| Intel PyTorch 1.13 |
ResNet50 v1.5 |
Image Recognition |
fp32 |
965.26 img/s |
1.27 |
76.13(%) |
|
64 |
| Intel PyTorch 1.13 |
ResNet50 v1.5 |
Image Recognition |
int8 |
3428.21 img/s |
4.59 |
75.99(%) |
|
116 |
| Intel TensorFlow 2.11 |
ResNet50 v1.5 |
Image Recognition |
int8 |
3899.15 img/s |
5.17 |
76.02(%) |
|
68 |
| Intel TensorFlow 2.11 |
ResNet50 v1.5 |
Image Recognition |
fp32 |
961.96 img/s |
1.26 |
76.48(%) |
|
64 |
| Intel PyTorch 1.13 |
ResNet50 v1.5 |
Image Recognition |
fp32 |
938.09 img/s |
1.27 |
|
21.31992 |
1 |
| Intel PyTorch 1.13 |
ResNet50 v1.5 |
Image Recognition |
int8 |
3121.72 img/s |
4.26 |
|
6.406724 |
1 |
| Intel TensorFlow 2.11 |
ResNet50 v1.5 |
Image Recognition |
int8 |
3527.74 img/s |
4.87 |
|
5.669352 |
1 |
| Intel TensorFlow 2.11 |
ResNet50 v1.5 |
Image Recognition |
fp32 |
908.29 img/s |
1.32 |
|
22.0194 |
1 |
| OpenVINO 2022.3 |
ResNet50 v1.5 |
Image Recognition |
fp32 |
932.07 img/s |
1.27 |
76.46(%) |
|
1 |
| OpenVINO 2022.3 |
ResNet50 v1.5 |
Image Recognition |
int8 |
3675.76 img/s |
5.03 |
76.47(%) |
|
1 |
| OpenVINO 2022.3 |
ResNet50 v1.5 |
Image Recognition |
fp32 |
891.9 img/s |
1.17 |
|
|
64 |
| OpenVINO 2022.3 |
ResNet50 v1.5 |
Image Recognition |
int8 |
3749.98 img/s |
5.01 |
|
|
116 |
| Intel PyTorch 1.13 |
BERTLarge SQuAD1.1 seq_len=384 |
Natural Language Processing |
fp32 |
27.6 sent/s |
0.035 |
93.15 (F1) |
|
56 |
| Intel PyTorch 1.13 |
BERTLarge SQuAD1.1 seq_len=384 |
Natural Language Processing |
int8 |
80.26 sent/s |
0.105 |
92.92 (F1) |
|
56 |
| Intel PyTorch 1.13 |
BERTLarge SQuAD1.1 seq_len=384 |
Natural Language Processing |
fp32 |
24.7 sent/s |
0.03 |
|
809.7166 |
1 |
| Intel PyTorch 1.13 |
BERTLarge SQuAD1.1 seq_len=384 |
Natural Language Processing |
int8 |
98.3 sent/s |
0.129 |
|
203.4588 |
1 |
| Intel TensorFlow 2.11 |
BERTLarge seq_len=384 |
Natural Language Processing |
int8 |
69.56 sent/s |
0.089 |
92.47 (F1) |
|
16 |
| Intel TensorFlow 2.11 |
BERTLarge seq_len=384 |
Natural Language Processing |
fp32 |
27.75 sent/s |
0.036 |
92.98(F1) |
|
32 |
| Intel TensorFlow 2.11 |
BERTLarge seq_len=384 |
Natural Language Processing |
int8 |
78.35 sent/s |
0.1 |
|
255.2648 |
1 |
| Intel TensorFlow 2.11 |
BERTLarge seq_len=384 |
Natural Language Processing |
fp32 |
26.94 sent/s |
0.036 |
|
742.3905 |
1 |
| OpenVINO 2022.3 |
BERTLarge |
Natural Language Processing |
