USing]avaFX August 9
to Implement

Multi-touch 2 O 1 3
with Java* on

Windows* 8

Documentation
for developers

This document covers the use of JavaFX to easily add multi-touch support to lntereSted 1n
Windgws 8 Desktop applications.written in Java*. It starts .by presenting .an mu1ti'tOU.Ch

overview of JavaFX before covering two approaches to using JavaFX: using
Java APIs only and using Java in conjunction with FXML. The examples are Support in]ava
displayed in the context of a simple application tool for manipulating an . .
image. The application is written in Java and is designed for Windows 8 appllcatlons

devices. .
running on

Windows 8

systems

Contents

1 INEFOTUCTION .ttt st b e b et sae e s st e e bt e b e e R e e s e san e s enesbe e sbeesbeenbee bt enneeneeeneenreens 3
2 EXAMPIE APPICATIONS ..ottt ettt e st e e b e s b e e bt e s b e e bt s b e e e be e s b e e e reeeares 3
3 [BLY <] oY o] g aT=T o1 ol 3 0 V7T e oY V=T o | SR 4
4. JAVaFX SCENE STIUCTUIE coiiiiiiiiiiic ittt s b b e e sb b e e s s b e s e s aba e e s saraeee s 4
5 Options for Building User Interfaces USING JAVAFXcooiiiiiiiiiiiieiie ettt ettt e 5
6 Gestures in a Scene Defined USiNg ONlY JAVA APl ...c...oi ittt sttt sttt st 5
6.1. TOUCK EVENES ..ttt ettt s e st s b e s bt e bt et e e ae e s be e b e e b e e b e sanesanesanesmeenneenneenes 6
6.2. (=2 A0 =T OO PP OPPPPOPP 9
Architectural CONSIAEIATIONSiiiueiiiieeiieeeee ettt ettt e sat e bt e st e e s ae e e sat e e bt e e saee e bt e e ssneebeeesaneenneeas 9
L2001 = I €= AU =PSRN 9
ZOOM QNG SCIOI GESTUIES ...ttt ettt sttt e sa e st e st e st esab e e s bt e sabeeeabeesabeeeabeesabeeeaseesabeeenseesanes 10
SWIPE GESTUIES ..eieiiiiieiiitee ettt ettt e s et e s et e e s b et e s e s b e e e s ab e e e s sab et e e e nbeeesannn e e s sanneeesanbeeesenneeesnnnes 10

6.3. Cautions When Working With GESTUIEScccccuiiiiiiiieeciiiee et etee e e st e e e erate e e s eatee e e s baeeeestaeesensaeeesasaeeaan 11

7. Defining a Scene UsiNg Java @and FXIMLcccuiiiiiiiiiecciie et ctee e et e e tae e s tve e e esatae e seaaaaeesaaaeeeesstaeesnnsaaeessseaenn 12
7.1. Defining Scene Elements iNJAVAFXcoiiiiiiiiiiieiee ettt et st e st e e sbe e e saneenaee s 12
7.2. Connecting FXML and Back-8Nd COUEcc.uuiiiiiiiie ettt et e e et e e et e e e s ta e e e eate e e eenaaeeesasreaaan 14
7.3. Defining Functions for ToOUuCh EVENtS aNd GESTUIEScccuviieiiiieeeiiiieeeitieeeceitee e srire e e e setee e eearee e saveeeeentaeeeenns 15
CIOSINE ettt ettt ettt ettt ettt e b et ettt e bt e s b et e bt e e b et e bt e e bt e e be e e b et e b e e e b et e bt e e b et e bae e be e e bt e e be e e bee e beeeneesbeeenneenanes 19

1. Introduction

Multi-touch, gesture-based user interface support is inherent in Windows 8 applications written in
languages that use the native Windows libraries; however, this option is not available to Java-based
applications. In this case, an alternative development framework must be used. This white paper and
accompanying sample applications cover JavaFX, an open source solution for adding multi-touch support
to Windows 8 Desktop applications written in Java.

