver will return an error from the 
entry point, so the driver will be unloaded by the EFI Image Services. An initializing driver will 
never produce an Unload() service because they are always unloaded after their entry point is 
executed. This type of driver is not used by IHVs. Instead, it is typically used by OEMs and IBVs 
to initialize the state of a hardware component in the platform such as the processor or chipset 
components. 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  // 
  // Initialize the EFI Driver Library 
  // 
  EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
  // 
  // Perform some platform initialization operations here 
  // 
 
  return EFI_LOAD_ERROR; 
} 

Example 7-10.  Initializing Driver Entry Point 

7.3 Service Driver Entry Point 

A service driver produces one or more protocol interfaces on the driver’s image handle or on newly 
created handles. Example 7-11 below shows the Decompress Protocol being installed onto the 
driver’s image handle. A service driver may produce an Unload() service, and that service would 
be required to uninstall the protocols that were installed in the driver’s entry point. The Unload() 
service can be a dangerous operation because there is no way for the service driver to know if the 
protocols that it installed are being used by other EFI components. If the service driver is unloaded 
and other EFI components are still using the protocols that were produced by the unloaded driver, 
then the system will likely fail. 
EFI_DECOMPRESS_PROTOCOL gAbcDecompress = { 
  GetInfo, 
  Decompress 
}; 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 



 Draft for Review Driver Entry Point 

Version 0.9 July 2004 191 

AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  // 
  // Initialize the EFI Driver Library 
  // 
  EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
  // 
  // Install the Decompress Protocol onto the driver’s image handle 
  // 
  return gBS->InstallMultipleProtocolInterfaces ( 
                &ImageHandle, 
                &gEfiDecompressProtocolGuid, &gAbcDecompress, 
                NULL 
                ); 
} 

Example 7-11.  Service Driver Entry Point – Image Handle 

A service driver may also install its protocol interfaces onto one or more new handles in the handle 
database. Example 7-12 below shows a template for a service driver called Abc that produces the 
Decompress Protocol on a new handle. 
EFI_DECOMPRESS_PROTOCOL gAbcDecompress = { 
  GetInfo, 
  Decompress 
}; 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_HANDLE  NewHandle; 
 
  // 
  // Initialize the EFI Driver Library 
  // 
  EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
  // 
  // Install the Decompress Protocol onto the a new handle 
  // 
  NewHandle = NULL; 
  return gBS->InstallMultipleProtocolInterfaces ( 
                &NewHandle, 
                &gEfiDecompressProtocolGuid, &gAbcDecompress, 
                NULL 
                ); 
} 

Example 7-12.  Service Driver Entry Point – New Handle 
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7.4 Root Bridge Driver Entry Point  

Root bridge drivers produce handles and software abstractions for the bus types that are directly 
produced by a core chipset. The PCI Root Bridge I/O Protocol is the software abstraction for root 
bridges that is defined in the EFI 1.10 Specification. EFI drivers that produce this protocol do not 
follow the EFI Driver Model. Instead, they initialize hardware and directly produce the handles and 
protocols in the driver entry point. Root bridge drivers are slightly different from service drivers in 
the following ways: 

• Root bridge drivers always create new handles. 
• The root bridge driver is responsible for installing both of the following: 

 The software abstraction, such as the PCI Root Bridge I/O Protocol 

 The Device Path Protocol that describes the programmatic path to the root bridge device 

Example 7-13 below shows a template for a root bridge driver that produces one handle for a 
system with a single PCI root bridge. A Device Path Protocol with an ACPI device path node and 
the PCI Root Bridge I/O Protocol are installed onto a newly created handle. The ACPI device path 
node for the PCI root bridge must match the description of the PCI root bridge in the ACPI table for 
the platform. In this example, the Device Path Protocol and PCI Root Bridge I/O Protocol are 
declared as global variables. An actual driver may need to keep track of additional private data 
fields to properly manage a PCI root bridge. In that case, global variables would not be used. 
Instead, a constructor function would allocate and initialize the public and private data fields. This 
concept is described in more detail in chapter 8. 
typedef struct { 
  ACPI_HID_DEVICE_PATH      AcpiDevicePath; 
  EFI_DEVICE_PATH_PROTOCOL  EndDevicePath; 
} EFI_PCI_ROOT_BRIDGE_DEVICE_PATH; 
 
EFI_PCI_ROOT_BRIDGE_DEVICE_PATH  gAbcPciRootBridgeDevicePath = { 
  { 
    ACPI_DEVICE_PATH,                               // Type 
    ACPI_DP,                                        // Subtype 
    (UINT8) (sizeof(ACPI_HID_DEVICE_PATH)),         // Length (lower 8 bits) 
    (UINT8) ((sizeof(ACPI_HID_DEVICE_PATH)) >> 8),  // Length (upper 8 bits) 
    EISA_PNP_ID(0x0A03),                            // HID 
    0                                               // UID 
  }, 
  { 
    END_DEVICE_PATH_TYPE,                           // Type 
    END_ENTIRE_DEVICE_PATH_SUBTYPE,                 // Subtype 
    END_DEVICE_PATH_LENGTH,                         // Length (lower 8 bits) 
    0                                               // Length (upper 8 bits) 
  } 
}; 
 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL gAbcPciRootBridgeIo = { 
  NULL,                                // ParentHandle 
  AbcPciRootBridgeIoPollMem,           // PollMem() 
  AbcPciRootBridgeIoPollIo,            // PolIo() 
  { 
    AbcPciRootBridgeIoMemRead,         // Mem.Read() 
    AbcPciRootBridgeIoMemWrite         // Mem.Write() 
  }, 
  { 
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    AbcPciRootBridgeIoIoRead,          // Io.Read() 
    AbcPciRootBridgeIoIoWrite,         // Io.Write() 
  }, 
  { 
    AbcPciRootBridgeIoPciRead,         // Pci.Read() 
    AbcPciRootBridgeIoPciWrite,        // Pci.Write() 
  }, 
  AbcPciRootBridgeIoCopyMem,           // CopyMem() 
  AbcPciRootBridgeIoMap,               // Map() 
  AbcPciRootBridgeIoUnmap,             // Unmap() 
  AbcPciRootBridgeIoAllocateBuffer,    // AllocateBuffer() 
  AbcPciRootBridgeIoFreeBuffer,        // FreeBuffer() 
  AbcPciRootBridgeIoFlush,             // Flush() 
  AbcPciRootBridgeIoGetAttributes,     // GetAttributes() 
  AbcPciRootBridgeIoSetAttributes,     // SetAttributes() 
  AbcPciRootBridgeIoConfiguration,     // Configuration() 
  0                                    // SegmentNumber 
}; 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS  Status; 
  EFI_HANDLE  NewHandle; 
 
  // 
  // Initialize the EFI Driver Library 
  // 
  EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
  // 
  // Perform root bridge initialization operations here 
  // 
 
  // 
  // Install the Device Path Protocol and PCI Root Bridge I/O Protocol onto 
  // a new handle. 
  // 
  NewHandle = NULL; 
  Status = gBS->InstallMultipleProtocolInterfaces ( 
                  &NewHandle, 
                  &gEfiDevicePathProtocolGuid,      &gAbcPciRootBridgeDevicePath, 
                  &gEfiPciRootBridgeIoProtocolGuid, &gAbcPciRootBridgeIo, 
                  NULL 
                  ); 
  return Status; 
} 

Example 7-13.  Single PCI Root Bridge Driver Entry Point 
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Example 7-14 below shows a template for a root bridge driver that produces four handles for a 
system with four PCI root bridges. A Device Path Protocol with an ACPI device path node and the 
PCI Root Bridge I/O Protocol are installed onto each of the newly created handles. The ACPI 
device path nodes for each of the PCI root bridges must match the description of the PCI root 
bridges in the ACPI tables for the platform. In this example, the _UID field for the root bridges has 
the values of 0, 1, 2, and 3. However, there is no requirement that the _UID field starts at 0 or that 
they are contiguous. The only requirement is that the _UID field for each root bridge matches the 
_UID field in the ACPI table that describes the same root bridge controller. The Device Path 
Protocol and PCI Root Bridge I/O Protocol are declared as global variables, and copies of those 
global variables are made for each PCI root bridge. An actual driver may need to keep track of 
additional private data fields to properly manage each PCI root bridge. In that case, global variables 
would not be used. Instead, a constructor function would allocate and initialize the public and 
private data fields. This concept is described in more detail in chapter 8. 
#define HWP_EISA_ID_CONST  0x22F0 
#define COMPRESSED_ASCII (C1, C2, C3) ((((C1) - ‘A’) & 0x1f) << 10) | \ 
                                      ((((C2) - ‘A’) & 0x1f) << 5 ) | \ 
                                      ((((C3) - ‘A’) & 0x1f) 
 
typedef struct { 
  ACPI_ EXTENDED_HID_DEVICE_PATH  AcpiDevicePath; 
  EFI_DEVICE_PATH_PROTOCOL        EndDevicePath; 
} EFI_PCI_ROOT_BRIDGE_DEVICE_PATH; 
 
EFI_PCI_ROOT_BRIDGE_DEVICE_PATH  gAbcPciRootBridgeDevicePath = { 
  { 
    ACPI_DEVICE_PATH,                               // Type 
    ACPI_DP,                                        // Subtype 
    (UINT8) (sizeof(ACPI_HID_DEVICE_PATH)),         // Length (lower 8 bits) 
    (UINT8) ((sizeof(ACPI_HID_DEVICE_PATH)) >> 8),  // Length (upper 8 bits) 
    EISA_ID (COMPRESSED_ASCII (‘H’,’W’,’P’), 2),    // HID 
    0,                                              // UID 
    EISA_PNP_ID (0x0A03)                            // CID 
  }, 
  { 
    END_DEVICE_PATH_TYPE,                           // Type 
    END_ENTIRE_DEVICE_PATH_SUBTYPE,                 // Subtype 
    END_DEVICE_PATH_LENGTH,                         // Length (lower 8 bits) 
    0                                               // Length (upper 8 bits) 
  } 
}; 
 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL gAbcPciRootBridgeIo = { 
  NULL,                                // ParentHandle 
  AbcPciRootBridgeIoPollMem,           // PollMem() 
  AbcPciRootBridgeIoPollIo,            // PolIo() 
  { 
    AbcPciRootBridgeIoMemRead,         // Mem.Read() 
    AbcPciRootBridgeIoMemWrite         // Mem.Write() 
  }, 
  { 
    AbcPciRootBridgeIoIoRead,          // Io.Read() 
    AbcPciRootBridgeIoIoWrite,         // Io.Write() 
  }, 
  { 
    AbcPciRootBridgeIoPciRead,         // Pci.Read() 
    AbcPciRootBridgeIoPciWrite,        // Pci.Write() 
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  }, 
  AbcPciRootBridgeIoCopyMem,           // CopyMem() 
  AbcPciRootBridgeIoMap,               // Map() 
  AbcPciRootBridgeIoUnmap,             // Unmap() 
  AbcPciRootBridgeIoAllocateBuffer,    // AllocateBuffer() 
  AbcPciRootBridgeIoFreeBuffer,        // FreeBuffer() 
  AbcPciRootBridgeIoFlush,             // Flush() 
  AbcPciRootBridgeIoGetAttributes,     // GetAttributes() 
  AbcPciRootBridgeIoSetAttributes,     // SetAttributes() 
  AbcPciRootBridgeIoConfiguration,     // Configuration() 
  0                                    // SegmentNumber 
}; 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS                       Status; 
  UINTN                            Index; 
  EFI_HANDLE                       NewHandle; 
  EFI_PCI_ROOT_BRIDGE_DEVICE_PATH  *DevicePath; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *PciRootBridgeIo; 
 
  // 
  // Initialize the EFI Driver Library 
  // 
  EfiInitializeDriverLib (ImageHandle, SystemTable); 
 
  // 
  // Perform root bridge initialization operations here 
  // 
 
  // 
  // Install the Device Path Protocol and PCI Root Bridge I/O Protocol onto 
  // a new handle. 
  // 
  for (Index = 0; Index < 4 ; Index++) { 
 
    // 
    // Make a copy of the device path and update the UID field of the ACPI  
    // device path node 
    // 
    DevicePath = EfiLibAllocatePool (sizeof (EFI_PCI_ROOT_BRIDGE_DEVICE_PATH)); 
    if (DevicePath == NULL) { 
      return EFI_OUT_OF_RESOURCES; 
    } 
    gBS->CopyMem ( 
           DevicePath,  
           &gAbcPciRootBridgeDevicePath,  
           sizeof (EFI_PCI_ROOT_BRIDGE_DEVICE_PATH) 
           ); 
    DevicePath->AcpiDevicePath.UID = Index; 
 
    // 
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    // Make a copy of the PCI Root Bridge I/O Protocol  
    // 
    PciRootBridgeIo = EfiLibAllocatePool ( 
                        sizeof (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL) 
                        ); 
    if (PciRootBridgeIo == NULL) { 
      return EFI_OUT_OF_RESOURCES; 
    } 
    gBS->CopyMem ( 
           PciRootBridgeIo,  
           &gAbcPciRootBridgeIo,  
           sizeof (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL) 
           ); 
 
    // 
    // Install the Device Path Protocol and the PCI Root Bridge I/O Protocol 
    // onto a new handle. 
    // 
    NewHandle = NULL; 
    Status = gBS->InstallMultipleProtocolInterfaces ( 
                    &NewHandle, 
                    &gEfiDevicePathProtocolGuid,  DevicePath, 
                    &gEfiPciRootBridgeIoProtocolGuid, PciRootBridgeIo, 
                    NULL 
                    ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
  } 
  return EFI_SUCCESS; 
} 

Example 7-14.  Multiple PCI Root Bridge Driver Entry Point 

7.5 Runtime Drivers  

Any EFI driver can be modified to be a runtime driver. This ability applies to the following: 

• EFI drivers that follow the EFI Driver Model 
• Initializing drivers 
• Service drivers 
• Root bridge drivers 

However, it does not make sense to add the runtime feature to an initializing driver, because the 
initializing driver is unloaded after its entry point has been executed. The best example of a runtime 
driver that follows the EFI Driver Model is an UNDI driver that provides services for a network 
interface controller (NIC). 

A runtime driver is a driver that is required to produce services after 
gBS->ExitBootServices() has been called. Drivers of this type are much more difficult to 
implement and validate because they are required to execute in both the preboot environment where 
the system firmware owns the platform and while an OS is running where the OS owns the 
platform. The OS may choose to switch all runtime services from physical mode addressing to 
virtual mode addressing. The driver cannot know which type of OS is going to be booted, so the 
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runtime driver must always be able to switch from physical addressing to virtual addressing if 
gRT->SetVirtualAddressMap() is called by an OS loader or an OS kernel. In addition, 
because all memory regions that are marked as boot services memory in the EFI memory map are 
converted to available memory when an OS is booted, a runtime driver must allocate all of its 
memory buffers from runtime memory.  

A runtime driver will typically create the following two special events to help with these issues:   

• Exit Boot Services event 
• Set Virtual Address Map event 

The Exit Boot Services event is signaled when the OS loader or OS kernel calls 
gBS->ExitBootServices(). After this point, the EFI driver is not allowed to use any of the 
EFI Boot Services. The EFI Runtime Services and services from other runtime drivers are still 
available. The Set Virtual Address Map event is signaled when the OS loader or OS kernel calls 
gRT->SetVirtualAddresMap(). If this event is signaled, then the OS loader or OS kernel is 
requesting that all runtime components be converted from their physical address mapping to the 
virtual address mappings that are passed to gRT->SetVirtualAddressMap(). The EFI 
firmware does most of the work here by relocating all the EFI images from their physically 
addressed code and data segments to their virtually addressed code and data segments. However, 
the EFI firmware cannot know what memory buffers a runtime component has allocated and what 
pointer values stored within those runtime memory buffers need to be converted from their physical 
addresses to their virtual addresses. The notification function for the Set Virtual Address Map event 
is required to use the gRT->ConvertPointer() service to convert all pointers in private data 
structures from their physical address to their virtual addresses. This code is complex and difficult 
to get correct because no tools are available at this time to help know when all the pointers have 
been converted. The only symptom that is seen when it is not done correctly is that the OS will 
crash in the middle of a call to a service produced by a runtime driver. 

Example 7-15 below shows the driver entry point for a runtime driver that creates an Exit Boot 
Services event and a Set Virtual Address Map event. The notification function for the Exit Boot 
Services event sets a global variable to TRUE, so the code in other functions can know if the EFI 
Boot Services are available. This global variable is initialized to FALSE in its declaration. The 
notification function for the Set Virtual Address Map event converts one global pointer from a 
physical address to a virtual address as an example. A real driver might have many more pointers to 
convert. In general, a runtime driver should be designed to reduce or eliminate pointers that need to 
be converted to minimize the likelihood of missing a pointer conversion. 
VOID     *gGlobalPointer; 
BOOLEAN  gAtRuntime = FALSE; 
 
VOID 
EFIAPI 
AbcNotifySetVirtualAddressMap ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  gRT->ConvertPointer ( 
         EFI_OPTIONAL_POINTER,  
         (VOID **)&gGlobalPointer 
         ); 
} 
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VOID 
EFIAPI 
AbcNotifyExitBootServices ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  gAtRuntime = TRUE; 
} 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS  Status; 
  EFI_EVENT   *ExitBootServicesEvent; 
  EFI_EVENT   *SetVirtualAddressMapEvent; 
 
  // 
  // Create an Exit Boot Services event. 
  //  
  Status = gBS->CreateEvent ( 
                  EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES, 
                  EFI_TPL_NOTIFY, 
                  AbcNotifyExitBootServices, 
                  NULL, 
                  &ExitBootServicesEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Create a Set Virtual Address Map event. 
  //  
  Status = gBS->CreateEvent ( 
                  EFI_EVENT_SIGNAL_SET_VIRTUAL_ADDRESS_MAP, 
                  EFI_TPL_NOTIFY, 
                  AbcNotifySetVirtualAddressMap, 
                  NULL, 
                  &SetVirtualAddressMapEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Perform additional driver initialization here 
  // 
 
  return EFI_SUCCESS; 
} 

Example 7-15.  Runtime Driver Entry Point 
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If a runtime driver also supports the unload feature, then the Unload() function must destroy the 
Exit Boot Services event and the Set Virtual Address Map event by calling 
gBS->CloseEvent(). In this case, these events would likely be declared as global variables, so 
the events could easily be destroyed in the Unload() function. Example 7-16 below shows an 
unloadable runtime driver. 
EFI_EVENT  *gExitBootServicesEvent; 
EFI_EVENT  *gSetVirtualAddressMapEvent; 
VOID       *gGlobalPointer; 
BOOLEAN    gAtRuntime = FALSE; 
 
VOID 
EFIAPI 
AbcNotifySetVirtualAddressMap ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  gRT->ConvertPointer ( 
         EFI_OPTIONAL_POINTER,  
         (VOID **)&gGlobalPointer 
         ); 
} 
 
VOID 
EFIAPI 
AbcNotifyExitBootServices ( 
  IN EFI_EVENT  Event, 
  IN VOID       *Context 
  ) 
{ 
  gAtRuntime = TRUE; 
} 
 
EFI_STATUS  
EFIAPI 
AbcUnload ( 
  IN EFI_HANDLE  ImageHandle 
  ) 
{ 
  gBS->CloseEvent (gExitBootServicesEvent); 
  gBS->CloseEvent (gSetVirtualAddressMapEvent); 
} 
 
EFI_DRIVER_ENTRY_POINT (AbcDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
AbcDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
{ 
  EFI_STATUS                 Status; 
  EFI_LOADED_IMAGE_PROTOCOL  *LoadedImage; 
 
  // 
  // Create an Exit Boot Services event. 
  //  
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  Status = gBS->CreateEvent ( 
                  EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES, 
                  EFI_TPL_NOTIFY, 
                  AbcNotifyExitBootServices, 
                  NULL, 
                  &gExitBootServicesEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Create a Set Virtual Address Map event. 
  //  
  Status = gBS->CreateEvent ( 
                  EFI_EVENT_SIGNAL_SET_VIRTUAL_ADDRESS_MAP, 
                  EFI_TPL_NOTIFY, 
                  AbcNotifySetVirtualAddressMap, 
                  NULL, 
                  &gSetVirtualAddressMapEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the Loaded Image Protocol from image handle 
  // 
  Status = gBS->OpenProtocol ( 
                  ImageHandle, 
                  &gEfiLoadedImageProtocolGuid, 
                  (VOID **)&LoadedImage, 
                  ImageHandle, 
                  ImageHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Fill in the Unload() service of the Loaded Image Protocol 
  // 
  LoadedImage->Unload = AbcUnload; 
 
  // 
  // Perform additional driver initialization here 
  // 
 
  return EFI_SUCCESS; 
} 

Example 7-16.  Runtime Driver Entry Point with Unload Feature 
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8 
Private Context Data Structures 

EFI drivers that manage more than one controller need to be designed with re-entrancy in mind. 
This means that the global variables should not be used to track information about individual 
controllers. Instead, data structures should be allocated with the EFI Memory Services for each 
controller, and those data structures should contain all the information that the driver requires to 
manage each individual controller. This chapter will introduce some object-oriented programming 
techniques that can be applied to drivers that manage controllers. These techniques can simplify the 
driver design and implementation. The concept of a private context data structure that contains all 
the information that is required to manage a controller will be introduced. This data structure 
contains the public data fields, public services, private data fields, and private services that an EFI 
driver may require to manage a controller. 

Some classes of EFI drivers do not require the use of these data structures. If an EFI driver only 
produces a single protocol or it manages at most one device, then the techniques presented here are 
not required. An initializing driver does not produce any services and does not manage any devices, 
so it will not use this technique. A service driver that produces a single protocol and does not 
manage any devices likely will not use this technique. A root bridge driver that manages a single 
root bridge device likely will not use this technique, but a root bridge driver that manages more 
than one root bridge device should use this technique. Finally, all EFI drivers that follow the EFI 
Driver Model should use this technique. Even if the driver writer is convinced that the EFI driver 
will manage only a single device in a platform, this technique should still be used because it will 
simplify the process of updating the driver to manage more than one device. The driver writer 
should make as few device and platform assumptions as possible when designing a new driver. 

It is possible to use other techniques to track the information that is required to manage multiple 
controllers in a re-entrant-safe manner, but those techniques will likely require more overhead in 
the driver itself to manage this information. The techniques presented here are intended to produce 
small driver executables, and these techniques are used throughout the EFI 1.10 Sample 
Implementation. 

8.1 Containing Record Macro  

The containing record macro, which is called CR(), enables good object-oriented programming 
practices. It returns a pointer to the structure using a pointer to one of the structure’s fields. EFI 
drivers that produce protocols use this macro to retrieve the private context data structure from a 
pointer to a produced protocol interface. Protocol functions are required to pass in a pointer to the 
protocol instance as the first argument to the function. C++ does this automatically, and the pointer 
to the object instance is called a this pointer. Since EFI drivers are written in C, a close equivalent 
is implemented by requiring that the first argument of every protocol function be the pointer to the 
protocol’s instance structure called This. Each protocol function then uses the CR() macro to 
retrieve a pointer to the private context data structure from this first argument called This.  
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Example 8-1 is the definition of the CR() macro. The CR() macro is provided a pointer to the 
following: 

• A field in a data structure 
• The name of the field 

It uses this information to compute the offset of the field in the data structure and subtracts this 
offset from the pointer to the field. This calculation results in a pointer to the data structure that 
contains the specified field. _CR() returns a pointer to the data structure that contains the specified 
field. For debug builds, CR() also does an additional check to make sure the signature matches. If 
the signature does not match, then an ASSERT() message is generated and the system is haled. For 
production builds, the signature checks are skipped. Most EFI drivers define additional macros 
based on the CR() macro that retrieve the private context data structure based on a This pointer to 
a produced protocol. 
#define _CR(Record, TYPE, Field)  \ 
  ((TYPE *) ( (CHAR8 *)(Record) - (CHAR8 *) &(((TYPE *) 0)->Field))) 
 
#ifdef EFI_DEBUG 
 
  #define CR(record, TYPE, field, signature)                           \ 
            _CR(record, TYPE, field)->Signature != signature ?         \ 
            (TYPE *) (_DEBUG_ASSERT("CR has Bad Signature"), record) : \ 
            _CR(record, TYPE, field) 
 
#else 
 
  #define CR(Record, TYPE, Field, Signature)   \ 
            _CR(Record, TYPE, Field) 
 
#endif 

Example 8-1.  Containing Record Macro Definitions 

8.2 Data Structure Design  

Proper data structure design is one of the keys to making drivers both simple and easy to maintain. 
If a driver writer fails to include fields in a private context data structure, then it may require a 
complex algorithm to retrieve the required data through the various EFI services. By designing in 
the proper fields, these complex algorithms can be avoided and the driver will have a smaller 
executable footprint. Static data and commonly accessed data and services that are related to the 
management of a device should be placed in a private context data structure. Another requirement 
is that the private context data structure must be easy to find when an I/O service that is produced 
by the driver is called. The I/O services that are produced by a driver are exported through protocol 
interfaces, and all protocol interface include a This parameter as the first argument. The This 
parameter is a pointer to the protocol interface that contains the I/O service being called. The data 
structure design presented here will show how the This pointer that is passed into an I/O service 
can be used to very easily gain access to the private context data structure.  

The following driver types will typically use private context data structures: 

• Root bridge drivers 
• Device drivers 
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• Bus drivers 
• Hybrid drivers 

Hybrid drivers may even use two different private context data structures—one for the bus 
controller and one for the child controllers it produces. A private context data structure is typically 
composed of the following types of fields: 

• A signature for the data structure 
• The handle of the controller or the child that is being managed or produced 
• The group of protocol interfaces that are being consumed 
• The group of protocol interfaces that are being produced 
• Private data fields and services that are used to manage a specific controller 

The signature is useful when debugging EFI drivers. These signatures are composed of four ASCII 
characters. When memory dumps are performed, these signatures stand out, so the beginning of 
specific data structures can be identified. Memory dump tools with search capabilities can also be 
used to find specific private context data structures in memory. In addition, debug builds of EFI 
drivers can perform signature checks whenever these private context data structures are accessed. If 
the signature does not match, then an ASSERT() can be generated. If one of these ASSERT() 
messages are observed, then an EFI driver was likely passed in a bad or corrupt memory pointer. 

Device drivers will typically store the handle of the device they are managing in a private context 
data structure. This mechanism provides quick access to the device handle if it is needed during I/O 
operations or driver-related operations. Root bridge drivers and bus drivers will typically store the 
handle of the child that was created, and a hybrid driver will typically store both the handle of the 
bus controller and the handle of the child controller that was produced. 

The group of consumed protocol interfaces is simply a set of pointers to the protocol interfaces that 
are opened in the Start() function of the driver’s EFI_DRIVER_BINDING_PROTOCOL. As 
each protocol interface is opened using gBS->OpenProtocol(), a pointer to the consumed 
protocol interface is stored in the private context data structure. These same protocols must be 
closed in the Stop() function of the driver’s EFI_DRIVER_BINDING_PROTOCOL with calls to 
gBS->CloseProtocol(). 

The group of produced protocol interfaces declares the storage for the protocols that the driver 
produces. These protocols typically provide software abstractions for console or boot devices. 

The number and types of the private data fields vary from driver to driver. These fields contain the 
context information for a device that is not contained in the consumed or produced protocols. For 
example, a driver for a disk device may store information about the geometry of the disk such as 
the number of cylinders, number of heads, and number of sectors on the physical disk that the 
driver is managing. 
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Example 8-2 below shows a generic template for a private context data structure that can be used 
for root bridge drivers, device drivers, bus drivers, or hybrid drivers. The #define statement at 
the beginning is used to initialize the Signature field when the private context data structure is 
allocated. This same #define statement is used to verify the Signature field whenever a 
driver accesses the private context data structure. The data structure itself contains the following: 

• Signature 
• Handle of the device being managed 
• Pointers to the consumed protocols 
• Storage for the produced protocols 
• Any additional private data fields that are required to manage the device 

The last part of this figure contains a set of macros that help retrieve a pointer to the private context 
data structure from a This pointer for each of the produced protocols. These macros are the simple 
mechanism that allows the private data fields to be accessed from the services in each of the 
produced protocols.  
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#define <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE  
EFI_SIGNATURE_32('A','B','C','D') 
 
typedef struct { 
  UINTN                   Signature; 
  EFI_HANDLE              Handle; 
 
  // 
  // Pointers to consumed protocols 
  // 
  EFI_<<PROTOCOL_NAME_C1>>_PROTOCOL  *<<ProtocolNameC1>>; 
  EFI_<<PROTOCOL_NAME_C2>>_PROTOCOL  *<<ProtocolNameC2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME_Cn>>_PROTOCOL  *<<ProtocolNameCn>>; 
 
  // 
  // Produced protocols 
  // 
  EFI_<<PROTOCOL_NAME_P1>>_PROTOCOL  <<ProtocolNameP1>>; 
  EFI_<<PROTOCOL_NAME_P2>>_PROTOCOL  <<ProtocolNameP2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME_Pm>>_PROTOCOL  <<ProtocolNamePm>>; 
 
  // 
  // Private functions and data fields 
  // 
} <<DRIVER_NAME>>_PRIVATE_DATA; 
 
#define <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_P1>>_THIS(a) \ 
  CR(                                                                 \ 
    a,                                                                \ 
    <<DRIVER_NAME>>_PRIVATE_DATA,                                     \ 
    <<ProtocolNameP1>>,                                               \ 
    <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE                            \ 
  ) 
 
#define <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_P2>>_THIS(a) \ 
  CR(                                                                 \ 
    a,                                                                \ 
    <<DRIVER_NAME>>_PRIVATE_DATA,                                     \ 
    <<ProtocolNameP2>>,                                               \ 
    <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE                            \ 
  ) 
 
// . . . 
 
#define <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pm>>_THIS(a) \ 
  CR(                                                                 \ 
    a,                                                                \ 
    <<DRIVER_NAME>>_PRIVATE_DATA,                                     \ 
    <<ProtocolNamePm>>,                                               \ 
    <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE                            \ 
  ) 

Example 8-2.  Private Context Data Structure Template 



EFI 1.10 Driver Writer’s Guide Draft for Review  

206 July 2004 Version 0.9 

Example 8-3 below shows an example of the private context data structure from the disk I/O driver 
that is listed in Appendix D. It contains the #define statement for the data structure’s signature. 
In this case, the signature is the ASCII string “dskI.”  It also contains a pointer to the only protocol 
that this driver consumes, which is the Block I/O Protocol, and it contains storage for the only 
protocol that this driver produces, which is the Disk I/O Protocol. It also has one private data field 
that caches the size of the blocks that the Block I/O Protocol supports. The macro at the bottom 
retrieves the private context data structure from a pointer to the DiskIo field.  
#define DISK_IO_PRIVATE_DATA_SIGNATURE  EFI_SIGNATURE_32 ('d','s','k','I') 
 
typedef struct { 
  UINTN                  Signature; 
  EFI_DISK_IO_PROTOCOL   DiskIo; 
  EFI_BLOCK_IO_PROTOCOL  *BlockIo; 
  UINT32                 BlockSize; 
} DISK_IO_PRIVATE_DATA; 
 
#define DISK_IO_PRIVATE_DATA_FROM_THIS(a) \ 
  CR (a, DISK_IO_PRIVATE_DATA, DiskIo, DISK_IO_PRIVATE_DATA_SIGNATURE) 

Example 8-3.  Simple Private Context Data Structure 

Example 8-4 below shows a more complex private context data structure from the IDE bus driver, 
which is in the EFI 1.10 Sample Implementation. It contains the signature “ibid” and a Handle 
field that is the child handle for a disk device that the IDE bus driver produced. It also contains 
pointers to the consumed protocols, which are the Device Path Protocol and PCI I/O Protocol, and 
storage for the Block I/O Protocol that is produced by this driver. In addition, there are a large 
number of private data fields that are used during initialization, read operations, write operations, 
flush operations, and error recovery. Details on how these private fields are used can be found in 
the source code to the IDE bus driver in the EFI 1.10 Sample Implementation. 
#define IDE_BLK_IO_DEV_SIGNATURE   EFI_SIGNATURE_32('i','b','i','d') 
 
typedef struct { 
    UINT32                        Signature; 
     
    EFI_HANDLE                    Handle; 
    EFI_BLOCK_IO_PROTOCOL         BlkIo; 
    EFI_BLOCK_IO_MEDIA            BlkMedia; 
    EFI_DEVICE_PATH_PROTOCOL      *DevicePath; 
    EFI_PCI_IO_PROTOCOL           *PciIo; 
    IDE_BUS_DRIVER_PRIVATE_DATA   *IdeBusDriverPrivateData; 
 
    // 
    // Local data for the IDE interface goes here 
    // 
    EFI_IDE_CHANNEL               Channel; 
    EFI_IDE_DEVICE                Device; 
    UINT16                        Lun; 
    IDE_DEVICE_TYPE               Type; 
     
    IDE_BASE_REGISTERS            *IoPort; 
    UINT16                        AtapiError; 
 
    INQUIRY_DATA                  *pInquiryData;  
    IDENTIFY                      *pIdData; 
    ATA_PIO_MODE                  PioMode; 
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    CHAR8                         ModelName[41]; 
    REQUEST_SENSE_DATA            *SenseData; 
    UINT8                         SenseDataNumber; 
    UINT8                         *Cache; 
 
    EFI_UNICODE_STRING_TABLE      *ControllerNameTable; 
} IDE_BLK_IO_DEV; 
 
#define IDE_BLOCK_IO_DEV_FROM_THIS(a) \ 
  CR(a, IDE_BLK_IO_DEV, BlkIo, IDE_BLK_IO_DEV_SIGNATURE) 

Example 8-4.  Complex Private Context Data Structure 

8.3 Allocating Private Context Data Structures  

The private context data structures are allocated in the Start() function of the driver’s 
EFI_DRIVER_BINDING_PROTOCOL. The service that is typically used to allocate the private 
context data structures is gBS->AllocatePool(). Example 8-5 below shows the generic 
template for allocating a private context data structure in the Start()function of the 
EFI_DRIVER_BINDING_PROTOCOL. This code example shows only a fragment from the 
Start() function. Chapter 9 covers the services that are produced by the 
EFI_DRIVER_BINDING_PROTOCOL in more detail. 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
  EFI_STATUS                    Status; 
  <<DRIVER_NAME>>_PRIVATE_DATA  Private; 
 
  // 
  // Allocate the private context data structure 
  // 
  Status = gBS->AllocatePool ( 
                  EfiBootServicesData, 
                  sizeof (<<DRIVER_NAME>>_PRIVATE_DATA), 
                  (VOID**)&Private 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Clear the contents of the allocated buffer 
  // 
  gBS->SetMem (Private, sizeof (<<DRIVER_NAME>>_PRIVATE_DATA), 0); 
} 

Example 8-5.  Allocation of a Private Context Data Structure  
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Example 8-6 below shows the same generic template for the Start() function above except that 
it uses EFI Driver Library functions to allocate a private context data structure. 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
  EFI_STATUS                    Status; 
  <<DRIVER_NAME>>_PRIVATE_DATA  Private; 
 
  // 
  // Allocate and clear the private context data structure 
  // 
  Private = EfiLibAllocateZeroPool (sizeof (<<DRIVER_NAME>>_PRIVATE_DATA));  
  if (Private == NULL) { 
    return EFI_OUT_OF_RESOURCES; 
  } 
} 

Example 8-6.  Library Allocation of Private Context Data Structure 

Example 8-7 below shows a code fragment from the disk I/O driver that allocates the private 
context data structure for the disk I/O driver. 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
  EFI_STATUS              Status; 
  DISK_IO_PRIVATE_DATA    *Private; 
 
  // 
  // Initialize the disk I/O device instance. 
  // 
  Status = gBS->AllocatePool( 
                  EfiBootServicesData, 
                  sizeof (DISK_IO_PRIVATE_DATA), 
                  &Private 
                  ); 
  if (EFI_ERROR (Status)) { 
    goto ErrorExit; 
  } 
  EfiZeroMem (Private, sizeof(DISK_IO_PRIVATE_DATA)); 
} 

Example 8-7.  Disk I/O Allocation of Private Context Data Structure 
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8.4 Freeing Private Context Data Structures  

The private context data structures are freed in the Stop() function of the driver’s 
EFI_DRIVER_BINDING_PROTOCOL. The service that is typically used to free the private 
context data structures is gBS->FreePool(). Example 8-8 below shows the generic template for 
allocating a private context data structure in the Stop()function of the 
EFI_DRIVER_BINDING_PROTOCOL. This code example shows only a fragment from the 
Stop() service. Chapter 9 covers the services that are produced by the 
EFI_DRIVER_BINDING_PROTOCOL in more detail. 
EFI_STATUS 
EFIAPI 
<<DriverName>>DriverBindingStop ( 
  IN  EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  UINTN                        NumberOfChildren, 
  IN  EFI_HANDLE                   *ChildHandleBuffer 
  ) 
{ 
  EFI_STATUS                         Status; 
  EFI_<<PROTOCOL_NAME_Pm>>_PROTOCOL  *<<ProtocolNamePm>>; 
  <<DRIVER_NAME>>_PRIVATE_DATA       Private; 
 
  // 
  // Look up one of the driver’s produced protocols 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNamePm>>ProtocolGuid,   
                  &<<ProtocolNamePm>>, 
                  This->DriverBindingHandle,    
                  ControllerHandle,    
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Retrieve the private context data structure from the produced protocol 
  // 
  Private = <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pm>>_THIS (      
              <<ProtocolNamePm>> 
              ); 
 
  // 
  // Free the private context data structure  
  // 
  Status = gBS->FreePool (Private); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
} 

Example 8-8.  Freeing a Private Context Data Structure 
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Example 8-9 below shows code fragments from the disk I/O driver that frees the private context 
data structure for the disk I/O driver. 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingStop ( 
  IN  EFI_DRIVER_BINDING_PROTOCOL    *This, 
  IN  EFI_HANDLE                     ControllerHandle, 
  IN  UINTN                          NumberOfChildren, 
  IN  EFI_HANDLE                     *ChildHandleBuffer 
  ) 
{ 
  EFI_STATUS            Status; 
  EFI_DISK_IO_PROTOCOL  *DiskIo; 
  DISK_IO_PRIVATE_DATA  *Private; 
 
  // 
  // Get our context back. 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfiDiskIoProtocolGuid,   
                  &DiskIo, 
                  This->DriverBindingHandle,    
                  ControllerHandle,    
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return EFI_UNSUPPORTED; 
  } 
 
  Private = DISK_IO_PRIVATE_DATA_FROM_THIS (DiskIo); 
 
  gBS->FreePool (Private); 
} 

Example 8-9.  Disk I/O Freeing of a Private Context Data Structure 

8.5 Protocol Functions 

The protocol functions that are produced by an EFI driver also need to access the private context 
data structure. These functions typically need access to the consumed protocols and the private data 
fields to perform the protocol function’s required operation. Example 8-10 below shows a template 
for the implementation of a protocol function that retrieves the private context data structure using 
the CR() based macro and the This pointer for the produced protocol. The Stop() function 
from the EFI_DRIVER_BINDING_PROTOCOL uses the same CR() based macro to retrieve the 
private context data structure. The only difference is that the This pointer is not passed into the 
Stop() function. Instead, the Stop() function uses ControllerHandle to retrieve one of 
the produced protocols and then uses the CR() based macro with that protocol interface pointer to 
retrieve the private context data structure. 
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EFI_STATUS 
EFIAPI 
<<DriverName>><<ProtocolNamePn>><<FunctionNameM>> ( 
  IN EFI_<<PROTOCOL_NAME_PN>>_PROTOCOL *This, 
  // 
  // Additional function arguments here. 
  // 
  ) 
{ 
  <<DRIVER_NAME>>_PRIVATE_DATA  Private; 
 
  // 
  // Use This pointer to retrieve the private context structure 
  // 
  Private = <<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pn>>_THIS (This); 
} 

Example 8-10.  Retrieving the Private Context Data Structure 

Example 8-11 below shows a code fragment from the ReadDisk() service of the 
EFI_DISK_IO_PROTOCOL that is produced by the disk I/O driver. It uses the CR() macro and 
the This pointer to the EFI_DISK_IO_PROTOCOL to retrieve the DISK_IO_PRIVATE_DATA 
private context data structure. 
EFI_STATUS 
EFIAPI 
DiskIoReadDisk ( 
  IN EFI_DISK_IO_PROTOCOL  *This, 
  IN UINT32                MediaId, 
  IN UINT64                Offset, 
  IN UINTN                 BufferSize, 
  OUT VOID                 *Buffer 
  ) 
{ 
  EFI_STATUS            Status; 
  DISK_IO_PRIVATE_DATA  *Private; 
 
  Private = DISK_IO_PRIVATE_DATA_FROM_THIS (This); 
} 

Example 8-11.  Retrieving the Disk I/O Private Context Data Structure 
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9 
Driver Binding Protocol 

The Driver Binding Protocol provides services that can be used to do the following: 

• Connect a driver to a controller.  
• Disconnect a driver from a controller.  

EFI drivers that follow the EFI Driver Model are required to implement the Driver Binding 
Protocol. This requirement includes the following drivers: 

• Device drivers 
• Bus drivers 
• Hybrid drivers 

Root bridge driver, service drivers, and initializing drivers do not produce this protocol.  

The Driver Binding Protocol is the most important protocol that a driver produces, because it is the 
one protocol that is used by the EFI Boot Services gBS->ConnectController() and 
gBS->DisconnectController(). These EFI Boot Services are used by the EFI boot 
manager to connect the console and boot devices that are required to boot an operating system. The 
implementation of the Driver Binding Protocol will vary depending upon the driver’s class. 
Chapter 7 describes the various driver classes. The protocol interface structure for the Driver 
Binding Protocol is listed below for reference. 

Protocol Interface Structure 
typedef struct _EFI_DRIVER_BINDING_PROTOCOL { 
  EFI_DRIVER_BINDING_SUPPORTED    Supported; 
  EFI_DRIVER_BINDING_START        Start; 
  EFI_DRIVER_BINDING_STOP         Stop; 
  UINT32                          Version; 
  EFI_HANDLE                      ImageHandle; 
  EFI_HANDLE                      DriverBindingHandle; 
} EFI_DRIVER_BINDING_PROTOCOL; 

 

The Driver Binding Protocol contains the following three services:  

• Supported() 

• Start() 

• Stop()  
 

It also contains the following three data fields: 

• Version 

• ImageHandle 

• DriverBindingHandle   



EFI 1.10 Driver Writer’s Guide Draft for Review  

214 July 2004 Version 0.9 

The ImageHandle and DriverBindingHandle fields are typically preinitialized to NULL, 
and the EFI Driver Library functions automatically fill them in. The Version field does need to 
be initialized by the driver. Higher Version values signify a new driver. This field is a 32-bit 
value, but the values 0x0–0x0f and 0xfffffff0–0xffffffff are reserved for EFI drivers written by 
OEMs. IHVs may use the values 0x10–0xffffffef. Each time a new version of an EFI driver is 
released, the Version field should also be increased.  

Many drivers use a Version value with a xx.xx.xx.xx revision scheme, so the driver can convey 
minor updates versus major updates. Drivers from third-party vendors should use this value to 
display the real true Version value that they use when referring to this driver. For example, if a 
driver has a version of 3.0.06, then the correct Version value would be 0x00030006. Whatever 
number scheme is chosen, it must be consistent with previously released drivers. Example 14-13 
below shows how a Driver Binding Protocol is typically declared in a driver. 
EFI_DRIVER_BINDING_PROTOCOL gAbcDriverBinding = { 
  AbcDriverBindingSupported,    // Supported() 
  AbcDriverBindingStart,        // Start() 
  AbcDriverBindingStop,         // Stop() 
  0x10,                         // Version 
  NULL,                         // ImageHandle 
  NULL                          // DriverBindingHandle 
}; 

Example 9-1.  Driver Binding Protocol Declaration 

The Supported() service performs a quick check to see if a driver supports a controller. If the 
Supported() service passes, then the Start() service will be called to ask the driver to bind 
to a specific controller. The Stop() service does the opposite of the Start() service. It 
disconnects a driver from a controller and frees any resources that were allocated in the Start() 
services. None of these services are allowed to use any of the console I/O-related protocols. Instead, 
if an error condition is detected, then the error should be recorded and returned through the Driver 
Diagnostics Protocol. A driver may also use the DEBUG() and ASSERT() macros to send 
messages to the standard error console if it is active. 

The implementations of the Driver Binding Protocol will change in complexity depending on the 
driver type. A device driver is fairly simple to implement. A bus driver or a hybrid driver may be 
more complex because it has to manage both the bus controller and the child controllers. These 
implementations will be discussed in the following sections. 

The EFI_DRIVER_BINDING_PROTOCOL is installed onto the driver’s image handle. It is 
possible for a driver to produce more than one instance of the Driver Binding Protocol. All 
additional instances of the Driver Binding Protocol should be installed onto new handles. The 
installation of the Driver Binding Protocol is handled by the EFI Library Service 
EfiLibInstallAllDriverProtocols(). This service is covered in more detail in 
section 7.1. If an error is generated in the installation of the Driver Binding Protocol, then the entire 
driver should fail.  
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The implementation of the Driver Binding Protocol for a specific driver is typically found in the file 
<<DriverName>>.c. This file contains the instance of the 
EFI_DRIVER_BINDING_PROTOCOL along with the implementation of the Supported(), 
Start(), and Stop() services. Example 9-2 below shows the template for the Driver 
Binding Protocol. 
#define <<DRIVER_NAME>_VERSION 0x00000010 
 
EFI_DRIVER_BINDING_PROTOCOL g<<DriverName>>DriverBinding = { 
  <<DriverName>>DriverBindingSupported,  // Supported() 
  <<DriverName>>DriverBindingStart,      // Start() 
  <<DriverName>>DriverBindingStop,       // Stop() 
  <<DRIVER_NAME>>_VERSION,               // Version 
  NULL,                                  // ImageHandle 
  NULL                                   // DriverBindingHandle 
}; 
 
EFI_STATUS 
<<DriverName>>DriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>DriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>DriverBindingStop ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN UINTN                        NumberOfChildren, 
  IN EFI_HANDLE                   *ChildHandleBuffer 
  ) 
{ 
} 

Example 9-2.  Driver Binding Protocol Template 

The Supported(), Start(), and Stop() services are covered in detail in section 9.1 of the 
EFI 1.10 Specification, including the algorithms for implementing these services for device drivers 
and bus drivers. If a driver produces multiple instances of the Driver Binding Protocol, then they 
will be installed in the driver entry point. Each instance of the Driver Binding Protocol is 
implemented using the same guidelines. The different instances may share worker functions to 
reduce the size of the driver.  
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Once a Driver Binding Protocol is implemented, it can be tested with the following EFI Shell 
commands:  

• load 

• connect 

• disconnect 

• reconnect 

The EFI boot manager will also test the services of the Driver Binding Protocol when the drivers 
for console devices and boot devices are connected so an operating system may be booted.  
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10 
Component Name Protocol 

The Component Name Protocol provides a human-readable name for drivers and the devices that 
drivers manage. This protocol applies only to EFI drivers that follow the EFI Driver Model, which 
includes the following: 

• Device drivers 
• Bus drivers 
• Hybrid drivers 

Root bridge drivers, service drivers, and initializing drivers do not produce this protocol. It is 
recommended that this protocol be implemented for all drivers because it provides an easy method 
for users to associate the various drivers to the controllers they manage. This protocol is also 
required by DIG64. 

The Component Name Protocol provides human-readable names as null-terminated Unicode strings 
and can support one or more languages. At a minimum, the English language should be supported. 
The human-readable name that a driver produces is from that specific driver’s perspective. If 
multiple drivers are managing the same controller handle, then there will be multiple instances of 
the Component Name Protocol that may provide different names for a controller. The consumers of 
the Component Name Protocol will have to decide which names to display when multiple names 
are available. For example, a PCI bus driver may produce a name for a PCI slot like “PCI Slot #2,” 
and the driver for the SCSI adapter that is inserted into that same PCI slot may produce a name like 
“XYZ SCSI Host Controller.”  Both names describe the same physical device from each driver’s 
perspective, and both names are useful depending on how they are used. 

It is also suggested that these human-readable names be limited to about 40 Unicode characters in 
length so consumers of this protocol can easily fit these strings on standard console devices. The 
protocol interface structure for the Component Name Protocol is listed below for reference. 

Protocol Interface Structure 
typedef struct _EFI_COMPONENT_NAME_PROTOCOL { 
  EFI_COMPONENT_NAME_GET_DRIVER_NAME      GetDriverName; 
  EFI_COMPONENT_NAME_GET_CONTROLLER_NAME  GetControllerName; 
  CHAR8                                   *SupportedLanguages; 
} EFI_COMPONENT_NAME_PROTOCOL; 

 

The Component Name Protocol advertises the languages it supports in a data field called 
SupportedLanguages. This data filed is a null-terminated ASCII string that contains one or 
more ISO 639-2 language codes. Each language code is composed of three ASCII characters. For 
example, English is specified by “eng,” Spanish by “spa,” and French by “fra.”  A consumer of the 
Component Name Protocol can parse the SupportedLanguages data field to see if the protocol 
supports a language in which the consumer is interested. This data field can also be used by the 
implementation of the Component Name Protocol to see if a requested language is supported. 
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The GetDriverName() service is used to retrieve the name of the driver, and the 
GetControllerName() service is used to retrieve the names of the controllers that the driver is 
currently managing or the names of the child controllers that the driver may have produced. The 
simplest implementation of the Component Name Protocol provides the name of the driver. The 
next most complex implementation is for a device driver that provides both the name of the driver 
and the names of the controllers that the driver is managing. The most complex implementation is 
for a bus driver or a hybrid driver that produces names for the driver, names for the bus controllers 
it is managing, and names for the child controllers that the driver has produced. All three of these 
implementations will be discussed in the sections that follow. 

A few EFI Driver Library functions are provided to simplify the implementation of the Component 
Name Protocol. These library functions aid in registering and retrieving human-readable strings. 
Some drivers have fixed names for the drivers and controllers that they manage, and other drivers 
may create names on the fly based on information that is retrieved from the platform or the 
controller itself. The EFI Driver Library functions of interest are 
EfiLibLookupUnicodeString(), EfiLibAddUnicodeString(), and 
EfiLibFreeUnicodeStringTable().  

The EFI_COMPONENT_NAME_PROTOCOL must be installed onto the same handle as the 
EFI_DRIVER_BINDING_PROTOCOL. This install operation is done in the driver’s entry point. 
The installation of the EFI_DRIVER_BINDING_PROTOCOL and the 
EFI_COMPONENT_NAME_PROTOCOL is covered in section 7.1. If an error is generated in the 
installation of the Component Name Protocol, then this error should not cause the entire driver 
to fail.  

The implementation of the Component Name Protocol for a specific driver is typically found in the 
file ComponentName.c. This file contains the following: 

• The instance of the EFI_COMPONENT_NAME_PROTOCOL 

• A static table of driver names 
• Static tables of controller names 
• The implementation of the GetDriverName() and GetControllerName() services 

For drivers that produce dynamic names for controller or children, the allocation and management 
of these dynamic names will be performed in the Start() and Stop() services of the 
EFI_DRIVER_BINDING_PROTOCOL. In addition, dynamic name tables require extra fields in 
the driver’s private context data structure that point to the dynamic name tables. See chapter 8 for 
details on the design of private context data structures. 

Once a Component Name Protocol is implemented, it can be tested with the EFI Shell commands 
devices and drivers. Platform vendors are also expected to implement extensions to the EFI 
boot manager that allow the user to manage the various devices in a platform. These EFI boot 
manager extensions should use the services of the Component Name Protocol to display the names 
of devices and the drivers that are managing those devices. 
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10.1 Driver Name 

The simplest implementation of the EFI_COMPONENT_NAME_PROTOCOL produces a human-
readable name for the driver itself and does not provide any names for the controllers or the 
children that the driver is managing. Example 10-1 below shows a template for this type of 
implementation. The instance of the EFI_COMPONENT_NAME_PROTOCOL is installed onto the 
driver handle in the driver’s entry point. The GetControllerName() service always returns 
EFI_UNSUPPORTED, and the GetDriverName() service uses an EFI Driver Library function 
to retrieve the driver’s name in the correct language from a static table of driver names. The static 
table of driver names contains two elements per entry. The first element is a three-character ASCII 
string that contains the ISO 639-2 language code for the driver name in the second element. The 
second element is a Unicode string that represents the name of the driver in the language specified 
by the first element. The static table is terminated by two NULL elements. Example 10-1 below 
shows an example with the three supported languages of English, Spanish, and French. Appendix D 
contains the source code to the disk I/O driver that produces the name of the disk I/O driver only 
in English. 
// 
// EFI Component Name Protocol 
// 
EFI_COMPONENT_NAME_PROTOCOL g<<DriverName>>ComponentName = { 
  <<DriverName>>ComponentNameGetDriverName, 
  <<DriverName>>ComponentNameGetControllerName, 
  "engspafra” 
}; 
 
// 
// Static table of driver names in different languages 
// 
static EFI_UNICODE_STRING_TABLE m<<DriverName>>DriverNameTable[] = { 
  { "eng", L"Insert English Driver Name Here" }, 
  { "spa", L"Insert Spanish Driver Name Here" }, 
  { "fra", L"Insert French Driver Name Here" }, 
  { NULL, NULL } 
}; 
 
EFI_STATUS 
<<DriverName>>ComponentNameGetDriverName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **DriverName 
  ) 
{ 
  return EfiLibLookupUnicodeString ( 
           Language, 
           g<<DriverName>>ComponentName.SupportedLanguages, 
           m<<DriverName>>DriverNameTable,  
           DriverName 
           ); 
} 
 
EFI_STATUS 
<<DriverName>>ComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
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  IN  CHAR8                        *Language, 
  OUT CHAR16                       **ControllerName 
  ) 
{ 
  return EFI_UNSUPPORTED; 
} 

Example 10-1.  Driver Name 

10.2 Device Drivers 

Device drivers that implement the Component Name Protocol will typically provide the name of 
the driver using the method described in section 10.1. This means that the implementation of the 
GetDriverName() service is always the same, and the only element that changes is the static 
table of driver names for each of the supported languages. The GetControllerName() service 
of the Component Name Protocol is where most of the work is performed. 

Example 10-2 below shows the template for the GetControllerName() service for a device 
driver that produces static names for the controllers that it manages. The static controller names in 
different languages are declared in exactly the same way that the static driver names were declared 
in section 10.1. The GetControllerName() service needs to make more parameter checks 
than GetDriverName(), because it needs to make sure that the ControllerHandle and 
ChildHandle parameters match a controller that the driver is currently managing. Device drivers 
do not produce any child handles, so the ChildHandle parameter must be NULL. The 
ControllerHandle parameter must be checked to verify that it is a controller handle that the 
driver is currently managing. This check is done by opening a protocol on ControllerHandle 
that was opened BY_DRIVER in the driver’s Start() service of the 
EFI_DRIVER_BINDING_PROTOCOL. If the status code returned is EFI_ALREADY_STARTED, 
then ControllerHandle is currently managed by the driver. If the status code returned is not 
EFI_ALREADY_STARTED, then ControllerHandle is not being managed by the driver. 