fp32 |
30.42 sent/s |
0.04 |
93.25(F1) |
|
1 |
| OpenVINO 2022.3 |
BERTLarge |
Natural Language Processing |
int8 |
95.91 sent/s |
0.13 |
92.65(F1) |
|
1 |
| OpenVINO 2022.3 |
BERTLarge |
Natural Language Processing |
fp32 |
27.15 sent/s |
0.036 |
|
|
16 |
| OpenVINO 2022.3 |
BERTLarge |
Natural Language Processing |
int8 |
95.42 sent/s |
0.13 |
|
|
16 |
| Intel PyTorch 1.13 |
SSD-ResNet34 COCO 2017 (1200 x1200) |
Object Detection |
fp32 |
21.37 img/s |
0.03 |
20.003(mAP) |
|
112 |
| Intel PyTorch 1.13 |
SSD-ResNet34 COCO 2017 (1200 x1200) |
Object Detection |
int8 |
86 img/s |
0.137 |
19.9(mAP) |
|
112 |
| Intel TensorFlow 2.11 |
SSD-ResNet34 |
Object Detection |
int8 |
86.98 img/s |
0.116 |
|
229.9379 |
1 |
| Intel TensorFlow 2.11 |
SSD-ResNet34 |
Object Detection |
fp32 |
21.71 img/s |
0.029 |
|
921.2345 |
1 |
| Intel TensorFlow 2.11 |
SSD-ResNet34 |
Object Detection |
int8 |
84.78 img/s |
0.11 |
|
|
56 |
| Intel TensorFlow 2.11 |
SSD-ResNet34 |
Object Detection |
fp32 |
21.4 img/s |
0.028 |
|
|
56 |
| Intel TensorFlow 2.11 |
SSD-ResNet34 |
Object Detection |
int8 |
84.78 img/s |
0.11 |
21.4 (mAP) |
235.9047 |
1 |
| Intel TensorFlow 2.11 |
SSD-ResNet34 |
Object Detection |
fp32 |
21.4 img/s |
0.028 |
22.4(mAP) |
934.5794 |
1 |
| OpenVINO 2022.3 |
SSD-ResNet34 |
Object Detection |
fp32 |
21.58 |
0.029 |
20(mAP) |
|
1 |
| OpenVINO 2022.3 |
SSD-ResNet34 |
Object Detection |
int8 |
88.82 |
0.12 |
19.9(mAP) |
|
1 |
| OpenVINO 2022.3 |
SSD-ResNet34 |
Object Detection |
fp32 |
20.96 |
0.028 |
|
|
64 |
| OpenVINO 2022.3 |
SSD-ResNet34 |
Object Detection |
int8 |
85.95 |
0.115 |
|
|
64 |
| Intel PyTorch 1.13 |
RNNT LibriSpeech |
Speech Recognition |
fp32 |
269.44 fps |
0.37 |
7.31 (WER) |
|
64 |
| Intel PyTorch 1.13 |
RNNT LibriSpeech |
Speech Recognition |
fp32 |
35.56 fps |
0.0449 |
|
562.4297 |
1 |
| Intel PyTorch 1.13 |
ResNeXt101 32x16d ImageNet |
Image Classification |
fp32 |
110.13 fps |
0.14 |
84.18(%) |
|
64 |
| Intel PyTorch 1.13 |
ResNeXt101 32x16d ImageNet |
Image Classification |
int8 |
410.65 fps |
0.54 |
84.05(%) |
|
116 |
| Intel PyTorch 1.13 |
ResNeXt101 32x16d ImageNet |
Image Classification |
fp32 |
111.55 fps |
0.148 |
|
179.2918 |
1 |
| Intel PyTorch 1.13 |
ResNeXt101 32x16d ImageNet |
Image Classification |
int8 |
385.95 fps |
0.52 |
|
51.82018 |
1 |
| OpenVINO 2022.3 |
ResNeXt101 32x16d ImageNet |
