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Vector API:  

Writing own-vector algorithms 

in OpenJDK* for faster 

performance 
In this paper, we discuss insights into Vector API, which is being developed as part 

of OpenJDK* under Project Panama. First, we’ll go over some Vector API 

fundamentals, basic functionalities, and tips. We’ll then show you some code 

samples of vector algorithms for standard Machine Learning routines and financial 

benchmarks, and go over some ways to increase performance. These examples 

should give you some guidelines and best practices for vector programming in 

Java*, to help you to write successful vector versions of your own compute-intensive 

algorithms. 
 

 

 

AUTHOR 

Rahul Kandu 

Software and Services Group 

Intel Corporation 

ACKNOWLEGMENTS 

Software and Services Group 

Intel Corporation: 

Shirish Aundhe 

Mahesh Bhatt 

Vivek Deshpande 

Chris Elford 

Ian Graves 

Anil Kumar 

Razvan Lupusoru 

Sandhya Viswanathan 

 

INTRODUCTION 

Modern microprocessors offer parallelism at various granularities in order to deliver high 

performance. These granularities are at the thread, instruction, data, and pipeline 

level. Thread- and Instruction-level parallelism is delivered by the CPU itself (via hyper-

threading and out-of-order execution). Data-level parallelism is achieved using Single 

Instruction Multiple Data (SIMD) instructions. Processors can leverage application-level 

parallelization by simultaneously processing the same operation on multiple data items. 

Application-level parallelization allows for higher performance speeds by orders of 

magnitude. 
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CHALLENGES:  LIMITED SIMD 

SUPPORT IN JAVA* 

SIMD in Java* opens up ways for 

developers to explore new opportunities 

in areas like high performance computing 

(HPC), machine learning (ML) linear 

algebra-based algorithms, deep learning 

(DL) and artificial intelligence (AI) 

frameworks, DL training workloads, and 

financial services that operate on huge 

data sets.  

Right now there is limited SIMD support in 

Java, with some new optimizations in the 

Java Virtual Machine 9 (JVM 9). 

However, even though SIMD optimization 

is supported in Java (via auto-

vectorization and Super-word 

optimizations), that support is currently 

limited to simple expressions and/or 

loops. Fortunately, these optimizations 

don’t require you to do additional work. 

However, you do need to write your Java 

code in certain ways, in order to take 

advantage of auto-vectorization. 

Because of this, big data applications 

typically use Unsafe or Java Native 

Interface (JNI) wrapper packages, in 

order to have access to faster native 

libraries. Such big data applications 

include Apache Flink*, Apache Spark* ML 

libraries, and BigDL (big data distributed 

deep learning on Spark). Unfortunately, 

JNI remains hard to develop, hard to 

maintain, and adds performance 

overhead. 

Vector API and Project Panama 

To address these challenges, Project 

Panama offers a Vector API. Vector API 

supports the more complex expressions 

used in ML and DL (such as basic linear 

algorithm subprogram, or BLAS), as well 

as in the financial services industry (FSI) 

and HPC programs. 

 

Vector API makes it possible to develop 

compute-intensive machine and deep 

learning algorithms, financial algorithms, 

and training workloads all in Java. Even 

better, Vector API enables this without 

needing non-portable native code or 

incurring JNI overhead. It introduces a set 

of methods for data-parallel operations on 

sized vector-types for programming 

directly, typically without requiring 

knowledge of an underlying CPU. APIs 

are further efficiently mapped to SIMD 

instructions on modern CPUs by the JVM 

JIT. Also, BLAS algorithms can run up to 

3x to 4x faster when implemented using 

Vector API. 

How to use Vector API in Java  

A vector interface is bundled as part of 

the com.oracle.vector package. To begin 

using Vector API, you need to import the 

following lines into your program. 

Depending on the Vector type, you can 

choose to import FloatVector, IntVector 

etc. See code sample 1, above. 

Vector is an Immutable interface. It has 

been defined this way because of the 

advantages of concurrency and multi-

threading that immutable objects offer.  

 

The Vector type (Vector<E, S>) takes two 

parameters:  

E The element type, broadly 

supporting the int, float, and double 

primitive types.  

S Specifies the shape or bitwise size 

of the vector.  

Vector operations live as virtual methods 

of a vector instance. Before using vector 

operations, you must create a primordial 

instance which captures the element type 

and vector shape. Using that instance, 

you can then create other vectors of that 

particular size and shape. See code 

sample 2, above. 

