
Tutorials Readme
Intel R© Media SDK Tutorials

Intel Corporation

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF IN-
TEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE
NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE
OF THE INTEL PRODUCT COULD CREATE A SITUATIONWHERE PERSONAL INJURY
OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without no-
tice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other
Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s Web Site.

MPEG is an international standard for video compression/decompression promoted by ISO.
Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from
various entities, including Intel Corporation.

VP8 video codec is a high quality royalty free, open source codec deployed on millions of com-
puters and devices worldwide. Implementations of VP8 CODECs, or VP8 enabled platforms
may require licenses from various entities, including Intel Corporation.

Intel, the Intel logo, Intel Core are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the avail-
ability, functionality, or effectiveness of any optimization on microprocessors not manufactured
by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel micro-
processors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

i

Table of Contents

1 Introduction . 1
1.1 Exploring Media SDK via a simplified set of samples . 1
1.2 Windows specific notes . 1
1.3 How to obtain input content . 1
1.4 Tutorials Samples Index . 2

2 Tutorials Section 1 . 4
2.1 Hello World . 4

3 Tutorials Section 2: Decode . 5
3.1 simple 2 decode . 5
3.2 simple 2 decode vmem . 5

4 Tutorial Section 3: Encode . 6
4.1 simple 3 encode . 6
4.2 simple 3 encode vmem . 6
4.3 simple 3 encode vmem async . 6

5 Tutorial Section 4: VPP . 7
5.1 simple 4 vpp resize denoise . 7
5.2 simple 4 vpp resize denoise vmem . 7

6 Tutorial Section 5: Transcode . 8
6.1 simple 5 transcode . 8
6.2 simple 5 transcode opaque . 8
6.3 simple 5 transcode opaque async . 8
6.4 simple 5 transcode opaque async vppresize . 8
6.5 simple 5 transcode vmem . 9

7 Tutorial Section 6: Advanced Media SDK 10
7.1 How to create low latency pipelines and how to benchmark latency 10

7.1.1 simple 6 encode vmem lowlatency . 10
7.1.2 simple 6 transcode opaque lowlatency . 10

7.2 How to use VPP for pre- or post-processing purposes . 10
7.3 simple 6 decode vpp postproc . 10
7.4 simple 6 encode vmem vpp preproc . 10

Chapter 1: Introduction 1

1 Introduction

1.1 Exploring Media SDK via a simplified set of samples

The Intel R© Media Software Development Kit (Intel R© Media SDK) gives developers access
to specialized hardware acceleration capabilities for video decoding, encoding, and pre/post
processing (VPP).

Intel R© Media SDK helps developers rapidly write software that accesses hard-
ware acceleration for video codecs with automatic fallback on software if hardware
acceleration is not available. Intel R© Media SDK is available for downloading here:
http://www.intel.com/software/mediasdk/.

This quick-start tutorial illustrates how to use Intel R© Media SDK by stepping from simple
to complex. Concepts are added in layers. You are encouraged to use your favorite file difference
tool to compare what was added in each step. While the tutorial cannot cover every possible
usage, our goal is to provide starting points to shrink your TTM for a wide range of applications.

For simplicity and uniformity the tutorial focuses on the H.264 (AVC) video codec. Other
codecs supported by Intel Media SDK can be utilized in a similar way, often by a single config-
uration parameter. This unified approach can save significant development time and is a major
advantage to working with Media SDK.

Detailed comments explain the behavior of the code. You are encouraged to read and experi-
ment. For a deeper understanding of the SDK and details on specific parameters, please refer to
the Media SDK reference manual as well as the users guide. The set of samples packaged with
the SDK showcase many more parameters and scenarios and are a valuable reference as well.

All tutorial samples are self-contained unless otherwise noted. For Linux* makefiles are pro-
vided. For Windows* each tutorial has a Microsoft Visual Studio* 2012 solution and project. To
reduce redundancy and improve readability common code segments are located in the ‘common’
folder. These are tied to functions not directly related to Intel Media SDK functionality, such as
read/write of bit streams and raw frames. The ‘common’ folder also contains OS-specific device
handling and surface allocation implementations.

The tutorial samples were developed and tested using recent versions of Intel R© Media SDK
for Windows and Linux. For questions, or to report issues with the tutorial samples presented
in this article, please use the Intel Media SDK Forum.

1.2 Windows specific notes

• Please note, some Windows tutorials also require installation of Microsoft Windows SDK*.

