
Tutorial: Intel® Processor Graphics 
Optimization 
Intel® SDK for OpenCL™ Applications 
OpenCL Sample Application Code 
Legal Information 

Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® 
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, 
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. 
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH 
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL 
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR 
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT 
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A 
Mission Critical Application" is any application in which failure of the Intel Product could result, directly 
or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR 
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS 
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND 
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND 
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR 
INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY 
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS 
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL 
PRODUCT OR ANY OF ITS PARTS. 
Intel may make changes to specifications and product descriptions at any time, without notice. 
Designers must not rely on the absence or characteristics of any features or instructions marked 
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility 
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here 
is subject to change without notice. Do not finalize a design with this information. 
The products described in this document may contain design defects or errors known as errata which 
may cause the product to deviate from published specifications. Current characterized errata are 
available on request. 
Contact your local Intel sales office or your distributor to obtain the latest specifications and before 
placing your product order. 
Copies of documents which have an order number and are referenced in this document, or other Intel 
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site. 
Intel processor numbers are not a measure of performance. Processor numbers differentiate features 
within each processor family, not across different processor families. See 
http://www.intel.com/products/processor_number for details. 
Software and workloads used in performance tests may have been optimized for performance only on 
Intel microprocessors.   Performance tests, such as SYSmark and MobileMark, are measured using 
specific computer systems, components, software, operations and functions.   Any change to any of 
those factors may cause the results to vary.   You should consult other information and performance 
tests to assist you in fully evaluating your contemplated purchases, including the performance of that 
product when combined with other products. 
Centrino, Cilk, Intel, Intel Atom, Intel Core, Intel NetBurst, Itanium, MMX, Pentium, Xeon, Intel Xeon 
Phi are trademarks of Intel Corporation in the U.S. and/or other countries. 
* Other names and brands may be claimed as the property of others. 
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos. 

Copyright © 2014, Intel Corporation. All rights reserved. 
  



Optimization Notice 

 Intel's compilers may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. 
Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in 
this product are intended for use with Intel microprocessors. Certain optimizations not 
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to 
the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Notice revision #20110804 

Overview  
Discover how to optimize OpenCL™ kernels for running on the Intel® Graphics 
device with the Intel Processor Graphics Optimization sample based on the Sobel 
Filter algorithm. The optimization tips, described in this tutorial, are also 
applicable to any other image processing algorithms targeting the Intel Graphics 
OpenCL device. 

About  This 
Tutorial 

This tutorial demonstrates an end-to-end workflow you can ultimately 
apply to your own applications:  
• Discover the image processing kernel background: algorithm 

definition and OpenCL implementation 
• Apply optimizations typical for image processing 

Estimated 
Duration 

10-15 minutes. 

Learning 
Objectives 

After you complete this tutorial, you should be able to:  
• Reduce the overhead from the thread spawning by using vector data 

types instead of scalar 
• Decrease the number of memory read operations by switching to tile-

based algorithm and reusing loaded data as much as possible 
• Use vload16/vstore16 functions 

More 
Resources 

Intel SDK for OpenCL Applications documentation: 
- Optimization Guide 
- User’s Guide 

OpenCL Specification Version 1.2 
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf  

 

Prerequisites 
Before you start with the tutorial, make sure your system meets the 
requirements.  
To build and run the sample application, you need 

- Intel Architecture processor with the supported version of the Intel 
Graphics device. See the list of supported processors in the SDK release 
notes. 

- Intel Graphics Driver available at the OpenCL Drivers and Runtimes for 
Intel® Architecture page 

http://software.intel.com/en-us/intel-software-technical-documentation?field_software_product_tid%5b%5d=42511
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://software.intel.com/en-us/articles/intel-sdk-for-opencl-applications-2014-release-notes
http://software.intel.com/en-us/articles/intel-sdk-for-opencl-applications-2014-release-notes
http://software.intel.com/en-us/articles/opencl-drivers
http://software.intel.com/en-us/articles/opencl-drivers


- Microsoft Visual Studio* 2010 and higher 
- Intel® SDK for OpenCL™ Applications 2013 and higher, available at 

http://software.intel.com/en-us/vcsource/tools/opencl-sdk 
 

You can also use the Intel® VTune™ Amplifier XE 2013 and higher for OpenCL 
performance analysis (beyond the tools available with the SDK). 
 

