Contents

1 Introduction .. 7
 1.1 Design Flow .. 7
 1.2 Definition of Terms ... 8
 1.3 Reference Documents ... 8

2 Packaging Technology ... 9
 2.1 Non-Critical to Function Solder Joints .. 11
 2.2 Package Mechanical Requirements .. 12

3 Thermal Specifications .. 13
 3.1 Thermal Design Power (TDP) ... 13
 3.2 Case Temperature ... 13

4 Thermal Metrology .. 15
 4.1 Die Temperature Measurements ... 15
 4.1.1 Zero Degree Angle Attach Methodology .. 15
 4.2 Airflow Characterization ... 17

5 ATX Reference Thermal Solution ... 19
 5.1 Operating Environment ... 19
 5.2 Board-Level Components Keepout Dimensions ... 22
 5.3 Reference Heatsink Thermal Solution Assembly ... 23
 5.4 Mechanical Design Envelope .. 23
 5.4.1 Extruded Heatsink Profiles ... 23
 5.4.2 Heatsink Orientation ... 23
 5.4.3 Thermal Interface Material .. 23
 5.4.4 Heatsink Clip ... 24
 5.4.5 Anchor ... 24
 5.5 Reliability Guidelines ... 25
 5.6 Alternate Heatsink Thermal Solution Assembly .. 25
 5.7 Alternate Heatsink Mechanical Design Envelope ... 27
 5.7.1 Extruded Heatsink Profiles ... 27
 5.7.2 Heatsink Clip ... 27
 5.7.3 Anchor ... 28
 5.7.4 Ramp Retainer .. 28
 5.7.5 Thermal Interface Material .. 28

A Thermal Solution Component Suppliers ... 29

B Mechanical Drawings for Package & Reference Thermal Solution 31

C Mechanical Drawings for Alternate Thermal Solution ... 35
Figures

1-1 Thermal Design Process .. 7
2-1 IOH Package Dimensions (Top View) .. 9
2-2 IOH Package Dimensions (Side View) .. 9
2-3 IOH Package Dimensions (Bottom View) ..10
2-4 Non-Critical to Function Solder Joints ...11
4-1 Thermal Solution Decision Flow Chart ...16
4-2 Zero Degree Angle Attach Heatsink Modifications..16
4-3 Zero Degree Angle Attach Methodology (Top View) ..17
4-4 Airflow and Temperature Measurement Locations ..17
5-1 ATX Boundary Conditions ..20
5-2 Side View of ATX Boundary Conditions ..21
5-3 Heatsink Board Component Keepout ..22
5-4 Reference Heatsink Assembly ..23
5-5 Alternate Heatsink Assembly ...25
5-6 Retention Mechanism Component Keepout Zones for Alternate Heatsink26
5-7 Retention Mechanism Component Keepout Zones for Alternate Heatsink27
B-1 IOH Package Drawing ..32
B-2 Heatsink Extrusion Drawing ..33
B-3 Z-Clip Wire ..34
C-1 Heatsink Extrusion Drawing ...36
C-2 Heat Sink Extrusion Detail ..37
C-3 Anchor ..38
C-4 Ramp Retainer - Page 1 ..39
C-5 Ramp Retainer - Page 2 ..40
C-6 Wire Preload Clip ..41

Tables

3-1 Intel® X58 Express Chipset IOH Thermal Design Power ..13
3-2 Intel® X58 Express Chipset Thermal Specification ..13
5-1 IOH Thermal Solution Boundary Conditions ...20
5-2 Honeywell PCM45 F* TIM Performance as a Function of Attach Pressure24
5-3 Reliability Guidelines ..25
A-1 Reference Heatsink Enabled Components ...29
A-2 Alternate Heatsink - Preload Wavesolder Heatsink (PWHS) Components29
A-3 Supplier Contact Information ...29
B-1 Mechanical Drawing List ...31
C-1 Mechanical Drawing List ...35
Revision History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>-001</td>
<td>Initial release</td>
<td>November 2008</td>
</tr>
<tr>
<td>-002</td>
<td>Updated idle power</td>
<td>March 2009</td>
</tr>
<tr>
<td></td>
<td>Updated Reference Document link</td>
<td></td>
</tr>
<tr>
<td>-003</td>
<td>Updated idle power</td>
<td>November 2009</td>
</tr>
</tbody>
</table>
The goals of this document are to:

- Outline the thermal and mechanical operating limits and specifications for the Intel® X58 Express Chipset IOH.
- Describe reference thermal solutions that meet the specifications of the Intel® X58 Express Chipset IOH.

Properly designed thermal solutions provide adequate cooling to maintain the Intel® X58 Express Chipset IOH case temperatures at or below thermal specifications. This is accomplished by providing a low local-ambient temperature, ensuring adequate local airflow, and minimizing the case to local-ambient thermal resistance. By maintaining the IOH case temperature at or below the specified limits, a system designer can ensure the proper functionality, performance, and reliability of the IOH. Operation outside the functional limits can cause data corruption or permanent damage to the component.

The simplest and most cost-effective method to improve the inherent system cooling characteristics is through careful chassis design and placement of fans, vents, and ducts. When additional cooling is required, component thermal solutions may be implemented in conjunction with system thermal solutions. The size of the fan or heatsink can be varied to balance size and space constraints with acoustic noise.

This document addresses thermal design and specifications for the Intel® X58 Express Chipset IOH component only. For thermal design information on other chipset components, refer to the respective component TMDG. For the ICH10, refer to the Intel® I/O Controller Hub 10 (ICH10) Thermal and Mechanical Design Guidelines.