• Since the introduction of Microsoft Window 8, Media SDK can now also be used with
DirectX 11 devices and surfaces. Media SDK relies on features in DirectX 11.1, and can
therefore not be used on Microsoft Windows 7. If target application must run on Microsoft
Windows 7 then Media SDK DirectX9 capabilities should be used instead. DirectX 11
example solutions/projects are created using Microsoft Visual Studio 2012 to ensure DirectX
11.1 environment support.

1.3 How to obtain input content

The tutorial assumes that the user has proper content to play with. Such content can be
acquired from many sources on the web. One example is the Peach open movie project "Big Buck
Bunny", which can be downloaded from http://www.bigbuckbunny.org. The video elementary
stream must be extracted before using. This can be done using ffmpeg with:

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

http://www.intel.com/software/mediasdk/
http://www.bigbuckbunny.org

Chapter 1: Introduction 2

ffmpeg \

-i big_buck_bunny_1080p_h264.mov \

-an -vcodec copy -bsf h264_mp4toannexb \

-f h264 bbb1920x1080.264

You can decode this stream to raw YUV format using ffmpeg, the tutorial decode examples,
or Media SDKs sample decode.
ffmpeg -i bbb1920x1080.264 bbb1920x1080.yuv

sample_decode h264 -i bbb1920x1080.264 -o bbb1920x1080.yuv

Storing all frames in raw format can take a lot of space. However, if disk capacity is a concern,
the samples and tutorials will work on a subset of frames. Number of frames processed can be
controlled via -vframes for ffmpeg or changing the decode sample/tutorial code.

1.4 Tutorials Samples Index

Tutorials are devided into few sections:

1 Media SDK "Hello World". Start and query a session

2-4 Decode, encode, and VPP as single component pipelines

5 Transcode: The most common compound workload

6 Advanced/compound Media SDK scenarios

Name Description

simple 1 session Sets up Intel Media SDK session and perform
queries to determine selected implementation
and which API version is used

simple 2 decode Decodes AVC stream into YUV file using sys-
tem memory surfaces, showcasing simple syn-
chronous decode pipeline flow

simple 2 decode vmem Adds use of video memory surfaces for im-
proved decode performance

simple 3 encode Encodes YUV frames from file into AVC
stream using surfaces in system mem-
ory, showcasing simple synchronous encode
pipeline flow

simple 3 encode vmem Adds use of video memory surfaces for im-
proved encode performance

simple 3 encode vmem async Adds asynchronous operation to previous ex-
ample, resulting in further improved perfor-
mance

simple 4 vpp resize denoise Showcases video frame processing (VPP) us-
ing system memory surfaces. Highlights
frame resize and denoise filter processing

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 1: Introduction 3

simple 4 vpp resize denoise vmem Adds use of video memory surfaces for im-
proved VPP performance

simple 5 transcode Transcodes (decode+encode) AVC stream to
another AVC stream using system memory
surfaces

simple 5 transcode opaque Same as previous sample but uses the Intel
Media SDK opaque memory feature. The
opaque memory type hides surface allocation
specifics and allows the SDK to select the best
type for the execution in HW or SW

simple 5 transcode opaque async Adds asynchronous operation to the
transcode pipeline implementation, resulting
in further improved performance

simple 5 transcode vmem Same as "simple 5 transcode" sample but
uses video memory surfaces instead. While
opaque surfaces use video memory internally,
application-level video memory allocation is
required to integrate components not in Me-
dia SDK.

simple 5 transcode opaque async vppresize Same as "simple 5 transcode opaque -
async" sample but pipeline includes VPP
resize.

simple 6 decode vpp postproc Similar to the simple 2 decode sample but
adds VPP post-processing capabilities to
showcase resize and ProcAmp

simple 6 encode vmem lowlatency Similar to the simple 3 encode vmem sample
with additional code to illustrate how to con-
figure an encode pipeline for low latency and
how to measure latency

simple 6 transcode opaque lowlatency Similar to the simple 5 transcode opaque
sample with additional code to illustrate how
to configure a transcode pipeline for low la-
tency and how to measure latency

simple 6 encode vmem vpp preproc Similar to the simple 3 encode vmem sample
but adds VPP pre-processing capabilities to
show frame color conversion from RGB32(4)
to NV12

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 2: Tutorials Section 1 4

2 Tutorials Section 1

2.1 Hello World

This tutorial sample showcases a very simple "hello world" type Intel R© Media SDK use case.

The sample shows how to initialize an Intel Media SDK session (MFXVideoSession) using the
target selection option "MFX IMPL AUTO ANY", which is recommended as a default setting
since it is appropriate for nearly all cases.

Initialization Differences Between Windows and Linux

There are not many differences between Media SDK for Windows and for Linux, but initial-
ization showcases some of the main ones. Please note that the main function is the same for all
operating systems but there is some OS specific code in the common directory.

