Applying DirectX* Sampler Feedback: Texture Space Shading and Streaming with DirectStorage*

John Gierach, Graphics Driver Performance Lead
Allen Hux, Graphics Software Architect
Intel Corporation

* other names and brands may be claimed as the property of others
Agenda

Overview

Texture Space Shading

UL 3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References
D3D12 Sampler Feedback Background

What is feedback?

- The reverse of texture sampling: which texels were read?
- Efficiently determine what the hardware did
- Pair “feedback” texture with your “real” texture asset

There are two types of Sampler Feedback:

- Mip Region Used
- Min Mip Feedback
Mip Region Used

- Feedback per mip region within a mip
- Texel value = 0xFF if any texel in region touched
- Good for texture space shading

Texture loaded per min mip feedback

0 1 2 3 4 5
Min Mip Feedback

- Texel value = min mip sampled for a mip region
- Stay tuned for Allen’s talk for all the details

Texture loaded per min mip feedback
Texture Space Shading

Pass 1:
Perform expensive lighting calculations and store them in textures

Pass 2:
Rasterize scene while using lit textures from Pass 1
Why Use Texture Space Shading?

- **Skip redundant lighting calculations**
 - Reuse within the same frame (e.g. VR rendering)
 - Reuse across frames

- **Shading rate decoupled from rasterization rate**
 - Performance versus quality adjustable with sampler bias

- **Remove shimmer artifacts rendering from far objects**
How Does Sampler Feedback Help?

- Less Texels Shaded == Better Performance
- Sampler feedback will tell us which texels will be sampled during rasterization
- Only shade texels that will be sampled during rasterization
DX12 Sampler Feedback Flow

- **Begin Frame**
 - Render Scene while engaging
 - FeedbackTexture2D
 - WriteSamplerFeedback
 - Resolve SubResource
 - D3D12_RESOLVE_MODE
 - DECODE_SAMPLER_FEEDBACK
 - Resolve SubResource
 - Resolve Feedback Map to UINT8 format
 - Shade Texels if location touched in feedback Map
 - Render Scene sampling textures using same UVs used in Sampler feedback pass

- **End frame**
 - Check against SRV Decode value 0xff
UL 3DMark® Sampler Feedback Feature Test
UL 3DMark* Sampler Feedback Feature Test

Feature test designed to benchmark sampler feedback performance

Implements 2 modes:
- Sampler Feedback
- Software emulated sampler feedback

Intel Gen 11 results:
- 23% net workload benefit using Sampler Feedback
- Sampler Feedback pass 3.1x faster than emulated path
Workload Design

Sampler Feedback using “Deferred” Approach

1. Collect final Uvs gradients
2. Engage Sampler Feedback
3. Resolve Sampler Feedback
4. Compact Resolved Sampler Feedback
5. Shade Texels in Texture Space
6. Render output
Resource Initialization

- **Create Sampler Feedback Resource**
 - DXGI_format_sampler_feedback_mip_region_used_opaque
 - Mip Region Size 8 x 8 x 1
 - Mip Count 5

- **Create Paired Resource**

- **Create Feedback View**
 - CreateSamplerFeedbackUnorderedAccessView
 - Maps to FeedbackTexture2D in HLSL
Collect Final UVs and Gradients

- Rasterize all scene geometry
- Depth test enabled
- Depth write enabled
- Write UV to render target
- Write Gradient $\frac{\partial}{\partial x}(UV)$, $\frac{\partial}{\partial y}(UV)$ to render target
Engage Sampler Feedback

1. Full screen pixel shader pass
2. Load UVs and gradients
3. Call Write Sampler Feedback Grad with inputs
 - Store results to FeedbackTexture2D object

Performance tip: Application can stochastically skip WriteSamplerFeedbackGrad calls.

Ensure proper image quality when trying this
Resolve Sampler Feedback

- **Call ResolveSubResourceRegion with**

 D3D12_RESOLVE_MODE_DECODE_SAMPLER_FEEDBACK

- After resolve, touched feedback texels will have 0xFF

- Images on right visualize mips touched

- Performance tip:
 - Batch barriers for transitions to/from resolve states
 - Resolve entire mip chain in one ResolveSubResourceRegion call with sub resource index UINT_MAX
Compaction

Goal: Only dispatch compute shader threads for regions that need to get texel shaded

Build data for Execute Indirect:
- Thread group count
- Pixel XY offset per thread group
Texture Space Shading

Perform shading for all touched texels in feedback map

Implemented using ExecuteIndirect

Performance tip:
Use results from higher level mips if available to save costly lighting calculations
Render Final Output

- Full screen pixel shader pass
- Sample shaded texels
- Use SampleGrad with same parameters as Sampler Feedback pass
- Tone map
Special thanks to our partners @ UL for developing this workload!

