
 
 
Run-to-run Numerical Reproducibility  
with the Intel® Math Kernel Library and 
Intel® Composer XE 2013 

Todd Rosenquist 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Agenda 

 

• Why do floating point 
results vary? 

• Reproducibility in the Intel 
compilers 

• New reproducibility 
features in Intel MKL 

 

 

 

 

2 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Ever seen something like this? 

3 

C:\Users\me>test.exe 

4.012345678901111 

 

C:\Users\me>test.exe 

4.012345678902222 

 

C:\Users\me>test.exe 

4.012345678902222 

 

C:\Users\me>test.exe 

4.012345678901111 

 

C:\Users\me>test.exe 

4.012345678902222 

 

 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

…or this on different processors? 

Intel® Xeon® Processor E5540  Intel® Xeon® Processor E3-1275  

4 

C:\Users\me>test.exe 

4.012345678901111 

 

C:\Users\me>test.exe 

4.012345678901111 

 

C:\Users\me>test.exe 

4.012345678901111 

 

C:\Users\me>test.exe 

4.012345678901111 

 

 

C:\Users\me>test.exe 

4.012345678902222 

 

C:\Users\me>test.exe 

4.012345678902222 

 

C:\Users\me>test.exe 

4.012345678902222 

 

C:\Users\me>test.exe 

4.012345678902222 

 

 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Why do results vary? 

Root cause for variations in results in Intel MKL 

• floating-point numbers and rounding 

• double precision example where (a+b)+c    a+(b+c) 

   2-63  + 1 +  -1 =  2-63  (mathematical result) 

  (2-63  + 1) + -1   0 (correct IEEE result) 

   2-63  + ( 1 +  -1)   2-63  (correct IEEE result) 

5 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Why might the order of operations 
change in a computer program 

6 

Many optimizations require a change in order of operations. 

Optimizations 

instruction sets memory alignment affects grouping 
of data in registers  

multiple cores / 
multiple processors 

most functions are threaded to use 
as many cores as will give good 
scalability 

Non-deterministic 
task scheduling  

some algorithms use asynchronous 
task scheduling for optimal 
performance 
 

code path optimized to use all the processor  
features available on the system 
where the program is run 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Why are reproducible results 
important for Intel MKL users? 

7 

  

Technical / legacy 
Software correctness is determined by comparison to previous ‘gold’ 
results.  
 

Debugging / porting 
When developing and debugging, a higher degree of run-to-run stability 
is required to find potential problems 
 

Legal 
Accreditation or approval of software might require exact reproduction of 
previously defined results. 
 

Customer perception 
Developers may understand the technical issues with reproducibility but 
still require reproducible results since end users or customers will be 
disconcerted by the inconsistencies. 
  

Source: Email correspondence with Kai Diethelm of GNS. see his whitepaper: 
http://www.computer.org/cms/Computer.org/ComputingNow/homepage/2012/0312/W_CS_TheLimitsofReproducibilityinNumericalSimulation.pdf  

http://www.computer.org/cms/Computer.org/ComputingNow/homepage/2012/0312/W_CS_TheLimitsofReproducibilityinNumericalSimulation.pdf
http://www.computer.org/cms/Computer.org/ComputingNow/homepage/2012/0312/W_CS_TheLimitsofReproducibilityinNumericalSimulation.pdf


Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

What are the ingredients for 
reproducibility 

Source code 

Tools 

• Compilers 

• Libraries 

8 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Floating Point Semantics 

The -fp-model (/fp:) compiler switch lets you choose the 
floating point semantics at a coarse granularity.  It lets 
you specify the compiler rules for: 
 

– Value safety                        (our main focus) 

– FP expression evaluation 

– FPU environment access 

– Precise FP exceptions  

– FP contractions                      (fused multiply-add) 
 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

The -fp-model & /fp: switches 

• Recommendation for reproducibility: -fp-model precise 

– for reproducible result and for ANSI/ IEEE standards compliance, 
C++ & Fortran 

Value Description 

fast[=1] 
(default) 

allows value-unsafe optimizations 

fast=2 allows additional optimizations 

precise value-safe optimizations only 

except  enables floating point exception 
semantics 

strict precise + except + disable fma + 
don’t assume default floating-point 
environment 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Reassociation 
-fp-model precise 

• disables reassociation 

• enforces C std 
conformance (left-to-
right) 

• may carry a significant 
performance penalty 
 

 

 

Parentheses are respected only in 
value-safe mode! 