Windows

The Windows releases contain software and hardware implementations.
MFX IMPL AUTO ANY implies the session will be initialized to use HW accelera-
tion (regardless in which adapter the Intel R© HD Graphics device resides) if available on
the processor. If HW acceleration is not available, the Intel Media SDK defaults to SW
implementation.

In the "initialize" function (called from main), associating a display handle with the session
is not necessary except when using video memory surfaces.

Linux

The Linux server release does NOT include a software implementation.
MFX IMPL AUTO ANY will attempt to start the session with hardware accelera-
tion. If the hardware implementation cannot be found initialization is not successful.

In the "initialize" function (called from main), associating a display handle with the session
is ALWAYS necessary for Linux.

Session queries (all OS)

After initialization, the session is queried to determine the actual target (via QueryIMPL)
that was selected. For Windows this could be HW or SW, though HW will be chosen if your
processor and driver support accelerated media processing. For Linux the implementation can
only be HW. The highest supported API version is returned via QueryVersion.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 3: Tutorials Section 2: Decode 5

3 Tutorials Section 2: Decode

3.1 simple 2 decode

This Intel R© Media SDK tutorial sample illustrates the most simplistic way of implementing
HW decode using system memory surfaces.

Note: In this and many of the following tutorials Intel GPA is an ideal tool to analyze and
identify potential performance bottlenecks. More details will be added on using Intel GPA soon.

The basic goal of this example is to illustrate why asynchronous operation using video memory
surfaces is necessary. While it is simpler to use system memory synchronously, as in this example,
this introduces unnecessary bottlenecks:

Surfaces must be copied from GPU to CPU. While this must happen in any case for decode
which writes frames to disk, buffering is not as efficient in this scenario. For a single decode
(or possibly even several) gaps in the processing pipeline cannot easily be filled. Since the GPU
is not in constant use it may fall out of turbo mode. Based on the above analysis we should
be able to improve the performance of the workload by using video memory surfaces instead of
system memory surfaces. The next tutorial sample will explore such scenario.

3.2 simple 2 decode vmem

This Intel R© Media SDK tutorial sample operates in the same way as the previous "sam-
ple 2 decode" sample except that it uses video memory surfaces instead of system memory
surfaces.

Video surfaces are required to enable allocation on the GPU. These are implemented in
DirectX for Windows and VAAPI for Linux. Device creation, adapter detection and surface
management can be found in the tutorial "common" folder.

Video memory surfaces allow greater efficiency by avoiding explicit copies. Further improve-
ment may be achieved by making the decode pipeline asynchronous. Well explore this approach
further when we discuss encoding workloads in the following tutorial sections. Improved GPU
utilization can also be achieved by executing several decode workloads concurrently.

Additional details for Windows developers:

Since the introduction of Microsoft Windows* 8, Intel Media SDK can be used with DirectX11
devices and surfaces. Note that Intel Media SDK relies on the features part of DirectX 11.1,
and can therefore not be used on Microsoft Windows 7. If your target application must run on
Microsoft Windows 7, use the DirectX 9 path via Intel Media SDK.

Tutorial samples illustrating use of D3D surfaces (such as in this sample) have two Microsoft
Visual Studio* solution/project (sln/prj) files. sln/prj for DirectX9 usage created using Microsoft
Visual Studio 2010 and sln/prj for DirectX11 usage created using Microsoft Visual Studio 2012.
Microsoft Visual Studio* 2012 is used for DirectX11 to ensure full DirectX 11.1 environment
support.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 4: Tutorial Section 3: Encode 6

4 Tutorial Section 3: Encode

4.1 simple 3 encode

This Intel R© Media SDK tutorial sample illustrates the most simplistic way of implementing
HW encode using system memory surfaces.

This is intended as a simple starting point, but implicit copies and synchronous implemen-
tation limit performance.

4.2 simple 3 encode vmem

This Intel R© Media SDK tutorial sample operates in the same way as the "sample 3 encode"
workload except that it is using video memory surfaces instead of system memory surfaces.

For more details on this topic, please refer to "simple 2 decode" sample description.

By moving from system to video memory implicit copies are eliminated, thus improving GPU
load and overall performance. CPU utilization should also decrease slightly.

To improve performance and achieve greater GPU utilization we must move away from the
synchronous encoding approach towards asynchronous workload behavior. The next tutorial
section will explore an asynchronous encode pipeline.

4.3 simple 3 encode vmem async

This Intel R© Media SDK tutorial sample keeps multiple encode tasks in flight simultaneously,
and SyncOperation() is not called until absolutely necessary (when all surface input buffers have
been exhausted).