Once a device driver has verified that ChildHandle is NULL and ControllerHandle 
represents a controller it is managing, then an EFI Driver Library Service can be used to retrieve the 
human-readable name of the controller from a static table of controller names in a specified 
language. 
// 
// Static table of Controller Names in different languages 
// 
static EFI_UNICODE_STRING_TABLE m<<DriverName>>ControllerNameTable[] = { 
  { "eng", L"Insert English Controller Name Here " }, 
  { "spa", L"Insert Spanish Controller Name Here " }, 
  { "fra", L"Insert French Controller Name Here " }, 
  { NULL, NULL } 
}; 
 
EFI_STATUS 
<<DriverName>>ComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **ControllerName 
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  ) 
{ 
  EFI_STATUS                         Status; 
  EFI_<<PROTOCOL_NAME_Cx>>_PROTOCOL  *<<ProtocolNameCx>>; 
 
  // 
  // ChildHandle must be NULL for device drivers 
  // 
  if (ChildHandle != NULL) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Make sure this driver is currently managing ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNameCx>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (Status != EFI_ALREADY_STARTED) { 
    gBS->CloseProtocol ( 
           ControllerHandle,  
           &gEfi<<ProtocolNameCx>>ProtocolGuid,   
           g<<DriverName>>DriverBinding.DriverBindingHandle, 
           ); 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Look up the controller name from a static table of controller names 
  // 
  return EfiLibLookupUnicodeString ( 
           Language,  
           g<<DriverName>>ComponentName.SupportedLanguages, 
           m<<DriverName>>ControllerNameTable,  
           ControllerName 
           );  
} 

Example 10-2.  Device Driver with Static Controller Names 

Some device drivers are able to extract information from the devices that they manage so they can 
provide more specific device names. The dynamic generation of controller names is more complex, 
but it can provide users with the detailed information they require to identify a specific device. For 
example, a driver for a disk device may be able to produce a static name such as “Hard Disk,” but a 
more specific name like “Seagate Barracuda ATA ST313620A Hard Disk” may be much 
more useful. 
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To support the dynamic generation of controller names, several additional steps must be taken. The 
first is that a pointer to the dynamic table of names must be added to the private context data 
structure for the controllers that a device driver manages. Example 10-3 below shows the addition 
of an EFI_UNICODE_STRING_TABLE field to the private context data structure discussed in 
chapter 8. 
#define <<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE  
EFI_SIGNATURE_32('A','B','C','D') 
 
typedef struct { 
  UINTN                              Signature; 
  EFI_HANDLE                         Handle; 
 
  // 
  // Pointers to consumed protocols 
  // 
  EFI_<<PROTOCOL_NAME_C1>>_PROTOCOL  *<<ProtocolNameC1>>; 
  EFI_<<PROTOCOL_NAME_C2>>_PROTOCOL  *<<ProtocolNameC2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME_Cn>>_PROTOCOL  *<<ProtocolNameCn>>; 
 
  // 
  // Produced protocols 
  // 
  EFI_<<PROTOCOL_NAME_P1>>_PROTOCOL  <<ProtocolNameP1>>; 
  EFI_<<PROTOCOL_NAME_P2>>_PROTOCOL  <<ProtocolNameP2>>; 
  // . . . 
  EFI_<<PROTOCOL_NAME_Pm>>_PROTOCOL  <<ProtocolNamePm>>; 
 
  // 
  // Dynamically allocated table of controller names 
  // 
  EFI_UNICODE_STRING_TABLE           *ControllerNameTable; 
 
  // 
  // Additional Private functions and data fields 
  // 
 
}<<DRIVER_NAME>>_PRIVATE_DATA; 

Example 10-3.  Private Context Data Structure with a Dynamic Controller Name Table 

The next update is to the Start() service of the EFI_DRIVER_BINDING_PROTOCOL. The 
Start() service needs to add a controller name in each supported language to 
ControllerNameTable in the private context data structure. The EFI Driver Library function 
EfiLibAddUnicodeString() can be used to add one or more names to a table. The 
ContollerNameTable must be initialized to NULL before the first name is added. 
Example 10-4 below shows an example of an English name being added to a dynamically allocated 
table of Unicode names. If more than one language is supported, then there would be an 
EfiLibAddUnicodeString() call for each language. The construction of the Unicode string 
for each language is not covered here. The format of names stored with devices varies depending 
on the bus type, and the translation from a bus-specific name format to a Unicode string cannot 
be standardized. 
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<<DRIVER_NAME>>_PRIVATE_DATA  *Private 
CHAR16                        *ControllerName 
 
// 
// Get dynamic name from the device being managed 
// 
 
// 
// Convert the device name to a Unicode string in a supported language 
// 
 
// 
// Add the device name to the table of names stored in the private context data  
// structure 
// 
EfiLibAddUnicodeString ( 
  "eng",  
  g<<DriverName>>ComponentName.SupportedLanguages,  
  &Private->ControllerNameTable, 
  ControllerName 
  ); 

Example 10-4.  Adding a Controller Name to a Dynamic Controller Name Table 

The Stop() service of the EFI_DRIVER_BINDING_PROTOCOL also needs to be updated. 
When a request is made for a driver to stop managing a controller, the table of controller names that 
were built in the Start() service must be freed. The EFI Driver Library function 
EfiLibFreeUnicodeStringTable() can be used to free the table of controller names. 
Example 10-5 below shows the code that should be added to the Stop() service. The private 
context data structure will be retrieved by the Stop() service so that the private context data 
structure can be freed. The call to EfiLibFreeUnicodeStringTable()should be made just 
before the private context data structure is freed. 
<<DRIVER_NAME>>_PRIVATE_DATA  *Private 
 
EfiLibFreeUnicodeStringTable (Private->ControllerNameTable); 

Example 10-5.  Freeing a Dynamic Controller Name Table 

Finally, the GetControllerName() service becomes slightly more complex than the static 
controller name template. Because the table of controller names is now maintained in the private 
context data structure, the private context data structure needs to be retrieved based on the 
parameters passed into GetControllerName(). This retrieval is achieved by looking up a 
protocol that the driver has produced on ControllerHandle and using a pointer to that 
protocol and a CR() macro to retrieve a pointer to the private context data structure. Then, the 
private context data structure can be used with the EFI Driver Library function 
EfiLibLookupUnicodeString() to look up the controller’s name in the dynamic table of 
controller names. Example 10-6 below shows a template for the GetControllerName() 
service that retrieves the controller name from a dynamic table that is stored in the private context 
data structure. 
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EFI_STATUS 
<<DriverName>>ComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **ControllerName 
  ) 
{ 
  EFI_STATUS                         Status; 
  EFI_<<PROTOCOL_NAME_Cx>>_PROTOCOL  *<<ProtocolNameCx>>; 
  EFI_<<PROTOCOL_NAME_Py>>_PROTOCOL  *<<ProtocolNamePy>>; 
  <<DRIVER_NAME>>_PRIVATE_DATA       *Private; 
 
  // 
  // ChildHandle must be NULL for device drivers 
  // 
  if (ChildHandle != NULL) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Make sure this driver is currently managing ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNameCx>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (Status != EFI_ALREADY_STARTED) { 
    gBS->CloseProtocol ( 
           ControllerHandle,  
           &gEfi<<ProtocolNameCx>>ProtocolGuid,   
           g<<DriverName>>DriverBinding.DriverBindingHandle, 
           ); 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Retrieve an instance of a produced protocol from ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNamePy>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNamePy>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the private context data structure for ControllerHandle 
  // 
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  Private = <<DRIVER_NAME>>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Py>>_THIS ( 
              <<ProtocolNamePy>> 
              ); 
 
  // 
  // Look up the controller name from a dynamic table of controller names 
  // 
  return EfiLibLookupUnicodeString ( 
           Language,  
           g<<DriverName>>ComponentName.SupportedLanguages, 
           Private->ControllerNameTable,  
           ControllerName 
           ); 
} 

Example 10-6.  Device Driver with Dynamic Controller Names 

10.3 Bus Drivers and Hybrid Drivers 

There are many levels of support that a bus driver or hybrid driver may provide for the Component 
Name Protocol. These drivers can choose to provide a driver name as described in section 10.1. 
These drivers can also choose to provide names for the bus controllers that they manage and not 
provide any names for the children that they produce, such as the device drivers described in 
section 10.2. This section describes what bus drivers and hybrid drivers need to do to provide 
human-readable names for the child handles that they produce. The human-readable names for 
child handles can be provided through static or dynamic controller name tables. 

Example 10-7 below shows an example of a driver that uses static name tables for both the bus 
controller and the child controllers. It first checks to make sure that ControllerHandle 
represents a bus controller that the driver is currently managing. Next it checks to see if 
ChildHandle is NULL. If ChildHandle is NULL, then the caller is asking for the human-
readable name for the bus controller that the driver is managing. The 
EfiLibLookupUnicodeString() function is used to look up the human-readable name that 
is associated with ControllerHandle. If ChildHandle is not NULL, then the caller is 
requesting the name of a child controller that the driver has produced. First, a test is performed to 
make sure that ChildHandle is a handle that this driver produced. If that test succeeds, then the 
EfiLibLookupUnicodeString() function is used to look up the human-readable name that 
is associated with ChildHandle. 
// 
// Static table of controller names in different languages 
// 
static EFI_UNICODE_STRING_TABLE m<<DriverName>>ControllerNameTable[] = { 
  { "eng", L"Insert English Bus Controller Name Here " }, 
  { "spa", L"Insert Spanish Bus Controller Name Here " }, 
  { "fra", L"Insert French Bus Controller Name Here " }, 
  { NULL, NULL } 
}; 
 
// 
// Static table of child names in different languages 
// 
static EFI_UNICODE_STRING_TABLE m<<DriverName>>ChildNameTable[] = { 
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  { "eng", L"Insert English Child Name Here " }, 
  { "spa", L"Insert Spanish Child Name Here " }, 
  { "fra", L"Insert French Child Name Here " }, 
  { NULL, NULL } 
}; 
 
EFI_STATUS 
<<DriverName>>ComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **ControllerName 
  ) 
{ 
  EFI_STATUS                           Status; 
  EFI_<<PROTOCOL_NAME_Cx>>_PROTOCOL    *<<ProtocolNameCx>>; 
  EFI_OPEN_PROTOCOL_INFORMATION_ENTRY  *OpenInfoBuffer; 
  UINTN                                EntryCount; 
  UINTN                                Index; 
 
  // 
  // Make sure this driver is currently managing ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNameCx>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (Status != EFI_ALREADY_STARTED) { 
    gBS->CloseProtocol ( 
           ControllerHandle,  
           &gEfi<<ProtocolNameCx>>ProtocolGuid,   
           g<<DriverName>>DriverBinding.DriverBindingHandle, 
           ); 
    return EFI_UNSUPPORTED; 
  } 
 
  if (ChildHandle == NULL) { 
    // 
    // Look up the controller name from a static table of controller names 
    // 
    return EfiLibLookupUnicodeString ( 
             Language,  
             g<<DriverName>>ComponentName.SupportedLanguages, 
             m<<DriverName>>ControllerNameTable, 
             ControllerName 
             ); 
  } 
 
  // 
  // Retrieve the list of agents that are consuming one of the protocols 
  // on ControllerHandle that the children consume 
  // 
  Status = gBS->OpenProtocolInformation ( 
                  ControllerHandle, 
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                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  &OpenInfoBuffer, 
                  &EntryCount 
                  ); 
  if (EFI_ERROR (Status)) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // See if one of the agents is ChildHandle 
  // 
  Status = EFI_UNSUPPORTED; 
  for (Index = 0; Index < EntryCount; Index++) { 
    if (OpenInfoBuffer[Index].ControllerHandle == ChildHandle &&   
        OpenInfoBuffer[Index].Attributes&EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) 
{ 
      Status = EFI_SUCCESS; 
    } 
  } 
 
  // 
  // Free the information buffer 
  // 
  gBS->FreePool (OpenInfoBuffer); 
 
  // 
  // If ChildHandle was not one of the agents, then return EFI_UNSUPPORTED 
  // 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Look up the child name from a static table of child names 
  // 
  return EfiLibLookupUnicodeString ( 
           Language,  
           g<<DriverName>>ComponentName.SupportedLanguages, 
           m<<DriverName>>ChildNameTable,  
           ControllerName 
           );  
} 

Example 10-7.  Bus Driver with Static Controller and Child Names 

The static tables for the controller names and the child names can be substituted with dynamic 
tables. This substitution requires the private context structure to be updated along with the 
Start() and Stop() services of the EFI_DRIVER_BINDING_PROTOCOL. Section 10.2 
covers how this update is done for the controller names. Example 10-8 below shows how this 
update is performed for a bus driver that does not produce names for the bus controllers that it 
manages but does produce names for the child handles it creates. 
EFI_STATUS 
<<DriverName>>ComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
  IN  CHAR8                        *Language, 
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  OUT CHAR16                       **ControllerName 
  ) 
{ 
  EFI_STATUS                           Status; 
  EFI_<<PROTOCOL_NAME_Cx>>_PROTOCOL    *<<ProtocolNameCx>>; 
  EFI_OPEN_PROTOCOL_INFORMATION_ENTRY  *OpenInfoBuffer; 
  UINTN                                EntryCount; 
  UINTN                                Index; 
  EFI_<<PROTOCOL_NAME_Py>>_PROTOCOL    *<<ProtocolNamePy>>; 
  <<DRIVER_NAME>>_PRIVATE_DATA         *Private; 
 
  // 
  // This version cannot return controller names, so ChildHandle  
  // must not be NULL 
  // 
  if (ChildHandle == NULL) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Make sure this driver is currently managing ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNameCx>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (Status != EFI_ALREADY_STARTED) { 
    gBS->CloseProtocol ( 
           ControllerHandle,  
           &gEfi<<ProtocolNameCx>>ProtocolGuid,   
           g<<DriverName>>DriverBinding.DriverBindingHandle, 
           ); 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Retrieve the list of agents that are consuming one of the protocols 
  // on ControllerHandle that the children consume 
  // 
  Status = gBS->OpenProtocolInformation ( 
                  ControllerHandle, 
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  &OpenInfoBuffer, 
                  &EntryCount 
                  ); 
  if (EFI_ERROR (Status)) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // See if one of the agents is ChildHandle 
  // 
  Status = EFI_UNSUPPORTED; 
  for (Index = 0; Index < EntryCount; Index++) { 
    if (OpenInfoBuffer[Index].ControllerHandle == ChildHandle &&   
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        OpenInfoBuffer[Index].Attributes&EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) 
{ 
      Status = EFI_SUCCESS; 
    } 
  } 
 
  // 
  // Free the information buffer 
  // 
  gBS->FreePool (OpenInfoBuffer); 
 
  // 
  // If ChildHandle was not one of the agents, then return EFI_UNSUPPORTED 
  // 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the instance of a produced protocol from ChildHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ChildHandle,  
                  &gEfi<<ProtocolNamePy>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNamePy>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ChildHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the private context data structure for ChildHandle 
  // 
  Private = <<DRIVER_NAME>>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Py>>_THIS ( 
              <<ProtocolNamePy>> 
              ); 
 
  // 
  // Look up the controller name from a dynamic table of child controller names 
  // 
  return EfiLibLookupUnicodeString ( 
           Language,  
           g<<DriverName>>ComponentName.SupportedLanguages, 
           Private->ControllerNameTable,  
           ControllerName 
           ); 
} 

Example 10-8.  Bus Driver with Dynamic Child Names 
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11 
Driver Configuration Protocol 

The Driver Configuration Protocol allows users to set the configuration options for the devices that 
drivers manage. This protocol applies only to EFI drivers that follow the EFI Driver Model, which 
includes the following: 

• Device drivers 
• Bus drivers 
• Hybrid drivers 

Root bridge drivers, service drivers, and initializing drivers do not produce this protocol. If a driver 
requires configuration information, the Driver Configuration Protocol must be implemented. DIG64 
requires that this protocol be implemented in the EFI drivers that own hardware devices. 

The Driver Configuration Protocol provides a user interface for the user to configure devices in one 
or more languages. At a minimum, the English language should be supported. If multiple drivers 
are managing the same controller handle, then there may be multiple Driver Configuration 
Protocols present for that controller handle. The consumers of the Driver Configuration Protocol 
will have to decide how the multiple drivers that support configuration are presented to the user. 
For example, a PCI bus driver may produce a mechanism to enable or disable a specific slot, and 
the driver for the SCSI adapter that is inserted into that same PCI slot may produce configuration 
options for the SCSI host controller. Both set of configuration options may be useful to the user 
when managing the platform. The protocol interface structure for the Driver Configuration Protocol 
is listed below for reference. 

Protocol Interface Structure 
typedef struct _EFI_DRIVER_CONFIGURATION_PROTOCOL { 
  EFI_DRIVER_CONFIGURATION_SET_OPTIONS     SetOptions; 
  EFI_DRIVER_CONFIGURATION_OPTIONS_VALID   OptionsValid; 
  EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS  ForceDefaults; 
  CHAR8                                    *SupportedLanguages; 
} EFI_DRIVER_CONFIGURATION_PROTOCOL; 

 

The Driver Configuration Protocol advertises the languages it supports in a data field called 
SupportedLanguages. This data filed is a null-terminated ASCII string that contains one or 
more ISO 639-2 language codes. Each language code is composed of 3 ASCII characters. For 
example, English is specified by “eng,” Spanish by “spa,” and French by “fra.”  A consumer of the 
Driver Configuration Protocol can parse the SupportedLanguages data field to see if the 
protocol supports a language in which the consumer is interested. The implementation of the Driver 
Configuration Protocol can also use this data field to see if a requested language is supported. 
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The SetOptions() service uses the console-related protocols such as the Simple Input Protocol 
and the Simple Text Output Protocol to allow the user to adjust the configuration options for a 
specific device that is being managed by the driver. This service is the only way that the driver is 
allowed to interact with the user through the console device. The driver may provide the typical 
banner type information here and provide an interactive menu if required. The design of the user 
interface should target the worst-case console configuration, which is a serial terminal such as 
VT-100 at 9600 baud. When choosing input keys for the user interface, the worst-case console 
configuration should be considered. See section 5.16 for suggestions on selecting input keys. 

The OptionsValid() service is used to check if the current set of configuration options are 
valid for a specific device, and ForceDefaults() is an optional service that provides a 
mechanism to place a device in a default configuration. 

The implementations of the Driver Configuration Protocol will vary in complexity depending on 
the driver type. A device driver is fairly simple to implement. A bus driver or a hybrid driver may 
be more complex because it may have to provide configuration settings for both the bus controller 
and the child controllers. Both of these implementations will be discussed in the following sections. 

The EFI_DRIVER_CONFIGURATION_PROTOCOL must be installed onto the same handle as the 
EFI_DRIVER_BINDING_PROTOCOL. This install operation is done in the driver’s entry point. 
Installing the EFI_DRIVER_BINDING_PROTOCOL and the 
EFI_DRIVER_CONFIGURATION_PROTOCOL is covered in section 7.1. If an error is generated 
when installing the Driver Configuration Protocol, then this error should not cause the entire driver 
to fail.  

The implementation of the Driver Configuration Protocol for a specific driver is typically found in 
the file DriverConfiguration.c. This file contains the instance of the 
EFI_DRIVER_CONFIGURATION_PROTOCOL along with the implementation of the 
SetOptions(), OptionsValid(), and ForceDefault() services. Example 11-1 below 
shows a template for the implementation of the Driver Configuration Protocol. 
EFI_DRIVER_CONFIGURATION_PROTOCOL g<<DriverName>>DriverConfiguration = { 
  <<DriverName>>DriverConfigurationSetOptions, 
  <<DriverName>>DriverConfigurationOptionsValid, 
  <<DriverName>>DriverConfigurationForceDefaults, 
  "eng" 
}; 
 
EFI_STATUS 
<<DriverName>>DriverConfigurationSetOptions ( 
  IN  EFI_DRIVER_CONFIGURATION_PROTOCOL         *This, 
  IN  EFI_HANDLE                                ControllerHandle, 
  IN  EFI_HANDLE                                ChildHandle  OPTIONAL, 
  IN  CHAR8                                     *Language, 
  OUT EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED  *ActionRequired 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>DriverConfigurationOptionsValid ( 
  IN  EFI_DRIVER_CONFIGURATION_PROTOCOL  *This, 
  IN  EFI_HANDLE                         ControllerHandle, 
  IN  EFI_HANDLE                         ChildHandle  OPTIONAL 
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  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>DriverConfigurationForceDefaults ( 
  IN  EFI_DRIVER_CONFIGURATION_PROTOCOL         *This, 
  IN  EFI_HANDLE                                ControllerHandle, 
  IN  EFI_HANDLE                                ChildHandle  OPTIONAL, 
  IN  UINT32                                    DefaultType, 
  OUT EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED  *ActionRequired 
  ) 
{ 
} 

Example 11-1.  Driver Configuration Protocol Template 

Once a Driver Configuration Protocol is implemented, it can be tested with the EFI Shell command 
drvcfg. Platform vendors are also expected to implement extensions to the EFI boot manager that 
allow the user to configure the various devices in a platform. These EFI boot manager extensions 
use the services of the Component Name Protocol to display the names of devices and it will use 
the services of the Driver Configuration Protocol to allow the user to adjust the configuration 
settings for each device. The platform vendor also has the ability to validate the configuration of all 
the devices in the system prior to booting. In addition, the devices can be reset to their default 
configurations. Forcing default configurations may be automated if the platform firmware detects a 
corrupt configuration, or the platform vendor may allow the user to select a menu item to force 
defaults on a specific device or all devices at once. 

The Driver Configuration Protocol is available only for devices that a driver is currently managing. 
Because EFI supports connecting the minimum number of drivers and devices that are required to 
establish consoles and gain access to the boot device, there may be many configurable devices that 
cannot be configured. As a result, when the user wishes to enter a “platform configuration” mode, 
the EFI boot manager will be required to connect all drivers to all devices, so the user will be able 
to see all the configurable devices in the platform. 

11.1 Device Drivers 

Device drivers will use the template from Example 11-1. Example 11-2 below shows the additional 
code that should be added to be beginning of each of the services of the Driver Configuration 
Protocol. The first step is to evaluate ChildHandle. If it is not NULL, then a request is being 
made to configure a child device. Because device drivers do not produce children, ChildHandle 
must be NULL. The next check is to make sure that ControllerHandle represents a device that 
the device driver is currently managing. This check is done by attempting to open a protocol that 
was opened BY_DRIVER in the Start() service. If the return code is not 
EFI_ALREADY_STARTED, then ControllerHandle is not being managed by this driver, so 
EFI_UNSUPPORTED is returned. The final step is to retrieve a protocol that was produced by the 
device driver from ControllerHandle and then use a CR() macro to retrieve the private 
context data structure for the device being managed. 
  EFI_STATUS                         Status; 
  EFI_<<PROTOCOL_NAME_Cx>>_PROTOCOL  *<<ProtocolNameCx>>; 
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  EFI_<<PROTOCOL_NAME_Py>>_PROTOCOL  *<<ProtocolNamePy>>; 
  <<DRIVER_NAME>>_PRIVATE_DATA       *Private; 
 
  // 
  // Child handle must be NULL for a device driver 
  // 
  if (ChildHandle != NULL) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Make sure this driver is currently managing ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNameCx>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (Status != EFI_ALREADY_STARTED) { 
    gBS->CloseProtocol ( 
           ControllerHandle,  
           &gEfi<<ProtocolNameCx>>ProtocolGuid,   
           g<<DriverName>>DriverBinding.DriverBindingHandle, 
           ); 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // Retrieve the an instance of a produced protocol from ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNamePy>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNamePy>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the private context data structure for ControllerHandle 
  // 
  Private = <<DRIVER_NAME>>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Py>>_THIS ( 
              <<ProtocolNamePy>> 
              ); 

Example 11-2.  Retrieving the Private Context Data Structure 

The implementation of SetOptions() will use the Console I/O Services provided by the Simple 
Input Protocol and the Simple Text Output Protocol to interact with the user. These protocols are 
described in sections 10.2 and 10.3 of the EFI 1.10 Specification. More advanced user interfaces 
may choose to use the services of the UGA Draw Protocol and the Simple Pointer Protocols 
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described in sections 10.5 and 10.10 of the EFI 1.10 Specification. SetOptions() shall not 
directly access a serial port, keyboard controller, or a VGA controller. The Simple Input Protocol is 
used to access the console input device that is available from the EFI System Table through 
gST->ConIn. The Simple Text Output Protocol is used to access the console output device that is 
available from the EFI System Table through gST->ConOut. The specific design of the user 
interface and the methods that are used to support multiple languages are not covered here. These 
design decisions are up to the individual driver writer. 

SetOptions() stores its configuration information in nonvolatile storage. This configuration 
information should be stored with the device, so that the configuration information travels with the 
device if it is moved between platforms. The exact method for retrieving and storing configuration 
information on a device is device specific and will not be covered here. Typically, drivers will use 
the services of a bus I/O protocol to access the resources on a device to retrieve and store 
configuration information. For example, if a PCI controller has a flash device attached to it, the 
management of that flash device may be exposed through I/O or memory-mapped I/O registers 
described in the BARs associated with the PCI device. A PCI device driver can use the 
Io.Read(), Io.Write(), Mem.Read(), or Mem.Write() services of the PCI I/O Protocol 
to access the flash contents to retrieve and store configuration settings. Devices that are integrated 
onto the motherboard or are part of a FRU may use the EFI Variable Services such as 
gRT->GetVariable() and gRT->SetVariable() to store configuration information. 

The OptionsValid() service will not interact with the user. Instead, it will read the device’s 
current configuration information and make sure that the information contains a valid set of 
configuration options. If the configuration information cannot be retrieved or if the configuration 
information appears to be corrupt, then an error is returned. 

The ForceDefault() service is optional and may simply return EFI_UNSUPPORTED. 
If this service is implemented, then it stores a valid set of default configuration settings in 
nonvolatile storage. 

The implementation of the SetOptions() service could use OptionsValid() and 
ForceDefaults() to make sure the current options are valid and, if they are not valid, place 
the controller in its default configuration. The code fragment in Example 11-3 below shows the 
code that could be added to SetOptions() to implement this feature. 
EFI_STATUS                                Status; 
EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED  ActionRequired; 
 
Status = This->OptionsValid (This, ControllerHandle, ChildHandle); 
if (EFI_ERROR (Status)) { 
  Status = This->ForceDefaults ( 
                   This,  
                   ControllerHandle,  
                   ChildHandle, 
                   EFI_DRIVER_CONFIGURATION_SAFE_DEFAULTS, 
                   &ActionRequired 
                   ); 
} 

Example 11-3.  Validating Options in SetOptions() 
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11.2 Bus Drivers and Hybrid Drivers 

A bus driver or hybrid driver may provide many levels of support for the Driver Configuration 
Protocol. These drivers can manage configuration settings for the bus controllers that they manage 
and not provide any configuration settings for the children that they produce. This choice means 
that they behave exactly like the device drivers described in section 11.1. This section describes 
what bus drivers and hybrid drivers need to do to manage configuration settings for the child 
handles that they produce.  

Example 11-4 below shows the additional code that should be added to the beginning of each of the 
services of the Driver Configuration Protocol. The first step is to evaluate ChildHandle. If it is 
NULL, then a request is being made to configure the bus controller. If it is not NULL, then a request 
is being made to configure a child. The ControllerHandle must always be checked to make 
sure it represents a device that the driver is currently managing. This check is done by attempting to 
open a protocol that was opened BY_DRIVER in the Start() service. If the return code is not 
EFI_ALREADY_STARTED, then ControllerHandle is not being managed by this driver, so 
EFI_UNSUPPORTED is returned. If ChildHandle is not NULL, then an additional check must 
be made to verify that ChildHandle was produced by this driver. If that check passes, then a 
protocol that was produced on the ChildHandle is retrieved and the CR() macro is used to 
retrieve the private context data structure for ChildHandle. 
  EFI_STATUS                           Status; 
  EFI_<<PROTOCOL_NAME_Cx>>_PROTOCOL    *<<ProtocolNameCx>>; 
  EFI_<<PROTOCOL_NAME_Py>>_PROTOCOL    *<<ProtocolNamePy>>; 
  EFI_<<PROTOCOL_NAME_Pz>>_PROTOCOL    *<<ProtocolNamePz>>; 
  EFI_OPEN_PROTOCOL_INFORMATION_ENTRY  *OpenInfoBuffer; 
  UINTN                                EntryCount; 
  UINTN                                Index; 
  <<DRIVER_NAME>>_PRIVATE_DATA         *Private; 
 
  // 
  // Make sure this driver is currently managing ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNameCx>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (Status != EFI_ALREADY_STARTED) { 
    gBS->CloseProtocol ( 
           ControllerHandle,  
           &gEfi<<ProtocolNameCx>>ProtocolGuid,   
           g<<DriverName>>DriverBinding.DriverBindingHandle, 
           ); 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // If child handle is NULL, then the bus controller is being configured 
  // 
  if (ChildHandle == NULL) { 
    // 
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    // Retrieve the an instance of a produced protocol from ControllerHandle 
    // 
    Status = gBS->OpenProtocol ( 
                    ControllerHandle,  
                    &gEfi<<ProtocolNamePy>>ProtocolGuid,   
                    (VOID **)&<<ProtocolNamePy>>, 
                    g<<DriverName>>DriverBinding.DriverBindingHandle, 
                    ControllerHandle, 
                    EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                   ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Retrieve the private context data structure for ControllerHandle 
    // 
    Private = <<DRIVER_NAME>>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Py>>_THIS ( 
                <<ProtocolNamePy>> 
                ); 
 
    // 
    // Add user interface code to configure the bus controller here 
    // 
 
    return EFI_SUCCESS; 
  } 
 
  // 
  // Retrieve the list of agents that are consuming one of the protocols 
  // on ControllerHandle that the children opened BY_CHILD_CONTROLLER 
  // 
  Status = gBS->OpenProtocolInformation ( 
                  ControllerHandle, 
                  &gEfi<<ProtocolNameCx>>ProtocolGuid,   
                  &OpenInfoBuffer, 
                  &EntryCount 
                  ); 
  if (EFI_ERROR (Status)) { 
    return EFI_UNSUPPORTED; 
  } 
 
  // 
  // See if one of the agents is ChildHandle 
  // 
  Status = EFI_UNSUPPORTED; 
  for (Index = 0; Index < EntryCount; Index++) { 
    if (OpenInfoBuffer[Index].ControllerHandle == ChildHandle &&   
        OpenInfoBuffer[Index].Attributes&EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) 
{ 
      Status = EFI_SUCCESS; 
    } 
  } 
 
  // 
  // Free the information buffer 
  // 
  gBS->FreePool (OpenInfoBuffer); 
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  // 
  // If ChildHandle was not one of the agents, then return EFI_UNSUPPORTED 
  // 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the instance of a produced protocol from ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ChildHandle,  
                  &gEfi<<ProtocolNamePz>>ProtocolGuid,   
                  (VOID **)&<<ProtocolNamePz>>, 
                  g<<DriverName>>DriverBinding.DriverBindingHandle, 
                  ChildHandle, 
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                 ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Retrieve the private context data structure for ControllerHandle 
  // 
  Private = <<DRIVER_NAME>>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pz>>_THIS ( 
              <<ProtocolNamePz>> 
              ); 
 
  // 
  // Add user interface code to configure the child controller here 
  // 
 
  return EFI_SUCCESS; 
} 

Example 11-4.  Retrieving the Private Context Data Structure 

11.3 Implementing SetOptions() as an Application 

One possible design of the Driver Configuration Protocol is to implement the user interface as an 
EFI application that is stored with the device or in an EFI system partition. The implementation of  
the SetOptions() service would be changed so it does not produce a user interface. It would 
perform the same parameter checks as before and it would likely still retrieve the private context 
data structure. Then, instead of producing a user interface, it would use the gBS->LoadImage() 
and gBS->StartImage() services to load and execute the EFI application that provides the 
user interface. This application can then either directly update the new configuration settings, or it 
can pass the new configuration settings back to SetOptions(). 
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12 
Driver Diagnostics Protocol 

The Driver Diagnostics Protocol allows diagnostics to be executed on the devices that drivers 
manage. This protocol applies only to EFI drivers that follow the EFI Driver Model, which includes 
the following: 

• Device drivers 
• Bus drivers 
• Hybrid drivers 

Root bridge drivers, service drivers, and initializing drivers do not produce this protocol. If a driver 
implements diagnostic services, then the Driver Diagnostics Protocol must be implemented. DIG64 
requires that this protocol be implemented in the EFI drivers that own hardware devices. 

The Driver Diagnostics Protocol provides diagnostics results in one or more languages. At a 
minimum, the English language should be supported. If multiple drivers are managing the same 
controller handle, then there may be multiple instances of Driver Diagnostics Protocol present for 
that controller handle. The consumers of the Driver Diagnostics Protocol will have to decide how 
the multiple drivers that support diagnostics are presented to the user. For example, a PCI bus 
driver may produce a mechanism to verify the functionality of a specific PCI slot, and the driver for 
a SCSI adapter that is inserted into that same PCI slot may produce diagnostics for the SCSI host 
controller. Both sets of diagnostics may be useful to the user when testing the platform. The 
protocol interface structure for the Driver Diagnostics Protocol is listed below for reference. 

Protocol Interface Structure 
typedef struct _EFI_DRIVER_DIAGNOSTICS_PROTOCOL { 
  EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS  RunDiagnostics; 
  CHAR8                                   *SupportedLanguages; 
} EFI_DRIVER_DIAGNOSTICS_PROTOCOL; 

 

The Driver Diagnostics Protocol advertises the languages it supports in a data field called 
SupportedLanguages. This data filed is a null-terminated ASCII string that contains one or 
more ISO 639-2 language codes. Each language code is composed of three ASCII characters. For 
example, English is specified by “eng,” Spanish by “spa,” and French by “fra.”  A consumer of the 
Driver Diagnostics Protocol can parse the SupportedLanguages data field to see if the 
protocol supports a language in which the consumer is interested. This data field can also be used 
by the implementation of the Driver Diagnostics Protocol to see if a requested language is 
supported. 

The RunDiagnostics() service runs diagnostics on the controller that a driver is managing or a 
child that the driver has produced. This service is not allowed to use any of the console-I/O-related 
protocols. Instead, the results of the diagnostics are returned to the caller in a buffer, and the caller 
may choose to log the results or display the results of the diagnostics that were executed. The 
format of the results must be clear and intuitive to the user. 
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The implementations of the Driver Diagnostics Protocol will change in complexity depending on 
the driver type. A device driver is fairly simple to implement. A bus driver or a hybrid driver may 
be more complex because it may provide diagnostics for both the bus controller and the child 
controllers. These implementations will be discussed in the following sections. 

The EFI_DRIVER_DIAGNOSTICS_PROTOCOL must be installed on the same handle as the 
EFI_DRIVER_BINDING_PROTOCOL. This install operation is done in the driver’s entry point. 
Installing the EFI_DRIVER_BINDING_PROTOCOL and the 
EFI_DRIVER_DIAGNOSTICS_PROTOCOL is covered in section 7.1. If an error is generated 
when installing the Driver Diagnostics Protocol, then this error should not cause the entire driver 
to fail.  

The implementation of the Driver Diagnostics Protocol for a specific driver is typically found in the 
file DriverDiagnostics.c. This file contains the instance of the 
EFI_DRIVER_DIAGNOSTIOCS_PROTOCOL along with the implementation of 
RunDiagnostics(). Example 12-1 below shows the template for the Driver 
Diagnostics Protocol. 
EFI_DRIVER_DIAGNOSTICS_PROTOCOL g<<DriverName>>DriverDiagnostics = { 
  <<DriverName>>DriverDiagnosticsRunDiagnostics, 
  "eng" 
}; 
 
EFI_STATUS 
<<DriverName>>DriverDiagnosticsRunDiagnostics ( 
  IN  EFI_DRIVER_DIAGNOSTICS_PROTOCOL  *This, 
  IN  EFI_HANDLE                       ControllerHandle, 
  IN  EFI_HANDLE                       ChildHandle  OPTIONAL, 
  IN  EFI_DRIVER_DIAGNOSTIC_TYPE       DiagnosticType, 
  IN  CHAR8                            *Language, 
  OUT EFI_GUID                         **ErrorType, 
  OUT UINTN                            *BufferSize,  
  OUT CHAR16                           **Buffer 
  ) 
{ 
} 

Example 12-1.  Driver Diagnostics Protocol Template 

The DiagnosticType parameter tells the driver the type of diagnostics to perform. Standard 
diagnostics must be implemented, and they test basic functionality and should complete in less 
than 30 seconds. Extended diagnostics are recommended and may take more than 30 seconds 
to execute. Manufacturing diagnostics are intended to be used in a manufacturing and test 
environment. 

ErrorType, BufferSize, and Buffer are the return parameters that report the results of the 
diagnostic. Buffer begins with a NULL-terminated Unicode string, so the caller of the 
RunDiagnostics() service can display a human-readable diagnostic result. ErrorType is a 
GUID that defines the format of the data buffer that follows the NULL-terminated Unicode string. 
BufferSize is the size of Buffer that includes the NULL-terminated Unicode string and the 
GUID-specific data buffer. The implementation of RunDiagnostics() must allocate Buffer 
using the service gBS->AllocatePool(), and it is the caller’s responsibility to free this buffer 
with gBS->FreePool().  



 Draft for Review Driver Diagnostics Protocol 

Version 0.9 July 2004 241 

Once a Driver Diagnostics Protocol is implemented, it can be tested with the EFI Shell command 
drvdiag. Platform vendors are also expected to implement extensions to the EFI boot manager 
that allow the user to execute diagnostics on the various devices in a platform. These EFI boot 
manager extensions use the services of the Component Name Protocol to display the names of 
devices, and the services of the Driver Diagnostics Protocol are used to execute diagnostics on 
each device.  

The platform vendor also has the ability to automatically execute diagnostics on devices each time 
the platform is booted. If all the diagnostics are executed, then the boot time may increase. If none 
of the diagnostics is executed, then there is a chance an operating system may fail to boot due to a 
failure that could have been detected. The platform vendor will have to make a policy decision 
regarding diagnostics and may choose to add setup options that allow the user to enable or disable 
the execution of diagnostics on each boot. 

The Driver Diagnostics Protocol is available only for devices that a driver is currently managing. 
Because EFI 1.10 supports connecting the minimum number of drivers and devices that are 
required to establish console and gain access to the boot device, there may be many unconnected 
devices that support diagnostics. As a result, when the user wishes to enter a “platform 
configuration” mode, the EFI boot manager will be required to connect all drivers to all devices, so 
that the user will be able to see all the devices that support diagnostics. 

12.1 Device Drivers 

Device drivers that implement the Driver Diagnostics Protocols need to make sure that 
ChildHandle is NULL and that ControllerHandle represents a device that the driver is 
currently managing. Example 11-3 shows the steps required to check these parameters and retrieve 
the private context data structure. If these checks pass, then the diagnostic will be executed and 
results will be returned. The diagnostic code will typically use the services of the protocols that the 
driver produces and the services of the protocols that the driver consumes to verify the operation of 
the controller. For example, a PCI device driver that consumes the PCI I/O Protocol and produces 
the Block I/O Protocol can use the services of the PCI I/O Protocol to verify the operation of the 
PCI controller. The Block I/O Services can be used to verify that the entire driver is working 
as expected. 
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12.2 Bus Drivers and Hybrid Drivers 

Bus drivers and hybrid drivers that implement the Driver Diagnostics Protocols need to make sure 
that ControllerHandle and ChildHandle represent a device that the driver is currently 
managing. Example 11-4 shows the steps that are required to check these parameters and retrieve 
the private context data structure. If these checks pass, then the diagnostic will be executed and the 
results will be returned. The diagnostic code will typically use the services of the protocols that the 
driver produces and the services of the protocols that the drivers consumes to verify the operation 
of the controller. For example, a PCI device driver that consumes the PCI I/O Protocol and 
produces the Block I/O Protocol can use the services of the PCI I/O Protocol to verify the operation 
of the PCI controller. The Block I/O Services can be used to verify that the entire driver is working 
as expected. Bus drivers and hybrid drivers should provide diagnostics for both the bus controller 
and the child controllers that these types of drivers produce. Implementing diagnostics for only the 
bus controller or only the child controllers is strongly discouraged. 

12.3 Implementing RunDiagnostics() as an Application 

One possible design of the Driver Diagnostics Protocol is to implement the diagnostics as an EFI 
application that is stored with the device or in an EFI system partition. The implementation of 
RunDiagnostics() would be changed so that it does not directly execute the diagnostics. It 
would likely perform the same parameter checks as before and it would still retrieve the private 
context data structure. Then, instead of executing diagnostics, it would use the 
gBS->LoadImage() and gBS->StartImage() services to load and execute the EFI 
application that runs the diagnostics. This application would then return the results of the 
diagnostics back to RunDiagnostics(). 
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13 
Bus Specific Driver Override Protocol 

Some bus drivers are required to produce the Bus Specific Driver Override Protocol. The driver 
model for a specific bus type must declare if this protocol is required or not. In general, this 
protocol applies only to bus types that provide containers for drivers on their child devices. At this 
time, the only bus type that is required to produce this protocol is PCI, and the container for drivers 
is the PCI option ROM. The PCI bus driver is required to produce the Bus Specific Driver Override 
Protocol for PCI devices that have an attached PCI option ROM such that the PCI option ROM 
contains one or more loadable EFI drivers. If a PCI option ROM is not present or the PCI option 
ROM does not contain any loadable EFI drivers, than a Bus Specific Driver Override Protocol will 
not be produced for that PCI device. 

The Bus Specific Driver Override Protocol is consumed only by the EFI Boot Service 
ConnectController() to determine the order that EFI drivers are used to attempt to start a 
device. An EFI driver never consumes the Bus Specific Driver Override Protocol. 

The Bus Specific Driver Override Protocol is simple to implement. It contains one service called 
GetDriver() that returns an ordered list of image handles for the EFI drivers that were loaded 
from the EFI driver container. For PCI, the order in which the image handles are returned matches 
the order in which the EFI drivers were found in the PCI option ROM, from the lowest address to 
the highest address. The PCI bus driver is responsible for enumerating the PCI devices on a PCI 
bus. When a PCI device is discovered, the PCI device is also checked to see if it has an attached 
PCI option ROM. The PCI option ROM contents must follow the PCI 2.2 Specification for storing 
one or more images. The PCI bus driver will walk the list of images in a PCI option ROM looking 
for EFI drivers. If an EFI driver is found, it is optionally decompressed using the Decompress 
Protocol and then loaded, and the driver entry point is called using the EFI Boot Services 
LoadImage() and StartImage(). If LoadImage() does not return an error, then the EFI 
driver must be added to the end of the list of drivers that the Bus Specific Driver Override Protocol 
for that PCI device will return when its GetDriver() service is called. This addition could be 
implemented in many ways, including an array of image handles or a linked list of image handles. 

The following group of code examples shows an implementation of the Bus Specific Driver 
Override Protocol using an array allocated from the pool to manage the list of EFI driver image 
handles. Example 13-1 shows a fragment of the private context structure that is used to manage the 
child-device-related information in a bus driver. Most private data structures in EFI drivers should 
contain a Signature field. This field is used in debug builds to make sure that the correct 
structure is being used by an EFI driver. If a bad pointer is passed into a function that examines the 
signature, then an ASSERT() will be generated. The signature of “Priv” is just an example. Each 
EFI driver should create a new signature value. The BusSpecificDriverOverride field is 
the protocol instance for the Bus Specific Driver Override Protocol. The NumberOfHandles 
field is the number of image handles that the GetDriver() function of the Bus Specific Driver 
Override Protocol can return. The HandleBufferSize field is the number of handles that can 
be stored in the array HandleBuffer, and the HandleBuffer field is the array of image 
handles that may be returned by the GetDriver() function of the Bus Specific Driver Override 
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Protocol. The CR() macro at the bottom of Example 13-1 will convert the This pointer for the 
Bus Specific Driver Override Protocol to a pointer to the PRIVATE structure. This pointer is used 
by the GetDriver() function to retrieve the private context structure. 
#define PRIVATE_DATA_SIGNATURE   EFI_SIGNATURE_32('P','r','i','v') 
 
typedef struct { 
  UINTN                                          Signature; 
  . . .  
  EFI_PCI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL  BusSpecificDriverOverride; 
  UINTN                                          NumberOfHandles; 
  UINTN                                          HandleBufferSize; 
  EFI_HANDLE                                     *HandleBuffer; 
  . . . 
} PRIVATE; 
 
#define PRIVATE_FROM_BUS_SPECIFIC_DRIVER_OBVERRIDE_THIS(a) \ 
  CR(a, PRIVATE, BusSpecificDriverOverride, PRIVATE_DATA_SIGNATURE) 

Example 13-1.  Private Context for a Bus Specific Driver Override Protocol 

Example 13-2 is an example implementation of the GetDriver() function of the Bus Specific 
Driver Override Protocol. The first step is to retrieve the private context structure from the This 
pointer. This retrieval is done with the CR() macro from Example 13-1. The next step is to see if 
there are any image handles in the private structure. If there are none, then EFI_NOT_FOUND is 
returned. The next step is to see if DriverImageHandle is a pointer to NULL. If it is, then the 
first image handle from HandleBuffer is returned. If DriverImageHandle is not a pointer 
to NULL, then a search is made through HandleBuffer to find a matching handle. If a matching 
handle is not found, then EFI_INVALID_PARAMETER is returned. If a matching handle is found, 
then the next handle in the array is returned. If the matching handle is the last handle in the array, 
then EFI_NOT_FOUND is returned. 
EFI_STATUS 
GetDriver ( 
  IN     EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL  *This, 
  IN OUT EFI_HANDLE                                 *DriverImageHandle 
  ) 
 
{ 
  UINTN    Index; 
  PRIVATE  Private; 
 
  Private = PRIVATE_FROM_BUS_SPECIFIC_DRIVER_OVERRIDE_THIS(This);   
 
  if (Private->NumberOfHandles == 0) { 
    return EFI_NOT_FOUND; 
  } 
  if (*DriverImageHandle == NULL) { 
    *DriverImageHandle = Private->HandleBuffer[0]; 
    return EFI_SUCCESS; 
  } 
  for (Index = 0; Index < Private->NumberOfHandles; Index++) { 
    if (*DriverImageHandle == Private->HandleBuffer[Index]) { 
      Index = Index + 1; 
      if (Index < Private->NumberOfHandles) { 
        *DriverImageHandle = Private->HandleBuffer[Index]; 
        return EFI_SUCCESS; 
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      } else { 
        return EFI_NOT_FOUND; 
      } 
    } 
  } 
  return EFI_INVALID_PARAMETER; 
} 

Example 13-2.  GetDriver() Function of a Bus Specific Driver Override Protocol 

Example 13-3 is an example implementation of a worker function that adds the image handle of a 
driver to the array. This function would be used when the PCI bus driver is scanning the PCI option 
ROMs for EFI drivers. As each EFI driver is loaded, this function would be called to add the image 
handle of the EFI driver to the Bus Specific Driver Override Protocol for the PCI controller that is 
associated with the PCI option ROM. 

If there is not enough room in the image handle array, then an array with ten more handles is 
allocated, the contents of the old array are transferred to the new array, and the old array is freed. If 
there is not enough memory to allocate the new array, then EFI_OUT_OF_RESOURCES is 
returned. Once there is enough room to store the new image handle, the image handle is added to 
the end of the array and EFI_SUCCESS is returned. 

 
EFI_STATUS 
AddDriver( 
  IN PRIVATE     *Private, 
  IN EFI_HANDLE  DriverImageHandle 
  ) 
 
{ 
  EFI_STATUS  Status; 
  EFI_HANDLE  *NewBuffer; 
 
  if (Private->NumberOfHandles >= Private->HandleBufferSize) { 
    Status = gBS->AllocatePool ( 
                    EfiBootServicesMemory, 
                    (Private->HandleBufferSize + 10) * sizeof (EFI_HANDLE), 
                    (VOID **)&NewBuffer 
                    ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    gBS->CopyMem ( 
           NewBuffer,  
           Private->HandleBuffer,  
           Private->HandleBufferSize * sizeof (EFI_HANDLE) 
           ); 
 
    Private->HandleBufferSize += 10; 
    if (Private->HandleBuffer) { 
      gBS->FreePool ( Private->HandleBuffer); 
    } 
    Private->HandleBuffer = NewBuffer; 
  } 
 
  Private->HandleBuffer[Private->NumberOfHandles] = DriverImageHandle; 
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  Private->NumberOfHandles++; 
  return EFI_SUCCESS; 
} 

Example 13-3.  AddDriver() Worker Function 

Example 13-4 is an example implementation of a constructor function that initializes the fields of 
the private context structure that are related to this implementation of the Bus Specific Driver 
Override Protocol. There is only one service in the Bus Specific Driver Override Protocol, so the 
GetDriver() service is initialized. In addition, the array of image handles is initialized to 
contain zero handles. The first call to the AddDriver() worker function will allocate space for 
up to ten driver image handles. 
EFI_STATUS 
InitializeBusSpecificDriverOverrideInstance ( 
  PRIVATE  *Private 
  ) 
 
{ 
  Private->BusSpecificDriverOverride.GetDriver = GetDriver; 
  Private->NumberOfHandles = 0; 
  Private->HandleBuffer = NULL; 
  Private->HandleBufferSize = 0; 
  return EFI_SUCCESS; 
} 

Example 13-4.  Bus Specific Driver Override Protocol Constructor 



 Draft for Review  

Version 0.9 July 2004 247 

14 
PCI Driver Design Guidelines 

There are several classes of PCI drivers that cooperate to provide support for PCI controllers in a 
platform. Table 14-1 lists these PCI drivers. 

Table 14-1. Classes of PCI Drivers 

Class of Driver Description 

Root bridge driver Produces one or more instances of the PCI Root Bridge I/O Protocol. 

PCI bus driver Consumes the PCI Root Bridge I/O Protocol, produces a child handle for 
each PCI controller, and installs the Device Path Protocol and the PCI I/O 
Protocol onto each child handle.  

PCI driver Consumes the PCI I/O Protocol and produces an I/O abstraction that 
provides services for the console devices and boot devices that are required 
to boot an EFI-compliant operating system. 

 

This chapter will concentrate on the design and implementation of PCI drivers. PCI drivers must 
follow all of the general design guidelines described in chapter 5. In addition, this chapter covers 
the guidelines that apply specifically to the management of PCI controllers. 

Figure 14-1 below shows an example PCI driver stack and the protocols that the PCI-related drivers 
consume and produce. In this example, the platform hardware produces a single PCI root bridge. 
The PCI Root Bridge I/O Protocol driver accesses the hardware resources to produce a single 
handle with the EFI_DEVICE_PATH_PROTOCOL and the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. The PCI bus driver consumes the services of the 
PCI_ROOT_BRIDGE_IO_PROTOCOL, and uses those services to enumerate the PCI controllers 
present in the system. In this example, the PCI bus driver detected a disk controller, a graphics 
controller, and a USB host controller. As a result, the PCI bus driver produces three child handles 
with the EFI_DEVICE_PATH_PROTOCOL and the EFI_PCI_IO_PROTOCOL. The driver for 
the PCI disk controller consumes the services of the EFI_PCI_IO_PROTOCOL and produces two 
child handles with the EFI_DEVICE_PATH_PROTOCOL and the EFI_BLOCK_IO_PROTOCOL. 
The PCI driver for the graphics controller consumes the services of the EFI_PCI_IO_PROTOCOL 
and produces the EFI_UGA_DRAW_PROTOCOL. Finally, the PCI driver for the USB host 
controller consumes the services of the EFI_PCI_IO_PROTOCOL to produce the 
EFI_USB_HOST_CONTROLLER_PROTOCOL. It is not shown in Figure 14-1, but the 
EFI_USB_HOST_CONTROLLER_PROTOCOL would then be consumed by the USB bus driver to 
produce child handles for each USB device, and USB drivers would then manage those child 
handles. Chapter 15 contains the guidelines for designing USB drivers. 
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Figure 14-1.  PCI Driver Stack 

14.1 PCI Root Bridge I/O Protocol Drivers 

An OEM or IBV typically implements the root bridge driver that produces the PCI Root Bridge I/O 
Protocol. This code is chipset specific and directly accesses the chipset resources to produce the 
services of the PCI Root Bridge I/O Protocol. A sample driver for systems with a PC-AT-
compatible chipset is included in the EFI 1.10 Sample Implementation. The source code to this 
driver is in the directory \Efi1.1\Edk\Drivers\PcatPciRootBridge. 

14.2 PCI Bus Drivers 

The EFI 1.10 Sample Implementation contains a generic PCI bus driver. This driver uses the 
services of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL to enumerate PCI devices and 
produce child handle with an EFI_DEVICE_PATH_PROTOCOL and an 
EFI_PCI_IO_PROTOCOL. This bus type can support producing one child handle at a time by 
parsing the RemainingDevicePath in its Supported() and Start() services. However, 
producing one child handle at a time generally does not make sense because the PCI bus driver 
needs to enumerate and assign resources to all of the PCI devices before even a single child handle 
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can be produced. It does not take much extra time to produce the child handles for all the PCI 
devices that were enumerated, so it is recommended that the PCI bus driver produce all of the PCI 
devices on the first call to Start().  

If EFI-based system firmware is ported to a new platform, most of the PCI-related changes occur in 
the implementation of the root bridge driver that produces the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Customization of the PCI bus driver is discouraged. 
As a result, the design and implementation of the PCI bus driver will not be covered in detail. 

14.2.1 Hot-Plug PCI Buses 
The PCI bus driver in the EFI 1.10 Sample Implementation does not support hot-plug events in the 
preboot environment. The PCI bus driver will function correctly with hot-plug-capable hardware, 
but the hot-add, hot-remove, and hot-replace events will be allowed only while an OS that supports 
hot-plug events is executing. The PCI bus driver would require updates to support hot-plug events 
in the preboot environment. 

14.3 PCI Drivers 

PCI drivers use the services of the EFI_PCI_IO_PROTOCOL to produce one or more protocols 
that provide I/O abstractions for a PCI controller. PCI drivers follow the EFI Driver Model, so they 
may be any of the following: 

• Device drivers 
• Bus drivers 
• Hybrid drivers 

The PCI drivers for graphics controllers are typically device drivers that consume the 
EFI_PCI_IO_PROTOCOL and produce the EFI_UGA_DRAW_PROTOCOL and 
EFI_UGA_IO_PROTOCOL. The PCI drivers for USB host controllers are typically device drivers 
that consume the EFI_PCI_IO_PROTOCOL and produce the 
EFI_USB_HOST_CONTROLLER_PROTOCOL. The PCI drivers for disk controllers are typically 
bus drivers or hybrid drivers that consume the EFI_PCI_IO_PROTOCOL and 
EFI_DEVICE_PATH_PROTOCOL and produce child handles with the 
EFI_DEVICE_PATH_PROTOCOL and EFI_BLOCK_IO_PROTOCOL. PCI drivers for disk 
controllers that use the SCSI command set will also typically produce the 
EFI_SCSI_PASS_THRU_PROTOCOL for each SCSI channel that the disk controller produces. 
Chapter 16 covers the details on SCSI drivers. 

14.3.1 Supported() 
A PCI driver must implement the EFI_DRIVER_BINDING_PROTOCOL that contains the 
Supported(), Start(), and Stop() services. The Supported() service evaluates the 
ControllerHandle that is passed in to see if the ControllerHandle represents a PCI 
device that the PCI driver knows how to manage. The most common method of implementing this 
test is for the PCI driver to retrieve the PCI configuration header from the PCI controller and 
evaluate the device ID, vendor ID, and possibly the class code fields of the PCI configuration 
header. If these fields match the values that the PCI driver knows how to manage, then 
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Supported() returns EFI_SUCCESS. Otherwise, the Supported() service will return 
EFI_UNSUPPORTED. The PCI driver must be careful not to disturb the state of the PCI controller 
because a different PCI driver may currently manage the PCI controller. 

