
Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

1

Touch Developer Guide for Ultra Mobile
Devices
Touch Developer Guide

Revision 2.0

January, 2014

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

2

Revision History

Revision Revision History Date

1.0 First Release April 9, 2013

1.1 Update for Win 8.1 APIs August 2013

2.0 Change Title, include
Adaptive All in One
(Adaptive AIO)
considerations

January 2014

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

3

Contents
Revision History .. 2

Figures .. 4

Tables.. 4

Abstract .. 5

Introduction .. 5

Hardware Requirements .. 6

Operating Environments for Ultra Mobile Devices .. 7

Touch Interactions: Pointer, Gesture, and Manipulation .. 7

Pointer Interactions .. 7

Manipulation and Gesture Interactions ... 9

Custom Gesture Recognition .. 14

Touch Support in Web Browsers .. 14

Internet Explorer 10 and its Compatibility with Windows 7 .. 16

Internet Explorer 11 ... 17

Identifying Touch Capability ... 18

Windows 7 and Windows 8 Desktop .. 19

Windows 8 (Windows Store apps) ... 19

Web apps .. 20

UI design for Touch-Enabled Devices ... 21

Tips for Building Optimized, Responsive Apps ... 21

Resources for Developing Touch Applications ... 22

Related Articles on Intel Developer Zone: .. 22

Related Articles on MSDN .. 22

Web Apps ... 23

Videos: .. 23

Summary... 23

About the Author ... 23

Notices .. 23

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

4

Figures
Figure 1. Snippet for determining if browser is Internet Explorer* ... 15

Figure 2. Windows* 7 Example for identifying touch capability .. 19

Figure 3. Windows*UI Example for Identifying Touch Capability .. 20

Tables
Table 1. Pointer APIs available for Touch-Enabled Devices .. 7

Table 2. Basic gestures used for manipulation interactions .. 9

Table 3. Gesture Interfaces available for Touch-Enabled Devices .. 10

Table 4. Standard expected interactions and consequences for touch interactions ... 10

Table 5. Basic gestures defined for touchpads – Windows* 8.1 .. 11

Table 6. Touch Interfaces for Internet Explorer* 10 ... 17

Table 7. Scrolling and Zooming Properties for Internet Explorer* Versions 10 and 11 18

Table 8. Considerations for Touch-Enabled Apps .. 21

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

5

Abstract
This Guide contains information about the APIs that application developers need to use when they are

developing apps targeted for Ultra Mobile Devices (PCs, Ultrabook™ devices, 2-in-1s, tablets) and Adaptive All

in Ones, which have touch screens and multiple usages, such as a monitor or a multi-user tablet that may be

easily moved to communal locations. This guide will cover the interfaces required for Windows* (7 through

8.1) as well as for web apps. It will also describe what the common user expectations for gestures are and

provide guidance for developing satisfying touch interfaces. Lastly, some tips on optimizing touch-enabled

apps will be provided.

Introduction
Now that there are many touch-capable, Ultra Mobile Devices available, it is important for software

developers to create apps that are not only designed for touch input but also adapt to the different layouts

that apply to various screen sizes and positions (portrait vs. landscape). The following list provides basic design

considerations for touch-enabled apps.

 Touch interfaces imply bigger targets. For 96 dots per inch screens, the most frequently used controls

should be at least 40X40 pixels, big enough to be uniquely indicated by a fingertip. For higher

resolution screens, use the minimum of a ½ inch square. There should be a minimum of 10 pixels (1/8

of an inch) for padding between the touch targets.

 Provide immediate feedback. Elements that are interactive should react when touched, either by

changing color, size, or by moving. When the app provides smooth, responsive visual feedback while

panning, zooming, and rotating, it feels highly interactive.

 Moveable content follows finger. When a user drags an element, it should follow the user’s finger

when moving.

 Interactions should be reversible or at least cancellable.

 Allow multi-touch interactions. Touch interactions should not change based on the number of fingers

that are touching the screen.

 Allow both touch and mouse support. The user may be working from a system that does not have

touch capabilities.

 Don’t rely on hover. While browsers will fake hover on tap, if there is an underlying link, the hover

state does not stay long enough for the user to see since the tap action will also fire the link.

 The app adapts to the device/environment that the user chooses. This means providing layouts with

the correct resolution for every likely method/device for which the user will be able to run the app.

 Optimize performance that results in a highly responsive app. Long delays when interacting with touch

elements cause frustration. Ensure that complex processing runs in the background when and where

possible.

While the basic design principles for touch apply to all form factors, designing touch interfaces for Adaptive All

in One (Adaptive AIO) devices brings further considerations. Apps that are well-suited for the Adaptive AIO

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

6

may have a multi-user component, for example, games where there is more than one player. Consider the

implications of multiple users interacting with your app at the same time. The touch APIs for Windows and

web apps can track more than one touch and/or drag at a time, but you still must design your app to behave

sensibly under those conditions.

Even if you support multiple touch and/or drag events occurring at the same time, being able to differentiate

more than one user is a very difficult task. If you need this capability, the simplest way to distinguish multiple

users is to partition the display where each player is assigned their own portion during the game or activity.

