

Migrating Your Apps to
DirectX* 12 – Part 4

Ver

1.0

Chapter 4 DirectX 12 Features

4.0 Links to the Previous Chapters
Chapter 1: Overview of DirectX* 12

Chapter 2: DirectX 12 Tools

Chapter 3: Migrating From DirectX 11 to DirectX 12

4.1 Function and Usage of Multiplane Overlay

4.1.1 Introduction
Multiplane Overlays (MPO) is a new feature of WDDM1.3 (DX11.2) initially introduced in Windows 8.1,

which is now extended to WDDM2.0 (DX12) in Windows 10. MPO supports using the original resolution to

display gorgeous 2D art and UI elements, while drawing 3D scenes into a smaller and stretchable frame

buffer. The stretching and composition of surfaces at different resolutions are automatically implemented

by the system, and transparent to applications.

The major role of MPO is to allow a game to maintain a stable and appropriate frame rate under different

circumstances, thereby improving the overall game experience. On one hand, the resolution almost

always has a significant impact on the performance of modern games. With the popularity of high-

definition 4K screens, the resolution of game window also increases. Increasing pixels also increases

texture sampling and the bandwidth of render target, which brings challenges to the performance of

games. Secondly, post-processing technology is increasingly used for rendering 3D scenes, which

increases the complexity of a shader, so the trend will be that a trend that the cost per pixel determines

games performanc. Therefore, setting the appropriate resolution is critical to maintaining game

performance.

Furthermore, for games like role playing, real-time strategy and multiplayer online, rendering GUI

components at the initial window resolution is also very important. For example, even on low-end

platforms, players will want to text chat with teammates during game play. GUI components are mainly

2D graphics with relatively low rendering overhead, thus rendering at the window resolution can provide

the best visual experience.

MPO provides a compromise solution for high-resolution display and gaming performance. Using MPO

can alleviate the rapid performance degradation of games in high-resolution rendering, allowing the

games to run smoothly on the majority of hardware platforms. MPO supports not only rendering GUI

layer and 3D content layer in different resolutions, bu also rendering in different frame rates. For

instance, for a GUI layer, just present when a change happened. It benefits to performance and power

efficiency. Fiture 1 illustracts the swap chain composition of MPO.

Because MPO is a new feature of driver model, graphics driver provides the implementation of MPO to

the upper-level D3D runtime or DXGI runtime. MPO can be implemented by WDDM1.3 or higher version

drivers through software or by graphics hardware that uses a dedicated pipeline for the GPU in order to

reduce consuming so many CPU and GPU resources, helping to further enhance game performance and

lower power consumption. Intel will add hardware support for MPO in 6th generation Intel® Core™

processors (codenamed SkyLake).

https://software.intel.com/en-us/articles/tutorial-migrating-your-apps-to-directx-12-part-1
https://software.intel.com/en-us/articles/tutorial-migrating-your-apps-to-directx-12-part-2
https://software.intel.com/en-us/articles/tutorial-migrating-your-apps-to-directx-12-part-3

Figure 1: Swap Chain Composition of Multi-Plane Overlay

4.1.2 Application scenarios
In a game, Multiplane Overlays are typically applied in the following scenarios.

1. Scenes where the performance (such as frame rate) is below a certain threshold.

Depending on the type of the game, when the frame rate is below a certain value, the playability of

the game is degraded. For example, in battle scenes where a large number of game characters

appear, the frame rate of the game decreases significantly. To avoid performance degradation to the

point where the game can’t be played, the game will automatically switch to the MPO rendering

mode to maintain playable performance when it detects that the frame rate is lower than the

threshold.

2. Scenes that release particle effects.

In MMOG, scenes that release a large number of particle effects often result in the sudden drop in

frame rate and even cause the game stuttering in severe cases, which is a common performance

bottleneck in games. Rendering particle effects involves a lot of pixel filling, while rendering on a

high-resolution surface has more significant impact on performance. The game will switch to MPO

mode when releasing particle effects, and render the particle effects to a render target with smaller

resolution to reduce the amount of pixel filling. In addition, in the fierce battle scenes, the release of

a large number of particle effects leads to very dramatic changes in the screen, and thus it is difficult

for the player to see the details of each frame. Therefore, the impact of MPO stretching render

target on the final visual quality is almost imperceptible. Using MPO in such scenes, your game can

maintain the proper frame rate while keeping the visual experience, and addressing common

performance problems.

