CODE SAMPLE

Temporally Stable Conservative Morphological Anti-
Aliasing (TSCMAA)

An anti-aliasing technique to provide better temporal stability and
performance workaround for virtual reality applications

Sungye Kim
File(s) (the code sample is attached)
License BSD 3-clause "New" or "Revised" License

Optimized with...

(0} (Check all that apply)
[ ] Android* 0Ss [ ] Apple*ios [ ] 0sx* [ ] Arduino*

[ ]FreeBSD* [ ]| Chrome* 0S [ ]Linux* [ ] MeeGo*

[ ] Windows* (XP*, Vista*, 7) [X] Windows® 10

[ ]windows 8.x [ |Moblin* [ ]Tizen* [ ]Unix*

[ ] Wind River* Linux [ ] Wind River Rocket* [ | Yocto Project*

Hardware Intel® HD Graphics 630

Software Microsoft Visual Studio* 2017, Universal Windows* Platform
development, Windows 10 SDK 10.0.15063

Prerequisites An understanding of DirectX* 11 is helpful but not essential.



Seshupriya Alluru, Rebecca David, Matthew Goyder, Anupreet Karla, Yaz Khabiri, Sungye Kim, Pavan
Lanka, Filip Strugar, and Kai Xiao contributed to TSCMAA and samples provided in this document.

This article describes Temporally Stable Conservative Morphological Anti-Aliasing (TSCMAA), which was
designed and developed as a multisample anti-aliasing (MSAA) alternate technique to provide better
temporal stability and performance workaround for virtual reality (VR) applications.

Introduction

Anti-aliasing (AA) in computer graphics refers to a set of techniques used to overcome aliasing artifacts
in the rendered images, which are a byproduct when representing a high-resolution image at a lower
resolution (for example, rasterization or sampling). MSAA is the most widely used spatial AA algorithm
in various applications but at the cost of performance. Post-processing AA algorithms like Conservative
Morphological Anti-Aliasing (CMAA), Fast Approximate Anti-Aliasing (FXAA), and Subpixel Morphological
Anti-Aliasing (SMAA) can provide constant performance but suffer from temporal instability. For VR, AA
is more critical since the display is closer to the eyes, thus artifacts are more noticeable, and temporal
stability becomes a key aspect in providing a good user experience.

This article discusses TSCMAA, which employs an optimized CMAA and integrates temporal
accumulation in order to create a temporally stable post-processing AA solution as a MSAA alternate
technique without compromising on image quality. TSCMAA is also designed to run efficiently on low-
and medium-end graphics processing units (GPUs), such as integrated GPUs, and to be minimally
invasive. This makes it acceptable as an MSAA alternate with better temporal stability in a wide range of
applications, which include aliasing-prune geometry such as text, patterns, lines, and foliage.

Figure 1 shows a TSCMAA flow that combines a CMAA pass (top) and a TAA pass (bottom). In TSCMAA,
CMAA and TAA passes run only for edge candidates identified by edge detection, resulting in fast
indirect dispatch of shaders.

Texture resource Buffer resource Compute Dispatch C°mpf’te Indirect
Dispatch

CMAA

CMAA pixel
color for
CMAA edge
candidates

Process any Process Z
shape edge shape edge
candidates candidates

Rendered Detect CMAA edge
frame: Color edges candidates

TAA

Neighbor pixels

for TAA edge

TAA .edge candidates
candidates

CMAA pixels | CMAA pixels for
for TAA edge non TAA edge
candidates candidates

History pixel
Bicubic Variance color for TSCMAA
filtering | clipping TAA edge frame: Color

Rendered
frame: Depth

Reproject

History
frame: Color candidates

Figure 1. TSCMAA flow.



Conservative Morphological Anti-Aliasing

CMAA takes a rendered color frame as an input and updates the frame with spatially anti-aliased edge
pixels by processing edge candidates (any shape and Z-shape edges). To identify such edge candidates,
edge detection uses the luminance difference in color with a given edge threshold. In TSCMAA, a default
edge threshold value is 0.045f (1.f/22.f) based on experiments with our sample scene, but it can be
adjusted for other scenes as a quality versus performance knob. The details of CMAA are found in the

original article.

Temporal Anti-Aliasing

To reduce temporal aliasing such as shimmering or crawling caused by the motion between frames, TAA
blends a current pixel with a history pixel. Then the output of TAA becomes a history frame for the next
TAA frame in a feedback loop. In VR, TAA is more crucial due to quite a bit of jitter from head pose
changes over time, resulting in rendered frames always containing motion in a head-mounted display
(HMD). TSCMAA takes care of both spatial and temporal aliasing by combining CMAA and TAA, and
major benefits arise because TSCMAA runs only for edge pixels, resulting in faster pixels that are less
blurred overall, compared to the results of other TAA algorithms.