Hardware Requirements
Consumers have a variety of touch-capable devices to choose from, ranging from smartphones, tablets, 2-in-

1s, PCs, to Adaptive AIOs. Developers are faced with the challenge of developing apps that feel natural for

each form-factor. In general, touch-enabled apps should be designed to run on any of their targeted devices

while taking full advantage of the touch capabilities of each. Devices that are capable of at least 10

simultaneous points represent the high-end of touch-capability and should be the design point for an app’s

touch interface.

Since 2011, OEMs have built devices with touchscreens based on Intel processors:

 2nd generation Intel® Core™ processor family (codenamed Sandy Bridge).

 3rd generation Intel® Core™ processor family (codenamed Ivy Bridge).

 4th generation Intel® Core™ processor family (codenamed Haswell).

With so many Ultra Mobile Devices available to consumers, it has become more crucial than ever to develop

apps that are touch-enabled for any form-factor for which they are targeted.

The rest of this Developer Guide assumes that the target platform is a touch-capable system. Software

designed for these devices can be adapted to other touch-enabled devices that either run the same OS or run

in the web browser.

For more information on writing touch-enabled apps, refer to the MSDN article,

Touch Interaction Design. Note: Please refer to the MSDN Terms of Use for

licensing details.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

7

Operating Environments for Ultra Mobile Devices
Designing apps today requires careful considerations of what environment customers most often use as well

as which environment an app is best suited for. Whether an app is targeted for Windows 7 or Windows 8

Desktop or as a Windows* Store app, the developer needs to understand which interfaces are applicable.

Windows Store apps must use the WinRT APIs. If an app is to run in the Windows 8+ Desktop environment,

there are two choices: the legacy APIs from Windows 7 or the new Windows 8+ APIs for touch. These

interfaces will be discussed further in the sections below. Other options exist for developing web apps. Touch

interfaces available for web browsers are also discussed below.

Touch Interactions: Pointer, Gesture, and Manipulation
There are varying levels of interpretation of touch input. Pointer events are the most basic because they

represent individual points of touch contact. Gesture and Manipulation events are built on that foundation.

Gesture events provide an easy way to capture simple tap-and-hold gestures. Manipulation events are for

touch interactions that use physical gestures to emulate physical manipulation of UI elements. Manipulation

events provide a more natural experience when the user interacts with UI elements on the screen. The

available touch interfaces have varying levels of support for these three levels of interpretation.

Pointer Interactions
A pointer event is a single, unique input or “contact” from an input device such as a mouse, stylus, single

finger, or multiple fingers. When a contact is made, the system creates a pointer when it is first detected and

then it is destroyed when the pointer leaves the detection range or is canceled. In the case of multi-touch

input, each contact is a unique pointer. Table 1 shows the interfaces for retrieving basic pointer events that

are available to mobile devices running Windows 7 and Windows 8+.

Table 1. Pointer APIs available for Touch-Enabled Devices

OS Compatibility Touch Interface Remarks

Windows* 7

(Desktop)

WM_TOUCH  Also compatible with the Windows 8+ Desktop environment.

 Maximum number of simultaneous touches limited by hardware.

 No built-in gesture recognition.

 Must call RegisterTouchWindow since WM_TOUCH messages are

not sent by default.

Windows 8+ only

(Desktop)

WM_POINTER  Applicable only to the Windows 8+ Desktop environment.

 By default Windows 8+ animations and interaction feedback is

generated and available for further processing.

Windows Store app PointerPoint  Applicable only for Windows Store apps.

Read more about Gestures, Manipulations and Interactions on MSDN

http://msdn.microsoft.com/en-us/library/windows/desktop/dd317341(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317326(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh454904(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761498.aspx

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

8

Windows 7 and Windows 8 Desktop Touch Interface: WM_TOUCH

The WM_TOUCH message can be used to indicate that one or more pointers, such as a finger or pen, have

made contact on the screen.

Windows 8 and 8.1 Desktop Touch Interface: WM_POINTER

The WM_POINTER messages are part of the Direct Manipulation APIs and are specific to the Windows 8+

Desktop. This interface can be used to capture individual touch pointers as well as Gestures and

Manipulations. The WM_POINTER messages will be discussed further in the section on Manipulation and

Gesture Interactions.

Windows 8.1 Desktop adds direct manipulation support using the touchpad: Prior to Windows 8.1, device

support in Windows assumed that the only sources of user input events were from a keyboard, mouse,

touchscreen, or pen. Touchpads (present on many laptop designs) were treated as a mouse source. With

Windows 8.1, the APIs have been expanded to treat touchpads as a distinct input method. For more

information, refer to Touchpad interactions on MSDN.

 IMDT_TOUCHPAD (enum value for INPUT_MESSAGE_DEVICE_TYPE)

Touch Interfaces available for Windows 7 and Windows 8+:

 WM_TOUCH (messages)

 WM_POINTER (messages)

 PointerPoint (class)

 RegisterTouchWindow (function)

Refer to Guidelines for common user interactions on MSDN.

Sample Code:

 Intel® Developer Zone: Touch for Windows Desktop (This sample includes custom

Gesture Recognition.)