Navigation Quick Start 
This tutorial includes a sample code that you can compile using the Microsoft 
Visual Studio Professional 2010 and higher. Find the relevant solution file in 
sample root directory > ImgprocOpt subfolder. 

Building and Running Code Sample 
To build the code sample, 

1. Double-click the solution file (*.sln) relevant to your Visual Studio IDE 
version. 

2. Select Build > Build Solution. 
Then to run the application, 

1. Select a project file in the Solution Explorer. 
2. Right-click the project and select Set as StartUp Project. 
3. Press Ctrl+F5 to run the application. 

To run the application in Debug mode, press F5. 
You can also run the sample application using the command-line interface:  

1. Run the command prompt. 
2. Switch to the directory, where the solution file you used resides. 
3. Then go to the directory according to the platform configuration: 

- \Win32 - for Win32 configuration 
- \x64 - for x64 configuration 

4. Open the appropriate project configuration (Debug or Release). 
5. Run the sample by entering the name of the executable. 

Controlling the Sample Application 
You can run the sample application with the following command-line options: 

Command-Line Options 

Short 
Form 

Full Form Description 

-h --help Shows command-line options with 
descriptions. 

-p --platform  Selects OpenCL platform by ID (0 to n-1, 
where n is the number of available 
platforms). 

-t --type  Selects an OpenCL device to run by type. 
First device of the specified type will be 
picked. The following options are available:  

- all 

http://software.intel.com/en-us/vcsource/tools/opencl-sdk


- cpu 
- gpu 
- acc 
- default 

Combine the -t option with the -p option, 
which specifies OpenCL platform. 

-d --device number-or-string Selects an OpenCL device by number (or 
name). 
This option combines well with the 
previous ones. For example, if you have 
multiple devices of the same type specified 
with –t, you can select the particular 
device to run using -d. 

-W --width <integer> Sets the width of the processed image 
(128-8192 pixels). 

-H --height <integer> Sets the height of the processed image 
(128-8192 pixels). 

 

Reference (Native) Implementation 
Reference implementation is done in ExecuteSobelReference() routine of 
ImgprocOpt.cpp file. This is single-threaded code that performs exactly the same 
Sobel filtering sequence as OpenCL implementation, but uses conventional loop 
over image in plain C. 

Image Processing Algorithm Background  
This section describes a typical image-processing algorithm that you can optimize 
for running on the Intel Graphics OpenCL device.  
Image processing algorithms usually operate in a “streaming” mode, which is 
processing an input image to produce an output one. It is also typically, especially 
for simple filters, that the number of calculations per pixel is relatively small 
comparing to the data being fetched. 
Translating this into the OpenCL notion, you get millions of tiny work-items with 
just a few clocks of actual execution, while producing intensive memory traffic to 
read input pixel and its neighborhood, and to write back the result. So in many 
cases OpenCL kernel optimizations actually target improving usage of the 
available memory bandwidth (as modern image resolutions are too high to fit a 
cache), and amortizing work-items scheduling overheads. 

Brief Definition of the Sobel Filter  
The Intel Processor Graphics Optimization sample comprises a naïve Sobel kernel 
- a straightforward OpenCL implementation of the Sobel operator. The operator 
uses two 3×3 kernels that are convolved with the original picture to calculate 
approximations of the image derivatives - one for image change in the horizontal 
dimension, another – for the vertical dimension.  
In the scheme below, A is the source (input) image, and Gx and Gy are two 
images holding the horizontal and vertical derivatives. Then the computations are 
performed according to the following scheme: 

http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Convolution


  and  

where <*> denotes the 2-dimensional convolution operation. 
The x-coordinate is defined here as increasing in the "right" direction, and the y-
coordinate is defined as increasing in the "down" direction (so image origin is the 
top-left corner).  
For each pixel in the image, the magnitude of the resulting gradient 
approximations is the following: 

 

After calculation, the G value is written to the corresponding pixel of the 
destination image. 

