Software Configuration

and Deployment Guide N
intel

Configuration and Deployment Guide
For OpenStack™ Swift” Object Storage
on Intel” Atom" Processor and

Intel” Xeon Processor Microservers

About this Guide

This Configuration and Deployment Guide explores designing and building an object
storage environment based on OpenStack* Swift* This guide focuses on object storage in
cloud environments, where responsiveness and cost are critical factors. High-performance,
energy-efficient microservers, such as those based on the latest generation of Intel®
Atom™ processors and Intel® Xeon® E3 processors, meet these requirements. The guide
uses data from recent benchmarks conducted by Intel® Software and Services Group on
Intel Atom processor and Intel Xeon E3 processor-based microservers.

Introduction

OpenStack Swift Object Storage (swift.openstack.org) enables a scalable, redundant
storage filesystem for cloud infrastructures, accessible using web protocols at incredible
speeds with very high availability. Swift Object Storage started as a project at the cloud
service provider, RackSpace;* it was released to the OpenStack (www.openstack.org)
community. It is available under the Apache* 2 license.

In Swift, objects are written to multiple disk drives spread across a cluster of storage
servers in the data center. But systems do not mount Swift storage like traditional
storage area network (SAN) or network attached storage (NAS) volumes. Instead,
applications use a representational state transfer (REST) application programming
interface (API) to request data stored on the Swift cluster.

The Swift Object Storage cluster scales in a near-linear fashion by adding new servers.
The software ensures data replication and integrity throughout the cluster. Should a
storage server or hard drive fail, Swift Object Storage software replicates content from
other active servers to new locations in the cluster. Because the software ensures data
replication and distribution across different storage devices, data center architects can
use industry-standard hard disk drives (HDDs), solid-state disk drives (SSDs), and servers,
including microservers running on Intel Xeon €3 processors or Intel Atom processors.

Other key characteristics of Swift Object Storage include:
= All objects stored in Swift have a URL.

= All objects stored are replicated three times in unique-as-possible zones,
which can be defined as a group of drives, a node, a rack, etc.

= Each object has its own metadata.
= Developers interact with the object storage system through a REST HTTP API.
= Object data can be located anywhere in the cluster.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Table of Contents

Introduction..................... 1

Driving Forces and

Strategic Considerations.......... 2
A New Look at Storage............. 2

Overview of the

Swift Architecture 3
Primary Objective: High Availability
and Fast Access to a Wide Variety

ofData........coviviiiii 4
Theory of Operation............... 4
Configuration and Deployment.... 5
Swift Topology 5
AccessTier..covvvviiiiininnnnnnn. 5
StorageNodes..................... 6
Performance Considerations 6
Storage Server Benchmarking
forSwift..............coiiiiin 7
COSBench Platform................ 7
Configurations..................... 8
System Under Tests (SUT)
Configurations..................... 9
Results.......ccovviviiiiiininn, 9
Tuning and Optimization......... 10
General Service Tuning........... 10
Filesystem Considerations. 10
SUMMArY....ovviiinnnnnnnnnnns 1
LlearnMore...........ccvveennnn 12
Appendix A -
Additional Resources............ 12

= The cluster scales by adding nodes,
without sacrificing performance,
which allows a more cost-effective
linear storage expansion versus fork-
lift upgrades.

= Data doesn't have to be migrated to an
entirely new storage system.

= New nodes can be added to the cluster
without downtime.

* Failed nodes and disks can be swapped
out with no downtime.

= Swift runs on cost-effective
industry-standard hardware.

Driving Forces
and Strategic Considerations

With rapidly-growing mobile user-bases
for social media and a variety of other
cloud services, a wide variety of struc-
tured and unstructured data needs to
be instantly accessible, secure and
redundant, possibly stored forever, and

available through a variety of devices for

a variety of applications. Storage silos

utilizing protocols that are tied to specific

applications no longer meet the needs of
web-based applications. Social media,
online video, user-uploaded content,

gaming, and software-as-a-service (SaaS)

applications are just some of the forces
driving data centers to take a new look
at how data is stored.