Note: Unless otherwise specified, the term “IOH” refers to the Intel® X58 Express Chipset IOH.

1.1 Design Flow

To develop a reliable, cost-effective thermal solution, several tools have been provided to the system designer. Figure 1-1 illustrates the design process implicit to this document and the tools appropriate for each step.

Figure 1-1. Thermal Design Process
1.2 Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-BGA</td>
<td>Flip Chip Ball Grid Array. A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip Connection) attach style. The primary electrical interface is an array of solder balls attached to the substrate opposite the die. Note that the device arrives at the customer with solder balls attached.</td>
</tr>
<tr>
<td>BLT</td>
<td>Bond Line Thickness. Final settled thickness of the thermal interface material after installation of heatsink.</td>
</tr>
<tr>
<td>Intel® QuickPath Interconnect</td>
<td>The Physical layer of Intel® QuickPath interconnect is a link based interconnect specification for Intel processors, chipset and I/O bridge components.</td>
</tr>
<tr>
<td>IOH</td>
<td>Input Output Hub. The IO Controller Hub component that contains the Intel® QuickPath Interface to the processor, and PCI Express® interface. It communicates with the ICH10 over a proprietary interconnect called the Direct Media Interface (DMI).</td>
</tr>
<tr>
<td>Intel ICH10</td>
<td>I/O Controller Hub 10.</td>
</tr>
<tr>
<td>T_{case_max}</td>
<td>Die temperature allowed. This temperature is measured at the geometric center of the top of the die.</td>
</tr>
<tr>
<td>TDP</td>
<td>Thermal design power. Thermal solutions should be designed to dissipate this target power level. TDP is not the maximum power that the IOH can dissipate.</td>
</tr>
</tbody>
</table>

1.3 Reference Documents

The reader of this specification should also be familiar with material and concepts presented in the following documents.

<table>
<thead>
<tr>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
</table>
2 Packaging Technology

The IOH uses a 37.5 mm, 8-layer flip chip ball grid array (FC-BGA) package (see Figure 2-1, Figure 2-2, and Figure 2-3). The complete package drawing can be found at Figure B-1. For information on the ICH10 package, refer to the Intel® I/O Controller Hub 10 (ICH10) Family Thermal and Mechanical Design Guidelines.

Figure 2-1. IOH Package Dimensions (Top View)

Figure 2-2. IOH Package Dimensions (Side View)

NOTES:
1. Primary datum-C and seating plan are defined by the spherical crowns of the solder balls (shown before motherboard attach)
2. All dimensions and tolerances conform to ANSI Y14.5M-1994
3. BGA has a pre-SMT height of 0.5±0.10 mm. Top of die above the motherboard after reflow is 2.36 ± 0.24 mm.
4. Shown before motherboard attach; FCBGA has a convex (dome shape) orientation before reflow and is expected to have a slightly concave (bowl shaped) orientation after reflow
Notes:

1. All dimensions are in millimeters.
2. All dimensions and tolerances conform to ANSI Y14.5M-1994.
2.1 Non-Critical to Function Solder Joints

Intel has defined selected solder joints of the IOH as non-critical to function (NCTF) when evaluating package solder joints post environmental testing. The IOH signals at NCTF locations are typically redundant ground or non-critical reserved, so the loss of the solder joint continuity at end of life conditions will not affect the overall product functionality. Figure 2-4 identifies the NCTF solder joints of the IOH package.
2.2 Package Mechanical Requirements

The IOH package has a bare die that is capable of sustaining a maximum static normal load of 15 lbf (67N). These mechanical load limits must not be exceeded during heatsink installation, mechanical stress testing, standard shipping conditions, and/or any other use condition.

Note: The heatsink attach solutions must not induce continuous stress to the IOH package with the exception of a uniform load to maintain the heatsink-to-package thermal interface.

Note: These specifications apply to uniform compressive loading in a direction perpendicular to the die top surface.

Note: These specifications are based on limited testing for design characterization. Loading limits are for the package only.

§
3 Thermal Specifications

3.1 Thermal Design Power (TDP)

Analysis indicates that real applications are unlikely to cause the IOH component to consume maximum power dissipation for sustained time periods. Therefore, in order to arrive at a more realistic power level for thermal design purposes, Intel characterizes power consumption based on known platform benchmark applications. The resulting power consumption is referred to as the Thermal Design Power (TDP). TDP is the target power level to which the thermal solutions should be designed. TDP is not the maximum power that the IOH can dissipate.

For TDP specifications, see Table 3-1 for the Intel® X58 Express Chipset IOH. FC-BGA packages have poor heat transfer capability into the board and have minimal thermal capability without thermal solution. Intel recommends that system designers plan for a heatsink with the IOH.

<table>
<thead>
<tr>
<th>Product</th>
<th>TDP</th>
<th>Idle</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOH 36S</td>
<td>24.1 W</td>
<td>13.0 W</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>IOH 36S</td>
<td>20–24 W</td>
<td>13.0 W</td>
<td>1, 3, 4</td>
</tr>
</tbody>
</table>

Notes:
1. These specifications are based on silicon measurements.
2. TDP assumes the following configuration: 36 PCIe® Gen. 2.0 lanes configured as 2 x16 PEG and 1 x4 PCIe, the DMI link to the ICH and the Intel® QuickPath Interconnect operating at 6.4 GT /s.
3. TDP assumes the following configuration: 36 PCIe® Gen. 2.0 lanes configured as 2 x16 PEG and 1 x4 PCIe, the DMI link to the ICH and the Intel QuickPath Interconnect operating at 4.8 GT /s.
4. The idle power assumes the case temperature is at or below 65 °C.