Feature Test coming Q3’ 2021

Visit https://benchmarks.ul.com/3dmark for more information!

* other names and brands may be claimed as the property of others
Agenda

Overview

Texture Space Shading

3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References
Mip Region Size

- Mip Region Size will map a texel in the feedback map to a region in the paired texture.

- Different Mip Region sizes will change the performance.

- Smaller Mip Region results in finer granularity of a mip region used.

- Smaller Mip Region will result in a larger feedback resource. Which will have:
 - Higher cost for clears
 - Higher cost for resolves
 - Higher bandwidth cost
 - Potentially less shaded texels

Example Data to follow!
Mip Region Example

- Feedback Resource
 Mip Region 4x4x1

- Feedback Resource
 Mip Region 8x8x1

- Feedback Resource
 Mip Region 16x16x1

Paired shaded Resource
Mip Region Size Performance Characteristics

Avg milliseconds per frame

- FEEDBACK CLEAR (MS)
- COMPACTION (MS)
- RESOLVE FEEDBACK (MS)
- TEXTURE SPACE SHADING (MS)

- Mip region 4x4x1
- Mip region 8x8x1
- Mip region 16x16x1

Values:
- FEEDBACK CLEAR (MS): 0.07, 0.05, 0.04
- COMPACTION (MS): 0.69, 0.19, 0.06
- RESOLVE FEEDBACK (MS): 0.51, 0.14, 0.06
- TEXTURE SPACE SHADING (MS): 8.72, 10.38, 12.82
We can’t wait to see how innovative developers will use the feature!

Intel Gen11 processors support Sampler Feedback

Begin developing with Sampler Feedback feature today!

https://benchmarks.ul.com/3dmark
https://store.steampowered.com/app/223850/3DMark/
Thank You!

Up Next:
Sampler Feedback
Streaming with Microsoft Direct Storage*
Sampler Feedback Streaming with DirectStorage* for Windows*

Allen Hux, Intel

* other names and brands may be claimed as the property of others
Agenda

- Asset Streaming Opportunity
- D3D12 Sampler Feedback Background
- D3D12 Reserved Resources
- Connecting DirectStorage®
- Results
- Conclusion & Call to Action
- References
We can draw scenes using assets that, together, far exceed physical memory if we stream just what’s needed per frame.

D3D12 Sampler Feedback identifies what to stream

DirectStorage* for Windows makes streaming simple and efficient
Build Previously Impossible Scenes

- **1000** objects
 - **350MB** texture for each (16k x 16k bc7)
 - no texture re-use

- **350 GB**: total memory for assets
- **230 MB**: physical memory used

- **0.06%** resident (230MB/350GB)

Textures **courtesy Hubble**
Agenda

- Asset Streaming Opportunity
- D3D12 Sampler Feedback Background
- D3D12 Reserved Resources
- Connecting DirectStorage®
- Results
- Conclusion & Call to Action
- References
D3D12 Reserved Resources

Easy memory management for massive assets

- High-performance virtual memory for textures
- Allows partial residency, sub-mip granularity
- 64KB Tiles, dimension a function of texture format
- Tiles from multiple resources in 1 or more heaps

ID3D12Device::CreateReservedResource
Example: Texture on Terrain

- Example of a reserved resource
- This texture is only partially loaded
Example: Texture on Terrain

- Now showing the mips
- No tiles of mip 0 loaded
- mip 1 partially loaded
Example: Texture on Terrain

- Set color = mip level
- Can more clearly see how tiles correspond to the visible texture
- In demo, all tiles (for 350GB or assets) fit within a single 1GB heap
D3D12 Sampler Feedback Background

What is feedback?
- The reverse of texture sampling: which texels were read?
- Efficiently determine what the hardware did

Sampler feedback resources are lower-resolution

Finest Granularity is 4x4
Two Kinds of Feedback

Mip Region Used

- multiple mip layers
- texel value = 0xff if any texel sampled
- good for texture space shading
Two Kinds of Feedback

Mip Region Used
- multiple mip layers
- texel value = 0xff if any texel sampled
- good for texture space shading

Min Mip Feedback
- single-layer
- texel value = min mip sampled
Min Mip Feedback Example

- Consider a 4x4 min-mip map, region size 4x4
- Sample the top left texel of mip 0 (orange)
Min Mip Map

- Feedback answers the question: was it sampled?
- Min mip map answers the question: is it resident?