Example 14-1 below shows an example of the Supported() service for the XYZ PCI driver that 
manages a PCI controller with a vendor ID of 0x8086 and a device ID of 0xFFFE. First, it attempts 
to open the PCI I/O Protocol BY_DRIVER with OpenProtocol(). If the PCI I/O Protocol 
cannot be opened, then the PCI driver does not support the controller specified by 
ControllerHandle. If the PCI I/O Protocol is opened, then the services of the PCI I/O 
Protocol are used to read the vendor ID and device ID from the PCI configuration header. The PCI 
I/O Protocol is always closed with CloseProtocol(), and EFI_SUCCESS is returned if the 
vendor ID and device ID match.  
#define XYZ_VENDOR_ID  0x8086 
#define XYZ_DEVICE_ID  0xFFFE 
 
EFI_STATUS 
EFIAPI 
XyzDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
{ 
  EFI_STATUS           Status; 
  EFI_PCI_IO_PROTOCOL  *PciIo; 
  UINT16               VendorId; 
  UINT16               DeviceId; 
 
  // 
  // Open the PCI I/O Protocol on ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle, 
                  &gEfiPciIoProtocolGuid, 
                  (VOID **) &PciIo, 
                  This->DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Read the vendor ID from the PCI configuration header  
  // 
  Status = PciIo->Pci.Read ( 
                        PciIo, 
                        EfiPciIoWidthUint16, 
                        0, 
                        sizeof (VendorId), 
                        &VendorId 
                        ); 
  if (EFI_ERROR (Status)) { 
    goto Done; 
  } 
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  // 
  // Read the device ID from the PCI configuration header  
  // 
  Status = PciIo->Pci.Read ( 
                        PciIo, 
                        EfiPciIoWidthUint16, 
                        2, 
                        sizeof (DeviceId), 
                        &DeviceId 
                        ); 
  if (EFI_ERROR (Status)) { 
    goto Done; 
  } 
 
  // 
  // Evaluate VendorId and DeviceId 
  // 
  Status = EFI_SUCCESS; 
  if (VendorId != XYZ_VENDOR_ID || DeviceId != XYZ_DEVICE_ID) { 
    Status = EFI_UNSUPPORTED; 
  } 
 
Done: 
  // 
  // Close the PCI I/O Protocol 
  // 
   
  gBS->CloseProtocol ( 
         ControllerHandle, 
         &gEfiPciIoProtocolGuid, 
         This->DriverBindingHandle, 
         ControllerHandle 
         ); 
 
  return Status; 
} 

Example 14-1.  Supported() Service with Partial PCI Configuration Header 

The previous example performs two 16-bit reads from the PCI configuration header. The code 
would be smaller if the entire PCI configuration header was read at once. However, this would 
increase the execution time because the Supported() service would read the entire PCI 
configuration header for every ControllerHandle that was passed in. The Supported() 
service is supposed to be a small, quick check. If a more extensive evaluation of the PCI 
configuration header is required, then it may make sense to read the entire PCI configuration header 
at once. Example 14-2 below shows the same example as above, except it reads the entire PCI 
configuration header at once in 32-bit chunks. 
#define XYZ_VENDOR_ID  0x8086 
#define XYZ_DEVICE_ID  0xFFFE 
 
EFI_STATUS 
EFIAPI 
XyzDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
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  ) 
{ 
  EFI_STATUS           Status; 
  EFI_PCI_IO_PROTOCOL  *PciIo; 
  PCI_TYPE00           Pci; 
 
  // 
  // Open the PCI I/O Protocol on ControllerHandle 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle, 
                  &gEfiPciIoProtocolGuid, 
                  (VOID **) &PciIo, 
                  This->DriverBindingHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Read the entire PCI configuration header  
  // 
  Status = PciIo->Pci.Read ( 
                        PciIo, 
                        EfiPciIoWidthUint32, 
                        0, 
                        sizeof (Pci) / sizeof (UINT32), 
                        &Pci 
                        ); 
  if (EFI_ERROR (Status)) { 
    goto Done; 
  } 
 
  // 
  // Evaluate VendorId and DeviceId 
  // 
  Status = EFI_SUCCESS; 
  if (Pci.Header.VendorId != XYZ_VENDOR_ID ||  
      Pci.Header.DeviceId != XYZ_DEVICE_ID    ) { 
    Status = EFI_UNSUPPORTED; 
  } 
 
Done: 
  // 
  // Close the PCI I/O Protocol 
  // 
   
  gBS->CloseProtocol ( 
         ControllerHandle, 
         &gEfiPciIoProtocolGuid, 
         This->DriverBindingHandle, 
         ControllerHandle 
         ); 
 
  return Status; 
} 

Example 14-2.  Supported() Service with Entire PCI Configuration Header 
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14.3.2 Start() and Stop() 
The Start() service of the Driver Binding Protocol for a PCI driver also opens the PCI I/O 
Protocol BY_DRIVER. If the PCI driver is a bus driver or a hybrid driver, then the Device Path 
Protocol will also be opened BY_DRIVER. In addition, all PCI drivers are required to call the 
Attributes() service of the PCI I/O Protocol to enable the I/O, memory, and bus master bits in 
the Command register of the PCI configuration header. By default, the PCI bus driver is not 
required to enable the Command register of the PCI controllers. Instead, it is the responsibility of 
the Start() service to enable these bits and of the Stop() service to disable these bits.  

There is one additional attribute that must be specified in this call to the Attributes() service. 
If the PCI controller is a bus master and capable of generating 64-bit DMA addresses, then the 
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE attribute must also be enabled. 
Unfortunately, there is no standard method for detecting if a PCI controller supports 32-bit or 64-bit 
DMA addresses. As a result, it is the PCI driver’s responsibility to inform the PCI bus driver that 
the PCI controller is capable of producing 64-bit DMA addresses. The PCI bus driver will assume 
that all PCI controllers are only capable of generating 32-bit DMA addresses unless the PCI driver 
enables the dual address cycle attribute. The PCI bus driver uses this information along with the 
services of the PCI Root Bridge I/O Protocol to optimize PCI DMA transactions. If a PCI bus 
master that is capable of 32-bit DMA addresses is present in a platform that supports more than 
4 GB of system memory, then the DMA transactions may have to be double buffered, and this 
double buffering can reduce the performance of a driver. It is also possible for some platforms to 
only support system memory above 4 GB. For these reasons, a PCI driver must always accurately 
describe the DMA capabilities of the PCI controller from the Start() service of the Driver 
Binding Protocol.  

Example 14-3 below shows the code fragment from the Start() and Stop() services of a PCI 
driver for a PCI controller that supports 64-bit DMA transactions.  

 
EFI_STATUS           Status; 
EFI_PCI_IO_PROTOCOL  *PciIo; 
 
// 
// Attributes() call from Start() service after the PCI I/O Protocol is 
// opened 
// 
Status = PciIo->Attributes (  
                  PciIo,  
                  EfiPciIoAttributeOperationEnable,  
                  EFI_PCI_DEVICE_ENABLE |                       
                  EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE, 
                  NULL 
                  ); 
 
// 
// Attributes() call from Stop() service before the PCI I/O Protocol is 
// closed 
// 
Status = PciIo->Attributes (  
                  PciIo,  
                  EfiPciIoAttributeOperationDisable,  
                  EFI_PCI_DEVICE_ENABLE |                       
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                  EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE, 
                  NULL 
                  ); 

Example 14-3.  Start() and Stop() for a 64-Bit DMA Capable PCI Controller 

Example 14-4 below shows the code fragment from the Start() and Stop() services of a PCI 
driver for a PCI controller that does not support 64-bit DMA transactions. 
EFI_STATUS           Status; 
EFI_PCI_IO_PROTOCOL  *PciIo; 
 
// 
// Attributes() call from Start() service after the PCI I/O Protocol is 
// opened 
// 
Status = PciIo->Attributes (  
                  PciIo,  
                  EfiPciIoAttributeOperationEnable,  
                  EFI_PCI_DEVICE_ENABLE, 
                  NULL 
                  ); 
 
// 
// Attributes() call from Stop() service before the PCI I/O Protocol is 
// closed 
// 
Status = PciIo->Attributes (  
                  PciIo,  
                  EfiPciIoAttributeOperationDisable,  
                  EFI_PCI_DEVICE_ENABLE, 
                  NULL 
                  ); 

Example 14-4.  Start() and Stop() for a 32-Bit DMA Capable PCI Controller 

Table 14-2 lists the #define statements that can be used with the Attributes() service. A PCI 
driver must use the Attributes() service to enable the decodes on the PCI controller, 
accurately describe the PCI controller DMA capabilities, and request that specific ISA addresses be 
forwarded to the PCI controller if the PCI controller requires ISA resources. The call to 
Attributes() will fail if the request cannot be satisfied, and if this failure occurs, then the 
Start() function should return an error. Once again, any attributes that are enabled in the 
Start() service must be disabled in the Stop() service. 

Table 14-2. PCI Attributes 

Attribute Description 

EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO Used to request the forwarding of I/O cycles 
0x0000–0x00FF (10-bit decode). 

EFI_PCI_IO_ATTRIBUTE_ISA_IO Used to request the forwarding of I/O cycles 
0x0000–0x0FFF (16-bit decode). 

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO Used to request the forwarding of I/O cycles 
0x3C6, 0x3C8, and 0x3C9 (10-bit decode). 

continued 
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Table 14-2. PCI Attributes (continued) 

Attribute Description 

EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY Used to request the forwarding of MMIO cycles 
0xA0000–0xBFFFF (24-bit decode). 

EFI_PCI_IO_ATTRIBUTE_VGA_IO Used to request the forwarding of I/O cycles 
0x3B0–0x3BB and 0x3C0–0x3DF (10-bit decode). 

EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO Used to request the forwarding of I/O cycles 
0x1F0–0x1F7, 0x3F6, 0x3F7 (10-bit decode). 

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO Used to request the forwarding of I/O cycles 
0x170–0x177, 0x376, 0x377 (10-bit decode). 

EFI_PCI_IO_ATTRIBUTE_IO Enable the I/O decode bit in the Command 
register. 

EFI_PCI_IO_ATTRIBUTE_MEMORY Enable the Memory decode bit in the Command 
register. 

EFI_PCI_IO_ATTRIBUTE_BUS_MASTER Enable the Bus Master bit in the Command 
register. 

EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE Clear for PCI controllers that cannot generate a 
DAC. 

EFI_PCI_DEVICE_ENABLE Enable I/O, Memory, and Bus Master bits in the 
Command register. 

 

Table 14-3 lists the #define statements that can be used with the GetBarAttributes() and 
SetBarAttributes() services to adjust the attributes of a memory-mapped I/O region that is 
described by a Base Address Register (BAR) of a PCI controller. The support of these attributes is 
optional, and in general, a PCI driver uses these attributes to provide hints that may be used to 
improve the performance of a PCI driver. This improved performance is especially important for 
PCI drivers that manage graphics controllers. Any BAR attributes that are set in the Start() 
service must be cleared in the Stop() service. 

Table 14-3. PCI BAR Attributes 

Attribute Description 

EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE Used to map a memory range of a BAR so 
writes are combined. 

EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED Used to map a memory range of a BAR so all 
read-write accesses are cached. 

EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE Used to disable a memory range of a BAR. 
 

Table 14-4 lists the #define statements that describe some additional attributes of a PCI 
controller. A PCI driver may retrieve the attributes of a PCI controller with the Attributes() 
service and check to see if these bits are set. The PCI driver may contain different code paths for 
embedded PCI controllers and PCI controllers that are present on add-in adapters. 
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Table 14-4. PCI Embedded Device Attributes 

Attribute Description 

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE Clear for an add-in PCI device. 

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM Clear for a physical PCI option ROM accessed through 
a ROM BAR. 

14.4 Accessing PCI Resources  

PCI drivers should only access the I/O and memory-mapped I/O resources on the PCI controllers 
that they manage. They should never attempt to access the I/O or memory-mapped I/O resource of  
a PCI controller that they are not managing. They should also never touch the I/O or memory-
mapped I/O resources of the chipset or the motherboard. 

The PCI I/O Protocol provides services that allow a PCI driver to easily access the resources of the 
PCI controllers that it is currently managing. These services hide platform-specific implementation 
details and prevent a PCI driver from inadvertently accessing the resources of the motherboard or 
other PCI controllers. The PCI I/O Protocol has also been designed to simplify the implementation 
of PCI drivers. For example, a PCI driver should never read the BARs in the PCI configuration 
header. Instead, the PCI driver passes in a BarIndex and Offset into the PCI I/O Protocol 
services. The PCI bus driver is responsible for managing the PCI controller’s BARs. 

The services of the PCI I/O Protocol that allow a PCI driver to access the resources on a PCI 
controller include the following. Chapter 17 contains several examples on how these services 
should be used. 

• PciIo->PollMem() 
• PciIo->PollIo() 
• PciIo->Mem.Read() 
• PciIo->Mem.Write() 
• PciIo->Io.Read() 
• PciIo->Io.Write() 
• PciIo->Pci.Read() 
• PciIo->Pci.Write() 
• PciIo->CopyMem() 

Another important resource that is provided through the PCI I/O Protocol is the PCI option ROM 
contents. The RomSize and RomImage fields of the PCI I/O Protocol provide access to a copy of 
the PCI option ROM contents. These fields may be useful if the PCI driver requires additional 
information from the contents of the PCI option ROM. It is important to note that the PCI option 
ROM contents cannot be modified through the RomImage field. Modifications to this buffer will 
only modify the copy of the PCI option ROM contents that are in system memory. The PCI I/O 
Protocol does not provide services to modify the contents of the actual PCI option ROM. 

14.4.1 Memory-Mapped I/O Ordering Issues  
PCI transactions follow the ordering rules defined in Appendix E of the PCI 2.3 Specification. The 
ordering rules vary for I/O, memory-mapped I/O, and PCI configuration cycles. 
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The PCI I/O Protocol Mem.Read() service generates PCI memory read cycles that are guaranteed 
to complete before control is returned to the PCI driver. However, the PCI I/O Protocol 
Mem.Write() service does not guarantee that the PCI memory cycles that are produced by this 
service will complete before control is returned to the PCI driver. This distinction means that 
memory write transactions may be sitting in write buffers when this service returns. If the PCI 
driver requires a Mem.Write() transaction to complete, then the Mem.Write() transaction 
must be followed by a Mem.Read() transaction to the same PCI controller. Some chipsets and 
PCI-to-PCI bridges are more sensitive to this issue than others. Example 14-5 below shows a 
Mem.Write() call to a memory-mapped I/O register at offset 0x20 into BAR #1 of a PCI 
controller. This write transaction is followed by a Mem.Read() call from the same memory-
mapped I/O register. This combination will guarantee that the write transaction will be completed 
by the time the Mem.Read() call  returns.  

In general, this mechanism is not required because a PCI driver will typically read a status register, 
and this read transaction would force all posted write transactions to complete on the PCI 
controller. The only time this mechanism should be used is when a PCI driver performs a write 
transaction that is not followed by a read transaction and the PCI driver needs to guarantee that the 
write transaction is completed immediately.  
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINT32               DmaStartAddress; 
UINT16               Word; 
 
// 
// Write the value in DmaStartAddress to offset 0x20 of BAR #1 
// 
PciIo->Mem.Write ( 
             PciIo, 
             EfiPciIoWidthUint32, 
             1, 
             0x20, 
             1, 
             &DmaStartAddress 
             ); 
 
// 
// Read offset 0x20 of BAR #1. This guarantees that the previous write 
// transaction is posted to the PCI controller. 
// 
PciIo->Mem.Read ( 
             PciIo, 
             EfiPciIoWidthUint32, 
             1, 
             0x20, 
             1, 
             &DmaStartAddress 
             ); 

Example 14-5.  Completing a Memory Write Transaction 
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14.4.2 Hardfail / Softfail  
PCI drivers must make sure they do not access resources that are not allocated to any PCI 
controllers. Doing so may produce unpredictable results including platform hang conditions. For 
example, if a VGA device is in monochrome mode, accessing the VGA device’s color registers 
may cause unpredictable results. The best rule of thumb here is to access only I/O or memory-
mapped I/O resources to which the PCI driver knows for sure the PCI controller will respond. In 
general, this is not a concern because the PCI I/O Protocol services discussed in section 14.4 do not 
allow the PCI driver to access resources outside the resource ranges described in the BARs of the 
PCI controllers. However, two mechanisms allow a PCI driver to bypass these safeguards. The first 
is to use the EFI_PCI_IO_PASS_THROUGH_BAR with the PCI I/O Protocol services that 
provide access to I/O and memory-mapped I/O regions. The second is for a PCI driver to retrieve 
and use the services of a PCI Root Bridge I/O Protocol. 

A PCI driver uses the EFI_PCI_IO_PASS_THROUGH_BAR to access ISA resources on a PCI 
controller. For a PCI driver to use this mechanism safely, the PCI driver must know that the PCI 
controller it is accessing will actually respond to the I/O or memory-mapped I/O requests in the ISA 
ranges. The PCI driver can typically know if it will respond by examining the class code, vendor 
ID, and device ID fields of the PCI controller in the PCI configuration header. The PCI driver must 
examine the PCI configuration header before any I/O or memory-mapped I/O operations are 
generated. The PCI configuration header is typically examined in the Supported() service, so it 
is safe to access the ISA resources in the Start() service and in the services of the I/O 
abstraction that the PCI driver is producing. Example 14-6 below shows an example using the 
EFI_PCI_IO_PASS_THROUGH_BAR. 
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINT8                Data; 
UINT16               Word; 
 
// 
// Write 0xAA to a Post Card at ISA address 0x80 
// 
Data = 0xAA; 
PciIo->Io.Write( 
            PciIo, 
            EfiPciIoWidthUint8, 
            EFI_PCI_IO_PASS_THROUGH_BAR, 
            0x80, 
            1, 
            &Data 
            ); 
 
// 
// Read the first word from the VGA frame buffer 
// 
PciIo->Mem.Read( 
             PciIo, 
             EfiPciIoWidthUint16, 
             EFI_PCI_IO_PASS_THROUGH_BAR, 
             0xA0000, 
             1, 
             &Word 
             ); 

Example 14-6.  Accessing ISA Resources on a PCI Controller 
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A PCI driver must also take care when using the services of the PCI Root Bridge I/O Protocol. A 
PCI driver can retrieve the parent PCI Root Bridge I/O Protocol and use those services to touch any 
resource on the PCI bus. This touching can be very dangerous because the PCI driver may not 
know if a different PCI driver owns a resource or not. The use of this mechanism is strongly 
discouraged and will likely be used only by OEM drivers that have intimate knowledge of the 
platform and the chipset. Chapter 4 discusses the use of the gBS->LocateDevicePath() 
service, and the example associated with this service shows how the parent PCI Root Bridge I/O 
Protocol can be retrieved. 

Instead of using the parent PCI Root Bridge I/O Protocol, PCI drivers that need to access the 
resources of other PCI controllers in the platform should search the handle database for controller 
handles that support the PCI I/O Protocol. To prevent resource conflicts, the PCI I/O Protocols 
from other PCI controllers should also be opened BY_DRIVER. Example 14-7 below shows how a 
PCI driver can easily retrieve the list of PCI controller handles in the handle database and use the 
services of the PCI I/O Protocol on each of those handles to find a peer PCI controller. For 
example, a PCI adapter that contains multiple PCI controllers behind a PCI-to-PCI bridge may use 
a single driver to manage all of the controllers on the adapter. When the PCI driver is connected to 
the first PCI controller on the adapter, the PCI driver will want to connect to all the other PCI 
controllers that have the same bus number as the first PCI controller. This example takes advantage 
of the GetLocation() service of the PCI I/O Protocol to find matching bus numbers. 
EFI_STATUS           Status; 
UINTN                HandleCount; 
EFI_HANDLE           *HandleBuffer; 
UINTN                Index; 
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINTN                MyBus; 
UINTN                Seg; 
UINTN                Bus; 
UINTN                Device; 
UINTN                Function; 
 
// 
// Retrieve the location of the PCI controller and store the bus number 
// in MyBus. 
// 
Status = PciIo->GetLocation (PciIo, &Seg, &MyBus, &Device, &Function); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// Retrieve the list of handles that support the PCI I/O protocol from 
// the handle database. The number of handles that support the PCI I/O 
// Protocol is returned in HandleCount, and the array of handle values is 
// returned in HandleBuffer. 
// 
Status = gBS->LocateHandleBuffer ( 
                ByProtocol, 
                &gEfiPciIoProtocolGuid, 
                NULL, 
                &HandleCount, 
                &HandleBuffer 
                ); 
if (EFI_ERROR (Status)) { 
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  return Status; 
} 
 
// 
// Loop through all the handles the support the PCI I/O Protocol, and 
// retrieve the instance of the PCI I/O Protocol. Use the BY_DRIVER  
// open mode, so only PCI I/O Protocols that are not currently being 
// managed will be considered. 
// 
for (Index = 0; Index < HandleCount; Index++) { 
  Status = gBS->OpenProtocol ( 
                  HandleBuffer[Index], 
                  &gEfiPciIoProtocolGuid, 
                  (VOID **)&PciIo, 
                  ImageHandle, 
                  NULL, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (!EFI_ERROR (Status)) { 
    // 
    // Retrieve the location of the PCI controller and store the bus    
    // number in Bus. 
    // 
    Status = PciIo->GetLocation (PciIo, &Seg, &Bus, &Device, &Function); 
    if (!EFI_ERROR (Status)) { 
      if (Bus == MyBus) { 
        // 
        // Store HandleBuffer[Index] so the driver knows it is managing 
        // the PCI controller represented by HandleBuffer[Index]. This 
        // would typically be stored in the private context data structure 
        // 
 
        // 
        // Continue with the next PCI controller in the HandleBuffer array 
        // 
        continue; 
      } 
    } 
  } 
 
  // 
  // Either the handle was already opened by another driver or the bus 
  // numbers did not match, so close the PCI I/O Protocol and move  
  // on to the next PCI handle. 
  // 
  gBS->CloseProtocol ( 
         HandleBuffer[Index], 
         &gEfiPciIoProtocolGuid, 
         ImageHandle, 
         NULL, 
         ); 
} 
 
// 
// Free the array of handles that was allocated by  
// gBS->LocateHandleBuffer() 
// 
gBS->FreePool (HandleBuffer); 

Example 14-7.  Locate PCI Handles with Matching Bus Number  
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14.4.3 When a PCI Device Does Not Receive Resources  
Some PCI controllers may require more resources than the PCI bus can offer. In such cases, the PCI 
controller must not be visible to PCI drivers because resources were not allocated to the PCI 
controller. The PCI bus driver should not create a child handle for a PCI controller that does not 
have allocated resources, and as a result, a PCI driver will never be passed a 
ControllerHandle for a PCI controller that does not have allocated resources. The platform 
vendor controls the policy decisions that are made when this type of resource-constrained condition 
is encountered. The PCI driver writer will never have to handle this case. 

14.5 PCI DMA  

There are three types of DMA transactions that can be implemented using the services of the PCI 
I/O Protocol:   

• Bus master read transactions 
• Bus master write transactions 
• Common buffer transactions 

The PCI I/O Protocol services that are used to manage PCI DMA transactions include the 
following: 

• PciIo->AllocateBuffer()  

• PciIo->FreeBuffer()  
• PciIo->Map()  
• PciIo->Unmap()  
• PciIo->Flush()  

14.5.1 Map() Service Cautions 
One common mistake is in the use of the Map() service. The Map() service converts a system 
memory address to an address that can be used by the PCI device to perform a bus master DMA 
transaction. The device address that is returned is not related to the original system memory 
address. Some chipsets maintain a one-to-one mapping between system memory addresses and 
device addresses on the PCI bus. For this special case, the system memory address and device 
address will be the same. However, a PCI driver cannot tell if they are executing on a platform with 
this one-to-one mapping. As a result, a PCI driver must make as few assumptions about the system 
architecture as possible. Avoiding assumptions means that a PCI driver must never use the device 
address that is returned from Map() to access the contents of the DMA buffer. Instead, this value 
should only be used to program the base address of the DMA transaction into the PCI controller. 
This programming is typically accomplished with one or more I/O or memory-mapped I/O write 
transactions to the PCI controller that the PCI driver is managing. 

Example 14-8 below shows the function prototype for the Map() service of the PCI I/O Protocol. 
A PCI driver can use HostAddress to access the contents of the DMA buffer, but the PCI driver 
should never use the returned parameter DeviceAddress to access the contents of the DMA 
buffer. 
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EFI_STATUS Map ( 
  IN     EFI_PCI_IO_PROTOCOL            *This, 
  IN     EFI_PCI_IO_PROTOCOL_OPERATION  Operation, 
  IN     VOID                           *HostAddress, 
  IN OUT UINTN                          *NumberOfBytes, 
  OUT    EFI_PHYSICAL_ADDRESS           *DeviceAddress, 
  OUT    VOID                           **Mapping 
  ); 

Example 14-8.  Map() Function 

14.5.2 Weakly Ordered Memory Transactions 
Some processors, such as the Itanium processor, have weakly ordered memory models. This weak 
ordering means that system memory transactions may complete in a different order than the source 
code would seem to indicate. A PCI driver should be implemented so that the source code is 
compatible with as many processors and platforms as possible. As a result, the guidelines shown 
here should be followed even if the driver is not initially being written for an Itanium-based 
platform. The techniques shown here will not have any impact on the executable size of a driver for 
strongly ordered processors such as IA-32 and EBC. 

14.5.3 Bus Master Read/Write Operations 
When a DMA transaction is started or stopped, the ownership of the DMA buffer is transitioned 
from the processor to the DMA bus master and back to the processor. The PCI I/O Protocol 
provides the Map() and Unmap() services that are used to set up and complete a DMA 
transaction. The implementation of the PCI I/O Protocol in the PCI bus driver uses the 
MEMORY_FENCE() macro to guarantee that all system memory transactions from the processor 
are completed before the DMA transaction is started. This guarantee prevents the case where a 
DMA bus master reads from a location in the DMA buffer before a write transaction is flushed 
from the processor. Because this functionality is built into the PCI I/O Protocol itself, the PCI 
driver writer does not need to worry about this case for bus master read operations and bus master 
write operations. 

A PCI driver is responsible for flushing all posted write data from a PCI controller when a bus 
master write operation is completed. First, the PCI driver should read from a register on the PCI 
controller to guarantee that all the posted write operations are flushed from the PCI controller and 
through any PCI-to-PCI bridges that are between the PCI controller and the PCI root bridge. 
Because PCI drivers are polled, they will typically read from a status register on the PCI controller 
to determine when the bus master write transaction is completed. This read operation is usually 
sufficient to flush the posted write buffers. The PCI driver must also call the PciIo->Flush() 
service at the end of a bus master write operation. This service flushes all the posted write buffers 
in the system chipset, so they are guaranteed to be committed to system memory. The combination 
of the read operation and the PciIo->Flush() call guarantee that the bus master’s view of 
system memory and the processor’s view of system memory are consistent. Example 14-9 below 
shows an example of how a bus master write transaction should be completed and guarantees that 
the bus master’s view of system memory is consistent with the processor’s view of system memory. 
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// 
// Call PollIo() to poll for Bit #0 in register 0x24 of Bar #1 to be  
// set to a 1. This example shows polling a status register to 
// wait for a bus master write transaction to complete. 
// 
Status = PciIo->PollMem ( 
                  PciIo, 
                  EfiPciIoWidthUint32,     // Width 
                  1,                       // BarIndex 
                  0x24,                    // Offset 
                  0x01,                    // Mask 
                  0x01,                    // Value 
                  10000000,                // Poll for 1 second 
                  &Result64                // Result 
                  ); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
Status = PciIo->Flush (PciIo); 
if (EFI_ERROR (Status)) { 
  return Status; 
} 

Example 14-9.  Completing a Bus Master Write Operation 

14.5.4 Bus Master Common Buffer Operations 
Bus master common buffer operations are more complex to manage than bus master read 
operations and bus master write operations. This complexity is because both the bus master and the 
processor may simultaneously access a single region of system memory. The memory ordering of 
PCI transactions generated by the PCI bus master is defined in the PCI Specification. However, 
different processors may use different memory ordering models. As a result, common buffer 
operations should only be used when they are absolutely required. 

If the common buffer memory region can be accessed in a single atomic processor transaction, then 
no hazards will be present. If the processor has deep write buffers, a write transaction can be 
delayed, so the MEMORY_FENCE() macro can be used to force all processor transactions to  
complete. If a memory region that the processor needs to read or write requires multiple atomic 
processor transactions, then hazards may exist if the operations are reordered. If the order that the 
processor transactions occur is important, then the MEMORY_FENCE() macro can be inserted 
between the processor transactions. However, inserting too many MEMORY_FENCE() macros will 
degrade system performance. For strongly ordered processors, the MEMORY_FENCE() macro is a 
no-op. 

A good example where the MEMORY_FENCE() macro should be used is when a mailbox data 
structure is used to communicate between the processor and a bus master. The mailbox typically 
contains a valid bit that must be set by the processor after the processor has filled the contents of 
the mailbox. The bus master will scan the mailbox to see if the valid bit it set. When it sees the 
valid bit, it will read the rest of the mailbox contents and use them to perform an I/O operation. If 
the processor is weakly ordered, there is a chance that the valid bit will be set before the processor 
has written all of the other fields in the data structure. To resolve this issue, a MEMORY_FENCE() 
macro should be inserted just before and just after the valid bit is set. 
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Another mechanism that can be used to resolve these memory-ordering issues is the use of 
VOLATILE variables. If the data structure that is being used as a mailbox is declared in C as 
VOLATILE, then the C compiler will guarantee that all transactions to the VOLATILE data 
structure are strongly ordered. It is recommended that the MEMORY_FENCE() macro be used 
instead of VOLATILE data structures. 

14.5.5 4 GB Memory Boundary 
IA-32 platforms may support more than 4 GB of system memory, but EFI drivers for IA-32 
platforms may only access memory below 4 GB. The 4 GB memory boundary becomes more 
complex on Itanium-based platforms. Itanium-based platforms do support more than 4 GB of 
system memory and EFI drivers running on these platforms can use the memory above and below 
4 GB. It is important that EFI drivers are tested on Itanium-based platforms with both small and 
large memory configurations to make sure the EFI driver is not making any assumptions about the 
system memory configuration. 

It is also important to note that some Itanium-based platforms may not map any system memory in 
the memory region below 4 GB. Instead, all the system memory is mapped above 4 GB. EFI drivers 
need to be designed to be compatible with these types of systems too. The general guideline for EFI 
drivers is to make as few assumptions about the memory configuration of the platform as possible. 
This guideline applies to the memory that an EFI driver allocates and the DMA buffers that a PCI 
bus master uses. 

An EFI driver should not allocate buffers from specific addresses or below specific addresses. 
These types of allocations may fail on different system architectures. Likewise, the buffers used for 
DMA should not be allocated from a specific address or below a specific address. In addition, EFI 
drivers should always use the services of the PCI I/O Protocol to set up and complete DMA 
transactions. It is not legal to program a system memory address into a DMA bus master. This 
programming will work on chipsets that have a one-to-one mapping between system memory 
addresses and PCI DMA addresses, but it will not work with chipsets that remap DMA 
transactions. The sections that follow contain code examples for the different types of PCI DMA 
transactions that EFI supports and that show how the PCI I/O Protocol services should be used to 
maximize the platform compatibility of EFI drivers.  

The EFI Sample Implementation contains an implementation of the PCI Root Bridge I/O Protocol 
for a PC-AT-compatible chipset that assumes a one-to-one mapping between system memory 
address and PCI DMA addresses. It also assumes that DMA operations are not supported above 
4 GB. The implementation of the Map() and Unmap() services in the PCI Root Bridge I/O 
Protocol handle DMA requests above 4 GB by allocating a buffer below 4 GB and copying the data 
to the buffer below 4 GB. It is important to realize that these functions will be implemented 
differently for chipsets that do not assume a one-to-one mapping between system memory 
addresses and PCI DMA addresses.  
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14.5.6 DMA Bus Master Read Operation  
The general algorithm for performing a bus master read operation is as follows: 

• The processor initializes the contents of the DMA using HostAddress. 
• Call Map() with an Operation of EfiPciOperationBusMasterRead. 

• Program the DMA bus master with the DeviceAddress returned by Map(). 

• Program the DMA bus master with the NumberOfBytes returned by Map(). 

• Start the DMA bus master. 
• Wait for DMA bus master to complete the bus master read operation. 
• Call Unmap(). 

The code example in Example 14-10 shows a function for performing a bus master read operation 
on a PCI controller. The PCI controller is accessed through the parameter PciIo. The system 
memory buffer that will be read by the bus master is specified by HostAddress and Length. 
This function performs one or more bus master read operations until either Length bytes have 
been read by the bus master or an error is detected. The PCI controller in this example has three 
MMIO registers in BAR #1. The MMIO register at offset 0x10 is a status register that the function 
uses to see if the DMA operation is complete or not. The function writes the start of the DMA 
transaction to the MMIO register at offset 0x20 and the length of the DMA transaction to the 
MMIO register at offset 0x24. The write operation to offset 0x24 also starts the DMA read 
operation. The services of the PCI I/O Protocol that are used in this example include Map(), 
Unmap(), Mem.Write(), and PollMem(). This example is for a 32-bit PCI bus master.  

If a 64-bit PCI bus master was being used, then there would be two 32-bit MMIO registers to 
specify the start address and two 32-bit MMIO registers to specify the length. If the PCI bus master 
supports 64-bit DMA addressing, then the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE 
attribute must be set in the Start() service of the PCI driver. 
EFI_STATUS 
DoBusMasterRead ( 
  IN EFI_PCI_IO_PROTOCOL  *PciIo, 
  IN UINT8                *HostAddress, 
  IN UINTN                *Length 
  ) 
 
{ 
  EFI_STATUS            Status; 
  UINTN                 NumberOfBytes; 
  EFI_PHYSICAL_ADDRESS  DeviceAddress; 
  VOID                  *Mapping; 
  UINT32                DmaStartAddress; 
  UINT32                ControllerStatus; 
 
  // 
  // Loop until the entire buffer specified by HostAddress and Length 
  // has been read from the PCI DMA bus master 
  // 
  do { 
    // 
    // Call Map() to retrieve the DeviceAddress to use for the bus master 
    // read operation. The Map() function may not support performing 
    // a DMA operation for the entire length, so it may be broken up into 
    // smaller DMA operations. 



EFI 1.10 Driver Writer’s Guide Draft for Review  

266 July 2004 Version 0.9 

    // 
    NumberOfBytes = *Length; 
    Status = PciIo->Map ( 
                      PciIo, 
                      EfiPciIoOperationBusMasterRead, 
                      (VOID *)HostAddress, 
                      &NumberOfBytes, 
                      &DeviceAddress, 
                      &Mapping 
                      ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Write the DMA start address to MMIO Register 0x20 of Bar #1 
    // 
    DmaStartAddress = (UINT32)DeviceAddress; 
    Status = PciIo->Mem.Write ( 
                          PciIo, 
                          EfiPciIoWidthUint32,  // Width 
                          1,                    // BarIndex 
                          0x20,                 // Offset 
                          1,                    // Count 
                          &DmaStartAddress      // Buffer 
                          ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Write the length of the DMA to MMIO Register 0x24 of Bar #1 
    // This write operation will also start the DMA transaction 
    // 
    Status = PciIo->Mem.Write ( 
                          PciIo, 
                          EfiPciIoWidthUint32,  // Width 
                          1,                    // BarIndex 
                          0x24,                 // Offset 
                          1,                    // Count 
                          &NumberOfBytes        // Buffer 
                          ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Call PollMem() to poll for Bit #0 in MMIO register 0x10 of Bar #1  
    // 
    Status = PciIo->PollMem ( 
                      PciIo, 
                      EfiPciIoWidthUint32,     // Width 
                      1,                       // BarIndex 
                      0x10,                    // Offset 
                      0x01,                    // Mask 
                      0x01,                    // Value 
                      10000000,                // Poll for 1 second 
                      &ControllerStatus        // Result 
                      ); 
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    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
     
    // 
    // Call Unmap() to complete the bus master read operation 
    // 
    Status = PciIo->Unmap (PciIo, Mapping); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Update the HostAddress and Length remaining based upon the number 
    // of bytes transferred  
    // 
    HostAddress = HostAddress + NumberOfBytes; 
    *Length = *Length – NumberOfBytes; 
  } while (*Length != 0); 
   
  return Status; 
) 

Example 14-10.  Bus Master Read Operation 

14.5.7 DMA Bus Master Write Operation  
The general algorithm for performing a bus master write operation is as follows: 

• Call Map() with an Operation of EfiPciOperationBusMasterWrite. 

• Program the DMA bus master with the DeviceAddress returned by Map(). 

• Program the DMA bus master with the NumberOfBytes returned by Map(). 

• Start the DMA bus master. 
• Wait for the DMA bus master to complete the bus master write operation. 
• Read any register on the PCI controller to flush all PCI write buffers (see the PCI specification, 

section 3.2.5.2). In many cases, this read is being done for other purposes, but if not, put in a 
dummy read. 

• Call Flush(). 

• Call Unmap(). 

• The processor may read the contents of the DMA buffer using HostAddress. 

The code example in Example 14-11 shows a function to perform a bus master write operation on a 
PCI controller. The PCI controller is accessed through the parameter PciIo. The system memory 
buffer that will be written by the bus master is specified by HostAddress and Length. This 
function will perform one or more bus master write operations until either Length bytes have 
been written by the bus master or an error is detected. The PCI controller in this example has three 
MMIO registers in BAR #1. The MMIO register at offset 0x10 is a status register that the function 
uses to see if the DMA operation is complete or not. The function writes the start of the DMA 
transaction to the MMIO register at offset 0x20 and the length of the DMA transaction to the 
MMIO register at offset 0x24. The write operation to offset 0x24 also starts the DMA write 
operation. The services of the PCI I/O Protocol that are used in this example include Map(), 
Unmap(), Mem.Write(), PollMem(), and Flush(). This example is for a 32-bit PCI bus 
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master. If a 64-bit PCI bus master was being used, then there would be two 32-bit MMIO registers 
to specify the start address and two 32-bit MMIO registers to specify the length. If the PCI bus 
master supports 64-bit DMA addressing, then the 
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE attribute must be set in the Start() service 
of the PCI driver. 
EFI_STATUS 
DoBusMasterWrite ( 
  IN EFI_PCI_IO_PROTOCOL  *PciIo, 
  IN UINT8                *HostAddress, 
  IN UINTN                *Length 
  ) 
 
{ 
  EFI_STATUS            Status; 
  UINTN                 NumberOfBytes; 
  EFI_PHYSICAL_ADDRESS  DeviceAddress; 
  VOID                  *Mapping; 
  UINT32                DmaStartAddress; 
  UINT32                DummyRead; 
  UINT32                ControllerStatus; 
 
  // 
  // Loop until the entire buffer specified by HostAddress and Length 
  // has been written by the PCI DMA bus master 
  // 
  do { 
    // 
    // Call Map() to retrieve the DeviceAddress to use for the bus master 
    // write operation. The Map() function may not support performing 
    // a DMA operation for the entire length, so it may be broken up into 
    // smaller DMA operations. 
    // 
    NumberOfBytes = *Length; 
    Status = PciIo->Map ( 
                      PciIo, 
                      EfiPciIoOperationBusMasterWrite, 
                      (VOID *)HostAddress, 
                      &NumberOfBytes, 
                      &DeviceAddress, 
                      &Mapping 
                      ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Write the DMA start address to MMIO Register 0x20 of Bar #1 
    // 
    DmaStartAddress = (UINT32)DeviceAddress; 
    Status = PciIo->Mem.Write ( 
                          PciIo, 
                          EfiPciIoWidthUint32,  // Width 
                          1,                    // BarIndex 
                          0x20,                 // Offset 
                          1,                    // Count 
                          &DmaStartAddress      // Buffer 
                          ); 
    if (EFI_ERROR (Status)) { 
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      return Status; 
    } 
 
    // 
    // Write the length of the DMA to MMIO Register 0x24 of Bar #1 
    // This write operation will also start the DMA transaction 
    // 
    Status = PciIo->Mem.Write ( 
                          PciIo, 
                          EfiPciIoWidthUint32,  // Width 
                          1,                    // BarIndex 
                          0x24,                 // Offset 
                          1,                    // Count 
                          &NumberOfBytes        // Buffer 
                          ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Call PollMem() to poll for Bit #0 in MMIO register 0x10 of Bar #1  
    // 
    Status = PciIo->PollMem ( 
                      PciIo, 
                      EfiPciIoWidthUint32,     // Width 
                      1,                       // BarIndex 
                      0x10,                    // Offset 
                      0x01,                    // Mask 
                      0x01,                    // Value 
                      10000000,                // Poll for 1 second 
                      &ControllerStatus        // Result 
                      ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Read MMIO Register 0x24 of Bar #1 to flush all posted writes  
    // from the PCI bus master and through PCI-to-PCI bridges. 
    // 
    Status = PciIo->Mem.Read ( 
                          PciIo, 
                          EfiPciIoWidthUint32,  // Width 
                          1,                    // BarIndex 
                          0x24,                 // Offset 
                          1,                    // Count 
                          &DummyRead            // Buffer 
                          ); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Call Flush() to flush all write transactions to system memory 
    // 
    Status = PciIo->Flush (PciIo); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
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    // 
    // Call Unmap() to complete the bus master write operation 
    // 
    Status = PciIo->Unmap (PciIo, Mapping); 
    if (EFI_ERROR (Status)) { 
      return Status; 
    } 
 
    // 
    // Update the HostAddress and Length remaining based upon the number 
    // of bytes transferred  
    // 
    HostAddress = HostAddress + NumberOfBytes; 
    *Length = *Length – NumberOfBytes; 
  } while (*Length != 0); 
   
  return Status; 
) 

Example 14-11.  Bus Master Write Operation 

14.5.8 DMA Bus Master Common Buffer Operation  
A PCI driver uses common buffers when a memory region requires simultaneous access by both the 
processor and a PCI bus master. A common buffer is typically allocated in the Start() service 
and freed in the Stop() service. This mechanism is very different from the bus master read and 
bus master write operations where the PCI driver transfers the ownership of a memory region from 
the processor to the bus master and back to the processor.  

The general algorithm for allocating a common buffer in the Start() service is as follows: 

• Call AllocateBuffer() to allocate a common buffer. 

• Call Map() with an Operation of EfiPciOperationBusMasterCommonBuffer. 

• Program the DMA bus master with the DeviceAddress returned by Map(). 

• The common buffer can now be accessed equally by the processor (using HostAddress) and 
the DMA bus master (using DeviceAddress) . 

 

The general algorithm for freeing a common buffer in the Stop() service is as follows: 

• Call Unmap(). 
• Call FreeBuffer(). 
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The code example in Example 14-12 shows a function that the Start() service may call to set up 
a common buffer operation on a PCI controller. The function accesses the PCI controller through 
the PciIo parameter. The function also allocates a common buffer of Length bytes and returns 
the address of the common buffer in HostAddress. A mapping is created for the common buffer 
and returned in the parameter Mapping. The MMIO register at offset 0x18 of BAR #1 is the start 
address of the common buffer from the PCI controller’s perspective. The services of the PCI I/O 
Protocol that are used in this example include AllocateBuffer(), Map(), and 
Mem.Write(). This example is for a 32-bit PCI bus master. A 64-bit PCI bus master requires two 
32-bit MMIO registers to specify the start address, and the 
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE attribute must be set in the Start() service 
of the PCI driver. 
EFI_STATUS 
SetupCommonBuffer ( 
  IN EFI_PCI_IO_PROTOCOL  *PciIo, 
  IN UINT8                **HostAddress, 
  IN UINTN                Length, 
  OUT VOID                **Mapping 
  ) 
 
{ 
  EFI_STATUS            Status; 
  UINTN                 NumberOfBytes; 
  EFI_PHYSICAL_ADDRESS  DeviceAddress; 
  UINT32                DmaStartAddress; 
 
  // 
  // Allocate a common buffer from anywhere in system memory of type 
  // EfiBootServicesData. 
  // 
  Status = PciIo->AllocateBuffer ( 
                    PciIo, 
                    AllocateAnyPages, 
                    EfiBootServicesData, 
                    EFI_SIZE_TO_PAGES (Length), 
                    HostAddress, 
                    0 
                    ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Call Map() to retrieve the DeviceAddress to use for the bus master 
  // common buffer operation. If the Map() function cannot support  
  // a DMA operation for the entire length, then return an error. 
  // 
  NumberOfBytes = Length; 
  Status = PciIo->Map ( 
                    PciIo, 
                    EfiPciIoOperationBusMasterCommonBuffer, 
                    (VOID *)*HostAddress, 
                    &NumberOfBytes, 
                    &DeviceAddress, 
                    Mapping 
                    ); 
  if (!EFI_ERROR (Status) && NumberOfBytes != Length) { 
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    PciIo->Unmap (PciIo, *Mapping); 
    Status = EFI_OUT_OF_RESOURCES; 
  } 
  if (EFI_ERROR (Status)) { 
    PciIo->FreeBuffer ( 
             PciIo,  
             EFI_SIZE_TO_PAGES (Length),  
             (VOID *)*HostAddress 
             ); 
    return Status; 
  } 
 
  // 
  // Write the DMA start address to MMIO Register 0x18 of Bar #1 
  // 
  DmaStartAddress = (UINT32)DeviceAddress; 
  Status = PciIo->Mem.Write ( 
                        PciIo, 
                        EfiPciIoWidthUint32,  // Width 
                        1,                    // BarIndex 
                        0x18,                 // Offset 
                        1,                    // Count 
                        &DmaStartAddress      // Buffer 
                        ); 
 
  if (EFI_ERROR (Status)) { 
    PciIo->Unmap (PciIo, *Mapping); 
    PciIo->FreeBuffer ( 
             PciIo,  
             EFI_SIZE_TO_PAGES (Length),  
             (VOID *)*HostAddress 
             ); 
  } 
 
  return Status; 
) 

Example 14-12.  Setting up a Bus Master Common Buffer Operation 
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The code example in Example 14-13 shows a function that the Stop() service may call to free a 
common buffer for a PCI controller. The function accesses the PCI controller through the services 
of the PciIo parameter, and the function uses these services to free the common buffer specified 
by HostAddress and Length. This function will undo the mapping and free the common 
buffer. The services of the PCI I/O Protocol that are used in this example include Unmap() and 
FreeBuffer(). 
EFI_STATUS 
TearDownCommonBuffer ( 
  IN EFI_PCI_IO_PROTOCOL  *PciIo, 
  IN UINT8                *HostAddress, 
  IN UINTN                Length, 
  IN VOID                 *Mapping 
  ) 
 
{ 
  EFI_STATUS            Status; 
 
  Status = PciIo->Unmap (PciIo, Mapping); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  Status = PciIo->FreeBuffer ( 
                    PciIo,  
                    EFI_SIZE_TO_PAGES (Length),  
                    (VOID *)HostAddress 
                    ); 
 
  return Status; 
) 

Example 14-13.  Tearing Down a Bus Master Common Buffer Operation 

14.6 Device I/O Protocol  

EFI drivers that follow the EFI Driver Model must not use the services of the Device I/O Protocol. 
Instead, the EFI driver should use the services of the PCI I/O Protocol. The Device I/O Protocol is 
present in a platform because a platform must be able to run EFI applications and drivers written to 
follow the EFI 1.02 Specification. EFI 1.02 drivers should be converted to EFI Driver Model 
drivers. This conversion means that the only consumers of the Device I/O Protocol will be EFI 
applications. 
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15 
USB Driver Design Guidelines 

There are several classes of USB drivers that cooperate to provide support for USB in a platform. 
Table 15-1 lists these USB drivers. 

Table 15-1. Classes of USB Drivers 

Class of Driver Description 

Host controller driver Typically consumes the PCI I/O Protocol on the USB host controller 
handle and produces the USB Host Controller Protocol. 

USB bus driver Consumes the USB Host Controller Protocol and produces a child 
handle for each USB controller on the USB bus. Installs the Device 
Path Protocol and USB I/O Protocol onto each child handle. 

USB device driver Consumes the USB I/O Protocol and produces an I/O abstraction 
that provides services for the console devices and boot devices that 
are required to boot an EFI-compliant operating system. 

 

This chapter will concentrate on how to write host controller drivers and USB device drivers. USB 
drivers must follow all of the general design guidelines described in chapter 5. In addition, because 
most USB host controllers are PCI controllers, the PCI-specific design guidelines should also be 
used as described in chapter 14. 

Figure 15-1 below shows an example of a USB driver stack and the protocols that the USB drivers 
consume and produce. Because the USB hub is a special kind of device that simply acts as a signal 
repeater, it is not included in Figure 15-1. The protocol interfaces for the USB Host Controller 
Protocol, EFI USB I/O Protocol, and USB ATAPI Protocol are listed below. 

Protocol Interface Structure 
typedef struct _EFI_USB_HC_PROTOCOL { 
  EFI_USB_HC_PROTOCOL_RESET            Reset; 
  EFI_USB_HC_PROTOCOL_GET_STATE        GetState; 
  EFI_USB_HC_PROTOCOL_SET_STATE        SetState; 
  EFI_USB_HC_PROTOCOL_CONTROL_TRANSFER ControlTransfer; 
  EFI_USB_HC_PROTOCOL_BULK_TRANSFER    BulkTransfer; 
  EFI_USB_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER 
                                       AsyncInterruptTransfer; 
  EFI_USB_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER 
                                       SyncInterruptTransfer; 
  EFI_USB_HC_PROTOCOL_ISOCHRONOUS_TRANSFER 
                                       IsochronousTransfer; 
  EFI_USB_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER 
                                       AsyncIsochronousTransfer; 
  EFI_USB_HC_PROTOCOL_GET_ROOTHUB_PORT_NUMBER 
                                       GetRootHubPortNumber; 
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  EFI_USB_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS 
                                       GetRootHubPortStatus; 
  EFI_USB_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE 
                                       SetRootHubPortFeature; 
  EFI_USB_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE 
                                       ClearRootHubPortFeature; 
  UINT16                               MajorRevision; 
  UINT16                               MinorRevision; 
} EFI_USB_HC_PROTOCOL; 
 
 
typedef struct _EFI_USB_IO_PROTOCOL { 
  EFI_USB_IO_CONTROL_TRANSFER          UsbControlTransfer; 
  EFI_USB_IO_BULK_TRANSFER             UsbBulkTransfer; 
  EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER  UsbAsyncInterruptTransfer; 
  EFI_USB_IO_SYNC_INTERRPUT_TRANSFER   UsbSyncInterruptTransfer 
  EFI_USB_IO_ISOCHRONOUS_TRANSFER      UsbIsochronousTransfer; 
  EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER   
                                   UsbAsyncIsochronousTransfer; 
  EFI_USB_IO_GET_DEVICE_DESCRIPTOR     UsbGetDeviceDescriptor; 
  EFI_USB_IO_GET_CONFIG_DESCRIPTOR     UsbGetConfigDescriptor; 
  EFI_USB_IO_GET_INTERFACE_DESCRIPTOR  UsbGetInterfaceDescriptor; 
  EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR   UsbGetEndpointDescriptor; 
  EFI_USB_IO_GET_STRING_DESCRIPTOR     UsbGetStringDescriptor; 
  EFI_USB_IO_GET_SUPPORTED_LANGUAGES   UsbGetSupportedLanguages; 
  EFI_USB_IO_PORT_RESET                UsbPortReset; 
} EFI_USB_IO_PROTOCOL; 
 
 
typedef struct _EFI_USB_ATAPI_PROTOCOL { 
  EFI_USB_ATAPI_PACKET_CMD        UsbAtapiPacketCmd; 
  EFI_USB_MASS_STORAGE_RESET      UsbAtapiReset; 
  UINT32                          CommandProtocol; 
} EFI_USB_ATAPI_PROTOCOL; 
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Figure 15-1.  USB Driver Stack 

In this example, the platform hardware produces a single USB host controller on the PCI bus. The 
PCI bus driver will produce a handle with EFI_DEVICE_PATH_PROTOCOL and 
EFI_PCI_IO_PROTOCOL installed for this USB host controller. The USB host controller driver 
will then consume EFI_PCI_IO_PROTOCOL on that USB host controller device handle and 
install the EFI_USB_HC_PROTOCOL onto the same handle.  

The USB bus driver consumes the services of EFI_USB_HC_PROTOCOL. It uses these services to 
enumerate the USB bus. In this example, the USB bus driver detected a USB keyboard, a USB 
mouse, and two USB mass storage devices. As a result, the USB bus driver will create four child 
handles and will install the EFI_DEVICE_PATH_PROTOCOL and EFI_USB_IO_PROTOCOL 
onto each of those handles.  

The USB mouse driver will consume the EFI_USB_IO_PROTOCOL and produce the 
EFI_SIMPLE_POINTER_PROTOCOL. The USB keyboard driver will consume the 
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EFI_USB_IO_PROTOCOL to produce the EFI_SIMPLE_INPUT_PROTOCOL. Because there 
are two types of USB command interfaces, we split the device driver in this example into two 
layers to support USB mass storage device. The first layer (the USB Bulk-Only Transport [BOT] 
driver and USB Control/Bulk/Interrupt Transport [CBI] driver) will consume the 
EFI_USB_IO_PROTOCOL and produce EFI_USB_ATAPI_PROTOCOL, which is a generalized 
interface. The second layer (the USB mass storage driver) will consume 
EFI_USB_ATAPI_PROTOCOL and produce EFI_BLOCK_IO_PROTOCOL. 

15.1 USB Host Controller Driver 

The USB host controller driver depends on which USB host controller specification that the host 
controller is based. Currently, the major two types of USB host controllers are the following: 

• Universal Host Controller Interface (UHCI) 
• Open Host Controller Interface (OHCI) 

A sample driver for UHCI 1.1 is included in the EFI 1.10 Sample Implementation. The source code 
is in the directory \EFI1.1\Edk\Drivers\Usb\Uhci. 

The USB host controller driver is a device driver, which follows the EFI Driver Model. It typically 
consumes the services of EFI_PCI_IO_PROTOCOL and produces EFI_USB_HC_PROTOCOL. 
The following sections provide guidelines for implementing the EFI Driver Binding Protocol 
services and USB Host Controller Protocol services for the USB host controller driver.  

15.1.1 Supported() 
The USB host controller driver must implement the EFI_DRIVER_BINDING_PROTOCOL that 
contains the Supported(), Start(), and Stop() services. The Supported() service 
evaluates the ControllerHandle that is passed in to check if the ControllerHandle 
represents a USB host controller that the USB host controller driver knows how to manage. The 
typical method of implementing this evaluation is for the USB host controller driver to retrieve the 
PCI configuration header from this controller and check the Class Code field and possibly other 
fields such as the Device ID and Vendor ID. If all these fields match the values that the USB host 
controller driver knows how to manage, then the Supported() service will return 
EFI_SUCCESS. Otherwise, the Supported() service will return EFI_UNSUPPORTED.  

Example 15-1 below shows an example of the Supported() service for the USB host controller 
driver that manages a PCI controller with Class code 0x30c. First, it attempts to open the PCI I/O 
Protocol BY_DRIVER. If the PCI I/O Protocol cannot be opened, then the USB host controller 
driver does not support the controller that is specified by ControllerHandle. If the PCI I/O 
Protocol is opened, then the services of the PCI I/O Protocol are used to read the Class Code from 
the PCI configuration header. The PCI I/O Protocol is always closed with CloseProtocol(), 
and EFI_SUCCESS is returned if the Class Code field match. 
// 
// USB Base Class Code, Subclass Code, and Programming Interface. 
// 
#define PCI_CLASSC_BASE_CLASS_SERIAL              0x0c 
#define PCI_CLASSC_SUBCLASS_SERIAL_USB            0x03 
#define PCI_CLASSC_PI_UHCI                        0x00 
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// 
// Class Code Register offset in PCI configuration space 
// 
#define CLASSC                      0x09 
 
 
EFI_STATUS 
UHCIDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL                    *This, 
  IN EFI_HANDLE                                     Controller, 
  IN EFI_DEVICE_PATH_PROTOCOL                       *RemainingDevicePath 
  )   
{ 
  EFI_STATUS                                 Status; 
  EFI_PCI_IO_PROTOCOL                        *PciIo; 
  UINT8                                      UsbClassCReg[3]; 
   
  // 
  // Test whether there is PCI IO Protocol attached on the  
  // controller handle. 
  // 
  Status = gBS->OpenProtocol ( 
                          Controller,        
                          &gEfiPciIoProtocolGuid,  
                          &PciIo, 
                          This->DriverBindingHandle,    
                          Controller,    
                          EFI_OPEN_PROTOCOL_BY_DRIVER 
                          ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
   
  Status = PciIo->Pci.Read ( 
PciIo,  
EfiPciIoWidthUint8, 
CLASSC, 
3 *  sizeof(UINT8), 
                            &UsbClassCReg 
                            ); 
   
  if (EFI_ERROR(Status)) { 
 
      Status = EFI_UNSUPPORTED; 
      goto Exit; 
  } 
   
  // 
  // Test whether the controller belongs to UHCI type 
  // 
  if ((UsbClassCReg[2] != PCI_CLASSC_BASE_CLASS_SERIAL)  
        || (UsbClassCReg[1] != PCI_CLASSC_SUBCLASS_SERIAL_USB) 
        || (UsbClassCReg.[0] != PCI_CLASSC_PI_UHCI)) { 
     
      Status = EFI_UNSUPPORTED; 
      goto Exit; 
  } 
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Exit: 
  gBS->CloseProtocol ( 
         Controller,  
         &gEfiPciIoProtocolGuid,  
         This->DriverBindingHandle,    
         Controller    
         ); 
   
  return Status; 
     
} 

Example 15-1. Supported() Service for USB Host Controller Driver 

15.1.2 Start() and Stop() 
The Start() service of the Driver Binding Protocol for the USB host controller driver also opens 
the PCI I/O Protocol BY_DRIVER. It will initialize the host controller and publish an instance of 
the USB Host Controller Protocol.  

