
Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

CODE SAMPLE

Temporally Stable Conservative Morphological Anti-
Aliasing (TSCMAA)

	
An	anti-aliasing	technique	to	provide	better	temporal	stability	and	

performance	workaround	for	virtual	reality	applications	

Sungye Kim
	

File(s)	 	(the	code		sample	is	attached)	

License	 BSD	3-clause	"New"	or	"Revised"	License	

	

Optimized	with…	

OS	
	

(Check	all	that	apply)		
	Android*	OS			 	Apple*	iOS			 	OS	X*		 	Arduino*	

FreeBSD*			 	Chrome*	OS			 	Linux*			 	MeeGo*	

	Windows*	(XP*,	Vista*,	7)				 	Windows®	10		

	Windows	8.x				 	Moblin*				 	Tizen*				 	Unix*		

	Wind	River*	Linux				 	Wind	River	Rocket*				 	Yocto	Project*	

	

Hardware	 Intel®	HD	Graphics	630	

Software	 Microsoft	Visual	Studio*	2017,	Universal	Windows*	Platform	
development,	Windows	10	SDK	10.0.15063	

Prerequisites	 An	understanding	of	DirectX*	11	is	helpful	but	not	essential.	

	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

Seshupriya	Alluru,	Rebecca	David,	Matthew	Goyder,	Anupreet	Karla,	Yaz	Khabiri,	Sungye	Kim,	Pavan	
Lanka,	Filip	Strugar,	and	Kai	Xiao	contributed	to	TSCMAA	and	samples	provided	in	this	document.		
	
This	article	describes	Temporally	Stable	Conservative	Morphological	Anti-Aliasing	(TSCMAA),	which	was	
designed	and	developed	as	a	multisample	anti-aliasing	(MSAA)	alternate	technique	to	provide	better	
temporal	stability	and	performance	workaround	for	virtual	reality	(VR)	applications.		
	
Introduction	
Anti-aliasing	(AA)	in	computer	graphics	refers	to	a	set	of	techniques	used	to	overcome	aliasing	artifacts	
in	the	rendered	images,	which	are	a	byproduct	when	representing	a	high-resolution	image	at	a	lower	
resolution	(for	example,	rasterization	or	sampling).	MSAA	is	the	most	widely	used	spatial	AA	algorithm	
in	various	applications	but	at	the	cost	of	performance.	Post-processing	AA	algorithms	like	Conservative	
Morphological	Anti-Aliasing	(CMAA),	Fast	Approximate	Anti-Aliasing	(FXAA),	and	Subpixel	Morphological	
Anti-Aliasing	(SMAA)	can	provide	constant	performance	but	suffer	from	temporal	instability.	For	VR,	AA	
is	more	critical	since	the	display	is	closer	to	the	eyes,	thus	artifacts	are	more	noticeable,	and	temporal	
stability	becomes	a	key	aspect	in	providing	a	good	user	experience.	
	
This	article	discusses	TSCMAA,	which	employs	an	optimized	CMAA	and	integrates	temporal	
accumulation	in	order	to	create	a	temporally	stable	post-processing	AA	solution	as	a	MSAA	alternate	
technique	without	compromising	on	image	quality.	TSCMAA	is	also	designed	to	run	efficiently	on	low-	
and	medium-end	graphics	processing	units	(GPUs),	such	as	integrated	GPUs,	and	to	be	minimally	
invasive.	This	makes	it	acceptable	as	an	MSAA	alternate	with	better	temporal	stability	in	a	wide	range	of	
applications,	which	include	aliasing-prune	geometry	such	as	text,	patterns,	lines,	and	foliage.		
	
Figure	1	shows	a	TSCMAA	flow	that	combines	a	CMAA	pass	(top)	and	a	TAA	pass	(bottom).	In	TSCMAA,	
CMAA	and	TAA	passes	run	only	for	edge	candidates	identified	by	edge	detection,	resulting	in	fast	
indirect	dispatch	of	shaders.					
	

	
Figure	1.	TSCMAA	flow.	