Swift meets these types of demands,

from small deployments for storing virtual

machine (VM) images, to mission-critical
storage clusters for high-volume web
sites, to mobile application development
environments, custom file-sharing
applications, big data analytics, and
private storage Infrastructure as a
Service (laaS). Swift originated in a
large-scale production environment
at RackSpace, so it was designed for
large-scale, durable operations.

A New Look at Storage

When considering different scalable
storage solutions, several things are
important to keep in mind.

= Scalability

= Durability

= Cost

= Choice of components

» Compatibility and familiarity
= Cloud or in-house

Scalability

To easily grow with expanding content
and users, storage systems need to
handle web-scale workloads with many
concurrent readers from and writers to

a data store, writing and reading a wide
variety of data types. Some data is
frequently written and retrieved, such as
database files and virtual machine images.
Other data, such as documents, images,
and backups, are generally written once
and rarely accessed. Unlike traditional
storage file systems, Swift Object Storage
is ideal for storing and serving content to
many, many concurrent users. Itis a
multi-tenant and durable system, with no
single point of failure, designed to contain
large amounts of unstructured data at low
cost and accessible via a REST API. In
Swift, every object has its own URL.

Swift can easily scale as the cluster grows
in the number of requests and data
capacity. The proxy servers that handle
incoming API requests scale in a near-
linear fashion by adding more servers. The
system uses a shared-nothing approach
and employs the same proven techniques
that have been used to provide high
availability by many web applications. To
scale out storage capacity, nodes and/or
drives are added to the cluster. Swift can
easily expand from a few gigabytes on a
couple machines to dozens of petabytes
on thousands of machines scattered
around the planet, simply by adding
hardware. Swift automatically incorpo-
rates the new devices into its resources.

Since all content in the Object Store is
available via a unique URL, Swift can easily
serve content to modern web applications,
and it also becomes very straightforward
to either cache popular content locally or
integrate it with a CDN, such as Akamai.*

Durability

Downtime is costly. Lack of content can
affect a wide range of users, preventing
them from doing their work or using the
service to which they subscribe. Swift can
withstand hardware failures without any
downtime and provides operations teams
the means to maintain, upgrade, and
enhance a cluster while in flight. To
achieve this level of durability, Swift
distributes objects in triplicate across the
cluster. A write must be confirmed in two
of the three locations to be considered
successful. Auditing processes maintain
data integrity, and replicators ensure a
sufficient number of copies across the
cluster, even if a storage device fails.

Swift also can define failure zones. Failure
zones allow a cluster to be deployed
across physical boundaries, each of which
could individually fail. For example, a
cluster could be deployed across several
nearby data centers, enabling it to survive
multiple datacenter failures.

Flexibility

Proprietary solutions can drive up
licensing costs. Swift is licensed freely
under the Apache 2 open source license,
ensuring no vendor lock-in, providing
community support, and offering a

large ecosystem.

Choice of Components

Proprietary storage solutions offer
turnkey benefits, but at a higher purchase
price and little or no choice of components
within the solution. Open source Swift
software is built on proven, industry-wide
components that work in large-scale
production environments, such as rsync,
MDS5, SQLite, memcached, xfs, and

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Python.* Swift runs on off-the-shelf
Linux* distributions, including Fedora,*
RedHat Enterprise Linux* (RHEL),
openSUSE*, and Ubuntu.*

From a hardware perspective, Swift is
designed from the ground up to handle
failures, so that reliability of individual
components is less critical. Thus, Swift
clusters can run on a broad range of
multi-socket servers and low-cost,
high-performance microservers, with
commodity HDDs and/or SSDs. Hardware
quality and configuration can be chosen to
suit the tolerances of the application and
the ability to replace failed equipment.

Compatibility and Familiarity

If an operator considers moving from a
public cloud service to an internal installa-
tion, the method used by services to
access the storage becomes more
important. Access to the Swift Object
Storage system is through a REST API that
is similar to the Amazon.com S3* API and
compatible with the Rackspace Cloud
Files* API. This means that: (a) applications
currently using S3 can use Swift without
major re-factoring of the application code;
and (b) applications taking advantage of
both private and public cloud storage can
do so, as the APIs are comparable.

