Run-to-run Numerical Reproducibility
with the Intel® Math Kernel Library and

Intel® Composer XE 2013

Todd Rosenquist

Agenda

« Why do floating point
results vary?

« Reproducibility in the Intel
compilers

 New reproducibility
features in Intel MKL

Intel'Math Kernel Library
Intel’ Compilers

Floating-point applications from Hollywood to Wall Street have long faced the challenge of providing
both great performance and exactly the same results from run to run, or in other words, reproducible
results. While the main factor causing a lack of reproducible results is the non-associativity of most
floating point operations, there are other contributing factors such as runtime, selectable optimized
code paths, non-deterministic threading and parallelism, array alignment, and even the underlying
hardware floating-point control settings.

In this article for Intel® software tool users and programmers, we outline how to use the Intel® Math
Kernel Library (Intel” MKL) and|Intel” compiler features to balance performance with the reproducible
results applications require. 212} nrew"re_pmducihilit!.I controls in Intel® Parallel Studio XE 2013 help
make consistent nesults [rn run to rur’ Tfossi bile:

IR
INTEL®* SOFTWARE TDOLS REPRODUCIBILITY CONTROLS

°

: mikl_chwr_set()
ﬁt Intel* MKL11.0 MKL_CBWR (environment variable)

~fp-model or ffp
e KMP_DETERMINISTIC_REDUCTION=yes

W,

L

£ AR

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Ever seen something like this?

C:\Users\me>test.exe
.012345678901111

:\Users\me>test.exe
.012345678902222

:\Users\me>test.exe
.012345678902222

:\Users\me>test.exe
.012345678901111

:\Users\me>test.exe
.012345678902222

Optimization H y
o Tl intel
Copyr!| ght© 2012, I t | Corporation. All ri ghts reserved. ~Notl 1

*Other brands and name e the pr prty of their respective owners.

...0r this on different processors?

Intel® Xeon® Processor E5540 Intel® Xeon® Processor E3-1275

C:\Users\me>test.exe
4.

C:\Users\me>test.exe
.012345678901111

C:\Users\me>test.exe
.012345678901111

C:\Users\me>test.exe
.012345678901111

012345678901111 4.

Copyri ght©2012!tlc rporation. All ri ght
*Other brands and name thpprtyfth

pec

C:\Users\me>test.exe

012345678902222

C:\Users\me>test.exe
.012345678902222

C:\Users\me>test.exe
.012345678902222

C:\Users\me>test.exe
.012345678902222

it}
Notice LI (,

served.
tive owners.

Why do results vary?

Root cause for variations in results in Intel MKL
« floating-point numbers and rounding

« double precision example where (a+b)+c = a+(b+c)
26 + 1 + -1 = 263 (mathematical result)
(2% + 1)+ -1 ~ O (correct IEEE result)
263 + (1 + -1)~ 263 (correct IEEE result)

Why might the order of operations
change in a computer program

Optimizations

instruction sets memory alignment affects grouping
of data in registers

multiple cores / most functions are threaded to use

multiple processors as many cores as will give good
scalability

Non-deterministic some algorithms use asynchronous

task scheduling task scheduling for optimal
performance

code path optimized to use all the processor

features available on the system
where the program is run

(Many optimizations require a change in order of operations.)

Optlmlzm lntel ’
Copyright© 2012, Intel Corporation. All rights reserved. |]
E]

*Other brands and names are the property of their respective owners.

Why are reproducible results
important for Intel MKL users?

Technical / legacy
Software correctness is determined by comparison to previous ‘gold’
results.

Debugging / porting
When developing and debugging, a higher degree of run-to-run stability
is required to find potential problems

Legal
Accreditation or approval of software might require exact reproduction of
previously defined results.

Customer perception

Developers may understand the technical issues with reproducibility but
still require reproducible results since end users or customers will be
disconcerted by the inconsistencies.