Once you have created the primordial 
instance, you can create vector instances 
of the FloatVector<Shapes.S256Bit> 

type. If necessary, your program should 
also create first instances of other vector 
elements and shape types, such as 
DoubleVector<Shapes.S512Bit>.  

 

import jdk.incubator.vector.FloatVector; 

import jdk.incubator.vector.Vector; 

import jdk.incubator.vector.Shapes; 

Code sample 1. To begin using Vector API, import these lines into your program. 

private static final FloatVector.FloatSpecies<Shapes.S256Bit> species = 

(FloatVector.FloatSpecies<Shapes.S256Bit>) Vector.speciesInstance (Float.class, Shapes.S_256_BIT); 

Code sample 2. Create a primordial instance, then create other vectors of that 
particular size and shape. 
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Vector class hierarchy 

First, let’s look at the Vector API class 

hierarchy. At the top level, the Vector 

interface Vector<E, S> takes the 

parameters Element and Shape of the 

vector. Further down we have abstract 

classes IntVector<S>, FloatVector<S>, 

and so on. The abstract classes 

specialize the Element type to Double, 

Integer, and so on. These abstract 

classes are inherited into classes like 

Int128Vector, Float512Vector. In turn, 

those classes specialize the Shape 

(bitwise size) of the vectors for each 

Element type for concrete vectors where 

vector operations reside.  

Vector API has broad support for Float, 

Integer, and Double types, since most 

SIMD features revolve around these 

primitive data types. See Figure 1. 

A prototype implementation for a Vector 

interface is shown in code sample 3. 

At the top level, there is a vector 

interface. Moving down through the 

hierarchy, we start to specialize with an 

IntVector, with a shape that has yet to be 

determined. See code sample 4.  

When we drill down to the bottom of the 

hierarchy, we start getting vector classes 

which are specific to the particular 

Element types (E) and Shapes (S), as 

shown in code sample 5. 

Vector-Vector functionality  

As we mentioned earlier, Vector is an 

immutable interface. All the methods in 

the vector interface provide the result in a 

new object. They do not modify the 

input’s objects.  

The Vector interface supports most of the 

basic arithmetic and trigonometric 

operations in both masked and unmasked 

form. You can see this support in code 

sample 6. 

 

public interface Vector<E, S extends Vector.Shape<Vector<?, ?>>>   {         

 Vector<E, S> add (Vector<E, S> v2);   

} 

Code sample 5. Vector classes specific to the Element types (E) and Shapes (S). 

Code sample 3. Prototype implementation for a Vector interface. 

Code sample 4. Starting to specialize with an IntVector, with a shape that has yet 
to be determined. 

public abstract class DoubleVector <S extends Vector.Shape<Vector<?, ?>>>  implements 

Vector<Double, S> { 

  DoubleVector() {}  

  public DoubleVector<S> add (Vector<Double, S> o) {..} 

  public DoubleVector<S> mul (Vector<Double, S> o) {..} 

} 

final class Double512Vector extends DoubleVector<Shapes.S512Bit> { 

.. 

} 

public abstract class DoubleVector<S extends Vector.Shape<Vector<?,?>>> implements 

Vector<Double,S> {                                  

 Vector<Double, S> add (Vector<Double, S> v2);        

Vector<Double,S> add (Vector<Double, S> o, Mask<Double, S> m); 

Vector<Double, S> mul (Vector<Double, S> v2);     

Vector<Double, S> mul (Vector<Double, S> o, Mask<Double, S> m);      

….  

Vector<Double, S> sin ();  

Vector<Double, S> sin (Mask<Double, S> m); 

Vector<Double, S> sqrt (),           

… 

} 

Code sample 6. Vector classes specific to the Element types (E) and Shapes (S). 

Code sample 3. Prototype implementation for a Vector interface. 

Figure 1.  Vector API class hierarchy 
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Support for advanced vector 

operations 

Advanced vector operations are also 

supported. These include horizontal 

reductions, broadcasting primitives, 

blend/shuffle operations, masked 

comparisons, and array load/stores. You 

can see the supported operations in code 

sample 7. 