Because Swift is compatible with public
cloud services, developers and systems
architects can also take advantage of a
rich ecosystem of available commercial
and open-source tools for these object
storage systems.

Public or Private Cloud

Not every organization can—or should—
use a public cloud to store sensitive
information. For private cloud infrastruc-
tures, Swift enables organizations to reap
the benefits of cloud-based object
storage, while retaining control over
network access, security, and compliance.

Cost can deter using public cloud storage
services. Public cloud storage costs
include per-GB pricing and data transit
charges, which grow rapidly for larger
storage requirements. But, with the
declining costs of data center servers
and drives and the emergence of new
high-efficiency microservers based on
the same x86 instruction set architec-
ture as the other servers in the data
center, the total cost of ownership (TCO)
for a Swift cluster can be on par with
AWS S3 for a small cluster and much
less than AWS S3 for a large cluster.

In addition, the network latency to
public storage service providers may be
unacceptable, especially for time-based
content. A private deployment can
provide lower-latency access to storage.

Overview of the Swift Architecture

The Swift Object Storage architecture is
distributed across a cluster to prevent any
single point of failure and to allow easy
horizontal scalability. A number of periodic
processes perform housekeeping tasks on
the data store. The most important of
these are the replication services, which
ensure consistency and availability
throughout the cluster. Other periodic
processes include auditors, updaters,

and reapers.

Authentication is handled through
configurable Web Server Gateway
Interface (WSGI) middleware—usually
the Keystone* Architecture.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Primary Objective: High Availability and
Fast Access to a Wide Variety of Data
Swift provides highly durable storage for
large data stores containing a wide variety
of data that a large number of clients can
read and write.

Theory of Operation

Swift software architecture includes
the following elements:

= Proxies: Handle all incoming
API requests.

= Objects: The data being stored.

= Containers: An individual database that
contains a list of object names.

= Accounts: An individual database that
contains the list of Container names.

= Ring: A map of logical names of data
(defined by the Account/Container/
Object) to locations on particular storage
devices in the cluster.

= Partition: A "bucket” of stored data.
Multiple Partitions contain the Objects,
Container databases, and Account
databases. Swift replication services
move and copy partitions to maintain
high availability of the data.

= Zone: A unique isolated storage area
contained in the cluster, which might
be a single disk, a rack, or entire data
center. Swift tries to maintain copies of
partitions across three different Zones
in the cluster.

= Auth: An optional authorization
service, typically run within Swift
as WSCGI middleware.

To see how these elements interact, let's
look at a couple scenarios.

Upload

Through a REST API, a client makes an
HTTP request to put an object into an
existing Container. The Proxy passes the
request to the system. Using the Account
and Container services, the logical name
of the Object is identified. The Ring then
finds the physical location of the partition
on which the object is stored. Then, the
system sends the data to each storage
node, where it is placed in the appropriate
Partition. At least two of the three writes
must be successful before the client is
notified that the upload completed
successfully. If storage areas are not
available, the Proxy requests a handoff
server from the Ring and places it there.
Finally, the system asynchronously
updates the Container database to reflect
that there is a new object in it.

Download

Through the API, a client requests an
object from the data store. The object’s
name and partition location are identified
in the same manner, and a lookup in the
Ring reveals which storage node contains
the Partition. A request is made to one of
the storage nodes to fetch the object. If
the download fails, requests are made to
the other nodes. Streamed data to or
from an object store is never spooled by
the Proxy.

Replication

In order to ensure there are three copies
of the data everywhere, replicators
continuously examine each Partition. For
each local Partition, the replicator checks
copies in other Zones for any differences.
When it discovers differences among
Partitions, it copies the latest version
across the Zones.

Upload Requires
Quorum

-

Download from
Single Node

Load Balancer

Proxy
Node

Storage Storage
Node Node
Storage Storage
Node Node
Storage Storage
Node Node

Zone 1 Zone 2

Proxy
Node

Storage
Node

Storage
Node

Storage
Node

Zone 3

A
Proxy o
Node

\ 4

Storage
Node

Storage
Node

Storage
Node

Storage
Node
Storage
Node

Zone 4

Storage
Node

Zone 5

Figure 1. Swift Cluster Software Architecture.