	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

Conservative	Morphological	Anti-Aliasing	
CMAA	takes	a	rendered	color	frame	as	an	input	and	updates	the	frame	with	spatially	anti-aliased	edge	
pixels	by	processing	edge	candidates	(any	shape	and	Z-shape	edges).	To	identify	such	edge	candidates,	
edge	detection	uses	the	luminance	difference	in	color	with	a	given	edge	threshold.	In	TSCMAA,	a	default	
edge	threshold	value	is	0.045f	(1.f/22.f)	based	on	experiments	with	our	sample	scene,	but	it	can	be	
adjusted	for	other	scenes	as	a	quality	versus	performance	knob.	The	details	of	CMAA	are	found	in	the	
original	article.	
	
Temporal	Anti-Aliasing	
To	reduce	temporal	aliasing	such	as	shimmering	or	crawling	caused	by	the	motion	between	frames,	TAA	
blends	a	current	pixel	with	a	history	pixel.	Then	the	output	of	TAA	becomes	a	history	frame	for	the	next	
TAA	frame	in	a	feedback	loop.	In	VR,	TAA	is	more	crucial	due	to	quite	a	bit	of	jitter	from	head	pose	
changes	over	time,	resulting	in	rendered	frames	always	containing	motion	in	a	head-mounted	display	
(HMD).	TSCMAA	takes	care	of	both	spatial	and	temporal	aliasing	by	combining	CMAA	and	TAA,	and	
major	benefits	arise	because	TSCMAA	runs	only	for	edge	pixels,	resulting	in	faster	pixels	that	are	less	
blurred	overall,	compared	to	the	results	of	other	TAA	algorithms.	
	
TAA	Edge	Candidates	
Only	a	portion	of	edge	candidates	from	edge	detection	are	considered	as	TAA	edge	candidates.	In	
TSCMAA,	we	use	50	percent	of	CMAA	edge	candidates	for	TAA.	This	default	value	is	based	on	
experiments	with	our	sample	scene	but	can	be	adjusted	for	other	scenes	as	a	quality	versus	
performance	knob.	Figure	2	shows	edge	detection	results	with	the	default	edge	threshold	value	for	
CMAA	edge	candidates	on	the	left	and	TAA	edge	candidates	on	the	right.	The	TAA	pass	is	applied	only	to	
the	pixels	in	TAA	edge	candidates,	resulting	in	fast	TAA	and	less	blurring	on	non-edge	pixels.		

	 	
Figure	2.	Edge	candidates	for	CMAA	(left)	and	TAA	(right).	TAA	edge	candidates	are	50	percent	of	the	

sCMAA	edge	candidates.		

	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

History	Pixel	Sampling	
The	history	frame	maintains	the	previous	TSCMAA	frame	so	that	a	CMAA	pixel	is	blended	with	a	history	
pixel	to	generate	the	current	TSCMAA	frame	(see	Figure	1).	To	find	a	correct	history	pixel,	we	reproject	
a	texture	coordinate	with	view	and	projection	of	the	current	rendered	frame	based	on	depth.	Then	a	
history	pixel	is	sampled	with	the	reprojected	texture	coordinate	using	bicubic	sampling.	TSCMAA	
employs	a	five-tap	approximation	for	a	Hermite/Catmull-Rom	bicubic	filter	for	sharpness-preserving	
sampling	in	a	history	frame	but	with	faster	approximation.		
	
Variance	Clipping		
When	there	are	moving	objects	in	a	scene,	reusing	stale	pixels	in	the	history	frame	creates	a	ghosting	
artifact.	A	neighborhood	color	clipping	using	an	axis-aligned	bounding	box	(AABB)	has	been	used	as	an	
alternative	for	expensive	color	clipping	using	a	convex	hull.	However	color	clipping	using	AABB	results	in	
poor	quality	when	a	new	color	clipped	by	AABB	is	too	far	from	the	original	pixel.	Many	articles	discuss	
the	benefits	of	variance	clipping	to	provide	less	ghosting	artifacts.	TSCMAA	uses	variance	clipping	in	
YCoCg	space	to	minimize	such	a	ghosting	artifact	on	moving	objects.		
	