TAA Edge Candidates

Only a portion of edge candidates from edge detection are considered as TAA edge candidates. In
TSCMAA, we use 50 percent of CMAA edge candidates for TAA. This default value is based on
experiments with our sample scene but can be adjusted for other scenes as a quality versus
performance knob. Figure 2 shows edge detection results with the default edge threshold value for
CMAA edge candidates on the left and TAA edge candidates on the right. The TAA pass is applied only to
the pixels in TAA edge candidates, resulting in fast TAA and less blurring on non-edge pixels.

nnnnnn

Figure 2. Edge candidates for CMAA (left) and TAA (right). TAA edge candidates are 50 pcent of the
sCMAA edge candidates.



History Pixel Sampling

The history frame maintains the previous TSCMAA frame so that a CMAA pixel is blended with a history
pixel to generate the current TSCMAA frame (see Figure 1). To find a correct history pixel, we reproject
a texture coordinate with view and projection of the current rendered frame based on depth. Then a
history pixel is sampled with the reprojected texture coordinate using bicubic sampling. TSCMAA
employs a five-tap approximation for a Hermite/Catmull-Rom bicubic filter for sharpness-preserving
sampling in a history frame but with faster approximation.

Variance Clipping

When there are moving objects in a scene, reusing stale pixels in the history frame creates a ghosting
artifact. A neighborhood color clipping using an axis-aligned bounding box (AABB) has been used as an
alternative for expensive color clipping using a convex hull. However color clipping using AABB results in
poor quality when a new color clipped by AABB is too far from the original pixel. Many articles discuss
the benefits of variance clipping to provide less ghosting artifacts. TSCMAA uses variance clipping in
YCoCg space to minimize such a ghosting artifact on moving objects.

Blending with the CMAA Pixel and TSCMAA History Pixel for TAA Edge Candidates

Since the TAA pass is processed only for TAA edge candidates, blending between CMAA pixels and
history pixels is also done only for TAA edge candidates with a blend weight of 0.8f and other non TAA
edge pixels are directly taken from CMAA pixels which is same to using a blend weight of 0.f. Then the
final blended output generates a TSCMAA frame and becomes a history frame for the next TSCMAA
frame as shown in Figure 1.

Sample Applications

In the TSCMAA sample package attachment, we provide two VR sample applications using the same test
scene as shown in Figure 3. One (AASample_WMR) is for Microsoft’s Windows Mixed Reality (WMR)
HMD and the other (AASample) uses OpenVR* so that it will work on all OpenVR-compatible HMDs.
AASample can also run as a desktop application without the “_OPENVR_” preprocessor in project
configuration properties.




@ Post Processing Anti Aliasing Sample - o X

1080x1200] Frame (msk [ 25 - 110.8] FPS Avg: 950, Inst: 6967

al ros ol
\nt- allasing offect:

Tscmaa [

(click 1-7 to switch between offects)

F4 for defauit controllable camers
F5.F6.F7.F8 to select points of interes!

—— i t—_ s—

Edge Threshold: 1.0/220

Non-dominant edge removal: 0 50

Q

v ( show Edges
L Show Zoom
\ o Jitt
\ - -

Figure 3. TSCMAA sample scene with lines, foliage, and a transparent object.

Quality and Performance

Figure 4 shows a quality comparison among MSAA2x, MSAA4x, TSCMAA, and No AA. TSCMAA quality is
moderately equivalent to MSAA4x when viewed with an HMD and overall better than MSAA2x with
default edge threshold values. Since the TAA pass in TSCMAA is based on temporal accumulation,
somehow blurred pixels are inevitable in the final TSCMAA frame. However, we minimize the blurring
by accumulating only TAA edge pixels in a history frame and provide better temporal stability. Since we
cannot show TAA benefits with static screenshots, this article also provides an attached sample code
package with TSCMAA shaders .



Figure 4. Quality comparison among MSAA2x (top left), MSAA4x (top right), TSCMAA (bottom left), and
No AA (bottom right).

TSCMAA performance depends on multiple aspects, such as edge count in the scene and render target
resolution. For our test scene, TSCMAA shows MSAA4x quality with around a 40 percent cost reduction
and is equivalent to MSAA2x performance with default edge threshold values. Here we also show how
TSCMAA performance scales as the edge count in the scene and render target resolution change. These
experiments were performed with 1280x1280/eye on Intel® HD Graphics 630 system at 1150 MHz.