The next code sample shows the vector 

addition of two arrays. AddArrays creates 

two Vectors of Float Element type and 

256-bit Shape (size). In this example, we 

use the fromArray (array, index) operation 

to load the vectors from arrays left [] and 

right [], followed by the vector add () 

operation. We also use the intoArray 

(array, index) operation to store the result 

of the computation into res []. See code 

sample 8. 

Write loop kernels independent of 

vector size. 

Vector API lets you write loop kernels 

independent of vector size. While writing 

loop kernels, you can simply query the 

Vector API for the vector size 

species.length (). You can then use that 

size for striding through arrays and byte-

buffers. This allows you to make your 

code portable across multiple vector 

sizes.  

In code sample 9, you can see that user-

defined classes must extend 

Vector.Shape<Vector<?, ?>>. Within 

the class definition, you must include a 

primordial instance spec as field of final 

type. Once you do that, you can then use 

the spec vector instance to create vector 

instances that are length-agnostic.  

The next code sample (sample 10) shows 

a loop kernel for the vector addition of two 

arrays. In this example, the Shape of the 

vector is parameterized by 

FloatVector<S> in the loop kernel. 

 

public abstract class IntVector<S extends Vector.Shape<Vector<?,?>>> implements Vector<Integer,S> 

{ 

int sumAll ();               

void intoArray(int[] a, int ix);  

void intoArray (int [] is, int ix, Mask<Integer, S> m); 

Vector<Integer, S> fromArray (int [] fs, int ix);  

Vector<Integer, S> blend (Vector<Integer, S> o, Mask<Integer, S> m); 

Vector<Integer, S> shuffle (Vector<Integer, S> o, Shuffle<Integer, S> s);    

Vector<Integer, S> fromByte (byte f);       

… 

} 

Code sample 7. Supported advanced vector operations. 

public static void AddArrays (float [] left, float [] right, float [] res) { 

  FloatVector.FloatSpecies<Shapes.S256Bit> species = (FloatVector.FloatSpecies<Shapes.S256Bit>)    

Vector.speciesInstance (Float.class, Shapes.S_256_BIT); 

        FloatVector<Shapes.S256Bit> l  = species.fromArray (left, 0); 

        FloatVector<Shapes.S256Bit> r  = species.fromArray (right, 0); 

        FloatVector<Shapes.S256Bit> lr = l.add(r); 

        lr.intoArray (res, 0); 

  } 

Code sample 8. Supported advanced vector operations. 

private final FloatVector.FloatSpecies<S> spec; 

  FloatVector<S> av = spec.fromArray (a, i); 

  FloatVector<S> bv = spec.fromArray (b, i); 

Code sample 9. Using the spec vector instance to create vector instances that 
are length-agnostic. 

for (int i = 0; i < C.length; i++) {  //original scalar loop kernel  

    C[i] = A[i] + B[i]; 

}       

          

public class AddClass<S extends Vector.Shape<Vector<?, ?>>> { 

      private final FloatVector.FloatSpecies<S> spec; 

      AddClass (FloatVector.FloatSpecies<S> v) {spec = v; } 

      //vector routine for add  

       void add (float [] a, float [] b, float [] c) { 

        int i=0; 

        for (; i+spec.length ()<a.length;i+=spec.length ()) { 

            FloatVector<S> av = spec.fromArray (a, i); 

            FloatVector<S> bv = spec.fromArray (b, i); 

            av.add (bv).intoArray(c, i); 

        } 

       //clean up loop 

        for (;i<a.length;i++) c[i]=a[i]+b[i]; 

Code sample 10. Loop kernel for the vector addition of two arrays. 
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Note that, after writing the vectorized 

version of the loop, you still need to 

iterate over the remaining array elements 

in a scalar fashion. The example above 

shows this in the tail cleanup loop. 

While creating objects of AddClass type, 

you will need the primordial vector 

instance species specialized by Shape. 

As part of the object definition, you must 

explicitly specify the Vector shape as 

AddClass<Shapes.S256Bit>. See code 

sample 11. 

Loops with conditional statements 

Loops with conditional statements can 

also be written as vector versions using 

masked operations. In this next example, 

we first generate Vector.Mask<Float, 

Shapes.S256Bit> using the greaterThan 

() operation. Mask is used for the mul () 

operation.  

Code sample 12 shows the scalar code.  

Code sample 13 shows the vector loop. 

We’ll show you several other vector 

programming tips and tricks using code 

samples in the next discussion. 