In today’s world, some host controllers provide legacy support to be compatible with legacy 
devices. Under this mode, the USB input device, including mouse and keyboard, will act as if they 
are behind an 8042 keyboard controller. In an EFI implementation, we use native USB support 
instead of this legacy support. As a result, in the Start() service of the USB host controller 
driver, the USB legacy support needs to be turned off before enabling the host controller. This step 
is required because the legacy support will conflict with the native USB support that the EFI USB 
driver stack implements. 

Example 15-2 shows how to turn off USB legacy support for UHCI 1.1 host controllers. 
// 
// USB legacy Support 
// 
#define USB_EMULATION               0xc0 
 
VOID 
TurnOffUSBLegacySupport ( 
  IN EFI_PCI_IO_PROTOCOL  *PciIo   
  ) 
{ 
  UINT16  Command; 
   
  // 
  // Disable USB Legacy Support 
  // 
  Command = 0; 
  PciIo->Pci.Write ( 
          PciIo, 
          EfiPciIoWidthUint16, 
          USB_EMULATION,                  
          1, 
          &Command 
         );           
 
  return; 
} 
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Example 15-2. Turning off USB Legacy Support 

The Stop() service will do the reverse of the steps that the Start() service does. The USB host 
controller driver needs to make sure that there are no memory leaks, as well as making sure that 
hardware is stopped accordingly. 

15.1.3 USB Host Controller Protocol Transfer Related Services 
The USB Host Controller Protocol provides an I/O abstraction for a USB host controller. A USB 
host controller is a hardware component that interfaces to a Universal Serial Bus (USB). It moves 
data between system memory and devices on the Universal Serial Bus by processing data structures 
and generating transactions on the Universal Serial Bus. This protocol is used by a USB bus driver 
to perform all data transaction over the Universal Serial Bus. It also provides services to manage 
the USB root hub that is integrated into the USB host controller. 

Example 15-3 below shows a template for the implementation of the USB Host Controller Protocol. 
<<DriverName>> denotes the name of the USB host controller driver—for example, UHCI or 
OHCI. <<UsbSpecificationMajorRevision>> denotes the major revision of the USB 
Specification that the host controller follows. For example, for USB 1.1 Specification, it will be 1. 
<<UsbSpecificationMinorRevision>> denotes the minor revision of that USB 
Specification. For example, for the USB 1.1 Specification, it will be 1.  
EFI_USB_HC_PROTOCOL g<<DriverName>>UsbHc = { 
  <<DriverName>>Reset, 
  <<DriverName>>GetState, 
  <<DriverName>>SetState, 
  <<DriverName>>ControlTransfer, 
  <<DriverName>>BulkTransfer, 
  <<DriverName>>AsyncInterruptTransfer, 
  <<DriverName>>SyncInterruptTransfer, 
  <<DriverName>>IsochronousTransfer, 
  <<DriverName>>AsyncIsochronousTransfer, 
  <<DriverName>>GetRootHubPortNumber, 
  <<DriverName>>GetRootHubPortStatus, 
  <<DriverName>>SetRootHubPortFeature, 
  <<DriverName>>ClearRootHubPortFeature, 
  <<UsbSpecificationMajorRevision>>, 
  <<UsbSpecificationMinorRevision>>, 
}; 
 
 
EFI_STATUS 
<<DriverName>>Reset ( 
  IN EFI_USB_HC_PROTOCOL            *This, 
  IN UINT16                         Attributes 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>GetState ( 
  IN  EFI_USB_HC_PROTOCOL           *This, 
  OUT EFI_USB_HC_STATE              *State 
  ) 
{ 
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} 
 
EFI_STATUS 
<<DriverName>>SetState ( 
  IN EFI_USB_HC_PROTOCOL            *This, 
  IN EFI_USB_HC_STATE               State 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>ControlTransfer ( 
  IN     EFI_USB_HC_PROTOCOL        *This, 
  IN     UINT8                      DeviceAddress, 
  IN     BOOLEAN                    IsSlowDevice, 
  IN     UINT8                      MaximumPacketLength, 
  IN     EFI_USB_DEVICE_REQUEST     *Request, 
  IN     EFI_USB_DATA_DIRECTION     TransferDirection, 
  IN OUT VOID                       *Data                 OPTIONAL, 
  IN OUT UINTN                      *DataLength           OPTIONAL,   
  IN     UINTN                      TimeOut, 
  OUT    UINT32                     *TransferResult 
  ) 
{ 
} 
   
EFI_STATUS 
<<DriverName>>BulkTransfer ( 
  IN  EFI_USB_HC_PROTOCOL           *This, 
  IN  UINT8                         DeviceAddress, 
  IN  UINT8                         EndPointAddress, 
  IN  UINT8                         MaximumPacketLength, 
  IN OUT VOID                       *Data,           
  IN OUT UINTN                      *DataLength,     
  IN OUT UINT8                      *DataToggle,     
  IN  UINTN                         TimeOut,         
  OUT UINT32                        *TransferResult 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>AsyncInterruptTransfer ( 
  IN     EFI_USB_HC_PROTOCOL              *This, 
  IN     UINT8                            DeviceAddress, 
  IN     UINT8                            EndPointAddress, 
  IN     BOOLEAN                          IsSlowDevice, 
  IN     UINT8                            MaximumPacketLength, 
  IN     BOOLEAN                          IsNewTransfer, 
  IN OUT UINT8                            *DataToggle      OPTIONAL, 
  IN     UINTN                            PollingInterval  OPTIONAL, 
  IN     UINTN                            DataLength       OPTIONAL, 
  IN     EFI_ASYNC_USB_TRANSFER_CALLBACK  CallBackFunction OPTIONAL, 
  IN     VOID                             *Context         OPTIONAL   
  ) 
{ 
} 
   
EFI_STATUS 
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<<DriverName>>SyncInterruptTransfer ( 
  IN     EFI_USB_HC_PROTOCOL        *This, 
  IN     UINT8                      DeviceAddress, 
  IN     UINT8                      EndPointAddress, 
  IN     BOOLEAN                    IsSlowDevice, 
  IN     UINT8                      MaximumPacketLength, 
  IN OUT VOID                       *Data, 
  IN OUT UINTN                      *DataLength, 
  IN OUT UINT8                      *DataToggle, 
  IN     UINTN                      TimeOut, 
  OUT    UINT32                     *TransferResult 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>IsochronousTransfer ( 
  IN     EFI_USB_HC_PROTOCOL        *This, 
  IN     UINT8                      DeviceAddress, 
  IN     UINT8                      EndPointAddress, 
  IN     UINT8                      MaximumPacketLength, 
  IN OUT VOID                       *Data, 
  IN OUT UINTN                      DataLength, 
  OUT    UINT32                     *TransferResult 
  ); 
{ 
} 
 
EFI_STATUS 
<<DriverName>>AsyncIsochronousTransfer ( 
  IN     EFI_USB_HC_PROTOCOL          *This, 
  IN     UINT8                        DeviceAddress, 
  IN     UINT8                        EndPointAddress, 
  IN     UINT8                        MaximumPacketLength, 
  IN OUT VOID                         *Data, 
  IN     UINTN                        DataLength, 
  IN EFI_ASYNC_USB_TRANSFER_CALLBACK  IsochronousCallBack, 
  IN VOID                             *Context   OPTIONAL 
  ) 
{ 
} 
 
 
EFI_STATUS 
<<DriverName>>GetRootHubPortNumber ( 
  IN  EFI_USB_HC_PROTOCOL           *This, 
  OUT UINT8                         *PortNumber 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>GetRootHubPortStatus ( 
  IN  EFI_USB_HC_PROTOCOL           *This, 
  IN  UINT8                         PortNumber, 
  OUT EFI_USB_PORT_STATUS           *PortStatus 
  ) 
{ 
} 
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EFI_STATUS 
<<DriverName>>SetRootHubPortFeature ( 
  IN EFI_USB_HC_PROTOCOL            *This, 
  IN UINT8                          PortNumber, 
  IN EFI_USB_PORT_FEATURE           PortFeature 
  ) 
{ 
} 
 
EFI_STATUS 
<<DriverName>>ClearRootHubPortFeature ( 
  IN EFI_USB_HC_PROTOCOL            *This, 
  IN UINT8                          PortNumber, 
  IN EFI_USB_PORT_FEATURE           PortFeature 
  ) 
{ 
} 

Example 15-3. Implementing the USB Host Controller Protocol 

The interfaces of USB Host Controller Protocol can be categorized into the following three aspects: 

• Root hub–related services:  

 GetRootHubPortNumber() 

 GetRootHubPortStatus() 

 SetRootHubPortFeature() 

 ClearRootHubPortFeature()   
• Host controller state–related services:  

 GetState() 

 SetState() 

 Reset() 
• USB transfer–related services:  

 ControlTransfer() 

 BulkTransfer() 

 AsyncInterruptTransfer() 

 SyncInterruptTransfer() 

 IsochronousTransfer() 

 AsyncIsochronousTransfer()   

For implementing root hub–related services and host controller state–related services, it mainly 
involves read/write operations to specific USB host controller registers. The USB host controller 
data sheet provides abundant information on these register usages, so this topic will not be covered 
in detail here.  



 Draft for Review USB Driver Design Guidelines 

Version 0.9 July 2004 285 

This section concentrates on the USB transfer–related services. Those transfers can be divided into 
the following two categories: 

• Asynchronous 
• Synchronous 

The asynchronous transfer means the transfer will not complete with the service’s return. The 
synchronous transfer means that, when the service returns, the transfer will also be complete. The 
following sections discuss these two types of transfers in more detail.  

15.1.3.1 Synchronous Transfer 
The USB Host Controller Protocol provides the following four synchronous transfer services: 

• ControlTransfer() 
• BulkTransfer() 
• SyncInterruptTransfer() 
• IsochronousTransfer() 

Control and bulk transfers will be done in an acceptable period of time and thus are natural 
synchronous transfers in the view of an EFI system. Interrupt transfers and isochronous transfers 
can be either asynchronous or synchronous transfers, depending on the usage model.  

It is convenient for the USB drivers to use these synchronous transfer services because they do not 
have to worry about when the data will be ready. The transfer result will be available as soon as the 
function returns. 

The following is an example of how to use BulkTransfer() to implement a synchronous 
transfer service. Generally speaking, to implement a bulk transfer service, it can be divided into the 
following steps: 

• Preparation:  For example, USBSTS is a status register in the USB host controller. The status 
register needs to be cleared before starting the control transfer. 

• Setting up the DMA direction:  By judging the end point address, the UHCI driver will decide 
the transfer direction and then set up the PCI bus master read or write. For example, if the 
transfer direction is EfiUsbDataIn, then the USB host controller will read from the DMA 
buffer. So the bus master write needs to be set. 

• Building the transfer context:  The UHCI Specification defines several structures for a 
transfer. For example, Queue Head (QH) and Transfer Descriptor (TD) are special structures 
that are used to support the requirements of control, bulk, and interrupt transfers.  

In this step, these QH and TD structures need to be created and linked to the UHCI Frame List. 
One possible implementation can be to create one QH and a list of TDs to form a transfer list. 
The QH will point to the first TD and occupy one entry in the Frame List. 

• Executing the TD and getting the result:  The USB host controller will automatically execute 
the TD when the timer comes. The UHCI driver needs to wait until the TDs of this transfer are 
all executed. After that, it will get the result of the TD execution. 

• Cleaning up:  It will delete the bulk transfer QH and TD structures from the Frame List, free 
related structures, and unregister the PCI DMA map. 
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15.1.3.2 Asynchronous Transfer 
The USB Host Controller Protocol provides the following two asynchronous transfer services: 

• AsyncInterruptTransfer() 

• AsyncIsochronousTransfer()  

To support asynchronous transfers, the USB host controller driver will register a periodical timer 
event. Meanwhile, it will maintain a queue for all asynchronous transfers. When the timer event is 
signaled, the timer event callback function will go through this queue and check whether some 
asynchronous transfers are complete.  

Generally speaking, the main work of that timer event callback function is to go through the 
asynchronous transfers queue. For each asynchronous transfer, it will check whether that 
asynchronous transfer is completed or not and do the following: 

• If it is not completed, the USB host controller driver will take no action and still keep this 
transfer on the queue.  

• If it is completed, the USB host controller driver will copy the data that it received to a 
predefined data buffer and remove the related QH and TD structures. Meanwhile, it will also 
invoke a preregistered transfer callback function. Moreover, based on that transfer’s complete 
status, the USB host controller driver will take different additional actions, as follows: 

 If it completed without an error, it will update the transfer data status accordingly, e.g., data 
toggle bit. 

 If it completed with an error, it is suggested that the USB host controller do nothing and 
leave the error recovery work to the related USB device driver.  

15.1.3.3 Internal Memory Management 
To implement USB transfers, the USB host controller driver needs to manage many small memory 
fragments as transfer data, for example, QH and TD. If the USB host controller driver uses the 
system memory management services to allocate these memory fragments each time, it is not 
efficient and fast enough. Thus, it is recommended that the USB host controller driver manage 
these kinds of internal memory usage itself. One possible implementation, as in the EFI 1.10 
Sample Implementation, is that the host controller driver can allocate a large chunk of memory in 
its entry point by using EFI memory services. Then it will implement a small memory management 
algorithm to manage this memory to satisfy internal memory allocations. By using this simple 
memory management mechanism, it avoids the frequent system memory management calls.  

15.1.3.4 DMA 
Most USB host controllers use DMA for their data transfer between host and devices. Because the 
processor and USB host controller both need to access that transfer data simultaneously, the USB 
host controller driver shall use a common buffer for all the memory that the host controller uses for 
data transfer. This requirement means that the processor and the host controller have an identical 
view of memory. See chapter 14 for usage guidelines for the common buffer.  
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15.2 USB Bus Driver 

The EFI 1.10 Sample Implementation contains a generic USB bus driver. This driver uses the 
services of EFI_USB_HC_PROTOCOL to enumerate USB devices and produce child handles with 
EFI_DEVICE_PATH_PROTOCOL and EFI_USB_IO_PROTOCOL.  

A USB hub, including the USB root hub and common hub, is a type of USB device. The USB bus 
driver is responsible for the management of all USB hub devices. No device drivers are required for 
USB hub devices. 

If EFI-based system firmware is ported to a new platform, most of the USB-related changes occur 
in the implementation of the USB host controller driver. Moreover, to support additional USB 
devices, new USB device drivers are also required. However, the USB bus driver is designed to be 
a generic, platform-agnostic driver. As a result, customizing the USB bus driver is strongly 
discouraged. The design and implementation of the USB bus driver will not be covered in detail in 
this document. 

15.3 USB Device Driver 

USB device drivers will use services provided by EFI_USB_IO_PROTOCOL to produce one or 
more protocols that provide I/O abstractions of a USB device. USB device drivers should follow 
the EFI Driver Model. As mentioned above, the USB device drivers will not manage hub devices 
because those hub devices will be managed by a USB bus driver. 

15.3.1 Supported() 
A USB device driver must implement the EFI_DRIVER_BINDING_PROTOCOL that contains the 
Supported(), Start(), and Stop() services. The Supported() service will check the 
controller handle that has been passed in to see whether this handle represents a USB device that 
this driver knows how to manage.  

The following is the most common method for doing the check:  

• Check if this handle has EFI_USB_IO_PROTOCOL installed. If not, this handle is not a USB 
device on the current USB bus. 

• Get the USB interface descriptor back from this USB_IO_DEVICE. Check whether the values 
of this device’s InterfaceClass, InterfaceSubClass, and InterfaceProtocol 
are identical to the corresponding values that this driver could manage.  

If the above two checks are passed, it means that the USB device driver can manage the device that 
the controller handle represents. The Supported() service will return EFI_SUCCESS. 
Otherwise, the Supported() service will return EFI_UNSUPPORTED. In addition, this check 
process must not disturb the current state of the USB device because a different USB device driver 
may be controlling this USB device.  

Example 15-4 is a fragment of code that shows how to implement a Supported() service for the 
USB device driver that manages a USB XYZ device with specific values for those critical fields.  
EFI_STATUS 
USBXYZDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL    *This, 
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  IN EFI_HANDLE                     Controller, 
  IN EFI_DEVICE_PATH_PROTOCOL       *RemainingDevicePath 
  )   
{ 
  EFI_STATUS            OpenStatus; 
  EFI_USB_IO_PROTOCOL   *UsbIo; 
  EFI_STATUS            Status; 
  EFI_USB_INTERFACE_DESCRIPTOR    InterfaceDescriptor; 
 
  // 
  // Check if USB_IO protocol is attached on the controller handle. 
  // 
  OpenStatus = gBS->OpenProtocol ( 
                      Controller, 
                      &gEfiUsbIoProtocolGuid, 
                      &UsbIo, 
                      This->DriverBindingHandle, 
                      Controller, 
                      EFI_OPEN_PROTOCOL_BY_DRIVER 
                 ); 
  if (EFI_ERROR (OpenStatus)) { 
    return OpenStatus; 
  } 
    
  // 
  // Get the default interface descriptor 
  // 
  Status = UsbIo->UsbGetInterfaceDescriptor( 
                        UsbIo, 
                        &InterfaceDescriptor 
                        ); 
  if(EFI_ERROR(Status)) { 
    Status =  EFI_UNSUPPORTED; 
  }    else { 
    // 
    // Judge whether the interface descriptor is supported by this driver 
    // 
    if (InterfaceDescriptor.InterfaceClass == CLASS_XYZCLASS && 
      InterfaceDescriptor.InterfaceSubClass == SUBCLASS_XYZSUBCLASS && 
      InterfaceDescriptor.InterfaceProtocol == PROTOCOL_XYZPROTOCOL) { 
        Status =  EFI_SUCCESS; 
    } else { 
     Status =  EFI_UNSUPPORTED; 
   }       
 } 
 
 
   gBS->CloseProtocol ( 
         Controller,   
         &gEfiUsbIoProtocolGuid,  
         This->DriverBindingHandle,    
         Controller    
         ); 
 
  return Status; 
} 

Example 15-4. Supported() Service of USB Device Driver  
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Because the Supported() service will be invoked many times, the USB bus driver in the 
EFI 1.10 Sample Implementation makes certain optimizations. It caches the interface descriptors, so 
that they do not have to read from the USB devices every time a USB device driver’s 
Supported() service is invoked. 

15.3.2 Start() and Stop() 
The Start() service of the Driver Binding Protocol for a USB device driver will open the USB 
I/O Protocol BY_DRIVER and install the I/O abstraction protocol for the USB device onto the 
handle on which the EFI_USB_IO_PROTOCOL is installed.  

This section provides detailed guidance on how to implement a USB device driver. It uses a USB 
CBI mass storage device as an example. Suppose this mass storage device has the following four 
endpoints:  

• One control endpoint 
• One interrupt endpoint 
• Two bulk endpoints 

For the interrupt endpoint, it is synchronous. For the bulk endpoints, one is an input endpoint and 
the other is an output endpoint. The following sections will cover how to implement the Start() 
and Stop() driver binding protocol services and USB ATAPI Protocol services. 

Example 15-5 lists the private context data structure for this USB CBI device driver. The 
Containing Record macro (CR()) can be used to retrieve the private context data structure from a 
pointer to a produced USB ATAPI Protocol interface. See chapter 8 for more details on private 
context data structure design guidelines. 
typedef struct { 
  UINT32            Signature; 
 
  EFI_USB_ATAPI_PROTOCOL          UsbAtapiProtocol; 
  EFI_USB_IO_PROTOCOL             *UsbIo; 
 
  EFI_USB_INTERFACE_DESCRIPTOR    InterfaceDescriptor; 
  EFI_USB_ENDPOINT_DESCRIPTOR     BulkInEndpointDescriptor; 
  EFI_USB_ENDPOINT_DESCRIPTOR     BulkOutEndpointDescriptor; 
  EFI_USB_ENDPOINT_DESCRIPTOR     InterruptEndpointDescriptor; 
 
  ... ...  
} USB_CBI_DEVICE; 
 
 
#define CR(Record, TYPE, Field)  \ 
  ((TYPE *) ( (CHAR8 *)(Record) - (CHAR8 *) &(((TYPE *) 0)->Field))) 

Example 15-5. Implementing a USB CBI Mass Storage Device Driver  
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15.3.2.1 Implementing the DriverBinding.Start() Service 
The code skeleton for the Start() service will be implemented in the following steps: 

1. Open the USB I/O Protocol on ControllerHandle BY_DRIVER.  
2. Get the interface descriptor using the 

EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor() service. 
3. Prepare the USB ATAPI Protocol private data structure.  

This private data structure is in type USB_CBI_DEVICE and has fields for the interface 
descriptor, endpoint descriptor, and others.  

This step will allocate memory for this USB ATAPI Protocol private data structure and do the 
necessary initializations—for example, setting up the Signature, UsbIo, and 
InterfaceDescriptor fields. 

4. Parse the interface descriptor.  

In this step, it will parse the InterfaceDescriptor that was obtained in step 2 and verify 
that all bulk and interrupt endpoints exit. The NumEndpoints field in 
InterfaceDescriptor indicates how many endpoints are in this USB interface. This code 
piece will first get endpoint descriptors one by one by using the 
UsbGetEndpointDescriptor() service. Then it will use the Attributes and 
EndpointAddress fields in EndpointDescriptor to judge the type of the endpoint. It 
will also set the endpoint descriptor to the appropriate endpoint descriptor field in the USB 
ATAPI Protocol private data structure. 

5. Install the USB ATAPI Protocol. 

15.3.2.2 DriverBinding.Stop() 
The Stop() service will do the reverse steps as the Start() service. It will uninstall the USB 
ATAPI Protocol and close its control to the USB I/O Protocol. It will also free various allocated 
resources—for example, the USB ATAPI Protocol private data structure.  

15.3.3 USB ATAPI Protocol Services 
This section continues to use the USB mass storage device example from the last section. The USB 
CBI device driver will publish an instance of the USB ATAPI Protocol to abstract the mass storage 
device. The major service that USB ATAPI Protocol provides is to encapsulate the USB ATAPI 
command that the upper USB mass storage driver sends. The following will provide the code 
skeleton for this UsbAtapiPacketCmd() service. 

Implement the UsbAtapiPacketCmd() service can be divided into the following step. This 
example uses a BOT device. 

1. Command phase.  

It will send ATAPI commands through the Command Block Wrapper (CBW). The host shall 
send each CBW, which contains a command block, to the device via the bulk-out endpoint. The 
CBW shall start on a packet boundary and end as a short packet with exactly 31 (1Fh) bytes 
transferred. The device shall indicate a successful transport of a CBW by accepting (ACKing) 
the CBW.  
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2. Data phase (Send/Get data) 
It will send or get data from that USB mass storage device, based on Direction. If 
Direction is EfiUsbNoData, then no action is taken. All data transport shall begin on a 
packet boundary. The host shall attempt to transfer the exact number of bytes to or from the 
device as specified by the dCBWDataTransferLength and Direction bits. 

3. Status phase 

It will get the status from the USB mass storage device that is packaged through the Command 
Status Wrapper (CSW). The device shall send each CSW to the host via the bulk-in endpoint. 
The CSW shall start on a packet boundary and end as a short packet with exactly 13 (Dh) bytes 
transferred. The CSW indicates to the host the status of the execution of the command block 
from the corresponding CBW. The CSWDataResidue field indicates how much of the data 
that is transferred is to be considered processed or relevant. The host shall ignore any data 
received beyond that which is relevant. 

4. Process status  

It will process the status that was obtained from the previous Status phase. If any fatal error 
happens, it will try to recovery the USB mass storage device. 

15.3.4 Asynchronous Transfer Usage 
Example 15-6 shows how the USB device driver uses asynchronous transfers. It uses a USB mouse 
driver as an example and will use the asynchronous interrupt transfer to get mouse input. 

In the USB mouse driver’s Driver Binding Protocol Start() service, it will first initiate an 
asynchronous interrupt transfer. 
Status = UsbIo->UsbAsyncInterruptTransfer( 
                      UsbIo, 
                      EndpointAddr, 
                      TRUE, 
                      PollingInterval, 
                      PacketSize, 
                      OnMouseInterruptComplete, 
                      UsbMouseDevice 
                   ); 

Example 15-6. Initiating an Asynchronous Interrupt Transfer in a USB Mouse Driver  

In Example 15-7, OnMouseInterruptComplete() is the corresponding asynchronous 
interrupt transfer callback function. In this function, if the passing Result parameter indicates an 
error, it will clear the endpoint error status, unregister the previous asynchronous interrupt transfer, 
and initiate another asynchronous interrupt transfer. If  there is no error, it will set the mouse state 
change indicator to TRUE and put the data that is read into the appropriate data structure. 
EFI_STATUS 
OnMouseInterruptComplete ( 
  IN  VOID        *Data, 
  IN  UINTN       DataLength, 
  IN  VOID        *Context, 
  IN  UINT32      Result 
  ) 
{ 
  USB_MOUSE_DEV       *UsbMouseDev; 
  EFI_USB_IO_PROTOCOL *UsbIo; 
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  UINT8               EndpointAddr; 
  UINT32              UsbResult; 
 
  UsbMouseDev = (USB_MOUSE_DEV *)Context; 
  UsbIo = UsbMouseDev->UsbIo; 
 
  if (Result != EFI_USB_NOERROR) { 
    if ((Result & EFI_USB_ERR_STALL) == EFI_USB_ERR_STALL) { 
      EndpointAddr = UsbMouseDev->IntEndpointDescriptor->EndpointAddress; 
 
      UsbClearEndpointHalt( 
        UsbIo, 
        EndpointAddr, 
        &UsbResult 
      ); 
    } 
     

// 
// Unregister previous asynchronous interrupt transfer 
// 

    UsbIo->UsbAsyncInterruptTransfer( 
             UsbIo, 
             UsbMouseDev->IntEndpointDescriptor->EndpointAddress, 
             FALSE, 
             0, 
             0, 
             NULL, 
             NULL 
           ); 
     

// 
// Initiate a new asynchronous interrupt transfer 
// 

    UsbIo->UsbAsyncInterruptTransfer( 
                      UsbIo, 
                      UsbMouseDev->IntEndpointDescriptor->EndpointAddress, 
                      TRUE, 
                      UsbMouseDev->IntEndpointDescriptor->Interval, 
                      UsbMouseDev->IntEndpointDescriptor->MaxPacketSize, 
                      OnMouseInterruptComplete, 
                      UsbMouseDev 
                ); 
    return EFI_DEVICE_ERROR; 
  } 
   
 
  UsbMouseDev->StateChanged = TRUE; 
 
  // 
  // Parse HID data package  
  // and extract mouse movements and coordinates to UsbMouseDev 
  // 
  ... ... 
 
 
  return EFI_SUCCESS; 
} 

Example 15-7. Completing an Asynchronous Interrupt Transfer  



 Draft for Review USB Driver Design Guidelines 

Version 0.9 July 2004 293 

Example 15-8 shows the GetMouseState() service of the Simple Pointer In Protocol that the 
USB mouse driver will publish. GetMouseState()will not initiate any asynchronous interrupt 
transfer. It simply checks the mouse state change indicator. If there is mouse input, it will copy the 
mouse input to the passing MouseState data structure. 
EFI_STATUS 
GetMouseState( 
  IN   EFI_SIMPLE_POINTER_PROTOCOL  *This, 
  OUT  EFI_SIMPLE_POINTER_STATE     *MouseState 
) 
{ 
  USB_MOUSE_DEV           *MouseDev; 
 
 
  MouseDev = USB_MOUSE_DEV_FROM_MOUSE_PROTOCOL(This); 
 
  if (MouseDev->StateChanged == FALSE) { 
    return EFI_NOT_READY; 
  } 
   
  EfiCopyMem( 
    MouseState, 
    &MouseDev->State, 
    sizeof(EFI_SIMPLE_POINTER_STATE) 
  ); 
 
  // 
  // Clear previous move state 
  // 
  ... ... 
 
  return EFI_SUCCESS; 
} 

Example 15-8. Retrieving Pointer Movement  

15.3.5 State Machine Consideration 
To implement USB device support, the USB device drivers need to maintain a state machine for 
their own transaction process. For example, the CBI driver for a USB mass storage device needs to 
maintain a tri-state machine, which contains Command->[Data]->Status states. See section 15.3.3 
for a description of each state. 

It should work well because it looks like a handshake process that is designed to be error free. 
Maintaining this state machine should provide enough and robust error handling.  

However, imagine the following condition: 

1. A command is sent to the device that the host needs some data from the device. 
2. The device’s response is too slow and it keeps NAK in its data endpoint. 
3. The host sees the NAK so many times that it thinks there will be no data available from the 

device. It will time out this data phase operation. 
4. The state machine is then in the status phase. It will ask for the status data from the device. 
5. The device then sends the real data phase data to the host.  



EFI 1.10 Driver Writer’s Guide Draft for Review  

294 July 2004 Version 0.9 

6. The host cannot understand the data from the device as status data, so it will reset the device 
and retry the operation. 

7. The necessary components of a dead loop then exist. The final result is a hanglike system, an 
unusable device, or both. 

How can this condition be avoided? If the device keeps NAK, it means that, sooner or later, the 
data will be available and no assumption can be made about the data’s availability. There are some 
cases in which the device’s response is so slow that the timeout is not enough for it to get data 
ready. As a result, retrying the transaction in the data phase may be necessary. 

15.4 Debug Techniques 

Several techniques can be used to debug the USB driver stack. The following sections describe 
these techniques. 

15.4.1 Debug Message Output 
One typical debug technique is to output the debug message. You can use the DEBUG macro to 
output debug message; see chapter 21 for the usage of the DEBUG macro. You can print the 
message both in the entry point and exit point of functions. By doing so, you can get the call stack 
and easily locate the error function. It is not suggested to print the debug message in a frequently 
called function, such as a timer handler.  

15.4.2 USB Bus Analyzer 
There are still some conditions where using the DEBUG macro is not enough for a developer to find 
the problem. One technique is to use a USB bus analyzer. Because a bus analyzer is inserted 
between the host and the device, the bus analyzer can get all the traffic on a single USB cable. With 
the USB bus’s traffic information, some hard bugs can be root caused—for example, when a host 
controller loses packets on some occasions. Also, for the state machine chaos problem that was 
introduced in section 15.3.5, a bus analyzer will help to look at the packets’ sequences and the 
unfinished state machine. The problem can also be quickly solved.  

15.4.3 USBCheck/USBCV tool 
Another useful tool for debugging is the USBCheck/USBCV tool from www.usb.org. This tool is 
very helpful when you want to see whether a device complies with the driver you are writing. 
Consider, for example, a case where a developer has written a USB imaging device driver for a 
generic imaging device such as a digital camera. If an end-user claims that this driver does not work 
for his or her specific brand of digital camera and the developer does not have such a camera on 
hand, the developer can ask the user to use the USBCheck/USBCV tool set and find out the 
device’s InterfaceClass, InterfaceSubClass, and InterfaceProtocol. The 
developer can then use this information to evaluate whether the camera should be supported by the 
driver. 

http://www.usb.org/
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15.5 Nonconformant Device 

There are always arguments on how to deal with devices that do not conform to the USB 
Specification. It is suggested to stick to the specification and reject any nonconformant devices.  

However, even if the device is nonconformant and the USB driver stack should reject it, developers 
need to make sure that the nonconformant device will not cause any system failures. The developer 
cannot make any assumptions about the device’s behavior. It is essential for the end-user’s 
experience that the nonconformant device does not negatively affect the system. 
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16 
SCSI Driver Design Guidelines 

This chapter focuses on the design and implementation of EFI SCSI drivers. Most SCSI controllers 
are PCI controllers, and the SCSI drivers managing them are also PCI drivers. As such, they must 
follow all of the design guidelines described in chapter 14, as well as the general guidelines 
described in chapter 5. In addition, this chapter covers the guidelines that apply specifically to the 
management of SCSI host controllers, SCSI channels, and SCSI devices. 

16.1 SCSI Driver Overview 

Per the EFI 1.10 Specification, the EFI SCSI driver is mainly referred as a SCSI host controller 
driver that manages a SCSI host controller that contains one or more SCSI channels. It may create 
SCSI channel handles for each SCSI channel and attach the SCSI Pass Thru Protocol and Device 
Path Protocol to each handle that the driver produced. The SCSI driver is also responsible for the 
following: 

• Enumerating SCSI devices that are attached on each SCSI channel  
• Creating SCSI device handles for each SCSI device that is detected 
• Attaching the I/O abstraction protocol instances to the child handles that represent SCSI 

devices 

These I/O abstractions allow the SCSI device to be used in the preboot environment. These I/O 
abstractions, such as Block I/O, are often used to boot an EFI-compliant OS. See the EFI 1.10 
Specification for details about EFI_SCSI_PASS_THRU_PROTOCOL. 

16.2 EFI SCSI Driver on SCSI Adapters 

An EFI SCSI driver follows the EFI Driver Model. Depending on the adapter that it manages, a 
SCSI driver can be categorized as either a bus driver or a hybrid driver. It may create child handles 
for each SCSI channel. A SCSI driver is typically a SCSI chip-specific driver because it has to 
know the details of what SCSI host adapter it is currently managing and initialize the SCSI adapter 
on a hardware-specific basis. 

Because there may be multiple SCSI host adapters that can be managed by a single SCSI driver in 
the same platform, it is recommended that the SCSI host controller driver be designed to be re-
entrant, as described in section 5.6 of this document. 
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16.2.1 EFI SCSI Driver on Single-Channel SCSI Adapter 
If the target SCSI adapter supports only one channel, then the SCSI driver can simply do the 
following: 

• Attach the EFI_SCSI_PASS_THRU_PROTOCOL and the EFI_DEVICE_PATH_PROTOCOL 
on the same handle as EFI_PCI_IO_PROTOCOL. 

• Enumerate the SCSI devices on this channel.  
• Create child device handles for each detected SCSI device. 

The SCSI driver is also responsible for producing the Block I/O Protocol or other equivalent I/O 
abstraction protocols on the SCSI device handle. Figure 16-1 shows an example implementation on 
a single-channel SCSI adapter: 

Other I/O
Abstraction

Layer(s)

SCSI Pass Thru Procotol

PCI I/O Procotol

Single Channel SCSI Adapter

SCSI Device Handle

Block I/O Procotol Block I/O Procotol
SCSI Device Handle

EFI SCSI Driver

 

Figure 16-1.  Sample SCSI Driver Implementation on Single-Channel Adapter 

Because there is only one SCSI channel, the SCSI driver can simply implement one instance of the 
SCSI Pass Thru Protocol based on the PCI I/O Protocol that is installed by the PCI bus driver. The 
SCSI driver then scans the physical channel for SCSI devices. If SCSI devices are available, the 
SCSI driver should do the following: 

• Build the corresponding child device handle and device path for each attached SCSI device. 
• Implement the Block I/O Protocol instance.  
• Hook it up on each child device handle.  

This case is quite simple because the one SCSI pass thru–per–SCSI channel mapping is very clear. 
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16.2.2 EFI SCSI Driver on Multichannel SCSI Adapter 
An EFI SCSI driver becomes more complex if the SCSI adapter to be managed produces multiple 
SCSI channels. Figure 16-2 shows a possible SCSI driver implementation on a two-channel SCSI 
adapter. 

Other I/O
Abstraction

Layer(s)

SCSI Pass Thru Procotol

PCI I/O Procotol

Adapter

SCSI Device
Handle

Block I/O Block I/O Procotol

SCSI Device Handle

EFI SCSI Driver

Physical Channel 0 Physical Channel 1

SCSI Pass Thru Procotol

Block I/O

SCSI Device
Handle

 

Figure 16-2.  Sample SCSI Driver Implementation on a Multichannel Adapter 

In this case, one SCSI adapter produces two physical SCSI channels. The SCSI driver should do the 
following: 

• Create SCSI channel handles for each physical channel. 
• Produce an instance of the SCSI Pass Thru Protocol for each of them. 
• Attach all the instances of the SCSI Pass Thru Protocol to them.  

The SCSI driver then enumerates each physical channel for the available SCSI devices. If there are 
any, the SCSI driver creates the child handle for each SCSI device and produces the block I/O for 
each device based on the individual SCSI Pass Thru Protocol instance. 
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16.2.3 EFI SCSI Driver on RAID SCSI Adapter 
An EFI SCSI driver can also support SCSI adapters with RAID capability. Figure 16-3 shows an 
example implementation with two physical channels and one logical channel. 
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Figure 16-3.  Sample SCSI Driver Implementation on Multichannel RAID Adapter 

In this example, two physical channels are implemented on the SCSI adapter. The RAID 
component then configures these two channels to produce a logical SCSI channel. The two physical 
channels do have the SCSI Pass Thru installed, but the SCSI driver should not enumerate SCSI 
devices on physical channels or create any child handles on any physical channel. For the logical 
channel, the SCSI driver may produce its own SCSI Pass Thru Protocol instance based on the 
RAID configuration and the SCSI pass thru from physical channels or directly by the PCI I/O 
Protocol. SCSI devices on this logical channel should be enumerated only by an EFI SCSI driver. 
The EFI SCSI driver should also create child device handles and hook up the block I/O on these 
child handles. 

The SCSI adapter hardware may not be able to expose the physical SCSI channel(s) to upper-level 
software when implementing RAID. If the physical SCSI channel cannot be exposed to upper 
software, then the SCSI driver is required only to produce a single RAID logical channel. The EFI 
SCSI driver will do the following: 

• Scan for SCSI devices. 
• Create child handles. 
• Expand the device path tree based on this logical channel.  

Although the basic theory is the same as the one on a physical channel, it is different from a 
manufacturing and diagnostic perspective. If the physical SCSI channels are exposed, the EFI SCSI 
driver will install the SCSI Pass Thru Protocol on each physical channel. Therefore, any SCSI 
command, including diagnostic ones, can be sent to an individual channel, which is very helpful on 
manufacturing lines. Furthermore, the diagnostic command can be sent simultaneously to all 
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physical channels using the nonblocking mode that is supported by SCSI Pass Thru Protocol. The 
diagnostic process may considerably benefit from the performance gain. In summary, it is 
suggested to expose physical SCSI channel whenever possible. 

Of course, there are many possible designs for implementing SCSI RAID functionality. The point is 
that an EFI SCSI driver can be designed and implemented for a wide variety of SCSI adapters, and 
those EFI SCSI drivers can produce the SCSI Pass Thru Protocol for SCSI channels and generic 
EFI I/O abstractions such as block I/O for the SCSI devices on those SCSI channels. 

16.2.4 EFI Driver Binding for EFI SCSI Driver 
Like many other drivers that follow the EFI Driver Model, the image entry point of a SCSI driver 
installs only the Driver Binding Protocol instance on the image handle. All three of the services in 
the Driver Binding Protocol—Supported(), Start(), and Stop()—must be implemented 
by an EFI SCSI driver. 

The Supported() function tests to see whether the given handle is a manageable SCSI adapter. 
In this function, a SCSI driver should check that EFI_DEVICE_PATH_PROTOCOL and 
EFI_PCI_IO_PROTOCOL are present to ensure the handle that is passed in represents a PCI 
device. In addition, a SCSI driver should also check the ClassCode, VendorId, and 
DeviceId that are read from the device’s PCI configuration header to make sure it is a compliant 
SCSI adapter that can be managed by the EFI SCSI driver.  

The Start() function tells the SCSI driver to start managing the SCSI controller. In this 
function, a SCSI driver should use chip-specific knowledge to do the following: 

• Initialize the SCSI host controller. 
• Enable the PCI device. 
• Allocate resources. 
• Construct data structures for the driver to use. 
• Implement the interfaces that are defined in EFI_SCSI_PASS_THRU_PROTOCOL.  

If the SCSI adapter is a single-channel adapter, then the EFI SCSI driver should install 
EFI_SCSI_PASS_THRU_PROTOCOL on the same handle that has the PCI I/O Protocol attached. 
If the SCSI adapter is a multichannel adapter, then the driver should also do the following: 

• Enumerate the SCSI channels that are supported by the host controller. 
• Create SCSI channel handles for each detected SCSI channel. 
• Append the device path for each channel handle. 
• Attach EFI_DEVICE_PATH_PROTOCOL and EFI_SCSI_PASS_THRU_PROTOCOL to 

every newly created channel handle. 

Furthermore, in the Start() function, the SCSI driver should scan for the SCSI devices on each 
SCSI channel. If a request is being made to scan only one SCSI device, it should scan only for the 
one specified. The SCSI driver should create a device handle for the SCSI device that was found, 
install the EFI_DEVICE_PATH_PROTOCOL on each device handle, and use the services of the 
EFI_SCSI_PASS_THRU_PROTOCOL to produce additional EFI I/O abstraction protocols, such 
as the Block I/O Protocol. The Start() function should not scan for the SCSI devices every time 
the driver is started. It should depend on whether a full device path to a specific target is passed in 
or if a NULL device path is passed in. If a NULL device path is passed in, the SCSI Pass Thru 
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Protocol driver should create a device handle for each device that was found in the scan behind the 
controller. If the adapter has nonvolatile storage, the driver may also want to take advantage of the 
stored information on whether or not to scan the devices behind the controller. 

The Stop() function performs the opposite operations as Start(). Generally speaking, a SCSI 
driver is required to do the following:  

• Disable the SCSI adapter.  
• Release all resources that were allocated for this driver. 
• Close the protocol instances that were opened in the Start()function.  

• Uninstall the protocol interfaces that were attached on the host controller handle. 
 

In general, if it is possible to design an EFI SCSI driver to create one child at a time, it should do so 
to support the rapid boot capability in the EFI Driver Model. Each of the child device handles 
created in Start() must contain a Device Path Protocol instance and a SCSI I/O abstraction 
layer. The format of device paths for SCSI devices is described in section 16.5.  

16.2.5 Implementing the SCSI Pass Thru Protocol 
EFI_SCSI_PASS_THRU_PROTOCOL allows information about a SCSI channel to be collected 
and allows SCSI Request Packets to be sent to any SCSI devices on a SCSI channel, even if those 
devices are not boot devices. This protocol is attached to the device handle of each SCSI channel in 
a system that the protocol supports and can be used for diagnostics. It may also be used to build a 
block I/O driver for SCSI hard drives and SCSI CD-ROM or DVD drives to allow those devices to 
become boot devices. 

The protocol interface for the SCSI Pass Thru Protocol is listed below: 

Protocol Interface Structure 
typedef struct _EFI_SCSI_PASS_THRU_PROTOCOL { 
  EFI_SCSI_PASS_THRU_MODE               *Mode; 
  EFI_SCSI_PASS_THRU_PASSTHRU           PassThru; 
  EFI_SCSI_PASS_THRU_GET_NEXT_DEVICE    GetNextDevice; 
  EFI_SCSI_PASS_THRU_BUILD_DEVICE_PATH  BuildDevicePath; 
  EFI_SCSI_PASS_THRU_GET_TARGET_LUN     GetTargetLun; 
  EFI_SCSI_PASS_THRU_RESET_CHANNEL      ResetChannel; 
  EFI_SCSI_PASS_THRU_RESET_TARGET       ResetTarget; 
} EFI_SCSI_PASS_THRU_PROTOCOL; 

 

For a detailed description of EFI_SCSI_PASS_THRU_PROTOCOL, see chapter 13 of the 
EFI 1.10 Specification.  

Before implementing the SCSI Pass Thru Protocol, the SCSI driver should configure the SCSI core 
to a defined state. In practice, the SCSI adapter usually maps a set of SCSI core registers in I/O or 
memory-mapped I/O space. Although the detailed layout or functions of these registers vary from 
one SCSI hardware to another, the SCSI driver should use specific knowledge to set up the proper 
SCSI working mode (SCSI-I, SCSI-II, Ultra SCSI, and so on) and configure the timing registers for 
the current mode. Other considerations include parity options, DMA engine and interrupt 
initialization, among others. 
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All the hardware-related settings should be completed before any SCSI Pass Thru Protocol function 
is called. The initialization is better accomplished in the Driver Binding Protocol’s Start() 
function of the SCSI controller driver, prior to hooking up the SCSI Pass Thru Protocol functions. 

EFI_SCSI_PASS_THRU_PROTOCOL.Mode is a structure that describes the intrinsic attributes 
of the SCSI Pass Thru Protocol instance. Note that a non-RAID SCSI channel should set both the 
physical and logical attributes. A physical channel on the RAID adapter should set only the 
physical attribute, and the logical channel on the RAID adapter should set only the logical attribute. 
If the channel supports nonblocking I/O, the nonblocking attribute should also be set. Example 16-1 
shows how to set those attributes on a non-RAID SCSI adapter that supports nonblocking I/O. 
#define SCSI_CHANNEL_NAME     “Sample Channel” 
#define SCSI_CONTROLLER_NAME  “Sample SCSI Adapter” 
// ... .. ...   
ScsiPassThruMode.ControllerName                 = SCSI_CONTROLLER_NAME; 
ScsiPassThruMode.ChannelName                    = SCSI_CHANNEL_NAME; 
AtapiScsiPrivate->ScsiPassThruMode.AdapterId = 4; // Target Channel Id 
ScsiPassThruMode.Attributes = EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL            
| EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL 
| EFI_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO; 
ScsiPassThruMode.IoAlign     = 0; // Do not have any alignment requirement 

Example 16-1.  SCSI Pass Thru Mode Structure on Single-Channel SCSI Adapter 

Example 16-2 shows how to set the SCSI Mode structure on a multichannel non-RAID adapter. 
The example fits for either channel in Figure 16-2. 
#define SCSI_CHANNEL_NAME     “Sample Phy Channel” 
#define SCSI_CONTROLLER_NAME  “Sample Multichannel SCSI Adapter” 
// ... .. ...   
ScsiPassThruMode.ControllerName                 = SCSI_CONTROLLER_NAME; 
ScsiPassThruMode.ChannelName                    = SCSI_CHANNEL_NAME; 
AtapiScsiPrivate->ScsiPassThruMode.AdapterId = 2; 
// The channel does not support nonblocking I/O 
ScsiPassThruMode.Attributes = EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL            
| EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL;  
ScsiPassThruMode.IoAlign     = 2; // Data must be alligned on 4-byte boundary 

Example 16-2.  SCSI Pass Thru Mode Structure on Multichannel SCSI Adapter 

For the RAID adapter shown in Figure 16-3, the corresponding Mode structures for both the 
physical and logical channel may be filled as shown in Example 16-3. 
#define SCSI_PHY_CHANNEL_NAME     “Sample Phy Channel” 
#define SCSI_LGC_CHANNEL_NAME     “Sample Lgc Channel” 
#define SCSI_PHY_CONTROLLER_NAME  “Sample RAID SCSI Adapter” 
// ... .. ... Physical Channel ... .. ... 
ScsiPassThruMode.ControllerName                 = SCSI_CONTROLLER_NAME; 
ScsiPassThruMode.ChannelName                    = SCSI_PHY_CHANNEL_NAME; 
AtapiScsiPrivate->ScsiPassThruMode.AdapterId = 0; 
ScsiPassThruMode.Attributes = EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL            
| EFI_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO; 
ScsiPassThruMode.IoAlign     = 0;  
 
//  ... .. ... Logical Channel ... .. ... 
ScsiPassThruMode.ControllerName                 = SCSI_CONTROLLER_NAME; 
ScsiPassThruMode.ChannelName                    = SCSI_LGC_CHANNEL_NAME; 
AtapiScsiPrivate->ScsiPassThruMode.AdapterId = 2; 
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ScsiPassThruMode.Attributes = EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL             
| EFI_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO; 
ScsiPassThruMode.IoAlign     = 0; 

Example 16-3.  SCSI Pass Thru Mode Structures on RAID SCSI Adapter 

The EFI_SCSI_PASS_THRU_PROTOCOL.GetNextDevice() and 
EFI_SCSI_PASS_THRU_PROTOCOL.GetTargetLun() functions provide a way to walk on 
different devices within a channel. The SCSI controller driver may implement it by internally 
maintaining an active device flag. Use this flag and channel-specific knowledge to figure out what 
device is next, as well as what device is first. 

The EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() function facilitates the 
construction of a SCSI device path. The device path for the SCSI device can be many kinds because 
of enormous device types that are supported by the SCSI pass thru mechanism. The detailed device 
category can be identified only by the SCSI pass thru implementation, which is why the function 
goes into the SCSI Pass Thru Protocol. See the last section in this chapter for device path examples 
for SCSI devices. 

The EFI_SCSI_PASS_THRU_PROTOCOL.PassThru() function is the most important 
function when implementing the SCSI Pass Thru Protocol. In this function, the SCSI pass thru 
driver should do the following: 

• Initialize the internal register for command/data transfer. 
• Put valid SCSI packets into hardware-specific memory or register locations. 
• Start the transfer. 
• Optionally wait for completion of the execution.  

The better error handling mechanism in this function helps to develop a more robust driver. 
Although most SCSI adapters support both synchronous and asynchronous data transfers, some 
may not support synchronous mode. In this case, the SCSI driver may implement the blocking 
SCSI I/O that is required by the EFI 1.10 Specification using the polling mechanism. Polling can be 
based on a timer interrupt or simply by polling the internal register. Do not return until all I/O 
requests are completed or else an unhandled error is encountered. 

Example 16-4 below shows a template for implementing the SCSI Pass Thru Protocol. 
// In the SCSI Channel private context data definition 
typedef struct { 
    UINTN                         Signature; 
    EFI_HANDLE                    Handle; 
    EFI_SCSI_PASS_THRU_PROTOCOL   ScsiPassThru; 
    EFI_SCSI_PASS_THRU_MODE       ScsiPassThruMode; 
    // .. .. .. 
} <<DriverName>>_SCSI_PASS_THRU_CONTEXT_DATA; 
 
// In the SCSI driver implementation file 
<<DriverName>>_SCSI_PASS_THRU_CONTEXT_DATA   *ScsiContextData; 
 
Status = gBS->AllocatePool ( 
                   EfiBootServicesData, 
                   sizeof(<<DriverName>>_SCSI_PASS_THRU_CONTEXT_DATA), 
                  (VOID **)&ScsiContextData 
                  ); 
if (EFI_ERROR(Status)) { 
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   return Status; 
} 
EfiZeroMem ( 

ScsiContextData, 
sizeof (<<DriverName>>_SCSI_PASS_THRU_CONTEXT_DATA) 
); 

ScsiContextData->Signature = <<DriverName>>_SCSI_PASS_THRU_DEV_SIGNATURE; 
// 
// Initialize SCSI Pass Thru Protocol interface 
// 
ScsiContextData->ScsiPassThru.Mode = &ScsiContextData->ScsiPassThruMode; 
ScsiContextData->ScsiPassThru.PassThru = <<DriverName>>ScsiPassThruPassThru;  
ScsiContextData->ScsiPassThru.GetNextDevice = 

 <<DriverName>>ScsiPassThruGetNextDevice; 
ScsiContextData->ScsiPassThru.BuildDevicePath  = <<DriverName>>ScsiPassThru 

BuildDevicePath; 
AtapiScsiPrivate->ScsiPassThru.GetTargetLun     = 

<<DriverName>>ScsiPassThruGetTargetLun; 
ScsiContextData->ScsiPassThru.ResetChannel      = 

<<DriverName>>ScsiPassThruResetChannel; 
ScsiContextData->ScsiPassThru.ResetTarget       = 

<<DriverName>>ScsiPassThruResetTarget; 
 
// In the SCSI Pass Thru implementation file 
EFI_STATUS 
<<DriverName>>ScsiPassThruPassThru ( 
  IN EFI_SCSI_PASS_THRU_PROTOCOL                  *This, 
  IN UINT32                                       Target, 
  IN UINT64                                       Lun, 
  IN OUT EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET   *Packet, 
  IN EFI_EVENT                                    Event OPTIONAL 
  )  
{ 
} 
EFI_STATUS 
<<DriverName>>ScsiPassThruGetNextDevice ( 
  IN  EFI_SCSI_PASS_THRU_PROTOCOL                 *This, 
  IN OUT UINT32                                   *Target, 
  IN OUT UINT64                                   *Lun 
  )  
{ 
} 
EFI_STATUS 
<<DriverName>>ScsiPassThruBuildDevicePath ( 
  IN     EFI_SCSI_PASS_THRU_PROTOCOL              *This, 
  IN     UINT32                                   Target, 
  IN     UINT64                                   Lun, 
  IN OUT EFI_DEVICE_PATH_PROTOCOL                 **DevicePath 
  )  
{ 
} 
EFI_STATUS 
<<DriverName>>ScsiPassThruGetTargetLun ( 
  IN  EFI_SCSI_PASS_THRU_PROTOCOL                 *This, 
  IN  EFI_DEVICE_PATH_PROTOCOL                    *DevicePath, 
  OUT UINT32                                      *Target, 
  OUT UINT64                                      *Lun 
  ) 
{ 
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} 
EFI_STATUS 
<<DriverName>>ScsiPassThruResetChannel ( 
  IN  EFI_SCSI_PASS_THRU_PROTOCOL                 *This 
  ) 
{ 
} 
EFI_STATUS 
<<DriverName>>ScsiPassThru ResetTarget ( 
  IN EFI_SCSI_PASS_THRU_PROTOCOL                  *This, 
  IN UINT32                                       Target, 
  IN UINT64                                       Lun 
  ) 
{ 
} 

Example 16-4.  SCSI Pass Thru Protocol Template 

16.3 Implementing SCSI Pass Thru Protocol on a SCSI Command 
Set–Compatible Device 

The SCSI Pass Thru Protocol defines a method to directly access SCSI devices. This protocol 
provides interfaces that allow a generic driver to produce the Block I/O Protocol for SCSI disk 
devices and allows an EFI utility to issue commands to any SCSI device. The main reason to 
provide such an access is to enable S.M.A.R.T. functionality during POST (i.e., issuing Mode 
Sense, Mode Select, and Log Sense to SCSI devices). This enabling is accomplished using the 
generic interfaces that are defined in the SCSI Pass Thru Protocol. The implementation of this 
protocol will also enable additional functionality in the future without modifying the SCSI drivers 
that are built on top of the SCSI driver. Furthermore, the SCSI Pass Thru Protocol is not limited to 
SCSI adapters. It is applicable to all channel technologies that use SCSI commands such as ATAPI, 
iSCSI, and Fibre Channel. This section shows some examples that demonstrate how to implement 
the SCSI Pass Thru Protocol on SCSI command set–compatible technology. 

16.3.1 SCSI Pass Thru Protocol on ATAPI 
This section shows how to implement the SCSI Pass Thru Protocol for ATAPI devices. 

Decode the (Target, Lun) pair using the intrinsic property of the technology or device. In this 
example, ATAPI supports only four devices, so the (Target, Lun) pair can be decoded by 
determining the IDE channel (primary/secondary) and IDE device (master/slave).  

If the corresponding technology or device supports the channel reset operation, use it to implement 
EFI_SCSI_PASS_THRU_PROTOCOL.ResetChannel(); if not, it may be implemented by 
resetting all attached devices on the channel and re-enumerating them. 

In the EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() function, all target 
devices should be built on a node based on the channel knowledge. Example 16-5 shows an ATAPI 
node being built. 
typedef struct { 
    UINTN                         Signature; 
    EFI_HANDLE                    Handle; 
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    EFI_SCSI_PASS_THRU_PROTOCOL   ScsiPassThru; 
    EFI_SCSI_PASS_THRU_MODE       ScsiPassThruMode; 
    EFI_PCI_IO_PROTOCOL           *PciIo; 
    IDE_BASE_REGISTERS            *IoPort; 
    CHAR16                        ControllerName[100]; 
    CHAR16                        ChannelName[100]; 
    UINT32                        LatestTargetId; 
    UINT64                        LatestLun; 
} ATAPI_SCSI_PASS_THRU_DEV; 
 
EFI_STATUS 
SampleAtapiScsiPassThruBuildDevicePath ( 
  IN     EFI_SCSI_PASS_THRU_PROTOCOL    *This, 
  IN     UINT32                         Target, 
  IN     UINT64                         Lun, 
  IN OUT EFI_DEVICE_PATH_PROTOCOL       **DevicePath 
  ) 
{ 
  ATAPI_SCSI_PASS_THRU_DEV    *AtapiScsiPrivate; 
  EFI_DEV_PATH                *Node; 
  EFI_STATUS                  Status; 
   
// Checking parameters.......... 
 

