
Lesson 3: Smoothing Time Series
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Learning Objectives

You will be able to do the following:

▪ Explain the need for data smoothing.

▪ List common data-smoothing techniques.

▪ Explain how common data-smoothing techniques work.

▪ Use Python* to smooth time-series data.
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What Is Smoothing?

Smoothing is a process that allows you to extract useful patterns from data. 
There are many ways to smooth data. In this lesson, you’ll learn about the 
following:

▪ Simple average smoothing

▪ Equally weighted moving average

▪ Exponentially weighted moving average
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Why Is Smoothing Important?

Smoothing is one important tool that allows 
you to make future-looking forecasts.

▪ Consider the stationary data to the right.

▪ How would you go about predicting 
what’s going to happen one, two, or more 
steps into the future?
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Forecasting with Simple Average

An obvious solution is to calculate the mean 
of the series and predict that value into the 
future.

▪ Looks quite reasonable in this case.

▪ However, we should be more rigorous 
and calculate how far off our estimate is 
from reality.

▪ Next is a quick detour about mean 
squared error (MSE).



6

Mean Squared Error (MSE)

Mean squared error is a metric commonly employed to quantitatively measure 
the efficacy of an estimate. 

▪ The formula: 

▪ Let’s walk through a simple example…
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MSE Example

Say we have a sensor that took the following readings: 

2.52.01.5 3.0 3.5 4.0
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MSE Example

Also say we created a model called Model A with the following estimates: 

2.52.01.5 3.0 3.5 4.0

2.52.21.3 3.1 3.9 4.6
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MSE Example

Then MSE is calculated like so:

Squared error

SE = (1.5 – 1.3)2 + (2.0 – 2.2)2 + (2.5 – 2.5)2 + (3.0 – 3.1)2 + (3.5 – 3.9)2 + (4.0 – 4.6)2

SE = (0.2)2 + (-0.2)2 + (0)2 + (0.1)2 + (-0.4)2 + (-0.6)2

SE = 0.61

Mean squared error

MSE = 0.61 / 6 = 0.102
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MSE Comparison

The nice thing about using a metric like MSE is that we can compare different 
models or estimates to see which is doing the best job. 

▪ What if you built another model called Model B that created an array of 
estimates that looked like this: [1.5, 2.1, 2.5, 3.1, 3.6, 4.6]?

▪ Is Model A or Model B better?
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Forecasting Trend with Simple Average

What if there’s a trend?

▪ Obviously, this technique is not going to 
work well.

▪ What’s a better approach?
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Moving Average

There is another technique called moving average that has greater sensitivity 
towards local changes in the data.

▪ Moving average comes in two flavors:

– Equally weighted

– Exponentially weighted
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Equally Weighted Moving Average – Example

Say we have the same sensor readings as before: 

2.52.01.5 3.0 3.5 4.0
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Equally Weighted Moving Average – Example

The first step in calculating moving average is to select a window size (we’ll use 3).

2.52.01.5 3.0 3.5 4.0
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Equally Weighted Moving Average – Example

We slide the window over the first 3 values and calculate the mean within.

2.52.01.5 3.0 3.5 4.0

2.0
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Equally Weighted Moving Average – Example

We slide the window over one place and calculate the new mean.

2.52.01.5 3.0 3.5 4.0

2.52.0
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Equally Weighted Moving Average – Example

We continue this process until we reach the end.

2.52.01.5 3.0 3.5 4.0

3.02.0 2.5
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Equally Weighted Moving Average – Example

We continue this process until we reach the end.

2.52.01.5 3.0 3.5 4.0

3.52.0 2.5 3.0
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Equally Weighted Moving Average

Let’s apply this equally weighted moving average technique to three datasets:

▪ One with trend

▪ One with seasonality

▪ One with trend and seasonality
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Equally Weighted Moving Average – Recap

We saw in all three cases that this simple moving average technique extracted
the key patterns within the data. 

▪ A few questions should come to mind:

– How well does this method do from a forecasting perspective?

– Is equal weighting the best weighting scheme?
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Equally Weighted Moving Average – Issues

This technique clearly lags the trend. That becomes a bigger problem as the 
trend becomes more aggressive. 

▪ Now is the time to explore another weighting scheme to see if we can do 
better.

▪ Next up is exponentially weighted moving average (sometimes known as 
single exponential smoothing).
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Exponentially Weighted Moving Average – Example

Say we have the same sensor readings as before: 

2.52.01.5 3.0 3.5 4.0



28

Exponentially Weighted Moving Average – Example

The first step is the same - select a window size (we’ll use 3 again).

2.52.01.5 3.0 3.5 4.0
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Exponentially Weighted Moving Average – Example

We slide the window over the first 3 values and calculate the mean but differently.