JavaFX is a set of Java packages designed to support the development of rich, cross-platform
applications written in Java. These packages cover user interface controls, media streaming, embedded
web content, and a hardware-accelerated graphics pipeline. JavaFX also includes multi-touch support,
which we will discuss in this paper. JavaFX is a Java library, meaning it can be called directly from any
Java code, but it also supports a declarative markup language called FXML, which can be used to
construct a JavaFX user interface. We demonstrate both methods in this paper. More information on
JavaFX can be found at http://www.oracle.com/technetwork/java/javafx/documentation/index.html.

2. Example Applications

The code samples used in this document are from two Java applications: one demonstrates how to use
JavaFX’s Java APIs, while the second uses Java in conjunction with FXML. To maintain readability of the
source code, the demonstration applications are very simple, consisting of an image displayed in a main
window that users can manipulate using common single and multi-touch gestures. At any point a user can
reset the image to its starting condition. You can download the full source for the demo applications and
then try it yourself, or use it as reference material to create your own application.

Mot seerm | pctd wherrmrst [ERTER) . Seepm

Figure 1: Sample application with multi-touch interaction

http://www.oracle.com/technetwork/java/javafx/documentation/index.html

The following table describes the user interactions for the sample application.

Table 1: Supported Actions

Action Result
Touch and drag image Move image to a new location
Pinch on image Decrease size of image
Spread on image Increase size of image
Two-finger rotation on image Rotate image
Touch [Reset] button :(:_iset:tr:tii&age back to original location, size, and

3. Development Environment

The example applications are Windows 8 Desktop applications, suitable for any tablet, convertible, or
Ultrabook™ device with multi-touch support. JavaFX is fully integrated in the Java 7 Runtime
Environment.

Windows* 8
Language Java* 7 or newer
Multi-touch library JavaFX 2.2
IDE Netbeans 7.3.1

Figure 2: Development environment

4. JavaFX Scene Structure

To display a user interface, JavaFX uses a scene graph design, an approach based on the hierarchical
parent-child relationship of the elements that compose a scene. The base class for the JavaFX scene
graph API is javafx.scene, and the base class for defining a single scene entity is javafx.scene.Node.

Looking deeper into the class structure, the path splits in two major directions:

e javafx.scene.Parent — An abstract class that can contain children, it further leads into
implementation of controls, like Button or Label classes, or container constructs, like
javafx.scene.Region.

e javafx.scene.Shape - This class is the starting point for various geometrical shape
implementations, eventually leading to leaf nodes in the scene of type element.

Internally, the scene is composed of classes derived from Node and organized in a tree data structure.
The tree is traversed by the painting engine when it is triggered by an event called a Pulse. Pulse events
are emitted because of a trigger from the user or operating system or due to a time-triggered paint event.
The painting engine in JavaFX is called Prism, and it abstracts OpenGL*, DirectX*, or, as a failsafe,
Java2D painting engines.

In most cases, when building an application using the JavaFX framework, we will use concrete
implementations of classes coming from the inheritance paths listed above, and not from the sub-classing

Node directly. However, Node is the class that provides the API for registering event handlers for touch
and gesture events, therefore it will be the main focus of this article.

5. Options for Building User Interfaces Using JavaFX

JavaFX provides two options for creating user interfaces. Depending on our needs, we can synthesize
the user interface by creating instances of the user interface component classes, or we can take a more
visual approach by using Scene Builder to generate FXML templates. These two methods can be
combined to form a flexible approach for designing the parts of the user interface. For more in depth
information on creating user interfaces with JavaFX, please refer to the JavaFX tutorial
(http://docs.oracle.com/javafx/).

