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What is Machine Learning?

Machine learning allows 
computers to learn and 
infer from data.
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Data points have known outcome

Types of Machine Learning

Supervised

Data points have unknown outcomeunSupervised
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Outcome is continuous (numerical)

Types of Supervised Learning

regression

Outcome is a categoryclassification
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Machine Learning Vocabulary

 Target: predicted category or value of the data 
(column to predict)

 Features: properties of the data used for prediction 
(non-target columns)

 Example: a single data point within the data 
(one row)

 Label: the target value for a single data point
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Machine Learning Vocabulary (Synonyms)

 Target: Response, Output, Dependent Variable, Labels

 Features: Predictors, Input, Independent Variables, Attributes

 Example: Observation, Record, Instance, Datapoint, Row

 Label: Answer, y-value, Category



model
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Model

Supervised Learning Overview

modelData with 
answers 

Fit+

Predicted 
answers

Data without 
answers

Predict+



model
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Model

Regression: Numerical Answers

modelMovie data with 
revenue

Fit+

Predicted 
revenue

Movie data 
(unknown revenue)

Predict+



model

9

Model

Classification: Categorical Answers

modelLabeled 
data

Fit+

Labels
Unlabeled 

data
Predict+



model
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Model

Classification: Categorical Answers

model
Emails labeled as 
spam/not spam Fit+

Spam or 
not spam

Unlabeled 
emails

Predict+
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Three Types of Classification Predictions

 Hard Prediction: Predict a single category for each instance.

 Ranking Prediction: Rank the instances from most likely to least 
likely. (binary classification)

 Probability Prediction: Assign a probability distribution across 
the classes to each instance.
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Metrics for Classification

 Hard Prediction: Accuracy, Precision, Recall (Sensitivity), 
Specificity, F1 Score

 Ranking Prediction: AUC (ROC), Precision-Recall Curves

 Probability Prediction: Log-loss (aka Cross-Entropy), Brier Score



Root Mean Square Error (RMSE)

Mean Absolute Deviation
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Metrics for Regression



Y_predict
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Fitting Training and Test Data

modelmodel.fit( X_train, Y_train )Training data

Test data model .predict ( X_test )

X_train

Y_train

X_test

error_metric( Y_test, Y_predict ) Test error
Y_test
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fit the model

Using Training and Test Data

Training data

measure performance

- predict label with model

- compare with actual value

- measure error

Test data
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Using Training and Test Data
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Using Training and Test Data
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Using Training and Test Data
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Using Training and Test Data
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How Well Does the Model Generalize?

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

Poor at Training Set

Poor at Predicting
Just Right

Good at Training Set

Poor at Predicting
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Underfitting vs Overfitting

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

Underfitting Just Right Overfitting
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Bias—Variance Tradeoff

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

High Bias

Low Variance
Just Right

Low Bias

High Variance
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Gradient Descent
Start with a cost function J(𝛽):

𝑱 𝜷

𝜷

Then gradually move towards the minimum.

Global Minimum
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Gradient Descent with Linear Regression

 Now imagine there are two parameters 

(𝛽0, 𝛽1)

 This is a more complicated surface on 
which the minimum must be found

 How can we do this without knowing 
what 𝐽(𝛽0, 𝛽1) looks like?

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0



25

Gradient Descent with Linear Regression

 Compute the gradient, 𝛻𝐽(𝛽0, 𝛽1), which 
points in the direction of the biggest 
increase!

 -𝛻𝐽(𝛽0, 𝛽1)(negative gradient) points to 
the biggest decrease at that point!

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0
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Gradient Descent with Linear Regression

 The gradient is the a vector whose 
coordinates consist of the partial 
derivatives of the parameters

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

𝛻𝐽 𝛽0, … , 𝛽𝑛 = <
𝜕𝐽

𝜕𝛽0
, … ,
𝜕𝐽

𝜕𝛽𝑛
>
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Gradient Descent with Linear Regression

 Then use the gradient (𝛻) and the cost 
function to calculate the next point (𝜔
_1) from the current one (𝜔_0):

 The learning rate (𝛼) is a tunable 
parameter that determines step size

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
 

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)
− 𝑦𝑜𝑏𝑠
(𝑖)
2 𝜔0

𝜔1
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Gradient Descent with Linear Regression

 Each point can be iteratively calculated 
from the previous one

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

𝜔0
𝜔1𝜔2 = 𝜔1 − 𝛼𝛻

1

2
 

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)
− 𝑦𝑜𝑏𝑠
(𝑖)
2

𝜔2

𝜔3 = 𝜔2 − 𝛼𝛻
1

2
 

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)
− 𝑦𝑜𝑏𝑠
(𝑖)
2 𝜔3
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Stochastic Gradient Descent

 Use a single data point to determine the 
gradient and cost function instead of all 
the data

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
 

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)
− 𝑦𝑜𝑏𝑠
(𝑖)
2 𝜔0

𝜔1

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠
(0)
2
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Stochastic Gradient Descent

 Use a single data point to determine the 
gradient and cost function instead of all 
the data

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

𝜔0
𝜔1

𝜔2 𝜔3 𝜔4𝜔4 = 𝜔3 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(3)
− 𝑦𝑜𝑏𝑠
(3)
2

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠
(0)
2

…

 Path is less direct due to noise in single 
data point—"stochastic"
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Mini Batch Gradient Descent

 Perform an update for every 𝑛 training 
examples

Best of both worlds:

 Reduced memory relative to "vanilla" 
gradient descent

 Less noisy than stochastic gradient descent

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

𝜔0
𝜔1

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
 

𝑖=1

𝑛

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)
− 𝑦𝑜𝑏𝑠
(𝑖)
2