Blending	with	the	CMAA	Pixel	and	TSCMAA	History	Pixel	for	TAA	Edge	Candidates			
Since	the	TAA	pass	is	processed	only	for	TAA	edge	candidates,	blending	between	CMAA	pixels	and	
history	pixels	is	also	done	only	for	TAA	edge	candidates	with	a	blend	weight	of	0.8f	and	other	non	TAA	
edge	pixels	are	directly	taken	from	CMAA	pixels	which	is	same	to	using	a	blend	weight	of	0.f.	Then	the	
final	blended	output	generates	a	TSCMAA	frame	and	becomes	a	history	frame	for	the	next	TSCMAA	
frame	as	shown	in	Figure	1.			
	
Sample	Applications	
In	the	TSCMAA	sample	package	attachment,	we	provide	two	VR	sample	applications	using	the	same	test	
scene	as	shown	in	Figure	3.	One	(AASample_WMR)	is	for	Microsoft’s	Windows	Mixed	Reality	(WMR)	
HMD	and	the	other	(AASample)	uses	OpenVR*	so	that	it	will	work	on	all	OpenVR-compatible	HMDs.	
AASample	can	also	run	as	a	desktop	application	without	the	“_OPENVR_”	preprocessor	in	project	
configuration	properties.		

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

	
Figure	3.	TSCMAA	sample	scene	with	lines,	foliage,	and	a	transparent	object.	

	
Quality	and	Performance	
Figure	4	shows	a	quality	comparison	among	MSAA2x,	MSAA4x,	TSCMAA,	and	No	AA.	TSCMAA	quality	is	
moderately	equivalent	to	MSAA4x	when	viewed	with	an	HMD	and	overall	better	than	MSAA2x	with	
default	edge	threshold	values.	Since	the	TAA	pass	in	TSCMAA	is	based	on	temporal	accumulation,	
somehow	blurred	pixels	are	inevitable	in	the	final	TSCMAA	frame.	However,	we	minimize	the	blurring	
by	accumulating	only	TAA	edge	pixels	in	a	history	frame	and	provide	better	temporal	stability.	Since	we	
cannot	show	TAA	benefits	with	static	screenshots,	this	article	also	provides	an	attached	sample	code	
package	with	TSCMAA	shaders	.		

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

	
Figure	4.	Quality	comparison	among	MSAA2x	(top	left),	MSAA4x	(top	right),	TSCMAA	(bottom	left),	and	

No	AA	(bottom	right).	

TSCMAA	performance	depends	on	multiple	aspects,	such	as	edge	count	in	the	scene	and	render	target	
resolution.	For	our	test	scene,	TSCMAA	shows	MSAA4x	quality	with	around	a	40	percent	cost	reduction	
and	is	equivalent	to	MSAA2x	performance	with	default	edge	threshold	values.	Here	we	also	show	how	
TSCMAA	performance	scales	as	the	edge	count	in	the	scene	and	render	target	resolution	change.	These	
experiments	were	performed	with	1280×1280/eye	on	Intel®	HD	Graphics	630	system	at	1150	MHz.		
	
Since	TSCMAA	runs	only	on	edge	candidates	after	edge	detection,	and	performance	depends	on	the	
edge	pixel	count	in	the	current	view.	Table	1	shows	TSCMAA	performance	scaling	for	different	edge	
counts	from	53K	to	100K	pixels.	The	baseline	contains	73K	edge	pixels,	which	is	from	a	view	shown	in	
Figure	3.	Table	1	shows	TSCMAA	performance	changes	of	10‒15	percent	for	a	30	percent	difference	in	
edge	count.						
	
Table	1.	TSCMAA	performance	scaling	ratio	for	different	edge	count.	Baseline	(1.0)	has	73K	edges	and	

we	compare	with	different	scene	(or	views)	where	edge	count	is	30	percent	less	or	greater	than	
baseline.		

