
 | Splitters and Muxers Sample | 1

Splitters and Muxers Sample

Overview
Splitters and Muxers Sample works with Intel® Media Server Studio 2015 for Linux.

It demonstrates how to use the Intel® Media Server Studio – SDK (hereinafter referred to as "SDK") API to create
a splitter and muxer using the example FFmpeg* implementation wrapper. The splitter retrieves elementary stream
from container and the muxer encapsulates frames of elementary stream into container.

Features
Splitters and Muxers Sample supports the following video formats:

Format type

Input/output - containers MPEG-4 Part 14 (MP4), MPEG-2 Transport Stream
(M2TS)

Input/output - codecs Video: H.264, MPEG-2 Audio: AAC, MP3

Hardware Requirements
See <install-folder>\Media Samples Guide.pdf.

Software Requirements
See <install-folder>\Media Samples Guide.pdf.

Package Contents
Splitters and Muxers Sample package consists of a shared and a static library. The first one contains the actual
implementation, and the second is the dispatcher, which redirects functions calls from the application and allows to
the shared library to be loaded safely: it reports to the application if the library was not found. The other function of
the dispatcher is to enable custom splitters and muxers with the same API. To do this, you should change the library
name to load. It is recommended for the application to use Splitters and Muxers Sample through the dispatcher.

How to Build the Application
See <install-folder>\Media Samples Guide.pdf.

Running the Software
See <install-folder>\Media Samples Guide.pdf.

Splitters and Muxers Sample is a shared library which can be invoked from Full Transcoding Sample during
transcoding.

 | Splitters and Muxers Sample | 2

See <install-folder>/sample_full_transcode/readme-full-transcode.pdf for details.

Known Limitations
• Splitters and Muxers Sample does not support muxing MP3 streams at 12KHz.
• MFXSplitter_GetBitstream may return not the whole frame but one field for the interlaced streams.
• Repositioning using splitters from Splitters and Muxers Sample was not fully tested.
• Currently Splitters and Muxers Sample supports only layer 1 MPEG audio, but you can add layer 2 and 3

support.

Firstly, modify enum mfxTrackType in mfxsmstructures.h by removing of MFX_TRACK_MPEGA and
adding MFX_TRACK_MPEGA1, MFX_TRACK_MPEGA2 and MFX_TRACK_MPEGA3

For splitters, modify GetTrackTypeByCodecID function inside ffmpeg_splitter_impl.c:

remove
 case AV_CODEC_ID_MP3: return MFX_TRACK_MPEGA;
and add
 case AV_CODEC_ID_MP1: return MFX_TRACK_MPEGA1;
 case AV_CODEC_ID_MP2: return MFX_TRACK_MPEGA2;
 case AV_CODEC_ID_MP3: return MFX_TRACK_MPEGA3;

For muxers, modify GetCodecIDByTrackType function inside ffmpeg_mux_impl.c:

remove
 case MFX_TRACK_MPEGA: return AV_CODEC_ID_MP3;
and add
 case MFX_TRACK_MPEGA1: return AV_CODEC_ID_MP1;
 case MFX_TRACK_MPEGA2: return AV_CODEC_ID_MP2;
 case MFX_TRACK_MPEGA3: return AV_CODEC_ID_MP3;

Structure Reference
The following section describes structures which are used in splitters and muxers:

mfxDataIO

typedef struct {
 mfxU32 reserved1[4];
 mfxHDL pthis;
 mfxI32 (*Read) (mfxHDL pthis, mfxBitstream *bs);
 mfxI32 (*Write) (mfxHDL pthis, mfxBitstream *bs);
 mfxI64 (*Seek) (mfxHDL pthis, mfxI64 offset, mfxSeekOrigin origin);
 mfxHDL reserved2[4];
} mfxDataIO;

Description
This structure describes callback functions Read, Write and Seek that should be implemented by the application.

Members

pthis Pointer to the file or stream with the data for i/o
callbacks.

Read Pointer to the function for reading.

 | Splitters and Muxers Sample | 3

Write Pointer for the function for writing.

Seek Pointer to the function for seeking.

Read

mfxI32 (*Read) (mfxHDL pthis, mfxBitstream *bs);

Description
This function reads data from stream object pthis.

Parameters

pthis Pointer to the file or stream with the data to be read.

bs Pointer to the output bitstream.