3.2 Case Temperature

To ensure proper operation and reliability of the IOH, the case temperature must comply with the thermal profile as specified in Table 3-2. System and/or component level thermal solutions are required to maintain these temperature specifications. Refer to Chapter 4 for guidelines on accurately measuring package case temperatures.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tcase_max</td>
<td>100 °C</td>
</tr>
<tr>
<td>Tcase_min</td>
<td>5 °C</td>
</tr>
<tr>
<td>Tcontrol</td>
<td>95 °C</td>
</tr>
</tbody>
</table>

Note: The reference thermal solution is described in Chapter 5, “ATX Reference Thermal Solution”.

§
4 Thermal Metrology

The system designer must make temperature measurements to accurately determine the thermal performance of the system. Intel has established guidelines for proper techniques to measure the IOH die temperatures. Section 4.1 provides guidelines on how to accurately measure the IOH die temperatures. The flowchart in Figure 4-1 offers useful guidelines for thermal performance and evaluation.

4.1 Die Temperature Measurements

To ensure functionality and reliability, the T_{case} of the IOH must be maintained at or between the maximum/minimum operating range of the temperature specification as noted in Table 3-2. The surface temperature at the geometric center of the die corresponds to T_{case}. Measuring T_{case} requires special care to ensure an accurate temperature measurement.

Temperature differences between the temperature of a surface and the surrounding local ambient air can introduce errors in the measurements. The measurement errors could be due to a poor thermal contact between the thermocouple junction and the surface of the package, heat loss by radiation and/or convection, conduction through thermocouple leads, and/or contact between the thermocouple cement and the heatsink base (if a heatsink is used). For maximum measurement accuracy, only the 0° thermocouple attach approach is recommended.

4.1.1 Zero Degree Angle Attach Methodology

1. Mill a 3.3 mm (0.13 in.) diameter and 1.5 mm (0.06 in.) deep hole centered on the bottom of the heatsink base.
2. Mill a 1.3 mm (0.05 in.) wide and 0.5 mm (0.02 in.) deep slot from the centered hole to one edge of the heatsink. The slot should be parallel to the heatsink fins (see Figure 4-2).
3. Attach thermal interface material (TIM) to the bottom of the heatsink base.
4. Cut out portions of the TIM to make room for the thermocouple wire and bead. The cutouts should match the slot and hole milled into the heatsink base.
5. Attach a 36 gauge or smaller calibrated K-type thermocouple bead or junction to the center of the top surface of the die using a high thermal conductivity cement. During this step, ensure no contact is present between the thermocouple cement and the heatsink base because any contact will affect the thermocouple reading. It is critical that the thermocouple bead makes contact with the die (see Figure 4-3).
6. Attach heatsink assembly to the IOH and route thermocouple wires out through the milled slot.
Figure 4-1. Thermal Solution Decision Flow Chart

- Start
- Attach device to board using normal reflow process.
- Attach thermocouples using recommended metrology. Setup the system in the desired configuration.
- Run the Power program and monitor the device die temperature.
- $T_{die}>T_{spec}$?
 - Yes: Select Heatsink
 - No: Heatsink Required
- Heatsink Required?
 - Yes: Attach device to board using normal reflow process.
 - No: End

Figure 4-2. Zero Degree Angle Attach Heatsink Modifications

NOTE: Not to scale.
4.2 Airflow Characterization

Figure 4-4 describes the recommended location for air temperature measurements measured relative to the component. For a more accurate measurement of the average approach air temperature, Intel recommends averaging temperatures recorded from two thermocouples spaced about 25 mm [1.0 in] apart. Locations for both a single thermocouple and a pair of thermocouples are presented.
Airflow velocity can be measured using sensors that combine air velocity and temperature measurements. Typical airflow sensor technology may include hot wire anemometers. Figure 4-4 provides guidance for airflow velocity measurement locations which should be the same as used for temperature measurement. These locations are for a typical JEDEC test setup and may not be compatible with chassis layouts due to the proximity of the processor to the IOH. The user may have to adjust the locations for a specific chassis. Be aware that sensors may need to be aligned perpendicular to the airflow velocity vector or an inaccurate measurement may result. Measurements should be taken with the chassis fully sealed in its operational configuration to achieve a representative airflow profile within the chassis.
The design strategy for the Intel® X58 Express Chipset thermal solution is to reuse a z-clip heatsink originally designed for the Intel® 965 Express Chipset. This is a change from the previous revision of this document. The change is based on structural analysis and testing for solder joint reliability that showed minimal risk for the critical to function solder joints.

The Preload Wave Solder Heatsink (PWHS) documented in the previous revision of this document is now listed as an alternate thermal solution for designs that deviate from the core layout for the position of the IOH with respect to the processor, chassis mounting holes or IOH pad sizes.

This section describes the overall requirements for the ATX heatsink reference thermal solution including critical-to-function dimensions, operating environment, and validation criteria. Other chipset components may or may not need attached thermal solutions depending on your specific system local-ambient operating conditions.

5.1 Operating Environment

The IOH reference thermal solution is dependent on the exhaust air flow from the processor thermal solution. This airstream is assumed to be approaching the heatsink at a 30° angle from the processor thermal solution, see Figure 5-1 and Figure 5-2 for more details.

This airflow can be achieved by using a processor heatsink providing omni-directional airflow, such as a radial fin or "X" pattern heatsink. Such a heatsink can deliver airflow to the IOH and other areas like the voltage regulator. In addition, IOH board placement should ensure that the IOH heatsink is within the air exhaust area of the processor heatsink.

