
Lesson 5: High Dimensional Anomaly Detection

2

Learning objectives

You will be able to:

▪ Describe high dimensional anomaly detection

▪ Understand the curse of dimensionality

▪ Apply the subspace method with feature bagging

▪ Apply isolation forests

▪ Use Python* to perform anomaly detection on high-dimensional data

3

High dimensional anomaly detection

Introduction

▪ In previous lessons we illustrated various approaches to anomaly detection
using datasets with one or two dimensions for clarity

▪ In reality, datasets often have a large number of dimensions d >> 1

▪ While the approaches presented previously may still work, some of them slow
down significantly as d increases

▪ Furthermore, new challenges emerge in high dimensions that aren’t
problematic in 1D, 2D or 3D

4

The curse of dimensionality

A few of the problems faced in high dimensions

▪ Data sparsity

▪ Relevant vs. irrelevant features

▪ Combinatorial explosion

These problems plague other algorithms too (not just anomaly detection)

5

Data sparsity

▪ All pairs of points are almost equidistant in high dimensions

▪ More precisely, for a randomly chosen point, the relative difference between the
furthest-neighbor distance rmax and nearest-neighbor distance rmin goes to zero
as the dimensionality d grows:

▪ In other words, for a given query point in high dimensions, almost all points are
likely to lie in a thin shell around the query point

lim
d®¥

r
max

- r
min

r
min

æ

è
ç

ö

ø
÷ = 0

6

Relative spread

=
r

max
- r

min

r
min

æ

è
ç

ö

ø
÷

7

Data sparsity

▪ As a result, distance-based anomaly detection methods become challenging

▪ Consider the following definition for detecting an anomaly:

– A point P in a dataset T is an anomaly if at least a fraction f of the points in T
lies greater than distance r from P

▪ As the dimensionality increases, it becomes increasingly harder to choose the
threshold distance r because of the shell effect

– If r is a little bigger than the shell radius, no points are anomalies
If r is a little smaller than the shell radius, all points are anomalies

▪ Therefore, r must be chosen with unrealistic accuracy to detect a reasonable
number of anomalies

8

Relevant vs. irrelevant features

Anomalies are usually different only in some features (dimensions)

▪ These features are called “relevant”

height

width

The red point has an
anomalous width,
but a normal height

9

Relevant vs. irrelevant features

Irrelevant features add noise making it harder to detect anomalies

▪ Consider data that consists of some anomalies together with normal (non-
anomalous) data that is generated from a Gaussian distribution

▪ For each normal data point there is a small probability of getting a result that is
far from the mean, which would make it look like an anomaly

▪ Let’s assume that a normal point looks like an anomaly if it is more than three
standard deviations away from the mean

10

Relevant vs. irrelevant features

▪ For a Gaussian distribution, the probability of being within three standard
deviations from the mean is p = 0.9973

▪ The probability of looking like an anomaly is q = 1 – p = 0.0027

▪ So for d = 1, the probability of mistaking a normal point for an anomaly is very
small

▪ What happens as d increases?

11

12

Relevant vs. irrelevant features

▪ For d =1000, the probability that the point won’t look like an anomaly in any of
the dimensions is pd =0.0670.

▪ In other words, it is very likely that is some dimensions, what is supposed to be a
normal point will appear to be an anomaly

▪ Similarly, it is unlikely that the anomalies will have anomalous values in all
dimensions. In some (or even many) dimensions, they will look like normal data

▪ Anomalies are embedded in lower-dimensional subspaces (“relevant features”)

▪ To complicate matters further, different anomalies may be embedded in
different subspaces

13

Relevant vs. irrelevant features

▪ Because of the potential confusion between anomalies and normal data, it is not
appropriate simply to use all dimensions to detect anomalies. Such an
approach—for example, a distance metric that includes all dimensions
available—will lead to poor results

▪ The challenge is to find the relevant subspaces (features) that lead to an
effective anomaly detection algorithm

14

15

Combinatorial explosion

Exhaustive search is impractical

▪ Imagine looking for a relevant subspace in d = 1000 using a grid

▪ Divide each dimension into 10 bins

▪ Have to scan 101000 cells

▪ Also need >101000 data points to reach any statistically valid conclusions

16

Subspace search

A note of caution

▪ Comparing a data point with many different subspaces can introduce statistical
bias

▪ Multiple comparisons problem: can find a subspace that looks good by chance

▪ Scoring problem: can inappropriately favor a subspaces by using a biased metric
(e.g., using a distance-based score with subspaces of different dimensionality)

17

The subspace method

A few approaches to find appropriate subspaces

▪ PCA (principal component analysis)

▪ Grid-based search (beware: combinatorial explosion possible!)

