Image Blurring and Rotation with Intel®
Integrated Performance Primitives

Legal Information

Image Blurring and Rotation with Intel® Integrated Performance Primitives

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.
Copyright 2016-2018 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed
by the express license under which they were provided to you (License). Unless the License provides
otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other
than those that are expressly stated in the License.

Getting Technical Support

Getting Technical Support

If you did not register your Intel® software product during installation, please do so now at the Intel®
Software Development Products Registration Center. Registration entitles you to free technical support,
product updates, and upgrades for the duration of the support term.

For general information about Intel technical support, product updates, user forums, FAQs, tips and tricks
and other support questions, please visit http://www.intel.com/software/products/support/.

NOTE
If your distributor provides technical support for this product, please contact them rather than Intel.

For technical information about the Intel IPP library, including FAQ's, tips and tricks, and other support
information, please visit the Intel IPP forum: http://software.intel.com/en-us/forums/intel-integrated-
performance-primitives/ and browse the Intel IPP knowledge base.

Image Blurring and Rotation with Intel® Integrated Performance Primitives

Overview

m Discover how to use Intel® Integrated Performance Primitives (Intel® IPP) image processing functions to
implement image blurring and rotation in your application.

About This This tutorial demonstrates how to:

Tutorial ¢ Implement box blurring of an image with the Intel IPP filtering functions
e Rotate an image with the Intel IPP functions for affine warping
e Set up environment to build the Intel IPP application
e Compile and link your image processing application

Estimated 10-15 minutes
Duration
Learning After you complete this tutorial, you should be able to:
Objectives e Understand the basic concepts of Intel IPP image processing
e Use Intel IPP functions for image filtering
e Use Intel IPP functions for image geometry transformation
e Develop an image processing application that loads an image from a BMP file and

applies rotation and blurring after user presses arrow keys
Set up environment to build the application
Compile and link your code with Intel IPP

More Resources e Intel IPP Developer Reference contains detailed descriptions of functions syntax,
parameters, and return values

e Intel IPP Developer Guide provides detailed guidance on Intel IPP library
configuration, development environment, domain dependencies, and linkage
modes

e The sample code for this tutorial can be downloaded from the Intel® Software
Product Samples and Tutorials website

The above documents are available at the Intel IPP documentation page or in the
Intel IPP documentation directory.

In addition, you can find more resources at https://software.intel.com/en-us/intel-
ipp.

Introduction to the Intel® Integrated Performance Primitives Library

Introduction to the Intel® Integrated
Performance Primitives Library

Intel® Integrated Performance Primitives (Intel® IPP) is an extensive library of software functions to help you
develop multimedia, data processing, and communications applications. These ready-to-use functions are
highly optimized using Intel® Streaming SIMD Extensions (Intel® SSE) and Intel® Advanced Vector Extensions
(Intel® AVX) instruction sets.

Intel IPP supports application development for various Intel® architectures. By providing a single cross-
architecture application programmer interface, Intel IPP permits software application repurposing and
enables porting to unique features across Intel® processor-based desktop, server, mobile, and handheld
platforms. Use of the Intel IPP primitive functions can help drastically reduce development costs and
accelerate time-to-market by eliminating the need of writing processor-specific code for computation
intensive routines.

One key area of the Intel IPP library is image processing, which includes various operations on two-
dimensional signals like filtering, geometric transforms, color conversion, and morphological transforms.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

< Previous Next »

Image Blurring and Rotation with Intel® Integrated Performance Primitives

Intel® IPP Image Processing Basics

This section explains some of the basic concepts used in the image processing part of Intel® IPP:

Representing an image

Processing regions of interest (ROIs)
Initializing function data

Setting image border type

Representing an Image

An image can be represented as lines of pixels. Depending on the image format, one pixel can keep one or
more integer or floating-point values. Each image row contains the same number of pixels. An image step is
a value that is equal to distance, in bytes, between the starting points of consecutive lines in the image.

Processing Regions of Interest (ROIs)

Most Intel IPP image processing functions can operate not only on entire images but also on image areas.
Image region of interest (ROI) is a rectangular area that can be either some part of the image or the whole
image. Intel IPP functions that support ROI processing have the R descriptor in their names.