Scale	Factor	over	Base	 53K	Edges	 73K	Edges	
(Base	=	1.0)	 100K	Edges	

Edge	count	 0.72	 1.0	 1.36	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

TSCMAA	time	 0.86	 1.0	 1.08	
	
Table	2	shows	TSCMAA	performance	scaling	for	2K×2K	render	target	resolution	while	maintaining	the	
same	edge	count.	Compared	to	a	baseline	with	1280×1280	resolution,	a	2K×2K	render	target	contains	a	
2.56x	larger	number	of	pixels,	contributing	to	a	TSCMAA	performance	increase	of	up	to	1.6x.	The	
increase	is	mostly	from	an	edge	detection	step	which	is	resolution	dependent.			
	

Table	2.	TSCMAA	performance-scaling	ratio	for	different	render	target	resolution.	Baseline	(1.0)	is	
1280×1280	per	eye,	and	we	compare	with	2K×2K	per	eye	while	preserving	edge	count.	

Scale	Factor	over	Base	 1280×1280/Eye	
(Base	=	1.0)	 2K×2K/Eye	

Pixel	count	 1.0	 2.56	

Edge	count	 1.0	 1.0	

TSCMAA	time	 1.0	 1.59	
	
Table	3	shows	the	combined	contribution	from	larger	render	target	resolution	and	thereby	the	
increased	number	of	edge	pixels.	
	

Table	3.	TSCMAA	performance	scaling	ratio	for	different	render	target	resolution.		

Scale	Factor	over	Base	 1280×1280/Eye	
(Base	=	1.0)	 2K×2K/Eye	

Pixel	count	 1.0	 2.56	

Edge	count	 1.0	 1.91	

TSCMAA	time	 1.0	 2.12	
	
Supported	Resource	Formats	
To	apply	TSCMAA,	applications	are	required	to	use	one	of	TSCMAA	supported	resource	formats	for	
render	target	and	depth	resources.		For	the	render	target	texture,	TSCMAA	supports	32-	bit	RGBA	and	
BGRA	typeless	formats,	such	as	

● DXGI_FORMAT_R8G8B8A8_TYPELESS	
● DXGI_FORMAT_B8G8R8A8_TYPELESS	

and	creates	internal	view	resources	with	corresponding	UNORM	and	UNORM_SRGB	formats.		
● DXGI_FORMAT_R8G8B8A8_UNORM	
● DXGI_FORMAT_R8G8B8A8_UNORM_SRGB	
● DXGI_FORMAT_B8G8R8A8_UNORM	
● DXGI_FORMAT_B8G8R8A8_UNORM_SRGB	

The	32-bit	BGRA	format	is	the	only	resource	format	that	Microsoft’s	WMR	application	uses	at	the	time	
of	this	writing.		
	
For	depth,	TSCMAA	supports	24-	and	32-bit	resource	formats	with	or	without	a	stencil,	such	as:	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

● DXGI_FORMAT_D32_FLOAT	
● DXGI_FORMAT_D24_UNORM_S8_UINT	
● DXGI_FORMAT_D32_FLOAT_S8X24_UINT	
● DXGI_FORMAT_R32_TYPELESS	
● DXGI_FORMAT_R24G8_TYPELESS	
● DXGI_FORMAT_R32G8X24_TYPELESS	

	
TSCMAA	Interface	
TSCMAA	provides	a	simple	interface	to	support	both	standard	desktop	and	VR	applications.		
	
TSCMAA::Create(…) initializes	TSCMAA.		
HRESULT TSCMAA::Create(ID3D11Device * pDevice,
 DXGI_FORMAT format,
 int width,
 int height,
 unsigned int numEyes = 1);

● pDevice:	D3D11	device	pointer	from	application	
● format:	Render	target	resource	format	
● width:	Render	target	width		
● height:	Render	target	height	
● numEyes:	The	number	of	eyes.	Default	is	1	for	standard	desktop	application.	For	VR	

applications,	numEyes should	be	2.		