Guidance:

 MSDN: Touch Interaction Design

 MSDN: Windows 7 Touch Input Programming Guide

Reference on MSDN: Direct Manipulation APIs

http://msdn.microsoft.com/en-us/library/windows/apps/dn297200.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh448795.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317341(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh454903(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317326(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh465370.aspx
http://software.intel.com/en-us/vcsource/samples/windows-7-touch
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317323(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh446969(v=vs.85).aspx

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

9

 POINTER_DEVICE_TYPE_TOUCH_PAD (enum value for POINTER_DEVICE_TYPE)

 PT_TOUCHPAD (enum value for POINTER_INPUT_TYPE)

There is also a new API: GetPointerInputTransform that is related to touch processing. This API is used for

retrieving one or more 4X4 matrices when transforming the screen coordinates from a pointer input message

to client coordinates, effectively inverting the mapping from the input device to screen coordinates.

Windows* Modern UI Touch Interface: PointerPoint

The PointerPoint class is part of the Windows Runtime environment and is compatible only with Windows

Store apps. It provides basic properties for the input pointer associated with a single mouse, stylus, or touch

contact. MSDN has sample code that can help developers get started working with the PointerPoint interface.

Manipulation and Gesture Interactions
Gesture events are used to handle static-finger interactions such as tapping and press-and-hold. Double-tap

and right-tap are derived from these basic gestures:

 Gestures: the physical act or motion performed on or by the input device that can be one or more

fingers, a stylus, or a mouse.

 Manipulation: the immediate, ongoing response an object has to a gesture. For example, the slide

gesture causes an object to move in some way.

 Interactions: how a manipulation is interpreted and the command or action that results from the

manipulation. For example, both the slide and swipe gestures are similar but the results vary

according to whether a distance threshold is exceeded.

Table 2. Basic gestures used for manipulation interactions

Gesture Type Description

Press and

Hold

Static Gesture A single contact is detected and does not move. Press and hold causes

detailed information or teaching visuals to be displayed without a

commitment to an action.

Tap Static Gesture One finger touches the screen and lifts up immediately.

Turn Manipulation

Gesture

Two or more fingers touch the screen and move in a clockwise or counter-

clockwise direction.

Slide Manipulation

Gesture

One or more fingers touch the screen and move in the same direction (also

called Panning)

Swipe Manipulation One or more fingers touch the screen and move a short distance in the same

Sample Code on MSDN: Input: XAML user input events

Note: Please refer to the MSDN Terms of Use for licensing

details.

sample

http://msdn.microsoft.com/en-us/library/windows/desktop/hh802893.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh454908.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn280576(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/Input-3dff271b

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

10

Gesture direction.

Pinch Manipulation

Gesture

Two or more fingers touch the screen and move closer together.

Stretch Manipulation

Gesture

Two or more fingers touch the screen and move further apart.

Table 3. Gesture Interfaces available for Touch-Enabled Devices

OS

Compatibility

GESTURE Interface Remarks

Windows* 7

Windows 8+

(Desktop)

WM_TOUCH +

IManipulationProcessor

 This combination gives the developer the functionality of the

WM_POINTER API that is available only to Windows 8/8.1 desktop.

 Maximum Touch points dictated by hardware.

Windows 7

Windows 8+

(Desktop)

WM_GESTURE +

GESTUREINFO structure
 Maximum of two simultaneous touch points

 No simultaneous gestures

 If the app requires more complex manipulations than what is available

from the WM_GESTURE message, a custom gesture recognizer needs

to be written using the WM_TOUCH interface.

Windows 8+

(Desktop)

WM_POINTER  Gesture interactions result from the use of the Direct Manipulation

APIs, which take in a stream of the pointer input messages.

Windows

Modern UI

PointerPoint  Gesture interactions result from the use of GestureRecognizer, which

takes the output from PointerPoint.

Windows 8.1 GetPointerInputTransform  New Direct Manipulation API. Applicable to interactions with the

touchpad.

Table 4. Standard expected interactions and consequences for touch interactions

Interactions Description

Press and Hold to learn Causes detailed information or teaching visuals to be displayed.

References on MSDN:

 WM_TOUCH + IManipulationProcessor

 WM_GESTURE + GESTUREINFO

 WM_POINTER + Direct Manipulation APIS

 GetPointerInputTransform + Direct Manipulation APIS

 PointerPoint + GestureRecognizer

http://msdn.microsoft.com/en-us/library/windows/desktop/dd317341(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd372579(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd353242(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd353232(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh454890.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh446969(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh446969(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://msdn.microsoft.com/library/windows/apps/BR241937
http://msdn.microsoft.com/en-us/library/windows/desktop/dn280576(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317341(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd372579(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd353242(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd353232(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh454890.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh446969(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn280576(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh446969(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://msdn.microsoft.com/library/windows/apps/BR241937

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

11

Tap for primary action Invokes a primary action, for example launching an application or executing a

command.

Slide to pan Used primarily for panning interactions but can also be used for moving, drawing, or

writing. Can also be used to target small, densely packed elements by scrubbing

(sliding the finger over related object such as radio buttons).

Swipe to select, command,

and move

Sliding the finger a short distance, perpendicular to the panning direction, selects

objects in a list or grid.

Pinch and stretch to zoom Not only used for resizing, this interaction also enables jumping to the beginning,

end, or anywhere within the content with Semantic Zoom. A SemanticZoom control

results in a zoomed out view for showing groups of items and quick ways to go back

to them.