For more details on implementing with video memory please refer to "simple 2 decode"
sample description.

This example achieves efficient operation with video memory surfaces and asynchronous
implementation, minimizing gaps in the GPU pipeline. Decode and encode operations are
optimally scheduled internally by Media SDK so that fixed function hardware is fully utilized
with many operations occurring simultaneously. As an added benefit of fully utilizing the GPU,
this will cause it to remain in turbo mode1 providing a further boost to performance.

Marginal throughput improvements may be achieved by executing several encode workloads
concurrently.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 5: Tutorial Section 4: VPP 7

5 Tutorial Section 4: VPP

5.1 simple 4 vpp resize denoise

In this Intel R© Media SDK tutorial sample we illustrate how to utilize Intel Media SDK to
do frame processing on frame surfaces using the SDKs VPP component.

We start with the most simplistic Intel Media SDK VPP workload that uses system mem-
ory frame surfaces. This has several disadvantages, resulting in low GPU utilization and low
performance (Specifically, implicit memory copies between CPU and GPU and synchronous
implementation.) Note: many VPP operations are implemented on general purpose execution
units (EUs) and do not directly use fixed function hardware.

To address the above performance issues lets explore a modified VPP workload that uses
video memory surfaces instead.

5.2 simple 4 vpp resize denoise vmem

This Intel R© Media SDK tutorial sample operates in the exact same way as the previous
tutorial sample, "simple 4 vpp resize denoise" except that it is using video memory surfaces.

For more details on using video memory please refer to "simple 2 decode" sample description.

As with the previous workload, the RunFrameVPPAsync() call leads to the VPP Submit
operation. However, in this case the task is submitted to the GPU almost immediately since
the input surface already resides on a video memory surface.

Like the encode workloads discussed earlier (such as simple 3 encode vmem), Intel Media
SDK uses a polling mechanism, via VPP Query, to determine if the GPU has fully processed
the frame.The GPU is queried every 1ms until the frame is ready. Since the current workload
is synchronous the SyncOperation() call will wait until the next VPP Query which can cause
large gaps in GPU execution.

We already demonstrated how to achieve greater performance by making the Intel Media
SDK work in an asynchronous fashion, as in the simple 3 encode vmem async workload. The
same approach can be used for VPP processing so we will not explore this case further. It
suffices to say that GPU utilization and performance can be improved significantly by applying
the task concurrency approach for VPP.

This concludes the analysis of Intel Media SDK decode, encode and VPP workloads. The
next tutorial sections explore the behavior of workloads combining several Intel Media SDK
components.

This tutorial sample is found in the tutorial samples package under the name "sim-
ple 4 vpp resize denoise vmem". The code is extensively documented with inline comments
detailing each step required to setup and execute the use case.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 6: Tutorial Section 5: Transcode 8

6 Tutorial Section 5: Transcode

6.1 simple 5 transcode

In this part of the Intel R© Media SDK tutorial we will explore transcode workloads, starting
with the most simplistic transcode sample using system memory frame surfaces.

In this simple implementation there are barriers to full GPU utilization, as with the other
examples:

System memory adds implicit copies when using hardware acceleration Synchronous im-
plementation means less efficient internal scheduling of decode/encode stages. Not as many
opportunities to keep hardware pipeline fully loaded. Since we are using system memory sur-
faces we must copy the decoded surface to system memory first, then before encode the surface
will be copied to video memory again. Both copy operations have a large impact on CPU load
and performance

As noted when exploring the encode workloads, the Encode Query polling method also in-
troduces a slight inefficiency in the pipeline after the GPU has completed the encoding task.

The performance is also indirectly degraded by the fact that the GPU remains in lower
frequency states due to the relatively low GPU activity.

In the following sections we will explore how to enhance Intel Media SDK transcode pipelines
for improved GPU utilization leading to better performance.

6.2 simple 5 transcode opaque

In the Intel R© Media SDK tutorial sections covering encode, decode and VPP the performance
issues caused by relying on system memory were removed by using video memory surfaces.
"Opaque memory" surfaces offer a simplified path to video memory optimization when working
with transcode pipelines implemented entirely with Media SDK. With opaque memory surfaces
are managed entirely by Media SDK so it can automatically optimize for the type of session
requested. Video memory will be used for hardware sessions, system memory for software
sessions.

The use of opaque memory eliminates two surface copies per frame which leads to lower
CPU utilization and higher GPU utilization. As with encode, synchronous implementation is
insufficient to keep the hardware pipeline busy and introduces many gaps. These gaps can
be filled with work from the same video sequence with asynchronous implementation. Further
efficiency can be gained by working with multiple transcodes simultaneously. For best results,
individual pipelines should be asynchronous with multiple sessions running simultaneously.

