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What are the best ways to vectorize game code, to access the power of SIMD vector units 

across the broadest range of popular and emerging CPUs? 

 

Traditionally, SIMD (single instruction, multiple data) code is written with hand-coded 

intrinsics or generated by an auto-vectorizing compiler. Targeting multiple families of SIMD 

intrinsics in your game can add a lot of development time. 

 

Auto-vectorizing compilers have tried to ease the burden of writing code against multiple 

instruction sets, but often leave performance lacking. 

 

There are trade-offs to both approaches. But if you want easy and portable code, with a low 

barrier of entry and improved productivity, use Intel® ISPC. 

 

Why SIMD 
SIMD boosts CPU performance by applying the same operations across multiple data lanes. 

More lanes usually mean better performance—as long as the code aligns with the processor’s 

instruction set.  

 

Game developers typically vectorize their code for the most widely available SIMD instruction 

set. As a result, instruction sets such as Intel® Streaming SIMD Extensions 4 (Intel® SSE4) garner 

the lion’s share of support. Meanwhile, newer sets such as Intel® AVX2 and Intel® AVX-512 are 

comparatively untapped. In some cases, hardcore gamers and early adopters may wonder why 

their state-of-the-art CPU hasn’t delivered the performance boost they expected. 

 

It is likely that developers do not code for every available SIMD set because of the high 

productivity cost of targeting multiple ISAs (instruction set architectures). To make things 

more complicated, different versions of a processor within a processor family might offer 

different SIMD instruction sets. Writing intrinsic code for every instruction set is simply 

impractical. 

Current Methods 
SIMD programming techniques are applied at compile-time or link-time. These techniques 

include: 

 



● Compiler-based auto-vectorization 

● Calls to vector-class libraries 

● Hand-coded intrinsics 

● Inline assembly 

 

Each approach has its pros and cons. Hand-coded intrinsics—when handled by an intrinsics 

ninja—typically deliver excellent results. But hand-coding for a wide range of SIMD instruction 

sets can increase complexity, is time-consuming, and increases maintenance costs. For 

example, if you want to target multiple ISAs, you need to write multiple algorithms. This 

decreases productivity and increases code complexity. 

 

Auto-vectorizing compilers can reduce the complexity of targeting multiple ISAs, but they are 

far from perfect. The compiler is no substitute for an experienced programmer. The 

programmer is often left to optimize manually, using SIMD intrinsics or inline assembly. 

Enter Intel ISPC 
Intel ISPC is a C-like language with new keywords that make vectorization straightforward. It 

abstracts the width of the SIMD registers, and the programmer need only write the program 

for one instance. The compiler then parallelizes the execution across the SIMD units. 

 

Intel ISPC has a rich standard library for math, bit manipulation, memory, and cross-lane 

operations. It’s relatively easy to include in C/C++ applications: simply include a generated 

header and link the resulting object files. 

 

Essentially, Intel ISPC will explicitly vectorize your code to optimize it for various SIMD 

instruction sets on x86 (32bit and 64bit) and 64bit ARM CPUs. It uses an SPMD (single 

program, multiple data) execution model that runs a number of program instances in parallel.  

 

Intel ISPC is available on GitHub* and runs on Windows*, Mac* OS X*, and Linux* operating 

systems. 

Testing One, Two, Three 
We compared the programmer-hours spent writing intrinsics in C++ for multiple ISAs to those 

spent on write-once Intel ISPC code for the same algorithm. Our hypothesis was that Intel 

ISPC would beat a novice SIMD developer in both programmer-hours and performance.   