  // Retrieve Device Private Data Structure via _CR() macro 
  AtapiScsiPrivate = ATAPI_SCSI_PASS_THRU_DEV_FROM_THIS (This); 
 
  Status = gBS->AllocatePool ( 
                     EfiBootServicesData, 
                     sizeof(EFI_DEV_PATH), 
                     (VOID **)&Node); 
  if (EFI_ERROR(Status)) { 
    return EFI_OUT_OF_RESOURCES; 
  } 
   
  gBS->SetMem (Node, sizeof(EFI_DEV_PATH), 0); 
  Node->DevPath.Type           = MESSAGING_DEVICE_PATH; 
  Node->DevPath.SubType        = MSG_ATAPI_DP; 
  (&Node->DevPath)->Length[0]  = (UINT8) (sizeof(ATAPI_DEVICE_PATH));        
  (&Node->DevPath)->Length[1]  = (UINT8) ((sizeof(ATAPI_DEVICE_PATH)) >> 8); 
  Node->Atapi.PrimarySecondary = (UINT8)(Target / 2); 
  Node->Atapi.SlaveMaster      = (UINT8)(Target % 2); 
  Node->Atapi.Lun              = (UINT16)Lun; 
     
  *DevicePath = (EFI_DEVICE_PATH_PROTOCOL*)Node; 
  return EFI_SUCCESS; 
}     

Example 16-5.  Building Device Path for ATAPI Device 

For the most important function, EFI_SCSI_PASS_THRU_PROTOCOL.PassThru(), it should 
be implemented by technology-dependent means. In this example, ATAPI supports a SCSI 
command using the IDE “Packet” command. Because the IDE command is delivered through a 
group of I/O registers, the main body of the implementation is filling the SCSI command structure 
to these I/O registers and then waiting for the command completion. A complete code example for 
the blocking I/O EFI_SCSI_PASS_THRU_PROTOCOL function can be found in the 
\EFI1.1\Edk\Drivers\AtapiPassThru directory of the EFI Sample Implementation. 
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For the nonblocking I/O EFI_SCSI_PASS_THRU_PROTOCOL function, the SCSI driver should 
simply submit the SCSI command and return. It may choose to poll an internal timer event to check 
whether the submitted command completes its execution. If so, it should signal the client event. The 
EFI firmware will then schedule to invoke the notification function of the client event. 
Example 16-6 shows a sample nonblocking SCSI Pass Thru Protocol implementation. 
EFI_STATUS 
SampleNonBlockingScsiPassThruFunction ( 
  IN EFI_SCSI_PASS_THRU_PROTOCOL          *This, 
  IN UINT32                               Target, 
  IN UINT64                               Lun, 
  IN OUT EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET   *Packet, 
  IN EFI_EVENT                            Event OPTIONAL 
  ) 
{ 
  ATAPI_SCSI_PASS_THRU_DEV        *AtapiScsiPrivate; 
  EFI_EVENT                       InternalEvent; 
  EFI_STATUS                      Status; 
   
  AtapiScsiPrivate = ATAPI_SCSI_PASS_THRU_DEV_FROM_THIS (This); 
   
  // 
  // Do parameter checking required by EFI specification 
  // 
  //.................................. 
   
  // 
  // Create internal timer event in order to poll the completion. The event  
  // can also be created outside of this function to avoid frequent event  
  // construction/destruction. 
  // 
  Status = gBS->CreateEvent ( 
                  EFI_EVENT_TIMER | EFI_EVENT_NOTIFY_SIGNAL, 
                  EFI_TPL_CALLBACK, 
                  ScsiPassThruPollEventNotify, 
                  AtapiScsiPrivate, 
                  &InternalEvent 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
   
  // 
  // Signal the polling event every 200 ms. Select the interval according  
  // to the specific requirement and technology. 
  // 
  Status = gBS->SetTimer (InternalEvent, TimerPeriodic, 2000000); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
// Just submit SCSI I/O command through IDE I/O registers and return 

  // 
  Status = SubmitBlockingIoCommand (AtapiScsiPrivate, Target, Packet);   
  return Status; 
}     
 
VOID 
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ScsiPassThruPollEventNotify ( 
  IN  EFI_EVENT                Event, 
  IN  VOID                     *Context 
  ) 
{ 
  ATAPI_SCSI_PASS_THRU_DEV     *AtapiScsiPrivate; 
  BOOLEAN                      CommandCompleted; 
     
  ASSERT (Context); 
  AtapiScsiPrivate = (ATAPI_SCSI_PASS_THRU_DEV *)Context; 
  CommandCompleted = FALSE; 
   
  // 
  // Use specific knowledge to identify whether command execution completes  
  // or not. If so, set CommandCompleted as TRUE. 
  //  
  // ...................... 
   
  if (CommandCompleted) { 
    // 
    // Get client event handle from private context data structure.  
    // Signal it. 
    // 
    gBS->SignalEvent (ClientEvent); 
  } 
} 

Example 16-6.  Sample Nonblocking SCSI Pass Thru Protocol Implementation 

16.4 General Considerations for Developing EFI SCSI Drivers  

16.4.1 SCSI Channel Enumeration 
The purpose of the SCSI channel enumeration is to scan for the SCSI devices that are attached to a 
specific SCSI channel. Although the detailed SCSI device discovery algorithm may vary from one 
implementation to another, the enumeration framework is generic, not only for native SCSI 
adapters, but also for any SCSI-command-compatible technology such as ATAPI, iSCSI, and Fibre 
Channel. Example 16-7 shows a possible channel enumeration framework. 
EFI_STATUS 
ScsiChannelEnumeration ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath, 
  IN EFI_SCSI_PASS_THRU_PROTOCOL  *ScsiPassThru, 
  IN EFI_DEVICE_PATH_PROTOCOL     *ParentDevicePath 
  ) 
{ 
  EFI_STATUS                  Status; 
  UINT32                      ChannelAttribute; 
  UINT32                      StartPun = 0; 
  UINT64                      StartLun = 0; 
  UINT32                      Pun; 
  UINT64                      Lun; 
  BOOLEAN                     ScanOtherPuns; 
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  ChannelAttribute = ScsiPassThru->Mode->Attributes; 
  if (((ChannelAttribute & EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL) != 0) && 
      ((ChannelAttribute & EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL)  == 0) ) { 
    // 
    // This channel has just PHYSICAL attribute set. Do not do enumeration 
    // on this kind of channel. 
    // 
    return EFI_UNSUPPORTED; 
  } 
 
  if (RemainingDevicePath == NULL) { 
    StartPun = 0xFFFFFFFF; 
    StartLun = 0; 
  } else { 
    ScsiPassThru->GetTargetLun ( 
                       ScsiPassThru, 
                       RemainingDevicePath, 
                       &StartPun, 
                       &StartLun 
                       ); 
  } 
   
  for (Pun = StartPun, ScanOtherPuns = TRUE; ScanOtherPuns == TRUE;) { 
    if (StartPun == 0xFFFFFFFF) { 
      // 
      // RemainingDevicePath is NULL. Scan all the possible Puns in the  
      // channel. 
      // 
      Status = ScsiPassThru->GetNextDevice (ScsiPassThru, &Pun, &Lun); 
      if (EFI_ERROR(Status)) { 
        // 
        // No legal Pun and Lun found anymore 
        // 
        break; 
      } 
    } else { 
      // 
      // Remaining Device Path is not NULL. Only scan the specified Pun. 
      // 
      Pun = StartPun; 
      Lun = StartLun; 
      ScanOtherPuns = FALSE; 
    } 
     
    // 
    // Avoid creating handle for the host adapter. 
    // 
    if (Pun == ScsiPassThru->Mode->AdapterId) { 
      continue; 
    } 
         
    // 
    // Use specific knowledge discover the presence of SCSI device on 
    // target (Pun, Lun). Some SCSI commands, such as INQUERY,  
    // TEST_UNIT_READY, REQUEST_SENSE can be used here to detect the 
    // SCSI device presence. 
    //  
    Status = DiscoverScsiDevice ( 
                 This,  
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                 ControllerHandle,  
                 ScsiPassThru,  
                 Pun, 
                 Lun 
                 ); 
    if (EFI_ERROR(Status)) { 
      // 
      // SCSI device doesn't exist on target (Pun, Lun);  
      // continue on next one 
      // 
      continue; 
    } 
     
    // 
    // SCSI device exists on target (Pun, Lun). Create and set up child  
    // device 
    //                      
    Status = CreateChildScsiDevice ( 
                 This,  
                 ControllerHandle,  
                 ScsiPassThru,  
                 Pun,  
                 Lun, 
                 ParentDevicePath 
                 ); 
    if (EFI_ERROR(Status)) { 
      return Status; 
    } 
  } 
     
  return Status; 
} 

Example 16-7.  SCSI Channel Enumeration 

16.4.2 Create SCSI Device Child Handle 
It is recommended that the SCSI driver constructs a private context structure for each enumerated 
SCSI device. See chapter 8 in this document for the advantage of using such a private context 
structure. Specifically, the SCSI driver should store all required information for the child SCSI 
device in this data structure, including the signature, child handle value, position indicator (Pun, 
Lun), device type, device version, and its device path. This private context structure can be 
accessed via the Record macro _CR(), which can also be found in chapter 8 of this document. 

It is also the SCSI driver’s responsibility to do the following: 

• Build the appropriate device path for the enumerated SCSI device.  
• Install the generic EFI I/O abstraction protocol and Device Path Protocol on the newly created 

child SCSI device handle.  

Example 16-8 shows the child handle creation process for a detected SCSI device. 
typedef struct { 
  UINT32                        Signature; 
  EFI_HANDLE                    Handle; 
  EFI_SCSI_IO_PROTOCOL          ScsiIo; 
  EFI_DEVICE_PATH_PROTOCOL      *DevicePath; 
  EFI_SCSI_PASS_THRU_PROTOCOL   *ScsiPassThru; 
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  UINT32                        Pun; 
  UINT64                        Lun; 
  UINT8                         ScsiDeviceType; 
  UINT8                         ScsiVersion; 
  BOOLEAN                       RemovableDevice; 
} SCSI_DEVICE_CONTEXT; 
 
EFI_STATUS 
CreateChildScsiDevice ( 
  EFI_DRIVER_BINDING_PROTOCOL   *This, 
  EFI_HANDLE                    ControllerHandle,   
  EFI_SCSI_PASS_THRU_PROTOCOL   *ScsiPassThru, 
  UINT32                        Pun, 
  UINT64                        Lun, 
  EFI_DEVICE_PATH_PROTOCOL      *ParentDevicePath 
  ) 
{ 
  EFI_STATUS                    Status; 
  SCSI_DEVICE_CONTEXT           *ScsiDevice; 
  EFI_DEVICE_PATH_PROTOCOL      *ScsiDevicePath; 
   
  // 
  // Construct and initialize SCSI Device Private Context Structure 
  // 
  Status = gBS->AllocatePool ( 
                     EfiBootServicesData, 
                     sizeof(SCSI_DEVICE_CONTEXT), 
                    (VOID **)&ScsiDevice); 
  if (EFI_ERROR(Status)) { 
    return Status; 
  } 
 
   
  EfiZeroMem (ScsiDevice, sizeof(SCSI_DEVICE_CONTEXT)); 
   
  ScsiDevice->Signature    = SCSI_DEVICE_SIGNATURE; 
  ScsiDevice->ScsiPassThru = ScsiPassThru; 
  ScsiDevice->Pun          = Pun; 
  ScsiDevice->Lun          = Lun; 
   
  // 
  // Set Device Path 
  // 
  Status = ScsiDevice->ScsiPassThru->BuildDevicePath ( 
               ScsiDevice->ScsiPassThru, 
               ScsiDevice->Pun, 
               ScsiDevice->Lun, 
               &ScsiDevicePath 
               ); 
  if (EFI_ERROR(Status)) { 
    gBS->FreePool (ScsiDevice); 
    return Status; 
  } 
   
  ScsiDevice->DevicePath = EfiAppendDevicePathNode ( 
                                   ParentDevicePath,  
                                   ScsiDevicePath 
                                   );   
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  // 
  // The memory for ScsiDevicePath is allocated in  
  // ScsiPassThru->BuildDevicePath()function and no longer used  
  // after EfiAppendDevicePathNode, so free it 
  // 
  gBS->FreePool (ScsiDevicePath); 
   
  if (ScsiDevice->DevicePath == NULL) { 
    gBS->FreePool (ScsiDevice); 
    return EFI_OUT_OF_RESOURCES; 
  } 
   
  Status = gBS->InstallMultipleProtocolInterfaces ( 
                     &ScsiDevice->Handle,            
                     &gEfiDevicePathProtocolGuid, 
                     ScsiDevice->DevicePath, 
                     NULL 
                  ); 
 
  if (EFI_ERROR(Status)) { 
    gBS->FreePool (ScsiDevice); 
  } else { 
    gBS->OpenProtocol ( 
            ControllerHandle,    
            &gEfiScsiPassThruProtocolGuid,   
            (VOID **)&ScsiPassThru, 
            This->DriverBindingHandle,    
            ScsiDevice->Handle, 
            EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 
            ); 
  } 
  return EFI_SUCCESS; 
} 

Example 16-8.  Sample Creation of SCSI Device Child Handle 

16.4.3 Produce Block I/O Protocol 
One important feature for a SCSI driver is to wrap SCSI I/O capability into other standard EFI I/O 
abstractions that can be used by upper drivers, such as file system drivers, or by an EFI-aware OS 
loader. This section gives an example to demonstrate how to implement 
EFI_BLOCK_IO_PROTOCOL through the SCSI Pass Thru Protocol abstraction layer. 

Because many SCSI devices are hot pluggable, one major concern when implementing Block I/O 
Protocol functions is that they should determine whether the represented SCSI device is available 
before performing any actual I/O operation. Furthermore, even if the SCSI device is available, the 
media in it may have been changed to another one. This scenario should also be taken into account. 
A SCSI device driver should use the SCSI INQUERY command to get the device type and version 
information after detecting that a SCSI device is present. If it is a removable device, send the SCSI 
commands TEST_UNIT_READY and REQUEST_SENSE to determine the device state and media 
status. If the device or media is changed, call the EFI Boot Service 
ReinstallProtocolInterface() to make the internal handle/protocol database consistent 
with the new device or media. Example 16-9 demonstrates this process. 
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EFI_STATUS 
ScsiDiskReadBlocks ( 
  IN  EFI_BLOCK_IO_PROTOCOL   *This, 
  IN  UINT32                  MediaId, 
  IN  EFI_LBA                 LBA, 
  IN  UINTN                   BufferSize, 
  OUT VOID                    *Buffer 
  ) 
{ 
  SCSI_XYZ_DEV_PRIVATE_DATA  *ScsiDevice; 
 
  // .................................... 
     
  ScsiDevice = CR(This, SCSI_XYZ_DEV_PRIVATE_DATA, 
BlkIo,SCSI_XYZ_DEV_SIGNATURE) 
   
  // 
  // Use INQUERY command to get device type. This info can also be stored in  
  // SCSI device private context data structure 
  //  
  if (!IsDeviceFixed (ScsiDevice)) { 
     
    // 
    // Detect media change by sending TEST_UNIT_READY and REQUEST_SENSE 
    // 
    Status = ScsiDetectMedia (ScsiDevice, FALSE, &MediaChange); 
    if (EFI_ERROR(Status)) { 
      return EFI_DEVICE_ERROR; 
    } 
    if (MediaChange) { 
      gBS->ReinstallProtocolInterface ( 
             ScsiDevice->Handle, 
             &gEfiBlockIoProtocolGuid, 
             &ScsiDevice->BlkIo, 
             &ScsiDevice->BlkIo 
             );   
    } 
  } 
   
  // 
  // Perform actual I/O operation via SCSI Pass Thru Protocol here 
  // .................................... 
  // 
  return Status; 
} 

Example 16-9.  Handle Device and Media Change 

Another consideration when implementing Block I/O Protocol functions is to handle an unstable 
storage device. You can never assume that accessing media is perfectly stable or smooth. A better 
error handling mechanism results in a more robust SCSI driver. 

16.5 SCSI Device Path 

The SCSI driver described in this document can support a SCSI channel that is generated or 
emulated by multiple architectures, such as SCSI-I, SCSI-II, SCSI-III, ATAPI, Fibre Channel, 
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iSCSI, and other future channel types. This section describes four example device paths, including 
SCSI, ATAPI, and Fibre Channel device paths. 

16.5.1 SCSI Device Path Example 
Table 16-1 shows an example device path for a SCSI device controller on a desktop platform. This 
SCSI device controller is connected to a SCSI channel that is generated by a PCI SCSI host 
controller. The PCI SCSI host controller generates a single SCSI channel, is located at PCI device 
number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. The SCSI device 
controller is assigned SCSI ID 2, and its LUN is 0. 

This sample device path consists of an ACPI device path node, a PCI device path node, a SCSI 
node, and a device path end structure. The _HID and _UID must match the ACPI table description 
of the PCI root bridge. The following is the shorthand notation for this device path: 
ACPI(PNP0A03,0)/PCI(7|0)/SCSI(2,0) 

Table 16-1. SCSI Device Path Examples 

Byte 
Offset 

Byte 
Length 

 
Data 

 
Description 

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path 

0x01 0x01 0x01 Sub type – ACPI Device Path 

0x02 0x02 0x0C Length – 0x0C bytes 

0x04 0x04 0x41D0,
0x0A03 

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in 
the low-order bytes. 

0x08 0x04 0x0000 _UID 

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path 

0x0D 0x01 0x01 Sub type – PCI 

0x0E 0x02 0x06 Length – 0x06 bytes 

0x10 0x01 0x07 PCI Function 

0x11 0x01 0x00 PCI Device 

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path 

0x13 0x01 0x02 Sub type – SCSI 

0x14 0x02 0x08 Length – 0x08 bytes 

0x16 0x02 0x0002 Target ID on the SCSI bus, PUN 

0x18 0x02 0x0000 Logical Unit Number, LUN 

0x1A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path 

0x1B 0x01 0xFF Sub type – End of Entire Device Path 

0x1C 0x02 0x04 Length – 0x04 bytes 

16.5.2 SCSI Device on a Multichannel PCI Controller Example 
Table 16-2 shows an example device path for a SCSI device on a multichannel PCI controller. In 
this example, physical SCSI device 0 is attached on physical channel 1 of a multifunction PCI SCSI 
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controller. Physical channel 0 is accessed through PCI function #0, and physical channel 1 is 
accessed through PCI function #1. The following are the device paths for this SCSI device: 
ACPI(PNP0A03,1)/PCI(7|1)/SCSI(0,0) 

ACPI(PNP0A03,1)/PCI(7|0) Access to controller on physical channel 0 

   ACPI(PNP0A03,1)/PCI(7|0)/SCSI(0,0)  
Access to drive 0 on bus 0 on physical channel 0 

ACPI(PNP0A03,1)/PCI(7|1) Access to controller to physical channel 1 

   ACPI(PNP0A03,1)/PCI(7|1)/SCSI(0,2)  
Access to drive 2 on bus 0 on physical channel 1 

Table 16-2. SCSI Device on a Multichannel PCI Controller Examples 

Byte 
Offset 

Byte 
Length 

 
Data 

 
Description 

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path 
0x01 0x01 0x01 Sub type – ACPI Device Path 
0x02 0x02 0x0C Length – 0x0C bytes 
0x04 0x04 0x41D0,

0x0A03 
_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in 
the low-order bytes. 

0x08 0x04 0x0001 _UID 
0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path 
0x0D 0x01 0x01 Sub type – PCI 
0x0E 0x02 0x06 Length – 0x06 bytes 
0x10 0x01 0x07 PCI Function 
0x11 0x01 0x01 PCI Device 
0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path 
0x13 0x01 0x02 Sub type – SCSI 
0x14 0x02 0x08 Length – 0x08 bytes 
0x15 0x00 0x0000 Target ID on the SCSI bus, PUN 
0x18 0x00 0x0000 Logical Unit Number, LUN 
0x1A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path 
0x1B 0x01 0xFF Sub type – End of Entire Device Path 
0x1C 0x02 0x04 Length – 0x04 bytes 
0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path 

16.5.3 ATAPI Device Path Example 
Table 16-3 shows an example device path for an ATAPI device on a desktop platform. This ATAPI 
device is connected to the IDE bus on the primary channel and is configured as the master device 
on the channel. The IDE bus is generated by the IDE controller, which is a PCI device. It is located 
at PCI device number 0x1F and PCI function 0x01 and is directly attached to a PCI root bridge. 
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This sample device path consists of an ACPI device path node, a PCI device path node, an ATAPI 
node, and a device path end structure. The _HID and _UID must match the ACPI table description 
of the PCI root bridge. The following is the shorthand notation for this device path: 
ACPI(PNP0A03,0)/PCI(7|0)/ATAPI(Primary,Master) 

Table 16-3. ATAPI Device Path Examples 

Byte 
Offset 

Byte 
Length 

 
Data 

 
Description 

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path 

0x01 0x01 0x01 Sub type – ACPI Device Path 

0x02 0x02 0x0C Length – 0x0C bytes 

0x04 0x04 0x41D0,
0x0A03 

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in 
the low order bytes. 

0x08 0x04 0x0000 _UID 

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path 

0x0D 0x01 0x01 Sub type – PCI 

0x0E 0x02 0x06 Length – 0x06 bytes 

0x10 0x01 0x07 PCI Function 

0x11 0x01 0x00 PCI Device 

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path 

0x13 0x01 0x01 Sub type – ATAPI 

0x14 0x02 0x08 Length – 0x08 bytes 

0x16 0x01 0x00 PrimarySecondary – Set to zero for primary or one for secondary. 

0x17 0x01 0x00 SlaveMaster – Set to zero for master or one for slave. 

0x18 0x02 0x0000 Logical Unit Number, LUN. 

0x1A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path 

0x1B 0x01 0xFF Sub type – End of Entire Device Path 

0x1C 0x02 0x04 Length – 0x04 bytes 

16.5.4 Fibre Channel Device Path Example 
Table 16-4 shows an example device path for a SCSI device that is connected to a Fibre Channel 
port on a desktop platform. The Fibre Channel port is a PCI device that is located at PCI device 
number 0x08 and PCI function 0x00 and is directly attached to a PCI root bridge. The Fibre 
Channel port is addressed by the World Wide Number and is assigned as X (X is a 64-bit value); 
the SCSI device’s LUN is 0. 

This sample device path consists of an ACPI device path node, a PCI device path node, a Fibre 
Channel device path node, and a device path end structure. The _HID and _UID must match the 
ACPI table description of the PCI root bridge. The following is the shorthand notation for this 
device path: 
ACPI(PNP0A03,0)/PCI(8|0)/Fibre(X,0) 
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Table 16-4. Fibre Channel Device Path Examples 

Byte 
Offset 

Byte 
Length 

 
Data 

 
Description 

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path 

0x01 0x01 0x01 Sub type – ACPI Device Path 

0x02 0x02 0x0C Length – 0x0C bytes 

0x04 0x04 0x41D0,
0x0A03 

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in 
the low order bytes. 

0x08 0x04 0x0000 _UID 

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path 

0x0D 0x01 0x01 Sub type – PCI 

0x0E 0x02 0x06 Length – 0x06 bytes 

0x10 0x01 0x08 PCI Function 

0x11 0x01 0x00 PCI Device 

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path 

0x13 0x01 0x02 Sub type – Fibre Channel 

0x14 0x02 0x24 Length – 0x24 bytes 

0x16 0x04 0x00 Reserved 

0x1A 0x08 X Fibre Channel World Wide Number 

0x22 0x08 0x00 Fibre Channel Logical Unit Number. 

0x2A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path 

0x2B 0x01 0xFF Sub type – End of Entire Device Path 

0x2C 0x02 0x04 Length – 0x04 bytes 

16.5.5 SCSI Device on a RAID Multichannel Adapter Example 
Table 16-5 shows an example device path for a SCSI device on a RAID SCSI host adapter. The 
PCI SCSI host adapter generates two physical SCSI channels. This SCSI device L is attached on 
the logical SCSI channel that is generated by a RAID configuration from those two physical 
channels. The SCSI device L is assigned SCSI ID 0, and its LUN is 0. Figure 16-4 shows the 
configuration of this adapter. 
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RAID SCSI
Adapter

Physical Channel 0:  SPT[0]

SCSI
Device

0

Physical Channel 1:  SPT[1]

SCSI
Device

1

Logical Channel: SPT[2]

SCSI
Device

L

SPT: SCSI Pass Thru
 

Figure 16-4.  Sample RAID SCSI Adapter Configuration 

In this example, RAID configures physical SCSI device 0 (which is attached on physical channel 0) 
and SCSI device 1 (attached on physical channel 1) to SCSI device L, which is attached on the 
logical SCSI channel. As described in previous sections, only the logical SCSI channel is 
enumerated at this configuration and only SCSI device L has a valid device path. 

Thus, the following is the device path for this SCSI device L: 
ACPI(PNP0A03,1)/PCI(7|0)/CONTROLLER(2)/SCSI(0,0) 

Table 16-5. SCSI Device Path Example on RAID Adapter 

Byte 
Offset 

Byte 
Length 

 
Data 

 
Description 

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path 

0x01 0x01 0x01 Sub type – ACPI Device Path 

0x02 0x02 0x0C Length – 0x0C bytes 

0x04 0x04 0x41D0,
0x0A03 

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in 
the low order bytes. 

0x08 0x04 0x0001 _UID 

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path 

0x0D 0x01 0x01 Sub type – PCI 

0x0E 0x02 0x06 Length – 0x06 bytes 

0x10 0x01 0x07 PCI Function 

0x11 0x01 0x00 PCI Device 

continued 
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Table 16-5. SCSI Device Path Example on RAID Adapter (continued) 

Byte 
Offset 

Byte 
Length 

 
Data 

 
Description 

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path 

0x13 0x01 0x05 Sub type – Controller  

0x14 0x02 0x08 Length – 0x08 bytes 

0x16 0x04 0x02 Controller number 

0x1A 0x01 0x03 Generic Device Path Header – Type Message Device Path 

0x1B 0x01 0x02 Sub type – SCSI 

0x1C 0x02 0x08 Length – 0x08 bytes 

0x1E 0x00 0x0000 Target ID on the SCSI bus, PUN 

0x20 0x00 0x0000 Logical Unit Number, LUN 

0x22 0x01 0Xff Generic Device Path Header – Type End of Hardware Device Path 

0x23 0x01 0xFF Sub type – End of Entire Device Path 

0x24 0x02 0x04 Length – 0x04 bytes 

16.6 Using the SCSI Pass Thru Protocol 

If a SCSI driver supports both blocking and nonblocking I/O modes, any client of the SCSI driver 
can use them to perform SCSI I/O. Example 16-10 demonstrates how to use the SCSI Pass Thru 
Protocol to perform blocking and nonblocking I/O. 
EFI_STATUS 
ScsiPassThruTests( 
  EFI_SCSI_PASS_THRU _PROTOCOL  *EfiSptProtocol 
  ) 
{ 
  EFI_STATUS                             Status; 
  UINT16                                 Target; 
  UINT64                                 Lun; 
  EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET Packet; 
  EFI_EVENT                              Event; 
 
  . . . 
 
  // 
  // Blocking I/O 
  // 
  Status = EfiSptProtocol->PassThru ( 
                                   EfiSptProtocol,  
                                   Target,  
                                   Lun,  
                                   &Packet,  
                                   NULL 
                                   ); 
  . . . 
 
  // 
  // Non Blocking I/O 
  // 
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  Status = EfiSptProtocol->PassThru ( 
                                  EfiSptProtocol,  
                                  Target,  
                                  Lun,  
                                  &Packet,  
                                  &Event 
                                  ); 
  . . . 
 
  return Status; 
} 

Example 16-10.  Blocking and Nonblocking Modes 
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17 
Driver Optimization Techniques 

There are several techniques that can be used to optimize an EFI driver. These techniques can be 
broken down into the following two categories:   

• Techniques to reduce the size of EFI drivers 
• Techniques to improve the performance of EFI drivers 

Sometimes these techniques complement each other, and sometimes they are at odds with each 
other. For example, an EFI driver may grow in size to meet a specific performance goal. The driver 
writer will have to make the appropriate compromises in the selection of these driver optimization 
techniques. 

17.1 Space Optimizations 

Table 17-1 lists the techniques that can be used to reduce the size of EFI drivers. By using 
combinations of all of these techniques, significant size reductions can be realized. The compiler 
and linker switches that are referenced below are specific to the Microsoft Visual Studio tool chain. 
Different compilers and linkers may use different switches for equivalent operations. 

Table 17-1. Space Optimizations 

Technique Description 

EFI Driver Library The EFI Driver Library should be used to reduce the size of EFI drivers. It is a 
lightweight library that contains only the functions that most EFI drivers require. 
The EFI Driver Library consists of three different groups of functions: 

• General-purpose library functions 

• String library functions 

• Print library functions 

Most EFI drivers use the general-purpose library. EFI drivers that need to 
manipulate Unicode and ASCII strings use the string library, and EFI drivers that 
require the ability to generate formatted strings use the print library. Any EFI driver 
that uses the DEBUG() macro will also require the print library. 

/Os or /O1 Compiler 
Switches 

Both the /Os and /O1 compiler switches will optimize a C compiler for size. This is 
an easy way to significantly reduce the size of an EFI driver. Care must be taken 
when turning on compiler optimizations because C source that works fine with 
optimizations disabled may stop working with optimizations enabled. They usually 
stop working because of missing volatile declarations on variables and data 

structures that are shared between normal contexts and raised TPL contexts. 
Also, because the EFI driver is small, it may execute faster. If there are any speed 
paths in an EFI driver that will cause problems if the EFI driver executes faster, 
then these switches may expose those speed paths. These same speed paths will 
also show up as faster processors are used, so it is good to find these speed 
paths early. 

continued 
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Table 17-1. Space Optimizations (continued) 

Technique Description 

/OPT:REF Linker Switch This linker switch removes unused functions and variables from the executable 
image, including functions and variables in the EFI driver and the libraries against 
which the EFI driver is being linked. The combination of using the EFI Driver 
Library with this linker switch can significantly reduce the size of an EFI driver 
executable. Also, DEBUG() macros are removed when a production build is 

performed, so using this linker switch will remove the print library from the 
executable image. 

EFI Compression If an EFI driver is going to be stored in a PCI option ROM, then the EFI 
compression algorithm can be used to further reduce the size of an EFI driver. 
The build utility EfiRom has built-in support for compressing EFI images, and 

the PCI bus driver has built-in support for decompressing EFI drivers stored in 
PCI option ROMs. The average compression ratio on IA-32 is 2.3, and the 
average compression ratio on the Itanium processor is 2.8. 

EFI Byte Code Images If an EFI driver is going to be stored in a PCI option ROM and the PCI option 
ROM must support both IA-32 and Itanium-based platforms or just Itanium-based 
platforms, then EFI Byte Code (EBC) executables should be considered. EBC 
executables are portable between IA-32 and Itanium processors. This portability 
means that only a single EFI driver image is required to support both IA-32 and 
Itanium-based platforms. Also, the EBC executables are significantly smaller than 
images for the Itanium processor, so there are advantages to using this format for 
EFI drivers that are targeted only at Itanium-based platforms. In addition, using 
EFI Compression (see above) can reduce the EBC executables even further. 

17.2 Speed Optimizations 

Table 17-2 lists the techniques that can be used to improve the performance of EFI drivers. 
By using combinations of all of these techniques, significant performance enhancements can 
be realized. 

Table 17-2. Speed Optimizations 

Technique Description 

/Ot or /O1 Compiler 
Switches 

The /Ot switch optimizes for code speed, and the /O1 compiler switch optimizes 
a C compiler for size. This technique is an easy way to reduce the execution time 
and significantly reduce the size of an EFI driver. Care must be taken when 
turning on compiler optimizations because C source that works fine with 
optimizations disabled may stop working with optimizations enabled. They 
usually stop working because of missing volatile declarations on variables 

and data structures that are shared between normal contexts and raised TPL 
contexts. Also, because the EFI driver is small, it may execute faster. If there are 
any speed paths in an EFI driver that will cause problems if the EFI driver 
executes faster, then these switches may expose those speed paths. These 
same speed paths will also show up as faster processors are used, so it is good 
to find these speed paths early. 

continued 
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Table 17-2. Speed Optimizations (continued) 

Technique Description 

/O2 Compiler Switch The /O2 compiler switch will optimize a C compiler for speed. This technique is 
an easy way to improve the performance of an EFI driver. Care must be taken 
when turning on compiler optimizations because C source that works fine with 
optimizations disabled may stop working with optimizations enabled. They 
usually stop working because of missing volatile declarations on variables 

and data structures that are shared between normal contexts and raised TPL 
contexts. If there are any speed paths in an EFI driver that will cause problems if 
the EFI driver executes faster, then this switch may expose those speed paths. 
These same speed paths will also show up as faster processors are used, so it is 
good to find these speed paths early. The use of the /O2 compiler switch may 
actually increase the size of an EFI driver. 

EFI Services Whenever possible, use EFI Boot Services, EFI Runtime Services, and the 
protocol services provided by other EFI drivers. The EFI Boot Services and EFI 
Runtime Services will likely be native calls that have been optimized for the 
platform, so there will always be a performance advantage for using these 
services. Some protocol services might be native, and other protocol services 
might be EBC images. Either way, if all EFI drivers assume that external protocol 
services are native, then the combination of EFI drivers and EFI services will 
result in more efficient execution. 

PCI I/O Protocol If an EFI driver is a PCI driver, then it should take advantage of all the PCI I/O 
Protocol services to improve the EFI driver’s performance. This approach means 
that all register accesses should be performed at the largest possible size. For 
example, perform a single 32-bit read instead of multiple 8-bit reads. Also, take 
advantage of the read/write multiple, FIFO, and fill modes of the Io(), Mem(), 
and Pci() services. 
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17.2.1 CopyMem() and SetMem() Operations 
Example 17-1 shows examples of how gBS->CopyMem() and gBS->SetMem() should be used 
to improve the performance of an EFI driver. These techniques apply to arrays, structures, or 
allocated buffers. 
typedef struct { 
  UINT8   First; 
  UINT32  Second; 
} MY_STRUCTURE; 
 
UINTN         Index; 
UINT8         A[100]; 
UINT8         B[100]; 
MY_STRUCTURE  MyStructureA; 
MY_STRUCTURE  MyStructureB; 
 
// 
// Using a loop is slow or structure assignments is slow 
// 
for (Index = 0; Index < 100; Index++) { 
  A[Index] = B[Index]; 
} 
MyStructueA = MyStructureB;                    
 
// 
// Using the optimized CopyMem() Boot Services is fast 
// 
gBS->CopyMem((VOID *)A, (VOID *)B, 100); 
gBS->CopyMem((VOID *)MyStructureA, (VOID *)MyStructureB, sizeof (MY_STRUCTURE)); 
 
// 
// Using a loop or individual assignment statements is slow 
// 
for (Index = 0; Index < 100; Index++) { 
  A[Index] = 0; 
} 
MyStructureA.First = 0; 
MyStructureA.Second = 0; 
 
// 
// Using the optimized SetMem() Boot Service is fast. 
// 
gBS->SetMem((VOID *)A, 100, 0);  
gBS->SetMem((VOID *)&MyStructureA, sizeof (MY_STRUCTURE), 0); 

Example 17-1.  CopyMem() and SetMem() Speed Optimizations 
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17.2.2 PCI I/O Fill Operations 
Example 17-2 shows an example of filling a video frame buffer with zeros on a PCI video 
controller. The frame buffer is 1 MB of memory-mapped I/O that is accessed through BAR #0 of 
the PCI video controller. The following four methods of performing this operation are shown, from 
slowest to fastest:   

• Example 1:  Uses a loop to write to the frame buffer 8 bits at a time.  
• Example 2:  Writes to the frame buffer 32 bits at a time. This second example is better and 

should provide a 4X increase in performance.  
• Example 3:  Performs a single call to the PCI I/O Protocol to fill the entire frame buffer. This 

example is even better yet. If the code in Example 17-2 is compiled with an EBC compiler, 
then the third example will have very significant performance increase over the first two 
examples.  

• Example 4:  Same as the third example, except the frame buffer is filled 32 bits at a time. This 
method will have about a 4X increase in performance from the third example.  

Two methods that can significantly increase the performance of an EFI driver are taking advantage 
of the fill operations to eliminate loops and writing to a PCI controller at the largest possible size. 
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINT32               Color32; 
UINTN                Count; 
UINTN                Index; 
 
// 
// This is the slowest method. It performs 0x100000 calls through PCI I/O and  
// writes to the frame buffer 8 bits at a time. 
// 
Color8 = 0; 
for (Index = 0; Index < 0x100000; Index++) { 
  Status = PciIo->Mem.Write ( 
                        PciIo, 
                        EfiPciIoWidthUint8,        // Width 
                        0,                         // Bar Index 
                        Index,                     // Offset 
                        1,                         // Count 
                        &Color8                    // Value 
                        ); 
} 
 
// 
// This is a little better. It performs 0x100000/4 calls through PCI I/O and  
// writes to the frame buffer 32 bits at a time. 
// 
Color32 = 0; 
for (Index = 0; Index < 0x100000; Index += 4) { 
  Status = PciIo->Mem.Write ( 
                        PciIo, 
                        EfiPciIoWidthUint32,       // Width 
                        0,                         // Bar Index 
                        Index,                     // Offset 
                        1,                         // Count 
                        &Color32                   // Value 
                        ); 
} 
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// 
// This is much better. It performs 1 call to PCI I/O, but it is writing the  
// frame buffer 8 bits at a time. 
// 
Color8 = 0; 
Count = 0x100000; 
Status = PciIo->Mem.Write ( 
                      PciIo, 
                      EfiPciIoWidthFillUint8,    // Width 
                      0,                         // Bar Index 
                      0,                         // Offset 
                      Count,                     // Count 
                      &Color8                    // Value 
                      ); 
 
// 
// This is the best method. It performs 1 call to PCI I/O, and it is writing  
// the frame buffer 32 bits at a time. 
// 
Color32 = 0; 
Count = 0x100000 / sizeof (UINT32); 
Status = PciIo->Mem.Write ( 
                      PciIo, 
                      EfiPciIoWidthFillUint32,   // Width 
                      0,                         // Bar Index 
                      0,                         // Offset 
                      Count,                     // Count 
                      &Color32                   // Value 
                      ); 

Example 17-2.  Speed Optimizations Using PCI I/O Fill Operations 

17.2.3 PCI I/O FIFO Operations 
Example 17-3 shows an example of writing a sector to an IDE controller. The IDE controller uses a 
single 16-bit I/O port as a FIFO for reading and writing sector data. The first example calls the PCI 
I/O Protocol 256 times to write the sector. The second example is much better, because it calls the 
PCI I/O Protocol only once, which will provide a significant performance increase if this example 
is compiled with an EBC compiler. This example would apply equally to FIFO read operations.  
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINT16               Buffer[256]; 
UINTN                Index; 
 
// 
// This is the slowest method. It performs 256 PCI I/O calls to write 256  
// 16-bit values to the IDE controller. 
// 
for (Index = 0; Index < 256; Index++) { 
  Status = PciIo->Io.Write ( 
                       PciIo, 
                       EfiPciIoWidthUint16, 
                       EFI_PCI_IO_PASS_THROUGH_BAR, 
                       0x1F0, 
                       1, 
                       Buffer[Index] 
                       ); 
} 
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// 
// This is the fastest method. It uses a loop to write 256 16-bit values to  
// the IDE controller. 
// 
Status = PciIo->Io.Write ( 
                     PciIo, 
                     EfiPciIoWidthFifoUint16, 
                     EFI_PCI_IO_PASS_THROUGH_BAR, 
                     0x1F0, 
                     256, 
                     Buffer 
                     ); 

Example 17-3.  Speed Optimizations Using PCI I/O FIFO Operations 

17.2.4 PCI I/O CopyMem() Operations 
Example 17-4 shows an example of scrolling a frame buffer by one scan line on a PCI video 
controller. Just like the gBS->CopyMem() Boot Service, the CopyMem() service in the PCI I/O 
Protocol should be used whenever it can eliminate loops. The frame buffer is 1 MB of memory-
mapped I/O that is accessed through BAR #0 of the PCI video controller, and the screen is 
800 pixels wide with 32 bits per pixel. The code below shows the following two methods, from 
slowest to fastest:  

• Example 1:  Uses a loop to read and write every 32-bit pixel into the variable Value.  
• Example 2:  Uses a single call to CopyMem()to perform the exact same function. This second 

example would be significantly faster if it was compiled with an EBC compiler. 
 

EFI_PCI_IO_PROTOCOL  *PciIo; 
UINTN                Index; 
UINT32               Value; 
UINTN                ScanLineWidth; 
 
// 
// This is the slowest method. It performs almost 0x100000/4 read and write  
// accesses through the PCI I/O protocol. 
// 
ScanLineWidth = 800 * 4; 
for (Index = ScanLineWidth; Index < 0x100000; Index += 4) { 
  Status = PciIo->Mem.Read ( 
                        PciIo, 
                        EfiPciIoWidthUint32,    // Width 
                        0,                      // Bar Index 
                        Index,                  // Offset 
                        1,                      // Count 
                        &Value                  // Value 
                        ); 
  Status = PciIo->Mem.Write ( 
                        PciIo, 
                        EfiPciIoWidthUint32,    // Width 
                        0,                      // Bar Index 
                        Index - ScanLineWidth,  // Offset 
                        1,                      // Count 
                        &Value                  // Value 
                        ); 
} 
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// 
// This is the fastest method. It makes a single call to CopyMem(). 
// 
Status = PciIo->CopyMem ( 
                  PciIo, 
                  EfiPciIoWidthUint32,    // Width 
                  0,                      // Destination Bar Index 
                  0,                      // Destination Offset 
                  0,                      // Source Bar Index 
                  ScanLineWidth,          // Source Offset 
                  0x100000/4              // Count 
                  ); 

Example 17-4.  Speed Optimizations Using the PCI I/O CopyMem() Service 

17.2.5 PCI Configuration Header Operations 
Example 17-5 shows the following three examples for reading the PCI configuration header from a 
PCI controller, from slowest to fastest:   

• Example 1:  Uses a loop to read the header 8 bits at a time.  
• Example 2:  Uses a single call to read the entire header 8 bits at a time.  
• Example 3:  Makes a single call to read the header 32 bits at a time. 

 
EFI_PCI_IO_PROTOCOL  *PciIo; 
PCI_TYPE00           Pci; 
UINTN                Index; 
 
// 
// Loop reading the 64-byte PCI configuration header 8 bits at a time 
// 
for (Index = 0; Index < sizeof (Pci); Index++) { 
  Status = PciIo->Pci.Read ( 
                        PciIo, 
                        EfiPciIoWidthUint8,      // Width 
                        Index,                   // Offset 
                        1,                       // Count 
                        (UINT8 *)(&Pci) + Index  // Value 
                        ); 
} 
 
// 
// This is a faster method that removes the loop and reads 8 bits at a time. 
// 
Status = PciIo->Pci.Read ( 
                      PciIo, 
                      EfiPciIoWidthUint8,      // Width 
                      0,                       // Offset 
                      sizeof (Pci),            // Count 
                      &Pci                     // Value 
                      ); 
 
// 
// This is the fastest method that makes a single call to PCI I/O and reads the  
// PCI configuration header 32 bits at a time. 
// 
Status = PciIo->Pci.Read ( 
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                      PciIo, 
                      EfiPciIoWidthUint32,               // Width 
                      0,                                 // Offset 
                      sizeof (Pci) / sizeof (UINT32),    // Count 
                      &Pci                               // Value 
                      ); 

Example 17-5.  Speed Optimizations for PCI Configuration Cycles 

17.2.6 PCI I/O Read/Write Multiple Operations 
Example 17-6 shows an example of writing to a PCI memory-mapped I/O buffer. This example 
shows a full-screen bitmap being written to a frame buffer on a PCI video controller. The frame 
buffer is 1 MB of memory-mapped I/O that is accessed through BAR #0 of the PCI video 
controller. The code below shows the following two methods, from slowest to fastest: 

• Example 1:  Uses a loop to perform 0x100000 8-bit write operations. This method would be 
very slow with an EFI driver compiled for EBC.  

• Example 2:  Performs the same operation using a single call to the PCI I/O Protocol, and the 
write operations are performed 32 bits at a time.  

The examples show here apply equally well to reading a bitmap from the frame buffer of a PCI 
video controller using the PciIo->Mem.Read() function. 
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINTN                Index; 
UINT8                Bitmap[0x100000]; 
 
// 
// Loop writing a 1 MB bitmap to the frame buffer 8 bits at a time. 
// 
for (Index = 0; Index < sizeof (BitMap); Index++) {   
  Status = PciIo->Mem.Write ( 
                        PciIo, 
                        EfiPciIoWidthUint8,      // Width 
                        0,                       // BarIndex 
                        Index,                   // Offset 
                        1,                       // Count 
                        &BitMap[Index]           // Value 
                        ); 
} 
 
// 
// This is a faster method that removes the loop and writes 32 bits at a time. 
// 
Status = PciIo->Mem.Write ( 
                      PciIo, 
                      EfiPciIoWidthUint32,                  // Width 
                      0,                                    // BarIndex 
                      0,                                    // Offset 
                      sizeof (BitMap) / sizeof (UINT32),    // Count 
                      BitMap                                // Value 
                      ); 

Example 17-6.  Speed Optimizations for Multiple Read/Write Operations 
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17.2.7 PCI I/O Polling Operations 
Example 17-7 shows a common example of polling an I/O port for a status bit to change. This poll 
is usually done when an EFI driver is waiting for the hardware to complete an operation, and the 
completion status is indicated by a bit changing state in an I/O port or a memory-mapped I/O port. 
The example shown below polls offset 0x20 in BAR #1 for bit 0 to change from a 0 to a 1. The 
code below shows the following two methods, from slowest to fastest:  

• Example 1:  Uses a loop with 10 µS stalls to wait up to 1 second for the bit to change in value. 
• Example 2:  Same as example 1, but it makes only a single call to the PCI I/O Protocol to 

perform the same operation. The second example will execute more efficiently for an EFI 
driver compiled for EBC.  

The PollIo() and PollMem() functions in the PCI I/O Protocol are very flexible, and they can 
simplify the operation of polling for bits to change state in status registers. 
EFI_PCI_IO_PROTOCOL  *PciIo; 
UINTN                TimeOut; 
UINT8                Result8; 
UINT64               Result64; 
 
// 
// Loop for up to 1 second waiting for Bit #0 in register 0x20 of BAR #1 to  
// become a 1.  
// 
TimeOut = 0; 
do { 
  Status = PciIo->Mem.Read ( 
                        PciIo, 
                        EfiPciIoWidthUint8,      // Width 
                        1,                       // BarIndex 
                        0x20,                    // Offset 
                        1,                       // Count 
                        &Result8                 // Value 
                        ); 
  if ((Result8 & 0x01) == 0x01) { 
    return EFI_SUCCESS; 
  } 
  gBS->Stall (10); 
  TimeOut = TimeOut + 10; 
} while (TimeOut < 1000000); 
return EFI_TIMEOUT; 
 
// 
// Call PollIo() to poll for Bit #0 in register 0x20 of Bar #1 to be set to a 1. 
// 
Status = PciIo->Pci.PollIo ( 
                      PciIo, 
                      EfiPciIoWidthUint8,      // Width 
                      1,                       // BarIndex 
                      0x20,                    // Offset 
                      0x01,                    // Mask 
                      0x01,                    // Value 
                      10000000,                // Poll for 1 second 
                      &Result64                // Result 
                      );  

Example 17-7.  Speed Optimizations for Polled I/O Operations 



 Draft for Review  

Version 0.9 July 2004 333 

18 
Itanium Architecture Porting Considerations 

When writing an EFI driver, there are several steps that can be taken to ensure that the driver will 
function properly on an Itanium-based platform. Typically, EFI drivers are initially developed for 
an IA-32 platform and then will be ported to an Itanium-based platform. If an EFI driver contains 
IA-32 assembly language sources, then those sources must be converted to C or assembly language 
sources for the Itanium processor. In general, it is always better to write EFI drivers in C so the 
driver will be as portable as possible. The guidelines listed in this chapter will help improve the 
portability of an EFI driver and it specifically addresses the pitfalls that may be encountered when 
an EFI driver is ported to an Itanium processor. 

18.1 Alignment Faults 

The single largest issue with EFI drivers for Itanium-based platforms is alignment. An IA-32 
processor will allow any sized transaction on any byte boundary. The Itanium processor allows 
transactions to be performed only on natural boundaries. This requirement means that a 64-bit read 
or write transaction must begin on an 8-byte boundary, a 32-bit read or write transaction must begin 
on a 4-byte boundary, and a 16-bit read or write transaction must begin on a 2-byte boundary. In 
most cases, the driver writer does not need to worry about this issue because the C compiler will 
guarantee that accessing global variables, local variables, and fields of data structures will not cause 
an alignment fault. The only cases in which C code can generate an alignment fault are when a 
pointer is cast from one type to another or when packed data structures are used. Alignment faults 
can also be generated from assembly language, but it is the assembly programmer’s responsibility 
to ensure alignment faults are not generated. 

Example 18-1 shows an example that will generate an alignment fault on an Itanium processor. The 
first read access through SmallValuePointer is aligned because LargeValue is on a 64-bit 
boundary. However, the second read access though SmallValuePointer will generate an 
alignment fault because SmallValuePointer is not on a 32-bit boundary. The problem is that 
an 8-bit pointer was cast to a 32-bit pointer. Whenever a cast is made from a pointer to a smaller 
data type to a pointer to a larger data type, there is a chance that the pointer to the larger data type 
will be unaligned. 
UINT64  LargeValue; 
UINT32  *SmallValuePointer; 
UINT32  SmallValue; 
 
SmallValuePointer  = (UINT32 *)&LargeValue; 
SmallValue         = *SmallValuePointer;                    // Works 
SmallValuePointer  = (UINT32 *)((UINT8 *)&LargeValue + 1); 
SmallValue         = *SmallValuePointer;                    // Faults 

Example 18-1.  Pointer-Cast Alignment Fault 
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Example 18-2 shows the same example as Example 18-1, but it has been modified to prevent the 
alignment fault. The second read access through SmallValuePointer is replaced with a macro 
that treats the 32-bit value as an array of bytes. The individual bytes are read and combined into a 
32-bit value. The generated object code is larger and slower, but it is functional on both IA-32 and 
Itanium processors. 
#define UNPACK_UINT32(a) (UINT32)( (((UINT8 *) a)[0] <<  0) |    \ 
                                   (((UINT8 *) a)[1] <<  8) |    \ 
                                   (((UINT8 *) a)[2] << 16) |    \ 
                                   (((UINT8 *) a)[3] << 24) ) 
 
UINT64  LargeValue; 
UINT32  *SmallValuePointer; 
UINT32  SmallValue; 
 
SmallValuePointer  = (UINT32 *)&LargeValue; 
SmallValue         = *SmallValuePointer;                    // Works 
SmallValuePointer  = (UINT32 *)((UINT8 *)&LargeValue + 1); 
SmallValue         = UNPACK_UINT32 (SmallValuePointer);     // Works 

Example 18-2.  Corrected Pointer-Cast Alignment Fault 

Example 18-3 shows another example that will generate an alignment fault on an Itanium 
processor. The first read access from MyStructure.First will always work because the 8-bit 
value is always aligned. However, the second read access from MyStructure.Second will 
always fail because the 32-bit value will never be aligned on a 4-byte boundary. 
#pragma pack(1) 
typedef struct { 
  UINT8   First; 
  UINT32  Second; 
} MY_STRUCTURE; 
#pragma pack() 
 
MY_STRUCTURE  MyStructure; 
UINT8         FirstValue; 
UINT32        SecondValue; 
 
FirstValue  = MyStructure.First;   // Works   
SecondValue = MyStructure.Second;  // Faults 

Example 18-3.  Packed Structure Alignment Fault 

Example 18-4 shows the same example as Example 18-3, but it has been modified to prevent the 
alignment fault. The second read access from MyStructure.Second is replaced with a macro 
that treats the 32-bit value as an array of bytes. The individual bytes are read and combined into a 
32-bit value. The generated object code is larger and slower, but it is functional on both IA-32 and 
Itanium processors. 
#define UNPACK_UINT32(a) (UINT32)( (((UINT8 *) a)[0] <<  0) |    \ 
                                   (((UINT8 *) a)[1] <<  8) |    \ 
                                   (((UINT8 *) a)[2] << 16) |    \ 
                                   (((UINT8 *) a)[3] << 24) ) 
 
#pragma pack(1) 
typedef struct { 
  UINT8   First; 
  UINT32  Second; 
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} MY_STRUCTURE; 
#pragma pack() 
 
MY_STRUCTURE  MyStructure; 
UINT8         FirstValue; 
UINT32        SecondValue; 
 
FirstValue  = MyStructure.First;                   // Works   
SecondValue = UNPACK_UINT32(&MyStructure.Second);  // Works 

Example 18-4.  Corrected Packed Structure Alignment Fault 

If a data structure is copied from one location to another, then both the source and the destination 
pointers for the copy operation should be aligned on a 64-bit boundary for Itanium platforms. The 
gBS->CopyMem() service can handle unaligned copy operations, so an alignment fault will not 
be generated by the copy operation itself. However, if the fields of the data structure at the 
destination location are accessed, they may generate alignment faults if the destination address is 
not aligned on a 64-bit boundary. There are cases where an aligned structure may be copied to an 
unaligned destination, but the fields of the destination buffer must not be accessed after the copy 
operation is completed. An example of this case is when a packed structure is being built that will 
be stored on disk or transmitted on a network. 

In some cases, it may be necessary to copy a data structure from an unaligned source location to an 
aligned destination location so that the fields of the data structure can be accessed without 
generating an alignment fault. The following are two examples of this scenario: 

• Parsing EFI device path nodes 
• Parsing network packets 

The device path nodes in an EFI device path are packed together so they will take up as little space 
as possible when they are stored in environment variables such as ConIn, ConOut, StdErr, 
Boot####, and Driver####. As a result, individual device path nodes may not be aligned on a 
64-bit boundary. EFI device paths or device paths nodes can be passed around as opaque data 
structures, but whenever the fields of a device path node need to be accessed, the device path node 
must be copied to a location that is guaranteed to be on a 64-bit boundary. Likewise, network 
packets are packed so they take up as little space as possible, so as each layer of a network packet is 
examined, it may need to be copied to a 64-bit aligned location before the individual fields of the 
packet are examined. 

Example 18-5 shows an example of a function that parses an EFI device path and extracts the 32-bit 
HID and UID from an ACPI device path node. This example will generate an alignment fault if 
DevicePath is not aligned on a 32-bit boundary.  

 
VOID 
GetAcpiHidUid ( 
  EFI_DEVICE_PATH_PROTOCOL  *DevicePath, 
  UINT32                    *Hid, 
  UINT32                    *Uid 
  ) 
 
{ 
  ACPI_HID_DEVICE_PATH  *AcpiDevicePath; 
 
  AcpiDevicePath = (ACPI_HID_DEVICE_PATH *)DevicePath; 
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  *Hid = AcpiDevicePath.HID;  // May fault 
  *Uid = AcpiDevicePath.UID;  // May fault 
} 

Example 18-5.  EFI Device Path Node Alignment Fault 

Example 18-6 shows the corrected version of Example 18-5. Because the alignment of 
DevicePath cannot be guaranteed, the solution is to copy the ACPI device path node from 
DevicePath into an ACPI device path node structure that is declared as the local variable 
AcpiDevicePath. A structure declared as a local variable is guaranteed to be on a 64-bit 
boundary on Itanium platforms. The fields of the ACPI device path node can then be safely 
accessed without generating an alignment fault. 
VOID 
GetAcpiHidUid ( 
  EFI_DEVICE_PATH_PROTOCOL  *DevicePath, 
  UINT32                    *Hid, 
  UINT32                    *Uid 
  ) 
 
{ 
  ACPI_HID_DEVICE_PATH  AcpiDevicePath; 
 
  gBS->CopyMem(&AcpiDevicePath, DevicePath, sizeof (ACPI_HID_DEVICE_PATH)); 
  *Hid = AcpiDevicePath.HID;  // Guaranteed to work 
  *Uid = AcpiDevicePath.UID;  // Guaranteed to work 
} 

Example 18-6.  Corrected EFI Device Path Node Alignment Fault 

18.2 Accessing a 64-Bit BAR in a PCI Configuration Header 

Another source of alignment faults is when 64-bit BAR values are accessed in a PCI configuration 
header. A PCI configuration header has room for up to six 32-bit BAR values or three 64-bit BAR 
values. A PCI configuration header may also contain a mix of both 32-bit BAR values and 64-bit 
BAR values. All 32-bit BAR values are guaranteed to be on a 32-bit boundary. However, 64-bit 
BAR values may be on a 32-bit boundary or a 64-bit boundary. As a result, every time a 64-bit 
BAR value is accessed, it must be assumed to be on a 32-bit boundary to guarantee that an 
alignment fault will not be generated. The following are a couple of methods that may be used to 
prevent an alignment fault when a 64-bit BAR value is extracted from a PCI configuration header:   

• Method 1:  Use gBS->CopyMem() to transfer the BAR contents into a 64-bit aligned 
location.  