The local ambient air temperature, \(T_A \), at the IOH heatsink inlet is dependent on the processor power dissipation, see Table 5-1 for assumed conditions. The thermal designer must carefully select the location to measure airflow to get a representative sampling. These environmental assumptions are based on a 35 °C maximum system external temperature measured at sea level.

Finally, heatsink orientation alone does not ensure that airflow speed will be achieved. The system integrator should use analytical or experimental means to determine whether a system design provides adequate airflow speed for a particular to the heatsink.

Three system level boundary conditions will be used to determine IOH thermal solution requirements identified as Case 1 through 3.

- Low external ambient (25 °C)/ idle power for the components (Case 3). This covers the system idle acoustic condition.
- Low external ambient (25 °C)/ TDP for the components (Case 2). The processor thermal solution fan speed is limited by the thermistor in the fan hub.
- High external ambient (35 °C)/ TDP for the components (Case 1). This covers the maximum processor thermal solution fan speed condition.
Table 5-1. IOH Thermal Solution Boundary Conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>External Ambient</th>
<th>IOH Power</th>
<th>Processor Power</th>
<th>$T_{A,Local}$</th>
<th>Target Ψ_{ca}</th>
<th>Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35 °C</td>
<td>TDP</td>
<td>TDP</td>
<td>56 °C</td>
<td>1.83 °C/W</td>
<td>756 LFM[3.8 m/S]</td>
</tr>
<tr>
<td>2</td>
<td>25 °C</td>
<td>TDP</td>
<td>TDP</td>
<td>55 °C</td>
<td>1.86 °C/W</td>
<td>420 LFM[2.1m/S]</td>
</tr>
<tr>
<td>3</td>
<td>25 °C</td>
<td>Idle</td>
<td>Idle</td>
<td>37 °C</td>
<td>3.29 °C/W</td>
<td>163 LFM[0.83m/S]</td>
</tr>
</tbody>
</table>

Notes:
1. Target Ψ_{ca} for Case 3 is based on the idle conditions listed in Table 3-1.

Figure 5-1. ATX Boundary Conditions
Figure 5-2. Side View of ATX Boundary Conditions
5.2 Board-Level Components Keepout Dimensions

The location of hole patterns and keepout zones for the reference thermal solution are shown in Figure 5-3.

Figure 5-3. Heatsink Board Component Keepout
5.3 Reference Heatsink Thermal Solution Assembly

The reference thermal solution for the IOH is a passive aluminum extruded heatsink with a preapplied thermal interface material and a z-clip to attach the extrusion to anchors on the board.

The heatsink is attached to the motherboard by assembling the anchors into the board and sending the board through the wave solder. After wavesolder the heatsink is positioned on the IOH and the z-clips snapped into the anchors.

Figure 5-4. Reference Heatsink Assembly

5.4 Mechanical Design Envelope

While each design may have unique mechanical volume and height restrictions or implementation requirements, the height, width, and depth constraints typically placed on the Intel® X58 Express Chipset IOH thermal solution are shown in Figure 5-3. The maximum height of the installed IOH thermal solution is approximately 33.7 mm [1.3 inches].

5.4.1 Extruded Heatsink Profiles

The reference thermal solution uses an extruded heatsink for cooling the IOH. Appendix A lists a supplier for this extruded heatsink. Other heatsinks with similar dimensions and increased thermal performance may be available. Full mechanical drawing of this heatsink is provided in Appendix B.

5.4.2 Heatsink Orientation

Since this solution is based on a unidirectional heatsink, mean airflow direction must be aligned with the direction of the heatsink fins. The use of an omni-directional processor heatsink as described in Section 5.1 will facilitate but not ensured adequate air flow.

5.4.3 Thermal Interface Material

A thermal interface material (TIM) provides conductivity between the IHS and heatsink. The reference thermal solution uses Honeywell PCM45 F*, 0.25 mm (0.010 in.) thick, 20 mm x 20 mm (0.79 in. x 0.79 in.) square.

Note: Unflowed or “dry” Honeywell PCM45 F has a material thickness of 0.010 inch. The flowed or “wet” Honeywell PCM45F has a material thickness of ~0.003 inch after it reaches its phase change temperature.
5.4.3.1 **Effect of Pressure on TIM Performance**

As mechanical pressure increases on the TIM, the thermal resistance of the TIM decreases. This phenomenon is due to the decrease of the bond line thickness (BLT). BLT is the final settled thickness of the thermal interface material after installation of heatsink. The effect of pressure on the thermal resistance of the Honeywell PCM45 F TIM is shown in Table 5-2.

Intel provides both End of Line and End of Life TIM thermal resistance values of Honeywell PCM45F. End of Line and End of Life TIM thermal resistance values are obtained through measurement on a Test Vehicle similar to Intel® X58 Express Chipset’s physical attributes using an extruded aluminum heatsink. The End of Line value represents the TIM performance post heatsink assembly while the End of Life value is the predicted TIM performance when the product and TIM reaches the end of its life. The heatsink clip provides enough pressure for the TIM to achieve End of Line and End of Life thermal resistances shown in Figure 5-2.

<table>
<thead>
<tr>
<th>Pressure on Thermal Solution and Package Interface (PSI)</th>
<th>Thermal Resistance (°C × in²)/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End of Line</td>
</tr>
<tr>
<td>50</td>
<td>0.533</td>
</tr>
</tbody>
</table>

5.4.4 **Heatsink Clip**

The reference solution Z-clip is a new design to span the previously defined anchor locations. It provide a constant preload on the extrusion for the TIM. See Appendix A for the part number and supplier information. See Appendix B for a mechanical drawings.