Image Classification |
fp32 |
110.66 |
0.15 |
84.17(%) |
|
1 |
| OpenVINO 2022.3 |
ResNeXt101 32x16d ImageNet |
Image Classification |
int8 |
1220.23 |
1.21 |
84.12(%) |
|
1 |
| OpenVINO 2022.3 |
ResNeXt101 32x16d ImageNet |
Image Classification |
fp32 |
109.59 |
0.14 |
|
|
64 |
| OpenVINO 2022.3 |
ResNeXt101 32x16d ImageNet |
Image Classification |
int8 |
1732.23 |
1.68 |
|
|
64 |
| Intel PyTorch 1.13 |
MaskR-CNN COCO 2017 |
Object Detection |
fp32 |
17.58 img/s |
0.024 |
37.8234.23 (bbox/segm) |
|
112 |
| Intel PyTorch 1.13 |
MaskR-CNN COCO 2017 |
Object Detection |
fp32 |
20.7 img/s |
0.027 |
|
966.1836 |
1 |
| Intel PyTorch 1.13 |
DLRM Criteo Terabyte |
Recommender |
fp32 |
1546948 rec/s |
2080 |
80.27(AUC) |
|
128 |
| Intel PyTorch 1.13 |
DLRM Criteo Terabyte |
Recommender |
int8 |
5413627 rec/s |
7351 |
80.24(AUC) |
|
128 |
| Intel TensorFlow 2.11 |
Transformer MLPerf |
Language Translation |
int8 |
98.1 sent/s |
0.126 |
26.96(%) |
|
448 |
| Intel TensorFlow 2.11 |
Transformer MLPerf |
Language Translation |
fp32 |
79.34 sent/s |
0.104 |
27.16(%) |
|
448 |
| Intel TensorFlow 2.11 |
Transformer MLPerf |
Language Translation |
int8 |
21.35 sent/s |
0.028 |
|
936.7681 |
1 |
| Intel TensorFlow 2.11 |
Transformer MLPerf |
Language Translation |
fp32 |
13.51 sent/s |
0.018 |
|
1480.385 |
1 |
| Intel TensorFlow 2.11 |
DIEN Amazon Books Data |
Recommender |
fp32 |
83852 rec/s |
135 |
|
0.238515 |
1 |
| Intel TensorFlow 2.11 |
DIEN Amazon Books Data |
Recommender |
fp32 |
309138 rec/s |
461 |
75.39(%) |
|
128 |
| Intel TensorFlow 2.11 |
3D-UNet |
Image Segmentation |
int8 |
5.12 samp/s |
0.006 |
85.09 (mean) |
3906.25 |
1 |
| Intel TensorFlow 2.11 |
3D-UNet |
Image Segmentation |
fp32 |
2.06 samp/s |
0.002 |
5.30 (mean) |
9708.738 |
1 |
| Intel TensorFlow 2.11 |
3D-UNet |
Image Segmentation |
int8 |
4.43 samp/s |
0.005 |
85.09 (mean) |
|
6 |
| Intel TensorFlow 2.11 |
3D-UNet |
Image Segmentation |
fp32 |
1.84 samp/s |
0.002 |
85.3 (mean) |
|
6 |
| OpenVINO 2022.3 |
3D-UNet |
Image Segmentation |
fp32 |
2 samp/s |
0.003 |
0.85 (mean) |
|
1 |
| OpenVINO 2022.3 |
3D-UNet |
Image Segmentation |
int8 |
6.99 samp/s |
0.01 |
0.85 (mean) |
|
1 |
| OpenVINO 2022.3 |
3D-UNet |
Image Classification |
fp32 |
1.83 samp/s |
0.002 |
|
|
6 |
| OpenVINO 2022.3 |
3D-UNet |
Image Segmentation |
int8 |
19.64 samp/s |
0.018 |
|
|
6 |