 

 

Tests compared the performance of:  

 

● Scalar C++ code 

● Auto-vectorized C++ code (Microsoft* C/C++ Optimizing Compiler Version 

19.15.26726) 

● Manually vectorized C++ code 

https://software.intel.com/en-us/node/522569
https://www.agner.org/optimize/#vectorclass
https://ispc.github.io/index.html


● Explicitly vectorized Intel ISPC code 

 

The test platform consisted of: 

 

● CPU: Intel® Core™ i9-9780XE  

● SIMD support: Intel SSE2, Intel AVX, Intel AVX2 and Intel AVX-512 

● Memory: 32 GB RAM 

● Operating system: Windows® 10 Pro (64-bit) 

 

Shoelace Formula Workload 

We used a triangle culling algorithm called the shoelace formula as a test workload. The 

shoelace formula computes the area of triangles. Its name comes from the criss-cross pattern 

used to multiply the X-Y coordinates of a triangle’s vertices. Each vertex has two components, 

X and Y. The sign of the area determines whether the triangle faces front or back, based on the 

winding order. This can be used to determine which triangles need to be culled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The criss-cross, shoelace-style pattern illustrates how the area of a triangle is 

calculated by the shoelace formula. 

 

 

 

 

 

Test Cases 

We used the test cases with the shoelace formula triangle-culling algorithm, as shown in 

Figure 2, to determine whether a triangle faces forward or backward.  

https://www.youtube.com/watch?v=pJRYk-31Mpk


 
Figure 2. Test cases with the shoelace formula triangle-culling algorithm. 

 
Test Case 1 used one million counterclockwise triangles that were not culled by our algorithm. 
Test Case 2 used one million clockwise triangles that were culled by our algorithm. Test Case 3 
used half a million counterclockwise triangles and half a million clockwise triangles, of which 
50% were culled.  

Data Layout Optimization 

Our naïve approach assumed that we could fit all three vertices of a triangle into two Intel SSE 

SIMD registers. This approach worked, but the fourth lane duplicated the first.  

 

 
Figure 3. Array of structures (AoS) data layout: vertex components from each triangle are 

interleaved in an array. 

 

We realized we had fallen into one of the classic pitfalls of SIMD programming: We had 

chosen a data layout that didn’t fully utilize our SIMD registers. We were only using three-

quarters of the lanes available in SSE. 

 
Figure 4. AoS Data Layout loaded into two Intel SSE registers. Notice Lane 3 is a duplicate of 

Lane 0. 

 



The approach shown in Figure 3 worked with the shoelace algorithm, but required an extra 

load operation to fill Lane 3 with the data from Lane 0. Additionally, we were able to operate 

on only one triangle at a time in our Intel SSE registers. 

 

// Naïve Approach (Structure of Arrays of Structures) 

struct alignas(16) Mesh 

{ 

    // Per-Triangle X-Components 

    // [t0x0][t0x1][t0x2] ... [tNx0][tNx1][tNx2] 

    float* x; 

    // Per-Triangle Y-Components 

    // [t0y0][t0y1][t0y2] ... [tNy0][tNy1][tNy2] 

    float* y; 

}; 

 

Figure 5. Code showing our per-triangle data layout. 

 

Our first attempt resulted in a bottleneck. We determined that we could transpose the data 

using additional SIMD registers. This eliminated the need to duplicate a vertex in Lane 3 of the 

SIMD register.  

 

We reorganized our data into a Struct of Arrays (SoA) layout that allowed us to fully utilize our 

SIMD lanes.  

 



 
Figure 6. SoA data layout: vertex components from each triangle are transposed into unique 

arrays. 

 

Using the SoA layout with the Intel SSE instruction set, you can process four triangles 

concurrently.  There is no need for the additional load of duplicated Lane 0 data.  

 

 
Figure 7. SoA data layout loaded into six SSE registers. Note that four triangles can be 

computed concurrently.  

 

 



Our transposed approach required four additional SSE registers. However, as you can see, 

Lane 3 is no longer a duplicate, and we can compute four triangles concurrently with the same 

size registers as our AoS layout.  

 

// Optimized Approach (Struct of Arrays) 

struct alignas(16) MeshSoA 

{ 

    // Per-Vertex X-Components 

    // [t0x0][t1x0][t2x0][t3x0] ... [tNx0] 

    // [t0x1][t1x1][t2x1][t3x1] ... [tNx1] 

    // [t0x2][t1x2][t2x2][t3x2] ... [tNx2] 

    float *x0, *x1, *x2; 

  

    // Per-Vertex Y-Components 

    // [t0y0][t1y0][t2y0][t3y0] ... [tNy0] 

    // [t0y1][t1y1][t2y1][t3y1] ... [tNy1] 

    // [t0y2][t1y2][t2y2][t3y2] ... [tNy2] 

    float *y0, *y1, *y2; 

}; 

Figure 8. Code sample showing our SoA per-vertex data layout. 