 #include <iostream> 

 #define N 100 

 

 int main()   { 

   float a[N], b[N]; 

   float c = -1., tiny = 1.e-20F; 

 

   for (int i=0; i<N; i++) a[i]=1.0; 

 

   for (int i=0; i<N; i++)  { 

     a[i] = a[i] + c + tiny; 

     b[i] = 1/a[i]; 

   } 

   std::cout << "a = " << a[0]  

     << "   b = " << b[0]  

             << "\n"; 

 } 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Reductions 

Parallel implementations imply reassociation (partial sums) 

• Not value safe, but can give substantial performance advantage 

• -fp-model precise  

– disables vectorization of reductions, makes value safe 

– does not affect OpenMP* or MPI* or TBB reductions 

 

 

 

 float Sum(const float A[], int n ) 
{ 
    float sum=0; 
    for (int i=0; i<n; i++) 
        sum = sum + A[i]; 
    return sum; 
}  

 float Sum( const float A[], int n ) 
 { 
   int i, n4 = n-n%4;  
   float sum=0,sum1=0,sum2=0,sum3=0; 
   for (i=0; i<n4; i+=4) { 
       sum  = sum  + A[i]; 
       sum1 = sum1 + A[i+1]; 
       sum2 = sum2 + A[i+2]; 
       sum3 = sum3 + A[i+3]; 
   } 
   sum = sum + sum1 + sum2 + sum3; 
   for (; i<n; i++) sum = sum + A[i]; 
    return sum;    }  



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Run-to-Run Variations (single-threaded) 

Data alignment may vary from run to run, due to changes in the 
external environment  

• E.g. malloc of a string to contain date, time, user name or directory: 

   size of allocation affects alignment of subsequent malloc’s 

• Compiler may “peel” scalar iterations off the start of the loop            until 
subsequent memory accesses are aligned, so that the main loop kernel can 
be vectorized efficiently 

• For reduction loops, this changes the composition of the partial sums, hence 
changes rounding and the final result 

• Occurs for both gcc and icc, when compiling for Intel® AVX 

To avoid, align data: 
 _mm_malloc(size, 32)   (icc only) 

 mkl_malloc(size, 32)  (Intel MKL) 

• or compile with –fp-model precise (icc)  or without –ffast-math   (larger 
performance impact) 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Reproducibility of Reductions in OpenMP* & 
TBB 

Each thread has its own partial sum 

• Partial sums are summed at end of loop 

• Breakdown, & hence results, depend on number of threads 

• Order of partial sums is undefined (OpenMP standard) 
– First come, first served 

– Result may vary from run to run  (even for same # of threads) 

– For both gcc and icc 

• For OpenMP* threading in icc & ifort, option to define the order of 
partial sums 
– Makes results reproducible from run to run 

– export KMP_DETERMINISTIC_REDUCTION=yes     (XE 2013) 
– May also help accuracy    
– Possible slight performance impact, depends on context 
– Requires static scheduling, fixed number of threads 
– Default for large numbers of threads 

• For Threading Building Blocks (TBB): 
– Use the template function: parallel_deterministic_reduce 

 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Typical Performance Impact 

• SPECCPU2006fp benchmark suite compiled with -O2 or -O3 

• Geomean performance reduction due to –fp-model precise and 
–fp-model source: 12% - 15%  
– Intel Compiler XE 2011 ( 12.0 ) 

– Measured on Intel Xeon® 5650 system with dual, 6-core processors at 2.67Ghz, 24GB 
memory, 12MB cache, SLES* 10 x64 SP2 

 

• Performance impact can vary between applications 

Use -fp-model precise to improve floating point reproducibility 
while limiting performance impact 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

How did Intel MKL handle 
reproducibility historically? 