Since TSCMAA runs only on edge candidates after edge detection, and performance depends on the
edge pixel count in the current view. Table 1 shows TSCMAA performance scaling for different edge
counts from 53K to 100K pixels. The baseline contains 73K edge pixels, which is from a view shown in
Figure 3. Table 1 shows TSCMAA performance changes of 10-15 percent for a 30 percent difference in
edge count.

Table 1. TSCMAA performance scaling ratio for different edge count. Baseline (1.0) has 73K edges and
we compare with different scene (or views) where edge count is 30 percent less or greater than
baseline.

73K Edges
Scale Factor over Base 53K Edges (Base = 1.0) 100K Edges
72 1.0 1.36

Edge count 0



TSCMAA time 0.86 1.0 1.08

Table 2 shows TSCMAA performance scaling for 2Kx2K render target resolution while maintaining the
same edge count. Compared to a baseline with 1280x1280 resolution, a 2Kx2K render target contains a
2.56x larger number of pixels, contributing to a TSCMAA performance increase of up to 1.6x. The
increase is mostly from an edge detection step which is resolution dependent.

Table 2. TSCMAA performance-scaling ratio for different render target resolution. Baseline (1.0) is
1280x1280 per eye, and we compare with 2Kx2K per eye while preserving edge count.

1280x1280/Eye
Scale Factor over Base 2Kx2K/E

Pixel count 1.0 2.56
Edge count 1.0 1.0
TSCMAA time 1.0 1.59

Table 3 shows the combined contribution from larger render target resolution and thereby the
increased number of edge pixels.

Table 3. TSCMAA performance scaling ratio for different render target resolution.

1280x1280/Eye
Scale Factor over Base 2Kx2K/E

Pixel count 1.0 2.56
Edge count 1.0 1.91
TSCMAA time 1.0 2.12

Supported Resource Formats
To apply TSCMAA, applications are required to use one of TSCMAA supported resource formats for
render target and depth resources. For the render target texture, TSCMAA supports 32- bit RGBA and
BGRA typeless formats, such as

o DXGI_FORMAT_R8G8B8A8 TYPELESS

e DXGI_FORMAT_B8G8R8A8_TYPELESS
and creates internal view resources with corresponding UNORM and UNORM_SRGB formats.

e DXGI_FORMAT_R8G8B8A8_UNORM

e DXGI_FORMAT_R8G8B8A8_UNORM_SRGB

e DXGI_FORMAT_B8G8R8A8_UNORM

e DXGI_FORMAT_B8G8R8A8_UNORM_SRGB
The 32-bit BGRA format is the only resource format that Microsoft’s WMR application uses at the time
of this writing.

For depth, TSCMAA supports 24- and 32-bit resource formats with or without a stencil, such as:



DXGI_FORMAT _D32_FLOAT
DXGI_FORMAT_D24_UNORM_S8_UINT
DXGI_FORMAT _D32_FLOAT_S8X24_UINT
DXGI_FORMAT _R32_TYPELESS
DXGI_FORMAT _R24G8_TYPELESS
DXGI_FORMAT _R32G8X24_TYPELESS

TSCMAA Interface
TSCMAA provides a simple interface to support both standard desktop and VR applications.

TSCMAA: :Create (..) initializes TSCMAA.
HRESULT TSCMAA: :Create (ID3Dl1Device * pDevice,
DXGI FORMAT format,
int width,
int height,
unsigned int numEyes = 1);
pDevice: D3D11 device pointer from application

format: Render target resource format
width: Render target width
height: Render target height

numEyes: The number of eyes. Default is 1 for standard desktop application. For VR
applications, numEyes should be 2.

TSCMAA: :Resize (...) isoptionally called to resize resources in TSCMAA when the application
render target is resized.
HRESULT TSCMAA::Resize (ID3Dll1Device * pDevice,
DXGI FOARMAT format,
int width,
int height);
pDevice: D3D11 device pointer from application
format: Render target resource format
width: Render target width

height: Render target height

TSCMAA: :Draw (...) applies TSCMAA-given color and depth resources and returns the final TSCMAA
resource to ppOutTex. To provide input color and depth resources from the application to TSCMAA,
the application should prepare ColorDepthIn bycalling ColorDepthIn: :Create(..).
HRESULT TSCMAA: :Draw (ID3Dl1DeviceContext * pContext,
ColorDepthIn * pColorDepthlIn,
DirectX::XMFLOAT4x4 &projection,
DirectX::XMFLOAT4x4 &view,
ID3D11Texture2D ** ppOutTex,
unsigned int eye = 0);
e pContext:D3D11 device context pointer from the application
® pColorDepthIn:Apointer of ColorDepthIn for TSCMAA that is created in the application

side by calling ColorDepthIn: :Create (..)