3. Rendering on mobile platforms

Now that mobile platforms are popular gaming terminal, game developer must worry about power

consumption. When the platform switches from AC power mode to battery power mode, the system

performance settings could cause the CPU or GPU frequency to decrease and force the game frame

rate to drop. With MPO, a game will automatically adjust the resolution of the render target without

changing the window resolution to compensate for the overall performance, while reducing power

consumption and allowing the game to run longer. This feature of MPO can be used to implement

power-saving mode for the game. This mode is available as a game setting option for the players.

For players, in the power-saving mode, slight difference on the screen is acceptable.

4. All of the above application scenarios mentioned focus on dynamically adjusting resolution to

maintain FPS. In practice, it will probably be more common to just choose a fixed ratio for the

duration of the game. For a 3D content layer, a natural choice for the scale ratio would be based on

the device DPI. (e.g. scale = deviceDpi/96.0)

4.1.3 Sample Codes for API usage
To apply Multiplane Overlays (MPO) in a game, you first need to detect whether the software and

hardware on the platform support it. The code for this is as follows:

Table 4.1: Detecting whether the hardware supports Multiplane Overlay
BOOL supportMultiPlaneOverlay = FALSE;
IDXGISwapChain* dxgiSwapChain;
IDXGIOutput* dxgiOutput;

dxgiSwapChain->GetContainingOutput(&dxgiOutput);
if (dxgiOutput)
{

IDXGIOutput2* dxgiOutput2;
dxgiOutput->QueryInterface(IID_PPV_ARGS(&dxgiOutput2));
SAFE_RELEASE(dxgiOutput);
if (dxgiOutput2)
{

supportMultiPlaneOverlay = dxgiOutput2->SupportsOverlays();
SAFE_RELEASE(dxgiOutput2);

}
}

IDXGIOutput2 : SupportsOverlays () API is used to detect whether the graphics hardware supports this

feature. If it returns true, then the hardware supports this feature; if it returns false, then the hardware

doesn’t support this feature, but the driver supports it using software approach. Intel Skylake platform

and later processor cores will support MPO on the hardware level.

In the game initialization phase, it’s required to create a few key Multiplane Overlay API objects: such as

Direct Composition device, scale transformer, foreground, background SwapChain, etc. The sample code

for desktop apps is as follows:

Table 4.2: Initialization and Creation of Multiplane Overlay API Objects
IDXGIFactory2* dxgiFactory;
adapter->GetParent(IID_PPV_ARGS(&dxgiFactory));

if (dxgiFactory)
{

// Create a Direct Composition device
DCompositionCreateDevice(NULL, IID_PPV_ARGS(&m_directCompositionDevice));

 // The device creates a render target for the window

m_directCompositionDevice->CreateTargetForHwnd(
(HWND)_CORE_API->GetAppWindow(), false, &m_directCompositionTarget);

// The device creates a multi-layer view
m_directCompositionDevice->CreateVisual(&m_rootVisual);
m_directCompositionDevice->CreateVisual(&m_mainVisual);
m_directCompositionDevice->CreateVisual(&m_overlayVisual);

// The device creates a scale transformer and sets it into the main view
m_directCompositionDevice->CreateScaleTransform(&m_mainScaleTransform);
m_mainVisual->SetTransform(m_mainScaleTransform);

// When the main view is stretched, adopt the linear interpolation for filtering

 m_mainVisual->SetBitmapInterpolationMode(DCOMPOSITION_BITMAP_INTERPOLATION_MO
DE_LINEAR);

// Add the main view and interface view to the root view, set the root

view onto the render target
 m_rootVisual->AddVisual(m_mainVisual, FALSE, NULL);
 m_rootVisual->AddVisual(m_overlayVisual, FALSE, NULL);

m_directCompositionTarget->SetRoot(m_rootVisual);

// Prepare to create SwapChain
DXGI_SWAP_CHAIN_DESC1 swapChainDesc = { 0 };

 swapChainDesc.Width = width; // Match the size of the window.
 swapChainDesc.Height = height;
 swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
 swapChainDesc.Stereo = false;
 swapChainDesc.SampleDesc.Count = 1; // Don't use multi-sampling.
 swapChainDesc.SampleDesc.Quality = 0;
 swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
 swapChainDesc.BufferCount = 2;
 swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
 swapChainDesc.Flags = DXGI_SWAP_CHAIN_FLAG_FRAME_LATENCY_WAITABLE_OBJECT;
 swapChainDesc.Scaling = DXGI_SCALING_STRETCH;
 swapChainDesc.AlphaMode = DXGI_ALPHA_MODE_PREMULTIPLIED;