5.4.5 **Anchor**

The anchor from previous z-clip solutions will be reused. By using anchors that are separate from the extrusion the solderability of the anchors is improved. The elimination of the conduction path from pins in the extrusion reduces the chance for cold solder joints. This design incorporates a 45° bent leads to increase the anchor attach reliability over time. See Appendix A for the part number and supplier information. See Appendix B for a mechanical drawings.
5.5 Reliability Guidelines

Each motherboard, heatsink and attach combination may vary the mechanical loading of the component. Based on the end user environment, the user should define the appropriate reliability test criteria and carefully evaluate the completed assembly prior to use in high volume. Some general recommendations are shown in Table 5-3.

Table 5-3. Reliability Guidelines

<table>
<thead>
<tr>
<th>Test (1)</th>
<th>Requirement</th>
<th>Pass/Fail Criteria (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Shock</td>
<td>3 drops each for + and - directions in each of 3 perpendicular axes (i.e., total 18 drops) Profile: 50 g, Trapezoidal waveform, 4.3 m/s [170 in/s] minimum velocity change</td>
<td>Visual Check and Electrical Functional Test</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>Duration: 10 min/axis, 3 axes Frequency Range: 5 Hz to 500 Hz Power Spectral Density (PSD) Profile: 3.13 g RMS</td>
<td>Visual Check and Electrical Functional Test</td>
</tr>
</tbody>
</table>
| Thermal Cycling | • 7500 cycles (on/off) of minimum temperature 27 °C / maximum temperature 96 °C
• 1400 cycles (on/off) of minimum temperature 35 °C / maximum temperature 96 °C
• A 15 second dwell at high / low temperature for both test cycles | Thermal Performance |
| Humidity | 85% relative humidity, 55 °C, 576 hours | Visual Check |

Notes:
1. It is recommended that the above tests be performed on a sample size of at least twelve assemblies from three lots of material.
2. Additional pass/fail criteria may be added at the discretion of the user.

5.6 Alternate Heatsink Thermal Solution Assembly

The alternate reference thermal solution for the IOH is a passive extruded heatsink that uses two ramp retainers, a wire preload clip, and four motherboard anchors with pre-applied thermal interface. Figure 5-5 through Figure 5-7 shows the reference thermal solution assembly, associated components, and relevant keepout zones.

The heatsink is attached to the motherboard by assembling the anchors into the board, placing the heatsink, with the wire preload clip over the IOH and anchors at each of the corners, and securing the plastic ramp retainers through the anchor loops before snapping each retainer into the fin gap. Leave the wire preload clip loose in the extrusion during the wave solder process. The assembly is then sent through the wave process. Post wave, the wire preload clip is snapped into place on the hooks located on each of the ramp retainers. The clip provides the mechanical preload to the package. A thermal interface material is pre-applied to the heatsink bottom over an area which contacts the package die. See Section 5.7.5 for additional details.

Figure 5-5. Alternate Heatsink Assembly
Figure 5-6. Retention Mechanism Component Keepout Zones for Alternate Heatsink
5.7 Alternate Heatsink Mechanical Design Envelope

While each design may have unique mechanical volume and height restrictions or implementation requirements, the height, width, and depth constraints typically placed on the Intel® X58 Express Chipset IOH thermal solution are shown in Figure 5-6 and Figure 5-7. The maximum height of the installed IOH thermal solution is 38.1 mm [1.5 inches].

5.7.1 Extruded Heatsink Profiles

The reference thermal solution uses an extruded heatsink for cooling the IOH. Appendix A lists a supplier for this extruded heatsink. Other heatsinks with similar dimensions and increased thermal performance may be available. Full mechanical drawing of this heatsink is provided in Appendix C.

5.7.2 Heatsink Clip

The reference solution reuses the existing PWHS Z-clip. It provide a constant preload on the extrusion for the TIM. The ends of the Z-clip attach to features in the ramp retainer. See Appendix A for the part number and supplier information. See Appendix C for a mechanical drawings.
5.7.3 Anchor

For Intel® X58 Express Chipset based platforms the anchor from previous PWHS will be reused. By using anchors that are separate from the extrusion, the solderability of the anchors is improved. The elimination of the conduction path from pins in the extrusion reduces the chance for cold solder joints. This design incorporates a 45° bent leads to increase the anchor attach reliability over time. See Appendix A for the part number and supplier information. See Appendix C for a mechanical drawings.

5.7.4 Ramp Retainer

The ramp retainer is a molded plastic component that is reused from previous PWHS designs. It is integral to the ability of the design to shift the shock and vibration loads away from the IOH solder joints. By assembling the heatsink extrusion, anchors and ramp retainer before wave solder the tolerances between the top of the IOH and the extrusion are absorbed as the board cools from the wave solder process. See Appendix A for the part number and supplier information. See Appendix C for a mechanical drawings.

5.7.5 Thermal Interface Material

A thermal interface material (TIM) provides conductivity between the IHS and heat sink. The reference thermal solution uses Honeywell PCM45 F*, 0.25 mm (0.010 in.) thick, 20 mm x 20 mm (0.79 in. x 0.79 in.) square.
A Thermal Solution Component Suppliers

Note: These vendors and devices are listed by Intel as a convenience to Intel's general customer base, but Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or these devices may be subject to change without notice.