6.3 simple 5 transcode opaque async

In this Intel R© Media SDK tutorial transcode sample we introduce asynchronous pipeline
behavior using the same approach as we did in the simple 3 encode vmem async sample.

Overall GPU utilization can be improved significantly by implementing asynchronously. Since
the GPU is highly utilized, the overall performance is also improved by the fact that the GPU
is consistently residing in a high frequency state (due to Intel R© Turbo Boost Technology1).

6.4 simple 5 transcode opaque async vppresize

This Intel R© Media SDK tutorial sample is essentially the same as the "sim-
ple 5 transcode opaque async" sample except that VPP processing is used to resize the
content.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 6: Tutorial Section 5: Transcode 9

6.5 simple 5 transcode vmem

This Intel R© Media SDK tutorial sample is essentially the same as the "simple 5 transcode"
sample except for that it uses D3D surfaces instead of system memory surfaces.

Like the "simple 2 decode" tutorial sample this sample supports both Microsoft DirectX* 9
and DirectX* 11 for Windows and VAAPI for Linux. For more details on this topic please refer
to "simple 2 decode" sample description.

The use of GPU memory surfaces leads to improved performance. In essence the behavior
of this workload is the same as for "simple 5 transcode opaque" (when executed on a processor
that supports HW acceleration). However, since the application manages video memory these
surfaces are available to integrate with components that are not in the standard Intel Media
SDK decode>process>encode pipeline.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

Chapter 7: Tutorial Section 6: Advanced Media SDK 10

7 Tutorial Section 6: Advanced Media SDK

7.1 How to create low latency pipelines and how to benchmark
latency

Low latency video codec pipelines are important for many workloads, one example is video
conferencing where minimal latency is desired. Media SDK supports configuration of encoder
and decoder for low latency. Using a low latency configuration results in lower pipeline through-
put, but for this specific use case its not an issue. Note that Media SDK also supports a wide
range of other features useful for developing video conferencing or dynamic video streaming
solutions. More information on how to use Media SDK for low latency workloads and other typ-
ical video conferencing usages can be found in this white paper: http://software.intel.com/en-
us/articles/video-conferencing-features-of-intel-media-software

7.1.1 simple 6 encode vmem lowlatency

This sample illustrates how to configure an encode pipeline for low latency and how to
measure latency.

7.1.2 simple 6 transcode opaque lowlatency

This sample illustrates how to configure an Intel R© Media SDK transcode pipeline for low
latency and how to measure latency.

The approach is very similar to the description of low latency workloads in tutorial section,
simple 6 encode d3d lowlatency.

7.2 How to use VPP for pre- or post-processing purposes

Aside from using VPP in a transcode pipeline, VPP can also be used for pre or post processing
of frames. Common usages are image resize, effects or enhancements before rendering to display.
Such usage is illustrated in the first sample below. The second sample below showcases how to
VPP for pre processing of frames, such as color space conversion (common for pipelines where
frame input originates from camera).

7.3 simple 6 decode vpp postproc

This sample is similar to simple 2 decode but also adds VPP post processing capabilities,
showcasing frame resize and noise reduction

7.4 simple 6 encode vmem vpp preproc

This Intel R© Media SDK tutorial sample is similar to simple 3 encode vmem but adds VPP
pre-processing capabilities, showcasing VPP color conversion from RGB32(4) to NV12.

Copyright(c) 2005-2014 Intel Corporation. All Rights Reserved.

	Introduction
	Exploring Media SDK via a simplified set of samples
	Windows specific notes
	How to obtain input content
	Tutorials Samples Index

	Tutorials Section 1
	Hello World

	Tutorials Section 2: Decode
	simple_2_decode
	simple_2_decode_vmem

	Tutorial Section 3: Encode
	simple_3_encode
	simple_3_encode_vmem
	simple_3_encode_vmem_async

	Tutorial Section 4: VPP
	simple_4_vpp_resize_denoise
	simple_4_vpp_resize_denoise_vmem

	Tutorial Section 5: Transcode
	simple_5_transcode
	simple_5_transcode_opaque
	simple_5_transcode_opaque_async
	simple_5_transcode_opaque_async_vppresize
	simple_5_transcode_vmem

	Tutorial Section 6: Advanced Media SDK
	How to create low latency pipelines and how to benchmark latency
	simple_6_encode_vmem_lowlatency
	simple_6_transcode_opaque_lowlatency

	How to use VPP for pre- or post-processing purposes
	simple_6_decode_vpp_postproc
	simple_6_encode_vmem_vpp_preproc