6. Gestures in a Scene Defined Using Only Java API
The Node class provides an API to register callback event handlers. There are two ways of registering
event handlers. The first is to use the setEventHandler function as shown in the following example:

setEventHandler (SwipeEvent .ANY, new EventHandler<SwipeEvent> () {
@Override

public void handle (SwipeEvent t) {

<event handler logic>

}

t.consume () ;

The setEventHandler function takes two parameters:

1. The type of the event, which is a concrete instance of EventType<T>. The convention is that the
event types are defined as static fields of the class to which they belong; for example, the
SwipeEvent class would have:

public class SwipeEvent extends GestureEvent {

public static final EventType<SwipeEvent> ANY;

public static final EventType<SwipeEvent> SWIPE LEFT;
public static final EventType<SwipeEvent> SWIPE RIGHT;
public static final EventType<SwipeEvent> SWIPE UP;
public static final EventType<SwipeEvent> SWIPE DOWN;

2. The second parameter is a pointer to an instance of a class implementing a concrete version of
the EventHandler<T> interface. In this example, an instance of the anonymous class was
used, but the origin of the pointer is a design decision.

The second option for registering an event or gesture handler is through a set of convenience functions,
also provided by the Node class. The naming convention follows setOn<name of the event>, for
example setOnRotate (...). Since a convenience function corresponds to a single event, only one
parameter is required, a pointer to an instance of a class that implements a concrete version of the
EventHandler<T> interface. For example:

setOnTouchPressed (new EventHandler<TouchEvent> () {
@Override

public void handle (TouchEvent t) {
event handler logic

t.consume () ;

The selection and use of these two approaches depend on the developer. In our case,
setEventHandler was used for SwipeEvent while convenience functions were used for the rest of the
gestures. For SwipeEvent, we passed SwipeEvent.ANY as the triggering event type and then detected
the actual SwipeEvent type. This allowed us to keep the response logic in a single function instead of four
almost identical convenience functions. On the other hand, implementing the logic for the other gestures
using convenience functions produced code that was easier to study.

6.1.Touch Events
In our example, we use touch events to allow a user to drag the selected rectangle around the scene. The
application first waits for the user to touch and hold within the borders of the rectangle and then to move
her finger around the scene.

To implement such application behavior we have used three event types related to touch, which are:

e Touch begin — Setup the initial state that consists of the current position of the touch and a flag to
indicate the event is in motion.

e Touch move — Retrieve the current position of the touch and calculate the translation of the
rectangle position.

e Touch end — When the user lifts her finger, we clear the event-in-motion flag.

The touch begin event is implemented as follows:

setOnTouchPressed (new EventHandler<TouchEvent> () {

@Override

if (moveInProgress == false) {
if (m_container.getRegisterredItem() !=
MovableRectangle.this) {
m container.unregisterItem() ;

m_container.registerItem(MovableRectangle.this);

movelInProgress = true;
touchPointId = t.getTouchPoint () .getId()
prevPos = new Point2D(t.getTouchPoint () .getSceneX(),

t.getTouchPoint () .getScene¥Y ()) ;
System.out.println ("TOUCH BEGIN " + t.toString()):;

t.consume () ;

The two key points to notice are:

e The call to the consume function — Event handlers follow a phase of event processing called
bubbling, where an event object is passed up to the parent object if it is not consumed by the
current event handler. To prevent the parent container of our rectangle from processing this event
(which would be undesirable, in this case), we must call the consume method of the event object.

e Proper handling of multiple concurrent touch events — On multi-touch devices we can get input
from multiple touch events occurring at the same time. In our case we do not want our rectangle’s
drag behavior to be interrupted by other touch events occurring at the same time. To distinguish
touch events, JavaFX uses a unigue touch event ID, which is a component of the touch event
object. In our application, we save this ID when the touch begins and react only to touch move

events with a similar ID.