Return Value
The number of bytes successfully read.

Read

mfxI32 (*Write) (mfxHDL pthis, mfxBitstream *bs);

Description
This function writes bitstream data to the stream object.

Parameters

pthis Pointer to the file or stream to write data.

bs Pointer to the bitstream to be written.

Return Value
The number of bytes successfully written.

Seek

mfxI64 (*Seek) (mfxHDL pthis, mfxI64 offset, mfxSeekOrigin origin);

Description
This function sets the new byte position in the stream object.

Parameters

pthis Pointer to the input file or stream.

offset Number of bytes to offset from the position specified by
origin.

origin Relative byte position for the offset. See the
mfxSeekOrigin enumerator for all available options

 | Splitters and Muxers Sample | 4

Return Value
The new position or any value <0 if failed. If offset is 0 and origin is MFX_SEEK_END it returns the file size without
seeking or <0 if it is not implemented.

mfxStreamParams

typedef struct mfxStreamParams {
 mfxU16 reserved[22];
 mfxSystemStreamType SystemType;
 mfxU32 Flags;
 mfxU64 Duration;
 mfxU16 NumTracks;
 mfxU16 NumTracksAllocated;
 mfxTrackInfo **TrackInfo;
} mfxStreamParams;

Description
This structure describes stream parameters which can be used as output for splitter or input for muxer.

Members

SystemType Container format. See the mfxSystemStreamType
enumerator for a complete list of containers.

Flags Stream flags, currently is not used.

Duration The duration of the stream in units of 90 KHz .

NumTracks Numbers of tracks in the stream.

NumTracksAllocated Number of tracks allocated by the application.
Once the application allocates TrackInfo, it sets
NumTracksAllocated. Normally, the application
allocates TrackInfo for each track and sets
NumTracksAllocated equal to NumTracks. See
MFXSplitter_GetInfo for details.

TrackInfo Information about the elementary stream. See the
mfxTrackInfo description for additional details.

mfxTrackInfo

typedef struct {
 mfxTrackType Type;
 mfxU32 SID;
 mfxU16 Enable;
 mfxU16 HeaderLength;
 mfxU8 Header[MFX_TRACK_HEADER_MAX_SIZE];
 mfxU16 reserved[16];
 union {
 mfxAudioInfoMFX AudioParam;
 mfxInfoMFX VideoParam;
 };
} mfxTrackInfo;

Description
This structure represents the information about the elementary stream.

 | Splitters and Muxers Sample | 5

Members

Type Codec format. See the mfxTrackType enumerator for
a complete list of codecs.

SID Unique stream identifier.

Enable 1 if enabled, 0 otherwise.

HeaderLength Length in bytes of the specific codec info.

Header The codec-specific info. For example, for H.264 codec it
must contain SPS/PPS NAL units.

AudioParam Specific audio parameters. The splitter fills the
next fields: StreamInfo.NumChannel,
StreamInfo.SampleFrequency,
StreamInfo.Bitrate,
StreamInfo.BitPerSample
and CodecID. The mandatory fields
are: StreamInfo.NumChannel,
StreamInfo.SampleFrequency,
StreamInfo.Bitrate,
StreamInfo.BitPerSample.

VideoParam Specific video parameters. The splitter fills
the next fields: FrameInfo.Width,
FrameInfo.Height, CodecProfile
and CodecId. The mandatory fields are:
FrameInfo.Width, FrameInfo.Height,
FrameInfo.FrameRateExtD,
FrameInfo.FrameRateExtN.

mfxSeekOrigin

Description
This enumerator specifies the relative position from which the reposition will be performed.

List of values

MFX_SEEK_ORIGIN_BEGIN The beginning of the file or stream.

MFX_SEEK_ORIGIN_CURRENT The current position in the file or stream.

MFX_SEEK_ORIGIN_END The end position in the file or stream.

mfxTrackType

Description
This enumerator specifies audio or video codec.

List of values

MFX_TRACK_MPEG2V MPEG-2

MFX_TRACK_H264 H.264

MFX_TRACK_VC1 VC-1

 | Splitters and Muxers Sample | 6

MFX_TRACK_VP8 VP8

MFX_TRACK_ANY_VIDEO Common type for video codec.

