
Lesson 5: High Dimensional Anomaly Detection
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Learning objectives

You will be able to:

▪ Describe high dimensional anomaly detection

▪ Understand the curse of dimensionality

▪ Apply the subspace method with feature bagging

▪ Apply isolation forests 

▪ Use Python* to perform anomaly detection on high-dimensional data
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High dimensional anomaly detection

Introduction

▪ In previous lessons we illustrated various approaches to anomaly detection 
using datasets with one or two dimensions for clarity

▪ In reality, datasets often have a large number of dimensions d >> 1

▪ While the approaches presented previously may still work, some of them slow 
down significantly as d increases

▪ Furthermore, new challenges emerge in high dimensions that aren’t 
problematic in 1D, 2D or 3D
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The curse of dimensionality

A few of the problems faced in high dimensions

▪ Data sparsity 

▪ Relevant vs. irrelevant features

▪ Combinatorial explosion

These problems plague other algorithms too (not just anomaly detection)
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Data sparsity

▪ All pairs of points are almost equidistant in high dimensions

▪ More precisely, for a randomly chosen point, the relative difference between the 
furthest-neighbor distance rmax and nearest-neighbor distance rmin goes to zero 
as the dimensionality d grows:

▪ In other words, for a given query point in high dimensions, almost all points are 
likely to lie in a thin shell around the query point
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Data sparsity

▪ As a result, distance-based anomaly detection methods become challenging

▪ Consider the following definition for detecting an anomaly:

– A point P in a dataset T is an anomaly if at least a fraction f of the points in T
lies greater than distance r from P

▪ As the dimensionality increases, it becomes increasingly harder to choose the 
threshold distance r because of the shell effect 

– If r is a little bigger than the shell radius, no points are anomalies                                 
If r is a little smaller than the shell radius, all points are anomalies

▪ Therefore, r must be chosen with unrealistic accuracy to detect a reasonable 
number of anomalies
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Relevant vs. irrelevant features

Anomalies are usually different only in some features (dimensions) 

▪ These features are called “relevant” 

height

width

The red point has an 
anomalous width, 
but a normal height
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Relevant vs. irrelevant features

Irrelevant features add noise making it harder to detect anomalies

▪ Consider data that consists of some anomalies together with normal (non-
anomalous) data that is generated from a Gaussian distribution

▪ For each normal data point there is a small probability of getting a result that is 
far from the mean, which would make it look like an anomaly

▪ Let’s assume that a normal point looks like an anomaly if it is more than three 
standard deviations away from the mean
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Relevant vs. irrelevant features

▪ For a Gaussian distribution, the probability of being within three standard 
deviations from the mean is p = 0.9973

▪ The probability of looking like an anomaly is  q = 1 – p = 0.0027

▪ So for d = 1, the probability of mistaking a normal point for an anomaly is very 
small

▪ What happens as d increases?
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Relevant vs. irrelevant features

▪ For d =1000, the probability that the point won’t look like an anomaly in any of 
the dimensions is pd =0.0670.

▪ In other words, it is very likely that is some dimensions, what is supposed to be a 
normal point will appear to be an anomaly

▪ Similarly, it is unlikely that the anomalies will have anomalous values in all 
dimensions. In some (or even many) dimensions, they will look like normal data

▪ Anomalies are embedded in lower-dimensional subspaces (“relevant features”)

▪ To complicate matters further, different anomalies may be embedded in 
different subspaces
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Relevant vs. irrelevant features

▪ Because of the potential confusion between anomalies and normal data, it is not 
appropriate simply to use all dimensions to detect anomalies. Such an 
approach—for example, a distance metric that includes all dimensions 
available—will lead to  poor results

▪ The challenge is to find the relevant subspaces (features) that lead to an 
effective anomaly detection algorithm
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Combinatorial explosion

Exhaustive search is impractical

▪ Imagine looking for a relevant subspace in d = 1000 using a grid

▪ Divide each dimension into 10 bins

▪ Have to scan 101000 cells

▪ Also need >101000 data points to reach any statistically valid conclusions
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Subspace search

A note of caution

▪ Comparing a data point with many different subspaces can introduce statistical 
bias 

▪ Multiple comparisons problem: can find a subspace that looks good by chance

▪ Scoring problem: can inappropriately favor a subspaces by using a biased metric 
(e.g., using a distance-based score with subspaces of different dimensionality)
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The subspace method

A few approaches to find appropriate subspaces

▪ PCA (principal component analysis)

▪ Grid-based search (beware: combinatorial explosion possible!)