Source: Email correspondence with Kai Diethelm of GNS. see his whitepaper:
http://www.computer.org/cms/Computer.org/ComputingNow/homepage/2012/0312/W CS ThelLimitsofReproducibilityinNumericalSimulation.pdf

Optimization i ntel‘
Copyright© 2012, Intel Corporation. All rights reserved.)
na

*Other brands and names are the property of their respective owners.

http://www.computer.org/cms/Computer.org/ComputingNow/homepage/2012/0312/W_CS_TheLimitsofReproducibilityinNumericalSimulation.pdf
http://www.computer.org/cms/Computer.org/ComputingNow/homepage/2012/0312/W_CS_TheLimitsofReproducibilityinNumericalSimulation.pdf

What are the

he ingredients for
reproducibility

Source code
Tools

« Compilers

 Libraries

Floating Point Semantics

The -fp-model (/fp:) compiler switch lets you choose the
floating point semantics at a coarse granularity. It lets
you specify the compiler rules for:

- Value safety (our main focus)

- FP expression evaluation

- FPU environment access

Precise FP exceptions

- FP contractions (fused multiply-add)

The -fp-model & /fp: switches

fast[=1] allows value-unsafe optimizations

(default)
fast=2 allows additional optimizations
[precise value-safe optimizations only]
except enables floating point exception
semantics
strict precise + except + disable fma +

don’t assume default floating-point
environment

« Recommendation for reproducibility: -fp-model precise

- for reproducible result and for ANSI/ IEEE standards compliance,
C++ & Fortran

Optimization
Copyr ght© 2012 I t | Corporation. All ri ght erved. L J
ec ive owners.

*Other brands ame! e the pr p rty of the

i

Reassociation

#include <iostream>
#define N 100

int main () {
float a[N], b[N];
float ¢ = -1., tiny = 1.e-20F;

for (int 1=0,; i<N; i++) a[i]=1.0;

for (int i=0; i<N; i++) {
ali] = a[i] + ¢ + tiny
b[i] = 1/alil;
}
std::cout << "a = << al0]
<< b =" << b[0]

-fp-model precise
e disables reassociation

« enforces C std
conformance (left-to-
right)

 may carry a significant
performance penalty

Parentheses are respected only in
value-safe mode!

Reductions
Parallel implementations imply reassociation (partial sums)

* Not value safe, but can give substantial performance advantage

« -fp-model precise
- disables vectorization of reductions, makes value safe
- does not affect OpenMP* or MPI* or TBB reductions

float Ssum(const float A[], int n)

{
int i, n4d = n-n%4;
_ float sum=0, sumI=0, sum2=0, sum3=0;
float Sum(const float A[], int n) for (i=0; i<n4; i+=4) {
{ sum = sum + A[7];
-F-I oat Sum=0; suml = suml + A[i+1];
for (int i=0; i<n; i++ sum = sume + A[1+2];
gum _ sum + A[i]:) sum3 = sum3 + A[7+3];
= ¢ . 7
return sum; sum = sum + suml + sum2 + sum3;
} for (; 1i<n; i++) sum = sum + A[i];

return sum; }

_ptimization H *
Copyr ght© 2012 I t | Corporation. All ri gh served. I 1]) lntel
ective owners.

*Other brands ame e the pr prty of the

Run-to-Run Variations (single-threaded)

Data alignment may vary from run to run, due to changes in the
external environment

« E.g. malloc of a string to contain date, time, user name or directory:
size of allocation affects alignment of subsequent malloc’s

« Compiler may “peel” scalar iterations off the start of the loop until
subsequent memory accesses are aligned, so that the main loop kernel can
be vectorized efficiently

« For reduction loops, this changes the composition of the partial sums, hence
changes rounding and the final result

« Occurs for both gcc and icc, when compiling for Intel® AVX

To avoid, align data:
~mm malloc(size, 32) (icc only)
mkl malloc(size, 32) (Intel MKL)

« or compile with —fp-model precise (icc) or without —-ffast-math (larger
performance impact)