MFX_TRACK_AAC AAC

MFX_TRACK_MPEGA MP3

MFX_TRACK_ANY_AUDIO Common type for audio codec.

MFX_TRACK_UNKNOWN Unknown codec.

mfxSystemStreamType

Description
This enumerator specifies the container format.

List of values

MFX_UNDEF_STREAM Unknown format.

MFX_MPEG2_TRANSPORT_STREAM MPEG TS

MFX_MPEG4_SYSTEM_STREAM MPEG-4

MFX_IVF_STREAM IVF

MFX_ASF_STREAM ASF

MFX_TRACK_AAC AAC

MFXSplitter_Init

mfxStatus MFXSplitter_Init(mfxDataIO *data_io, mfxSplitter *spl);

Description
This function creates and initializes SDK splitter spl, identifies the input format and fills the internal info. This
function must be called before any other calls. pthis, Read and Seek callbacks are mandatory for data_io.

Parameters

data_io Pointer to the mfxDataIO object.

spl Pointer to the output SDK splitter.

Return Values

MFX_ERR_NONE The splitter was initialized successfully.

MFX_ERR_NULL_PTR NULL input parameter or mandatory mfxDataIO field.

MFX_ERR_MEMORY_ALLOC Not enough memory to allocate internal objects.

MFX_ERR_UNKNOWN Can’t identify input format or invalid stream.

MFXSplitter_Close

mfxStatus MFXSplitter_Close(mfxSplitter spl);

 | Splitters and Muxers Sample | 7

Description
This function closes SDK splitter and frees internal objects. This function must be called after all of the splitter
operations are finished.

Parameters

spl SDK splitter handle.

Return Values

MFX_ERR_NONE The function completes successfully.

MFX_ERR_NULL_PTR Invalid splitter handle.

MFXSplitter_GetInfo

mfxStatus MFXSplitter_GetInfo(mfxSplitter spl, mfxStreamParams *par);

Description
This function retrieves and fills information about contained tracks. The TrackInfo from par should be
allocated by the application. If TrackInfo structure is NULL, this function sets NumTracks field of the
parameters to allow user allocate required number of TrackInfo, set NumTracksAllocated and pass
them in the second call. This function must be called after MFXSplitter_Init and before any other calls.
Note: the function returns MFX_ERR_NONE if codec or format is unsupported, but the fields SystemType of
mfxStreamParams will be MFX_UNDEF_STREAM or the Type field of TrackInfo from mfxStreamParams
will be MFX_TRACK_UNKNOWN. The function retrieves other stream info if it is possible. The application can handle
this case as an error at its discretion.

Parameters

spl SDK splitter handle.

par Pointer to the output splitter parameters.

Return Values

MFX_ERR_NONE The function identifies number of tracks or completely
fills the parameters.

MFX_ERR_NULL_PTR One of the input parameters is NULL.

MFX_ERR_MORE_DATA Not enough TrackInfo-s were allocated.

MFX_ERR_UNKNOWN The splitter can’t retrieve stream info.

MFXSplitter_GetBitstream

mfxStatus MFXSplitter_GetBitstream(mfxSplitter spl, mfxU32 *track_num,
mfxBitstream *bs);

Description
This function returns the next frame and it’s track index in the input stream. The application should call
MFXSplitter_ReleaseBitstream after the output bitstream data is no longer needed.

 | Splitters and Muxers Sample | 8

Parameters

spl SDK splitter handle.

track_num The index of track in the TrackInfo array. Don’t mix
it up with SID.

bs Pointer to the output bitstream. bs Data,
DataLength and DecodeTimeStamp fields
are mandatory. DecodeTimeStamp value should
increase monotonically. As for TimeStamp, use
MFX_TIMESTAMP_UNKNOWN if TimeStamp is
unknown.

Return Values

MFX_ERR_NONE The function completes successfully.

MFX_ERR_NULL_PTR One of the input parameters is NULL.

MFX_ERR_NOT_ENOUGH_BUFFER Means that the application holds the packets and does
not call MFXSplitter_ReleaseBitstream for a
long time.

MFX_ERR_MORE_DATA The splitter need more data or reached the end of the
file, bs Data should be NULL. If one of the elementary
streams has finished, the splitter returns last bs Data for
this particularly stream with MFX_BITSTREAM_EOS in
bs DataFlag and returns MFX_ERR_NONE

MFX_ERR_UNKNOWN The splitter can’t get next frame.