Turn to rotate Rotating with two or more fingers causes an object to rotate.

Swipe from edge for app

commands

App commands are revealed by swiping from the bottom or top edge of the screen.

Swipe from edge for

system commends

Swiping from the right edge of the screen shows the “charms” that are used for

system commands. Swiping from the left edge results in cycling through currently

running apps and sliding from the top edge toward the bottom of the screen closes

the app. Sliding from the top edge down and to the left or right edge snaps the

current app to that side of the screen.

Table 5. Basic gestures defined for touchpads – Windows* 8.1

Gesture Description

Hover to learn Allows the user to hover over an element to get more detailed information or

teaching visuals without a commitment to action.

Single finger tap for primary

action

Invokes the primary action (such as launching an app).

Two finger tap to right-click Tapping with two fingers simultaneously displays the app bar with global

commands or on an element to select it and display the app bar with contextual

commands.

Two finger slide to pan Used primarily for panning interactions.

Pinch and stretch to zoom Used to resize and for semantic zooming.

Single finger press and slide to

rearrange

Drag and drops an element.

Single finger press and slide to

select text

Allows pressing from within selectable text and sliding to select it. Double-tap is

used to select a word.

Single finger press and slide to  Swiping from the right edge of the screen: reveals the charms exposing system

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

12

select text – Edges for system

commands

commands

 Left and right click zone: emulates left and right mouse buttons.

Interpreting Manipulation and Gesture Interactions for Windows 7 Desktop

The IManipulationProcessor interface can be used in conjunction with the WM_TOUCH API to provide a way

to add translation, rotation, scaling, and inertia to UI objects. This combination provides functionality similar

to the gesture recognizing features of WM_POINTER. Once the Manipulation Processor is enabled,

manipulation starts as soon as a touch gesture is initiated.

WM_GESTURE messages have a structure called GESTUREINFO that is available for the interpretation of

gestures and manipulations. The MSDN web page for WM_GESTURE shows an example of how to obtain

gesture-specific information using the GESTUREINFO structure.

Note that WM_GESTURE has limitations, such as the maximum number of simultaneous touch inputs is only

two and it does not support simultaneous gestures. For apps that require more capability but still need to

support Windows 7 desktop, use the WM_TOUCH interface and either write a custom gesture recognizer, as

detailed in the section Custom Gesture Recognition below, or use the Manipulation Processor interface with

WM_TOUCH.

Handling Manipulation and Gesture Interactions for Windows 8+ Desktop Apps

Applications targeted only for the Windows 8 Desktop can use the Direct Manipulation APIs (WM_POINTER

messages). The pointer messages are passed to an internal Interaction Context object that performs

recognition on the manipulation without the need to implement a custom gesture recognizer. There is a

callback infrastructure where all interactions involving tracked contacts are managed.

Sample Code:

 MSDN: Manipulation and Inertia Sample

Note: Please refer to the MSDN Terms of Use for licensing details.



Sample Code on Intel Developer Zone (WM_GESTURE API + GESTUREINFO: Sample

Application: Touch for Desktop

For more information on writing touch-enabled apps, refer to the MSDN article: Touch

Interaction Design.

http://msdn.microsoft.com/en-us/library/windows/desktop/dd562174(v=vs.85).aspx
http://software.intel.com/en-us/articles/sample-application-touch-for-desktop/
http://software.intel.com/en-us/articles/sample-application-touch-for-desktop/
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

13

Direct Manipulation is designed to handle both manipulation and gesture interactions and supports two

models for processing input:

1. Automatic/Independent: Window messages are automatically intercepted by Direct Manipulation on

the delegate thread and handled without running application code, making it independent of the

application.

2. Manual/Dependent: Window messages are received by the window procedure running in the UI

thread, which then calls Direct Manipulation to process the message, making it dependent on the

application.

Gestures can be captured by initializing Direct Manipulation and preparing the system for input processing.

Handling Manipulation and Gesture Interactions for Windows 8 Store Apps

The GestureRecognizer API is used to handle pointer input to process manipulation and gesture events. Each

object returned by the PointerPoint method is used to feed pointer data to the GestureRecognizer. The

gesture recognizer listens for and handles the pointer input and processes the static gesture events. For an

example of how to create a GestureRecognizer object and then enable manipulation gesture events on that

object see the MSDN GestureRecognizer web page (referenced below.)

Direct Manipulation Support for Windows 8.1 Store Apps

For Windows 8.1, Direct Manipulation has been added for touchpad gestures. Note that the ScrollViewer class

will be updated, and as a result, apps will no longer see UIElementPointerWheelChanged events that were

available in Windows 8.

Refer to the Quickstart: Direct Manipulation on MSDN for an outline of the API calls required to

accomplish typical tasks when working with Direct Manipulation.