Other Housekeeping Services

Other housekeeping services run to
maintain system durability and keep

files updated. For more information on
housekeeping services, refer to the Swift
documentation (swift.openstack.org).

Configuration and Deployment

Swift architecture comprises many
services running on various hardware
nodes. Depending on the infrastructure,
business processes, and available hard-
ware, some services can reside on the
same hardware.

Swift Topology

Swift software runs on many servers/
nodes (see Figure 2):

= Proxy node(s) - Server(s) that run
Proxy services.

= Auth node - an optionally node that
runs the Auth service separately from
the Proxy services.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

= Storage node(s) - One or more server(s)
with local storage that run Account,
Container, and Object services.

The Proxy and Auth nodes face the
public network, with a private switch
isolating the storage nodes from the
public network.

Access Tier

Large-scale deployments often isolate
an "Access Tier” to field incoming API
requests, move data in and out of the
system, provide front-end load balancers,
Secure Sockets Layer* (SSL) terminators,
authentication services, and to run the
proxy server processes. Having these
servers in their own tier enables read/

write access to be scaled out independent-

ly of storage capacity. As thisisan HTTP
addressable storage service, a load
balancer can be incorporated into the
access tier.

This tier typically comprises a collection
of Intel Xeon E3 processor-based
single-socket servers or Intel® Xeon® E5
processor-based dual-socket servers.
Machines in this tier use a moderate
amount of RAM and are network 1/0
intensive. Proxy nodes should be
provisioned with at least two 10 Gbps
network interfaces, or multiples thereof.
One faces the incoming requests on the
public network and the other accesses
the private network to the object
storage nodes. Depending on the
expected activity level, other nodes
only facing the public network can have
single or multiple interfaces.

Stores container databases, account databases, and stored objects

OpenStack Object Storage

Storage Nodes

UL

Public

Switch

Private

Switch

UL
o oo

—1
L

Auth Node

Proxy Node

Figure 2. Swift Topology.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Factors to Consider

For most publicly facing deployments as
well as private deployments on a wide-
reaching corporate network, SSL should
be considered. However, SSL adds
significant server processing load, unless
the server processor has built-in hardware
support for encryption/decryption, such
as Intel® Advanced Encryption Standard—
New Instructions (Intel® AES-NI). More
capacity in the access layer might be
needed if hardware support is lacking.
SSL may not be required for private
deployments on trusted networks.

Storage Nodes

Storage servers should contain an equal
amount of capacity on each server.
Depending on your objectives and needs,
these can be distributed across servers,
racks, and even data centers.

Storage nodes use a reasonable amount
of memory and CPU. Metadata needs to
be readily available to quickly return
objects. The object stores run services
not only to field incoming requests from
the Access Tier, but to also run replica-
tors, auditors, and reapers. Object stores
can be provisioned with a single 1 Gbps
or 10 Gbps network interface, depending
on the expected workload and desired
performance. More interfaces might be
appropriate for servers with more
processor cores.

Currently 2 TB or 3 TB Serial Advance
Technology Attachment (SATA) disks
deliver good price/performance value.
Desktop-grade drives offer affordable
performance when service and support
are responsive to handle drive failures;
enterprise-grade drives are an option
when this is not the case.

Factors to Consider

The latest generation of Intel Atom
processor-based microservers and
microservers built on the new Intel Xeon
€3 processor work well for storage
servers. With up to eight-thread multi-
processing, they are responsive and
highly energy efficient, and cost less
than higher-end multi-socket servers.
With up to 16 PCle* ports, they also
support an ample number of Intel®
Solid-State Drives (Intel® SSDs) or
traditional HDDs, while delivering the
performance necessary to service
requests, even under heavy workloads.

Swift does not use Redundant Array of
Inexpensive Disks (RAID); each request for
an object is handled by a single disk.
Therefore, disk performance impacts
response rates, and Intel SSDs should be
implemented for ultra-fast responsiveness
when desired.