MFXSplitter_ReleaseBitstream

mfxStatus MFXSplitter_ReleaseBitstream(mfxSplitter spl, mfxBitstream
*bs);

Description
This function releases resources after MFXSplitter_GetBitstream call.

Parameters

spl SDK splitter handle.

bs Pointer to the input bitstream.

Return Values

MFX_ERR_NONE The function completes successfully.

MFXSplitter_Seek

mfxStatus MFXSplitter_Seek(mfxSplitter spl, mfxU64 timestamp);

Description
This function seeks to the key frame at position specified as timestamp.

 | Splitters and Muxers Sample | 9

Parameters

spl SDK splitter handle.

timestamp Time stamp to reposition in units of 90 KHz.

Return Values

MFX_ERR_NONE The function completes successfully.

MFX_ERR_NULL_PTR Invalid splitter handle.

MFX_ERR_UNKNOWN The splitter can’t seek at specified position.

MFXMuxer_Init

mfxStatus MFXMuxer_Init(mfxStreamParams* par, mfxDataIO *data_io,
mfxMuxer *mux);

Description
This function creates and initializes SDK muxer mux, sets the output format and fills internal info. This function must
be called firstly. pthis, Seek and Write callbacks are mandatory for data_io.

Parameters

par Pointer to the input muxer parameters.

data_io Pointer to the mfxDataIO object.

mux Pointer to the output SDK muxer.

Return Values

MFX_ERR_NONE The muxer was initialized successfully.

MFX_ERR_NULL_PTR NULL input parameter or mandatory mfxDataIO field.

MFX_ERR_MEMORY_ALLOC Not enough memory to allocate internal objects.

MFX_ERR_UNKNOWN The muxer can’t be initialized.

MFXMuxer_Close

mfxStatus MFXMuxer_Close(mfxMuxer mux);

Description
This function closes SDK muxer and frees internal objects. This function must be called after all of the muxer
operations are finished.

Parameters

mux SDK muxer handle.

 | Splitters and Muxers Sample | 10

Return Values

MFX_ERR_NONE The function completes successfully.

MFX_ERR_NULL_PTR Invalid muxer handle.

MFX_ERR_UNKNOWN Not all of the internal objects were released successfully.

MFXMuxer_PutBitstream

mfxStatus MFXMuxer_PutBitstream(mfxMuxer mux, mfxU32 track_num,
mfxBitstream *bs, mfxU64 duration);

Description
This function puts the next frame to the output stream.

Parameters

mux SDK muxer handle.

track_num Stream index for the input frame.

bs Pointer to the input bitstream. The Data,
DataLength, FrameType (MFX_FRAMETYPE_I
or not) and DecodeTimeStamp fields are mandatory.
Use MFX_TIMESTAMP_UNKNOWN if TimeStamp is
unknown.

duration Frame duration in units of 90 KHz or 0 if it is unknown.

Return Values

MFX_ERR_NONE The function completes successfully

MFX_ERR_NULL_PTR One of the input parameters is NULL.

MFX_ERR_UNKNOWN The muxer can’t put the frame.

Note: See <msdk_install-folder>/ media_server_studio_sdk_release_notes.pdf for
mfxStatus, mfxBitstream, mfxAudioInfoMFX and mfxInfoMFX description.

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FORANYAPPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

 | Splitters and Muxers Sample | 11

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may
be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of
MPEG CODECs, or MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

Intel, the Intel logo, Intel Core are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Copyright © 2015, Intel Corporation

http://www.intel.com/

	Splitters and Muxers Sample
	Overview
	Features
	Hardware Requirements
	Software Requirements
	Package Contents
	How to Build the Application
	Running the Software
	Known Limitations
	Structure Reference
	mfxDataIO
	Read
	Read
	Seek
	mfxStreamParams
	mfxTrackInfo
	mfxSeekOrigin
	mfxTrackType
	mfxSystemStreamType
	MFXSplitter_Init
	MFXSplitter_Close
	MFXSplitter_GetInfo
	MFXSplitter_GetBitstream
	MFXSplitter_ReleaseBitstream
	MFXSplitter_Seek
	MFXMuxer_Init
	MFXMuxer_Close
	MFXMuxer_PutBitstream

	Legal Information
	

