
Text Generation with Markov Chains



Outline

Today we’ll be tackling a hodge-podge of more advanced topics in 

the NLP world. There will be several gear changes, but we’ll be 

covering:

● Markov Chains

● Recurrent Neural Networks/LSTMs

● Seq2Seq



Markov Chains

● Stochastic processes that have “no memory” are often called 

Markov processes. 

● The idea is that if I understand the probability of all changes 

from my current state, I can let dice rolls describe my next move. 

Let’s take a look at the most common example: “The Drunkard’s 

Walk”
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Joe has no memory or coordination. He would like 

to end up in the bathroom, but he actually has no 

ability to “aim” for it. Every time he takes a step, it 

will be in a random direction – completely 

independent of his previous steps.



BAR

RESTROOM

After taking his first step, Joe has no sense of 

where he just was, nor any more sense of where 

the bathroom is. He just knows, “I’m here now, and 

my next step is equally likely to be 1 unit in any 

direction.” 
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This process repeats indefinitely. This is sometimes 

called “Brownian Motion” and is characteristic of 

having all ”next steps” be equally likely. Let’s take a 

look.
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In this Markov chain, it’s possible for Joe to 

eventually make it to the restroom by having many 

fortuitous, but random, drunken steps. However, 

there will be a lot of stumbling around in the same 

general area for a while. One example fortuitous 

path could be…



Markov Chains

● There’s nothing in Markov chains that determines that all steps have to be equally likely 

though. Imagine I only ever eat fruit, vegetables, or steak. Let’s look at a table that 

shows the probabilities for my next meal, based on my current meal.

Next: Steak Next: Fruit Next: Vegetable

Current: Steak 10% 40% 40%

Current: Fruit 60% 5% 35%

Current: Vegetable 98% 1% 1%



Next: Steak Next: Fruit Next: Vegetable

Current: Steak 10% 40% 40%

Current: Fruit 60% 5% 35%

Current: Vegetable 98% 1% 1%

Vegetable

Current Meal



Next: Steak Next: Fruit Next: Vegetable

Current: Steak 10% 40% 40%

Current: Fruit 60% 5% 35%

Current: Vegetable 98% 1% 1%

Vegetable DICE Steak

Current Meal

X



Next: Steak Next: Fruit Next: Vegetable

Current: Steak 10% 40% 40%

Current: Fruit 60% 5% 35%

Current: Vegetable 98% 1% 1%
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Next: Steak Next: Fruit Next: Vegetable

Current: Steak 10% 40% 40%

Current: Fruit 60% 5% 35%

Current: Vegetable 98% 1% 1%

Vegetable DICE Steak

Current Meal

X DICE FruitX



NLP with Markov Chains

● Let’s apply this concept to NLP by looking at an example 

sentence

● How can we build a probabilistic understanding of this text?
“Both the brown fox and the brown dog slept.”



“Both the brown fox and the brown dog slept.”

Let’s build a dictionary that tracks the “current” two words, and what word comes 

after them. We can treat the two words as the “current state” and the next word 

as a “next available” state.



“Both the brown fox and the brown dog slept.”

{ (Both, the): [brown] }



“Both the brown fox and the brown dog slept.”

{ (Both, the): [brown], 

(the, brown): [fox], }



“Both the brown fox and the brown dog slept.”

{ (Both, the): [brown], 

(the, brown): [fox], 

(brown,fox): [and], }



“Both the brown fox and the brown dog slept.”

{ (Both, the): [brown], 

(the, brown): [fox], 

(brown,fox): [and],

(fox, and): [the], }



“Both the brown fox and the brown dog slept.”

{ (Both, the): [brown], 

(the, brown): [fox], 

(brown,fox): [and],

(fox, and): [the], 

(and, the): [brown],}



“Both the brown fox and the brown dog slept.”

{ (Both, the): [brown], 

(the, brown): [fox, dog], 
(brown,fox): [and],

(fox, and): [the], 

(and, the): [brown],}

Now if we are in a current state of “the 

brown”, both ”fox” and “dog” are 

equally likely to occur! 

So we have a state dependent chain of 

probabilities. 

We can use Markov Chains here!