 

 

 

 

 

 

 

 

 

 

 

FloatVector.FloatSpecies<Shapes.S256Bit> species = (FloatVector.FloatSpecies<Shapes.S256Bit>) 

Vector.speciesInstance (Float.class, Shapes.S_256_BIT); 

AddClass<Shapes.S256Bit> myAddObject = new AddClass<> (species); 

Code sample 11. Explicitly specifying the Vector shape. 

for (int i = 0; i < SIZE; i++) { 

            float res = b[i]; 

            if (a[i] > 1.0) { 

                res = res * a[i]; 

            } 

            c[i] = res; 

        } 

Code sample 12. Scalar code for loops with conditional statements. 

public void useMask (float [] a, float [] b, float [] c, int SIZE) { 

 FloatVector.FloatSpecies<Shapes.S256Bit> species = (FloatVector.FloatSpecies <Shapes.S256Bit>) 

Vector.speciesInstance Float.class, Shapes.S_256_BIT); 

 FloatVector<Shapes.S256Bit> tv = species.broadcast (1.0f); int i = 0; 

 for (; i+species.length() < SIZE; i+ = species.length()){ 

   FloatVector<Shapes.S256Bit> rv = species.fromArray (b,i); 

   FloatVector<Shapes.S256Bit> av = species.fromArray (a,i); 

   Vector.Mask<Float,Shapes.S256Bit> mask = av.greaterThan (tv); 

   rv.mul (av, mask).intoArray(c,i); 

 } 

  //tail processing    

} 

Code sample 13. Vector loop. 
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Code samples: BLAS  

The BLAS sub-program contains a set of 

low-level linear algebra routines. These 

routines can take advantage of both 

Vector operations and SIMD instructions. 

BLAS algorithms are used in most 

common ML algorithms and utilities. For 

example, BLAS-3 GEMM is a ubiquitous 

algorithm used in DL and neural 

networks.  

This discussion focuses on how to 

implement Vector API for few of the BLAS 

routines. Most of the BLAS algorithms 

can be fully expressed using Vector API. 

You can find more code samples here.  

The BLAS-1 DDOT routine 

Our first example uses the BLAS-1 DDOT 

routine. This routine computes the dot 

product of two vectors or arrays (A*B). Its 

product is returned as a scalar value.  

The Vector program VecDdot uses the 

vector mul () routine to multiply both 

vectors and perform the horizontal 

reduction sumAll () on the result of the 

multiplication. The vector loop will need a 

tail/post loop to iterate over the remaining 

scalar values until it reaches the end of 

the arrays.  

When implemented using vectors and 

when run on a platform that supports 

Intel® Advanced Vector Extensions 2 

(Intel® AVX2), the performance of the 

SDOT routine (which operates on two 

float vectors) can be increased by up to 

3.25x.  See code sample 14. 

Horizontal reductions are platform-

specific 

Horizontal reductions like sumAll () and 

subAll () are platform-specific operations. 

This is because different CPUs may have 

different instruction support at the 

hardware level.  

You must be careful while handling 

horizontal reductions for Float and 

Double-based custom types in Java 

applications. The order of operations 

matters, and your implementation must 

be explicit for your specific reduction.  

The DAXPY algorithm in vector loops 

DAXPY is a BLAS level-1 algorithm used 

to compute a constant multiplied by a 

vector, plus a vector. When writing vector 

loops, you should broadcast all constant 

scalars into vectors before entering the 

loop kernel for better performance. (This 

helps you avoid generating unnecessary 

garbage.)  

In this next example, we broadcast the 

alpha scalar value outside the loop using 

broadcast (). The result is computed from 

two arithmetic operations add () and mul 

(). The result is stored in array b [], using 

intoArray (). See code sample 15. 

static void VecDdot (double [] a, int a_offset, double [] b, int b_offset) { 

  DoubleVector.DoubleSpecies<Shapes.S512Bit> spec = 

(DoubleVector.DoubleSpecies<Shapes.S512Bit>)    Vector.speciesInstance (Double.class, 

Shapes.S_512_BIT); 

  int i = 0; double sum = 0; 

  for (; i + spec.length () < a.length; i += spec.length ()) { 

        DoubleVector<Shapes.S512Bit> l = spec.fromArray (a, i + a_offset); 

        DoubleVector<Shapes.S512Bit> r = spec.fromArray (b, i + b_offset); 

        sum+=l.mul(r).sumAll(); 