 

Running Intel AVX2 with 256-bit registers would allow us to expand to eight triangles. Intel 

AVX-512 would process 16 triangles concurrently. Our conclusion: optimizing data layout 

results in a huge, portable performance gain. 

Data Translation 

In a large code base, refactoring the data layout of a core data structure is often challenging. It 

requires significant developer time and regression testing. However, using SIMD, you can 

translate your data in memory before calculation. This can impact performance, because you 

need to call additional SIMD instructions, but it reduces refactoring time. 

 

 
 

Figure 9. Conceptual diagram of in-memory data layout translation. 

 

The built-in functions of Intel ISPC make this easy. It’s as simple as calling aos_to_soa3 with 

your starting memory location. This loads it into three varying float variables, representing the 

X and Y components of each triangle’s vertices.  



 

// Load X Values  

varying float x0, x1, x2; 

aos_to_soa3(&xx[3*i], &x0, &x1, &x2); 

 

// Load Y Values 

varying float y0, y1, y2; 

aos_to_soa3(&yy[3*i], &y0, &y1, &y2); 

  

Figure 10. Code sample showing the function call aos_to_sao3. This is used to translate data 

layouts in memory using Intel ISPC. 

Porting Scalar C++ to Intel ISPC 

A novice or intermediate software developer may need several attempts to write well 

optimized SIMD code. However, translating our scalar implementation to Intel ISPC took less 

than an hour and was straightforward. More complex algorithms may take longer to port, but 

nowhere near as long as writing all of the hand-coded intrinsics yourself.  

 

    C++ Scalar Using SoA Data Layout                          Intel ISPC Using SoA Data Layout 

void CPP_Scalar_SoA( 

    float const* const x0, 

    float const* const x1, 

    float const* const x2, 

    float const* const y0, 

    float const* const y1, 

    float const* const y2, 

    int cullMode, 

    int &trisCulled 

) 

{ 

    trisCulled = 0; 

 

    // Loop Through Triangles 

    for ( int i = 0; i < 1000000; i++ ) 

    {     

        // First Shift & Multiply 

        float v0m0 = x0[i] * y1[i]; 

        float v1m0 = x1[i] * y2[i]; 

        float v2m0 = x2[i] * y0[i]; 

 

        // Second Shift & Multiply 

        float v0m1 = x1[i] * y0[i]; 

        float v1m1 = x2[i] * y1[i]; 

        float v2m1 = x0[i] * y2[i]; 

void ISPC_AVX_SoA( 

    uniform float const* uniform const x0, 

    uniform float const* uniform const x1, 

    uniform float const* uniform const x2, 

    uniform float const* uniform const y0, 

    uniform float const* uniform const y1, 

    uniform float const* uniform const y2, 

    uniform int cullMode, 

    uniform int &trisCulled, 

) 

{ 

    trisCulled = 0; 

 

     // Loop Through Triangles 

    foreach ( i=0 ... 1000000 ) 

    { 

        // First Shift & Multiply 

        varying float v0m0 = x0[i] * y1[i]; 

        varying float v1m0 = x1[i] * y2[i]; 

        varying float v2m0 = x2[i] * y0[i]; 

 

        // Second Shift & Multiply 

        varying float v0m1 = x1[i] * y0[i]; 

        varying float v1m1 = x2[i] * y1[i]; 

        varying float v2m1 = x0[i] * y2[i]; 



 

        // Subtract for Differences 

        float v0s0 = v0m0 - v0m1; 

        float v1s0 = v1m0 - v1m1; 

        float v2s0 = v2m0 - v2m1; 

 

        // Sum for Area 

        float area = v0s0 + v1s0 + v2s0; 

 

        if (( cullMode == BACK_CW 

             || cullMode == FRONT_CCW) 

            && area < 0.0f) 