{ (Both, the): [brown], 

(the, brown): [fox, dog], 

(brown,fox): [and],

(fox, and): [the], 

(and, the): [brown],

(brown, dog): [slept] }

Let’s start with a sentence seed of “and the” and this 

dictionary of word relationships and roll some dice.

”and the “

Text Generation with Markov Chains



{ (Both, the): [brown], 

(the, brown): [fox, dog], 

(brown,fox): [and],

(fox, and): [the], 

(and, the): [brown],

(brown, dog): [slept] }

Let’s start with a sentence seed of “and the” and this 

dictionary of word relationships and roll some dice.

”and the brown “

100% 

brown
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{ (Both, the): [brown], 

(the, brown): [fox, dog], 

(brown,fox): [and],

(fox, and): [the], 

(and, the): [brown],

(brown, dog): [slept] }

Let’s start with a sentence seed of “and the” and this 

dictionary of word relationships and roll some dice.

”and the brown fox “

50% dog, 50% fox. 

ROLL DICE.
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{ (Both, the): [brown], 

(the, brown): [fox, dog], 

(brown,fox): [and],

(fox, and): [the], 

(and, the): [brown],

(brown, dog): [slept] }

Text Generation with Markov Chains

Let’s start with a sentence seed of “and the” and this 

dictionary of word relationships and roll some dice.

”and the brown fox and the brown dog slept“

Because of our limited selection of words, 

we are now stuck completing the sentence.



Example output with a bigger corpus

the moon, and the newcomers and there are things about the lock 

on the deck of a monstrous odour...senses transfigured... 

boarding at that moment it struck me, known all along the banks 

were bent and dirty, he was shown the thing vanished with him. 

the dusk of the blasphemously stupendous bulk of our ascent of 

the real article, when marsh suddenly swerved from abstractions 

to the town and on april 2nd was driven by some remoter advancing 

bulk--and then came the final throaty rattle came. dr houghton of 

aylesbury, who had reigned as a beginning of a laugh. the horror

Input: A few H.P. Lovecraft Books 

Markov System:  Two word current state.



NLP with Markov Chains

● Markov chains work “well” if we have a BIG corpus to draw from originally. 

Then they won’t get stuck repeating the same sentences over and over.

● Even working “well” they tend to be a bit gibberish-y. That’s the price to pay 

for allowing topic jumps whenever words are shared. However, Markov chains 

can generate some good stuff too.

● One of the most simplistic, but still decently powerful, methods of text 

generation.

● What would happen if we allowed more than 2 words to define our current 

state? We’ll see in the exercise.



Text Generation with Neural Networks



A quick review of neural nets without NLP

Input Layer

Hidden Layer

Output Layer

● Input layer is a set of features, each arrow 

represents a weight (float number) that tells us how 

much each input contributes to each following step. 

● Each node in the hidden layer is some combination 

of all the inputs. The hidden layer acts as the ‘input’ 

for the output layer. 

● Backpropagation allows us to adjust the weights to 

improve accuracy and find the ‘correct’ way to 

combine the inputs and hidden layers to get the best 

possible results.



Neural Nets with NLP (Traditional)

● We can pre-process our data and assign every word some ID.

● Then we can use these IDs as inputs to our training by converting them to one-

hot-encoded vectors. 

● If we want to do classification, we are can then feed it through our neural net.

0    1    2     3   

The cat ran fast.



Hidden Layer

The – [1,0,0,0]

cat – [0,1,0,0]

ran – [0,0,1,0]

Is a legal document?

Veterinary Blog?

Neural Nets with NLP (Traditional)



The – [1,0,0,0]

cat – [0,1,0,0]

ran – [0,0,1,0]

Is a legal document?

Veterinary Blog?

Neural Nets with NLP (Traditional)

This doesn’t really have any concept 

of “order” built in. It’s just a bag of 

words approach. If we want to 

switch to text generation, we’re 

going to need to get fancier. Right 

now, the network just knows that 

“the”, “cat”, and “ran” are all 

present.



Recurrent Neural Nets (RNNs)

Input Layer

Hidden 
Layer

Output Layer

Input Layer

Hidden 
Layer

Output Layer

TIME 0 TIME 1



Recurrent Neural Nets (RNNs)

Input Layer

Hidden 
Layer

Output Layer

Input Layer

Output Layer

TIME 0 TIME 1

Memory Weight

(this also gets 

tweaked during back 

propagation).