Table A-1. Reference Heatsink Enabled Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Intel PN</th>
<th>AVC</th>
<th>CCI</th>
<th>Foxconn</th>
<th>Wieson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatsink Assembly</td>
<td>E16429-001</td>
<td></td>
<td></td>
<td>1A013WV00</td>
<td></td>
</tr>
<tr>
<td>Anchor</td>
<td>A13494-008</td>
<td></td>
<td></td>
<td>HB9703E-DW</td>
<td>G2100C888-064H</td>
</tr>
</tbody>
</table>

Table A-2. Alternate Heatsink - Preload Wavesolder Heatsink (PWHS) Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Intel PN</th>
<th>AVC</th>
<th>CCI</th>
<th>Foxconn</th>
<th>Wieson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatsink & TIM</td>
<td>D77030-001</td>
<td>S907C00002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp Retainer</td>
<td>C85370-001</td>
<td>P109000024</td>
<td>334C863501A</td>
<td>3EE77-002</td>
<td></td>
</tr>
<tr>
<td>Wire Clip</td>
<td>D29082-001</td>
<td>A208000233</td>
<td>334I833301A</td>
<td>3KS02-155</td>
<td></td>
</tr>
<tr>
<td>Anchor</td>
<td>C85376-001</td>
<td></td>
<td></td>
<td>2Z802-015</td>
<td>G2100C888-143</td>
</tr>
</tbody>
</table>

Table A-3. Supplier Contact Information

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Contact</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVC (Asia Vital Corporation)</td>
<td>David Chao</td>
<td>+886-2-2299-6930 ext. 7619</td>
<td>david_chao@avc.com.tw</td>
</tr>
<tr>
<td></td>
<td>Raichel Hsu</td>
<td>+886-2-2299-6930 ext. 7630</td>
<td>raichel_hsu@avc.com.tw</td>
</tr>
<tr>
<td>CCI (Chaun Choung Technology)</td>
<td>Monica Chih</td>
<td>+886-2-2995-2666 (714) 739-5797</td>
<td>monica.chih@ccic.com.tw</td>
</tr>
<tr>
<td></td>
<td>Harry Lin</td>
<td></td>
<td>hlinack@aol.com</td>
</tr>
<tr>
<td>Foxconn</td>
<td>Jack Chen</td>
<td>(408) 919-6121</td>
<td>jack.chen@foxconn.com</td>
</tr>
<tr>
<td></td>
<td>Wanchi Chen</td>
<td>(408) 919-6135</td>
<td>wanchi.chen@foxconn.com</td>
</tr>
<tr>
<td>Wieson</td>
<td>Chary Lee</td>
<td>+886-2-2647-1896 ext. 6684</td>
<td>chary@wieson.com</td>
</tr>
<tr>
<td></td>
<td>Henry Liu</td>
<td>+886-2-2647-1896 ext. 6330</td>
<td>henry@wieson.com</td>
</tr>
</tbody>
</table>

Note: The enabled components may not be currently available from all suppliers. Contact the supplier directly to verify time of component availability.
Table B-1 lists the mechanical drawings included in this appendix.

Table B-1. Mechanical Drawing List

<table>
<thead>
<tr>
<th>Drawing Description</th>
<th>Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>"IOH Package Drawing"</td>
<td>Figure B-1</td>
</tr>
<tr>
<td>"Heatsink Extrusion Drawing"</td>
<td>Figure B-2</td>
</tr>
<tr>
<td>"Z-Clip Wire"</td>
<td>Figure B-3</td>
</tr>
</tbody>
</table>
Figure B-1. IOH Package Drawing
Figure B-2. Heatsink Extrusion Drawing
Figure B-3. Z-Clip Wire

NOTES:
1. THIS DRAWING TO BE USED IN COMBINATION WITH SUPPLIED 3D DRAWING AND DATABASE. ALL DIMENSIONS AND TOLERANCES ON THIS DRAWING TAKE PRIORITY OVER SUPPLIED FILE, AND ARE APPLICABLE AT PART FREE, UNCONSTRAINED STATE UNLESS INDICATED OTHERWISE.
2. TOLERANCES ON DIMENSIONED AND UNDIMENSIONED FEATURES UNLESS OTHERWISE SPECIFIED.
 - DIMENSIONS ARE IN MILLIMETERS.
 - TOLERANCES: LINEAR ± 0.25, ANGLES: ± 3°
3. MATERIAL:
 - TYPE: ASTM A228 MUSIC WIRE
 - Ø 1.8 ± 0.1MM
 - PLATING: ELECTRO-LESS NICKEL OR EQUIVALENT UPON INTEL APPROVAL.
4. CRITICAL TO FUNCTION DIMENSION
5. MARK WITH INTEL P/N AND REVISION PER INTEL MARKING STANDARD 164997; PER SEC 3.8 (POLYETHYLENE BAG)
6. REMOVE ALL SHARP EDGES AND BURRS.
7. ALL DIMENSIONS SHOWN SHALL BE MEASURED FOR FAI.
8. ALL SECONDARY UNIT DIMENSIONS ARE FOR REFERENCE ONLY.
Table C-1 lists the mechanical drawings included in this appendix.