        { 

             trisCulled++; 

        } 

        else if  (( cullMode == FRONT_CW 

                     || cullMode == BACK_CCW) 

                    && area > 0.0f) 

        { 

            trisCulled++; 

        } 

    } 

} 

 

        // Subtract for Differences 

        varying float v0s0 = v0m0 - v0m1; 

        varying float v1s0 = v1m0 - v1m1; 

        varying float v2s0 = v2m0 - v2m1; 

 

        // Sum for Area 

        varying float area = v0s0 + v1s0 + v2s0; 

 

        if  (( cullMode == BACK_CW 

              || cullMode == FRONT_CCW)) 

        { 

            varying int test = area < 0.0f; 

            trisCulled += reduce_add( test ); 

        } 

        else if (( cullMode == FRONT_CW 

                    || cullMode == BACK_CCW)) 

        { 

            varying int test = area > 0.0f; 

            trisCulled += reduce_add( test ); 

        } 

    } 

} 

Figure 11. A line-by-line comparison of C++ scalar code and Intel ISPC vector code. 
 
As you can see in the code comparison above, the function signature was modified to add 

uniform keywords. Instead of a for loop, we used the foreach keyword offered by Intel ISPC and 

iterated over the same range with a slightly modified loop syntax. Variables in the loop body use 

the varying keyword. This can be used implicitly but is shown here for clarity. Uniform variables 

represent scalar values, and varying variables represent a vector, with the number of lanes 

defined by programCount.  

 

Compare the above Intel ISPC implementation with our hand-optimized AVX code, below:    
 

                         C++ AVX Using SoA Data Layout 

void Manual_AVX_SoA( 

    float const*const x0, 

    float const*const x1, 

    float const*const x2, 

    float const*const y0, 

    float const*const y1, 

    float const*const y2, 



    int cullMode, 

    int &trisCulled 

) 

{ 

    int i; 

    trisCulled = 0; 

  

    // Loop Through 8 Triangles Per Pass 

    for (i = 0; i < 1000000; i += 8) 

   {  

        // Load Per-Triangle X-Components 

        const __m256 i0x0 = _mm256_load_ps(x0 + i); 

        const __m256 i1x1 = _mm256_load_ps(x1 + i); 

        const __m256 i2x2 = _mm256_load_ps(x2 + i); 

 

        // Load Per-Triangle Y-Components 

        const __m256 i3y0 = _mm256_load_ps(y0 + i); 

        const __m256 i4y1 = _mm256_load_ps(y1 + i); 

        const __m256 i5y2 = _mm256_load_ps(y2 + i); 

  

        // First Shift & Multiply 

        const __m256 m0g0 = _mm256_mul_ps(i0x0, i4y1); 

        const __m256 m0g1 = _mm256_mul_ps(i1x1, i5y2); 

        const __m256 m0g2 = _mm256_mul_ps(i2x2, i3y0); 

 

        // Second Shift & Multiply 

        const __m256 m1g0 = _mm256_mul_ps(i1x1, i3y0); 

        const __m256 m1g1 = _mm256_mul_ps(i2x2, i4y1); 

        const __m256 m1g2 = _mm256_mul_ps(i0x0, i5y2); 

  

        // Subtract for Differences 

        const __m256 d0 = _mm256_sub_ps(m0g0, m1g0); 

        const __m256 d1 = _mm256_sub_ps(m0g1, m1g1); 

        const __m256 d2 = _mm256_sub_ps(m0g2, m1g2); 

  

        // Sum for Area 

        const __m256 s = _mm256_add_ps(_mm256_add_ps(d0, d1), d2); 

 

        // Create a comparison mask  

        const __m256 m = _mm256_setzero_ps(); 



 

        // compare the values against 0 - result will be 0xffffffff or 0 

        const __m256 test = _mm256_cmp_ps(s, m, _CMP_NLE_US); 

        const __m256i test_int = _mm256_cvtps_epi32(test);  // convert the result to an integer 

   

        // set the max to 1 

        const __m256i one = _mm256_set1_epi32(1); 

  