// DXGIFactory creates the foreground SwapChain
 hr = dxgiFactory->CreateSwapChainForComposition(
 m_HUDCommandQueue,
 &swapChainDesc,
 nullptr,
 &m_foregroundSwapChain
);

// Bind the interface view to the foreground SwapChain
 m_overlayVisual->SetContent(m_foregroundSwapChain);

// Create the background SwapChain
 swapChainDesc.AlphaMode = DXGI_ALPHA_MODE_IGNORE;

 hr = dxgiFactory->CreateSwapChainForComposition(
 m_3DCommandQueue,
 &swapChainDesc,
 nullptr,
 &m_backgroundSwapChain
);

// Bind the main view to the background SwapChain

 m_mainVisual->SetContent(m_backgroundSwapChain);

 m_directCompositionDevice->Commit();
 SAFE_RELEASE(dxgiFactory);
}

Note: D3D12 and D3D11 take different objects as the first argument for

CreateSwapChainForComposition: D3D12 takes CommandQueue, while D3D11 takes Device.

It is recommended to use separate queues for different swapchains. The reason is that DXGI will insert

waits on your behalf in order to synchronize with DWM, so using the same queue for two swapchains

could result in workloads targeting one swapchain being blocked, waiting for a buffer to become available

from the other swapchain

.

In the game rendering process, the code logic based on MPO rendering is as follows:

Table 4.3: Multiplane Overlay-based Game Rendering Method

// According to changes in the number of frames, dynamically adjust the scale ratio
of the background SwapChain

m_mainScaleTransform->SetScaleX(scaleRatio);
m_mainScaleTransform->SetScaleY(scaleRatio);
m_directCompositionDevice->Commit();

// Before rendering 3D scenes, first set the corresponding RenderTarget of the
background SwapChain
//
Adjust the size of Viewport at the same time
OMSetRenderTargets(1, &m_backgroundRTV, m_backgroundDSV);
viewport.Width = foregroundSwapChain.Width / scaleRatio;
viewport.Height = foregroundSwapChain.Height / scaleRatio;
RSSetViewports(1, viewport);

// Draw 3D Scene...

// When performing full-screen post-processing, you need to change the texture
sampling coordinates, control the addressing range, because the background Viewport
may only partially filled the RenderTarget
VSSetConstantBuffer(scaleRatio);
// Draw Fullscreen PostProcess

// Before rendering the UI, first set the corresponding RenderTarget of the
foreground SwapChain
// Adjust the size of Viewport at the same time
OMSetRenderTargets(1, &m_foregroundRTV, m_foregroundDSV);
viewport.Width = foregroundSwapChain.Width;
viewport.Height = foregroundSwapChain.Height;
RSSetViewports(1, viewport);

// Draw UI..

// Finally submit SwapChain
m_backgroundResource->SetTransitionBarrier(D3D12_RESOURCE_STATE_PRESENT);
m_foregroundResource->SetTransitionBarrier(D3D12_RESOURCE_STATE_PRESENT);

m_commandList->Close();

m_backgroundSwapChain->Present(0, 0);
m_foregroundSwapChain->Present(0, 0);

4.1.4 Summary
Multiplane Overlays is a new graphic display function on the Windows 8.1 and later platforms. Win10

platform-based DirectX 12 games can easily use the DX12 API to render Multiplane Overlays, potentially

solving the problem of sudden drop in frame rate due to high-resolution rendering and high load scenes

for games, enabling smooth gaming experience on the majority of hardware platforms.

Coming Soon: Link to the Following Chapter

Chapter 5: DirectX 12 Optimization

Notices

All sample source code is released under the Intel Sample Source Code License Agreement.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is

granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied

warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as

any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative

to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may

cause deviations from published specifications. Current characterized errata are available on

request.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other

countries.

*Other names and brands may be claimed as the property of others

© 2015 Intel Corporation.

http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/
http://www.intel.com/design/literature.htm