Recurrent Neural Nets (RNNs)
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Recurrent Neural Nets (RNNs)
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Recurrent Neural Nets (RNNs)

● RNN’s allow us to remember what happened in our last decision making 

process. So if we’re asking it to learn to spell “HELLO” it needs to know what 

the previous letters are to make a good decision. You can’t just start at ’L’ and 

decide if you’re spelling the word right, and neither can it. So we feed the 

previous decision making back into the network at the next step. It can then 

learn: “I’ve got as input “HEL” and my last prediction was that last “L,” so I 

should probably add another ”L.”

● This adds an understanding of “timing” to our networks.



Vanishing Gradients and the LSTM

● In their simplest form, RNNs (and any deep network with lots of layers) don’t 

work as well as we’d like.

● Let’s take a look at the ”Vanishing Gradient Problem” by starting with a very 

simple deep network – 1 node per layer.

Input Layer

Hidden Layer 1

Hidden Layer 2

Hidden Layer 3

Output Layer



During back propagation, only Hidden Layer 3 ever sees the output directly. So the 

weights there can make a small change to get closer to the “right” answer. Layer 2 

only sees the change of Layer 3, so it can only adjust an even smaller step. Layer 1 

only sees Layer 2, so it has to make an even smaller change. This is a consequence 

of the chain rule.

Input Layer Output Layer

Vanishing Gradients and the LSTM

Learning Rate



This is a big problem for RNNs in particular, because we need to not only learn 

about our inputs and our hidden layers, we also need to be able to learn about the 

timing relationships… adding even MORE layers and weights that are further 

removed from the output. This vanishing “learning rate” means we will have to train 

for a very, very long time.

Input Layer Output Layer

Vanishing Gradients and the LSTM

Learning Rate

Previous 
Output Layer



Enter Long-Short-Term Memory (LSTM) units. For 

reasons beyond the scope of this discussion, 

LSTMs help combat the vanishing gradient 

problem by introducing an error carousel. This is 

used to restrain how small the gradients can get 

with some cool, but complicated and not 

particularly  important, gate logic. 

Essentially, this allows us to learn sequences, 

keeping track of the order without a vanishing 

gradient!

Vanishing Gradients and the LSTM

This is a big deal.



Keras – Simplifying LSTMs in Python

from keras.models import Sequential 

from keras.layers import Dense, Activation, LSTM

model = Sequential() 

model.add(LSTM(10, input_shape=(TIMESTEPS, FEATURE_LENGTH))) 

model.add(Dense(NUMBER_OF_OUTPUT_NODES)) 

model.add(Activation('softmax'))

Keras is a Python package that makes building and training TensorFlow neural 

networks really simple. We’ll be working with the ”Sequential” model which lets you 

add layers one at a time. As an example, let’s see how to build a 1-layer LSTM 

model with 10 hidden nodes.



Keras – Simplifying LSTMs in Python

Why does Keras expect a 2D matrix as input for the LSTM?

It needs a list of lists, ordered by time!

If we were trying to teach it the alphabet, we’d need to send in:

[[’A’], [’B’], [’C’]] as input to get [‘D’] back out. Keras knows that in this 

format ‘A’ comes before ’B’. Or more realistically, we’d need to send in one-hot 

encoded versions like so:

[[1,0,0,0], [0,1,0,0], [0,0,1,0]]  [0,0,0,1]



LSTMs for Text Generation

● Using this setup, we can chop our corpus up into character level sequences. 

“Hello” could be come [[‘H’],[‘e’],[’l’],[‘l’]] with a corresponding label of [‘o’]. If 

we do that for the whole corpus, the LSTM can learn how to spell and when 

spaces and line breaks tend to happen. 

● How well could this possible work?



LSTMs for Text Generation

Pretty well, actually. This method has been used to:

● Learn C++ syntax (while writing mostly gibberish code)

● Write fake math proofs in LaTeX

● Write fake Wikipedia articles in Markdown

● Write fake Shakespeare plays (including character names and appropriate 

line breaks)

● Many many more…

● http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


LSTMs for Text Generation

For the exercise, we will be going through the process of building an LSTM model 

with Keras, one-hot encoding all of our characters, building out an ID-to-Character 

conversion, and training/generating with our model. It will be guided, such that 

each question is a step in the process. 