   } 

   for (; i < a.length; i++) sum += a[i + a_offset] * b[i + b_offset]; //tail 

} 

Code sample 14. The Vector program VecDdot multiplies two vectors and 
performs the horizontal reduction sumAll () on the result of the 
multiplication 

static void VecDaxpy (double [] a, int a_offset, double [] b, int b_offset, double alpha) { 

   DoubleVector.DoubleSpecies<Shapes.S512Bit> spec = 

(DoubleVector.DoubleSpecies<Shapes.S512Bit>)    Vector.speciesInstance (Double.class, 

Shapes.S_512_BIT); 

   DoubleVector<Shapes.S512Bit> alphaVec = spec.broadcast (alpha); int i = 0; 

        for (; (i + spec.length ()) < a.length; i += spec.length ()) { 

            DoubleVector<Shapes.S512Bit> bv = spec.fromArray (b, i + b_offset); 

            DoubleVector<Shapes.S512Bit> av = spec.fromArray (a, i + a_offset); 

            bv.add (av.mul (alphaVec)).intoArray (b, i + b_offset); 

        } 

        for (; i < a.length; i++) b[i + b_offset] += alpha * a[i + a_offset];          //tail of the loop 

    } 

Code sample 15. Using the DAXPY algorithm to broadcast the alpha scalar value 
outside the loop using broadcast (). 

https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
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Vector-matrix and  

matrix-matrix operations 

BLAS-2 and BLAS-3 routines, such as 

DSYR and DGEMM respectively, perform 

vector-matrix or matrix-matrix operations. 

Code sample 16 showcases  

DGEMM: C = alpha*A*B+beta*C.  

In this example, A and B are non-zero 

matrices that are not transposed; while 

alpha is a non-zero scalar, and beta 

scalars as 1.  

You can find a VecDgemm example of 

this here. 

  

In the presence of nested loops, it is 

possible to broadcast scalars in the outer 

loop — provided the inner compute loop 

doesn’t modify the scalar value. In our 

example with BLAS-3, temp is broadcast 

outside, since it is unchanged inside the 

compute kernel.  

When you use vector implementation with 

Intel® AVX2 support, you can boost the 

performance of BLAS-II routines such as 

SSYR by up to 2.5x, and SSPR by up to 

4x. You can boost the performance of 

typical BLAS-III routines like SGEMM by 

about 4.25x. 

The example above also uses the fma () 

vector (fused multiply-add) operation. You 

could express the original vector 

operation cv.add (av.mul (tv)) as tv.fma 

(av, cv), using the FMA library function in 

Java. To speed up performance, you 

should leverage the Intel AVX FMA 

instructions. Several BLAS-2 and BLAS-3 

routines can be written using these vector 

operations.  

Code examples:  

Financial services applications  

Vector API is highly applicable to 

benchmarks and use cases in the 

financial services industry. For example, 

the getOptionPrice () program is used for 

Monte Carlo European simulations to get 

the option price. In this program, loop-

independent scalar values (like VBySqrtT, 

MuByT, Sval, and Xval) can be broadcast 

first. Within the loop, the z[path] array is 

loaded into a vector. That is followed by a 

trigonometric math exp () operation on the 

vectors that were created from VBySqrtT, 

MuByT and z[path].  

You can write a vector version of this over 
a number of paths. Code sample 17 
shows the code in scalar form. 
 

void VecDgemm (String transa, String transb, int m, int n, int k, double alpha, double[] a, int a_offset, 

int lda, double[] b, int b_offset, int ldb, double beta, double[] c, int c_offset, int ldc, boolean nota, 

boolean notb) { 

DoubleVector.DoubleSpecies<Shapes.S512Bit> spec= 

(DoubleVector.DoubleSpecies<Shapes.S512Bit>)    Vector.speciesInstance (Double.class, 

Shapes.S_512_BIT);  

double temp;  

  if (notb && nota) {                for (j = 0; j < n; j++) { 

                    for (l = 0; l < k; l++) { 

                        if (b[l + j * ldb + b_offset] != 0.0) { 

                            temp = alpha * b [l + j * ldb + b_offset]; 

                            DoubleVector<Shapes.S512Bit> tv = spec.broadcast (temp); 