Copyri ght© 2012 I t | Corporation. All r ght
*Other brands ame e the pr prty of the

Reproducibility of Reductions in OpenMP* &
TBB

Each thread has its own partial sum
« Partial sums are summed at end of loop
Breakdown, & hence results, depend on number of threads

Order of partial sums is undefined (OpenMP standard)

- First come, first served

- Result may vary from run to run (even for same # of threads)

- For both gcc and icc

For OpenMP* threading in icc & ifort, option to define the order of
partial sums

- Makes results reproducible from run to run

- export KMP_DETERMINISTIC_REDUCTION=yes (XE 2013)

May also help accuracy

Possible slight performance impact, depends on context
Requires static scheduling, fixed number of threads
Default for large numbers of threads

For Threading Building Blocks (TBB):
- Use the template function: parallel_deterministic_reduce

Optimization intel‘
Copyr ght© 2012 I t | Corporation. All ri ght erved.)
ective owners.

*Other brands ame e the pr p rty of the

Typical Performance Impact
« SPECCPU2006fp benchmark suite compiled with -O2 or -O3

« Geomean performance reduction due to —-fp-model precise and
—fp-model source: 12% - 15%

- Intel Compiler XE 2011 (12.0)

- Measured on Intel Xeon® 5650 system with dual, 6-core processors at 2.67Ghz, 24GB
memory, 12MB cache, SLES* 10 x64 SP2

« Performance impact can vary between applications

(Use -fp-model precise to improve floating point reproducibility
while limiting performance impact

Copyr ght©20121tlc rporation. All r gh
*Other brands ames are the pr prty of the

How did Intel MKL handle
reproducibility historically?

Through MKL 10.3 (Nov. 2011), the
recommendation was to:

« Align your input/output arrays using the
Intel MKL memory manager

« Call sequential Intel MKL

« This meant the user needed to handle
threading themselves

Balancing Reproducibility and Performance:
Conditional Numerical Reproducibility (CNR)

Memory ¢ Align memory — try Intel MKL memory allocation functions
alignment e 64-byte alignment for processors in the next few years

Number of e Set the number of threads to a constant number
threads e Use sequential libraries

Deterministic e Ensures that FP operations occur in order to ensure
task schedu”ng reproducible results

Code path e Maintains consistent code paths across processors
control Will often mean lower performance on the latest processors

T

Goal: Achieve best performance possible
for cases that require reproducibility)

Optimization
Copyright© 2012, Intel Corporation. All rights reserved. ~INC tice CH]

*Other brands and names are the property of their respective owners.

Controls for CNR features

Maximum
Compatiblity

Maximum
Performance

For consistent results ... Function Call Environment Variable
mkl_chwr_set(..) MKL_CBWR=

on Intel® or Intel®-compatible CPUs supporting S5E2 MEL_CBWHR_COMPATIBLE | COMPATIBLE

instructions or later

on Intel® processors supporting SSEZ instructions of later MKL_CBWR_S5EZ2 55E2

on Intel processors supporting S564.2 instructions or later MkL_CBWR_S5E4_¢7 S5B4_2

on Intel processors supporting Intel® AV or later MEL_CBWR_AX AV

from run to run {BUt Not rocessor-to-processor) MEL_CEWR_ALTO AUTO

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

CNR Impact on Performance of
Intel® Optimized LINPACK Benchmark

CNR Off — Maximum peformance with CNR off
AUTO - AUTO - Deterministic task scheduling
AVX - Best performing
AVX

code path on for Intel AVX

SSE4 2 _ SSE4_2 - Code path supported on both processors
COMPATIBLE - Getting reproducible results on 1A

and IA-compatible processors

0 50 100 150 200 250 300 350 400

GFlops (Peak performance)
m Intel® Xeon® E5-2690 (supporting Intel AWX) m Intel® Xeon® ¥5680 (supporting S5E4.2)