Through MKL 10.3 (Nov. 2011), the 
recommendation was to: 

• Align your input/output arrays using the 
Intel MKL memory manager 

• Call sequential Intel MKL 

• This meant the user needed to handle 
threading themselves 

16 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

N
e
w

! 

•Align memory — try Intel MKL memory allocation functions 

•64-byte alignment for processors in the next few years 

Memory 
alignment 

•Set the number of threads to a constant number 

•Use sequential libraries 

Number of 
threads 

•Ensures that FP operations occur in order to ensure 
reproducible results 

Deterministic 
task scheduling 

•Maintains consistent code paths across processors 

•Will often mean lower performance on the latest processors 

Code path 
control 

Balancing Reproducibility and Performance: 
Conditional Numerical Reproducibility (CNR) 

17 

Goal: Achieve best performance possible  
for cases that require reproducibility 

          



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Controls for CNR features 

18 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

CNR Impact on Performance of  
Intel® Optimized LINPACK Benchmark 

19 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

What’s next?  

20 

https://softwareproductsurvey.intel.com/survey/150072/1afd/  

https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/


Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Further resources on reproducibility 

Reference manuals, User Guides, Getting Started Guides… 

• Intel® MKL Documentation 

• Intel® Fortran Composer XE 2013 Documentation 

• Intel® C++ Composer XE 2013 Documentation 

Knowledgebase:  

• CNR in Intel MKL 11.0, Consistency of Floating-Point Results 

Support 

• Intel MKL user forum 

• Intel compiler forums [IVF, Fortran , and C++] 

• Intel Premier support 

Feedback 

• Survey: https://softwareproductsurvey.intel.com/survey/150072/1afd/   

 

 

 
21 

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://software.intel.com/en-us/articles/intel-fortran-composer-xe-documentation/
http://software.intel.com/en-us/articles/intel-c-composer-xe-documentation/
http://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-visual-fortran-compiler-for-windows
http://software.intel.com/en-us/forums/intel-fortran-compiler-for-linux-and-mac-os-x
http://software.intel.com/en-us/forums/intel-c-compiler
http://premier.intel.com/
https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/


Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Summary 

When writing programs for reproducible results: 
• Write your source code with reproducibility in mind 
• Use “–fp-model precise” with Intel compilers 
• Use the new Conditional Numerical Reproducibility (CNR) 

features in Intel MKL 

 
Evaluate CNR in the following: 
Intel® Math Kernel Library 11.0 

Intel® Composer XE 2013 
Intel® Parallel Studio XE 2013 
Intel® Cluster Studio XE 2013 

 
Provide feedback: 

https://softwareproductsurvey.intel.com/survey/150072/1afd/  

 

22 

http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-composer-xe/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/intel-cluster-studio-xe/
https://softwareproductsurvey.intel.com/survey/150072/1afd/
https://softwareproductsurvey.intel.com/survey/150072/1afd/


23 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY 
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS 
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR 
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY 
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. 
 
Software and workloads used in performance tests may have been optimized for performance only on 
Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using 
specific computer systems, components, software, operations and functions.  Any change to any of 
those factors may cause the results to vary.  You should consult other information and performance 
tests to assist you in fully evaluating your contemplated purchases, including the performance of that 
product when combined with other products.  
 
Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk 
are trademarks of Intel Corporation in the U.S. and other countries.  

Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and 
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended 
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for 
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information 
regarding the specific instruction sets covered by this notice. 

Notice revision #20110804 

Legal Disclaimer & Optimization Notice 

Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

24 

24 