                            for (i = 0; (i + spec.length ()) < m; i += spec.length ()) { 

                                DoubleVector<Shapes.S512Bit> av = spec.fromArray (a, i + l * lda + a_offset); 

                                DoubleVector<Shapes.S512Bit> cv = spec.fromArray (c, i + j * ldc + c_offset); 

                                tv.fma (av, cv).intoArray (c, i+j*ldc+c_offset);  

                            } 

                            for (; i < m; i++) 

                                c[i + j * ldc + c_offset] = c[i + j * ldc + c_offset] + temp * a[i + l * lda + a_offset]; 

                        } 

                    } 

              } 

        } 

} 

Code sample 16. DGEMM: C = alpha*A*B+beta*C. Here, A and B are non-zero 
matrices that are not transposed; while alpha is a non-zero 
scalar, and beta scalars as 1. 

public double getOptionPrice (double Sval, double Xval, double T)  { 

   double val=0.0 , val2=0.0; 

   double VBySqrtT = volatility * Math.sqrt (T); 

   double MuByT = (riskFree - 0.5 * volatility * volatility) * T; 

   //Simulate Paths 

   for (int path = 0; path < numberOfPaths; path++) { 

     double callValue = Sval * Math.exp (MuByT + VBySqrtT * z[path]) - Xval; 

     callValue = (callValue > 0) ? callValue: 0; 

     val += callValue; 

     val2 += callValue * callValue; 

    } 

    double optPrice=0.0; 

    optPrice = val / numberOfPaths; 

    return (optPrice); 

  } 

Code sample 17. Vector version of trigonometric math exp () operation on the 
vectors created from VBySqrtT, MuByT and z[path. 

https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
https://en.wikipedia.org/wiki/FMA_instruction_set
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Note that, when writing mathematical 
expressions, you must be careful to 
maintain operator precedence. See code 
sample 18. 

Code sample 19 shows the vector loop 

kernel.  

Java ternary operations: Use the 

blend () routine 

The Vector API provides a blend () 

routine for Java ternary operations (such 

as maxVal=a>0? a: 0) of two Vectors.  

If you look at the previous code sample, 

blend () takes a second operand as zero 

vector instance zeroVec, and the masked 

output from greaterThan (zeroVec) of the 

first vector. This is then followed by a 

horizontal reduction sumAll (). In turn, that 

accumulates the scalar results in the val 

and val2 variables.  

Code sample 20 shows the relevant line 

from the previous code sample. 

Using a Binomial Lattice  

The BinomialOptions () FSI algorithm 

uses a binomial lattice model (Cox, Ross 

and Rubenstein method) to price the 

European call option. At every step, the 

value of stock “S” can go up by u*S or 

down by v*S. This leads to a simple loop 

going over all leaf nodes in order to 

calculate the payoff at the expiry.  

Code sample 21 shows the scalar 

algorithm. 

 

 

 

double callValue = Sval * Math.exp (MuByT + VBySqrtT * z [path]) - Xval; //scalar expression 

   MuVec.add (VByVec).mul (zv).exp (); // wrong operator precedence  

   MuVec.add (VByVec.mul (zv)).exp (); // correct operator precedence  

   DoubleVector<Shapes.S512Bit> callValVec=SvalVec.mul (MuVec.add (VByVec.mul (zv)).exp 

()).sub (XvalVec); 

Code sample 18. When writing mathematical expressions, be careful to maintain 
operator precedence. 

public static double VecGetOptionPrice (double Sval, double Xval, double T, double[] z, int 

numberOfPaths, double riskFree, double volatility) { 

   DoubleVector.DoubleSpecies<Shapes.S512Bit> spec=  

   (DoubleVector.DoubleSpecies<Shapes.S512Bit>)  Vector.speciesInstance (Double.class, 

Shapes.S_512_BIT); 

    double val = 0.0, val2 = 0.0;  

    double VBySqrtT = volatility * Math.sqrt (T); 

    double MuByT = (riskFree - 0.5 * volatility * volatility) * T; 

    //broadcast happens here       

     DoubleVector<Shapes.S512Bit> VByVec = spec.broadcast (VBySqrtT); 

     DoubleVector<Shapes.S512Bit> MuVec = spec.broadcast (MuByT); 

     DoubleVector<Shapes.S512Bit> SvalVec = spec.broadcast (Sval); 

     DoubleVector<Shapes.S512Bit> XvalVec = spec.broadcast (Xval); 