The second part of our implementation is the handler that responds to the touch’s move event. lts

implementation is shown below:

setOnTouchMoved (new EventHandler<TouchEvent> () {
@Override

public void handle (TouchEvent t) ({

if (moveInProgress == true &&
t.getTouchPoint () .getId () == touchPointId) {
Point2D currPos = new Point2D (

t.getTouchPoint () .getSceneX(),
t.getTouchPoint () .getSceneY () ;

double[] translationVector = new double[2];
translationVector[0] = currPos.getX() - prevPos.getX():

translationVector[l] = currPos.getY() - prevPos.getY():

setTranslateX (getTranslateX () + translationVector[0]);

setTranslateY (getTranslateY () + translationVector([1l]):;

prevPos = currPos;

}

t.consume () ;

Similar to the previous case, we consume the event after processing it. As mentioned before, we only
calculate position translations for touch events with an ID equal to the ID value of the original touch
(saved by the touch begin handler).

The final part is the touch end handler. The purpose of this handler is to clear the move-in-progress flag,
completing the touch event. The next touch begin event will register another touch ID and start the
process over.

setOnTouchReleased (new EventHandler<TouchEvent> () {
@Override
public void handle (TouchEvent t) ({
if (t.getTouchPoint () .getId() == touchPointId) ({
moveInProgress = false;
}

t.consume () ;

6.2.Gestures
There are currently four types of gesture events supported in JavaFX:

1. Rotate
2. Scroll
3. Swipe
4. Zoom

Architectural Considerations

When dealing with these types of gestures, it is important to carefully choose the node on the scene that
will register the event handlers. Let’s look at the Zoom gesture.

Our first thought is that if we are going to modify the size of our rectangle object (zoom), then it should be
the rectangle that registers the event handler and processes the event. But what about the situation
where the rectangle is small enough that a proper zoom gesture cannot be performed? Having the
rectangle handle the event in this case, leads to a situation where we cannot un-zoom our rectangle. A
better choice is to use the Pane element, which is a background canvas stretched to the size of the
screen. This class receives callback information from its children when they are selected, and if a gesture
occurs, performs the proper transformation on the selected node.

Rotate Gesture
The rotate event handler is implemented as follows:

setOnRotate (new EventHandler<RotateEvent> () {
@Override
public void handle (RotateEvent t) ({
if (currentSelection != null) {
Node selNode = currentSelection.getCorrespondingNode () ;
selNode.setRotate (selNode.getRotate () + t.getAngle());
}
t.consume () ;
}
1)

The implementation follows the convention of using the convenience function to register the callback
handler. The RotateEvent class provides all parameters necessary to describe the gesture. The Node
class provides a set of helper functions for both 2-D and 3-D. An alternative method is also available to
allow you to stack multiple transformations by using the javafx.scene.transform.Transform type
and deriving from it classes that implement more specific types of transformations, like

javafx.scene.transform.Translate

Zoom and Scroll Gestures
The zoom and scroll gesture event handlers are implemented similarly. Here is the zoom event handler:

setOnZoom (new EventHandler<ZoomEvent> () {
@Override
public void handle (ZoomEvent t) {
if (currentSelection != null) {
Node selNode = currentSelection.getCorrespondingNode () ;
selNode.setScaleX (selNode.getScaleX () * t.getZoomFactor())
selNode.setScaleY (selNode.getScaleY () * t.getZoomFactor())
}

t.consume () ;

And the scroll gesture event handler:

setOnScroll (new EventHandler<ScrollEvent> () {
@Override

public void handle (ScrollEvent t) {

if (selectedGesture == GestureSelection.SCROLL &&
currentSelection != null) {
Node selNode = currentSelection.getCorrespondingNode () ;

selNode.setTranslateX (selNode.getTranslateX () +
(t.getDeltaX () / 10.0));

selNode.setTranslateY (selNode.getTranslateY () +
(t.getDeltaY () / 10.0));

}

t.consume () ;

Swipe Gestures
For the last gesture type on the list, swipe, the application took a slightly different approach. A single

swipe event has four different convenience functions that apply to the possible directions of the swipe
gesture: setOnSwipelLeft, setOnSwipeRight, setOnSwipeUp, and setOnSwipeDown. In our
application the translation direction is defined by the direction of the swipe, which makes it reasonable to
implement using setEventHandler instead of the convenience functions. This results in a very simple
implementation, as you can see in the following code:

10

setEventHandler (SwipeEvent.ANY, new EventHandler<SwipeEvent> () {
@Override
public void handle (SwipeEvent t) ({
if (selectedGesture == GestureSelection.SWIPE &&
currentSelection != null) {
Node selNode =currentSelection.getCorrespondingNode () ;
TranslateTransition transition = new
TranslateTransition (Duration.millis (1000), selNode) ;
if (t.getEventType() == SwipeEvent.SWIPE DOWN) {
transition.setByY (100) ;
} else if (t.getEventType() == SwipeEvent.SWIPE UP) {
transition.setByY (-100) ;
} else if (t.getEventType () ==SwipeEvent.SWIPE LEFT) {
transition.setByX (-100) ;
} else if (t.getEventType ()==SwipeEvent.SWIPE RIGHT) ({
transition.setByX (100) ;
}

transition.play();

}

t.consume () ;

6.3.Cautions When Working with Gestures
We want to conclude this section by discussing two cases related to gesture events of which developers
should be aware.

First, we note that swipe and scroll events are very similar in nature, and in fact, a swipe gesture will
trigger the scroll event at the same time. In our example we give the user the option to choose which
should be recognized, so both can be easily evaluated

Second, a situation that might produce undesirable effects is when a user drags the rectangle on the
screen. Like a swipe event, this will also trigger a scroll event, which can generate unexpected motion of
the rectangle. To prevent this situation from happening, the application consumes both the scroll and
swipe events from the rectangle at the same time to prevent them from bubbling to the canvas.

setOnScroll (new EventHandler<ScrollEvent> () {
@Override
public void handle (ScrollEvent t) {

t.consume () ;

11

});

setEventHandler (SwipeEvent.ANY, new EventHandler<SwipeEvent> () {
@Override
public void handle (SwipeEvent t) {

t.consume () ;

7. Defining a Scene Using Java and FXML

In addition to the low-level approach when building user interfaces, JavaFX provides another option, one
based on an XML-syntax language called FXML. FXML is a higher-level, declarative markup language
used to describe the user interface for a JavaFX application. Developers can write FXML directly or use
the JavaFX Scene Builder to create FXML markup. The advantages of using FXML are that it cleanly
separates user interface design from application logic and it gives user interface designers an easier way
to be involved in the development process.

When using FXML, the FXML file is dynamically loaded into the application, where it is converted in to a
tree structure just as if you built it entirely using Java code. The resulting root Node element can then be
connected directly onto a scene, or plugged in as another part of a bigger project.

7.1.Defining Scene Elements in JavaFX
There are different approaches when building user interfaces in FXML; this document will cover the
following two:

e Building a component hierarchy from ready-to-use classes

¢ Building custom components using a root element defined in Java

The first approach, which can also use custom components, uses previously defined tags that implement
a specific user interface element. For example:

<Pane id="StackPane" fx:id="touchPane" onRotate="#onRotate"
onScroll="#onScroll" onSwipeDown="#onSwipe" onSwipeLeft="#onSwipe"
onSwipeRight="#onSwipe" onSwipeUp="#onSwipe" onZoom="#onZoom"
prefHeight="1000.0" prefWidth="1000.0" xmlns:fx=http://javafx.com/fxml
fx:controller="jfxgestureexample?.TouchPaneController">

<children>

<HBox fx:id="buttons" fillHeight="false" prefHeight="30.0"
prefWidth="451.0" spacing="3.0">

<children>
.CUT...

</children>

12

<padding>
<Insets bottom="3.0" left="3.0" right="3.0"
top="3.0" />
</padding>
</HBox>
</children>

</Pane>

FXML files like this example are parsed using FxMLLoader, which creates a tree object structure and
adds it to the scene:

Parent root = FXMLLoader.load(getClass () .getResource ("TouchPane.fxml")) ;

Scene scene = new Scene (root);
stage.setScene (scene) ;

stage.show () ;

The second approach is useful when we want to create a custom user interface component or a user
interface portion with a custom-class Root element. In this case, we use fx:root and specify the type of the
root class. Note, the type does not have to be one of our classes, but it has to be a type within the
inheritance path.