References on MSDN:

 GestureRecognizer APIs

 PointerPoint method

Sample Code on Intel Developer Zone: Sample Application: Touch for Windows* Store.

http://msdn.microsoft.com/en-us/library/ms750665.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.pointerwheelchanged
http://msdn.microsoft.com/en-us/library/windows/desktop/jj658594(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/BR241937
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://software.intel.com/en-us/articles/sample-application-touch-for-windows-store/

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

14

Custom Gesture Recognition
When possible, use the built-in gesture recognizers (see Table 3). If the provided gesture and manipulation

interfaces do not provide the functionality that is needed, or if the app needs to disambiguate between taps

and gestures more rapidly, it may be necessary to write a custom gesture recognition algorithm. If this is the

case, users expect an intuitive experience involving direct interaction with the UI elements in the app. It is best

to base custom interactions on the standard controls to keep user actions consistent and discoverable.

Custom interactions should only be used if there is a clear, well-defined requirement and basic interactions

don't support the app’s desired functionality. See Table 4 for the list of common and expected interactions

and consequences for touch interactions.

Touch Support in Web Browsers

Touch input is also available to apps running in web browsers, with varying degrees of support depending on

the browser. Since web browser capabilities change rapidly, it is generally better to detect supported features

instead of specific browsers. Feature detection has proven to be a more effective technique once the

determination has been made if it is Internet Explorer* (IE) 11, a browser built on Webkit*, or a different

browser that requires support. Feature detection requires less maintenance for the following reasons:

 New browsers get released and existing browsers are often updated. Existing code may not factor in

the new browser versions. Updated browsers may support standards and features that were not

supported when the browser detection code was designed.

References on MSDN:

 Touch interactions

 Quickstart: Identifying pointer devices

 UIElement.PointerEntered event

 Responding to touchpad input

Sample Code on MSDN: Input: Gestures and manipulations with GestureRecognizer sample

(Windows 8.1)

Code Sample on Intel Developer Zone (WM_TOUCH with custom gesture recognition):

Touch for Windows Desktop

http://msdn.microsoft.com/en-us/library/windows/apps/dn297200.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn297200.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465379.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.pointerentered
http://msdn.microsoft.com/en-us/library/windows/apps/dn297198.aspx
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-362b6b59
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-362b6b59
http://software.intel.com/en-us/vcsource/samples/windows-7-touch

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

15

 New devices frequently include new versions of browsers, and so browser detection code must be

reviewed continually to support the new browsers. Creating customized implementations for each

browser can become extremely complicated.

 Many browsers support the ability to modify the user-agent string, making browser detection difficult

to accurately identify.

WebKit powers Apple Safari* and Google Chrome*, and soon Opera will move their browser over to use it.

Internet Explorer 10 does not use WebKit; however, both WebKit and IE 10 are built on top of the Document

Object Model (DOM) Level 3 Core Specification. To review the standards associated with touch events, refer to

the standard’s Touch Events Version 1, dated January 2013.

IE 10 has its own touch interfaces that must be called for processing touch events. Use the navigator object

with the userAgent property to determine if the browser supports the desired features. The following example

code can be used to determine if the browser is IE.

Usage:
<script type="text/JavaScript">
If (navigator.userAgent.indexOf(“MSIE”)>0)
 {
 // Run custom code for Internet Explorer.
 }
</script>

Figure 1. Snippet for determining if browser is Internet Explorer*

Use the hasFeature method to determine if specific features are supported in the browser. For example, here

is how to determine if a browser supports touch events (this works for IE 10 as well):

var touchSupported = document.implementation.hasFeature("touch-events","3.0");

Where “touch-events” is the feature that we are checking for and “3.0” is the DOM specification level that we

are interested in. An app can then listen for the following touch events: touchstart, touchend, touchmove, and

touchcancel.

References:

 Webkit

 Document Object Model (DOM) Level 3 Core Specification

 Touch Events Version 1

 The navigator object

 Navigator userAgent property

Note: Please refer to the MSDN Terms of Use for licensing details.



http://www.webkit.org/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/touch-events/
http://www.w3schools.com/jsref/obj_navigator.asp

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

16

To process touch events using a WebKit-based browser (Chrome, Safari, etc.), simply set up the following

three events to cover the main input states:

canvas.addEventListener(‘touchstart’, onTouchStart, false);

canvas.addEventListener(‘touchmove’, onTouchMove, false);

canvas.addEventListener(‘touchend’, onTouchEnd, false);

For Internet Explorer, reference the MSPointer event instead:

canvas.addEventListener(‘MSPointerDown’, onTouchStart, false);

canvas.addEventListener(‘MSPointerMove’, onTouchMove, false);

canvas.addEventListener(‘MSPointerUp’, onTouchEnd, false);

Similarly, there are three gesture event listeners: gestureStart, gestureChange, and gestureEnd for non-IE 10

browsers.

Internet Explorer 10 and its Compatibility with Windows 7
While IE 10 does not use WebKit, it is built on top of the DOM Level 3 Events, HTML5, and Progress Event

standards. This section provides information about IE 10 and how it interacts on Windows 7.

Internet Explorer 10 on Windows 7 handles touch and pen input as simulated mouse input for the following

Document Object Model (DOM) events:

 MSPointerCancel

 MSPointerDown

 MSPointerMove

 MSPointerOver

Reference: hasFeature method

Download sample code handling DOM pointer events on MSDN: Input DOM

pointer event handling sample. Note: Please refer to the MSDN Terms of Use

for licensing details.