▪ Cluster-based statistics

▪ Random sampling of subspaces

– feature bagging

Whatever method you use, remember: detecting anomalies is only a first step. 
Explaining why they are anomalies is the main goal. If you can’t explain your 
findings, your subspace method is unhelpful.
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Feature bagging

An ensemble method

▪ An approach for combining outliers from many different subspaces

▪ Perform anomaly detection in random subsets of the attributes (=subspaces)

▪ Combine all results to achieve an overall ranking or score
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Feature bagging

The implementation for d-dimensional data

▪ An iterative process. For iteration s:

▪ Select an integer m at random from (d/2)* to (d-1)

▪ Select m features at random without replacement from the dataset producing an 
m-dimensional dataset Ts, m

▪ Apply the anomaly detection algorithm As to Ts, m to score each data point

▪ Combine scores from the different iterations to get an overall result for each 
point
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Feature bagging

Comparing apples with apples

▪ Since each m-dimensional subspace contains a different number of features, the 
scores must be normalized to make a meaningful comparison 

▪ If normalization is done properly, it allows for extra freedom: the anomaly 
detection algorithm As can be different for each iteration 

▪ The simplest approach, however, is to use the same anomaly detection 
algorithm for all iterations that returns a normalized score
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Feature bagging

Two ways to combine scores from different iterations

▪ Breadth-first: The top-ranked anomalies from all iterations are ranked first, 
followed by the second-ranked outliers (with repetitions removed), etc.

– Different tie-breaking procedures between anomalies within each rank may 
lead to slightly different results. 

▪ Cumulative-sum: For each point, the anomaly scores from the different 
iterations are added together. The overall score is determined by the cumulative 
sum.

Even though each iteration may give not-so-great results, the combination 
provides for good anomaly detection
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Isolation forests

Introduction

▪ An ensemble method: an isolation forest is a combination of isolation trees

▪ In an isolation tree, the data is repeated divided with axis-parallel cuts at 
randomly chosen positions for randomly selected features.

▪ The goal is to divide the data into nodes with fewer and fewer points until a 
singleton node containing one point is reached (the “leaf” of the tree).

▪ We expect the tree branches containing anomalies to be less deep than those 
for normal points, because anomalies are located in sparse regions. 
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Anomaly (red point) is isolated
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Isolation forests: how to create a tree

The basic algorithm

▪ Start with a root node containing all the points in the dataset

▪ Create a list L of nodes for further splitting

▪ Initially, the only member of L is the root node

▪ The steps on the next slide are repeated to create the isolation tree until the 
candidate list L is empty
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Isolation forests: how to create a tree

▪ Choose a node N from L at random and remove it from L 

▪ Choose a feature f at random; value of feature at a point is denoted by xf

▪ Split the data in N into two parts N1 and N2 at a random value v along the feature 

– For all points in N1: xf  ≤ v

– For all points in Nz: xf  > v

– v is chosen uniformly at random between the minimum and maximum values of xf 
for points in N

▪ If N1 and N2 contain more than one point then add them to L. Otherwise, designate 
the node(s) with only one point as a leaf

▪ Algorithm ends when have only leaves and no further splitting of nodes is possible
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Isolation forests

Scoring

▪ Anomalies are typically isolated into leaves in fewer splitting's than normal 
points*

▪ Therefore, length of path from the root to the tree (number of splitting's) is used 
as the score—anomalies have small scores

▪ Repeat algorithm multiple times and average scores to get final result

Note: the isolation forest implementation in scikit-learn uses a different scoring 
convention from that found elsewhere (see Python* notebook accompanying 
lecture).
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Isolation forests

Improving the basic algorithm

▪ If tree is grown to full height, the algorithm is parameter-free, but it can take a 
long time to run

▪ For greater efficiency, can stop when node has n (> 1) points

– Use an extrapolation formula to estimate final length

▪ Can also split data into train and test samples and construct tree with smaller 
training set
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Use Python* for anomaly detection

Next up is a look at applying these concepts in Python*

▪ See notebook entitled High_Dimensional_Anomaly_Detection_student.ipynb
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Learning objectives recap

In this session you learned how to:

▪ Understand high dimensional anomaly detection

▪ Apply the subspace method with feature bagging

▪ Apply isolation forests 

▪ Use Python* to perform anomaly detection on high-dimensional data

Learning objectives
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