TSCMAA::Resize(…) is	optionally	called	to	resize	resources	in	TSCMAA	when	the	application	
render	target	is	resized.			
HRESULT TSCMAA::Resize(ID3D11Device * pDevice,
 DXGI_FOARMAT format,
 int width,
 int height);

● pDevice:	D3D11	device	pointer	from	application	
● format:	Render	target	resource	format	
● width:	Render	target	width	
● height:	Render	target	height	

TSCMAA::Draw(…)applies	TSCMAA-given	color	and	depth	resources	and	returns	the	final	TSCMAA	
resource	to	ppOutTex.	To	provide	input	color	and	depth	resources	from	the	application	to	TSCMAA,	
the	application	should	prepare	ColorDepthIn by	calling	ColorDepthIn::Create(…).
HRESULT TSCMAA::Draw(ID3D11DeviceContext * pContext,
 ColorDepthIn * pColorDepthIn,
 DirectX::XMFLOAT4x4 &projection,
 DirectX::XMFLOAT4x4 &view,
 ID3D11Texture2D ** ppOutTex,
 unsigned int eye = 0);

● pContext:	D3D11	device	context	pointer	from	the	application	
● pColorDepthIn:	A	pointer	of	ColorDepthIn	for	TSCMAA	that	is	created	in	the	application	

side	by	calling	ColorDepthIn::Create(…)	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

● projection:	Projection	matrix	
● view:	View	matrix	
● ppOutTex:	A	pointer	of	TSCMAA	output	texture	resource,	which	resides	in	the	TSCMAA	side	
● eye:	eye	indexm	where	the	left	eye	is	0	and	the	right	eye	is	1	

To	destroy	TSCMAA,	call	TSCMAA::Destroy() which	will	also	release	all	resources	in	TSCMAA.		
void TSCMAA::Destroy();
	
TSCMAA	has	a	few	control	knobs	to	adjust	the	number	of	edges.	Since	CMAA	and	TAA	passes	run	only	
on	edge	candidates,	the	number	of	edges	decides	performance	and	quality.	To	adjust	the	number	of	
edge	pixels	detected,	TSCMAA	provides	SetEdgeThresholds(…)	which	will	set	an	edge	threshold	
and	a	non-dominant	edge	removal	amount	for	edge	detection.		
void TSCMAABase::SetEdgeThresholds(float edgeDetectionThreshold,
 float nonDominantEdgeRemovalAmount,
 float bluriness);	

● edgeDetectionThreshold:	The	recommended	value	ranges	[(1.f/32.f),	(1.f/1.f)]	and	
default	value	is	(1.f/22.f).		

● nonDominantEdgeRemovalAmount:	The	recommended	value	ranges	[0.f,	3.f]	and	default	
value	is	0.5f.				

● bluriness:	The	recommended	value	ranges	[0.5f,	2.f]	and	default	value	is	0.7f.		
Note	that	bluriness	does	not	affect	edge	detection	but	does	affect	processing	edge	candidates.	
Hence	edgeDetectionThreshold and nonDominantEdgeRemovalAmount are	knobs	to	
control	the	number	of	edges	in	edge	candidates.	
	
To	get	the	current	edge	thresholds,	use	TSCMAA::GetEdgeThresholds(…).		
void TSCMAABase::GetEdgeThresholds(float &edgeDetectionThreshold,
 float &nonDominantEdgeRemovalAmount,
 float &bluriness);
							
How	to	Integrate	TSCMAA	into	Other	DirectX	11*	Applications	
To	integrate	the	TSCMAA	library	into	the	application:		

1. Build	the	TSCMAA	library	with	“Intel/TSCMAA.sln”	if	you	do	not	have	TSCMAA.lib.	
2. Link	“Intel/lib/TSCMAA.lib”	to	your	application	project.	
3. Include	“Intel/TSCMAA/TSCMAA.h”	in	your	application.	
4. Create	a	TSCMAA	instance	and	ColorDepthIn	instance.	
5. Create	resource	views	from	application’s	color	and	depth	textures	for	TSCMAA	by	calling	

ColorDepthIn::Create(…).	To	create	color	and	depth	textures,	use	one	of	the	supported	formats	
in	TSCMAA.	