Standards:

 DOM Level 3 Events

 HTML5

 Progress Events

http://www.w3.org/2003/01/dom2-javadoc/org/w3c/dom/DOMImplementation.html#hasFeature_java.lang.String__java.lang.String_
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/progress-events/

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

17

 MSPointerUp

IE 10 on Windows 7 will not fire any of the following DOM Gesture events:

 MSGestureChange

 MSGestureEnd

 MSGestureHold

 MSGestureStart

 MSGestureTap

 MSManipulationStateChanged

Table 6. Touch Interfaces for Internet Explorer* 10

Interface Windows* 7
MSVS 2010

Windows 8
MSVS 2012
(Desktop)

Windows 8
Modern UI

Remarks

MSGESTURE

No Yes Yes  Get high level gestures such as hold,
pan, and tap easily without capturing
every pointer event individually

MSPOINTER

Yes YES Yes  Part of DOM Object Model (DOM) Core

 The getCurrentPoint and
getIntermediatePoints methods retrieve
a collection of PointerPoint objects and
are available only on Windows 8.

Internet Explorer 11

IE 11 adds the following touch enhancements / APIs:

 Direct manipulation for mouse, keyboard, touchpad, and touch, including hardware-accelerated pan and

zoom to all input types.

For more information on developing touch-enabled web apps for IE 10 (MSDN):

Internet Explorer 10 Guide for Developers

Sample code on MSDN: Input: Manipulations and gestures (JavaScript*)

Note: Please refer to the MSDN Terms of Use for licensing details.

http://msdn.microsoft.com/en-us/library/windows/apps/hh968035.aspx
http://msdn.microsoft.com/en-us/library/ie/hh772103(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh673549(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-362b6b59

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

18

 Updates to the existing MSPointer APIs to reflect the latest Candidate Recommendation specification. IE

11 supports unprefixed Pointer Events.

 New API, the msZoomTo method. This new method scrolls and/or zooms an element to a specified

location and uses animation. Note: msZoomTo is not supported on Windows 7.

IE 10 and IE 11 also include Cascading Style Sheets with features applicable to Touch. The following table

summarizes the controls that enable touch input and gesture recognition for Internet Explorer versions.

Table 7. Scrolling and Zooming Properties for Internet Explorer* Versions 10 and 11

Scrolling/Zooming property for IE 10 and IE 11 Touchscreen Touchpad Mouse Keyboard

-ms-scroll-snap-points-x, -ms-scroll-snap-points-y, -ms-
scroll-snap-type, -ms-scroll-snap-x, -ms-scroll-snap-y

IE 10+ IE 11 IE 11 IE 11

-ms-content-zoom-chaining, msContentZoomFactor, -
ms-content-zooming, -ms-content-zoom-limit, -ms-
content-zoom-limit-max, -ms-content-zoom-limit-
min, -ms-content-zoom-snap, -ms-content-zoom-snap-
points, -ms-content-zoom-snap-type, -ms-scroll-
chaining, -ms-scroll-rails

IE 10+ IE 11 -- --

-ms-overflow-style, -ms-scroll-limit, -ms-scroll-
limitXMax, -ms-scroll-limitXMin, -ms-scroll-limitYMax, -
ms-scroll-limitYMin

IE 10+ IE 10+ IE 10+ IE 10+

-ms-scroll-translation -- -- IE 10+ --

Identifying Touch Capability
Whether an app is a native app or a web app, the developer will want to add a check for hardware touch

capability so that the app can configure its UI appropriately. Use the following methods to test for touch

capability.

For more information on developing touch-enabled web apps for IE 11 (MSDN):

Internet Explorer 11 Guide for Developers

http://blogs.msdn.com/b/ie/archive/2013/05/09/w3c-transitions-pointer-events-to-candidate-recommendation.aspx
http://msdn.microsoft.com/en-us/library/ie/dn254949(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772036(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772037(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772038(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772038(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772039(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772040(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771889(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772066(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771891(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771891(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127330(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127331(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127331(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127332(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127332(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771893(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771895(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771895(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771896(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772034(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772034(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh772035(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh771902(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127336(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127337(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127337(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127339(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127340(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/jj127340(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/hh973361(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/dn265041(v=vs.85).aspx

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

19

Windows 7 and Windows 8 Desktop
Apps targeting Windows 7 or Windows 8 Desktop can call GetSystemMetrics with SM_DIGITIZER as the

argument. The following code snippet is part of a Touch sample that can be downloaded from the Intel

Developer Zone: Touch for Windows Desktop

 // Check for Touch support
 // Get the Touch Capabilities by calling GetSystemMetrics
 BYTE digitizerStatus = (BYTE)GetSystemMetrics(SM_DIGITIZER);
 // Hardware touch capability (0x80); readiness (0x40)
 if ((digitizerStatus & (0x80 + 0x40)) != 0) //Stack Ready + MultiTouch
 {
 RegisterTouchWindow(m_pWindow->GetHWnd(), TWF_WANTPALM);
 }

Figure 2. Windows* 7 Example for identifying touch capability

Note that GetSystemMetrics can be used to find out what is the maximum number of touch points that are

available:

 BYTE nInputs = (BYTE)GetSystemMetrics(SM_MAXIMUMTOUCHES);

Windows 8 (Windows Store apps)
Determine touch capabilities for Windows Store apps by using the TouchCapabilities class. The following code

snippet can be found in the code sample on MSDN that demonstrates its use: Input: Device capabilities

sample.

void SDKSample::DeviceCaps::Touch::TouchGetSettings_Click(Platform::Object^ sender,

Windows::UI::Xaml::RoutedEventArgs^ e)

References:

 Code Sample: Touch for Windows Desktop

 GetSystemMetrics method

Note: Please refer to the MSDN Terms of Use for licensing details.