Idea: if we load everything at & below region, no artifacts e.g. if mip 1 was sampled, trilinear/aniso will also sample layer 2

A min mip map can be created from min mip feedback
Example: Building a Min Mip Map

- **Sampler read orange region**
- **Conforming texture must contain these regions**

Min Mip Feedback

0 FF
FF FF

Min Mip Map

0 3
3 3
Sampler Feedback + Reserved Resources

Color = mip level. For some resources, not all tiles of each mip layer are loaded.

- Set Sampler Feedback region size to reserved resource tile size
 - e.g. 256 x 256 for BC7

- Sampler Feedback min mip map tells you which tiles to load
 - e.g. all tiles at and below mip 3 in a particular region

- Sampler Feedback Resource is very small:
 4KB for 16kx16k BC7
Sampler Feedback Avoids Artifacts

No cracks/seams between tiles at different mip levels
Sampler Feedback Enables Aggressive Memory Management

- Tile resolution drops with distance
- Tiles outside of view can be evicted quickly
- (blurry area is packed mips)
Agenda

- Asset Streaming Opportunity
- D3D12 Sampler Feedback Background
- D3D12 Reserved Resources
- Connecting DirectStorage®
- Results
- Conclusion & Call to Action
- References
File Streaming Background

- Sampler Feedback: what to load
- Reserved Resources: where they are loaded

How do we load the tiles?
Make Your Assets Streaming Friendly

Tile texture assets
- Want: single 64KB contiguous file reads
- DDS Textures: 64 reads per tile! (each row of BCn is 4 high)

Most disks do well with contiguous reads

Sparse reads of 64KB chunks achieve high throughput
File Streaming (for DX) is Hard

Traditionally a lot of bookkeeping
- event handles, upload buffers, copy queue, command lists, command allocators
- may have a dedicated thread to poll event handles & create copy commands

DirectX interaction is complex
- must manage upload resources (e.g., one large shared or many small upload buffers)
- minimize time from start of file load to signal of DX fence

Difficult to implement with high performance
- Want: Low Latency, Maximum Bandwidth, Minimal CPU Overhead
- Especially critical for streaming applications – cannot have multi-frame delay
Streaming with DirectStorage* for Windows

DirectStorage = file loading that speaks DirectX
 - Can synchronize with familiar DirectX fence objects

Replaced hundreds of lines of file upload code
 - fewer kernel transitions, etc.

Faster and lower CPU overhead
 - fewer kernel transitions, etc.

Easily load from disk or memory to regions, tiles, or mips
 - trivial to upload from tiled asset files
Streaming with DirectStorage* for Windows

DirectStorage = file loading that speaks DirectX
- Can synchronize with familiar D3D12 fence objects

Replaced hundreds of lines of file upload code

Faster and lower CPU overhead
- Fewer kernel transitions, etc.

Easily load from SSD or memory to regions, tiles, or mips

DirectStorage replaced hundreds of lines code plus 1 dedicated CPU thread

* Other names and brands may be claimed as the property of others
We have been collaborating closely with Intel on DirectStorage for Windows, and are really excited about new experiences developers will be able to unlock with it.

-Damyan Pepper, Development Lead (DirectStorage for Windows*), Microsoft
Agenda

- Asset Streaming Opportunity
- D3D12 Sampler Feedback Background
- D3D12 Reserved Resources
- Connecting DirectStorage
- Results
- Conclusion & Call to Action
- References
Stream Many (Very) Large Assets

For this scene:

- ~50MB/s
 <250MB physical memory
Summary / Call to Action

Intel® Iris® Xe Graphics and future Intel dGPUs support Sampler Feedback

Intel systems will support DirectStorage* when available

Begin developing with Sampler Feedback today!
Legal Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim hereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.

Your costs and results may vary.

Optimization Notice: Intel® compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

* other names and brands may be claimed as the property of others