▪ Cluster-based statistics

▪ Random sampling of subspaces

– feature bagging

Whatever method you use, remember: detecting anomalies is only a first step.
Explaining why they are anomalies is the main goal. If you can’t explain your
findings, your subspace method is unhelpful.

18

Feature bagging

An ensemble method

▪ An approach for combining outliers from many different subspaces

▪ Perform anomaly detection in random subsets of the attributes (=subspaces)

▪ Combine all results to achieve an overall ranking or score

19

Feature bagging

The implementation for d-dimensional data

▪ An iterative process. For iteration s:

▪ Select an integer m at random from (d/2)* to (d-1)

▪ Select m features at random without replacement from the dataset producing an
m-dimensional dataset Ts, m

▪ Apply the anomaly detection algorithm As to Ts, m to score each data point

▪ Combine scores from the different iterations to get an overall result for each
point

20

Feature bagging

Comparing apples with apples

▪ Since each m-dimensional subspace contains a different number of features, the
scores must be normalized to make a meaningful comparison

▪ If normalization is done properly, it allows for extra freedom: the anomaly
detection algorithm As can be different for each iteration

▪ The simplest approach, however, is to use the same anomaly detection
algorithm for all iterations that returns a normalized score

21

Feature bagging

Two ways to combine scores from different iterations

▪ Breadth-first: The top-ranked anomalies from all iterations are ranked first,
followed by the second-ranked outliers (with repetitions removed), etc.

– Different tie-breaking procedures between anomalies within each rank may
lead to slightly different results.

▪ Cumulative-sum: For each point, the anomaly scores from the different
iterations are added together. The overall score is determined by the cumulative
sum.

Even though each iteration may give not-so-great results, the combination
provides for good anomaly detection

22

Isolation forests

Introduction

▪ An ensemble method: an isolation forest is a combination of isolation trees

▪ In an isolation tree, the data is repeated divided with axis-parallel cuts at
randomly chosen positions for randomly selected features.

▪ The goal is to divide the data into nodes with fewer and fewer points until a
singleton node containing one point is reached (the “leaf” of the tree).

▪ We expect the tree branches containing anomalies to be less deep than those
for normal points, because anomalies are located in sparse regions.

23

height

width

Anomaly (red point) is isolated

24

Isolation forests: how to create a tree

The basic algorithm

▪ Start with a root node containing all the points in the dataset

▪ Create a list L of nodes for further splitting

▪ Initially, the only member of L is the root node

▪ The steps on the next slide are repeated to create the isolation tree until the
candidate list L is empty

25

Isolation forests: how to create a tree

▪ Choose a node N from L at random and remove it from L

▪ Choose a feature f at random; value of feature at a point is denoted by xf

▪ Split the data in N into two parts N1 and N2 at a random value v along the feature

– For all points in N1: xf ≤ v

– For all points in Nz: xf > v

– v is chosen uniformly at random between the minimum and maximum values of xf
for points in N

▪ If N1 and N2 contain more than one point then add them to L. Otherwise, designate
the node(s) with only one point as a leaf

▪ Algorithm ends when have only leaves and no further splitting of nodes is possible

26

Isolation forests

Scoring

▪ Anomalies are typically isolated into leaves in fewer splitting's than normal
points*

▪ Therefore, length of path from the root to the tree (number of splitting's) is used
as the score—anomalies have small scores

▪ Repeat algorithm multiple times and average scores to get final result

Note: the isolation forest implementation in scikit-learn uses a different scoring
convention from that found elsewhere (see Python* notebook accompanying
lecture).

27

Isolation forests

Improving the basic algorithm

▪ If tree is grown to full height, the algorithm is parameter-free, but it can take a
long time to run

▪ For greater efficiency, can stop when node has n (> 1) points

– Use an extrapolation formula to estimate final length

▪ Can also split data into train and test samples and construct tree with smaller
training set

29

Use Python* for anomaly detection

Next up is a look at applying these concepts in Python*

▪ See notebook entitled High_Dimensional_Anomaly_Detection_student.ipynb

30

Learning objectives recap

In this session you learned how to:

▪ Understand high dimensional anomaly detection

▪ Apply the subspace method with feature bagging

▪ Apply isolation forests

▪ Use Python* to perform anomaly detection on high-dimensional data

Learning objectives

31

References

▪ Outlier Detection in High-Dimensional Data by A. Zimek, E. Schubert, H.-P.
Kriegel (2013)

▪ Outlier Detection for High Dimensional Data by C. C. Aggarwal, P.S. Yu (2001)

http://www.dbs.ifi.lmu.de/~zimek/publications/PAKDD2013/TutorialPAKDD2013OutlierDetectionHighDim.pdf
http://charuaggarwal.net/outl.pdf