ROI of an image is defined by the size and offset from the image origin as shown in the figure below. The
origin of the image is in the top left corner, with x values increasing from left to right and y values increasing
downwards.

Image Pointer

ROI y-offset

ROI Pointer

pixel

ROI x-offset

ROI

Image

Initializing Function Data

Most Intel IPP functions do not perform memory allocation and require external memory buffers to contain
pre-computed values or to keep temporary data for algorithm execution. To get size of required buffers, use
the following auxiliary functions:

Use This To Do This

<processing function>GetSize Get buffer size for precomputed data structure that is
initialized by <processing function>Init.

Intel® IPP Image Processing Basics

Use This To Do This

<processing function>GetBufferSize Obtain size for temporary buffer that is passed to the
processing function.

Setting Image Border Type

Many image processing algorithms sample a pixel by floating point (x, y) coordinates to compute an
intermediate or output image. To improve the image quality, you can apply filters that use neighborhood
pixels to calculate the sampled pixel value. Thus, as shown in the figure below, to obtain an image with size
6x6 by using 3x3 filter kernel (8 neighborhood pixels are used), the source image of size 8x8 is required.

|| -

Each filtering operation reduces image size. To keep the image size and process image border pixels, it is
required to extend the image artificially. There are several types of border processing in Intel IPP:

Replicated borders Border pixels are replicated from the source image edge pixels

Constant borders Values of all border pixels are set to a constant.

Transparent borders Destination pixels that have inverse transformed location out of the source image
are not processed.

Borders in memory Source image border pixels are obtained from the source image pixels in
memory.

Mixed borders Combination of transparent borders and borders in memory is applied.

To set border processing methods for Intel IPP functions, use the borderType (or border) and
borderValue parameters. To get information about the list of supported border types for a particular
function, refer to the Intel IPP Developer Reference.

< Previous Next »

Image Blurring and Rotation with Intel® Integrated Performance Primitives

Blurring an Image Using
ippiFilterBoxBorder

A box blur of an image is a filtering process that sets each pixel in a destination image to the average value
of all pixels of a source image in a rectangular neighborhood of the specified mask size. This operation has
the effect of blurring or smoothing of the source image.

Intel IPP ippiFilterBoxBorder function implements box blurring of an image. Before calling the processing
function, you need to allocate memory for the work buffer. You can get the required memory size for the
specified parameters using the ippiFilterBoxBorderGetBufferSize auxiliary function. The code extract
below demonstrates how to use the box blur functionality of Intel IPP:

IppStatus status = ippStsNoErr;

IppiSize maskSize = {3,3};
IppiSize srcSize = {0};
Ipp8u* pBuffer = NULL;
Ipp8u* pSrc = NULL;
Ipp8u* pDst = NULL;

int srcStep, dstStep;
/* assigning parameters */

/* Get work buffer size */
status = ippiFilterBoxBorderGetBufferSize (srcSize, maskSize, ipp8u, 3, &bufSize);

pBuffer = ippsMalloc 8u(bufSize);
/* Filter the image */
if (status >= ippStsNoErr) status = ippiFilterBoxBorder 8u C3R(pSrc, srcStep, pDst, dstStep,

srcSize, maskSize, ippBorderRepl, NULL, pBuffer);

if (pBuffer) ippsFree (pBuffer);

For more information about the ippiFilterBoxBorder API and auxiliary functions, refer to the Intel IPP
Developer Reference.

< Previous Next >

Rotating an Image Using Intel IPP Warp Functions

Rotating an Image Using Intel IPP
Warp Functions

Starting with the 9.0 version, Intel IPP enables you to use the ippiWarpAffine<Interpolation> functions
to implement rotation of an image using pre-calculated affine coefficients based on rotation parameters
(angle, x-, y-shifts). To obtain affine coefficients for the specified rotation parameters, you can apply the
ippiGetRotateTransform function. This function computes the affine coefficients for the transform that
rotates an image by the specified angle around (0, 0) and shifts the image by the specified x- and y- shift
values.

You can apply the computed bounding box to change the x-, y-shifts of the rotated image to fit the
transformed image to the destination ROI. To compute the bounding box for the affine transform, use the
ippiGetAffineBound function.