One pre-warning: training these models can take a long time. So don’t be surprised 

if your initial runs are a bit gibberishy. If you start to see it spelling words correctly, 

you’re definitely headed in the right direction. It just may take some more training. 

This is one of the reasons we love GPUs. They take what can be days of training 

and make it hours.



LSTMs for Text Generation - Data Prep

Output:

Input:

# Step 1: generate input data 
# Inputs: one hot encoded characters: X

print(X[0]) # Sequence of three one hot encoded vectors, of length 59

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]



LSTMs for Text Generation - Data Prep

Output:

Input:

# Step 2: generate output data 
# Inputs: one hot encoded characters: y

print(y[0:3]) # First three “output” vectors we are trying to predict

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]



LSTMs for Text Generation - Define Model

# Step 3: define model architecture

from keras.models import Sequential
from keras.layers import LSTM, Dense, Activation

sequence_length = 40
model = Sequential()
model.add(LSTM(128, input_shape=(MAX, len(chars))))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))



LSTMs for Text Generation - Compile and Train

# Step 4: compile and train model

from keras.optimizers import RMSprop

optimizer = RMSprop(lr=0.01)

model.compile(loss='categorical_crossentropy', optimizer=optimizer)

for iteration in range(num_epochs):

model.fit(X, y, batch_size=128, nb_epoch=1)



Seq2Seq and other Advanced NLP



Advanced NLP Applications

There are several really interesting uses of NLP techniques happening at the 

moment that warrant some discussion. We’ll overview a few that are linked to 

Seq2Seq models:

● Automated Language Translation

● Questions answering / Task taking (Siri/Alexa/Ok Google/Chatbots)

● Speech Recognition / Text-to-Speech



● Oversimplifying, a Seq2Seq model is a set of two deep LSTM networks: one 

for encoding and one for decoding. 

Language Translation: Seq2Seq

魚 Japanese Encoding 
LSTM

A vector space 
representation of the 

concept of fish.

English Decoding LSTM Fish



● Both Tensorflow and Google have released Seq2Seq models you can play 

with (https://www.tensorflow.org/tutorials/seq2seq and 

https://google.github.io/seq2seq/ )

● It doesn’t only apply to translation. Anything that can be encoded and then 

decoded can use Seq2Seq. Examples: Image captioning, summarizing 

documents, conversation modeling, etc.

Language Translation: Seq2Seq

https://www.tensorflow.org/tutorials/seq2seq
https://google.github.io/seq2seq/


● Who was the 11th president of the United States?

● The 11th president of the USA was…?

● Who was George Dallas’ running mate?

● Who was the 11th president?

● Who was the president before Zachary Taylor?

That’s a lot of different ways to ask about James K. Polk. How can we teach a 

machine to know all of these are the same question?

Question Answering



● Semantic Indexing is step one. This can be similar to Seq2Seq – can we encode 

this question into some concepts that we can use to ask the appropriate 

question that the machine can understand.

Let’s encode this into a 3D tuple: Who was the 11th president of the USA? 

(president, 11, USA)  Search knowledge base for answer  James Polk

Question Answering



● With a large enough database that’s encoded in a consistent method, all we 

need to train is the semantic comprehension. This can be done with seq2seq 

models.

● Downside: limited by DB and encoding/decoding accuracy. 

● Another common QA method is document comprehension: can it read a 

document and extract the answer? If so, how can I determine what documents 

to feed it? Also deep learning questions.

● Chatbots are an extreme form of this where the answers need to be found and 

then sentences need to be generated to make the answer seem like natural 

conversation.

Question Answering



Speech Recognition

One Two Three Four Five Six

Sound signals are just amplitude vs time, so it’s hard to gather too much information 

from them. However, we can extract more useful things by looking at spectrograms.



Speech Recognition

Spectrograms encode the 

frequency and amplitude 

overtime. We can analyze these 

as a 2D matrix to try to extract 

speech, using convolutional neural 

network architectures and 

Seq2Seq style encoding and 

decoding.