<fx:root type="jfxgestureexample2.MovableElementController"
onScroll="#onScroll" onSwipeDown="#onSwipe" onSwipeLeft="#onSwipe"
onSwipeRight="#onSwipe" onSwipeUp="#onSwipe" onTouchMoved="#onTouchMoved"
onTouchPressed="#onTouchPressed" onTouchReleased="#onTouchReleased"
prefHeight="50.0" prefWidth="50.0" styleClass="mainFxmlClassUnselected"
xmlns: fx="http://javafx.com/fxml">

<stylesheets>
<URL value="@movableelement.css" />
</stylesheets>

</fx:root>

The actual setup of the root element, along with the controller class, occurs after the FXML file has been
loaded but before it is instantiated. In our example application, this happens inside the
MovableElementController class, which is both the controller and root object itself. In addition, it
implements the rectangle that is visible on the scene.

public MovableElementController (ISelectableltemContainer container) {

super () ;

13

m_container = container;

FXMLLoader loader = new
FXMLLoader (getClass () .getResource ("MovableElement.fxml")) ;

loader.setRoot (this) ;

loader.setController (this);

try {
loader.load () ;
} catch (IOException exception) {

throw new RuntimeException (exception);

7.2.Connecting FXML and Back-end Code
The next step is to connect events from FXML to the back-end code and to connect the back-end code to
the user interface. FXML provides a very convenient API for exposing the elements present in the FXML
document and connecting callback functions to those elements. It heavily relies on Java annotations and
the reflection mechanism, combined with JavaFX properties and bindings.

First, on the FXML side, each type of tag exposes a set of properties to which we can assign handlers
that are present in the controller class. The second part of the definition has either the controller class set
directly in FXML using the fx:controller property or assigned dynamically, similar to the previous
example.

<Pane id="StackPane" fx:id="touchPane" onRotate="#onRotate"
onScroll="#onScroll" onSwipeDown="#onSwipe" onSwipelLeft="#onSwipe"
onSwipeRight="#onSwipe" onSwipeUp="#onSwipe" onZoom="#onZoom"
prefHeight="1000.0" prefWidth="1000.0" xmlns:fx=http://javafx.com/fxml
fx:controller="jfxgestureexample?.TouchPaneController">

The name of the handlers must match methods found in the controller class and are marked with a hash
(#) symbol preceding the name. On the Java code side, such methods are declared using the @FXML
annotation:

@FXML
public void onZoom (ZoomEvent t) {
if (currentSelection != null) {
Node selNode = currentSelection.getCorrespondingNode () ;
selNode.setScaleX (selNode.getScaleX () * t.getZoomFactor()):;
selNode.setScaleY (selNode.getScaleY () * t.getZoomFactor())

14

http://javafx.com/fxml

}

t.consume () ;

The specified method has the same declaration structure as the handle method from the EventHandler
interface and it accepts proper parameters.

To expose an element present in the FXML document to the controller class we have to assign it and its
ID name, as in this example:

<ToggleButton id="setScrollBtn" fx:id="setSwipeBtn" mnemonicParsing="false"
text="Swipe" toggleGroup="S$gestureSelectionGroup" />

Plus we need to declare a property matching the type and name used in the controller class:

public class TouchPaneController implements Initializable,
ISelectablelItemContainer {

@FXML private Pane touchPane;

@FXML private HBox buttons;

@FXML ToggleButton setScrollBtn;

@FXML ToggleButton setSwipeBtn;

@FXML ToggleGroup gestureSelectionGroup;

This is all that is required from the developer; the framework will handle the binding.