Before calling the warp affine processing function, you need to:

e Compute the size of the specification structure for affine warping with the specified interpolation method
using the ippiWarpAffineGetSize function

¢ Initialize the specification structure using the ippiWarpAffine<Interpolation>Init function

e Compute the size of the temporary work buffer required for warping using ippiWarpAffineGetSize and
pass pointer to the buffer to the processing function

The code example below demonstrates how to perform image rotation using the Intel IPP affine warping
functions:

IppStatus warpAffine (Ipp8u* pSrc, IppiSize srcSize, int srcStep, Ipp8u* pDst, IppiSize dstSize,
int dstStep, const double coeffs[2][3])
{
int specSize = 0, initSize = 0, bufSize = 0;
Ipp8u* pBuffer = NULL;
const Ipp32u numChannels = 3;
IppiPoint dstOffset = {0, 0};
IppiBorderType borderType = ippBorderConst;
IppiWarpDirection direction = ippWarpForward;
Ipp64f pBorderValue[numChannels];
IppiWarpSpec* pSpec = NULL;
IppStatus status = ippStsNoErr;

for (int i = 0; i < numChannels; ++1i) pBorderValue[i] = 255.0;

/* Spec and init buffer sizes */
status = ippiWarpAffineGetSize (srcSize, dstSize, ipp8u, coeffs, ipplinear, direction,
borderType,
&specSize, &initSize);

/* Allocate memory */
pSpec = (IppiWarpSpec*)ippsMalloc 8u(specSize);

/* Affine transform data initialization */
if (status >= ippStsNoErr) status = ippiWarpAffinelLinearInit (srcSize, dstSize, ipp8u,
coeffs, direction, numChannels, borderType, pBorderValue, 0, pSpec);

/* Get work buffer size */
if (status >= ippStsNoErr) status = ippiWarpGetBufferSize (pSpec, dstSize, &bufSize);

Image Blurring and Rotation with Intel® Integrated Performance Primitives

pBuffer = ippsMalloc_8u(bufSize);

/* Affine transform processing */
if (status >= ippStsNoErr) status = ippiWarpAffinelLinear 8u C3R(pSrc, srcStep, pDst,
dstStep, dstOffset, dstSize, pSpec, pBuffer);

/* Free memory */
ippsFree (pSpec) ;
ippsFree (pBuffer) ;

return status;

}
For more information about the Intel IPP Warp functions, refer to the Intel IPP Developer Reference.

< Previous Next >

10

Creating an Application for Image Blurring and Rotation

Creating an Application for Image
Blurring and Rotation

The code example below represents a simple application that loads an image from the BMP file, rotates and
blurs it after user presses left/right or up/down arrow keys.

The source code for this application can be downloaded from the Intel® Software Product Samples and
Tutorials website.

NOTE The ipp blur rotate.cpp sample code has been developed for Intel® IPP installed within
Intel® Parallel Studio XE. You can use the provided code, except for the graphical rendering part, as a
starting point for your application that can be built within other product suites like Intel® System
Studio.

/* C++ source code is found in ipp blur rotate.cpp */

#include "ipps.h"
#include "ipp blur rotate.h"

#include "bmpreader.h"

#include <math.h>
#include <stdio.h>

char titleBuffer[256];
video *v;

#1f (defined unix || defined UNIX)
#include <X11/keysym.h>

#define VK LEFT XK Left
#define VK UP XK_Up
#define VK RIGHT XK Right
#define VK DOWN XK_Down

#define VK ESCAPE XK Escape
#elif defined APPLE

#define VK LEFT 0x£702
#define VK UP 0x£700
#define VK RIGHT 0x£703
#define VK _DOWN 0x£701
#define VK ESCAPE 0x1B
#endif

IppStatus warpAffine (Ipp8u* pSrc, IppiSize srcSize, int srcStep, Ipp8u* pDst, IppiSize dstSize,
int dstStep, const double coeffs[2][3])
{

/* IPP functions status */
IppStatus status = ippStsNoErr;

/* number of image channels */
const Ipp32u numChannels = 3;