Table C-1. Mechanical Drawing List

<table>
<thead>
<tr>
<th>Drawing Description</th>
<th>Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Heatsink Extrusion Drawing”</td>
<td>Figure C-1</td>
</tr>
<tr>
<td>“Heat Sink Extrusion Detail”</td>
<td>Figure C-2</td>
</tr>
<tr>
<td>“Anchor”</td>
<td>Figure C-3</td>
</tr>
<tr>
<td>“Ramp Retainer - Page 1”</td>
<td>Figure C-4</td>
</tr>
<tr>
<td>“Ramp Retainer - Page 2”</td>
<td>Figure C-5</td>
</tr>
<tr>
<td>“Wire Preload Clip”</td>
<td>Figure C-6</td>
</tr>
</tbody>
</table>
Figure C-1. Heatsink Extrusion Drawing

THIS DRAWING CONTAINS INTEL CORPORATION CONFIDENTIAL INFORMATION. IT IS DISCLOSED IN CONFIDENCE AND ITS CONTENTS MAY NOT BE DISCLOSED, REPRODUCED, DISPLAYED OR MODIFIED, WITHOUT THE PRIOR WRITTEN CONSENT OF INTEL CORPORATION.

REVISION HISTORY

ZONE REV DESCRIPTION DATE
A PPR O

A INITIAL RELEASE 09/08/06

- D77030 1DWG. NO SHT.

DEPARTMENT
R CORP.

2200 MISSION COLLEGE BLVD
P.O. BOX 58119
SANTA CLARA, CA 95052-8119 PST

TITLE
HS, PWSHS, GUARDFISH BW, AT

SIZE DRAWING NUMBER
A1 D77030

SCALE: 2

DO NOT SCALE DRAWING SHEET 1 OF 2

SEE NOTES

FINISH

MATERIAL

08/17/06 FRED ANDERS
DATE
APPROVED BY
--
08/17/06 C BERMEN
DATE CHECKED BY
08/07/06 KG TAN
DATE
DRAWN BY
08/07/06 KG TAN
DATE
DESIGNED BY

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS AND TOLERANCES IN ACCORDANCE WITH ASME Y14.5M-1994
DIMENSIONS ARE IN MILLIMETERS
THIRD ANGLE PROJECTION

PARTS LIST

DESCRIPTION PART NUMBER ITEM NO QTY

HSNK, EXT D, FBGA, 8, AL D77030-001 TOP

NOTES:
1. THIS DRAWING TO BE USED IN CONJUNCTION WITH THE SUPPLIED 3D DATABASE FILE. ALL DIMENSIONS AND TOLERANCES ON THIS DRAWING TAKE PRECEDENCE OVER SUPPLIED FILE.
2. ALL SECONDARY UNIT DIMENSIONS ARE FOR REFERENCE ONLY. TOLERANCES SHALL BE CALCULATED FROM PRIMARY UNITS TO AVOID TRUNCATION ERRORS.
3 CRITICAL TO FUNCTION DIMENSION
4. ANY TOOLING DESIGN SHALL BE SUBMITTED TO AND APPROVED BY INTEL ENGINEERING PRIOR TO CONSTRUCTION OF THE TOOLS.
5 MARK ASSEMBLY WITH PART NUMBER AND VENDOR IDENTIFICATION PER INTEL MARKING STANDARD 164997 APPROXIMATELY WHERE SHOWN.
6. REMOVE ALL BURRS OR SHARP EDGES AROUND PERIMETER OF PART. BREAK ALL SHARP CORNERS, EDGES, AND BURRS TO 0.10MM MAX. SHARPNESS OF EDGES SUBJECT TO HANDLING ARE REQUIRED TO MEET UL1439 TEST.
7. MATERIAL: 6063-T5 ALUMINUM

8. UNLESS OTHERWISE NOTED, TOLERANCES ON DIMENSIONED AND UNDIMENSIONED FEATURES ARE AS FOLLOWS: DIMENSIONS ARE IN MILLIMETERS. TOLERANCES: LINEAR 0.25 ANGULAR 1