Naïve OpenCL™ Implementation of the Sobel Filter  
The naïve kernel processes each byte of the input grayscale single-channel 
picture (stored as OpenCL 2D buffer of uchars) separately. So each work-item 
processes a single pixel and performs the following steps in the OpenCL kernel: 

• Loads 3x3 unsigned uchar pixels from the source (input) buffer. 
• Performs horizontal and vertical derivative calculations (described in the 

previous section). 
• Stores single uchar value for the result (gradient magnitude) in the 

output buffer. 

9x9 pixels, required to calculate the gradient, are loaded according to the 
following scheme:  

The pixel of interest - for which the gradient value is computed - is marked with 
green (in center), neighboring pixels are marked with orange. 

The ‘a’, ‘b’, ‘c’, and so on values match the variable names in the first version of 
the Sobel kernel (Sobel_uchar). See the ImgprocOpt.cl file for details. 

Problems of the Naïve Kernel 
The naïve kernel exhibits some major performance inefficiencies when executing 
on the Intel Graphics OpenCL devices. For example, when running over 
2048*2048 image on the Intel HD Graphics 5200 device, the kernel has to 
launch 2048*2048 = 4M work-items, which (taking SIMD16 into account) 
translates into more than 200k of thread launches, as the Intel HD Graphics 5200 
device features 40(Execution Units)x7(threads per EU)= 280 hardware threads. 
In the particular case of Sobel with a handful of arithmetic per work-item, 
performance is heavily limited by the number of threads the scheduler can spawn 
per second. So you need to amortize this thread dispatching overhead by doing 
more work in each thread.  
In addition, the available memory read/write bandwidth is heavily underutilized in 
this kernel, because memory subsystem is optimized to 128-bit data path (so by 

  
a 

  
d 

  
g 

  
b 

  
e 

  
h 

  
c 

  
f 

  
i 

 

 

 

 

 

 

     

     

http://en.wikipedia.org/wiki/Convolution


requesting single uchar per data read, we waste most of the bandwidth and 
trigger costly routine to unpack the individual byte). Similarly vector units that 
are optimized for work with 32-bit values are also underutilized (again, as we 
operate on uchars). Finally math execution is generally less efficient for integer 
data types, for example, comparing to floating point data, which also enables 
multiply-add. 

This tutorial describes Intel GPU-specific optimizations that can be applied to 
overcome those issues. Please refer to Memory Access Considerations and Check-
list for OpenCL* Optimizations chapters from Intel SDK for OpenCL Applications 
Optimization Guide for more detailed explanations. 
 

Optimizing OpenCL Kernel for Image Processing 
The following sections describe the optimizations you can utilize to improve 
OpenCL kernel performance on the Intel Graphics OpenCL device when using 
image processing algorithms. 

Use uchar4 Instead of uchar 
You can reduce the overhead from thread spawning by four times, as four times 
less threads have to be launched for the same image size when using uchar4 
instead of uchar. With such optimization, the kernel processed four uchar pixels 
per work-item in contrast to the single uchar pixel per OpenCL work-item when 
using the uchar data type. In such case, the source pixels are loaded like the 
following (numbered according to the indices of uchar4 vector elements): 

Central pixels are read just once (as a single uchar4), which leads to an increase 
in read memory bandwidth – this is a noticeable factor for small kernels like 
Sobel. 
This optimization is implemented in the Sobel_uchar4 kernel of the 
ImgprocOpt.cl file. 