/* border value to extend the source image */

11

Image Blurring and Rotation with Intel® Integrated Performance Primitives

Ipp64f pBorderValue[numChannels];

/* sizes for WarpAffine data structure, initialization buffer, work buffer */
int specSize = 0, initSize = 0, bufSize = 0;

/* pointer to work buffer */
Ipp8u* pBuffer = NULL;

/* pointer to WarpAffine data structure */
IppiWarpSpec* pSpec = NULL;

/* set offset of the processing destination ROI */
IppiPoint dstOffset = {0, 0};

/* border type for affine transform */
IppiBorderType borderType = ippBorderConst;

/* direction of warp affine transform */
IppiWarpDirection direction = ippWarpForward;

/* set border value to extend the source image */
for (int i = 0; i < numChannels; ++i) pBorderValue[i] = 255.0;

/* computed buffer sizes for warp affine data structure and initialization buffer */
status = ippiWarpAffineGetSize (srcSize, dstSize, ipp8u, coeffs, ipplinear, direction,
borderType,
&specSize, &initSize);

/* allocate memory */
pSpec = (IppiWarpSpec*)ippsMalloc 8u(specSize);

/* initialize data for affine transform */
if (status >= ippStsNoErr) status = ippiWarpAffinelinearInit (srcSize, dstSize, ipp8u,
coeffs, direction, numChannels, borderType, pBorderValue, 0, pSpec);

/* get work buffer size */
if (status >= ippStsNoErr) status = ippiWarpGetBufferSize (pSpec, dstSize, &bufSize);

/* allocate memory for work buffer */
pBuffer = ippsMalloc 8u(bufSize);

/* affine transform processing */
if (status >= ippStsNoErr) status = ippiWarpAffineLinear 8u C3R(pSrc, srcStep, pDst,
dstStep, dstOffset, dstSize, pSpec, pBuffer);

/* free allocated memory */
ippsFree (pSpec) ;
ippsFree (pBuffer) ;

return status;

void ipp blur rotate::process(const drawing memory &dm)
{

IppStatus status = ippStsNoErr;

/* number of image channels */

int numChannels = 3;

12

Creating an Application for Image Blurring and Rotation

/* perform filtering */

if (bFilterUpdate)

{
/* temporary work buffer */
Ipp8u* pBuffer = NULL;
/* buffer size for filtering */
int bufSize = 0;

/* Get work buffer size */
status = ippiFilterBoxBorderGetBufferSize (srcSize,maskSize,ipp8u, 3, &bufSize);

/* allocate buffer memory */
pBuffer = ippsMalloc 8u(bufSize);

/* Image filtering */
if (status >= ippStsNoErr) status = ippiFilterBoxBorder 8u C3R(pSrc, srcStep, pBlur,
blurStep, srcSize, maskSize, ippBorderRepl, NULL, pBuffer);

/* filtration flag is dropped */

bFilterUpdate = false;

/* rotation operation should be applied after filtration */
bRotateUpdate = true;

/* free buffer memory */
ippsFree (pBuffer) ;
}

/* perform rotation */
if (bRotateUpdate)
{
IppiSize roiSize = {dstSize.width / 2, dstSize.height };
Ipp8u* pDstRoi = pBlurRot;
IppiRect srcRoi = {0};
srcRoi.width = srcSize.width;
srcRoi.height = srcSize.height;

/* affine transform coefficients */
double coeffs[2][3] = {0};

/* affine transform bounds */
double bound[2] [2] = {0};

/* compute affine transform coefficients by angle and x- and y-shifts */
if (status >= ippStsNoErr) status = ippiGetRotateTransform(angle, 0, 0, coeffs);

/* get bounds of transformed image */
if (status >= ippStsNoErr) status = ippiGetAffineBound(srcRoi, bound, coeffs);

/* fit source image to dst */
coeffs[0][2] = -bound[0][0] + (dstSize.width / 2.f - (bound[1][0] - bound[0] [0
coeffs[1][2] = -bound[0][1] + (dstSize.height - (bound[1][1] - bound[0][1])) /
/* perform affine processing for the blurred image */
if (status >= ippStsNoErr) status = warpAffine(pBlur, srcSize, blurStep, pDstRoi,
roiSize, blurRotStep, coeffs);