7.3.Defining Functions for Touch Events and Gestures
The application logic for the FXML example is the same as the direct Java APl example, so the actual
gestures and touch event handlers are almost identical. To keep you from referring back to the earlier
sections we will present the code from the FXML implementation here. It is worth mentioning that the
same callback function is assigned to all four swipe actions in the user interface declaration in the FXML
file.

public class MovableElementController extends Pane implements ISelectableltem

{

o . o

15

QFXML
public void onTouchPressed (TouchEvent t) {
if (moveInProgress == false) {

if (m_container.getRegisterredItem() !=
MovableElementController.this) {

m _container.unregisterItem() ;

m _container.registerItem/(
MovableElementController.this) ;

movelInProgress = true;

touchPointId = t.getTouchPoint () .getId() ;

prevPos = new Point2D(t.getTouchPoint () .getSceneX(),
t.getTouchPoint () .getSceneY ()) ;

System.out.println ("TOUCH BEGIN " + t.toString());

t.consume () ;

@FXML
public void onTouchMoved (TouchEvent t) ({

if (moveInProgress == true && t.getTouchPoint () .getId() ==
touchPointId) {

Point2D currPos = new
Point2D (t.getTouchPoint () .getSceneX (),
t.getTouchPoint () .getSceneY ()) ;

double[] translationVector = new double[2];
translationVector[0] = currPos.getX() - prevPos.getX();

translationVector[l] = currPos.getY () - prevPos.getY();

setTranslateX (getTranslateX () + translationVector[0]);

setTranslateY (getTranslateY () + translationVector[1l]);
prevPos = currPos;

}

t.consume () ;

16

@FXML
public void onZoom (ZoomEvent t) {
if (currentSelection != null) {
Node selNode = currentSelection.getCorrespondingNode () ;
selNode.setScaleX (selNode.getScaleX () * t.getZoomFactor()):;
selNode.setScaleY (selNode.getScaleY () * t.getZoomFactor()):;

t.consume () ;

@FXML
public void onRotate (RotateEvent t) {
if (currentSelection != null) {
Node selNode = currentSelection.getCorrespondingNode () ;

selNode.setRotate (selNode.getRotate () + t.getAngle())

t.consume () ;

QFXML
public void onSwipe (SwipeEvent t) {

if (selectedGesture == GestureSelection.SWIPE &&
currentSelection != null) {

Node selNode = currentSelection.getCorrespondingNode () ;
TranslateTransition transition = new
TranslateTransition (Duration.millis (1000), selNode) ;

if (t.getEventType() == SwipeEvent.SWIPE DOWN) {
transition.setByY (100) ;

} else if (t.getEventType() == SwipeEvent.SWIPE UP) {
transition.setByY (-100) ;

} else if (t.getEventType () == SwipeEvent.SWIPE LEFT) {
transition.setByX (-100) ;

} else if (t.getEventType () == SwipeEvent.SWIPE RIGHT) ({
transition.setByX (100) ;

}

transition.play();

18

t.consume () ;

Closing

JavaFX provides a powerful and flexible, means of adding multi-touch and gesture support to a Java-
based application. In addition to media streaming, embedded web content and a hardware-accelerated
graphics pipeline, JavaFX includes user interface components and multi-touch events. Developers can
create and access these components using JavaFX APl calls directly from Java, building their
application’s user interface piece by piece. Alternatively, they can define the user interface using the
FXML scripting language—nby either writing FXML directly or using JavaFX Scene Builder.

Whichever approach a developer chooses, connecting the front-end user interface with the back-end
logic is a straightforward process. With JavaFX it is easy to design a well-architected, modern user
interface with multi-touch support for a Java application.

You can download the full source for the demo applications and then try it yourself or use it as reference
material to create your own Java-based touch application.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR
ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL
INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

19

http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer
systems, components, software, operations, and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Any software source code reprinted in this document is furnished under a software license and may only be used
or copied in accordance with the terms of that license.

Intel, the Intel logo, and Ultrabook are trademarks of Intel Corporation in the U.S. and/or other countries.

Copyright © 2013 Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

20