Use float16x16 Tiles and Use vload16/vstore16 
Functions 

  
0 

  
0 

  
0 

  
0 

  
1 

  
2 

  
3 

  
0 

  
1 

  
2 

  
3 4 

  
0 

  
1 

  
2 

  
3 

  
0 

  
0 

  
0 

a b c 
d e f 
g h i 

http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/Memory_Access_Considerations.htm
http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/Check-list_for_OpenCL_Optimizations.htm
http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/Check-list_for_OpenCL_Optimizations.htm
http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/index.htm
http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/index.htm


You can decrease the number of memory read operations per pixel if you process 
an image by 16x16 tiles per work-item. In such case 16 pixels in a line are 
processed using 16-way vector data type, and 16 lines of the tile are processed 

one by one in a loop. That means that nine read operations are issued only for 
the first iteration of the loop, and just three reads for the rest of the block, since 
upper six elements are reused from the previous iteration. The following scheme 
demonstrates one loop iteration for the 4th line (loaded pixels shown in color): 

Improvements this processing scheme provides: 
• Each thread does more work that in the original implementation (without 

the optimization applied). The number of thread launches and the number 
of associated overhead is reduced. 

• The memory read bandwidth increases, thus less memory-related EUs 
stalls occur. 

Additionally, you can 

• Switch the kernel to using the vload16/vstore16 operations, which makes 
data read and write operations easier for compiler optimizations. 

• Use floating point math, which is currently the fastest way to perform 
calculations on Intel Graphics, since the Intel Graphics EUs have higher 
floating point compute throughput than integer. 

This pack of optimizations is implemented in the 
Sobel_uchar16_to_float16_vload_16 kernel of ImgprocOpt.cl file. 

Sample Limitations to Pay Attention to 
For the sake of simplicity, the sample code does not include routines for reading 
from popular file formats, while concentrating on the optimizations. The default 
input image is filled by random pixels. 

Since the original Sobel Filter operates on image intensities, the OpenCL kernels 
in the sample also accept the monochrome (single-channel) inputs. Still, the 
optimizations are applicable to filters for the three- and four-channel images. For 

0

0

0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

0

a b c
d e f
g h i



example, the uchar4-based version is a natural fit for R8G8B8A8 images, while 
16-way processing from the “Kernel Optimizations” section just packs four of 
RGBA pixels. 

Finally, to avoid border conditions when reading neighboring pixel, the image is 
also padded on the host:  

• In vertical direction by 1 extra line on top and bottom 

• In horizontal direction by 16 pixel boundaries on both sides - this is the 
easiest way to satisfy data alignment, required for 16-way vector load 
operations used in the optimized kernels 

Summary 
This tutorial demonstrated an end-to-end workflow you can apply to your own 
application. 

Step Key Tutorial Take-aways 
Use vector data 
types instead of 
scalar 

Intel Graphics OpenCL device can 
process more data if you improve 
memory bandwidth. 

Use tiles Decrease the number of memory 
read operations per pixel via 
processing an image by 16x16 tiles 
per work-item. 

Use floating point 
math instead of 
integers 

Use floating point operations to 
employ higher compute throughput 
of FP units. 

Use 
vload16/vstore16 
Functions 
 

Use vload16/vstore16 operations 
in kernels, which makes data read 
and write operations easier for 
compiler optimizations. 

 


	Tutorial: Intel® Processor Graphics Optimization
	Legal Information
	Overview
	Prerequisites
	Navigation Quick Start
	Building and Running Code Sample
	Controlling the Sample Application
	Reference (Native) Implementation

	Image Processing Algorithm Background
	Brief Definition of the Sobel Filter

	Naïve OpenCL™ Implementation of the Sobel Filter
	Problems of the Naïve Kernel

	Optimizing OpenCL Kernel for Image Processing
	Use uchar4 Instead of uchar
	Use float16x16 Tiles and Use vload16/vstore16 Functions

	Sample Limitations to Pay Attention to
	Summary