/* set destination ROI for the not blurred image */
pDstRoi = pBlurRot + roiSize.width * numChannels;

13

Image Blurring and Rotation with Intel® Integrated Performance Primitives

/* perform affine processing for the original image */
if (status >= ippStsNoErr) status = warpAffine(pSrc, srcSize, srcStep, pDstRoi, roiSize,
blurRotStep, coeffs);

/* rotation flag is dropped */
bRotateUpdate = false;

/* needs to redraw the image */
bRedraw = true;

if (bRedraw)

{
drawing area area(0, 0, dstSize.width, dstSize.height, dm) ;

/* pass information message to window's title */
#if defined WIN32
sprintf s(titleBuffer, sizeof (titleBuffer)/sizeof (titleBuffer[0]), "Intel(R) IPP: blur +
rotate tutorial : rotation angle %$.0f : box filter mask size {%d, %d}", angle - 360.0 *
floor (angle / 360.0), maskSize.width, maskSize.height);
#elif (defined unix || defined UNIX)
sprintf (titleBuffer, "Intel(R) IPP: blur + rotate tutorial : rotation angle %$.0f : box
filter mask size {%d, %d}", angle - 360.0 * floor(angle / 360.0), maskSize.width,
maskSize.height);
#elif defined APPLE
sprintf (titleBuffer, "Intel (R) IPP: blur + rotate tutorial : rotation angle %.0f : box
filter mask size {%d, %d}", angle - 360.0 * floor (angle / 360.0), maskSize.width,
maskSize.height);
fendif
v->title = titleBuffer;
v->show_title();

// fill the rendering area
for (int y = 0; y < dstSize.height; ++y)
{
Ipp8u* dstt = pBlurRot + y * blurRotStep;
area.set pos(0, y)7
for (int x = 0, j = 0; x < dstSize.width; ++x, j += 3)
{
area.put pixel(v->get color(dstt[j+2], dstt[j+1], dstt[j]));

bRedraw = false;

}

/* Key processing */
void ipp blur rotate::onKey(int key)

{
if (pSrc == NULL || pBlur ==NULL || pBlurRot == NULL) return;

/* up or down arrow key is pressed */

if (key == VK _UP || key == VK_DOWN)

{
/* max size of mask for image blurring */
const IppiSize maxMaskSize = {31,31};

14

Creating an Application for Image Blurring and Rotation

/* increase or decrease mask size on 2 depending on the key */

maskSize.width = (key == VK DOWN)
maskSize.height = (key == VK DOWN)

/* check that both mask width and
if (maskSize.width < 1) maskSize.
if (maskSize.height < 1) maskSize.

/* check that both mask width and
if (maskSize.width > maxMaskSize.
if (maskSize.height > maxMaskSize.

/* filtration operation should be
bFilterUpdate = true;

? maskSize.width

- 2 : maskSize.width + 2;

? maskSize.height - 2 : maskSize.height + 2;

mask height
width = 1;
height 1g

are positive */

mask height are at more the maximum mask size */
width) maskSize.width = maxMaskSize.width;
height) maskSize.height = maxMaskSize.height;

applied */

/* left or right arrow key is pressed */
if (key == VK RIGHT || key == VK LEFT)

{

/* increase or decrease angle on 2 depending on the key */
angle = (key == VK LEFT) ? angle + 2 : angle - 2;
/* rotation operation should be applied after filtration */

bRotateUpdate = true;

if (key == VK ESCAPE) v->running = false;

bool ipp blur rotate::loadFileBMP(const char* bmpImageFile)

{

/* check the pointer */
(bmpImageFile == NULL) return false;

if

/* number of image channels */
int numChannels = 0;

/* Read data from a file

Status status = ReadFile (bmpImageFile,

if
{

if
{

(numChannels != 3)

status = STS ERR UNSUPPORTED;

(status == STS_ OK)

/* set blurred image step */
blurStep = srcStep;

(only bmp format is supported)

&pSrc, srcSize,

*/

srcStep, numChannels);

/* set rotated image size to keep whole rotated image */

dstSize.width = static cast<int>(sqrt((float)srcSize.width * srcSize.width +
srcSize.height * srcSize.height) + 0.5f)
dstSize.height = static cast<int>(sqrt((float)srcSize.width * srcSize.width +
srcSize.height * srcSize.height) + 0.5f);