References:

 Code Sample on MSDN: Input: Device capabilities sample

 TouchCapabilities class

Note: Please refer to the MSDN Terms of Use for licensing

details.

http://software.intel.com/en-us/vcsource/samples/windows-7-touch
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724385(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745
http://msdn.microsoft.com/en-us/library/windows/apps/BR225644

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

20

{
 Button^ b = safe_cast<Button^>(sender);
 if (b != nullptr)
 {
 TouchCapabilities^ pTouchCapabilities = ref new TouchCapabilities();
 Platform::String^ Buffer;

 Buffer = "There is " + (pTouchCapabilities->TouchPresent != 0 ? "a" : "no") + "
 digitizer present\n";
 Buffer += "The digitizer supports " + pTouchCapabilities->Contacts.ToString() + "
 contacts\n";

 TouchOutputTextBlock->Text = Buffer;
 }
}

Figure 3. Windows*UI Example for Identifying Touch Capability

Web apps
For Internet Explorer, use the msMaxTouchPoints property described as follows:

 Test for touch capable hardware:
 If (navigator.msMaxTouchPoints) {…}

 Test for multi-touch capable hardware:
 If (navigator.msMaxTouchPoints >1) {…}

 Get the maximum number of touch points the hardware supports:
 Var touchPoints = navigator.msMaxTouchPoints;

For Chrome and Safari, use the following (same as above but replace msMaxTouchPoints with
maxTouchPoints):

 var result = navigator.maxTouchPoints;

It can be somewhat tricky to test for touch devices generically from web apps. While some functions work well

on some browsers, others indicate that touch is present when it is not, i.e., if the browser itself supports

touch, it may report that touch is available even if the device is not touch-capable.

Note that MaxTouchPoints will return 0 in IE 10 (Desktop) running on Windows 7.

References:

 msMaxTouchPoints

 maxTouchPoints

Note: Please refer to the MSDN Terms of Use for licensing

details.



http://msdn.microsoft.com/en-us/library/ie/hh772144(v=vs.85).aspx
http://docs.webplatform.org/wiki/dom/Navigator/maxTouchPoints
http://docs.webplatform.org/wiki/dom/Navigator/maxTouchPoints

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

21

UI design for Touch-Enabled Devices
Apps designed for touch-enabled devices may need to process gestures such as taps, pans, zooms, etc. Apps

that are touch-enabled may do little with the raw pointer data except to pass it to gesture detection.

New applications should be designed with the expectation that touch will be the primary input method.

Mouse and stylus support require no additional work; however, software developers should consider several

other factors when designing touch-optimized apps.

Table 8. Considerations for Touch-Enabled Apps

Factor Touch Mouse/Stylus

Precision

 Contact area for fingertip is much larger

than a single x-y coordinate.

 The shape of the contact area changes

with the movement

 There is no mouse cursor to help with

targeting

 Mouse/Stylus gives a precise x-y

coordinate

 Keyboard focus is explicit

Human

Anatomy

 Fingertip movements are imprecise

 Some areas on the touch surface may

be difficult to reach

 Objects may be obscured by one or

more fingertips

 Straight-line motion with the

mouse/stylus are easier to perform

 Mouse/Stylus can reach any part of

the screen

 Indirect input devices do not cause

obstruction

Object state

 Touch uses a two-state model. The

touch surface is either touched or not.

There is no hover state that can trigger

additional visual feedback.

 Three states are available: on, off,

hover (focus)

Rich

interaction

 Multi-touch – multiple input points

(fingertips) are available.

 Supports only a single input point.

Software developers should supply appropriate visual feedback during interactions so that users can

recognize, learn, and adapt to how their interactions are interpreted by both the app and the OS. Visual

feedback is important for users to let them know if their interactions are successful, so they can improve their

sense of control. It can help reduce errors and help users understand the system and input device.

Tips for Building Optimized, Responsive Apps
1. The Click-delay: For web apps, this happens when the click event is delayed on mobile devices causing

pages to feel slow or unresponsive. This happens because the browser is trying to decide if the click

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

22

was a tap or if it was a double-tap. The solution to this is to use a good fastclick library. Fastclick

libraries listen for touchend.

2. Avoid expensive operations in touch handlers. Instead of processing the touches immediately, store

them and process them later.

3. Touch handlers can cause “Scroll Jank.” This can happen when there is a touch event handler on a

page where scrolling is allowed. If the app needs both scrolling and touch events, make the touch area

as small as possible.