projection: Projection matrix
view: View matrix
ppOutTex: A pointer of TSCMAA output texture resource, which resides in the TSCMAA side

eye: eye indexm where the left eye is 0 and the right eye is 1

To destroy TSCMAA, call TSCMAA: : Destroy () which will also release all resources in TSCMAA.
void TSCMAA: :Destroy();

TSCMAA has a few control knobs to adjust the number of edges. Since CMAA and TAA passes run only
on edge candidates, the number of edges decides performance and quality. To adjust the number of
edge pixels detected, TSCMAA provides SetEdgeThresholds (..) which will set an edge threshold

and a non-dominant edge removal amount for edge detection.

void TSCMAABase::SetEdgeThresholds (float edgeDetectionThreshold,
float nonDominantEdgeRemovalAmount,
float bluriness);

® cdgeDetectionThreshold: The recommended value ranges [(1.f/32.f), (1.f/1.f)] and
default value is (1.f/22.1).
e nonDominantEdgeRemovalAmount: The recommended value ranges [0.f, 3.f] and default
value is 0.5f.
e bluriness: The recommended value ranges [0.5f, 2.f] and default value is 0.7f.
Note that bluriness does not affect edge detection but does affect processing edge candidates.

Hence edgeDetectionThreshold and nonDominantEdgeRemovalAmount are knobs to
control the number of edges in edge candidates.

To get the current edge thresholds, use TSCMAA : : GetEdgeThresholds (...).

void TSCMAABase: :GetEdgeThresholds (float &edgeDetectionThreshold,
float &nonDominantEdgeRemovalAmount,
float &bluriness);

How to Integrate TSCMAA into Other DirectX 11* Applications
To integrate the TSCMAA library into the application:
1. Build the TSCMAA library with “Intel/TSCMAA.sIn” if you do not have TSCMAA.lib.
Link “Intel/lib/TSCMAA.lib” to your application project.
Include “Intel/TSCMAA/TSCMAA.h” in your application.
Create a TSCMAA instance and ColorDepthin instance.
Create resource views from application’s color and depth textures for TSCMAA by calling
ColorDepthlin::Create(...). To create color and depth textures, use one of the supported formats
in TSCMAA.
Initialize TSCMAA by calling TSCMAA::Create().
Render color and depth textures in an application render loop.
Apply TSCMAA by calling TSCMAA::Draw() after application render.
Submit TSCMAA output to HMD (or backbuffer).
10. Repeat steps 7-9 for every frame.
11. Destroy TSCMAA resources by calling TSCMAA::Destroy() and ColorDepthlin::Destroy().

vk wnwN

© 0 N o



The sample code is shown below.

#include “Intel/TSCMAA/TSCMAA.h”
TSCMAA: :TSCMAA tscmaa;
TSCMAA: :ColorDepthIn tscmaaColorDepthIn;

// In application init
_tscmaaColorDepthIn.Create (pDevice, pEyeTex, pEyeDepthTex);
_tscmaa.Create (pDevice, DXGI FORMAT B8G8R8A8 TYPELESS, 1080, 1200, 2);

// In app render loop
for (each frame) {
ID3D11Texture2D * pEyeTSCMAAOutTex[2] = { nullptr, };
for (each eye) {
// App renders into pEyeTex and pEyeDepthTex
//
__tscmaa.Draw (pContext,
projectionMat,
viewMat,
_tscmaaColorDepthlIn,
&pEyeTSCMAAOUtLTex [eye],
eye);
}
// Submit pEyeTSCMAAOutTex[2] to your HMD back buffer
/]

// In application destroy
_tscmaaColorDepthIn.Destroy () ;
_tscmaa.Destroy () ;

Summary

This article described TSCMAA and how easily VR application developers can integrate TSCMAA into
their applications as a MSAA alternate with competitive spatial quality and better temporal stability.
TSCMAA quality and performance is also adjustable with the number of edges since CMAA and TAA
passes are processed only on the edge candidates, resulting in faster, less blurred pixels. The attached
TSCMAA sample package has been optimized on Intel HD Graphics 630, but it runs on any platforms.

Notices

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration. Check
with your system manufacturer or retailer or learn more at intel.com.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.



Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be
obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

© 2017 Intel Corporation