         // compute the min between 0xffffffff/0x0 stored in test_int and 1 

        const __m256i max = _mm256_min_epu32(one, test_int); 

  

         // horizontally add the values to get the result in element 0 

         // adds elements 0 & 1, and 2 & 3 and stores them in elements 0, 1 

        __m256i sum = _mm256_hadd_epi32(max, max);            

         

        // adds elements 0 and 1, the total should now be in element 0 

        sum = _mm256_hadd_epi32(sum, sum);            

 

        // adds elements 0 and 1, the total should now be in element 0 

        sum = _mm256_hadd_epi32(sum, sum);   

 

        // extract the total from element zero 

        int total = _mm256_extract_epi32(sum, 0); 

  

        if (cullMode == BACK_CW || cullMode == FRONT_CCW) 

        { 

            trisCulled += (8 - total); 

        } 

        else if (cullMode == FRONT_CW || cullMode == BACK_CCW) 

        { 

             trisCulled += total; 

         } 

    } 

} 

 

Figure 12. Our hand-optimized AVX code.   
 

As you can see, operations that compare whether the area is greater than or less than zero 

introduce complexity. Meanwhile, readability is reduced when compared to the original scalar 

implementation. 



SIMD Width/Workload Performance 

Measuring our test cases showed that the Intel ISPC code performed just as well as our hand-

optimized C++. However, the Intel ISPC code was much easier to write. 

 

Both proved faster than the naïvely enabled auto-vectorization code. Auto-vectorization might 

improve with additional analysis and optimization. However, such iterations would require 

more development than was necessary to calculate our Intel ISPC performance results. 

 

 

 
Figure 13. Performance data shows Intel ISPC has near identical performance to hand-coded 
intrinsics. Both are faster than naïvely enabled auto-vectorization. 
 

Our test algorithm was memory-bound. Nonetheless, even in a memory-bound application, 

Intel ISPC and/or hand-optimized C++ are faster than scalar or naïve enabling of auto-

vectorization. 

Conclusion 
It takes significant time and effort to learn an instruction set, and its corresponding compiler 

intrinsics. For programmers new to writing intrinsics, achieving working and efficient code is 

time-consuming. And once an algorithm or system is coded in intrinsics, further effort is 

required to port it to another instruction set. 



 

However, we spent several hours writing tests for the various SIMD ISAs in C++ intrinsics, and 

were able to write these tests in Intel ISPC in a matter of hours. Creating subsequent tests for 

different ISAs was as easy as changing a command line option. 

 

 

Writing Multiple ISA Time Estimates* 

Implementation Estimate 

C++ scalar (Control) 2-3 hours 

C++ SSE 2-3 hours 

C++ AVX 2-3 hours 

C++ AVX-512 2-3 hours 

Total  8-12 hours 

*Development time may depend on algorithm complexity 

  

Porting to Intel ISPC Time Estimates* 

Implementation Estimate 

C++ scalar (Control) 2-3 hours 

Intel ISPC porting 1-2 hours 

Total  3-5 hours 

*Development time may depend on algorithm complexity 

 

 



Our testing demonstrated that, for this algorithm, Intel ISPC-generated code performance is 

on par with hand-coded compiler intrinsics. We also learned that Intel ISPC code is 

significantly easier to read than C++ intrinsics. In terms of readability, portability, performance, 

and time savings for new code it pays to spend a short while learning a new language: Intel 

ISPC.  

 

 

 

Appendix: Machine Configuration 

● Processor: Intel® Core™ i9-7980XE CPU @ 2.60GHz (36 CPUs), ~2.6GHz 

● Operating System: Windows 10 Pro 64-bit (10.0, Build 17134) 

● System Manufacturer: Alienware* 

● System Model: Alienware Area-51 R4 

● SSD: NVMe KXG50ZNV1T02 NVM 

● Memory: 32 GB DDR4, ~1.3GHz 
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Sharma, Kamal; Karlin, Ian; Keasler, Jeff; McGraw, James R.; Sarkar, Vivek: Data Layout 

Optimization for Portable Performance  

 

uncredited: Programming Guidelines for Vectorization 
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