To achieve apparent higher throughput,
the object storage system is designed
to support concurrent uploads and
downloads. Multi-core processors, like
the Intel Atom processor and Intel Xeon
€3 processor, offer multi-processing for
concurrent operations. However, the
network I/0 capacity should match the
desired concurrent throughput needs
for reads and writes.

Performance Considerations

Overall Strategy

A simple deployment is to install the Proxy
Services on their own servers and all of
the Storage Services across the storage
servers. This allows easy deployment of
10 Gbps networking to the proxy and 1
Gbps to the storage servers. It also helps
keep load balancing to the proxies more
manageable. Storage services scale as
storage servers are added, and it's easy
to scale overall API throughput by adding
more Proxies.

If you need more throughput to either
Account or Container Services, you can
deploy the services on their own servers
and use faster SAS or SSD drives to get
quicker disk 1/0.

Nodes

In the front-end, the Proxy Services are
CPU- and network I/0-intensive. Select
hardware accordingly to handle the
amount of expected traffic on these
nodes. More cores can service more
requests. As already pointed out, if you
are using 10 Gbps networking to the
proxy, or are terminating SSL traffic at the
proxy, greater CPU power will be required
if the server does not support hardware-
enhanced encryption and decryption.

The Object, Container, and Account
Services (collectively, the Storage
Services) are disk- and network
I/0-intensive. As already mentioned,
SSDs should be considered for maximum
responsiveness from storage nodes.

As shown later in this guide, Intel Atom
processor- and Intel Xeon E3 processor-
based microservers are quite capable as
storage nodes.

Load balancing and network design is left
as an exercise to the reader, but this is a
very important part of the cluster, so time
should be spent designing the network for
a Swift cluster.

Ring Configuration

It is important to determine the number
of partitions that will be in the Ring prior
to configuring the cluster. Consider a
minimum of 100 partitions per drive to
ensure even distribution across the drives.
Decide the maximum number of drives the
cluster will contain, multiply that by 100,
and then round up to the nearest power
of two.

For example, for a cluster with a maximum
of 5,000 drives, the total number of
partitions would be 500,000, which is
close to 2, rounded up.

Keep in mind, the more partitions, the
more work the replicators and other
backend jobs have to do, and the more
memory the Rings consume. The goal is to
find a good balance between small rings
and maximum cluster size.

It's also necessary to decide on the
number of replicas of the data to store.
Three (3) is the current recommendation,
because it has been tested in the
industry. The higher the number, the
more storage is used, and the less likely
you are to lose data.

Finally, you'll need to determine the
number of Zones in the cluster. Five (5) is
the current recommendation according to
Swift documentation. Having at least five
zones is optimal when failures occur. Try
to configure the zones in as high a level as
possible to create as much isolation as
possible. Consider physical location, power
availability, and network connectivity to
help determine isolated Zones. For
example, in a small cluster you might
isolate the Zones by cabinet, with each
cabinet having its own power and network
connectivity. The Zone concept is very
abstract; use it to best isolate your data
from failure.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

General Server Configuration

Swift uses paste.deploy (http://python-
paste.org/deploy/) to manage server
configurations. The configuration process
for paste.deploy is rather particular; it is
best to review the documentation to be
sure you configure servers optimally.

Memcached Considerations

Memcached is an open-source,
multi-threaded, distributed, Key-Value
caching solution that can cache “hot”
data and reduce costly trips back to
the database to read data from disk. It
implements a coherent in-memory RAM
cache that scales across a cluster of
servers. Several Swift Services rely on
Memcached for caching certain types
of lookups, such as auth tokens and
container/account existence. Memcached
exploits the fact that the typical access
time for DRAM is orders of magnitude
faster than disk access times, thus
enabling considerably lower latency
and much greater throughput.

Swift does not cache actual object data.
Memcached should run on any servers
that have available RAM and CPU
capacity. The memcache_servers config
option in the proxy-server.conf file
should contain all memcached servers.
For more information, see Intel’s
“Configuration and Deployment Guide
For Memcached on Intel® Architecture.”