     DoubleVector<Shapes.S512Bit> zeroVec =spec.broadcast (0.0D); 

     //Simulate Paths 

     int path = 0; 

     for (; (path + spec.length()) < numberOfPaths; path += spec.length()) { 

       DoubleVector<Shapes.S512Bit> zv = spec.fromArray (z, path); 

       DoubleVector<Shapes.S512Bit> tv = MuVec.add (VByVec.mul (zv)).exp ();  

       DoubleVector<Shapes.S512Bit> callValVec = SvalVec.mul (tv).sub (XvalVec); 

       callValVec = callValVec.blend(zeroVec, callValVec.greaterThan (zeroVec)); 

       val += callValVec.sumAll (); 

       val2 += callValVec.mul (callValVec).sumAll (); 

        } 

        //tail loop goes here  

    } 

Code sample 20. Extracted line from previous code sample for scalar results in 
val and val2 variables. 

callValVec = callValVec.blend (zeroVec, callValVec.greaterThan (zeroVec)); 

void BinomialOptions (double[] stepsArray, int STEPS_CACHE_SIZE, double vsdt, double x, double 

s, int numSteps, int NUM_STEPS_ROUND, double pdByr, double puByr) { 

  for (int j=0; j< STEPS_CACHE_SIZE; j++) { 

    double profit = s*Math.exp (vsdt* (2.0D* j- numSteps))- x; 

    stepsArray[j] = profit > 0.0D? profit: 0.0D; 

        } 

   for (int j=0; j<numSteps; j++) { 

     for (int k=0; k<NUM_STEPS_ROUND; ++k) { 

       stepsArray[k] = pdByr * stepsArray[k+1] + puByr * stepsArray[k]; 

     } 

   } 

 } 

Code sample 21. Scalar algorithm for a binomial lattice. 

Code sample 19. Vector loop kernel. 
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As shown in our previous examples, we 

broadcast the scalar constants and/or 

function parameters outside the loop. See 

code sample 22. 

Addressing the challenge of type 

casting 

You can write a vector version of the 

algorithm over the number of nodes. In 

this case, one of the challenges of writing 

the vector code is type casting.  

We use cast (Double.class) to explicitly 

type cast Vector<Integer, 

Shapes.S512Bit> to Vector<Double, 

S512Bit>. Here, our program uses blend 

() for ternary operations on profit values. 

We store values greater than zero into 

stepsArray. 

See code sample 23. 

Code sample 24 shows a vector version 

of the first loop that computes profit. 

The second loop can also be expressed 

in vector form. Moreover, you can write 

the expression using fma (). Look at code 

sample 25. 

You can see the Vector API 

implementation for these algorithms at 

https://software.intel.com/en-

us/articles/vector-api-developer-program-

for-java.  

 

 

  

DoubleVector<Shapes.S512Bit> sv = spec.broadcast(s); 

DoubleVector<Shapes.S512Bit> vsdtVec = spec.broadcast (vsdt); 

DoubleVector<Shapes.S512Bit> xv = spec.broadcast (x); 

DoubleVector<Shapes.S512Bit> pdv = spec.broadcast (pdByr); 

DoubleVector<Shapes.S512Bit> puv = spec.broadcast (puByr); 

DoubleVector<Shapes.S512Bit> zv = spec.broadcast (0.0D); 

IntVector<Shapes.S512Bit> inc = ispec.fromArray (new int [] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15}, 0); 

IntVector<Shapes.S512Bit> nSV = ispec.broadcast (numSteps); 

Code sample 22. Broadcasting scalar constants and/or function parameters 
outside the loop. 

2.0D * j – numSteps; //scalar form (implicit cast) 

Vector<Double, Shapes.S512Bit> tv = jv.add (inc).cast (Double.class).mul (spec.broadcast (2.0D)).sub 

(nSV.cast (Double.class)); 

Code sample 23. Addressing the challenge of type casting. 

int j; 

for (j = 0; (j + spec.length()) < STEPS_CACHE_SIZE; j += spec.length()) { 

  IntVector<Shapes.S512Bit> jv = ispec.broadcast (j); 

  Vector<Double, Shapes.S512Bit> tv = jv.add (inc).cast (Double.class).mul (spec.broadcast 

(2.0D)).sub (nSV.cast (Double.class)); 

