| Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | fp32 | 640.06 img/s | | 76.13(%) with BS=128 | | 1 |
| Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | int8 | 2139.92 img/s | | 75.99(%) with BS=128 | | 1 |
| Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | fp32 | 670.56 img/s | | | | 64 |
| Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | int8 | 2414.29 img/s | | | | 116 |
| Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | fp32 | 643.11 img/s | | 76.48(%) with BS=100 | | 1 |
| Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | int8 | 2396.80 img/s | | 76.02(%) with BS=100 | | 1 |
| Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | fp32 | 663.59 img/s | | | | 64 |
| Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | int8 | 2723.73 img/s | | | | 116 |
| OpenVINO | ResNet50 v1.5 | Image Recognition | fp32 | 653.36 img/s | | 76.46(%) | | 1 |
| OpenVINO | ResNet50 v1.5 | Image Recognition | int8 | 2517.58 img/s | | 76.36(%) | | 1 |
| OpenVINO | ResNet50 v1.5 | Image Recognition | fp32 | 666.39 img/s | | | | 64 |
| OpenVINO | ResNet50 v1.5 | Image Recognition | int8 | 2679.54 img/s | | | | 116 |
| Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | fp32 | 17.42 sent/s | | 93.15(F1) with BS=8 | | 1 |
| Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | int8 | 68.52 sent/s | | 92.92(F1) with BS=8 | | 1 |
| Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | fp32 | 19.77 sent/s | | | | 56 |
| Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | int8 | 58.05 sent/s | | | | 56 |
| Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | fp32 | 19.24 sent/s | | 92.98(F1) with BS=32 | | 1 |
| Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | int8 | 44.20 sent/s | | 92.24(F1) with BS=32 | | 1 |
| Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | fp32 | 19.00 sent/s | | | | 16 |
| Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | int8 | 42.27 sent/s | | | | 16 |
| OpenVINO | BERTLarge | Natural Language Processing | fp32 | 21.11 sent/s | | 93.25(F1) | | 1 |
| OpenVINO | BERTLarge | Natural Language Processing | int8 | 65.77 sent/s | | 92.65(F1) | | 1 |
| OpenVINO | BERTLarge | Natural Language Processing | fp32 | 20.17 sent/s | | | | 16 |
| OpenVINO | BERTLarge | Natural Language Processing | int8 | 62.83 sent/s | | | | 16 |
| Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | fp32 | 15.04 img/s | | 20 mAP with BS=16 | | 1 |
| Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | int8 | 61.19 img/s | | 19.9 mAP with BS=16 | | 1 |
| Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | fp32 | 14.95 img/s | | | | 112 |
| Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | int8 | 57.64 img/s | | | | 112 |
| Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | fp32 | 15.20 img/s | | 22.40 mAP | | 1 |
| Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | int8 | 60.93 img/s | | 21.40 mAP | | 1 |
| Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | fp32 | 15.11 img/s | | | | 56 |
| Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | int8 | 59.70 img/s | | | | 56 |
| OpenVINO | SSD-ResNet34 | Object Detection | fp32 | 76.85 img/s | | 20 mAP | | 1 |
| OpenVINO | SSD-ResNet34 | Object Detection | int8 | 307.83 img/s | | 19.9 mAP | | 1 |
| OpenVINO | SSD-ResNet34 | Object Detection | fp32 | 76.43 img/s | | | | 64 |
| OpenVINO | SSD-ResNet34 | Object Detection | int8 | 317.44 img/s | | | | 64 |
| Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | fp32 | 28.32 fps | | 7.31 WER with BS=64 | | 1 |
| Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | fp32 | 187.32 fps | | | | 448 |
| Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 77.49 fps | | 84.18(%) at BS=128 | | 1 |
| Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 268.56 fps | | 84.05(%) at BS=128 | | 1 |
| Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 76.79 fps | | | | 64 |
| Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 290.77 fps | | | | 116 |
| OpenVINO | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 15.18 fps | | 84.17(%) | | 1 |
| OpenVINO | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 61.68 fps | | 84.2(%) | | 1 |
| OpenVINO | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 15.09 fps | | | | 64 |
| OpenVINO | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 61.15 fps | | | | 64 |
| Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | fp32 | 14.37 img/s | | | | 1 |
| Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | fp32 | 12.39 img/s | | 37.82/34.23 bbox/segm | | 112 |
| Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | fp32 | 1062552.54 rec/s | | 80.27 AUC | | 128 |
| Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | int8 | 3712574.64 rec/s | | 80.24 AUC | | 128 |
| Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | fp32 | 12.06 sent/s | | 27.16 BLEU with BS=64 | | 1 |
| Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | int8 | 24.96 sent/s | | 27.11 BLEU with BS=64 | | 1 |
| Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | fp32 | 60.40 sent/s | | | | 448 |
| Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | int8 | 48.96 sent/s | | | | 448 |
| Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | fp32 | 69547.37 rec/s | | 77.18(%) with BS=128 | | 16 |
| Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | fp32 | 236578.43 rec/s | | | | 65536 |
| Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | fp32 | 1.45 samp/s | | 85.30 mean | | 1 |
| Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | int8 | 3.63 samp/s | | 85.08 mean | | 1 |
| Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | fp32 | 1.35 samp/s | | | | 6 |
| Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | int8 | 3.30 samp/s | | | | 6 |
| OpenVINO | 3D-UNet | Image Segmentation | fp32 | 1.44 samp/s | | 0.85 mean | | 1 |
| OpenVINO | 3D-UNet | Image Segmentation | int8 | 4.91 samp/s | | 0.85 mean | | 1 |
| OpenVINO | 3D-UNet | Image Segmentation | fp32 | 1.34 samp/s | | | | 6 |
| OpenVINO | 3D-UNet | Image Segmentation | int8 | 4.47 samp/s | | | | 6 |