/* set image step for blurred and

* 2,

rotated image */

blurRotStep = dstSize.width * numChannels;

15

Image Blurring and Rotation with Intel® Integrated Performance Primitives

/* Memory allocation for the intermediate images */
pBlur = ippsMalloc 8u(srcStep * srcSize.height);

/* Memory allocation for the intermediate images */
pBlurRot = ippsMalloc 8u(dstSize.width * numChannels * dstSize.height);

38
37

maskSize.width
maskSize.height

bFilterUpdate = bRotateUpdate = bRedraw = true;

return true;

return false;

ipp blur rotate::ipp blur rotate()
: angle(0.0), pSrc(NULL), pBlur (NULL), pBlurRot (NULL),
bFilterUpdate (false), bRotateUpdate(false), bRedraw(false)

dstSize.width = srcSize.width = 0;
dstSize.height srcSize.height 0;

ipp blur rotate::~ipp blur rotate()
{

ippsFree (pSrc) ;

ippsFree (pBlur) ;

ippsFree (pBlurRot) ;

< Previous Next >

I

16

Building the Application

Building the Application

NOTE The ipp blur rotate.cpp sample code has been developed for Intel® IPP installed within
Intel® Parallel Studio XE. You can use the provided code, except for the graphical rendering part, as a
starting point for your application that can be built within other product suites like Intel® System
Studio.

Setting Up the Build Environment

Before you invoke the compiler component of the suite that you installed with Intel® IPP, you must set certain
environment variables that define the location of compiler-related components. The Intel® C++ Compiler
includes the compilervars scripts that you can run to set environment variables:

e On Windows*, you can find the compilervars.bat batch file at
e On Linux OS* and macOS*, you can find the compilervars.sh shell script at

For more information about setting environment variables for different product suites, refer to https://
software.intel.com/en-us/articles/setting-up-the-build-environment-for-using-intel-c-or-fortran-compilers.

Compile and Link Your Code
To compile and link the code examples in this tutorial, do the following:
e On Windows*:

1.Unzip the ipp blur rotate sample.zip archive downloaded from the Intel® Software Product
Samples and Tutorials website.
2.Run the Microsoft* Visual Studio* command prompt and change the directory to the Makefile location.
By default, Makefile is located in the root of the ipp blur rotate sample.zip archive.
3.Run the nmake -f Makefile win command.
e On Linux* OS and macOS*:

1.Unzip the ipp blur rotate sample.tgz archive downloaded from the Intel® Software Product
Samples and Tutorials website.

2.Run the bash shell and change the directory to the Makefile location. By default, Makefile is located
in the root of the ipp blur rotate sample.tgz archive.

3.Run the make -f Makefile 1lin command on Linux* OS and make -f Makefile mac on macOS*.

To run the application, run the following command from the directory where Makefile resides:

e On Windows*: ipp blur rotate.exe
e On Linux*: ./ipp blur rotate
e On macOS*: ./ipp blur rotate.app/Contents/MacOS/ipp blur rotate

< Previous Next »

17

Image Blurring and Rotation with Intel® Integrated Performance Primitives

Summary

Here are some important things to remember when developing an image processing application with Intel
IPP:

e Before calling the processing function, compute the size of required buffers using the <processing
function>GetSize or <processing function>GetBufferSize auxiliary functions, and, if required, initialize
the function data using <processing function>Init.

e For the functions that perform neighborhood operations, set the appropriate border processing method in
the borderType (or border) and borderValue parameters.

e When you link to the ippi domain library, you must also link to the libraries on which it depends:
ippcore, ipps, and ippvmn.

18

	Image Blurring and Rotation with Intel® Integrated Performance Primitives
	Legal Information
	Getting Technical Support
	Overview
	Introduction to the Intel® Integrated Performance Primitives Library
	Intel® IPP Image Processing Basics
	Blurring an Image Using ippiFilterBoxBorder
	Rotating an Image Using Intel IPP Warp Functions
	Creating an Application for Image Blurring and Rotation
	Building the Application
	Summary