Storage Server Benchmarking
for Swift

Object storage in cloud infrastructure can
easily scale quickly as storage demands
rapidly increase, especially considering the
growing need to contain video and other
large media. The power demands at scale
become critical and more strongly drive
hardware choices for storage nodes.
Thus, energy-efficient, high-performance
servers, such as microservers, become
more attractive in cloud deployments.

Intel completed studies on storage node
performance from microservers built with
the latest generation of Intel Atom proces-
sors and Intel Xeon €3 processors. The
results show the value of these latest
generation microservers to enable
high-performance and energy-efficient
Swift object storage nodes.

Because SSDs offer much faster response
times over traditional spinning HDDs, Intel
also compared storage node performance
between HDDs and Intel SSDs. The results
support a strong argument for SSDs
where storage responsiveness is desired.

COSBench Platform

The Swift storage benchmarks reported
here used the COSBench* platform to
create loads and gather performance
data. COSBench is an open source,
Intel-developed benchmarking tool to
measure Cloud Object Storage perfor-
mance on services like Amazon S3 and
OpenStack Swift. COSBench is freely
distributed under the Apache V2 license
and is available at https://github.com/
intel-cloud/cosbench. You can learn more
about COSBench at https://github.com/
intel-cloud/cosbench/blob/master/
cosbench-introduction.pdf.

® Atom™

processor codenamed Avoton

Next-generation Inte

delivers better performance

and performance/watt compared
to previous-generation Intel
Atom processor.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Configuration

Intel® Xeon®
€3-1220L v3
Processor

Intel® Xeon®
€3-1230L v3
Processor

Intel® Xeon®
€3-1265L v3
Processor

Intel® Atom™
Processor
(codenamed
Avoton)

Intel® Atom™
Processor S1260

Platform See Table 2 See Table 2 See Table 2 See Table 2 Codenamed DoubleCove
BIOS S1200RP86B. S1200RP86EB. S1200RP8EB. EDVLINT1.86B.0018.
01.01.2003 01.01.2003 01.01.2003 D05.1306021543_MPK
Cstate and p states dis-
BIOS Setting Cstate off, Intel*HT on | Cstate off, Intel* HTon | Cstate off, Intel*HT on | abled "Active Refresh” | Default
"CKE Power Down”
CPU GHz 1.1 18 25 24 2
Cores 2 4 4 8 2
Nodes 3 3 3
Sockets/Node 1 1 1 1 1
Memory (GB)/Node | 32 32 32 16 8
DIMMs 4 4 4 2 2
DIMM size (GB) 8 8 3 8 4
Channels 2 2 2 2
Memory Speed 1600 1600 1600 1600 1333
0S Ubuntu Server 12.04 Ubuntu Server 12.04 Ubuntu Server 12.04 Ubuntu Server 12.04 Ubuntu Server 12.04
NIC Port Speed 10 Gbps 10 Gbps 10 Gbps 1 Gbps 1 Gbps
NIC Ports/Node 1 1 1 4 2
NIC Location Niantic* 10G Niantic* 10G Niantic* 10G On board On board
Quantity 1 1 1 1 1
RPM/SSD SSD SSD SSD SSD SSD
Size 160 GB 160GB 160 GB 160 CB 160 GB
SATA Yes Yes Yes Yes Yes
Storage Drive (SSD)
Quantity 5 5 5 3 1
RPM/SSD SSD SSD SSD SSD SSD
Size 250GB 250GB 250GB 160 CB 160 GB
SATA Speed 3Gb/s 3Gb/s 3 Gb/s 3Gb/s 3 Gb/s
Storage Drive (HDD)
Quantity 5 5 5 3 NA
RPM/SSD HDD HDD HDD HDD NA
Size 1B 1B 1B 1B NA
SATA Speed 3Gb/s 3Gb/s 3 Gb/s 3Gb/s NA

Table 1. Storage Server Benchmark Configurations.