• Method 2:  Collect the two 32-bit values that compose the 64-bit BAR and combine them into 
a 64-bit value.  

Example 18-7 below shows the incorrect method of extracting a 64-bit BAR from a PCI 
configuration header and two correct methods. 
UINT64 
Get64BitBarValue ( 
  PCI_TYPE00  *PciConfigurationHeader, 
  UINTN       BarOffset 
  ) 
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{ 
  UINT64  *BarPointer64; 
  UINT32  *BarPointer32; 
  UINT64  BarValue; 
 
  BarPointer64 = (UINT64 *)((UINT8 *)PciConfigurationHeader + BarOffset); 
  BarPointer32 = (UINT32 *)((UINT8 *)PciConfigurationHeader + BarOffset); 
 
  // 
  // Wrong. May cause an alignment fault. 
  // 
  BarValue = *BarPointer64; 
 
  // 
  // Correct. Guaranteed not to generate an alignment fault. 
  // 
  gBS->CopyMem (&BarValue, BarPointer64, sizeof (UINT64)); 
 
  // 
  // Correct. Guaranteed not to generate an alignment fault. 
  // 
  BarValue = (UINT64)(*BarPointer32 | LShiftU64 (*(BarPointer32 + 1), 32)); 
 
  return BarValue; 
} 

Example 18-7.  Accessing a 64-Bit BAR in a PCI Configuration Header 

18.3 Assignment and Comparison Operators 

There are issues if a data value is cast from a larger size to a smaller size. In these cases, the upper 
bits of the larger values are stripped. In general, this stripping will cause a compiler warning, so 
these are easy issues to catch. However, there are a few cases where everything compiles free of 
errors and warnings on IA-32 and generates errors or warnings on the Itanium processor. The only 
way to guarantee that these errors are caught early is to compile for both IA-32 and Itanium 
processors during the entire development process. When one of these warnings is generated by an 
Intel® Itanium® compiler, the warning can be eliminated by explicitly casting the larger data type to 
the smaller data type. However, the developer needs to make sure that this casting is the right 
solution, because the upper bits of the larger data value will be stripped. 

Example 18-8 shows several examples that will generate a warning and how to eliminate the 
warning with an explicit cast. The last example is the most interesting one because it does not 
generate any warnings on IA-32, but it will on Itanium architecture. This difference is because a 
UINTN on IA-32 is identical to UINT32, but UINTN on Itanium architecture is identical to a 
UINT64. 
UINT8    Value8; 
UINT16   Value16; 
UINT32   Value32; 
UINT64   Value64; 
UINTN    ValueN; 
 
Value8  = Value16;           // Warning generated on IA-32 and Itanium 
Value8  = (UINT8)Value16;    // Works, upper 8 bits stripped 
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Value16 = Value8;            // Works 
 
Value8  = Value32;           // Warning generated on IA-32 and Itanium 
Value8  = (UINT8)Value32;    // Works, upper 24 bits stripped 
Value32 = Value8;            // Works 
 
Value8  = Value64;           // Warning generated on IA-32 and Itanium 
Value8  = (UINT8)Value64;    // Works, upper 56 bits stripped 
Value64 = Value8;            // Works 
 
Value8  = ValueN;            // Warning generated on IA-32 and Itanium 
Value8  = (UINT8)ValueN;     // Works, upper 24 bits stripped on IA-32. 
                             // Upper 56 bits stripped on Itanium 
ValueN  = Value8;            // Works 
 
Value32 = ValueN;            // Works on IA-32, warning generated on Itanium 
Value32 = (UINT32)ValueN;    // Works on IA-32, upper 32 bits stripped on  
                             // Itanium 

Example 18-8.  Assignment Operation Warnings 

Example 18-9 is very similar to Example 18-8, except the assignments have been replaced with 
comparison operations. The same issues shown will be generated by all the comparison operators, 
including >, <, >=, <=, !=, and ==. The solution is to cast one of the two operands to be the same 
as the other operand. The first four cases are the ones that work on IA-32 with no errors or 
warnings but generate warnings on Itanium architecture. The next four cases resolve the issue by 
casting the first operand, and the last four cases resolve the issue by casting the second operand. 
Care must be taken when casting the correct operand, because a cast from a larger data type to a 
smaller data type will strip the upper bits of the operand. When a cast is performed to INTN or 
UINTN, a different number of bits will be stripped for IA-32 and Itanium architecture. 
UINT64  ValueU64; 
UINTN   ValueUN; 
INT64   Value64; 
INTN    ValueN; 
 
if (ValueU64 == ValueN)   {}  // Works on IA-32, warning generated on Itanium 
if (ValueUN  == Value64)  {}  // Works on IA-32, warning generated on Itanium 
if (Value64  == ValueUN)  {}  // Works on IA-32, warning generated on Itanium 
if (ValueN   == ValueU64) {}  // Works on IA-32, warning generated on Itanium 
 
if ((INTN)ValueU64 == ValueN)   {}  // Works on both IA-32 and Itanium 
if ((INT64)ValueUN == Value64)  {}  // Works on both IA-32 and Itanium 
if ((UINTN)Value64 == ValueUN)  {}  // Works on both IA-32 and Itanium 
if ((UINT64)ValueN == ValueU64) {}  // Works on both IA-32 and Itanium 
 
if (ValueU64 == (UINT64)ValueN) {}  // Works on both IA-32 and Itanium 
if (ValueUN  == (UINTN)Value64) {}  // Works on both IA-32 and Itanium 
if (Value64  == (INT64)ValueUN) {}  // Works on both IA-32 and Itanium 
if (ValueN   == (INTN)ValueU64) {}  // Works on both IA-32 and Itanium 

Example 18-9.  Comparison Operation Warnings 
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18.4 Casting Pointers 

Pointers can be cast from one pointer type to another pointer type. However, pointers should never 
be cast to a fixed-size data type, and fixed-size data types should never be cast to pointers. The size 
of a pointer varies between IA-32 and Itanium processors. If any assumptions are made that a 
pointer to a function or a pointer to a data structure is a 32-bit value, then that code will not run on 
Itanium-based platforms with physical memory above 4 GB. These issues difficult are to catch, 
because explicit casts are required to cast a fixed-width type to a pointer or vice versa. Once these 
explicit type casts are introduced, no compiler warnings or errors will be generated. In fact, the 
code may execute just fine on IA-32 platforms and Itanium-based platforms with physical memory 
below 4 GB. The only failing case will be when the code is tested on an Itanium-based system with 
physical memory above 4 GB. The symptom is typically a processor exception that results in a 
system hang or reset. Example 18-10 below shows some good and bad examples of casting 
pointers. The first group is casting pointers to pointers. The second group is casting pointers to 
fixed width types, and the last group is casting fixed width types to pointers. There is one exception 
to this rule that applies to IA-32 and Itanium processors. The data types INTN and UINTN are the 
exact same size of pointers on both IA-32 and Itanium-based platforms, which means that a pointer 
can be cast to or from INTN or UINTN without any adverse side effects. However, ANSI C does 
not require function pointers to be the same size as data pointers, and function pointers and data 
pointers are not required to be the same size as INTN or UINTN. As a result, this exception does 
not apply to all processors. 
typedef struct { 
  UINT8   First; 
  UINT32  Second; 
} MY_STRUCTURE; 
 
MY_STRUCTURE  *MyStructure; 
UINT8         ValueU8; 
UINT16        ValueU16; 
UINT32        ValueU32; 
UINT64        ValueU64; 
UINTN         ValueUN; 
INT64         Value64; 
INTN          ValueN; 
VOID          *Pointer; 
 
// 
// Casting pointers to pointers 
// 
Pointer     = (VOID *)MyStructure;      // Good. 
MyStructure = (MY_STRUCTURE *)Pointer;  // Good. 
 
// 
// Casting pointers to fixed width types 
// 
ValueU8  = (UINT8)MyStructure;     // Bad. Strips upper 24 bits on IA-32 and 
                                   // upper 56 bits on Itanium. 
ValueU16 = (UINT16)MyStructure;    // Bad. Strips upper 16 bits on IA-32 and 
                                   // upper 48 bits on Itanium. 
ValueU32 = (UINT32)MyStructure;    // Bad. Works on IA-32, but strips upper 
                                   // 32 bits on Itanium. 
ValueU64 = (UINT64)MyStructure;    // OK. Works on IA-32 and Itanium 
Value64  = (INT64)MyStructure;     // OK. Works on IA-32 and Itanium 
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ValueUN  = (UINTN)MyStructure;     // Good. Works on IA-32 and Itanium 
ValueN   = (INTN)MyStructure;      // Good. Works on IA-32 and Itanium 
 
// 
// Casting fixed width types to pointers 
// 
MyStructure = (MY_STRUCTURE *)ValueU8;   // Bad 
MyStructure = (MY_STRUCTURE *)ValueU16;  // Bad 
MyStructure = (MY_STRUCTURE *)ValueU32;  // Bad. Works on IA-32, only works on 
                                         // Itanium-based platforms with < 4 GB 
MyStructure = (MY_STRUCTURE *)ValueU64;  // OK. Works on IA-32 and Itanium 
MyStructure = (MY_STRUCTURE *)Value64;   // OK. Works on IA-32 and Itanium 
MyStructure = (MY_STRUCTURE *)ValueUN;   // Good. Works on IA-32 and Itanium 
MyStructure = (MY_STRUCTURE *)ValueN;    // Good. Works on IA-32 and Itanium 
 

Example 18-10.  Casting Pointer Examples 

18.5 EFI Data Type Sizes 

There are a few EFI data types that are different sizes on IA-32 and Itanium architecture, 
as follows: 

• Pointers 
• Enumerations 
• INTN  

• UINTN  

These differing types also mean that any complex types, such as unions and data structures, that are 
composed of these base types will also have different sizes on IA-32 and Itanium architecture. 
These differences must be understood whenever the sizeof() operator is used. If a union or data 
structure is required that does not change size between IA-32 and Itanium architecture, see 
Appendix A for a summary of the EFI data types that are available to all EFI applications and 
EFI drivers. 

18.6 Negative Numbers 

Negative numbers are not the same on IA-32 and Itanium processors. Negative numbers are type 
INTN, and INTN is a 4-byte container on IA-32 and an 8-byte container on the Itanium processor. 
For example, -1 on IA-32 is 0xffffffff, and -1 on the Itanium processor is 
0xffffffffffffffff. Care must be taken when assigning or comparing negative numbers. 
Example 18-11 shows an example that compiles without errors or warnings on both IA-32 and 
Itanium processors but behaves very differently on IA-32 than it does on the Itanium processor. 
UINT32  ValueU32; 
 
ValueU32 = 0xffffffff; 
 
if ((INTN)ValueU32 == -1) { 
  Print(L"Equal\n");       // This message is printed on IA-32 and not Itanium 
} else { 
  Print(L"Not Equal\n");   // This message is printed on Itanium and not IA-32 
} 

Example 18-11.  Negative Number Example 
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18.7 Returning Pointers in a Function Parameter 

Example 18-12 shows a bad example for casting pointers. The function MyFunction() simply 
returns a 64-bit value in an OUT parameter that is assigned from a 32-bit input parameter. There is 
nothing wrong with MyFunction(). The problem is when MyFunction() is called. Here, the 
address of B, a 32-bit container, is cast to a pointer to a 64-bit container and passed to 
MyFunction(). MyFunction() writes to 64 bits starting at B. This location happens to 
overwrite the value of B and the value of A in the calling function. The first Print() correctly 
shows the values of A and B. The second Print() shows that B was given A’s original value, but 
the contents of A were destroyed and overwritten with a 0. The cast from &B to a (UINT64 *) is 
the problem here. This code compiles without errors or warnings in both IA-32 and Itanium 
processors. It executes on IA-32 with these unexpected side effects. It might run on Itanium 
processors, but it depends on if &B is 64-bit aligned or not. There is a 50 percent chance that it will 
generate an alignment fault on an Itanium processor. If it does not generate an alignment fault, then 
it will get the same unexpected results that occurred on IA-32. This porting issue is not specific to 
the Itanium processor. However, because 64-bit quantities are more likely to be used in EFI drivers, 
this issue is an important one to consider when doing EFI development work. 
EFI_STATUS 
MyFunction ( 
  IN  UINT32  ValueU32, 
  OUT UINT64  *ValueU64 
  ) 
 
{ 
  *ValueU64 = (UINT64)ValueU32; 
  return EFI_SUCCESS; 
} 
 
 
UINT32  A; 
UINT32  B; 
 
A = 0x11112222; 
B = 0x33334444; 
Print(L"A = %08x  B = %08x\n",A,B);  // Prints “A = 11112222  B = 33334444”  
MyFunction (A, (UINT64 *)(&B)); 
Print(L"A = %08x  B = %08x\n",A,B);  // Prints “A = 00000000  B = 11112222” 

Example 18-12.  Casting OUT Function Parameters 

18.8 Array Subscripts 

In general, array subscripts should be of type INTN or UINTN. Using these types will avoid 
problems if an array subscript is decremented below 0. If a UINT32 is used as an array subscript 
and is decremented below 0, it is decremented to 0xffffffff on IA-32 and 
0x00000000ffffffff on the Itanium processor. These subscript values are very different. On 
IA-32, this value is the same indexing element as -1 of the array. However, on the Itanium 
processor, this value is the same indexing element as 0xffffffff of the array. If an INTN or 
UINTN is used instead of a UINT32 for the array subscript, then this problem goes away. When a 
UINTN is decremented below 0, it is decremented to 0xffffffff on IA-32 and 
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0xffffffffffffffff on the Itanium processor. These values are both the same indexing 
element as -1 of the array. Example 18-13 below show two examples of array subscripts. The first 
one works on IA-32 but faults on Itanium processors. The second example is rewritten to work 
properly on both IA-32 and Itanium processors. 
UINT32  Index; 
CHAR8   Array[] = “ABCDEFGHIJKLIMNOPQRSTUVWXYZ”; 
CHAR8   *MyArray; 
 
MyArray = &(Array[5]); 
Index = 0; 
Print(L”Character = %c\n”,Array[Index-1]);  // Works on IA-32, faults on Itanium 
 
 
UINTN   Index; 
CHAR8   Array[] = “ABCDEFGHIJKLIMNOPQRSTUVWXYZ”; 
CHAR8   *MyArray; 
 
MyArray = &(Array[5]); 
Index = 0; 
Print(L”Character = %c\n”,Array[Index-1]);  // Works on IA-32 and Itanium 

Example 18-13.  Array Subscripts Example 

18.9 Piecemeal Structure Allocations 

Structures should always be allocated using the sizeof() operator on the name of the structure. 
The sum of the sizes of the structure’s members should never be used because it does not take into 
account the padding that the compiler introduces to guarantee alignment. Example 18-14 shows two 
examples for allocating memory for a structure. The first one is incorrect and the second allocation 
is correct. 
typedef struct { 
  UINT8   Value8; 
  UINT64  Value64; 
} MY_STRUCTURE; 
 
MY_STRUCTURE  *MyStructure; 
 
// 
// Wrong. This will only allocate 9 bytes, but MyStructure is 16 bytes 
//  
Status = gBS->AllocatePool ( 
                EfiBootServicesData, 
                sizeof (UINT8) + sizeof (UINT64), 
                (VOID **)&MyStructure 
                ); 
 
// 
// Correct. This will allocate 16 bytes for MyStructure. 
// 
Status = gBS->AllocatePool ( 
                EfiBootServicesData, 
                sizeof (MY_STRUCTURE), 
                (VOID **)&MyStructure 
                ); 

Example 18-14.  Piecemeal Structure Allocation 
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18.10 Speculation and Floating Point Register Usage 

Itanium processors support speculative memory accesses and a large number of floating point 
registers. EFI drivers that are compiled for Itanium processors must follow the calling conventions 
defined in the SAL Specification. This specification allows only the first 32 floating point registers 
to be used and defines the amount of speculation support that a platform is required to implement 
for the preboot environment. These requirements mean that the correct compiler and linker switches 
must be used to guarantee that these calling conventions are followed. The EFI Sample 
Implementation includes the correct compiler and linker settings for several tool chains for the 
Itanium processor. These settings may have to be adjusted if a newer or different tool chain is used. 
Table 18-1 shows the compiler flags for a few different compilers. 

Table 18-1. Compiler Flags 

Compiler Optimizations Description 

Off /X /Zl /Zi /Od /W3 /QIPF_fr32 Intel Itanium Compiler 5.01 

On /X /Zl /O1 /W3 /QIPF_fr32 

Off /X /Zi /Zl /Od /W3 /WX /QIPF_fr32 Intel® C++ Compiler 7.1 for 
Windows*  On /X /Zl /O1 /W3 /WX /QIPF_fr32 

18.11 Memory Ordering 

The store model of the processor or the store model for a bus master in an I/O subsystem may be 
weakly ordered. Weak ordering of processor store cycles has been the source of several difficult 
bugs in a number of drivers. It is easy to imagine that this issue could be fairly widespread in 
drivers written for Itanium processors at both the OS and EFI level. See A Formal Specification of 
Intel Itanium Processor Family Memory Ordering for a detailed discussion of this topic, which is 
also discussed in the Intel® Itanium® Architecture Software Developer Manuals, volumes 1–4. 

The classic case where strong ordering versus weak ordering produces different results is when 
there is a memory-based FIFO and a shared bus master “doorbell” register that is shared by all 
additions to the FIFO. In this common implementation, the driver (producer) formats a new request 
descriptor and, as its last logical operation, writes the value indicating the entry is valid. 

This mechanism becomes a problem if a new request is being added to the FIFO while the bus 
master is checking the next FIFO entry’s valid flag. It is possible for the “last write” issued by the 
processor (that turns on the valid flag) to be posted to memory before the logically earlier writes 
that finish initializing the FIFO/request descriptor. 

The solution in this case is to ensure that all pending memory writes have been completed before 
the “valid flag” is enabled. There are two techniques to avoid this problem: 

• Technique 1:  Declare the whole structures with the C language “volatile” attribute. The 
compiler will ensure that strong ordering is used for all operations in this case. 

• Technique 2:  Use the MEMORY_FENCE() macro before setting the valid flag. This macro 
calls the “__mf();” intrinsic, which will ensure that all previous stores are posted. The 
intrinsic call requires that a #pragma intrinsic (__mfa) statement be defined. The 
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EFI 1.10 Sample Implementation sets up this macro in the 
\EFI1.1\inc\ipf\efibind.h header file. 

The second solution is typically preferred for readability because the intent is clearer. A volatile 
declaration tends to hide what was needed, because it is not part of the affected code (because it is 
off in a structure definition). In addition, using the volatile declaration could impact the driver’s 
performance because all memory transactions to the structure would be strongly ordered (ordered 
memory transactions are slower). 

✏ NOTE 

If a driver is executing in the EBC environment, the EBC interpreter ensures that all memory 
transactions are strongly ordered. Technically, EBC drivers do not need to use the 
MEMORY_FENCE() macro. However, for portability to non-EBC environments and for 
readability, the use of the MEMORY_FENCE() macro is strongly encouraged. 

Many driver/bus master pairs do not exhibit this issue, based on the style of their driver/bus master 
interactions. 

The easy/safe case is when the driver builds a structure and the bus master will not access that 
structure until the (exclusive to this request, or only one request outstanding) bus master “doorbell” 
is rung, and the doorbell resides on a PCI device. This mechanism works because 
PciIo->IoWrite() and PciIo->MemWrite() are also memory fence operations. 

Another “safe” variation is a memory FIFO of host requests, and the host writes the current FIFO 
producer index to the bus master’s doorbell. This mechanism is safe because the bus master will not 
attempt to read the FIFO until the corresponding index has been written, and the bus master write is 
the memory fence.  

✏ NOTE 

This mechanism is really a variation of the “easy/safe case” above (two paragraphs before this 
note), because the producer index makes the doorbell write exclusive to a single request; i.e., the 
bus master does not “read ahead.” 

Another variation in the “unique doorbell per request” category is the bus master doorbell that is 
really a bus-master-based FIFO. The driver typically writes the address of the request to this FIFO 
register. This method is commonly used in the “I2O” model but is used by several vendors without 
being I2O compliant. 
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18.12 Helpful Tools 

To catch possible issues with assigning or comparing values of different sizes, EFI drivers should 
always be compiled with fairly high warning levels. For example, the Microsoft Visual Studio tool 
chain supports the /WX and /W3 or /W4 compiler flags. The /WX flag will cause any compile time 
warnings to generate an error, so the build will stop when a warning is generated. The /W3 and /W4 
flags set the warning level to 3 and 4 respectively. At these warning levels, any size mismatches in 
assignments and comparisons will generate a warning. With the /WX flag, the compile will stop 
when these size mismatches are detected. 

If an EFI driver is being developed for an IA-32 system and is planned to be ported to the Itanium 
processor, then it is always a good idea to compile the EFI driver with an Itanium compiler during 
the development process to make sure the code is clean when validation on the Itanium processor is 
begun. By using the /WX and /W3 or /W4 compiler flags, any size mismatches that are generated 
by only 64-bit code will be detected. 
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19 
EFI Byte Code Porting Considerations 

There are a few considerations to keep in mind when writing drivers that may be ported to EBC. 
This chapter describes these considerations in detail and, where applicable, provides solutions to 
address them. If EFI drivers are implemented with these considerations in mind, then porting a 
native driver to EBC may simply require a recompile using the Intel® C Compiler for EFI 
Byte Code. 

19.1 No EBC Assembly Support 

The only tools that are available for EBC are a C compiler and a PE/COFF linker. There are no 
EBC assemblers available, and there are no plans to produce an EBC assembler. This lack of an 
EBC assembler is actually by design, because the EBC instruction set was optimized with a C 
compiler in mind. If the driver is being ported to EBC, all assembly language for IA-32 or Itanium 
processors must be converted to C.  

19.2 No Floating Point Support 

There is no floating-point support in the EBC Virtual Machine, which means that the type float 
is not supported in the Intel C Compiler for EFI Byte Code. If an EFI driver is being ported to EBC 
and requires floating-point math, then the driver must be converted to fixed-point math using 
integer operands and operators. At this time, no fixed-point math libraries have been ported to EBC. 

19.3 No C++ Support 

The Intel C Compiler for EFI Byte Code does not support C++. If there is any C++ code in an EFI 
driver being ported to EBC, then that C++ code must be converted to C. 

19.4 EFI Data Type Sizes 

The most notable difference between native and EBC code execution is that, in some cases, 
sizeof() is computed at runtime for EBC code, whereas sizeof() can be computed at 
compile time for native code. Because pointers, the EFI data types INTN and UINTN, and the C 
type long are different sizes on IA-32 and Itanium processors, an EBC executable must adapt to 
the platform type on which it is executing. Example 19-1 below shows several examples of simple 
and complex data types.  
typedef enum {Red, Green, Blue} COLOR_TYPE; 
 
typedef struct { 
  UINT64  ValueU64; 
  UINT32  ValueU32; 
  UINT16  ValueU16; 
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  UINT8   ValueU8; 
} FIXED_STRUCTURE; 
 
typedef struct { 
  UINTN   ValueUN; 
  VOID    *Pointer; 
  UINT64  ValueU64; 
  UINT32  ValueU32; 
} VARIABLE_STRUCTURE; 
 
Size = sizeof (UINT64);             //  8 bytes on IA-32,  8 bytes on Itanium 
Size = sizeof (UINT32);             //  4 bytes on IA-32,  4 bytes on Itanium 
Size = sizeof (UINT16);             //  2 bytes on IA-32,  2 bytes on Itanium 
Size = sizeof (UINT8);              //  1 byte on IA-32,  1 byte on Itanium 
Size = sizeof (UINTN);              //  4 bytes on IA-32,  8 bytes on Itanium 
Size = sizeof (INTN);               //  4 bytes on IA-32,  8 bytes on Itanium 
Size = sizeof (COLOR_TYPE);         //  4 bytes on IA-32,  8 bytes on Itanium 
Size = sizeof (VOD *);              //  4 bytes on IA-32,  8 bytes on Itanium 
Size = sizeof (FIXED_STRUCTURE);    // 15 bytes on IA-32, 15 bytes on Itanium 
Size = sizeof (VARIABLE_STRUCTURE); // 20 bytes on IA-32, 28 bytes on Itanium 

Example 19-1. Size of EBC Data Types 

For the types that return different sizes for IA-32 and Itanium processors, the EBC compiler 
generates code that computes the correct values at runtime. 

19.5 CASE Statements 

Because pointers and the data types INTN and UINTN are different sizes on IA-32 and Itanium 
processors, there is only one place where the sizeof() function cannot be used, which is in a 
case statement. The sizeof() function cannot be used in a case statement because the 
sizeof() function cannot be evaluated to a constant by the EBC compiler at compile time. EFI 
status codes such as EFI_SUCESS and EFI_UNSUPPORTED are defined using the sizeof() 
function. As a result, these values cannot be used in case expressions. Example 19-2 shows 
examples of case statements. 
UINTN Value; 
 
switch (Value) { 
case 0:                // Works 
  break; 
case sizeof (UINT16):  // Works because sizeof (UINT16) is always 2 
  break; 
case sizeof (UINTN):   // Compiler error because sizeof (UINTN) is not constant  
  break; 
case EFI_UNSUPPORTED:  // Compiler error because sizeof (UINTN) is not constant  
  break; 
} 

Example 19-2.  Case Statements 
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19.6 Stronger Type Checking 

The EBC compiler performs stronger type checking than some other IA-32 and Itanium compilers. 
As a result, code that compiles without any errors or warnings on an IA-32 or Itanium compiler 
may generate warnings with the EBC compiler. Example 19-3 shows two common examples, using 
gBS->AllocatePool() and gBS->OpenProtocol(), from EFI drivers that will generate 
warnings with the EBC compiler and how these examples can be fixed. 
typedef struct { 
  UINT8   Value8; 
  UINT64  Value64; 
} MY_STRUCTURE; 
 
EFI_STATUS                   Status; 
EFI_DRIVER_BINDING_PROTOCOL  *This; 
EFI_HANDLE                   ControllerHandle; 
EFI_GUID                     gEfiBlockIoProtocolGuid; 
EFI_BLOCK_IO_PROTOCOL        *BlockIo; 
MY_STRUCTURE                 *MyStructure; 
 
Status = gBS->OpenProtocol ( 
                ControllerHandle,   
                &gEfiBlockIoProtocolGuid,  
                &BlockIo,                     // Compiler warning 
                This->DriverBindingHandle,    
                ControllerHandle,    
                EFI_OPEN_PROTOCOL_BY_DRIVER 
                ); 
 
Status = gBS->OpenProtocol ( 
                ControllerHandle,   
                &gEfiBlockIoProtocolGuid,  
                (VOID **)&BlockIo,            // No compiler warning 
                This->DriverBindingHandle,    
                ControllerHandle,    
                EFI_OPEN_PROTOCOL_BY_DRIVER 
                ); 
 
Status = gBS->AllocatePool ( 
                EfiBootServicesData, 
                sizeof (MY_STRUCTURE), 
                &MyStructure                  // Compiler warning  
                ); 
 
Status = gBS->AllocatePool ( 
                EfiBootServicesData, 
                sizeof (MY_STRUCTURE), 
                (VOID **)&MyStructure         // No compiler warning  
                ); 

Example 19-3.  Stronger Type Checking 
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19.7 EFI Driver Entry Point 

The entry point to every EBC driver is a function called EfiStart(). The EfiStart() 
function performs the runtime initialization of the EFI driver and then calls EfiMain(). The entry 
point that is declared in the Make.inf file is always renamed to EfiMain(). These details are 
hidden from the developer by the build environment. The symbols EfiStart() and 
EfiMain() are used by the EBC build environment. As a result, these two reserved symbols 
cannot be used as function names or variable names in an EFI driver implementation. 

19.8 Memory Ordering 

The EBC interpreter ensures that all memory transactions are strongly ordered. EBC drivers are not 
required to use the MEMORY_FENCE() macro when strong ordering is required. However, to 
guarantee that an EFI driver is portable to non-EBC execution environments, the use of the 
MEMORY_FENCE() macro is strongly encouraged. 

19.9 Performance Considerations 

All EBC executables require an EBC Virtual Machine interpreter to be executed. Because all EBC 
executables are running through an interpreter, they will run slower than native EFI executables. As 
a result, an EFI driver that is compiled with an EBC compiler should be optimized for performance 
to improve the usability of the EFI driver. Chapter 14 covers speed optimization techniques that can 
be used to improve the performance of all EFI drivers. 
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20 
Building EFI Drivers 

This section describes how to write, compile, and package EFI drivers for the EFI 1.10 Sample 
Implementation environment. 

20.1 Writing EFI Drivers 

New EFI drivers are added to the EFI source tree in the \Efi1.1\Edk\Drivers directory. It is 
recommended that all EFI drivers be placed below this directory, but it is not strictly required. 
Additional subdirectories can be created under this directory to help organize the EFI drivers into 
natural groups.  

To add a new EFI driver to the build environment, do the following: 

• Create a new subdirectory.  
• Place a Make.inf file along with the .c and .h files in that subdirectory.  

No assembly language files are allowed in this directory. If assembly language files are required, 
they should be placed in processor-specific subdirectories.  

Example 20-1 shows the files that are present in an EFI driver that consumes the Block I/O 
Protocol and produces the Disk I/O Protocol. These files are placed in a driver directory called 
DiskIo. 
Efi1.1\ 
    Edk\ 
        Drivers\ 
            DiskIo\ 
                ComponentName.c 
                DiskIo.c 
                DiskIo.h 
                Make.inf 

Example 20-1.  Disk I/O Driver Files 

The example in Example 20-1 does not contain any processor-specific files. This absence means 
that this driver is designed to be portable between IA-32, Itanium architecture, and EBC. If an EFI 
driver requires processor-specific components, then those components can be added in 
subdirectories below the EFI driver’s directory. Table 20-1 lists the three directory names that are 
reserved for the processor-specific files.  

Table 20-1. Directory Names Reserved for Processor-Specific Files 

Directory Name Notes 

Ia32 May contain .c, .h, and .asm files. 

Ipf May contain .c, .h, and .s files. 

Ebc May contain .c and .h files. 
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Example 20-2 shows the same EFI driver from Example 20-1, but it includes processor-specific 
files for all three supported processor types. The files FastTransfer.asm and 
FastTransfer.s contain optimized assembly code to improve the performance of the disk I/O 
driver. Because the EBC compiler does not support assembly language, the same functions that 
FastTransfer.asm and FastTransfer.s provide must be implemented in 
FastTransfer.c for EBC. Doing so makes the driver work on all three supported processor 
types, but the EFI driver takes longer to develop and is more difficult to maintain if any changes are 
required in the processor-specific components. If possible, an EFI driver should be implemented in 
C with no processor-specific files, which will reduce the development time, reduce maintenance 
costs, and increase portability. 
Efi1.1\ 
    Edk\ 
        Drivers\ 
            DiskIo\ 
                ComponentName.c 
                DiskIo.c 
                DiskIo.h 
                Make.inf 
                Ia32\ 
                    FastTransfer.asm 
                Ipf\ 
                    FastTransfer.s 
                Ebc\ 
                    FastTransfer.c 

Example 20-2.  Disk I/O Driver with Processor-Specific Files 

20.1.1 Make.inf File 
The Make.inf file specifies the following: 

• A list of source files 
• The path to the include directories 
• The path to the library directories 
• The entry point for the EFI driver 
• The name of the executable EFI driver image 

It is not legal to use relative path names with “..” in any of the sections. When relative path names 
are used, it makes it very difficult to move a component to a different location in the source tree. 
Likewise, #include statements in .c and .h files should not use relative path names with “..” 
for the same reason. 

Example 20-3 shows the contents of the Make.inf file for the DiskIo driver from 
Example 20-1. Example 20-4 shows the Make.inf file for the DiskIo driver from 
Example 20-2. The source files for the disk I/O driver are included in Appendix D for reference. 
# 
# Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
# This software and associated documentation (if any) is furnished 
# under a license and may only be used or copied in accordance 
# with the terms of the license. Except as permitted by such 
# license, no part of this software or documentation may be 
# reproduced, stored in a retrieval system, or transmitted in any 
# form or by any means without the express written consent of 
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# Intel Corporation. 
# 
# Module Name: 
# 
#    make.inf 
#     
# Abstract: 
# 
#    Makefile for Edk\Drivers\DiskIo 
# 
# Revision History 
# 
 
[sources] 
  DiskIo.c 
  DiskIo.h 
  ComponentName.c 
 
[includes] 
  . 
  $(EFI_SOURCE)\Edk 
  $(EFI_SOURCE)\Edk\Include 
  $(EFI_SOURCE)\Edk\Lib\Include 
 
[libraries] 
  $(EFI_SOURCE)\Edk\Lib\EfiDriverLib 
  $(EFI_SOURCE)\Edk\Lib\Print 
  $(EFI_SOURCE)\Edk\Protocol 
 
[nmake] 
  IMAGE_ENTRY_POINT=DiskIoDriverEntryPoint 
  TARGET_BS_DRIVER=DiskIo 

Example 20-3.  Disk I/O Driver Make.inf File 

 
# 
# Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
# This software and associated documentation (if any) is furnished 
# under a license and may only be used or copied in accordance 
# with the terms of the license. Except as permitted by such 
# license, no part of this software or documentation may be 
# reproduced, stored in a retrieval system, or transmitted in any 
# form or by any means without the express written consent of 
# Intel Corporation. 
# 
# Module Name: 
# 
#    make.inf 
#     
# Abstract: 
# 
#    Makefile for Edk\Drivers\DiskIo 
# 
# Revision History 
# 
 
[sources] 
  DiskIo.c 
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  DiskIo.h 
  ComponentName.c 
 
[ia32sources] 
  FastTransfer.asm 
 
[ipfsources] 
  FastTransfer.s 
 
[ebcsources] 
  FastTransfer.c 
 
[includes] 
  . 
  $(EFI_SOURCE)\Edk 
  $(EFI_SOURCE)\Edk\Include 
  $(EFI_SOURCE)\Edk\Lib\Include 
 
[libraries] 
  $(EFI_SOURCE)\Edk\Lib\EfiDriverLib 
  $(EFI_SOURCE)\Edk\Lib\Print 
  $(EFI_SOURCE)\Edk\Protocol 
 
[nmake] 
  IMAGE_ENTRY_POINT=DiskIoDriverEntryPoint 
  TARGET_BS_DRIVER=DiskIo 

Example 20-4.  Disk I/O Driver Make.inf File with Processor-Specific Files 

The following sections describe the different sections that are available in the Make.inf file.  

20.1.2 [sources] Section 
Four sources sections are available in a make.inf file. Table 20-2 describes each of these four 
types of sources sections.  

Table 20-2. Sources Sections Available in a make.inf File 

Type of Section 
Optional or 
Required? Description 

[sources] Required Contains the names of the .c and .h files that are in the EFI 

driver’s directory. If possible, a driver should be designed so that this 
section is the only sources section. If any of the other sources 
sections are used, then additional work will be required to port the 
EFI driver to the other supported processor types. 

[ia32sources] Optional Contains the names of the IA-32 specific .c, .h, and .asm files 
that are in the Ia32 subdirectory below the EFI driver’s directory.  

[ipfsources] Optional Contains the names of the Itanium architecture–specific .c, .h, 
and .s files that are in the Ipf subdirectory below the EFI driver’s 

directory. 

[ebcsources] Optional Contains the names of the EFI Byte Code–specific .c and .h files 
that are in the Ebc subdirectory below the EFI driver’s directory. 
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The example in Example 20-1 does not contain any processor-specific sources, so it contains only a 
single [sources] section. The Make.inf file from Example 20-2 would contain all four 
sources sections. 

20.1.3 [includes] Section 
The [includes] section in a Make.inf file contains the list of include directories that are 
required by the EFI driver. All EFI drivers require the include directory named “.” to include the 
.h files that are listed from the EFI driver’s directory and the processor-specific subdirectories. All 
EFI drivers also require the $(EFI_SOURCE)\Edk\Include directory to include all the 
function prototypes and data structure definitions for EFI Boot Services and EFI Runtime Services. 
If an EFI driver uses the EFI Driver Library, then the include directory 
$(EFI_SOURCES)\Edk\Lib\Include is also required. If the EFI driver includes any 
protocols or GUIDs (see Appendix A), then the $(EFI_SOURCE)\Edk directory is also required. 
Additional include paths can be added as required. The example in Example 20-3 uses all four of 
these include directories. 

20.1.4 [libraries] Section 
The [libraries] section in a Make.inf file contains the list of libraries against which the EFI 
driver will be linked. Table 20-3 lists the libraries that are required when the EFI driver has 
different characteristics. If any new libraries are added to the build environment, then they can be 
added here too. 

Table 20-3. Required Libraries 

If the EFI driver… Required Library 

Uses the EFI Driver Library $(EFI_SOURCE)\Edk\Lib\EfiDriverLib 

Includes any protocols (see Appendix A) $(EFI_SOURCE)\Edk\Protocol 

Includes any GUIDs (see Appendix A) $(EFI_SOURCE)\Edk\Guid 
Contains any DEBUG() macros  $(EFI_SOURCE)\Edk\Lib\Print 

Requires the use of print functions $(EFI_SOURCE)\Edk\Lib\Print 

Requires any string functions from the 
EFI Driver Library (see Appendix A) 

$(EFI_SOURCE)\Edk\Lib\String 

 



EFI 1.10 Driver Writer’s Guide Draft for Review  

356 July 2004 Version 0.9 

20.1.5 [nmake] Section 
The [nmake] section in a Make.inf file contains two required lines, which are listed in 
Table 20-4. Any other statements in the [nmake] section are added to the makefile that is used 
to build the EFI driver. This feature can be used to override the default compiler and linker flags. 

Table 20-4. Required Lines in an [nmake] Section 

Required Line Description 

IMAGE_ENTRY_POINT= Declares the EFI driver’s entry point.  

Either TARGET_BS_DRIVER= or 
TARGET_RT_DRIVER= 

• The TARGET_BS_DRIVER= statement declares that the 
EFI driver is an EFI Boot Services driver.  

• The TARGET_RT_DRIVER= statement declares that the 
EFI driver is an EFI runtime driver. 

20.2 Adding an EFI Driver to a Build Tip 

Before a new EFI driver can be compiled, the Makefile for one or more build tips needs to be 
updated to include the new EFI driver. All of the build tips produce two directories when they are 
built. Table 20-5 lists these directories, and Example 20-5 below shows the directory structure for 
all the build tips.  

Table 20-5. Directory Structure for All Build Tips 

Directory Description 

Bin Contains the executable images that are generated when the build tip is linked. A newly 
compiled EFI driver will be placed in this directory. The tree can be cleaned by deleting 
the Bin directory. 

Output Contains all the .Obj and .Lib files that are created when the build tip is compiled. 
This is done to prevent the .Obj and .Lib files from being scattered throughout the 
source tree. To clean the tree of these temporary files, the Output directory can be 

deleted. 

   
 

Efi1.1\ 
    Build\ 
        Bios32\ 
            Bin\ 
            Output\ 
        EbcDrivers\ 
            Bin\ 
            Output\ 
        IA-32Emb\ 
            Bin\ 
            Output\ 
        Ia32Drivers\ 
            Bin\ 
            Output\ 
        IpfDrivers\ 
            Bin\ 
            Output\ 
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        Nt32\ 
            Bin\ 
            Output\ 
        Sal64\ 
            Bin\ 
            Output\ 

Example 20-5.  EFI Build Tips 

Table 20-6 lists the standard build tips that are the fully integrated EFI builds. The build tips 
include the EFI core that produces the EFI Boot Services and EFI Runtime Services as well as a 
number of EFI drivers that provide access to a wide variety of boot devices.  

Table 20-6. Build Tips Integrated into EFI Builds 

Build Tips Description 

Bios32 Produces floppy images that can be booted on a PC-AT class IA-32 platform.  

IA-32Emb Produces floppy images that can be booted on a PC-AT class IA-32 platform.  

Sal64 Produces the EFI firmware component for an Itanium-based platform that contains a SAL 
and a legacy IA-32 BIOS.  

Nt32 Produces a 32-bit Windows application that is an accurate emulation of the EFI 
execution environment. 

 

Table 20-7 lists the build tips that are used to build EFI drivers that are either going to be soft 
loaded or integrated into an option ROM container on a device. These build tips will be used during 
initial EFI driver development work.  

Table 20-7. Build Tips Used to Build EFI Drivers 

Build Tips Description 

Ia32Drivers Produces drivers that can be executed in the Bios32, IA-32Emb, or Nt32 

environments.  

IpfDrivers Produces drivers that can be executed in the Sal64 environment.  

EbcDrivers Produces drivers that can be executed in all four of the EFI environments that are listed 
in Table 20-6. 

 

It is also possible to create additional build tips below the \Efi1.1\Build directory and use the 
other build tips as a template for setting up the build environment. 

Once a build tip is selected, the Makefile in that build tip must be modified. Typically, there is a 
section called Makemaker:: or Drivers:: in the Makefile. To add a driver to the build tip, 
just add a line to this section with the path to the new driver. Example 20-6 shows the 
Makemaker:: section before and after the XYZ EFI driver was added. 
makemaker:: 
  $(MAKE) -f output\Edk\drivers\AtapiPassThru\makefile                       all 
  $(MAKE) -f output\Edk\drivers\Console\ConPlatform\makefile                 all 
  $(MAKE) -f output\Edk\drivers\Console\ConSplitter\makefile                 all 
  $(MAKE) -f output\Edk\drivers\Console\GraphicsConsole\makefile             all 
  $(MAKE) -f output\Edk\drivers\Console\Terminal\makefile                    all 
  $(MAKE) -f Output\Edk\Drivers\CirrusLogic5430\makefile                     all 
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makemaker:: 
  $(MAKE) -f output\Edk\drivers\AtapiPassThru\makefile                       all 
  $(MAKE) -f output\Edk\drivers\Console\ConPlatform\makefile                 all 
  $(MAKE) -f output\Edk\drivers\Console\ConSplitter\makefile                 all 
  $(MAKE) -f output\Edk\drivers\Console\GraphicsConsole\makefile             all 
  $(MAKE) -f output\Edk\drivers\Console\Terminal\makefile                    all 
  $(MAKE) -f Output\Edk\Drivers\CirrusLogic5430\makefile                     all 
  $(MAKE) -f Output\Edk\Drivers\Xyz\makefile                                 all 

Example 20-6.  Adding an EFI Driver to a Makefile 

Once an EFI driver has been added to the Makefile, the EFI driver can be built by executing the 
Build.cmd and nmake commands from the command line. See the release notes from the 
EFI 1.10 Sample Implementation for details on the environment variables that are set up in the 
Build.cmd file. If the build completes, then the EFI driver executable will be placed in the Bin 
directory below the build tip. The name and type for the EFI driver image is specified in the 
Make.inf file (see section 20.1). 

20.3 Integrating an EFI Driver into a Build Tip 

If an EFI driver is being added to the Bios32, IA-32Emb, Sal64, or the Nt32 environments, 
then the EFI driver also needs to be linked into the environment and the driver needs to be loaded 
and started prior to the execution of the EFI boot manager. This integration requires a few more 
files to be modified to integrate a new EFI driver. There are also some additional EFI driver design 
considerations to make sure the integration is successful. The following steps are required to 
integrate an EFI driver into one of the four build tips. 
1. Add the EFI driver to the build tip. See section 20.2 for details on updating the Makemaker:: 

section. The EFI_LIBS section also needs to be updated for the Bios32, IA-32Emb, and 
Sa64 build tips to directly link the EFI driver into the final executable image. Example 20-7 
below shows an example with the XYZ driver being added to both the EFI_LIBS section and 
the Makemaker:: section. This step needs to be repeated for all the build tips in which the 
EFI driver is being integrated. 

 
EFI_LIBS =                                                               \ 
  Output\Corefw\Fw\Efi\Efi.lib                                           \     
  . . .                                                                  \ 
  Output\Edk\Drivers\Xyz\Xyz.lib                                         \     
 
makemaker:: 
  $(MAKE) -f output\Edk\drivers\AtapiPassThru\makefile                   all 
  . . . 
  $(MAKE) -f Output\Edk\Drivers\Xyz\makefile                             all 

Example 20-7.  Integrating an EFI Driver to a Makefile 
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2. Add the declaration of the EFI driver’s entry point to the file 
\Efi1.1\CoreFw\Fw\Platform\BuildTip\Inc\Drivers.h. Example 20-8 below 
shows a portion of the Drivers.h file that has been updated to include the declaration of the 
XYZ driver’s entry point at the end of the file. 

 
EFI_STATUS 
InitializeEbcDriver ( 
  IN EFI_HANDLE       ImageHandle, 
  IN EFI_SYSTEM_TABLE *SystemTable 
  ); 
 
EFI_STATUS 
DecompressDriverEntryPoint ( 
  IN EFI_HANDLE       ImageHandle, 
  IN EFI_SYSTEM_TABLE *SystemTable 
  ); 
 
. . . 
 
EFI_STATUS 
XyzDriverEntryPoint ( 
  IN EFI_HANDLE       ImageHandle, 
  IN EFI_SYSTEM_TABLE *SystemTable 
  ); 

Example 20-8.  Adding an EFI Driver’s Entry Point to Drivers.h 

 
3. Add a call to the EFI driver’s entry point to the build tip by updating the file 

\Efi1.1\CoreFw\Fw\Platform\BuildTip\XXX\Init.c, where XXX is either 
Bios32, IA-32Emb, Sal64, or Nt32. The call to the EFI driver’s entry point should be 
added to the function called MainEntry(). The safest place to add this call is just before the 
loop that calls the EFI boot manager. However, if the driver that is being added is required to 
establish a console or it provides a set of services that are consumed by EFI drivers that are 
executed later, the call to the driver’s initialization function will have to be moved closer to the 
beginning of MainEntry(). Example 20-9 below shows the XYZ driver being called just 
before the loop calls the EFI boot manager. 

 
    // 
    // Install all built in EFI 1.1 Drivers that require  
    // EFI Variable Services 
    // 
    LOAD_INTERNAL_BS_DRIVER (L"Terminal",    InitializeTerminal); 
    LOAD_INTERNAL_BS_DRIVER (L"ConPlatform", ConPlatformDriverEntry); 
    LOAD_INTERNAL_BS_DRIVER (L"ConSplitter", ConSplitterDriverEntry); 
    LOAD_INTERNAL_BS_DRIVER (L"Snp3264",     InitializeSnpNiiDriver); 
    LOAD_INTERNAL_BS_DRIVER (L"PxeBc",       InitializeBCDriver); 
    LOAD_INTERNAL_BS_DRIVER (L"BIS",         EFIBIS_BaseCodeModuleInit); 
    LOAD_INTERNAL_BS_DRIVER (L"IsaFloppy",   FdcControllerDriverEntryPoint); 
    LOAD_INTERNAL_BS_DRIVER (L"Ps2Mouse",    PS2MouseDriverEntryPoint); 
    LOAD_INTERNAL_BS_DRIVER (L"UsbMouse",    USBMouseDriverBindingEntryPoint); 
    LOAD_INTERNAL_BS_DRIVER (L"SerialMouse", SerialMouseDriverEntryPoint); 
 
    LOAD_INTERNAL_BS_DRIVER (L"XyzDriver",   XyzDriverEntryPoint);  // Added 
     
    // 
    // Create an event to be signalled when ExitBootServices occurs 
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    // 
    Status = BS->CreateEvent( 
                    EVT_SIGNAL_EXIT_BOOT_SERVICES,  
                    TPL_NOTIFY, 
                    PlExitBootServices, 
                    NULL, 
                    &Event 
                    ); 
    ASSERT (!EFI_ERROR(Status)); 
 
#ifdef EFI_BOOTSHELL     
    PlInitializeInternalLoad(); 
#endif 
 
    //  
    // Loop through boot manager and boot maintenance until a boot 
    // option is selected 
    // 
    while (TRUE) { 
        // 
        // The platform code is ready to boot the machine. Pass control 
        // to the boot manager. 
        //  
        LOAD_INTERNAL_DRIVER( 
            FW, 
            IMAGE_SUBSYSTEM_EFI_APPLICATION, 
            L"bootmgr", 
            InitializeBootManager 
            ); 
 
        // 
        // If we return from above, it means that no boot choices were found 
        // or boot maintenance was chosen. Hence invoke boot maintenance menu. 
        //  
        LOAD_INTERNAL_DRIVER( 
            FW, 
            IMAGE_SUBSYSTEM_EFI_APPLICATION, 
            L"bmaint", 
            InitializeBootMaintenance 
            ); 
    } 
}  

Example 20-9.  Calling an EFI Driver’s Entry Point 
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4. There is one important factor that must be considered when integrating an EFI driver into the 
Bios32, IA-32Emb, or Sal64 build tips. This consideration is to make sure there are no 
global function or global variable symbol collisions between the EFI driver that is being added 
and the EFI core or EFI drivers that are already present in the build tip. When the final link is 
performed, no warnings or errors will be generated because most linkers support having the 
same symbol in multiple libraries. This linker behavior is expected and allows newer libraries 
to override older libraries. However, with EFI drivers, the results can be disastrous because two 
different EFI drivers may use the same global variable or the same global function. To detect 
this issue, a line can be added to the Makefile for the build tip that is being integrated. This 
line will link all the EFI_LIBS together to create a merged library. This link will fail if there 
multiple global functions or global variables are defined. The line to add is shown in 
Example 20-10 below. It links all the EFI_LIBS together into the file AllLibs.Lib before 
the final link is performed. If a symbol that is defined multiple times is listed for the EFI driver 
that is being integrated, then some of the global variables or global functions must either be 
declared static or renamed. 

 
$(OUTPUTS): $(EFI_LIBS) 
  $(LIB) $(EFI_LIBS) /out:AllLibs.Lib 
  $(LINK) $(L_FLAGS) $(NT_LIBS) $(EFI_LIBS) /entry:MainEntry /out:$@ /pdb:$*.pdb 

Example 20-10.  Linking All EFI_LIBS together in Makefile 

20.4 Build Tools 

This section describes the build tools that are contained in the EFI Sample Implementation. Some of 
these tools are automatically used in the build process, and some are stand-alone tools that can be 
used to post-process the EFI images that are generated by the build process. Table 20-8 describes 
the tools that are required in the build process, and Table 20-9 describes the stand-alone tools. 

Table 20-8. EFI Build Tools Required by the Build Process 

Tool Description 

FwImage A utility that adjusts the subsystem field of a PE/COFF header to mark a file as an EFI 
application, EFI Boot Service driver, or EFI runtime driver. The build environment uses this 
tool internally. 

GenHelp A utility that converts a Unicode text file into a .c file containing an array of CHAR16 

values. This tool is used to convert the EFI Shell help information file in 
\Efi1.1\Shell\HelpData\HelpData.Src into the HelpData.c file 

during the build process. 

GenMake A utility that converts a Make.Inf file into a Makefile for each component in a build 

tip. The build environment uses this tool internally. 

EfiLdrImage A utility that is used to build a bootable floppy image for the Bios32 and IA-32Emb 

build tips. The build environment uses this tool internally. 

SplitFile A utility that is used to build a bootable floppy image for the Bios32 and IA-32Emb 

build tips. The build environment uses this tool internally. 
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Table 20-9. Stand-alone EFI Build Tools 

Tool Description 

Col A utility that converts TAB characters to four spaces in .c and .h source files. 

DskImage A utility that transfers a disk image file to a floppy disk. This tool is used only in the 
Bios32 and IA-32Emb build environments. 

EfiCompress A utility that compresses a file using the EFI 1.10 compression algorithm. A file compressed 
using this utility can be decompressed using the services of the EFI Decompress Protocol or 
the EFI Shell command EfiDecompress. This tool is used in the Bios32 and 
IA-32Emb build environments, but it can also be used to measure the effectiveness of 

the EFI 1.10 compression algorithm on EFI driver images. 

EfiRom A utility that creates a binary file that is a PCI option ROM image that conforms to the 
PCI 2.2 Specification. It takes as input raw binary images, EFI images, or any combination 
of the two. By default all EFI images are compressed, and the images are placed in the PCI 
option ROM in the order in which they are passed to this tool. The EFI Shell command 
LoadPciRom can be used to load compressed and uncompressed EFI drivers from the 

output files that this tool generates. The binary file that this tool generates is also the same 
image that can be directly programmed into a PCI option ROM. 

Futil A utility that reprograms the FLASH on an Intel® network interface controller (NIC). 

20.4.1 FwImage Build Tool 
EFI drivers are standard PE/COFF images with an EFI-specific subsystem type. See section 2.1.1 
of the EFI 1.10 Specification for details on EFI image subsystem types. The build utility 
Fwimage.exe is provided in the EFI 1.10 Sample Implementation to change the subsystem type 
of a PE/COFF image to one of the supported EFI-specific subsystem types. This utility will be 
required until commercial tool chains build in support for the EFI-specific subsystem types. At this 
time, the EBC linker is the only linker that contains support for these subsystem types. The 
following three examples show how the FwImage build tool can be used to convert foo.exe to 
foo.efi with the subsystem types for an EFI application, EFI Boot Service driver, and EFI 
runtime driver. 
 
fwimage app   foo.exe foo.efi 
fwimage bsdrv foo.exe foo.efi 
fwimage rtdrv foo.exe foo.efi 
 

The following #define statements are the subsystem type values for EFI applications, EFI Boot 
Service drivers, and EFI runtime drivers from the EFI 1.10 Sample Implementation. 
 
#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION             10 
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER     11 
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER          12 



 Draft for Review Building EFI Drivers 

Version 0.9 July 2004 363 

20.4.2 EfiRom Build Tool 
The EfiRom build tool helps in the development of EFI drivers for PCI adapters. Once an EFI 
driver for a PCI adapter has been added to a build tip, it needs to be packaged into a PCI option 
ROM. EFI drivers stored in PCI option ROMs are automatically loaded and executed by the PCI 
bus driver. The PCI driver model that is documented in chapter 12 of the EFI 1.10 Specification 
provides the ability to mix legacy BIOS images and EFI driver images for IA-32, Itanium 
architecture, and EBC. The EfiRom build tool allows any combination of these image types to be 
combined into a single PCI option ROM image. The final output of the EfiRom tool can be used 
with a PROM programmer or a flash update utility to reprogram the option ROM device on a PCI 
adapter. There are many options to the EfiRom tool, which are listed below in Table 20-10 for 
reference. Below the references are several examples showing how the EfiRom tool can be used to 
build many different types of PCI option ROM images. 

Table 20-10. EFIROM Tool Switches 

Switches Description 

-p Provides verbose output from this tool. 

-l Do not automatically set the LAST bit in the PCIR data structure of the last image in 
the output file. 

-v VendorId A required switch that specifies the 16-bit vendor ID in the PCIR data structure for all 
images specified with the -e and -ec switches. 

-d DeviceId A required switch that specifies the 16-bit device ID in the PCIR data structure for all 
images specified with the -e and -ec switches. 

-cc ClassCode An optional switch that specifies the 24-bit class code in the PCIR data structure for 
all images specified with the -e and -ec switches. 

-rev Revision An optional switch that specifies the 16-bit revision in the PCIR data structure for all 
images specified with the -e and -ec switches. 

-o OutFileName An optional switch. 