Conflguratlon Info - Verslons: Intel® Math Kemel Library (Intel® MKL) 11.0; Hardware: Intel* Xeon® Processor E5-2680, 2 Elght-Core CPUs (20MB LLC, 2.9GHz), 3208 of RA and Intel® Xeon®
Processor X5680, 2 Six-CoreCPUs (12ZMEB LLC, 3.33GHz), 4BGE of RAM;; Operating System: RHEL 6 GA x86_64; Benchmark Source: Intel Corporation.
Test environment: 64-blt executable, Matrlx 40k x 40k, OMP_NUM_THREADS=12

Performance tests and ratings are mezsured using spedfic computer systems andior components and reflect the approcdmate performance of Intel products 25 messured by those tests. Any differencs in system hardware or
software design o configuration may affect 20tual performance. Buyers should consult other sources of Information to evaluate the parformancs of systems oF Componants they are conskiaring purdhiasing. For more

Information on performance tests and on the performance of Intel products, refer 1o wwwintel comdperformenceresources/bendhmark _ImtzSonshim.
* (rther brands and names are the property of thelr respective owners

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include S5E2, 55E3, and 555E3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specrfic to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice. Motice revision #20110804

A

Optimization
Copyright© 2012, Intel Corporation. All rights reserved. I)

*Other brands and names are the property of their respective owners.

What’'s next?

Rate the importance of each of the following Conditional Numerical Reproducibility cases: *
Most Very Somewhat Least
Important Important Important Important Important

Reproducibility from run to run™
(Fintroduced in Intel MKL 11.0, Sept) () o © o
2012)

Reproducibility from processor to — — — — —
processor & i)) iy
Reproducibility without memaory — - — . .
alignment reguirements - — L ~_e =

Reproducibility on variable (versus — — — — —
fixed) numbers of threads - - - - —

Reproducibility from OS to OS5 — — — - -
(Windows™, Linux™, Mac 05 X) - ~ ~ o 2

Reproducibility across architectures — — — — —
(32-bit to 64-bit OS's) e et L o L

Reproducibility Intel MKL version-to- — — — — —
version L = £ L8 @

Reproducibility from run to run on — - - — —
Intel® Xeon Phi™ coprocessors = = — — =

Reproducibility from processor to — — - - -
Intel® Xeon Phi™ coprocessor = = = — =

(htt s:/ /softwareproductsurve .intel.com/s_ur\ﬁ\{/150072[1afd[)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/

Further resources on reproducibility

Reference manuals, User Guides, Getting Started Guides...
« Intel® MKL Documentation

 Intel® Fortran Composer XE 2013 Documentation

« Intel® C++ Composer XE 2013 Documentation

Knowledgebase:
« CNR in Intel MKL 11.0, Consistency of Floating-Point Results

Support

« Intel MKL user forum

« Intel compiler forums [IVF, Fortran , and C++]
« Intel Premier support

Feedback

* Survey: https://softwareproductsurvey.intel.com/survey/150072/1afd/

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://software.intel.com/en-us/articles/intel-fortran-composer-xe-documentation/
http://software.intel.com/en-us/articles/intel-c-composer-xe-documentation/
http://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-visual-fortran-compiler-for-windows
http://software.intel.com/en-us/forums/intel-fortran-compiler-for-linux-and-mac-os-x
http://software.intel.com/en-us/forums/intel-c-compiler
http://premier.intel.com/
https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/

Summary

When writing programs for reproducible results:

Write your source code with reproducibility in mind
Use “-fp-model precise” with Intel compilers

Use the new Conditional Numerical Reproducibility (CNR)
features in Intel MKL

Evaluate CNR in the following:
Intel® Math Kernel Library 11.0
Intel® Composer XE 2013
Intel® Parallel Studio XE 2013
Intel® Cluster Studio XE 2013

Provide feedback:
https://softwareproductsurvey.intel.com/survey/150072/1afd/

http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-composer-xe/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/intel-cluster-studio-xe/
https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