(00]

System Under Tests (SUT)
Configurations

The microservers systems under test
(SUT) used in the benchmarks comprise a
range of servers offering important
characteristics needed in today’s cloud
storage solutions. Only the storage
servers were tested in these studies;
Proxy server, while part of the configura-
tion, was not measured. Table 1 lists

the storage server configurations. Five
workloads (Table 3) stressed different
aspects of the configurations.

Component Supported Specification

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Results

Benchmark results'? (see Figure 3) clearly
show that the new Intel Atom processor
codenamed Avoton-based microserver
outperforms the previous-generation
Intel® Atom™ Processor S1260 server by
over 5X, and does so more efficiently—
more than 3.5X performance/watt
improvement. The latest generation Intel
Xeon E3 processor-based microservers
offer both performance above the latest
generation Intel Atom processor-based
microserver and good energy efficiency.

In large cloud data centers, where server
counts can scale quickly, conserving power
by using energy-efficient hardware
becomes more critical. Microservers built
on the Intel Atom processor codenamed
Avoton deliver the highest efficiency with
good performance, making this configura-
tion an excellent balance where perfor-
mance, price, and power consumption are
important factors.

CPU Cores 8 LrgRead Randomly read objects Stress Read |0 bandwidth

Core Frequency Base / Turbo 2.4 GHz/2.6 GHz of 1 MB, 100 MB, from the object store server
and 1 GB

Memory Channels 2

DIMMs/Channel 2 LrgWrite Randomly Write Stress Write 10 bandwidth
objects of T MB, 1o the object store server

Memory Type DDR3L 100 MB, and 1 GB

Memory Frequency 1600 - - - :

. . Smiwrite Randomly write objects Stress the container servers
Maximum Memory Capacity 32GB of 100B,1KB,and 10 ability to track user file data
PCle* Lanes - Maximum 16 KB from multiple clients in the SQL-lite database, by

applying a high write rate,
PCle Controllers 4 which is replicated across
Gb Ethernet Ports/Speed 4,25 Gb Ethernet 3 servers
SATA 3 Ports 2 SmIRead Randomly read objects Stress the Proxy servers
of 100 B, 1 KB,and 10 ability to process user
SATA 2 Ports 4 KB from multiple clients file data
USB Ports 4
LrgRWMix Present a randomly Test for locks inside the
Table 2. Storage System Under Test (SUT) Platform Specifications. selected R/W mix of databases and other stores
90/10 of 1 MB, 100 MB, due to concurrent reads and
and 1 GB files sizes writes to the system

Table 3. Benchmark Workloads.

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

These results were achieved using Intel
SSDs for both boot and storage drives.
Additionally, the benchmarks revealed the
impact SSDs have on performance and
efficiency compared to SATA 7200 rpm
and Serial Attached SCSI (SAS) 10k rpm
storage drives. SSDs performed as much
as 4.9X faster, as shown Table 4, with
more than 5X efficiency.

Finally, benchmarks offered a view into
performance benefits of adding storage
drives to each storage node as shown in
Table 5, with nearly linear scaling for each
drive added.

These benchmarks reveal the capability of
latest-generation Intel Atom processor-
and Intel Xeon processor-based microservers
when used for object storage serversina
Swift cluster, making these attractive
systems for scalable cloud infrastructure.

Tuning and Optimization

General Service Tuning

Most services support either a worker or
concurrency value in the settings. This
allows the services to make effective use
of the cores available. A good starting
point to set the concurrency level for the
proxy and storage services is twice (2X)
the number of cores available. If more
than one service shares a server, then
some experimentation may be needed to
find the best balance.

Set the max_clients parameter to adjust
the number of client requests an individu-
al worker accepts for processing. The
fewer requests being processed at one
time, the less likely a request will consume
the worker's CPU time or block the OS.
The more requests being processed at
one time, the more likely one worker can
utilize network and disk capacity.

On systems that have more cores and
more memaory, you can run more workers.
Raising the number of workers and
lowering the maximum number of clients
serviced per worker can lessen the impact
of CPU-intensive or stalled requests.

The above configuration settings are
suggestions; test your settings and adjust
to ensure the best utilization of CPU,
network connectivity, and disk 1/0. Always
refer to the Swift documentation for the
most recent recommendations.