  DoubleVector<Shapes.S512Bit> pftVec = sv.mul (vsdtVec. mul (tv).exp ()).sub (xv); 

  pftVec.blend (zv, pftVec.greaterThan (zv)).intoArray (stepsArray,j); 

 }         

for (; j < STEPS_CACHE_SIZE; j++) { //tail processing  

   double profit = s * Math.exp (vsdt * (2.0D * j - numSteps)) - x; 

   stepsArray[j] = profit > 0.0D? profit : 0.0D; 

 } 

for (j = 0; j < numSteps; j++) { 

  int k; 

  for (k = 0; k + spec.length() < NUM_STEPS_ROUND; k += spec.length()) { 

    DoubleVector<Shapes.S512Bit> sv0 = spec.fromArray (stepsArray, k); 

    DoubleVector<Shapes.S512Bit> sv1 = spec.fromArray (stepsArray, k + 1); 

     pdv.mul (sv1).add (puv.mul (sv0)).intoArray (stepsArray, k);  

    //sv0 = pdv.fma (sv1, puv.mul (sv0)); sv0.intoArray (stepsArray, k); 

            } 

            for (; k < NUM_STEPS_ROUND; ++k) { 

                stepsArray[k] = pdByr * stepsArray[k + 1] + puByr * stepsArray[k]; 

            } 

        } 

Code sample 24. Vector version of the first loop that computes profit. 

Code sample 26. Expressing the second loop (that computes profit) in vector 
form, using fma (). 

https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
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Conclusion  

Big data applications, distributed deep 

learning programs, and artificial 

intelligence solutions can run directly on 

top of existing Spark or Apache Hadoop 

clusters, and can benefit from efficient 

scale out. The OpenJDK Project Panama 

enables data parallelism, by including a 

rich set of Vector API methods to enrich 

machine learning and deep learning 

support.  

Using Vector API, you can boost the 

performance of several BLAS algorithms 

(up to Level 3 routines) by 3x to 4x when 

running them on Intel® AVX-enabled 

platforms. Using this API, you can now 

write your own vector algorithms in Java 

itself, to achieve higher performance and 

leverage the advanced SIMD features 

provided by modern CPUs. 

Although the Vector API is available for 

use, it is an evolving project, and JVM 

support for Vector API is still in progress. 

Currently, Vector API provides a 

comprehensive set of methods for basic 

arithmetic and advanced vector 

operations. It is available for use under 

experimental Panama and JVM flags, and 

will be published soon once more 

progress is made on the implementation. 

Where to get started with  

Vector API 

You can download Vector API under the 

experimental flags in Project Panama. We 

suggest you download the latest Project 

Panama Vector API sources using 

Mercurial* source-control, by cloning 

http://hg.openjdk.java.net/panama/panam

a/. JVM flags for real-world use are 

expected to be published soon. 

You can find Vector interface 

implementations in the vector-draft-spec 

directory, under com/oracle/java. Several 

vector API examples are available inside 

the src/test/java folder.  

We recommend using the JetBrains 

IntelliJ IDEA* community edition as the 

integrated development environment 

(IDE) for related development. You can 

find detailed instructions for using IntelliJ 

IDEA at the Vector API developer 

Program webpage. 
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To learn more about using Vector API to write your own  

vector algorithms, visit the Vector API developer program site 

 
 

 

 

 

 

http://hg.openjdk.java.net/panama/panama/
http://hg.openjdk.java.net/panama/panama/
https://www.jetbrains.com/idea/download/#section=linux
https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
https://software.intel.com/en-us/articles/vector-api-developer-program-for-java
http://software.intel.com/bigdata


Vector API: Writing own-vector algorithms in OpenJDK * for faster performance 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, 
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. 

This document contains information on products, services and/or processes in development. All information provided here is subject to change without 
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps. 

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm 

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms 

of that license.  The code used in this paper is under BSD-3 license https://opensource.org/licenses/BSD-3-Clause . Project Panama is under 

OpenJDK open source project http://openjdk.java.net/legal/. 

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.  

*Other names and brands may be claimed as the property of others. 

Copyright © 2017 Intel Corporation. All rights reserved. 

 

Printed in USA XXXX/XXX/XXX/XX/XX  Please Recycle XXXXXX-001US 

11 

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
https://opensource.org/licenses/BSD-3-Clause
http://openjdk.java.net/legal/