Resources for Developing Touch Applications

Related Articles on Intel Developer Zone:

1. Comparing Touch Coding Techniques – Windows 8 Desktop Touch Sample

2. Exploring Touch Samples for Windows* 8 apps

3. Touch Code Sample for Windows* 8 Store

4. Touch Code Sample for Windows* 8 Desktop

5. Porting Win32* Apps to Windows* 8 Desktop

6. Real-Time Strategy Game with Touch Screen

7. Virtual Trackpad

8. Mixing Stylus and Touch Input on Windows* 8

9. Implementing multi-user multi-touch scenarios using WPF in Windows* Desktop Apps

Related Articles on MSDN

1. Windows 7 Touch Input Programming Guide

2. Architectural Overview (Windows 7)

3. Troubleshooting Applications

4. Adding Manipulation Support in Unmanaged Code

5. Windows Touch Samples

6. Build Advanced Touch Apps in Windows 8* (Video)

7. Windows 8 SDK

8. Input: Touch hit testing sample

9. Desktop App Development Documentation (Windows)

10. Windows Touch Gestures Overview (Windows)

11. Getting Started with Windows Touch Messages (Windows)

12. Get PointerTouchInfo function (Windows)

13. (MSDN) Internet Explorer 10 Guide for Developers

14. (MSDN) Internet Explorer 11 Guide for Developers

15. (MSDN) Touchpad Interactions

16. (MSDN) Scrolling and Zooming with touch and other inputs

17. (MSDN) Terms of Use

http://software.intel.com/en-us/articles/comparing-touch-coding-techniques-windows-8-desktop-touch-sample
http://software.intel.com/en-us/articles/touch-samples
http://software.intel.com/en-us/articles/sample-application-touch-for-windows-store/
http://software.intel.com/en-us/articles/sample-application-touch-for-desktop/
http://software.intel.com/en-us/articles/porting-win32-apps-to-windows-8-desktop
http://software.intel.com/en-us/blogs/2013/03/06/real-time-strategy-game-with-touch-screen
http://software.intel.com/en-us/blogs/2013/07/17/virtual-trackpad
http://software.intel.com/en-us/articles/mixing-stylus-and-touch-input-on-windows-8
http://software.intel.com/en-us/articles/implementing-multi-user-multi-touch-scenarios-using-wpf-in-windows-8-desktop-apps
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317323(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd371413(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd693088(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd371408(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd562199(v=vs.85).aspx
http://channel9.msdn.com/Events/BUILD/BUILD2011/APP-186T
http://msdn.microsoft.com/en-us/windows/apps/br229516
http://code.msdn.microsoft.com/windowsapps/Touch-Hit-Testing-sample-5e35c690
http://msdn.microsoft.com/library/windows/desktop/hh447209
http://msdn.microsoft.com/en-us/library/windows/desktop/dd940543(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd371581(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh454890.aspx
http://msdn.microsoft.com/en-us/library/ie/hh673549(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/bg182636(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn297200.aspx
http://msdn.microsoft.com/en-us/library/ie/dn265041(v=vs.85).aspx
http://msdn.microsoft.com/en-US/cc300389.aspx

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

23

Web Apps

1. Dragging and Scaling and Object (Sample Code)
2. Handling Multi-Touch Gestures

3. W3C Software Notice and License

Videos:

1. Google I/O 2013 – Point, Click, Tap, Touch – Building Multi-Device Web Interfaces

Summary
Developers who want to develop touch-enabled apps, whether they are native or web apps, need to have a

clear understanding of which APIs are available to them. This guide covered the interfaces available for the

following environments: Windows 7, Windows 8+ Desktop, Windows Modern UI, as well as apps running in

web browsers. While Gestures and Manipulations are possible in Windows 7, app developers may find that

the Windows 8+ APIs (those targeted for the Desktop and/or for Windows Store apps) offer the best options

for automatic gesture recognition.

Windows 8.1 and IE 11 add touchpad APIs and interactions. Many of the existing APIs used for Gestures,

Manipulation, Pointers for Windows 8 Desktop, Windows 8 Store Apps, and IE 11 have been updated as well.

Developers who are writing touch-enabled web apps need to check their code for IE 10+ since IE 10+ has its

own interface that must be used to process touch, gestures, and manipulation. Other Webkit-based browsers

are also based on the DOM Level 3 standards and have touch and gesture event support.

This guide also covered descriptions of common Gesture and Manipulation interactions and provided some

guidelines for developing touch-enabled apps.

About the Author
Gael Hofemeier is an Evangelist Application Engineer at Intel Corporation. Her focus is providing technical

content that developers writing software for Intel® Architecture need. In addition to writing content, she also

moderates the Business Client Forum on the Intel Developer Zone.

See Gael's Blog Author Page

Notices
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

http://developer.android.com/training/gestures/scale.html
http://developer.android.com/training/gestures/multi.html
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.youtube.com/watch?v=DujfpXOKUp8
http://software.intel.com/en-us/blogs/author/335061
http://www.linkedin.com/in/gaelhofemeier

Touch Developer Guide for Ultra Mobile Devices, Revision 2.0

24

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR

DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely

on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these

for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future

changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product

order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be

obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems,

components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You

should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products.

Any software source code reprinted in this document is furnished under a software license and may only be used or

copied in accordance with the terms of that license.

Intel, the Intel logo, Ultrabook, and Core are trademarks of Intel Corporation in the US and/or other countries.

Copyright © 2014 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