Filesystem Considerations

Swift is rather filesystem agnostic; the
only requirement is the filesystem must
support extended attributes (xattrs). XFS
has proven to be the best choice. Other
filesystem types should be thoroughly
tested prior to deployment.

1400

1200

1000

800

600

400

432

200

Performance (Ops/sec)

(Higher is better)
M Intel® Atom™ Processor S1260

Intel® Xeon® £3-1230L v3 Processor

1062

4.0

3.5

30

2.5

2.0

15

10

3.31

1.65

Power Efficiency (Performance/Watt)

Intel® Xeon® E3-1220L v3 Processor

(Higher is better)

I Intel® Atom™ Processor (Avoton)

I Intel® Xeon® E3-1265L v2 Processor

Figure 3. Benchmark Results.

10

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Performance (Ops/sec)

Processor Intel® SSD 7.2k HDD 10k SAS HDD Improvement
Intel® Atom™ Processor (Avoton) 688 140 341 4.9X/21X
Intel® Xeon® E3-1220L v3 Processor 432 145 NA 3X

Intel® Xeon® E3-1265L v3 Processor 1160 238 NA 49X

Intel® Xeon® E3-1230L v3 Processor 1062 327 NA 3.2X

Efficiency (Performance/Watt)

Intel Atom Processor (Avoton) 3,59 066 1.56 54X/2.3X
Intel Xeon E3-1220L v3 Processor 1.65 046 NA 36X
Intel Xeon E3-1265L v3 Processor 3.26 064 NA 51X
Intel Xeon E3-1230L v3 Processor 331 093 NA 36X

Table 4. SSD vs. HDD Performance Results.

Number of Drives

Metric 1 2 3
Performance (Operations/sec) 184 327 638
Efficiency (Performance/Watt) 035 1.61 3.05

Table 5. Storage Drive Scaling Results (Intel® Atom™ processor codenamed Avoton). (Higher is Better)

Summary

Open source Swift object storage software provides a solution for companies interested
in creating their own private cloud storage service or building a service for other
production purposes. Swift is easy to use, and it supports web-scale storage services
compatible with web applications used today. Swift is provided under the Apache 2 open
source license, is highly scalable, extremely durable, and runs on industry-standard
hardware, such as microservers based on the latest generation of Intel Atom processor
or Intel Xeon €3 processors. Swift also has a compelling set of tools available from third
parties and other open source projects.

Server power consumption has become a critical driving factor in data centers. In
benchmarks, microservers based on the latest generation of Intel Atom processor and
Intel Xeon E3 processors deliver exceptional performance and performance/watt as
Swift storage servers. These multi-core microservers outperformed previous genera-
tion, highly efficient Intel Atom processor S1260 servers. With massive object storage
deployments typical today, the latest generation of Intel Atom processor- and Intel Xeon
€3 processor-based microservers offer attractive choices for Swift cluster deployments.

1

Configuration and Deployment Guide For OpenStack* Swift* Object Storage
on Intel® Atom™ Processor and Intel® Xeon® Processor Microservers

Learn More

For more information, visit the home of Swift at the OpenStack web site www.openstack.org and
SwiftStack*, a Swift object storage service provider www.swiftstack.com.

For more information on Intel Atom processor-based servers, visit www.intel.com/content/www/us/en/processors/

atom/atom-processor.html.

Appendix A - Additional Resources
http://docs.openstack.org/developer/swift/ for Swift documentation.

http://docs.openstack.org/developer/swift/deployment_guide.html for Swift deployment, configuration, and tuning information.

“Configuration and Deployment Guide For Memcached on Intel® Architecture,” Intel Corporation

' Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

2 Configurations: see Tables 1 and 2. For more information go to http://www.intel.com/performance.

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual
performance.

Intel® Hyper-Threading Technology available on select Intel® Core™ processors. Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary depending on the
specific hardware and software used. For more information including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that license.

NFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A*“Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS,
AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS'’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY
CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR
WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available
on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 2013 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Atom, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others. Printed in USA 0913/DF/HBD/PDF £ Please Recycle 329542-001US