-e Filenames Specifies the list of EFI driver images that are to be added to the PCI option ROM 
image. 

-ec Filenames Specifies the list of EFI driver images that are to be compressed and added to the 
PCI option ROM image. 

-b Filenames Specifies the list of binary images that are to be added to the PCI option ROM image. 
If the binary file is not the last image, then the LAST bit in the PCIR data structure will 
be cleared. If it is the last image, then the LAST bit in the PCIR data structure will be 
set. If the -l switch is specified, then the LAST bit will not be modified. 

-dump FileName Dumps the contents of a PCI option ROM image that follows the PCI 2.2 
Specification for PCI option ROM construction. 
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Example 20-11 shows the following examples using the EfiRom tool:   

• Example 1:  Builds a PCI option ROM that contains a single uncompressed EFI driver. 
The vendor ID is 0xABCD, and the device ID is 0x1234.  

• Example 2:  Same as example 1, but the EFI driver is compressed, which reduces the size of 
the PCI option ROM.  

• Example 3:  Same as example 2, but an output file is specified. Examples 1 and 2 will generate 
the output file EfiDriver.Rom. Example 2 generates the output file 
PciOptionRom.Rom.  

• Example 4:  Puts two compressed EFI drivers in a PCI option ROM.  
• Example 5:  Puts a binary file and a compressed EFI driver in a PCI option ROM. 

This example is how a legacy option ROM image can be combined with an EFI driver 
to produce an adapter that works on PC-AT class systems and EFI systems.  

• Example 6:  Shows how the class code and code revision fields can also be specified. 
By default, these fields are cleared by the EfiRom tool.  

• Example 7:  Shows how the PCI option ROM image generated in example 3 can be dumped. 
 

(1) Efirom -v 0xabcd -d 0x1234 -e EfiDriver.efi 
 
(2) Efirom -v 0xabcd -d 0x1234 -ec EfiDriver.efi 
 
(3) Efirom -v 0xabcd -d 0x1234 -ec EfiDriver.efi -o PciOptionRom.Rom 
 
(4) Efirom -v 0xabcd -d 0x1234 -ec EfiDriverA.efi EfiDriverB.efi 
 
(5) Efirom -v 0xabcd -d 0x1234 -b Bios.bin -ec EfiDriver 
 
(6) Efirom -v 0xabcd -d 0x1234 -cc 0x030000 -rev 0x0001 -b 
Bios.bin -ec EfiDriver 
 
(7) Efirom -dump PciOptionRom.Rom 

Example 20-11.  EFIROM Tool Examples 
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21 
Testing and Debugging EFI Drivers 

Always provide a driver in both native-instruction-set and EBC binary forms. Providing both of 
these forms allows the OEM firmware to simulate testing the driver in a fast best-case scenario and 
a slower scenario. If the driver is tested to work as both an EBC and native-instruction-set binary, it 
is expected that there will be fewer timing sensitivities to the driver and it will be more robust. 

There are several EFI Shell commands that can be used to help debug EFI drivers. These EFI Shell 
commands are fully documented in the EFI 1.1 Shell Commands Specification, so the full 
capabilities of the EFI Shell commands will not be discussed here. The EFI Shell that is included in 
the EFI Sample Implementation is a reference implementation of an EFI Shell that may be 
customized for various platforms. As a result, the EFI Shell commands described here may not 
behave identically on all platforms. There is also a built-in EFI Shell command call help that will 
provide a detailed description of an EFI Shell command. The EFI Shell commands that are listed in 
Table 21-1 can be used to test and debug EFI drivers. The protocols and services exercised by each 
of these commands are also listed in Table 21-1. 

Table 21-1. EFI Shell Commands 

Command Protocol Tested Service Tested 

Load -nc  EFI driver entry point. 

Load  

Driver Binding 

Driver Binding 

EFI driver entry point. 

Supported() 

Start() 

Unload Loaded Image Unload() 

Connect Driver Binding Supported() 

Start() 

Disconnect Driver Binding Stop() 

Reconnect Driver Binding 

Driver Binding 

Driver Binding 

Supported() 

Start() 

Stop() 

continued 



EFI 1.10 Driver Writer’s Guide Draft for Review  

366 July 2004 Version 0.9 

 Table 21-1. EFI Shell Commands (continued) 

Command Protocol Tested Service Tested 

Drivers Component Name GetDriverName() 

Devices Component Name 

Component Name 

GetDriverName() 

GetControllerName() 

DevTree Component Name GetControllerName() 

Dh -d Component Name 

Component Name 

GetDriverName() 

GetControllerName() 

OpenInfo   

DrvCfg -s Driver Configuration SetOptions() 

DrvCfg -f Driver Configuration ForceDefaults() 

DrvCfg -v Driver Configuration OptionsValid() 

DrvDiag Driver Diagnostics RunDiagnostics() 

Err   
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21.1 Loading EFI Drivers 

Table 21-2 lists the two EFI Shell commands that are available to load and start EFI drivers.  

Table 21-2. EFI Shell Commands for Loading EFI Drivers 

Command Description 

Load Loads an EFI driver from a file. EFI driver files typically have an extension of .efi. 
The Load command has one important option, the -nc (“No Connect”) option, for 
EFI driver developers. When the Load command is used without the -nc option, 

then the loaded driver will automatically be connected to any devices in the system 
that it is able to manage. This means that the EFI driver’s entry point is executed and 
then the EFI Boot Service ConnectController() is called. If the EFI driver 

produces the Driver Binding Protocol in the driver’s entry point, then the 
ConnectController() call will exercise the Supported() and 
Start() services of Driver Binding Protocol that was produced. 

If the -nc option is used with the Load command, then this automatic connect 

operation will not be performed. Instead, only the EFI driver’s entry point is executed. 
When the -nc option is used, the EFI Shell command Connect can be used to 

connect the EFI driver to any devices in the system that it is able to manage. The 
Load command can also take wild cards, so multiple EFI drivers can be loaded at 

the same time.  

The code below shows the following examples of the Load command:   

• Example 1:  Loads and does not connect the EFI driver image 
EfiDriver.efi. This example exercises only the EFI driver’s entry point.  

• Example 2:  Loads and connects the EFI driver image called 
EfiDriver.efi. This example exercises the EFI driver’s entry point and the 
Supported() and Start() functions of the Driver Binding Protocol.  

• Example 3:  Loads and connects all the EFI drivers with an .efi extension from 
fs0:, exercising the EFI driver entry points and their Supported() and 
Start() functions of the Driver Binding Protocol. 

fs0:> Load -nc EfiDriver.efi 
fs0:> Load EfiDriver.efi 
fs0:> Load *.efi 

LoadPciRom Simulates the load of a PCI option ROM by the PCI bus driver. This command parses 
a ROM image that was produced with the EfiRom build utility. Details on the 
EfiRom build utility can be found in section 20.4.2. The LoadPciRom command 

will find all the EFI drivers in the ROM image and will attempt to load and start all the 
EFI drivers. This command helps test the ROM image before it is burned into a PCI 
adapter’s ROM. No automatic connects are performed by this command, so only the 
EFI driver’s entry point will be exercised by this command. The EFI Shell command 
Connect will have to be used for the loaded EFI drivers to start managing devices. 

The example below loads and calls the entry point of all the EFI drivers in the ROM 
file called MyAdapter.ROM. 

fs0:> LoadPciRom MyAdapter.ROM 
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21.2 Unloading EFI Drivers 

Table 21-3 lists the EFI Shell commands that can be used to unload an EFI driver if it is unloadable. 

Table 21-3. EFI Shell Commands for Unloading EFI Drivers 

Command Description 

Unload Unloads an EFI driver if it is unloadable. This command takes a single argument that 
is the image handle number of the EFI driver to unload. The Dh -p Image 
command and the Drivers command can be used to search for the image handle 

of the driver to unload. Once the image handle number is known, an unload operation 
can be attempted. The Unload command may fail for one of the following two 

reasons:   

• The EFI driver may not be unloadable, because EFI drivers are 
not required to be unloadable.  

• The EFI driver might be unloadable, but it may not be able to be 
unloaded right now.  

Some EFI drivers may need to be disconnected before they are unloaded. They can 
be disconnected with the Disconnect command. The following example unloads 

the EFI driver on handle 27. If the EFI driver on handle 27 is unloadable, it will have 
registered an Unload() function in its Loaded Image Protocol. This command will 
exercise the EFI driver’s Unload() function. 

Shell> Unload 27 

21.3 Connecting EFI Drivers 

Table 21-4 lists the three EFI Shell commands that can be used to test the connecting of EFI drivers 
to devices. There are many options for using these commands. A few are shown in Table 21-4.  

Table 21-4. EFI Shell Commands for Connecting EFI Drivers 

Command Description 

Connect Can be used to connect all EFI drivers to all devices in the system or connect EFI 
drivers to a single device. The code below shows the following examples of the 
Connect command:   

• Example 1:  Connects all drivers to all devices.  

• Example 2:  Connects all drivers to the device that is abstracted by handle 23.  

• Example 3:  Connects the EFI driver on handle 27 to the device that is abstracted 
by handle 23. 

fs0:> Connect -r 
fs0:> Connect 23 
fs0:> Connect 23 27 

continued 
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 Table 21-4. EFI Shell Commands for Connecting EFI Drivers (continued) 

Command Description 

Disconnect Stops EFI drivers from managing a device. The code below shows the following 
examples of the Disconnect command:   

• Example 1:  Disconnects all drivers from all devices. However, the use of this 
command is not recommended, because it will also disconnect all the console 
devices.  

• Example 2:  Disconnects all the EFI drivers from the device represented by 
handle 23.  

• Example 3:  Disconnects the EFI driver on handle 27 from the device represented 
by handle 23.  

• Example 1:  Destroys the child represented by handle 32. The EFI driver on 
handle 27 produced the child when it started managing the device on handle 23. 

fs0:> Disconnect -r 
fs0:> Disconnect 23 
fs0:> Disconnect 23 27 
fs0:> Disconnect 23 27 32 

Reconnect Is the equivalent of executing the Disconnect and Connect commands back 
to back. The Reconnect command is the best command for testing the Driver 
Binding Protocol of EFI drivers. This command tests the Supported(), 
Start(), and Stop() services of the Driver Binding Protocol. The 
Reconnect -r command tests the Driver Binding Protocol for every EFI driver 

that follows the EFI Driver Model. Use this command before an EFI driver is loaded to 
verify that the current set of drivers pass the Reconnect -r test, and then load 
the new EFI driver and rerun the Reconnect -r test. An EFI driver is not 

complete until it passes this interoperability test with the EFI core and the full set of 
EFI drivers. The code below shows the following examples of the Reconnect 

command:   

• Example 1:  Reconnects all the EFI drivers to the device handle 23.  

• Example 2:  Reconnects the EFI driver on handle 27 to the device on handle 23.  

• Example 3:  Reconnects all the EFI drivers in the system. 

fs0:> Reconnect 23 
fs0:> Reconnect 23 27 
fs0:> Reconnect -r 
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21.4 Driver and Device Information 

Table 21-5 lists the EFI Shell commands that can be used to dump information about the EFI 
drivers that follow the EFI Driver Model. Each of these commands shows information from a 
slightly different perspective.  

Table 21-5. EFI Shell Commands for Driver and Device Information 

Command Description 

Drivers Lists all the EFI drivers that follow the EFI Driver Model. It uses the 
GetDriverName() service of the Component Name protocol to retrieve the 

human-readable name of each EFI driver if it is available. It also shows the file path 
from which the EFI driver was loaded. As EFI drivers are loaded with the Load 
command, they will appear in the list of drivers produced by the Drivers 
command. The Drivers command can also show the name of the EFI driver in 

different languages. The code below shows the following examples of the 
Drivers command:   

• Example 1:  Shows the Drivers command being used to list the EFI drivers in 
the default language.  

• Example 2:  Shows the driver names in Spanish. 

fs0:> Drivers 
fs0:> Drivers -lspa 

Devices Lists all the devices that are being managed or produced by EFI drivers that follow 
the EFI Driver Model. This command uses the GetControllerName() 

service of the Component Name protocol to retrieve the human-readable name of 
each device that is being managed or produced by EFI drivers. If a human-readable 
name is not available, then the EFI device path is used. The code below shows the 
following examples of the Devices command:   

• Example 1:  Shows the Devices command being used to list the EFI drivers in 
the default language.  

• Example 2:  Shows the device names in Spanish. 

fs0:> Drivers 
fs0:> Drivers -lspa 

continued 
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 Table 21-5. EFI Shell Commands for Driver and Device Information (continued) 

Command Description 

DevTree Similar to the Devices command. Lists all the devices being managed by EFI 

drivers that follow the EFI Driver Model. This command uses the 
GetControllerName() service of the Component Name Protocol to retrieve 

the human-readable name of each device that is being managed or produced by EFI 
drivers. If the human-readable name is not available, then the EFI device path is 
used. This command also visually shows the parent/child relationships between all of 
the devices by displaying them in a tree structure. The lower a device is in the tree of 
devices, the more the device name is indented. The code below shows the following 
examples of the DevTree command:   

• Example 1:  Displays the device tree with the device names in the default 
language.  

• Example 2:  Displays the device tree with the device names in Spanish. 

• Example 3:  Displays the device tree with the device names shown as EFI 
device paths. 

fs0:> DevTree 
fs0:> DevTree -lspa 
fs0:> DevTree -d 

Dh -d Provides a more detailed view of a single driver or a single device than the 
Drivers, Devices, and DevTree commands. If a driver binding handle is 
used with the Dh -d command, then a detailed description of that EFI driver is 

provided along with the devices that the driver is managing and the child devices that 
the driver has produced. If a device handle is used with the Dh -d command, then 

a detailed description of that device is provided along with the drivers that are 
managing that device, that device’s parent controllers, and the device’s child 
controllers. If the Dh -d command is used without any parameters, then detailed 

information on all of the drivers and devices is displayed. The code below shows the 
following examples of the Dh -d command: 

• Example 1:  Displays the details on the EFI driver on handle 27.  

• Example 2:  Displays the details for the device on handle 23. 

• Example 3:  Shows details on all the drivers and devices in the system. 

fs0:> Dh -d 27 
fs0:> Dh -d 23 
fs0:> Dh -d 

OpenInfo Provides detailed information on a device handle that is being managed by one or 
more EFI drivers that follow the EFI Driver Model. The OpenInfo command 

displays each protocol interface installed on the device handle, and the list of agents 
that have opened that protocol interface with the OpenProtocol() Boot 
Service. This command can be used in conjunction with the Connect, 
Disconnect, and Reconnect commands to verify that an EFI driver is 

opening and closing protocol interfaces correctly. The following example shows the 
OpenInfo command being used to display the list of protocol interfaces on device 

handle 23 along with the list of agents that have opened those protocol interfaces. 

fs0:> OpenInfo 23 
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21.5 Testing the Driver Configuration Protocol 

Table 21-6 lists the EFI Shell commands that can be used to test the Driver Configuration Protocol. 

Table 21-6. EFI Shell Commands for Testing the Driver Configuration Protocol 

Command Description 

DrvCfg Provides the services that are required to test the Driver Configuration Protocol 
implementation of an EFI driver. This command can show all the devices that are 
being managed by EFI drivers that support the Driver Configuration Protocol. The 
Devices and Drivers commands will also show the drivers that support the 

Driver Configuration Protocol and the devices that those drivers are managing or 
have produced. Once a device has been chosen, the DrvCfg command can be 
used to invoke the SetOptions(), ForceDefaults(), or 
OptionsValid() services of the Driver Configuration Protocol. The code below 
shows the following examples of the DrvCfg command:  

• Example 1:  Displays all the devices that are being managed by EFI drivers that 
support the Driver Configuration Protocol.  

• Example 2:  Forces defaults on all the devices in the system.  

• Example 3:  Validates the options on all the devices in the system.  

• Example 4:  Invokes the SetOptions() service of the Driver Configuration 
Protocol for the driver on handle 27 and the device on handle 23. 

fs0:> DrvCfg 
fs0:> DrvCfg -f 
fs0:> DrvCfg -v 
fs0:> DrvCfg -s 23 27 



 Draft for Review Testing and Debugging EFI Drivers 

Version 0.9 July 2004 373 

21.6 Testing the Driver Diagnostics Protocol 

Table 21-7 lists the EFI Shell commands that can be used to test the Driver Diagnostics Protocol. 

Table 21-7. EFI Shell Commands for Testing the Driver Diagnostics Protocol 

Command Description 

DrvDiag Provides the ability to test all the services of the Driver Diagnostics Protocol that is 
produced by an EFI driver. This command is able to show the devices that are being 
managed by EFI drivers that support the Driver Diagnostics Protocol. The 
Devices and Drivers commands will also show the drivers that support the 

Driver Diagnostics Protocol and the devices that those drivers are managing or have 
produced. Once a device has been chosen, the DrvDiag command can be used 
to invoke the RunDiagnostics() service of the Driver Diagnostics Protocol. 
The code below shows the following examples of the DrvDiag command:   

• Example 1:  Displays all the devices that are being managed by EFI drivers that 
support the Driver Diagnostics Protocol.  

• Example 2:  Invokes the RunDiagnostics() service of the Driver 
Diagnostics Protocol in standard mode for the driver on handle 27 and the device 
on handle 23.  

• Example 3:  Invokes the RunDiagnostics() service of the Driver 
Diagnostics Protocol in manufacturing mode for the driver on handle 27 and the 
device on handle 23. 

fs0:> DrvDiag 
fs0:> DrvDiag -s 23 27 
fs0:> DrvDiag -m 23 27 
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21.7 ASSERT() and DEBUG() Macros 

Every module will have a debug (check) build and a clean build. The debug build will include code 
for debug that will not be included in normal clean production builds. A debug build is enabled 
when the identifier EFI_DEBUG exists. A clean build is defined as when the EFI_DEBUG 
identifier does not exist. 

The following debug macros can be used to insert debug code into a checked build. This debug  
code can greatly reduce the amount of time it takes to root cause a bug. These macros are enabled 
only in a debug build, so they do not take up any executable space in the production build. 
Table 21-8 describes the debug macros that are available. 

Table 21-8. Available Debug Macros 

Debug Macro Description 

ASSERT (Expression) For check builds, if Expression evaluates to FALSE, a 

diagnostic message is printed and the program is aborted. 
Aborting a program is usually done via the 
EFI_BREAKPOINT () macro. For clean builds, 
Expression does not exist in the program and no action is 

taken. Code that is required for normal program execution 
should never be placed inside an ASSERT macro, as the 

code will not exist in a production build. 

ASSERT_EFI_ERROR (Status) For check builds, an assert is generated if Status is an 

error. This macro is equivalent to 
ASSERT (!EFI_ERROR (Status)) but is easier 

to read. 

DEBUG ((ErrorLevel, 
String, …)) 

For check builds, String and its associated arguments will 
be printed if the ErrorLevel of the macro is active. See 
Table 21-9 below for a definition of the ErrorLevel 

values. 

DEBUG_CODE (Code) For check builds, Code is included in the build. 
DEBUG_CODE ( is on its own line and indented like normal 

code. All the debug code follows on subsequent lines and is 
indented an extra level. The ) is on the line following all the 
code and indented at the same level as DEBUG_CODE (. 

EFI_BREAKPOINT () On a check build, inserts a break point into the code. 

DEBUG_SET_MEM (Address, 
Length) 

For a check build, initializes the memory starting at 
Address for Length bytes with the value 
BAD_POINTER. This initialization is done to enable debug 

of code that uses memory buffers that are not initialized. 

continued 
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Table 21-8. Available Debug Macros (continued) 

Debug Macro Description 

CR (Record, TYPE, Field, 
Signature) 

The containing record macro returns a pointer to TYPE when 
given the structure’s Field name and a pointer to it 
(Record). The CR macro returns the TYPE pointer for 

check and production builds. For a check build, an 
ASSERT () is generated if the Signature field of 
TYPE is not equal to the Signature in the CR () 

macro. 
 

The ErrorLevel parameter referenced in the DEBUG() macro allows an EFI driver to assign a 
different error level to each debug message. Critical errors should always be sent to the standard 
error device. However, informational messages that are used only to debug a driver should be sent 
to the standard error device only if the user wants to see those specific types of messages. The EFI 
Shell supports the Err command that allows the user to set the error level. The EFI Boot 
Maintenance Manager allows the user to enable and select a standard error device. It is 
recommended that a serial port be used as a standard error device during debug so the messages can 
be logged to a file with a terminal emulator. Table 21-9 contains the list of error levels that are 
supported in the EFI Sample Implementation. 

Table 21-9. Error Levels 

Mnemonic Value Description 

EFI_D_INIT 0x00000001 Initialization messages 

EFI_D_WARN 0x00000002 Warning messages 

EFI_D_LOAD 0x00000004 Load events 

EFI_D_FS 0x00000008 EFI file system messages 

EFI_D_POOL 0x00000010 EFI pool allocation and free messages 

EFI_D_PAGE 0x00000020 EFI page allocation and free messages 

EFI_D_INFO 0x00000040 Informational messages 

EFI_D_VARIABLE 0x00000100 EFI variable service messages 

EFI_D_BM 0x00000400 EFI boot manager messages 

EFI_D_BLKIO 0x00001000 EFI Block I/O Protocol messages 

EFI_D_NET 0x00004000 EFI Simple Network Protocol, PXE base code, BIS messages 

EFI_D_UNDI 0x00010000 UNDI driver messages 

EFI_D_LOADFILE 0x00020000 Load File Protocol messages 

EFI_D_EVENT 0x00080000 EFI Event Services messages 

EFI_D_ERROR 0x80000000 Critical error messages 
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21.8 POST Codes 

If an EFI driver is being developed that cannot make use of the DEBUG() and ASSERT() macros, 
then a different mechanism must be used to help in the debugging process. Under these conditions, 
it is usually sufficient to send a small amount of output to a device to indicate what portions of an 
EFI driver have executed and where error conditions have been detected. A few possibilities are 
presented below, but many others are possible depending on the devices that may be available on a 
specific platform. It is important to note that these mechanisms are useful during driver 
development and debug, but they should never be present in production versions of EFI drivers 
because these types of devices are not present on all platforms. 

There are a couple of possibilities. The first is to use a POST card. A POST card is an ISA or PCI 
adapter that displays the hex value of an 8-bit I/O write cycle to address 0x80. If an EFI driver can 
depend on the PCI Root Bridge I/O Protocol being present, then the driver can use the services of 
the PCI Root Bridge I/O Protocol to send an 8-bit I/O write cycle to address 0x80. A driver can also 
use the services of the PCI I/O Protocol to write to address 0x80, as long as the pass-through BAR 
value is used. Example 21-1 below shows how the PCI Root Bridge I/O and PCI I/O Protocols can 
be used to send a value to a POST card. 
EFI_STATUS                       Status; 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *PciRootBridgeIo; 
EFI_PCI_IO_PROTOCOL              *PciIo; 
UINT8                            Value; 
 
Value = 0xAA; 
Status = PciRootBridgeIo->Io.Write ( 
                               PciRootBridgeIo, 
                               EfiPciWidthUint8, 
                               0x80, 
                               1, 
                               &Value 
                               ); 
 
Value = 0xAA; 
Status = PciIo->Io.Write ( 
                     PciIo, 
                     EfiPciIoWidthUint8, 
                     EFI_PCI_IO_PASS_THROUGH_BAR, 
                     0x80, 
                     1, 
                     &Value 
                     ); 

Example 21-1.  POST Code Examples 
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If a POST card is not available, then the next possibility is a text-mode VGA frame buffer. If a 
system initialized the text-mode VGA display by default before the EFI driver executed, then the 
EFI driver can make use of the PCI Root Bridge I/O or PCI I/O Protocols to directly write text 
characters to the text-mode VGA display. Example 21-2 shows how the PCI Root Bridge I/O and 
PCI I/O Protocols can be used to send the text message “ABCD” to the text-mode VGA frame 
buffer. Some systems do not have a VGA controller, so this solution will not work on all systems. 
EFI_STATUS                       Status; 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *PciRootBridgeIo; 
EFI_PCI_IO_PROTOCOL              *PciIo; 
UINT8                            *Value; 
 
Value = {’A’,0x0f,’B’,0x0f,’C’,0x0f,’D’,0x0f}; 
 
Status = PciRootBridgeIo->Mem.Write ( 
                                PciRootBridgeIo, 
                                EfiPciWidthUint8, 
                                0xB8000, 
                                8, 
                                Value 
                                ); 
 
Status = PciIo->Mem.Write ( 
                      PciIo, 
                      EfiPciIoWidthUint8, 
                      EFI_PCI_IO_PASS_THROUGH_BAR, 
                      0xB8000, 
                      8, 
                      Value 
                      ); 

Example 21-2.  VGA Display Examples 

Another option is to use some type of byte-stream-based device. This device could include a UART 
or an SMBus, for example. Like the POST card, the idea is to use the services of the PCI Root 
Bridge I/O or PCI I/O Protocols to initialize and send characters to the byte-stream device. 
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Appendix A 
EFI Data Types 

Table A-1 contains the set of base types that are used in all EFI applications and EFI drivers. These 
are the base types that should be used to build more complex unions and structures. The file 
EFIBIND.H in the EFI 1.10 Sample Implementation contains the code that is required to map 
compiler-specific data types to the EFI data types. If a new compiler is used, only this one file 
should be updated; all other EFI-related sources should compile unmodified. Table A-2 contains the 
modifiers that can be used in conjunction with the EFI data types. 

Table A-1. Common EFI Data Types 

Mnemonic Description 

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other 

values are undefined. 

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium architecture 
operations) 

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium architecture 
operations) 

INT8 1-byte signed value. 

UINT8 1-byte unsigned value. 

INT16 2-byte signed value. 

UINT16 2-byte unsigned value. 

INT32 4-byte signed value. 

UINT32 4-byte unsigned value. 

INT64 8-byte signed value. 

UINT64 8-byte unsigned value. 

CHAR8 1-byte character. 

CHAR16 2-byte character. Unless otherwise specified, all strings are stored in the  
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards. 

VOID Undeclared type. 

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified, 
aligned on a 64-bit boundary. 

EFI_STATUS Status code. Type INTN. 

EFI_HANDLE A collection of related interfaces. Type VOID *. 

EFI_EVENT Handle to an event structure. Type VOID *. 

EFI_LBA Logical block address. Type UINT64. 

EFI_TPL Task priority level. Type UINTN.  

continued 
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Table A-1. Common EFI Data Types (continued) 

Mnemonic Description 

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Controller address. 

EFI_Ipv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.  

EFI_Ipv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address. 

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol 
address.  

<Enumerated Type> Element of an enumeration. Type INTN.  

Table A-2. Modifiers for Common EFI Data Types 

Mnemonic Description 

IN Datum is passed to the function. 

OUT Datum is returned from the function. 

OPTIONAL Datum that is passed to the function is optional, and a NULL may be passed if the 

value is not supplied. 

STATIC The function has local scope. This modifier replaces the standard C static key 
word, so it can be overloaded for debugging. 

VOLATILE Declares a variable to be volatile and thus exempt from optimization to remove 
redundant or unneeded accesses. Any variable that represents a hardware device 
should be declared as VOLATILE. 

CONST Declares a variable to be of type const. This modifier is a hint to the compiler to 

enable optimization and stronger type checking at compile time. 
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Appendix B 
EFI Status Codes 

Table B-1 contains the set of status code values that may be returned by EFI Boot Services, EFI 
Runtime Services, and EFI protocol services. These status codes are defined in detail in 
Appendix D of the EFI 1.10 Specification. 

Table B-1. EFI_STATUS Codes 

Mnemonic IA-32 Itanium Architecture 

EFI_SUCCESS 0x00000000 0x0000000000000000 

EFI_LOAD_ERROR 0x80000001 0x8000000000000001 

EFI_INVALID_PARAMETER 0x80000002 0x8000000000000002 

EFI_UNSUPPORTED 0x80000003 0x8000000000000003 

EFI_BAD_BUFFER_SIZE 0x80000004 0x8000000000000004 

EFI_BUFFER_TOO_SMALL 0x80000005 0x8000000000000005 

EFI_NOT_READY 0x80000006 0x8000000000000006 

EFI_DEVICE_ERROR 0x80000007 0x8000000000000007 

EFI_WRITE_PROTECTED 0x80000008 0x8000000000000008 

EFI_OUT_OF_RESOURCES 0x80000009 0x8000000000000009 

EFI_VOLUME_CORRUPTED 0x8000000A 0x800000000000000A 

EFI_VOLUME_FULL 0x8000000B 0x800000000000000B 

EFI_NO_MEDIA 0x8000000C 0x800000000000000C 

EFI_MEDIA_CHANGED 0x8000000D 0x800000000000000D 

EFI_NOT_FOUND 0x8000000E 0x800000000000000E 

EFI_ACCESS_DENIED 0x8000000F 0x800000000000000F 

EFI_NO_RESPONSE 0x80000010 0x8000000000000010 

EFI_NO_MAPPING 0x80000011 0x8000000000000011 

EFI_TIMEOUT 0x80000012 0x8000000000000012 

EFI_NOT_STARTED 0x80000013 0x8000000000000013 

EFI_ALREADY_STARTED 0x80000014 0x8000000000000014 

EFI_ABORTED 0x80000015 0x8000000000000015 

EFI_ICMP_ERROR 0x80000016 0x8000000000000016 

continued 
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Table B-1. EFI_STATUS Codes (continued) 

Mnemonic IA-32 Itanium Architecture 

EFI_TFTP_ERROR 0x80000017 0x8000000000000017 

EFI_PROTOCOL_ERROR 0x80000018 0x8000000000000018 

EFI_INCOMPATIBLE_VERSION 0x80000019 0x8000000000000019 

EFI_SECURITY_VIOLATION 0x8000001A 0x800000000000001A 

EFI_CRC_ERROR 0x8000001B 0x800000000000001B 

EFI_WARN_UNKOWN_GLYPH 0x00000001 0x0000000000000001 

EFI_WARN_DELETE_FAILURE 0x00000002 0x0000000000000002 

EFI_WARN_WRITE_FAILURE 0x00000003 0x0000000000000003 

EFI_WARN_BUFFER_TOO_SMALL 0x00000004 0x0000000000000004 
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Appendix C 
Quick Reference Guide 

This appendix contains a summary of the services and GUIDs that are available to EFI drivers, 
including the following: 

• EFI Boot Services 
• EFI Runtime Services 
• EFI Driver Library Services 
• GUID variables 
• Protocol variables 
• Various protocol services 

Some of the GUIDs and protocols listed here are not part of the EFI 1.10 Specification. Instead, 
they are extensions that are included in the EFI Sample Implementation. 

The EFI Boot Services and EFI Runtime Services are listed in Table C-1, Table C-2, and Table 
C-3. These three tables list the most commonly used services, the rarely used services, and the 
services that should not be used from EFI drivers. Services labeled with type BS are EFI Boot 
Services, and services labeled with type RT are EFI Runtime Services. A detailed explanation of 
the services that are rarely used or should not be used by EFI drivers is included in chapter 2. 
Chapters 5 and 6 of the EFI 1.10 Specification contain detailed descriptions of all the EFI Boot 
Services and EFI Runtime Services.  

Table C-1. EFI Services That Are Commonly Used by EFI Drivers 

Type Service Type Service 

BS gBS->AllocatePool() BS gBS->InstallMultipleProtocolInterfaces() 

BS gBS->FreePool() BS gBS->UninstallMultipleProtocolInterfaces() 

BS gBS->AllocatePages() BS gBS->LocateHandleBuffer() 

BS gBS->FreePages() BS gBS->LocateProtocol() 

BS gBS->SetMem() BS gBS->OpenProtocol() 

BS gBS->CopyMem() BS gBS->CloseProtocol() 

  BS gBS->OpenProtocolInformation() 

BS gBS->CreateEvent()   

BS gBS->CloseEvent() BS gBS->RaiseTPL() 

BS gBS->SignalEvent() BS gBS->RestoreTPL() 

BS gBS->SetTimer()   

BS gBS->CheckEvent() BS gBS->Stall() 
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Table C-2. EFI Services That Are Rarely Used by EFI Drivers 

Type Service Type Service 

BS gBS->ReinstallProtocolInterface() BS gBS->LoadImage() 

BS gBS->LocateDevicePath() BS gBS->StartImage() 

  BS gBS->UnloadImage() 

BS gBS->ConnectController() BS gBS->Exit() 

BS gBS->DisconnectController()   

  BS gBS->InstallConfigurationTable() 

RT gRT->GetVariable()   

RT gRT->SetVariable() RT gRT->GetTime() 

    

BS gBS->GetNextMonotonicCount() BS gBS->CalculateCrc32() 

RT gRT->GetNextHighMonotonicCount()   

  RT gRT->ConvertPointer() 

 

Table C-3. EFI Services That Should Not Be Used by EFI Drivers 

Type Service Type Service 

BS gBS->GetMemoryMap() RT gRT->SetVirtualAddressMap() 

    

BS gBS->ExitBootServices() RT gRT->GetNextVariableName() 

    

BS gBS->InstallProtocolInterface() RT gRT->SetTime() 

BS gBS->UninstallProtocolInterface() RT gRT->GetWakeupTime() 

BS gBS->HandleProtocol() RT gRT->SetWakeupTime() 

BS gBS->LocateHandle()   

BS gBS->RegisterProtocolNotify() RT gRT->ResetSystem() 

BS gBS->ProtocolsPerHandle() BS gBS->SetWatchDogTimer() 

    

BS gBS->WaitForEvent()   
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Table C-4 lists the EFI Driver Library Services. These services simplify the implementation of EFI 
drivers. Most of these services are layered on top of the EFI Boot Services and EFI Runtime 
Services. A detailed description of these library services can be found in the EFI Driver Library 
Specification. 

Table C-4. EFI Driver Library Functions 

Initialization Functions Link List Functions Memory Functions 

EfiInitializeDriverLib() InitializeListHead() EfiCopyMem() 

EfiLibInstallDriverBinding() IsListEmpty() EfiSetMem() 

EfiLibInstallAllDriverProtocols() RemoveEntryList() EfiZeroMem() 

 InsertTailList() EfiCompareMem() 

Device Path Functions InsertHeadList() EfiLibAllocatePool() 

EfiDevicePathInstance() SwapListEntries() EfiLibAllocateZeroPool() 

EfiAppendDevicePath()   

EfiAppendDevicePathNode() Math Functions String Functions 

EfiAppendDevicePathInstance() LShiftU64() EfiStrCpy() 

EfiFileDevicePath() RShiftU64() EfiStrLen() 

EfiDevicePathSize() MultU64x32() EfiStrSize() 

EfiDuplicateDevicePath() DivU64x32() EfiStrCmp() 

  EfiStrCat() 

Miscellaneous Functions Spin Lock Functions EfiLibLookupUnicodeString() 

EfiCompareGuid() EfiInitializeLock() EfiLibAddUnicodeString() 

EfiLibCreateProtocolNotifyEvent() EfiAcquireLock() EfiLibFreeUnicodeStringTable() 

EfiLibGetSystemConfigurationTable() EfiAcquireLockOrFail()  

 EfiReleaseLock()  
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Table C-5 lists the macros that are available to EFI drivers, and Table C-6 lists the constants 
that are available to EFI drivers. These macros and constants simplify the implementation of 
EFI drivers. 

Table C-5. EFI Macros 

Miscellaneous Macros Linked List Macros Critical Error Macros 

EFI_DRIVER_ENTRY_POINT () INITIALIZE_LIST_HEAD () ASSERT () 

CR () IS_LIST_EMPTY () ASSERT_EFI_ERROR () 

MEMORY_FENCE () REMOVE_ENTRY_LIST () EFI_BREAKPOINT () 

EFI_ERROR () INSERT_TAIL_LIST () ASSERT_LOCKED () 

EFI_FIELD_OFFSET () INSERT_HEAD_LIST () EFI_DEADLOOP () 

EFI_SIGNATURE_16 () SWAP_LIST_ENTRIES ()  

EFI_SIGNATURE_32 ()  Debug Macros 

EFI_SIGNATURE_64 () Memory Macros DEBUG () 

 EFI_SIZE_TO_PAGES () DEBUG_CODE () 

Math Macros EFI_PAGES_TO_SIZE () DEBUG_SET_MEM () 

EFI_MIN () ALIGN_POINTER ()  

EFI_MAX ()   

 

Table C-6. EFI Constants 

Mnemonic Description 

TRUE One. 

FALSE Zero. 

NULL VOID pointer to zero. 

 

Table C-7 lists the GUIDs that are available to EFI drivers in the EFI Sample Implementation. The 
Directory Name heading is the name of the GUID directory that can be used with the 
EFI_GUID_DEFINITION() macro. The GUID Variable Names heading contains the names of 
the global variables that are available to the EFI driver that uses the EFI_GUID_DEFINITION() 
macro for that directory. For example, assume the following statement is added to an EFI driver. 
#include EFI_GUID_DEFINITION(PcAnsi) 
 

Then, the following variables of type EFI_GUID will be available to that EFI driver: 

gEfiPcAnsiGuid  gEfiVT100Guid  gEfiVT100PlusGuid  gEfiVTUTF8Guid 
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Table C-7. EFI GUID Variables 

Directory Name GUID Variable Names 

Bmp gEfiDefaultBmpLogoGuid 

ConsoleInDevice gEfiConsoleInDeviceGuid 

ConsoleOutDevice gEfiConsoleOutDeviceGuid 

DebugImageInfoTable gEfiDebugImageInfoTableGuid 

GlobalVariable gEfiGlobalVariableGuid 

Gpt gEfiPartTypeUnusedGuid 

 gEfiPartTypeSystemPartGuid 

 gEfiPartTypeLegacyMbrGuid 

PcAnsi gEfiPcAnsiGuid 

 gEfiVT100Guid 

 gEfiVT100PlusGuid 

 gEfiVTUTF8Guid 

PciOptionRomTable gEfiPciOptionRomTableGuid 

PrimaryConsoleInDevice gEfiPrimaryConsoleInDeviceGuid 

PrimaryConsoleOutDevice gEfiPrimaryConsoleOutDeviceGuid 

PrimaryStandardErrorDevice gEfiPrimaryStandardErrorDeviceGuid 

SalSystemTable gEfiSalSystemTableGuid 

SmBios gEfiSmbiosTableGuid 

StandardErrorDevice gEfiStandardErrorDeviceGuid 

 

Table C-8 lists the protocols that are available to EFI drivers in the EFI Sample Implementation. 
The Directory Name heading is the name of the protocol directory that can be used with the 
EFI_PROTOCOL_DEFINITION() macro. The Protocol GUID Variable Name heading 
contains the names of the global variables that are available to a driver that uses the 
EFI_PROTOCOL_DEFINITION() macro for that directory. For example, assume the following 
statement is added to an EFI driver. 
#include EFI_PROTOCOL_DEFINITION(PciIo) 
 

Then, the following variable of type EFI_GUID, along with the definition of the 
EFI_PCI_IO_PROTOCOL, would be available to that EFI driver: 

gEfiPciIoProtocolGuid  
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Table C-8. EFI Protocol Variables 

Directory Name Protocol GUID Variable Names 

BIS gEfiBisProtocolGuid 

BlockIo gEfiBlockIoProtocolGuid 

BusSpecificDriverOverride gEfiBusSpecificDriverOverrideProtocolGuid 

ComponentName gEfiComponentNameProtocolGuid 

DebugPort gEfiDebugPortProtocolGuid 

DebugSupport gEfiDebugSupportProtocolGuid 

Decompress gEfiDecompressProtocolGuid 

DeviceIo gEfiDeviceIoProtocolGuid 

DevicePath gEfiDevicePathProtocolGuid 

DiskIo gEfiDiskIoProtocolGuid 

DriverBinding gEfiDriverBindingProtocolGuid 

DriverConfiguration gEfiDriverConfigurationProtocolGuid 

DriverDiagnostics gEfiDriverDiagnosticsProtocolGuid 

Ebc GEfiEbcProtocolGuid 

 gEfiEbcDebugHelperProtocolGuid 

EfiNetworkInterfaceIdentifier gEfiNetworkInterfaceIdentifierProtocolGuid 

IsaAcpi gEfiIsaAcpiProtocolGuid 

IsaIo gEfiIsaIoProtocolGuid 

LegacyBoot gEfiLegacyBootProtocolGuid 

LoadedImage gEfiLoadedImageProtocolGuid 

LoadFile gEfiLoadFileProtocolGuid 

PciIo GEfiPciIoProtocolGuid 

PciRootBridgeIo gEfiPciRootBridgeIoProtocolGuid 

PlatformDriverOverride gEfiPlatformDriverOverrideProtocolGuid 

PxeBaseCode gEfiPxeBaseCodeProtocolGuid 

PxeBaseCodeCallBack gEfiPxeBaseCodeCallbackProtocolGuid 

ScsiPassThru gEfiScsiPassThruProtocolGuid 

SerialIo gEfiSerialIoProtocolGuid 

SimpleFileSystem gEfiSimpleFileSystemProtocolGuid 

 gEfiFileInfoGuid 

 GEfiFileInfoIdGuid 

 GEfiFileSystemVolumeLabelInfoIdGuid 

continued 
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Table C-8. EFI Protocol Variables (continued) 

Directory Name Protocol GUID Variable Names 

SimpleNetwork GEfiSimpleNetworkProtocolGuid 

SimplePointer gEfiSimplePointerProtocolGuid 

SimpleTextIn gEfiSimpleTextInProtocolGuid 

SimpleTextOut gEfiSimpleTextOutProtocolGuid 

UgaDraw gEfiUgaDrawProtocolGuid 

UgaIo gEfiUgaIoProtocolGuid 

UgaSplash gEfiUgaSplashProtocolGuid 

UnicodeCollation gEfiUnicodeCollationProtocolGuid 

UsbAtapi gEfiUsbAtapiProtocolGuid 

UsbHostController gEfiUsbHcProtocolGuid 

UsbIo gEfiUsbIoProtocolGuid 

VgaMiniPort gEfiVgaMiniPortProtocolGuid 

WinNtIo gEfiWinNtIoProtocolGuid 

 gEfiWinNtVirtualDisksGuid 

 gEfiWinNtPhysicalDisksGuid 

 gEfiWinNtFileSystemGuid 

 gEfiWinNtSerialPortGuid 

 gEfiWinNtUgaGuid 

 gEfiWinNtConsoleGuid 

WinNtThunk gefiWinNtThunkProtocolGuid 

 

Table C-9 contains the list of the protocols that are available to EFI drivers along with the list of 
services that each protocol provides. This table does not show any of the data elements that a 
protocol interface may contain. The EFI 1.10 Specification should be referenced for additional 
details on each protocol. Each protocol is named by its C data structure. These protocols are 
available to EFI drivers that use the EFI_PROTOCOL_DEFINITION() macro for a specific 
protocol. For example, if an EFI driver intends to consume or produce the EFI USB I/O Protocol, it 
would need to include the following statement in its implementation: 
#include EFI_PROTOCOL_DEFINITION(UsbIo) 
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Table C-9. EFI Protocol Service Summary 

EFI_BIS_PROTOCOL EFI_DEVICE_IO_PROTOCOL 

Initialize() Mem.Read() 

Shutdown() Mem.Write() 

Free() Io.Read() 

GetBootObjectAuthorizationCertificate() Io.Write() 

GetBootObjectAuthorizationCheckFlag() Pci.Read() 

GetBootObjectAuthorizationUpdateToken() Pci.Write() 

GetSignatureInfo() PciDevicePath() 

UpdateBootObjectAuthorization() Map() 

VerifyBootObject() Unmap() 

VerifyObjectWithCredential() AllocateBuffer() 

EFI_BLOCK_IO_PROTOCOL Flush() 

Reset() FreeBuffer() 

ReadBlocks() EFI_DEVICE_PATH_PROTOCOL 

WriteBlocks() EFI_DISK_IO_PROTOCOL 

FlushBlocks() ReadDisk() 

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL WriteDisk() 

GetDriver() EFI_DRIVER_BINDING_PROTOCOL 

EFI_COMPONENT_NAME_PROTOCOL Supported() 

GetDriverName() Start() 

GetControllerName() Stop() 

EFI_DEBUGPORT_PROTOCOL EFI_DRIVER_CONFIGURATION_PROTOCOL 

Reset() SetOptions() 

Write() OptionsValid() 

Read() ForceDefaults() 

Poll() EFI_DRIVER_DIAGNOSTICS_PROTOCOL 

EFI_DEBUG_SUPPORT_PROTOCOL RunDiagnostics() 

GetMaximumProcessorIndex() EFI_EBC_PROTOCOL 

RegisterPeriodicCallback() CreateThunk() 

RegisterExceptionCallback() UnloadImage() 

InvalidateInstructionCache() RegisterICacheFlush() 

EFI_DECOMPRESS_PROTOCOL EFI_FILE Handle 

GetInfo() Open() 

Decompress() Close() 

continued 
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Table C-9. EFI Protocol Service Summary (continued) 

EFI_FILE Handle (continued) 
EFI_NETWORK_INTERFACE_IDENTIFIER_ 
PROTOCOL 

Delete() EFI_PCI_IO_PROTOCOL 

Read() PollMem() 

Write() PollIo() 

SetPosition() Mem.Read() 

GetPosition() Mem.Write() 

GetInfo() Io.Read() 

SetInfo() Io.Write() 

Flush() Pci.Read() 

EFI_ISA_ACPI_PROTOCOL Pci.Write() 

DeviceEnumerate() CopyMem() 

SetPower() Map() 

GetCurResource() Unmap() 

GetPosResource() AllocateBuffer() 

SetResource() FreeBuffer() 

EnableDevice() Flush() 

InitDevice() GetLocation() 

InterfaceInit() Attributes() 

EFI_ISA_IO_PROTOCOL GetBarAttributes() 

Mem.Read() SetBarAttributes() 

Mem.Write() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 

Io.Read() PollMem() 

Io.Write() PollIo() 

CopyMem() Mem.Read() 

Map() Mem.Write() 

Unmap() Io.Read() 

AllocateBuffer() Io.Write() 

FreeBuffer() Pci.Read() 

Flush() Pci.Write() 

EFI_LEGACY_BOOT_PROTOCOL CopyMem() 

BootIt() Map() 

EFI_LOADED_IMAGE_PROTOCOL  Unmap() 

Unload() AllocateBuffer() 

EFI_LOAD_FILE_PROTOCOL FreeBuffer() 

LoadFile() Flush() 

continued 
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Table C-9. EFI Protocol Service Summary (continued) 

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL (continued) EFI_SCSI_PASS_THRU Protocol 

GetAttributes() Mode() 

SetAttributes() PassThru() 

Configuration() GetNextDevice() 

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL BuildDevicePath() 

GetDriver() GetTargetLun() 

GetDriverPath() ResetChannel() 

DriverLoaded() ResetTarget() 

EFI_PXE_BASE_CODE_PROTOCOL EFI_SIMPLE_FILE_SYSTEM_PROTOCOL 

Start() OpenVolume() 

Stop() EFI_SIMPLE_NETWORK_PROTOCOL 

Dhcp() Start() 

Discover() Stop() 

Mtftp() Initialize() 

UdpWrite() Reset() 

UdpRead() Shutdown() 

SetIpFilter() ReceiveFilters() 

Arp() StationAddress() 

SetParameters() Statistics() 

SetStationIp() MCastIPtoMAC() 

SetPackets() NvData() 

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL GetStatus() 

Callback() Transmit() 

PassThru() Receive() 

GetNextDevice() EFI_SIMPLE_POINTER_PROTOCOL 

BuildDevicePath() Reset() 

GetTargetLun() GetState() 

ResetChannel() EFI_SIMPLE_TEXT_IN_PROTOCOL 

ResetTarget() Reset() 

SERIAL_IO_PROTOCOL ReadKeyStroke() 

Reset() EFI_SIMPLE_TEXT_OUT_PROTOCOL 

SetAttributes() Reset() 

SetControl() OutputString() 

GetControl() TestString() 

Write() QueryMode() 

Read() SetMode() 

continued 
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Table C-9. EFI Protocol Service Summary (continued) 

EFI_SIMPLE_TEXT_OUT_PROTOCOL (continued) EFI_USB_HC_PROTOCOL (continued) 

SetAttribute() ControlTransfer() 

ClearScreen() BulkTransfer() 

SetCursorPosition() AsyncInterruptTransfer() 

EnableCursor() SyncInterruptTransfer() 

EFI_UGA_DRAW_PROTOCOL IsochronousTransfer() 

GetMode() AsyncIsochronousTransfer() 

SetMode() SetRootHubPortFeature() 

Blt() ClearRootHubPortFeature() 

EFI_UGA_IO_PROTOCOL EFI_USB_IO Protocol 

DispatchService() UsbControlTransfer() 

CreateDevice() UsbBulkTransfer() 

DeleteDevice() UsbAsyncInterruptTransfer() 

EFI_UGA_SPLASH_PROTOCOL UsbSyncInterruptTransfer() 

UNICODE_COLLATION Protocol UsbIsochronousTransfer() 

StriColl() UsbAsyncIsochronousTransfer() 

MetaiMatch() UsbGetDeviceDescriptor() 

StrLwr() UsbGetConfigDescriptor() 

StrUpr() UsbGetInterfaceDescriptor() 

FatToStr() UsbGetEndpointDescriptor() 

StrToFat() UsbGetStringDescriptor() 

EFI_USB_ATAPI_PROTOCOL UsbGetSupportedLanguages() 

UsbAtapiPacketCmd() UsbPortReset() 

UsbAtapiReset() EFI_VGA_MINIPORT_PROTOCOL 

EFI_USB_HC_PROTOCOL SetMode() 

Reset() EFI_WIN_NT_IO_PROTOCOL 

GetState() EFI_WIN_NT_THUNK_PROTOCOL 

SetState() Too many to list here. 
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Table C-10 contains the list of debug error level that can be used with the DEBUG() macros. 

Table C-10. Error Levels 

Mnemonic Value Description 

EFI_D_INIT 0x00000001 Initialization messages 

EFI_D_WARN 0x00000002 Warning messages 

EFI_D_LOAD 0x00000004 Load events 

EFI_D_FS 0x00000008 EFI File System messages 

EFI_D_POOL 0x00000010 EFI pool allocation and free messages 

EFI_D_PAGE 0x00000020 EFI page allocation a free messages 

EFI_D_INFO 0x00000040 Informational messages 

EFI_D_VARIABLE 0x00000100 EFI variable service messages 

EFI_D_BM 0x00000400 EFI boot manager messages 

EFI_D_BLKIO 0x00001000 EFI Block I/O Protocol messages 

EFI_D_NET 0x00004000 EFI Simple Network Protocol, PXE Base Code, BIS messages 

EFI_D_UNDI 0x00010000 UNDI driver messages 

EFI_D_LOADFILE 0x00020000 Load File Protocol messages 

EFI_D_EVENT 0x00080000 EFI Event Services messages 

EFI_D_ERROR 0x80000000 Critical error messages 
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Appendix D 
Disk I/O Protocol and Disk I/O Driver 

This appendix contains the source files to the Disk I/O Protocol, the EFI Global Variable GUID, 
and the source files to the disk I/O driver. The disk I/O driver is a device driver that consumes the 
Block I/O Protocol and produces the Disk I/O Protocol on the same device handle.  

The Disk I/O Protocol is composed of the two files DiskIo.h and DiskIo.c. DiskIo.h 
contains the GUID, function prototypes, and the data structure for the Disk I/O Protocol. The 
DiskIo.c file contains the global variable for the Disk I/O Protocol GUID. 

The EFI Global Variable GUID is composed of the two files GlobalVariable.h and 
GlobalVariable.c. GlobalVariable.h contains the definition of the GUID that is used to 
access EFI environment variables with the EFI variable services, and the GlobalVariable.c 
file contains the declaration of the global variable for GUID defined in GlobalVariable.h. 

The disk I/O driver is composed of the three files DiskIo.h, DiskIo.c, and 
ComponentName.c. DiskIo.h contains the include statements for the EFI Boot Services, EFI 
Runtime Services, the EFI Driver Library, the list of protocols that the disk I/O driver consumes, 
the list of protocols that the disk I/O driver produces, the private context structure, and the 
declarations of the driver’s global variable. The private context structure contains the Disk I/O 
Protocol that is installed onto the device handle and a set of private data fields. The DiskIo.c file 
contains the disk I/O driver’s entry point, the implementation of the Driver Binding Protocol 
functions, and the implementation of the Disk I/O Protocol functions. The ComponentName.c 
file contains the implementation of the Component Name Protocol functions. 

D.1 Disk I/O Protocol - DiskIo.h 
/*++ 
 
Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
This software and associated documentation (if any) is furnished 
under a license and may only be used or copied in accordance 
with the terms of the license. Except as permitted by such 
license, no part of this software or documentation may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means without the express written consent of 
Intel Corporation. 
 
Module Name: 
 
  DiskIo.h 
 
Abstract: 
 
  Disk IO protocol as defined in the EFI 1.0 specification. 
 
  The Disk IO protocol is used to convert block oriented devices into byte 
  oriented devices. The Disk IO protocol is intended to layer on top of the 
  Block IO protocol. 
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--*/ 
 
#ifndef __DISK_IO_H__ 
#define __DISK_IO_H__ 
 
#define EFI_DISK_IO_PROTOCOL_GUID \ 
  { 0xce345171, 0xba0b, 0x11d2,  0x8e, 0x4f, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b } 
 
EFI_INTERFACE_DECL (_EFI_DISK_IO_PROTOCOL); 
 
typedef 
EFI_STATUS 
(EFIAPI *EFI_DISK_READ) ( 
  IN EFI_DISK_IO_PROTOCOL          *This, 
  IN UINT32                        MediaId, 
  IN UINT64                        Offset, 
  IN UINTN                         BufferSize, 
  OUT VOID                         *Buffer 
  ) 
/*++ 
 
  Routine Description: 
    Read BufferSize bytes from Offset into Buffer. 
 
  Arguments: 
    This       - Protocol instance pointer. 
    MediaId    - Id of the media, changes every time the media is replaced. 
    Offset     - The starting byte offset to read from 
    BufferSize - Size of Buffer 
    Buffer     - Buffer containing read data 
 
  Returns: 
    EFI_SUCCES            - The data was read correctly from the device. 
    EFI_DEVICE_ERROR      - The device reported an error while performing the  
                            read. 
    EFI_NO_MEDIA          - There is no media in the device. 
    EFI_MEDIA_CHNAGED     - The MediaId does not matched the current device. 
    EFI_INVALID_PARAMETER - The read request contains device addresses that are  
                            not valid for the device. 
 
--*/ 
; 
 
typedef 
EFI_STATUS 
(EFIAPI *EFI_DISK_WRITE) ( 
  IN EFI_DISK_IO_PROTOCOL          *This, 
  IN UINT32                        MediaId, 
  IN UINT64                        Offset, 
  IN UINTN                         BufferSize, 
  IN VOID                          *Buffer 
  ) 
/*++ 
 
  Routine Description: 
    Read BufferSize bytes from Offset into Buffer. 
 
  Arguments: 
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    This       - Protocol instance pointer. 
    MediaId    - Id of the media, changes every time the media is replaced.  
    Offset     - The starting byte offset to read from 
    BufferSize - Size of Buffer 
    Buffer     - Buffer containing read data 
 
  Returns: 
    EFI_SUCCES            - The data was written correctly to the device. 
    EFI_WRITE_PROTECTED   - The device cannot be written to. 
    EFI_DEVICE_ERROR      - The device reported an error while performing the  
                            write. 
    EFI_NO_MEDIA          - There is no media in the device. 
    EFI_MEDIA_CHNAGED     - The MediaId does not matched the current device. 
    EFI_INVALID_PARAMETER - The write request contains device addresses that are 
                            not valid for the device. 
 
--*/ 
; 
 
#define EFI_DISK_IO_PROTOCOL_REVISION 0x00010000 
 
typedef struct _EFI_DISK_IO_PROTOCOL { 
  UINT64          Revision; 
  EFI_DISK_READ   ReadDisk; 
  EFI_DISK_WRITE  WriteDisk; 
} EFI_DISK_IO_PROTOCOL; 
 
extern EFI_GUID gEfiDiskIoProtocolGuid; 
 
#endif 

D.2 Disk I/O Protocol - DiskIo.c 
/*++ 
 
Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
This software and associated documentation (if any) is furnished 
under a license and may only be used or copied in accordance 
with the terms of the license. Except as permitted by such 
license, no part of this software or documentation may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means without the express written consent of 
Intel Corporation. 
 