9. FINISH: CHEMICAL ETCH
10 APPLY HONEYWELL TIM PCM45F (STD SIZE 20mm x 20mm) AT CENTER OF HEAT SINK BASE

8X FULL ROUND

SEE DETAIL A

SEE DETAIL B

ALL FINS IN OUTER COLUMN MUST BE INLINE OR CONVEX TO MIDDLE FINS

8X FULL ROUND

SEE DETAIL A

SEE DETAIL B
Figure C-2. Heat Sink Extrusion Detail
NOTES:
1. THIS DRAWING TO BE USED IN CONJUNCTION WITH SUPPLIED 3D DATABASE FILE. ALL DIMENSIONS AND TOLERANCES ON THIS DRAWING TAKE PRECEDENCE OVER SUPPLIED FILE AND ARE APPLICABLE AT PART FREE, UNCONSTRAINED STATE UNLESS INDICATED OTHERWISE.
2. TOLERANCES ON DIMENSIONED AND UNDIMENSIONED FEATURES UNLESS OTHERWISE SPECIFIED:
 - DIMENSIONS ARE IN MILLIMETERS.
 - FOR FEATURES SIZES < 10 MM: LINEAR .07
 - FOR FEATURES SIZES > 10 MM: LINEAR .08
 - ANGLES: 0.5
3. MATERIALS:
 - INSULATOR: POLYCARBONATE THERMOPLASTIC, UL 94V-0, BLACK (REF. GELEXAN 3412R-739)
 - CONTACT: BRASS OR EQUIVALENT UPON INTEL APPROVAL
 - CONTACT FINISH: .000050” MIN. NICKEL UNDERPLATING
 - SOLDER TAILS, 0.000100” MIN. TIN ONLY SOLDER (LEAD FREE).
4. MARK WITH INTEL P/N AND REVISION PER INTEL MARKING STANDARD 164997; PER SEC 3.8 (POLYETHYLENE BAG)
5. CRITICAL TO FUNCTION DIMENSIONS
6. NOTE REMOVED
7. DEFEAT: FLUSH TO 0.35 BELOW STRUCTURAL THICKNESS (GATE WELL OR GATE RECESS ACCEPTABLE)
8. FLASH: 0.15 MAX.
9. SINK: 0.25 MAX.
10. CRITICAL TO FUNCTION DIMENSIONS
11. EJECTION PINS, GATING, AND TOOLING INSERTS REQUIRE INTEL’S APPROVAL PRIOR TO TOOL CONSTRUCTION
12. ALL EJECTION PIN HOLES AND GATE FEATURES SHOWN ARE FOR REFERENCE ONLY.
13. EDGES SHOWN AS SHARP .01 MAX.
14. TOOLING REQUIREMENTS TO MAKE THIS PART SHALL BE THE PROPERTY OF INTEL, AND SHALL BE PERMANENTLY MARKED WITH INTEL MADE AND INTEL'S PART NUMBER.
15. ALL SECONDARY UNIT DIMENSIONS ARE FOR REFERENCE ONLY.
NOTES:
1. THIS DRAWING TO BE USED IN CONJUNCTION WITH SUPPLIED 3D DATABASE FILE. ALL DIMENSIONS AND TOLERANCES ON THIS DRAWING TAKE PRECEDENCE OVER SUPPLIED FILE AND ARE APPLICABLE AT PART FREE, UNCONSTRAINED STATE UNLESS INDICATED OTHERWISE.
2. TOLERANCES ON DIMENSIONED AND UNDIMENSIONED FEATURES UNLESS OTHERWISE SPECIFIED:
 - DIMENSIONS ARE IN MILLIMETERS.
 - FOR FEATURE SIZES < 10 MM: LINEAR 0.07
 - FOR FEATURE SIZES BETWEEN 10 AND 25 MM: LINEAR 0.08
 - FOR FEATURE SIZES BETWEEN 25 AND 50 MM: LINEAR 0.10
 - FOR FEATURE SIZES > 50 MM: LINEAR 0.18
 - ANGLES: 0.5
3. MATERIAL:
 - A) TYPE: ENVIRONMENTALLY COMPLIANT THERMOPLASTIC OR EQUIVALENT UPON INTEL APPROVAL (REF. GELEXAN 500ECR-739)
 - B) CRITICAL MECHANICAL MATERIAL PROPERTIES FOR EQUIVALENT MATERIAL SELECTION:
 - TENSILE YIELD STRENGTH (ASTM D638) > 57 MPa
 - TENSILE ELONGATION AT BREAK (ASTM D638) > 46%
 - FLEXURAL MODULUS (ASTM D638) 3116 MPa 10%
 - SOFTENING TEMPERATURE (VICAT, RATE B): 154 C
 - C) COLOR: APPROXIMATING BLACK, (REF GE 739)
 - D) REGRIND: 25% PERMISSIBLE.
 - E) VOLUME: 1.73e+03 CUBIC-MM (REF)
 - WEIGHT: 2.16 GRAMS (REF)
5. MARK PART WITH INTEL P/N, REVISION, CAVITY NUMBER AND DATE CODE APPROX WHERE SHOWN PER INTEL MARKING STANDARD 164997
6. CRITICAL TO FUNCTION DIMENSION
7. ALL DIMENSIONS SHOWN SHALL BE MEASURED FOR FAI
8. NOTE REMOVED
9. DEGREE: FLUSH TO 0.35 BELOW STRUCTURAL THICKNESS (GATE WELL OR GATE RECESS ACCEPTABLE)
10. FLASH: 0.15 MAX.
11. SINK: 0.25 MAX.
12. EJECTOR MARKS: FLUSH TO -0.25
13. PARTING LINE MISMATCH NOT TO EXCEED 0.25.
14. EJECTION PIN BOSES, GATING, AND TOOLING INSERTS REQUIRE INTEL'S APPROVAL PRIOR TO TOOL CONSTRUCTION. ALL EJECTION PIN BOSES AND GATE FEATURES SHOWN ARE FOR REFERENCE ONLY.
15. EDGES SHOWN AS SHARP 0.1 MAX.
16. TOOLING REQUIRED TO MAKE THIS PART SHALL BE THE PROPERTY OF INTEL, AND SHALL BE PERMANENTLY MARKED WITH INTEL'S NAME AND APPROPRIATE PART NUMBER.
17. ALL SECONDARY UNIT DIMENSIONS ARE FOR REFERENCE ONLY.

SEE DETAIL C
SEE DETAIL A
SEE DETAIL A
Figure C-6. Wire Preload Clip

NOTES:
1. THIS DRAWING TO BE USED IN CORRELATION WITH SUPPLIED DATABASE FILE. ALL DIMENSIONS AND TOLERANCES ON THIS DRAWING TAKE PRIORITY OVER SUPPLIED FILE AND ARE APPLICABLE AT PART FREE, UNCONSTRAINED STATE UNLESS OTHERWISE INDICATED.

2. TOLERANCES ON DIMENSIONED AND UNDIMENSIONED FEATURES UNLESS OTHERWISE SPECIFIED. DIMENSIONS ARE IN MILLIMETERS. TOLERANCES LINEAR ± 0.25, ANGLES ± 3°.

3. MATERIAL:
 TYPE: ASTM A228 MUSIC WIRE Ø 1.8 ± 0.1MM
 PLATING: ELECTRO-LESS NICKEL OR EQUIVALENT UPON INTEL APPROVAL.

4. CRITICAL TO FUNCTION DIMENSION

5. REMOVE ALL SHARP EDGES AND BURRS.

6. ALL SECONDARY UNIT DIMENSIONS ARE FOR REFERENCE ONLY.