2.52.01.5 3.0 3.5 4.0

Instead of applying equal weights to all 3 

observations, let’s apply exponential weights.
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Exponential Weights

There are many ways to create exponential weights. To keep things simple,
we’ll leverage this simple formula:

w + w2 + w3 = 1

w = wt-1 ~ 0.543

w2 = wt-2 ~ 0.294

w3 = wt-3 ~ 0.160  
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Exponentially Weighted Moving Average – Example

We slide the window over the first 3 values and calculate the mean but differently.

2.52.01.5 3.0 3.5 4.0

(wt-3 x 1.5) + (wt-2 x 2.0) + (wt-1x 2.5) = 2.2
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Exponentially Weighted Moving Average – Example

We slide the window over the first 3 values and calculate the mean but differently.

2.52.01.5 3.0 3.5 4.0

2.2
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Exponentially Weighted Moving Average – Example

We slide the window over one place and calculate the new mean.

2.52.01.5 3.0 3.5 4.0

2.72.2
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Exponentially Weighted Moving Average – Example

We continue this process until we reach the end.

2.52.01.5 3.0 3.5 4.0

3.22.2 2.7
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Exponentially Weighted Moving Average – Example

We continue this process until we reach the end.

2.52.01.5 3.0 3.5 4.0

3.72.2 2.7 3.2
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Exponentially Weighted Moving Average – Recap

Exponentially weighted moving average works by smoothing the series as a 
whole. 

▪ Now that you know how it works, a few questions should come to mind:

– Do you think this method will do a better job forecasting than equally 
weighted moving average? 

– Is exponentially weighted smoothing sufficient for forecasting in general?
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Exponentially Weighted Moving Average – Issues

Comparing exponentially weighted moving average to equally weighted moving 
average:

▪ Exponential is more sensitive to local changes.

▪ However, it still lags significantly.

▪ Therefore, we need to explore more complex forecasting mechanisms that 
leverage smoothing.
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Single Exponential Formulation

What we have been examining so far is exponential weighted average 
smoothing. This is also known as single exponential smoothing, and has this
formula:  

Smoothed value at time t

Actual value at time t

Parameter optimized
to fit past data

where:
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From Single Exponential to Advanced Smoothing

Let’s revisit the data containing trend and seasonality.  

▪ Specifically, let’s chop off the last 5 observations and treat them as a test set.

▪ We’ll begin by applying single exponential smoothing to the training set and 
forecasting forward 5 observations.

▪ We will then compare the forecast with actual observations using the MSE 
metric discussed earlier.
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MSE = 830 
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The Need for Advanced Smoothing Techniques

Single exponential smoothing produces the same value pushed out over the 
forecast horizon.  

▪ Clearly, it is picking up neither trend nor seasonality.

▪ Therefore, we turn to double exponential smoothing.
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Double Exponential Smoothing - Recap

Double exponential smoothing has the ability to pick up trend. It does this by 
adding a second component into its formulation that smooths out trend. 

}
Smooths the value
of the series

}
Smooths the trend
of the series

}
Future prediction of series = 
sum of value and trend
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MSE = 354 
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Double Exponential Smoothing - Recap

Double exponential smoothing has the ability to pick up trend. 

▪ This is a step in the right direction.

▪ However, did you notice that it fails to pickup seasonality?

▪ For that we need triple exponential smoothing.
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Triple Exponential Smoothing

Triple exponential smoothing has the ability to pickup trend and seasonality. 
It does this by adding a third component to its formulation that smooths out 
seasonality. 

}
Smooths the value
of the series

} Smooths the trend
of the series

}
Smooths the seasonality
of the series
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Triple Exponential Smoothing (cont.) 

Triple exponential smoothing has the ability to pickup trend and seasonality. 
It does this by adding a third component to its formulation that smooths out 
seasonality. 

Length of time of 
the seasonality
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MSE = 50 
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Single vs. Double vs. Triple Exponential Smoothing

A comparison of MSE shows just how significant an impact using the best 
modeling strategy has on a forecast.

MSE

Single Exponential 830

Double Exponential 354

Triple Exponential 50
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Exponential Smoothing - Recap

Here’s how to know whether to use single, double, or triple exponential 
smoothing:

▪ Does your data lack a trend?

– Use single exponential smoothing.

▪ Does your data have trend but no seasonality?

– Use double exponential smoothing.

▪ Does your data have trend and seasonality?

– Use triple exponential smoothing.
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Use Python to Smooth Time-Series Data

Next up is a look at applying these concepts in Python.

▪ See notebook entitled Introduction_to_Smoothing_student.ipynb
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Learning Objectives Recap

In this session you learned the following:

▪ Why smoothing can be useful in time series

▪ Common data-smoothing techniques

▪ How common data-smoothing techniques work

▪ How to use Python to smooth time-series data
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