6. Initialize	TSCMAA	by	calling	TSCMAA::Create().	
7. Render	color	and	depth	textures	in	an	application	render	loop.	
8. Apply	TSCMAA	by	calling	TSCMAA::Draw()	after	application	render.	
9. Submit	TSCMAA	output	to	HMD	(or	backbuffer).	
10. Repeat	steps	7‒9	for	every	frame.		
11. Destroy	TSCMAA	resources	by	calling	TSCMAA::Destroy()	and	ColorDepthIn::Destroy().	

	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

The	sample	code	is	shown	below.		
	
#include “Intel/TSCMAA/TSCMAA.h”
TSCMAA::TSCMAA _tscmaa;
TSCMAA::ColorDepthIn _tscmaaColorDepthIn;

// In application init
_tscmaaColorDepthIn.Create(pDevice, pEyeTex, pEyeDepthTex);
_tscmaa.Create(pDevice, DXGI_FORMAT_B8G8R8A8_TYPELESS, 1080, 1200, 2);

	
// In app render loop
for (each frame){
 ID3D11Texture2D * pEyeTSCMAAOutTex[2] = { nullptr, };
 for (each eye) {
 // App renders into pEyeTex and pEyeDepthTex
 // …
 _tscmaa.Draw(pContext,

 projectionMat,
 viewMat,
 _tscmaaColorDepthIn,
 &pEyeTSCMAAOutTex[eye],
 eye);

 }
 // Submit pEyeTSCMAAOutTex[2] to your HMD back buffer
 // …
}

// In application destroy
_tscmaaColorDepthIn.Destroy();
_tscmaa.Destroy();
	
Summary	
This	article	described	TSCMAA	and	how	easily	VR	application	developers	can	integrate	TSCMAA	into	
their	applications	as	a	MSAA	alternate	with	competitive	spatial	quality	and	better	temporal	stability.	
TSCMAA	quality	and	performance	is	also	adjustable	with	the	number	of	edges	since	CMAA	and	TAA	
passes	are	processed	only	on	the	edge	candidates,	resulting	in	faster,	less	blurred	pixels.	The	attached	
TSCMAA	sample	package	has	been	optimized	on	Intel	HD	Graphics	630,	but	it	runs	on	any	platforms.		
	
Notices	

Intel	technologies’	features	and	benefits	depend	on	system	configuration	and	may	require	enabled	
hardware,	software	or	service	activation.	Performance	varies	depending	on	system	configuration.	Check	
with	your	system	manufacturer	or	retailer	or	learn	more	at	intel.com.	

No	license	(express	or	implied,	by	estoppel	or	otherwise)	to	any	intellectual	property	rights	is	granted	
by	this	document.	

Intel®	Developer	Zone	Code	Sample	Template	•	v1	•	April	2017	

Intel	disclaims	all	express	and	implied	warranties,	including	without	limitation,	the	implied	warranties	of	
merchantability,	fitness	for	a	particular	purpose,	and	non-infringement,	as	well	as	any	warranty	arising	
from	course	of	performance,	course	of	dealing,	or	usage	in	trade.	

This	document	contains	information	on	products,	services	and/or	processes	in	development.	All	
information	provided	here	is	subject	to	change	without	notice.	Contact	your	Intel	representative	to	
obtain	the	latest	forecast,	schedule,	specifications	and	roadmaps.	

The	products	and	services	described	may	contain	defects	or	errors	known	as	errata	which	may	cause	
deviations	from	published	specifications.	Current	characterized	errata	are	available	on	request.	

Copies	of	documents	which	have	an	order	number	and	are	referenced	in	this	document	may	be	
obtained	by	calling	1-800-548-4725	or	by	visiting	www.intel.com/design/literature.htm.	

This	sample	source	code	is	released	under	the	Intel	Sample	Source	Code	License	Agreement.	

Intel	and	the	Intel	logo	are	trademarks	of	Intel	Corporation	in	the	U.S.	and/or	other	countries.		

*Other	names	and	brands	may	be	claimed	as	the	property	of	others.	

Microsoft,	Windows,	and	the	Windows	logo	are	trademarks,	or	registered	trademarks	of	Microsoft	
Corporation	in	the	United	States	and/or	other	countries.	

©	2017	Intel	Corporation	