Module Name: 
   
  DiskIo.c 
 
Abstract: 
 
  Disk IO protocol as defined in the EFI 1.0 specification. 
 
  The Disk IO protocol is used to convert block oriented devices into byte 
  oriented devices. The Disk IO protocol is intended to layer on top of the 
  Block IO protocol. 
  
--*/ 
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#include "Efi.h" 
#include EFI_PROTOCOL_DEFINITION (DiskIo) 
 
EFI_GUID gEfiDiskIoProtocolGuid = EFI_DISK_IO_PROTOCOL_GUID; 
 
EFI_GUID_STRING( 
  &gEfiDiskIoProtocolGuid,  
  "DiskIo Protocol",  
  "EFI 1.0 Disk IO Protocol" 
  ); 

D.3 EFI Global Variable GUID – GlobalVariable.h 
/*++ 
 
Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
This software and associated documentation (if any) is furnished 
under a license and may only be used or copied in accordance 
with the terms of the license. Except as permitted by such 
license, no part of this software or documentation may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means without the express written consent of 
Intel Corporation. 
 
Module Name: 
   
    GlobalVariable.h 
     
Abstract: 
 
  GUID for EFI (NVRAM) Variables. Defined in EFI 1.0. 
 
--*/ 
 
#ifndef _GLOBAL_VARIABLE_GUID_H_ 
#define _GLOBAL_VARIABLE_GUID_H_ 
 
#define EFI_GLOBAL_VARIABLE_GUID  \ 
  { 0x8BE4DF61, 0x93CA, 0x11d2, 0xAA, 0x0D, 0x00, 0xE0, 0x98, 0x03, 0x2B, 0x8C } 
 
extern EFI_GUID gEfiGlobalVariableGuid; 
 
#endif 

D.4 EFI Global Variable GUID – GlobalVariable.c 
/*++ 
 
Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
This software and associated documentation (if any) is furnished 
under a license and may only be used or copied in accordance 
with the terms of the license. Except as permitted by such 
license, no part of this software or documentation may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means without the express written consent of 
Intel Corporation. 
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Module Name: 
   
    GlobalVariable.c 
     
Abstract: 
 
  GUID for EFI (NVRAM) Variables. Defined in EFI 1.0. 
 
--*/ 
 
#include "Efi.h" 
#include EFI_GUID_DEFINITION (GlobalVariable) 
 
EFI_GUID gEfiGlobalVariableGuid = EFI_GLOBAL_VARIABLE_GUID; 
 
EFI_GUID_STRING(&gEfiGlobalVariableGuid, "Efi", "Efi Variable GUID") 

D.5 Disk I/O Driver - DiskIo.h 
/*++ 
 
Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
This software and associated documentation (if any) is furnished 
under a license and may only be used or copied in accordance 
with the terms of the license. Except as permitted by such 
license, no part of this software or documentation may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means without the express written consent of 
Intel Corporation. 
 
 
Module Name: 
 
  DiskIo.h 
   
Abstract: 
  Private Data definition for Disk IO driver 
 
--*/ 
 
#ifndef _DISK_IO_H 
#define _DISK_IO_H 
 
#include "Efi.h" 
#include "EfiDriverLib.h" 
 
// 
// Driver Consumed Protocol Prototypes 
// 
#include EFI_PROTOCOL_DEFINITION (DevicePath) 
#include EFI_PROTOCOL_DEFINITION (BlockIo) 
 
// 
// Driver Produced Protocol Prototypes 
// 
#include EFI_PROTOCOL_DEFINITION (DriverBinding) 
#include EFI_PROTOCOL_DEFINITION (ComponentName) 
#include EFI_PROTOCOL_DEFINITION (DiskIo) 
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#define DISK_IO_PRIVATE_DATA_SIGNATURE  EFI_SIGNATURE_32 ('d','s','k','I') 
 
typedef struct { 
  UINTN                  Signature; 
  EFI_DISK_IO_PROTOCOL   DiskIo; 
  EFI_BLOCK_IO_PROTOCOL  *BlockIo; 
  UINT32                 BlockSize; 
} DISK_IO_PRIVATE_DATA; 
 
#define DISK_IO_PRIVATE_DATA_FROM_THIS(a) CR (a, DISK_IO_PRIVATE_DATA, DiskIo, 
DISK_IO_PRIVATE_DATA_SIGNATURE) 
 
// 
// Global Variables 
// 
extern EFI_DRIVER_BINDING_PROTOCOL gDiskIoDriverBinding; 
extern EFI_COMPONENT_NAME_PROTOCOL gDiskIoComponentName; 
 
#endif 

D.6 Disk I/O Driver - DiskIo.c 
/*++ 
 
Copyright (c) 2000 Intel Corporation 
 
Module Name: 
 
  DiskIo.c 
   
Abstract: 
 
  DiskIo driver that layers itself on every Block IO protocol in the system. 
  DiskIo converts a block oriented device to a byte oriented device.  
 
  ReadDisk may have to do reads that are not aligned on sector boundaries.  
  There are three cases: 
 
    UnderRun - The first byte is not on a sector boundary or the read request is 
               less than a sector in length.  
 
    Aligned  - A read of N contiguous sectors. 
 
    OverRun  - The last byte is not on a sector boundary. 
 
--*/ 
 
#include "DiskIo.h" 
 
// 
// Prototypes 
// Driver model protocol interface 
// 
 
EFI_STATUS 
DiskIoDriverEntryPoint ( 
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  IN EFI_HANDLE           ImageHandle, 
  IN EFI_SYSTEM_TABLE     *SystemTable 
  ); 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL    *This, 
  IN EFI_HANDLE                     ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL       *RemainingDevicePath 
  ); 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL    *This, 
  IN EFI_HANDLE                     ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL       *RemainingDevicePath 
  ); 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingStop ( 
  IN  EFI_DRIVER_BINDING_PROTOCOL    *This, 
  IN  EFI_HANDLE                     ControllerHandle, 
  IN  UINTN                          NumberOfChildren, 
  IN  EFI_HANDLE                     *ChildHandleBuffer 
  ); 
 
// 
// Disk I/O Protocol Interface 
// 
 
EFI_STATUS 
EFIAPI 
DiskIoReadDisk ( 
  IN EFI_DISK_IO_PROTOCOL  *This, 
  IN UINT32                MediaId, 
  IN UINT64                Offset, 
  IN UINTN                 BufferSize, 
  OUT VOID                 *Buffer 
  ); 
 
EFI_STATUS 
EFIAPI 
DiskIoWriteDisk ( 
  IN EFI_DISK_IO_PROTOCOL  *This, 
  IN UINT32                MediaId, 
  IN UINT64                Offset, 
  IN UINTN                 BufferSize, 
  IN VOID                  *Buffer 
  ); 
 
static EFI_DRIVER_BINDING_PROTOCOL mDiskIoDriverBinding = { 
  DiskIoDriverBindingSupported, 
  DiskIoDriverBindingStart, 
  DiskIoDriverBindingStop, 
  1, 
  NULL, 
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  NULL 
}; 
 
EFI_DRIVER_ENTRY_POINT (DiskIoDriverEntryPoint) 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverEntryPoint ( 
  IN EFI_HANDLE        ImageHandle, 
  IN EFI_SYSTEM_TABLE  *SystemTable 
  ) 
/*++ 
 
Routine Description: 
  Register Driver Binding protocol for this driver. 
   
Arguments: 
  (Standard EFI Image entry - EFI_IMAGE_ENTRY_POINT) 
 
Returns:  
  EFI_SUCCESS - Driver loaded. 
  other       - Driver not loaded. 
 
--*/ 
{ 
  return EfiLibInstallDriverBinding ( 
           ImageHandle,  
           SystemTable,  
           &mDiskIoDriverBinding, 
           ImageHandle 
           ); 
} 
 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingSupported ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
/*++ 
 
  Routine Description: 
    Test to see if this driver supports ControllerHandle. Any ControllerHandle 
    than contains a BlockIo protocol can be supported. 
 
  Arguments: 
    This                - Protocol instance pointer. 
    ControllerHandle    - Handle of device to test. 
    RemainingDevicePath - Not used. 
 
  Returns: 
    EFI_SUCCESS         - This driver supports this device. 
    EFI_ALREADY_STARTED - This driver is already running on this device. 
    other               - This driver does not support this device. 
 
--*/ 
{ 
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  EFI_STATUS             Status; 
  EFI_BLOCK_IO_PROTOCOL  *BlockIo; 
 
  // 
  // Open the IO Abstraction(s) needed to perform the supported test. 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,   
                  &gEfiBlockIoProtocolGuid,  
                  &BlockIo, 
                  This->DriverBindingHandle,    
                  ControllerHandle,    
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Close the I/O Abstraction(s) used to perform the supported test. 
  // 
  Status = gBS->CloseProtocol ( 
                  ControllerHandle,   
                  &gEfiBlockIoProtocolGuid,  
                  This->DriverBindingHandle,    
                  ControllerHandle    
                  ); 
  return Status; 
} 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  OPTIONAL 
  ) 
/*++ 
 
  Routine Description: 
    Start this driver on ControllerHandle by opening a Block IO protocol and  
    installing a Disk IO protocol on ControllerHandle. 
 
  Arguments: 
    This                - Protocol instance pointer. 
    ControllerHandle    - Handle of device to bind driver to. 
    RemainingDevicePath - Not used, always produce all possible children. 
 
  Returns: 
    EFI_SUCCESS         - This driver is added to ControllerHandle. 
    EFI_ALREADY_STARTED - This driver is already running on ControllerHandle. 
    other               - This driver does not support this device. 
 
--*/ 
{ 
  EFI_STATUS              Status; 
  EFI_BLOCK_IO_PROTOCOL   *BlockIo; 
  DISK_IO_PRIVATE_DATA    *Private; 
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  Private = NULL; 
 
  // 
  // Connect to the Block IO interface on ControllerHandle. 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfiBlockIoProtocolGuid,  
                  &BlockIo, 
                  This->DriverBindingHandle,    
                  ControllerHandle,    
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Initialize the Disk IO device instance. 
  // 
  Status = gBS->AllocatePool( 
                  EfiBootServicesData, 
                  sizeof (DISK_IO_PRIVATE_DATA), 
                  &Private 
                  ); 
  if (EFI_ERROR (Status)) { 
    goto ErrorExit; 
  } 
  EfiZeroMem (Private, sizeof(DISK_IO_PRIVATE_DATA)); 
 
  Private->Signature       = DISK_IO_PRIVATE_DATA_SIGNATURE; 
  Private->BlockIo         = BlockIo; 
  Private->BlockSize       = BlockIo->Media->BlockSize; 
 
  Private->DiskIo.Revision  = EFI_DISK_IO_PROTOCOL_REVISION; 
  Private->DiskIo.ReadDisk  = DiskIoReadDisk; 
  Private->DiskIo.WriteDisk = DiskIoWriteDisk; 
    
  // 
  // Install protocol interfaces for the Disk IO device. 
  // 
  Status = gBS->InstallProtocolInterface ( 
                  &ControllerHandle,  
                  &gEfiDiskIoProtocolGuid,  
                  EFI_NATIVE_INTERFACE,  
                  &Private->DiskIo 
                  ); 
  if (!EFI_ERROR (Status)) { 
    return EFI_SUCCESS; 
  }  
 
ErrorExit: 
  gBS->CloseProtocol ( 
         ControllerHandle,  
         &gEfiBlockIoProtocolGuid,  
         This->DriverBindingHandle,    
         ControllerHandle    
         ); 
  return Status; 
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} 
 
EFI_STATUS 
EFIAPI 
DiskIoDriverBindingStop ( 
  IN  EFI_DRIVER_BINDING_PROTOCOL    *This, 
  IN  EFI_HANDLE                     ControllerHandle, 
  IN  UINTN                          NumberOfChildren, 
  IN  EFI_HANDLE                     *ChildHandleBuffer 
  ) 
/*++ 
 
  Routine Description: 
    Stop this driver on ControllerHandle by removing Disk IO protocol and closing 
    the Block IO protocol on ControllerHandle. 
 
  Arguments: 
    This              - Protocol instance pointer. 
    ControllerHandle  - Handle of device to stop driver on. 
    NumberOfChildren  - Not used. 
    ChildHandleBuffer - Not used. 
 
  Returns: 
    EFI_SUCCESS         - This driver is removed ControllerHandle. 
    other               - This driver was not removed from this device. 
 
--*/ 
{ 
  EFI_STATUS            Status; 
  EFI_DISK_IO_PROTOCOL  *DiskIo; 
  DISK_IO_PRIVATE_DATA           *Private; 
 
  // 
  // Get our context back. 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,  
                  &gEfiDiskIoProtocolGuid,   
                  &DiskIo, 
                  This->DriverBindingHandle,    
                  ControllerHandle,    
                  EFI_OPEN_PROTOCOL_GET_PROTOCOL 
                  ); 
  if (EFI_ERROR (Status)) { 
    return EFI_UNSUPPORTED; 
  } 
 
  Private = DISK_IO_PRIVATE_DATA_FROM_THIS (DiskIo); 
 
  Status = gBS->UninstallProtocolInterface ( 
                  ControllerHandle,  
                  &gEfiDiskIoProtocolGuid,  
                  &Private->DiskIo 
                  ); 
  if (!EFI_ERROR (Status)) { 
 
    Status = gBS->CloseProtocol ( 
                    ControllerHandle,  
                    &gEfiBlockIoProtocolGuid,  
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                    This->DriverBindingHandle,    
                    ControllerHandle 
                    ); 
  } 
   
  if (!EFI_ERROR (Status)) { 
    gBS->FreePool (Private); 
  } 
 
  return Status; 
} 
 
EFI_STATUS 
EFIAPI 
DiskIoReadDisk ( 
  IN EFI_DISK_IO_PROTOCOL  *This, 
  IN UINT32                MediaId, 
  IN UINT64                Offset, 
  IN UINTN                 BufferSize, 
  OUT VOID                 *Buffer 
  ) 
/*++ 
 
  Routine Description: 
    Read BufferSize bytes from Offset into Buffer. 
 
    Reads may support reads that are not aligned on  
    sector boundaries. There are three cases: 
 
      UnderRun - The first byte is not on a sector boundary or the read request 
                 is less than a sector in length.  
 
      Aligned  - A read of N contiguous sectors. 
 
      OverRun  - The last byte is not on a sector boundary. 
 
 
  Arguments: 
    This       - Protocol instance pointer. 
    MediaId    - Id of the media, changes every time the media is replaced. 
    Offset     - The starting byte offset to read from. 
    BufferSize - Size of Buffer. 
    Buffer     - Buffer containing read data. 
 
  Returns: 
    EFI_SUCCESS           - The data was read correctly from the device. 
    EFI_DEVICE_ERROR      - The device reported an error while performing the  
                            read. 
    EFI_NO_MEDIA          - There is no media in the device. 
    EFI_MEDIA_CHNAGED     - The MediaId does not matched the current device. 
    EFI_INVALID_PARAMETER - The read request contains device addresses that are 
                            not valid for the device. 
 
--*/ 
{ 
  EFI_STATUS    Status; 
  DISK_IO_PRIVATE_DATA   *Private; 
  UINT64        Lba; 
  UINT64        OverRunLba; 
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  UINTN         UnderRun; 
  UINTN         OverRun; 
  BOOLEAN       TransactionComplete; 
  UINTN         WorkingBufferSize; 
  UINT8         *WorkingBuffer; 
  UINTN         Length; 
  UINT8         *Data; 
 
  Private = DISK_IO_PRIVATE_DATA_FROM_THIS (This); 
 
  if (Private->BlockIo->Media->MediaId != MediaId) { 
    return EFI_MEDIA_CHANGED; 
  } 
 
  WorkingBuffer = Buffer; 
  WorkingBufferSize = BufferSize; 
   
  Status = gBS->AllocatePool ( 
                  EfiBootServicesData, 
                  Private->BlockSize, 
                  &Data 
                  ); 
 
  if (EFI_ERROR (Status)) { 
    goto Done; 
  } 
 
  Lba = DivU64x32 (Offset, Private->BlockSize, &UnderRun); 
  
  Length = Private->BlockSize - UnderRun; 
  TransactionComplete = FALSE; 
 
  Status = EFI_SUCCESS; 
  if (UnderRun != 0) { 
    // 
    // Offset starts in the middle of an Lba, so read the entire block. 
    // 
    Status = Private->BlockIo->ReadBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 Lba,  
                                 Private->BlockSize,  
                                 Data 
                                 ); 
 
    if (EFI_ERROR (Status)) { 
      goto Done; 
    } 
     
    if (Length > BufferSize) { 
      Length = BufferSize; 
      TransactionComplete = TRUE; 
    } 
 
    EfiCopyMem (WorkingBuffer, Data + UnderRun, Length); 
     
    WorkingBuffer += Length; 
     
    WorkingBufferSize  -= Length; 
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    if (WorkingBufferSize == 0) { 
      goto Done; 
    } 
 
    Lba += 1; 
  } 
 
 
  OverRunLba = Lba + DivU64x32 (WorkingBufferSize, Private->BlockSize, &OverRun); 
 
  if (!TransactionComplete && WorkingBufferSize >= Private->BlockSize) { 
    // 
    // If the DiskIo maps directly to a BlockIo device do the read. 
    // 
    if (OverRun != 0) { 
      WorkingBufferSize -= OverRun; 
    } 
 
    Status = Private->BlockIo->ReadBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 Lba,  
                                 WorkingBufferSize,  
                                 WorkingBuffer 
                                 ); 
 
    WorkingBuffer += WorkingBufferSize; 
  }  
 
 
  if (!TransactionComplete && OverRun != 0) { 
    // 
    // Last read is not a complete block. 
    // 
    Status = Private->BlockIo->ReadBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 OverRunLba,  
                                 Private->BlockSize,  
                                 Data 
                                 ); 
 
    if (EFI_ERROR (Status)) { 
      goto Done; 
    } 
 
    EfiCopyMem (WorkingBuffer, Data, OverRun);     
  } 
 
Done: 
  if (Data) { 
    gBS->FreePool (Data); 
  } 
   
  return Status; 
} 
 
EFI_STATUS 
EFIAPI 
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DiskIoWriteDisk ( 
  IN EFI_DISK_IO_PROTOCOL  *This, 
  IN UINT32                MediaId, 
  IN UINT64                Offset, 
  IN UINTN                 BufferSize, 
  IN VOID                  *Buffer 
  ) 
/*++ 
 
  Routine Description: 
    Read BufferSize bytes from Offset into Buffer. 
 
    Writes may require a read modify write to support writes that are not  
    aligned on sector boundaries. There are three cases: 
     
      UnderRun - The first byte is not on a sector boundary or the write request 
                 is less than a sector in length. Read modify write is required. 
 
      Aligned  - A write of N contiguous sectors. 
 
      OverRun  - The last byte is not on a sector boundary. Read modified write  
                 required. 
 
  Arguments: 
    This       - Protocol instance pointer. 
    MediaId    - Id of the media, changes every time the media is replaced.  
    Offset     - The starting byte offset to read from. 
    BufferSize - Size of Buffer. 
    Buffer     - Buffer containing read data. 
 
  Returns: 
    EFI_SUCCESS           - The data was written correctly to the device. 
    EFI_WRITE_PROTECTED   - The device cannot be written to. 
    EFI_DEVICE_ERROR      - The device reported an error while performing the 
                            write. 
    EFI_NO_MEDIA          - There is no media in the device. 
    EFI_MEDIA_CHNAGED     - The MediaId does not matched the current device. 
    EFI_INVALID_PARAMETER - The write request contains device addresses that are  
                            not valid for the device. 
 
--*/ 
{ 
  EFI_STATUS    Status; 
  DISK_IO_PRIVATE_DATA   *Private; 
  UINT64        Lba; 
  UINT64        OverRunLba; 
  UINTN         UnderRun; 
  UINTN         OverRun; 
  BOOLEAN       TransactionComplete; 
  UINTN         WorkingBufferSize; 
  UINT8         *WorkingBuffer; 
  UINTN         Length; 
  UINT8         *Data; 
 
  Private = DISK_IO_PRIVATE_DATA_FROM_THIS (This); 
 
  if (Private->BlockIo->Media->ReadOnly) { 
    return EFI_WRITE_PROTECTED; 
  } 
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  if (Private->BlockIo->Media->MediaId != MediaId) { 
    return EFI_MEDIA_CHANGED; 
  } 
 
  Status = gBS->AllocatePool ( 
                  EfiBootServicesData, 
                  Private->BlockSize, 
                  &Data 
                  ); 
 
  if (EFI_ERROR (Status)) { 
    goto Done; 
  } 
 
  WorkingBuffer = Buffer; 
  WorkingBufferSize = BufferSize; 
 
  Lba = DivU64x32 (Offset, Private->BlockSize, &UnderRun); 
  
  Length = Private->BlockSize - UnderRun; 
  TransactionComplete = FALSE; 
 
  Status = EFI_SUCCESS; 
  if (UnderRun != 0) { 
    // 
    // Offset starts in the middle of an Lba, so do read modify write. 
    // 
    Status = Private->BlockIo->ReadBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 Lba,  
                                 Private->BlockSize,  
                                 Data 
                                 ); 
 
    if (EFI_ERROR (Status)) { 
      goto Done; 
    } 
 
    if (Length > BufferSize) { 
      Length = BufferSize; 
      TransactionComplete = TRUE; 
    } 
 
    EfiCopyMem (Data + UnderRun, WorkingBuffer, Length); 
 
    Status = Private->BlockIo->WriteBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 Lba,  
                                 Private->BlockSize,  
                                 Data 
                                 ); 
    if (EFI_ERROR (Status)) { 
      goto Done; 
    } 
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    WorkingBuffer += Length; 
    WorkingBufferSize  -= Length; 
    if (WorkingBufferSize == 0) { 
      goto Done; 
    } 
 
    Lba += 1; 
  } 
 
  OverRunLba = Lba + DivU64x32 (WorkingBufferSize, Private->BlockSize, &OverRun); 
 
  if (!TransactionComplete && WorkingBufferSize >= Private->BlockSize) { 
    // 
    // If the DiskIo maps directly to a BlockIo device do the write. 
    // 
    if (OverRun != 0) { 
      WorkingBufferSize -= OverRun; 
    } 
 
    Status = Private->BlockIo->WriteBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 Lba,  
                                 WorkingBufferSize,  
                                 WorkingBuffer 
                                 ); 
 
    WorkingBuffer += WorkingBufferSize; 
  }  
 
  if (!TransactionComplete && OverRun != 0) { 
    // 
    // Last bit is not a complete block, so do a read modify write. 
    // 
    Status = Private->BlockIo->ReadBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 OverRunLba,  
                                 Private->BlockSize,  
                                 Data 
                                 ); 
 
    if (EFI_ERROR (Status)) { 
      goto Done; 
    } 
 
    EfiCopyMem (Data, WorkingBuffer, OverRun);     
 
    Status = Private->BlockIo->WriteBlocks ( 
                                 Private->BlockIo,  
                                 MediaId,  
                                 OverRunLba,  
                                 Private->BlockSize,  
                                 Data 
                                 ); 
    if (EFI_ERROR (Status)) { 
      goto Done; 
    } 
  } 
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Done: 
  if (Data) { 
    gBS->FreePool (Data); 
  } 
   
  return Status; 
} 

D.7 Disk I/O Driver - ComponentName.c 
/*++ 
 
Copyright (c)  1999 - 2003 Intel Corporation. All rights reserved 
This software and associated documentation (if any) is furnished 
under a license and may only be used or copied in accordance 
with the terms of the license. Except as permitted by such 
license, no part of this software or documentation may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means without the express written consent of 
Intel Corporation. 
 
 
Module Name: 
 
  ComponentName.c 
 
Abstract: 
 
--*/ 
 
#include "DiskIo.h" 
 
// 
// EFI Component Name Functions 
// 
EFI_STATUS 
DiskIoComponentNameGetDriverName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **DriverName 
  ); 
 
EFI_STATUS 
DiskIoComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **ControllerName 
  ); 
 
// 
// EFI Component Name Protocol 
// 
EFI_COMPONENT_NAME_PROTOCOL gDiskIoComponentName = { 
  DiskIoComponentNameGetDriverName, 
  DiskIoComponentNameGetControllerName, 
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  "eng" 
}; 
 
static EFI_UNICODE_STRING_TABLE mDiskIoDriverNameTable[] = { 
  { "eng", L"Generic Disk I/O Driver" }, 
  { NULL, NULL } 
}; 
 
EFI_STATUS 
DiskIoComponentNameGetDriverName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **DriverName 
  ) 
/*++ 
 
  Routine Description: 
    Retrieves a Unicode string that is the user readable name of the EFI Driver. 
 
  Arguments: 
    This       - A pointer to the EFI_COMPONENT_NAME_PROTOCOL instance. 
    Language   - A pointer to a three character ISO 639-2 language identifier. 
                 This is the language of the driver name that that the caller  
                 is requesting, and it must match one of the languages specified 
                 in SupportedLanguages. The number of languages supported by a  
                 driver is up to the driver writer. 
    DriverName - A pointer to the Unicode string to return. This Unicode string 
                 is the name of the driver specified by This in the language  
                 specified by Language. 
 
  Returns: 
    EFI_SUCCES            - The Unicode string for the Driver specified by This 
                            and the language specified by Language was returned  
                            in DriverName. 
    EFI_INVALID_PARAMETER - Language is NULL. 
    EFI_INVALID_PARAMETER - DriverName is NULL. 
    EFI_UNSUPPORTED       - The driver specified by This does not support the  
                            language specified by Language. 
 
--*/ 
{ 
  return EfiLibLookupUnicodeString ( 
           Language, 
           gDiskIoComponentName.SupportedLanguages, 
           mDiskIoDriverNameTable,  
           DriverName 
           ); 
} 
 
EFI_STATUS 
DiskIoComponentNameGetControllerName ( 
  IN  EFI_COMPONENT_NAME_PROTOCOL  *This, 
  IN  EFI_HANDLE                   ControllerHandle, 
  IN  EFI_HANDLE                   ChildHandle        OPTIONAL, 
  IN  CHAR8                        *Language, 
  OUT CHAR16                       **ControllerName 
  ) 
/*++ 
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  Routine Description: 
    Retrieves a Unicode string that is the user readable name of the controller 
    that is being managed by an EFI Driver. 
 
  Arguments: 
    This             - A pointer to the EFI_COMPONENT_NAME_PROTOCOL instance. 
    ControllerHandle - The handle of a controller that the driver specified by  
                       This is managing. This handle specifies the controller  
                       whose name is to be returned. 
    ChildHandle      - The handle of the child controller to retrieve the name  
                       of. This is an optional parameter that may be NULL. It  
                       will be NULL for device drivers. It will also be NULL  
                       for a bus drivers that wish to retrieve the name of the  
                       bus controller. It will not be NULL for a bus driver  
                       that wishes to retrieve the name of a child controller. 
    Language         - A pointer to a three character ISO 639-2 language  
                       identifier. This is the language of the controller name  
                       that that the caller is requesting, and it must match one 
                       of the languages specified in SupportedLanguages. The  
                       number of languages supported by a driver is up to the  
                       driver writer. 
    ControllerName   - A pointer to the Unicode string to return. This Unicode 
                       string is the name of the controller specified by  
                       ControllerHandle and ChildHandle in the language 
specified 
                       by Language from the point of view of the driver 
specified 
                       by This.  
 
  Returns: 
    EFI_SUCCESS           - The Unicode string for the user readable name in the 
                            language specified by Language for the driver  
                            specified by This was returned in DriverName. 
    EFI_INVALID_PARAMETER - ControllerHandle is not a valid EFI_HANDLE. 
    EFI_INVALID_PARAMETER - ChildHandle is not NULL and it is not a valid  
                            EFI_HANDLE. 
    EFI_INVALID_PARAMETER - Language is NULL. 
    EFI_INVALID_PARAMETER - ControllerName is NULL. 
    EFI_UNSUPPORTED       - The driver specified by This is not currently  
                            managing the controller specified by  
                            ControllerHandle and ChildHandle. 
    EFI_UNSUPPORTED       - The driver specified by This does not support the  
                            language specified by Language. 
 
--*/ 
{ 
  return EFI_UNSUPPORTED; 
} 
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Appendix E 
EFI 1.10.14.62 Sample Drivers 

This appendix lists all the sample drivers that are available in the EFI Sample Implementation. 
Table E-1 shows in which build tips all the drivers are used, Table E-2 describes the property codes 
used in Table E-3, and Table E-3 shows the properties of each driver. 

Table E-1. EFI Driver Build Tips 

Driver BIOS32 IA-32Emb SAL64 Nt32 Ia32Drivers IpfDrivers 

AtapiPassThru  X   X X 

Bis X X  X X X 

CirrusLogic5430 X X   X X 

Console\ConPlatform X X X X X X 

Console\ConSplitter X X X X X X 

Console\GraphicsConsole X X X X X X 

Console\Terminal X X X X X X 

DebugPort     X X 

DebugSupport     X X 

Decompress X X X X X X 

DiskIo X X X X X X 

Ebc X X X X X X 

FileSystem\Fat X X X X X X 

Ide  X   X X 

IsaBus X X X  X X 

IsaFloppy  X   X X 

IsaSerial X X X  X X 

Partition X X X X X X 

PcatIsaAcpi  X   X X 

PcatIsaAcpiBios X  X  X X 

PcatPciRootBridge X X X  X X 

PciBus X X X X X X 

PciVgaMiniPort  X   X X 

Ps2Keyboard  X   X X 

Ps2Mouse  X   X X 

PxeBc X X X  X X 

SerialMouse X X X X X X 

continued  
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Table E-1. EFI Driver Build Tips (continued) 

Driver BIOS32 IA-32Emb SAL64 Nt32 Ia32Drivers IpfDrivers 

Snp32_64 X X X  X X 

Undi X X X  X X 

Usb\Uhci  X   X X 

Usb\UsbBot  X   X X 

Usb\UsbBus  X   X X 

Usb\UsbCbi  X   X X 

Usb\UsbKb  X   X X 

Usb\UsbMassStorage  X   X X 

Usb\UsbMouse  X   X X 

VgaClass X X X  X X 

WinNtThunk\BlockIo    X   

WinNtThunk\Console    X   

WinNtThunk\SerialIo    X   

WinNtThunk\SimpleFileSystem    X   

WinNtThunk\Uga    X   

WinNtThunk\WinNtBusDriver    X   

WinNtThunk\WinNtPciRootBridge    X   

BiosInt\BiosKeyboard X  X    

BiosInt\BiosSnp16 X  X    

BiosInt\BiosVga   X    

BiosInt\BiosVgaMiniPort X  X    

BiosInt\Disk X  X    
 

Table E-2. EFI Driver Property Codes 

Field Field  Value Description 

DB  Number of Driver Binding Protocols installed in the driver entry point. 

CFG  Y if the Driver Configuration Protocol is installed in the driver entry point. 

DIAG  Y if the Driver Diagnostics Protocol is installed in the driver entry point. 

CN  Y if the Component Name Protocol is installed in the driver entry point. 

Driver Class Bus Bus driver. 

 Device Device driver. 

 Hybrid Hybrid driver. 

 Root Bridge Root bridge driver. 

 Service Service driver. 

 Init Initializing driver. 

continued 
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Table E-2. EFI Driver Property Codes (continued) 

Field Field  Value Description 

Child All All child handles in first call to Start(). 

 1/ALL Can create 1 child handle at a time or all child handles in Start(). 

 1 Creates at most 1 child handle in Start(). 

 0 Create no child handles in Start(). Used for hot-plug bus types. 

Driver Type BS EFI Boot Services driver. 

 RT EFI Runtime Services driver. 

Unload  Y if the driver is unloadable. 

 

Table E-3. EFI Driver Properties 

Driver 
D
B

C
F
G

D
I
A
G

C
N

Driver 
Class Child Parent 

Driver 
Type Unload 

Hot 
Plug 

AtapiPassThru 1 - - Y Device - 1 BS - - 

Bis - - - - Service - 1 BS - - 

CirrusLogic5430 1 - - Y Device - 1 BS - - 

Console\ConPlatform 2 - - Y Device - 1 BS - - 

Console\ConSplitter 3 - - Y Bus ALL >1 BS - - 

Console\GraphicsConsole 1 - - Y Device - 1 BS - - 

Console\Terminal 1 - - Y Hybrid 1 1 BS - - 

DebugPort 1 - - Y Bus 1 1 BS - - 

DebugSupport - - - - Service - 1 BS - - 

Decompress - - - - Service - 1 BS - - 

DiskIo 1 - - Y Device - 1 BS - - 

Ebc - - - - Service - 1 BS - - 

FileSystem\Fat 1 - - Y Device - 1 BS Y - 

Ide 1 Y Y Y Hybrid 1/ALL 1 BS - - 

IsaBus 1 - - Y Bus ALL 1 BS - - 

IsaFloppy 1 - - Y Device - 1 BS - - 

IsaSerial 1 - - Y Bus 1 1 BS - - 

Partition 1 - - Y Bus ALL 1 BS - - 

PcatIsaAcpi 1 - - Y Device - 1 BS - - 

PcatIsaAcpiBios 1 - - Y Device - 1 BS - - 

PcatPciRootBridge - - - - Root 
Bridge 

- 1 BS - - 

continued 



EFI 1.10 Driver Writer’s Guide Draft for Review  

418 July 2004 Version 0.9 

Table E-3. EFI Driver Properties (continued) 

Driver 
D
B

C
F
G

D
I
A
G

C
N

Driver 
Class Child Parent 

Driver 
Type Unload 

Hot 
Plug 

PciBus 1 - - Y Bus 1/ALL 1 BS - - 

PciVgaMiniPort 1 - - Y Device - 1 BS - - 

Ps2Keyboard 1 - - Y Device - 1 BS - - 

Ps2Mouse 1 - - Y Device - 1 BS - - 

PxeBc 1 - - Y Device - 1 BS - - 

PxeDhcp4 1 - - Y Device - 1 BS - - 

ScsiBus 1 - - Y Bus 1/ALL 1 BS - - 

ScsiDisk 1 - - Y Device - 1 BS - - 

SerialMouse 1 - - Y Bus 1 1 BS - - 

Snp32_64 1 - - Y Device - 1 BS - - 

Undi 1 - - Y Bus 1 1 RT - - 

Usb\Uhci 1 - - Y Device - 1 BS - - 

Usb\UsbBot 1 - - Y Device - 1 BS - - 

Usb\UsbBus 1 - - Y Hybrid 0 1 BS - Y 

Usb\UsbCbi 1 - - Y Device - 1 BS - - 

Usb\UsbKb 1 - - Y Device - 1 BS - - 

Usb\UsbMassStorage 1 - - Y Device - 1 BS - - 

Usb\UsbMouse 1 - - Y Device - 1 BS - - 

VgaClass 1 - - Y Device - 1 BS - - 

WinNtThunk\BlockIo 1 - - Y Device - 1 BS - - 

WinNtThunk\Console 1 - - Y Device - 1 BS - - 

WinNtThunk\SerialIo 1 - - Y Bus 1 1 BS - - 

WinNtThunk\SimpleFileSystem 1 - - Y Device - 1 BS - - 

WinNtThunk\Uga 1 - - Y Device - 1 BS - - 

WinNtThunk\WinNtBusDriver 1 - - Y Hybrid 1/ALL 1 BS - - 

WinNtThunk\WinNtPciRootBridge - - - - Root 
Bridge 

- 1 BS - - 

BiosInt\BiosKeyboard 1 - - Y Device - 1 BS - - 

BiosInt\BiosSnp16 1 - - Y Bus 1 1 BS - - 

BiosInt\BiosVga 1 - - Y Device - 1 BS - - 

BiosInt\BiosVgaMiniPort 1 - - Y Device - 1 BS - - 

BiosInt\Disk - - - - Root 
Bridge 

- 1 BS - - 
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Appendix F 
Glossary 

Table F-1 defines terms that are used in this document. See the glossary in the EFI 1.10 
Specification for definitions of additional terms. 

Table F-1. Definitions of Terms 

Term Definition 

<Enumerated Type> Element of an enumeration. Type INTN.  

ACPI Advanced Configuration and Power Interface. 

ANSI American National Standards Institute. 

API Application programming interface. 

ASCII American Standard Code for Information Interchange. 

ATAPI Advanced Technology Attachment Packet Interface. 

BAR Base Address Register. 

BBS BIOS Boot Specification.  

BC Base Code. 

BEV Bootstrap Entry Vector. A pointer that points to code inside an option ROM that will 
directly load an OS. 

BIOS Basic input/output system. 

BIS Boot Integrity Services. 

BM Boot manager. 

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other 

values are undefined. 

BOT Bulk-Only Transport. 

BS EFI Boot Services Table or EFI Boot Service(s). 

CBI Control/Bulk/Interrupt Transport. 

CBW Command Block Wrapper. 

CHAR16 2-byte character. Unless otherwise specified, all strings are stored in the  
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards. 

CHAR8 1-byte character. 

CID Compatible ID. 

CONST Declares a variable to be of type const. This modifier is a hint to the compiler to 
enable optimization and stronger type checking at compile time. 

CR Containing Record. 

CRC Cyclic Redundancy Check. 

continued 
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Table F-1. Definitions of Terms (continued) 

Term Definition 

CSW Command Status Wrapper. 

DAC Dual Address Cycle. 

DHCP4 Dynamic Host Configuration Protocol Version 4. 

DID Device ID. 

DIG64 Developer’s Interface Guide for 64-bit Intel Architecture-based Servers.  

DMA Direct Memory Access. 

EBC EFI Byte Code. 

ECR Engineering Change Request. 

EFI Extensible Firmware Interface. 

EFI_EVENT Handle to an event structure. Type VOID *. 

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified, 
aligned on a 64-bit boundary. 

EFI_HANDLE A collection of related interfaces. Type VOID *. 

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol 
address.  

EFI_Ipv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.  

EFI_Ipv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address. 

EFI_LBA Logical block address. Type UINT64. 

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Controller address. 

EFI_STATUS Status code. Type INTN. 

EFI_TPL Task priority level. Type UINTN.  

EISA Extended Industry Standard Architecture. 

FAT File allocation table. 

FIFO First In First Out. 

FPSWA Floating Point Software Assist. 

FRU Field Replaceable Unit. 

FTP File Transfer Protocol. 

GPT Guided Partition Table. 

GUID Globally Unique Identifier. 

HC Host controller. 

HID Hardware ID. 

I/O Input/output. 

IA-32 32-bit Intel architecture. 

IBV Independent BIOS vendor. 

IDE Integrated Drive Electronics. 

continued 
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Table F-1. Definitions of Terms (continued) 

Term Definition 

IEC International Electrotechnical Commission. 

IHV Independent hardware vendor. 

IN Datum is passed to the function. 

INT Interrupt. 

INT16 2-byte signed value. 

INT32 4-byte signed value. 

INT64 8-byte signed value. 

INT8 1-byte signed value. 

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium architecture 
operations) 

IPF Itanium processor family. 

Ipv4 Internet Protocol Version 4. 

Ipv6 Internet Protocol Version 6. 

ISA Industry Standard Architecture. 

ISO Industry Standards Organization. 

iSCSI SCSI protocol over TCP/IP. 

KB Keyboard. 

LAN Local area network. 

LUN Logical Unit Number. 

MAC Media Access Controller. 

MMIO Memory Mapped I/O. 

NIC Network interface controller. 

NII Network Interface Identifier. 

NVRAM Nonvolatile RAM. 

OEM Original equipment manufacturer. 

OHCI Open Host Controller Interface. 

OpROM Option ROM. 

OPTIONAL Datum that is passed to the function is optional, and a NULL may be passed if the 

value is not supplied. 

OS Operating system. 

OUT Datum is returned from the function. 

PCI Peripheral Component Interconnect. 

PCMCIA Personal Computer Memory Card International Association.  

PE Portable Executable. 

PE/COFF PE32, PE32+, or Common Object File Format. 

PNPID Plug and Play ID. 

continued 
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Term Definition 

POST Power On Self Test. 

PPP Point-to-Point Protocol. 

PUN Physical Unit Number. 

PXE Preboot Execution Environment. 

PXE BC (or PxeBc) PXE Base Code Protocol. 

QH Queue Head. 

RAID Redundant Array of Inexpensive Disks. 

RAM Random access memory. 

ROM Read-only memory. 

RT EFI Runtime Table and EFI Runtime Service(s). 

SAL System Abstraction Layer. 

SCSI Small Computer System Interface. 

SIG Special Interest Group. 

S.M.A.R.T. Self-Monitoring Analysis Reporting Technology. 

SMBIOS System Management BIOS. 

SMBus System Management Bus. 

SNP Simple Network Protocol. 

SPT SCSI Pass Thru. 

ST EFI System Table 

STATIC The function has local scope. This modifier replaces the standard C static key word, 
so it can be overloaded for debugging. 

TCP/IP Transmission Control Protocol/Internet Protocol. 

TD Transfer Descriptor. 

TPL Task Priority Level. 

UART Universal Asynchronous Receiver-Transmitter. 

UGA Universal Graphics Adapter. 

UHCI Universal Host Controller Interface. 

UID Unique ID. 

UINT16 2-byte unsigned value. 

UINT32 4-byte unsigned value. 

UINT64 8-byte unsigned value. 

UINT8 1-byte unsigned value. 

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium architecture 
operations) 

UNDI Universal Network Driver Interface. 

continued 
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Table F-1. Definitions of Terms (continued) 

Term Definition 

USB Universal Serial Bus. 

USBSTS Status register in the USB host controller. 

VGA Video graphics array. 

VID Vendor ID. 

VOID Undeclared type. 

VOLATILE Declares a variable to be volatile and thus exempt from optimization to remove 
redundant or unneeded accesses. Any variable that represents a hardware device 
should be declared as VOLATILE. 

VT100 A terminal and serial protocol originally defined by Digital Equipment Corporation. 
Limited to 7-bit ASCII. 

VT-UTF8 A serial protocol definition that extends VT-100 to support Unicode. See ISO 
standard 10646-1: 2000 for more information. 

 



EFI 1.10 Driver Writer’s Guide Draft for Review  

424 July 2004 Version 0.9 

 


	EFI 1.10 Driver Writer's Guide
	Acknowledgements
	Revision History
	Contents
	1 Introduction
	1.1 Overview
	1.2 Organization of This Document
	1.3 Related Information
	1.4 Conventions Used in This Document
	1.4.1 Data Structure Descriptions
	1.4.2 Pseudo-Code Conventions
	1.4.3 Typographic Conventions


	2 Foundation
	2.1 Objects Managed by EFI-Based Firmware
	2.2 EFI System Table
	2.3 Handle Database
	2.4 Protocols
	2.4.1 Working with Protocols
	2.4.2 Multiple Protocol Instances
	2.4.3 Tag GUID

	2.5 EFI Images
	2.5.1 Applications
	2.5.2 OS Loader
	2.5.3 Drivers

	2.6 Events and Task Priority Levels
	2.7 EFI Device Paths
	2.7.1 How Drivers Use Device Paths
	2.7.2 Considerations for Itanium® Architecture
	2.7.3 Environment Variables

	2.8 EFI Driver Model
	2.8.1 Device Driver
	2.8.2 Bus Driver

	2.9 Simplified Connection Process
	2.9.1 ConnectController()
	2.9.2 Loading EFI Option ROM Drivers
	2.9.3 DisconnectController()

	2.10 Platform Initialization
	2.10.1 Connecting PCI Root Bridge(s)
	2.10.2 Connecting the PCI Bus
	2.10.3 Connecting Consoles
	2.10.4 Console Drivers
	2.10.5 Console Variables
	2.10.6 ConIn
	2.10.7 ConOut
	2.10.8 ErrOut
	2.10.9 Loading Other Core Drivers
	2.10.10 Boot Manager Connect ALL
	2.10.11 Boot Manager Driver Option List
	2.10.12 Boot Manager BootNext
	2.10.13 Boot Manager Boot Option List


	3 Coding Conventions
	3.1 Indentation and Line Length
	3.2 Comments
	3.2.1 File Headers Comments
	3.2.2 Function Header Comments
	3.2.3 Internal Comments
	3.2.4 What Is Commented
	3.2.5 What Is Not Commmented

	3.3 General Naming Conventions
	3.3.1 Abbreviations
	3.3.2 Acronyms

	3.4 Directory and File Names
	3.5 Function Names and Variable Names
	3.5.1 Hungarian Prefixes
	3.5.2 Global Variables and Module Variables

	3.6 Macro Names
	3.6.1 Macros as Functions

	3.7 Data Types
	3.7.1 Enumerations
	3.7.2 Data Structures and Unions

	3.8 Constants
	3.9 Include Files
	3.10 Spaces in C Code
	3.10.1 Vertical Spacing
	3.10.2 Horizontal Spacing

	3.11 Standard C Constructs
	3.11.1 Subroutines
	3.11.2 Calling Functions
	3.11.3 Boolean Expressions
	3.11.4 Conditional Expressions
	3.11.5 Loop Expressions
	3.11.6 Switch Expressions
	3.11.7 Goto Expressions

	3.12 EFI File Templates
	3.12.1 Protocol File Templates
	3.12.2 GUID File Templates
	3.12.3 Including a Protocol or a GUID
	3.12.4 EFI Driver Template
	3.12.5 <<DriverName>>.h File
	3.12.6 <<DriverName>>.c File
	3.12.7 <<ProtocolName>>.c or <<DriverName>><<ProtocolName>>.c File
	3.12.8 EFI Driver Library


	4 EFI Services
	4.1 Services That EFI Drivers Commonly Use
	4.1.1 Memory Services
	4.1.2 Handle Database and Protocol Services
	4.1.3 Task Priority Level Services
	4.1.4 Event Services
	4.1.5 Delay Services
	4.1.5.1 gBS->Stall()

	4.2 Services That EFI Drivers Rarely Use
	4.2.1 Handle Database and Protocol Services
	4.2.2 Image Services
	4.2.3 Variable Services
	4.2.4 Time Services
	4.2.5 Virtual Memory Services
	4.2.6 Miscellaneous Services

	4.3 Services That EFI Drivers Should Not Use
	4.3.1 Memory Services
	4.3.2 Image Services
	4.3.3 Handle Database and Protocol Services
	4.3.4 Event Services
	4.3.4.1 gBS->WaitForEvent()
	4.3.5 Virtual Memory Services
	4.3.5.1 gBS->SetVirtualAddressMap()
	4.3.6 Variables Services
	4.3.7 Time Services
	4.3.8 Miscellaneous Services

	4.4 Time-Related Services
	4.4.1 Stall Service
	4.4.2 Timer Events
	4.4.3 Time and Date Services

	4.5 EFI Driver Library

	5 General Driver Design Guidelines
	5.1 General Porting Considerations
	5.1.1 How to Implement Features in EFI

	5.2 Design and Implementation of EFI Drivers
	5.3 Maximize Platform Compatibility
	5.3.1 Do Not Make Assumptions about System Memory Configurations
	5.3.2 Do Not Use Any Hard-Coded Limits
	5.3.3 Do Not Make Assumptions about I/O Subsystem Configurations
	5.3.4 Maximize Source Code Portability

	5.4 EFI Driver Model
	5.5 Use the EFI Software Abstractions
	5.6 Use Polling Device Drivers
	5.6.1 Use Events and Task Priority Levels

	5.7 Design to Be Re-entrant
	5.8 Avoid Function Name Collisions between Drivers
	5.9 Manage Memory Ordering Issues in the DMA and Processor
	5.10 Do Not Store EFI Drivers in Hidden Option ROM Regions
	5.11 Store Configuration Settings on the Same FRU as the EFI Driver
	5.11.1 Benefits
	5.11.2 Update Configurations at OS Runtime Using an OS-Present Driver

	5.12 Do Not Use Hard-Coded Device Path Nodes
	5.12.1 PNPID Byte Order for EFI

	5.13 Do Not Cause Errors on Shared Storage Devices
	5.14 Convert Bus Walks
	5.14.1 Example

	5.15 Do Not Have Any Console Display or Hot Keys
	5.16 Offer Alternatives to Function Key
	5.17 Do Not Assume EFI Will Execute All Drivers

	6 Classes of EFI Drivers
	6.1 Device Drivers
	6.1.1 Required Device Driver Features
	6.1.2 Optional Device Driver Features
	6.1.3 Device Drivers with One Driver Binding Protocol
	6.1.4 Device Drivers with Multiple Driver Binding Protocols
	6.1.5 Device Driver Protocol Management

	6.2 Bus Drivers
	6.2.1 Required Bus Driver Features
	6.2.2 Optional Bus Driver Features
	6.2.3 Bus Drivers with One Driver Binding Protocol
	6.2.4 Bus Drivers with Multiple Driver Binding Protocols
	6.2.5 Bus Driver Protocol and Child Management
	6.2.6 Bus Drivers That Produce One Child in Start()
	6.2.7 Bus Drivers That Produce All Children in Start()
	6.2.8 Bus Drivers That Produce at Most One Child in Start()
	6.2.9 Bus Drivers That Produce No Children in Start()
	6.2.10 Bus Drivers That Produce Children with Multiple Parents

	6.3 Hybrid Drivers
	6.3.1 Required Hybrid Driver Features
	6.3.2 Optional Hybrid Driver Features

	6.4 Service Drivers
	6.5 Root Bridge Drivers
	6.6 Initializing Drivers

	7 Driver Entry Point
	7.1 EFI Driver Model Driver Entry Point
	7.1.1 Multiple Driver Binding Protocols
	7.1.2 Adding the Unload Feature
	7.1.3 Adding the Exit Boot Services Feature

	7.2 Initializing Driver Entry Point
	7.3 Service Driver Entry Point
	7.4 Root Bridge Driver Entry Point
	7.5 Runtime Drivers

	8 Private Context Data Structures
	8.1 Containing Record Macro
	8.2 Data Structure Design
	8.3 Allocating Private Context Data Structures
	8.4 Freeing Private Context Data Structures
	8.5 Protocol Functions

	9 Driver Binding Protocol
	10 Component Name Protocol
	10.1 Driver Name
	10.2 Device Drivers
	10.3 Bus Drivers and Hybrid Drivers

	11 Driver Configuration Protocol
	11.1 Device Drivers
	11.2 Bus Drivers and Hybrid Drivers
	11.3 Implementing SetOptions() as an Application

	12 Driver Diagnostics Protocol
	12.1 Device Drivers
	12.2 Bus Drivers and Hybrid Drivers
	12.3 Implementing RunDiagnostics() as an Application

	13 Bus Specific Driver Override Protocol
	14 PCI Driver Design Guidelines
	14.1 PCI Root Bridge I/O Protocol Drivers
	14.2 PCI Bus Drivers
	14.2.1 Hot-Plug PCI Buses

	14.3 PCI Drivers
	14.3.1 Supported()
	14.3.2 Start() and Stop()

	14.4 Accessing PCI Resources
	14.4.1 Memory-Mapped I/O Ordering Issues
	14.4.2 Hardfail / Softfail
	14.4.3 When a PCI Device Does Not Receive Resources

	14.5 PCI DMA
	14.5.1 Map() Service Cautions
	14.5.2 Weakly Ordered Memory Transactions
	14.5.3 Bus Master Read/Write Operations
	14.5.4 Bus Master Common Buffer Operations
	14.5.6 DMA Bus Master Read Operation
	14.5.7 DMA Bus Master Write Operation
	14.5.8 DMA Bus Master Common Buffer Operation

	14.6 Device I/O Protocol

	15 USB Driver Design Guidelines
	15.1 USB Host Controller Driver
	15.1.1 Supported()
	15.1.2 Start() and Stop()
	15.1.3 USB Host Controller Protocol Transfer Related Services

	15.2 USB Bus Driver
	15.3 USB Device Driver
	15.3.1 Supported()
	15.3.2 Start() and Stop()
	15.3.3 USB ATAPI Protocol Services
	15.3.4 Asynchronous Transfer Usage
	15.3.5 State Machine Consideration

	15.4 Debug Techniques
	15.4.1 Debug Message Output
	15.4.2 USB Bus Analyzer
	15.4.3 USBCheck/USBCV tool

	15.5 Nonconformant Device

	16 SCSI Driver Design Guidelines
	16.1 SCSI Driver Overview
	16.2 EFI SCSI Driver on SCSI Adapters
	16.2.1 EFI SCSI Driver on Single-Channel SCSI Adapter
	16.2.2 EFI SCSI Driver on Multichannel SCSI Adapter
	16.2.3 EFI SCSI Driver on RAID SCSI Adapter
	16.2.4 EFI Driver Binding for EFI SCSI Driver
	16.2.5 Implementing the SCSI Pass Thru Protocol
	Protocol Interface Structure

	16.3 Implementing SCSI Pass Thru Protocol on a SCSI Command Set– Compatible Device
	16.3.1 SCSI Pass Thru Protocol on ATAPI

	16.4 General Considerations for Developing EFI SCSI Drivers
	16.4.1 SCSI Channel Enumeration
	16.4.2 Create SCSI Device Child Handle
	16.4.3 Produce Block I/O Protocol

	16.5 SCSI Device Path
	16.5.1 SCSI Device Path Example
	16.5.2 SCSI Device on a Multichannel PCI Controller Example
	16.5.3 ATAPI Device Path Example
	16.5.4 Fibre Channel Device Path Example
	16.5.5 SCSI Device on a RAID Multichannel Adapter Example

	16.6 Using the SCSI Pass Thru Protocol

	17 Driver Optimization Techniques
	17.1 Space Optimizations
	17.2 Speed Optimizations
	17.2.1 CopyMem() and SetMem() Operations
	17.2.2 PCI I/O Fill Operations
	17.2.3 PCI I/O FIFO Operations
	17.2.4 PCI I/O CopyMem() Operations
	17.2.5 PCI Configuration Header Operations
	17.2.6 PCI I/O Read/Write Multiple Operations
	17.2.7 PCI I/O Polling Operations


	18 Itanium Architecture Porting Considerations
	18.1 Alignment Faults
	18.2 Accessing a 64-Bit BAR in a PCI Configuration Header
	18.3 Assignment and Comparison Operators
	18.4 Casting Pointers
	18.5 EFI Data Type Sizes
	18.6 Negative Numbers
	18.7 Returning Pointers in a Function Parameter
	18.8 Array Subscripts
	18.9 Piecemeal Structure Allocations
	18.10 Speculation and Floating Point Register Usage
	18.11 Memory Ordering
	18.12 Helpful Tools

	19 EFI Byte Code Porting Considerations
	19.1 No EBC Assembly Support
	19.2 No Floating Point Support
	19.3 No C++ Support
	19.4 EFI Data Type Sizes
	19.5 CASE Statements
	19.6 Stronger Type Checking
	19.7 EFI Driver Entry Point
	19.8 Memory Ordering
	19.9 Performance Considerations

	20 Building EFI Drivers
	20.1 Writing EFI Drivers
	20.1.1 Make.inf File
	20.1.2 [sources] Section
	20.1.3 [includes] Section
	20.1.4 [libraries] Section
	20.1.5 [nmake] Section

	20.2 Adding an EFI Driver to a Build Tip
	20.3 Integrating an EFI Driver into a Build Tip
	20.4 Build Tools
	20.4.1 FwImage Build Tool
	20.4.2 EfiRom Build Tool


	21 Testing and Debugging EFI Drivers
	21.1 Loading EFI Drivers
	21.2 Unloading EFI Drivers
	21.3 Connecting EFI Drivers
	21.4 Driver and Device Information
	21.5 Testing the Driver Configuration Protocol
	21.6 Testing the Driver Diagnostics Protocol
	21.7 ASSERT() and DEBUG() Macros
	21.8 POST Codes

	Appendix A EFI Data Types
	Appendix B EFI Status Codes
	Appendix C Quick Reference Guide
	Appendix D Disk I/ O Protocol and Disk I/ O Driver
	D.1 Disk I/O Protocol - DiskIo.h
	D.2 Disk I/O Protocol - DiskIo.c
	D.3 EFI Global Variable GUID – GlobalVariable.h
	D.4 EFI Global Variable GUID – GlobalVariable.c
	D.5 Disk I/O Driver - DiskIo.h
	D.6 Disk I/O Driver - DiskIo.c
	D.7 Disk I/O Driver - ComponentName.c

	Appendix E EFI 1.10.14.62 Sample Drivers
	Appendix F Glossary

