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Introduction 

Imperator: Rome is the newest grand strategy game from Paradox Development Studio, and we 

have been working together on its performance on Intel® Iris™ Pro Graphics 580. It was an 

interesting journey because we had to take a slightly different route in terms of the performance 

analysis. The issue we encountered wasn’t necessarily bad performance, but rather an 

occasional stuttering caused by the Gradient Borders rendering system, which made us 

redefine what performance really is. Thanks to the collaboration between Intel and Paradox 

developers you can now enjoy the game with a smooth framerate on a wide variety of Intel’s 

integrated graphics hardware. 

The article you are about to read is a reflection on this collaboration. First, we’ll use classic 

performance analysis and see what conclusions we can get from there. Then, we’ll follow up 

with how we discovered the cause of the stuttering and we’ll question a classic definition of 

performance. Then, with a little technical background beforehand, we’ll look at the problematic 

system in detail, we’ll learn what it does and how it works. Finally, we’ll discuss the 

optimizations that were introduced and the results we were able to achieve. 

Initial Performance Evaluation 

One of the first things that we developer relations engineers try to determine when we start 

working on a game is what limits the performance. We use the term “GPU-bound” or “CPU-

bound” which, loosely translated, means that the highest negative impact on performance is 

either on the GPU or the CPU. Those two pieces of hardware are usually the main suspects 

when we look for performance issues. 

The general rule of determining the limiting factor is rather simple – if the GPU is busy for at 

least 95% of the time, then the game is GPU-bound, if not – then we are probably CPU-bound. 

But what if this is not all there is when it comes to the performance? What if “good performance” 

is more than the average number of frames per second? 

There are many tools to help establish performance-limiting factors, but I personally prefer 

GPUView. It’s a free profiler that comes with Windows Assessment and Deployment Kit 



(Windows ADK). It can give you a quick overview of what is happening on both the CPU and 

GPU which makes it perfect for game performance analysis. It can also show how much work 

both GPU and CPU threads need to process. 

I collected the GPUView trace of Imperator: Rome (Pompey patch) - the game was in Pause 

mode which stops all the ongoing CPU simulations and I was panning the camera over Egypt, 

one of the special areas in the game with dedicated assets. 

 

Figure 1. GPUView trace of the game in Pause mode. It represents three rendered frames, 

shows the work on the GPU as well as active threads. 

 

Figure 1 exhibits the trace with three frames that were presented on the screen – as you can tell 

by looking at the Flip Queue. Flip Queues show the relationship between Vertical Sync (VSync) 

and the data that the application presents on the screen. For better presentation, you can toggle 

VSync events—they are represented by vertical blue lines. You can also see that the Flip 

Queue bars are divided into two sections. A solid color section represents the time spent on 



producing the content for the display, usually done by the Desktop Windows Manager (DWM), 

and the crosshatched section is the idle time where this data waits for the VSync event. 

For this specific period, the GPU is 99.66% busy. You can see that value in the lower right 

corner of the Hardware Queue section. By the definition mentioned earlier this makes the game 

GPU-bound. That means that game workload execution depends entirely on the GPU efficiency 

and in turn also means that optimizing GPU content will improve the performance while 

optimizing CPU workload won’t. 

Next, let’s look at the green sections which represent running CPU threads. The thread with the 

most work is almost 15% busy, while worker threads are around 3% busy. This completes the 

assessment – we are sure that the game is GPU-bound, and the CPU work is not even close to 

impact the performance. 

Next, let’s take a look at the same thing, but this time with a CPU simulation going on in the 

background (figure 2). Playing as Rome, during the early game, I’ve started a war with the 

Samnites as soon as I got casus belli on them, and my subjects joined me. There is a battle 

going on between my main Roman army of 18,000 men and their army of 8,000 men, as well as 

a siege of a fortress. At this point the game is in Play mode. 

The GPU was busy 99% of the time, which would indicate the game is still GPU-bound, even 

with the running simulation. The thread with the biggest workload in this timeframe is now 32% 

busy (in Pause mode it was only 15%). It looks like running the simulation had a significant 

impact on the CPU. However, the game is still GPU-bound. 

Now we know everything, it’s time for the initial performance evaluation. On Intel Iris Pro 

Graphics 580, Imperator: Rome (Pompey patch) was clearly GPU-bound, no matter whether we 

were in Pause or Play mode. The GPU was the main bottleneck and theoretically was the best 

place to target for performance optimizations. 

But what was the actual performance? Well, it was very good—the average score achieved in 

testing was around 30 Frames Per Second (FPS) which means that the game was performing 

well. What was the problem then? Doesn’t 30 FPS mean that the performance is good, and the 

game is playable? 

 



 

Figure 2. GPUView trace of the game in Play mode. Captured early in the game, during a war 

between Romans and Samnites, with an ongoing land battle and siege. 

 

Performance Stuttering Discovery 

Even though the report said the performance was good, something wasn’t right. In Pause mode 

I was able to play without any performance issues. When I hit the Play button it was still fine, but 

as soon as I started to pan the camera around, every couple of frames there was a performance 

hiccup—it felt like the game was skipping a frame or two. And when I paused the game yet 

again, the issue disappeared. To better visualize the problem, I’ve collected some data using 

PresentMon*, a free tool that helps with performance measurements. The chart on Figure 3 



shows the time in milliseconds that has passed between presents on the Y-axis, and the frame 

number on the X-axis. 

 

 

Figure 3. Graph representing milliseconds between presents. Notice the distinct sections with 

big performance variations, which start when entering Play mode and stop when entering 

Pause mode. 

 

Looking at this picture I started to wonder – maybe the world of performance is not as black and 

white as I initially thought. On average we had 30 FPS, but nevertheless the performance didn’t 

“feel” right, and I wasn’t able to fully immerse myself and enjoy the game. Additionally, the initial 

performance evaluation showed that we were completely GPU-bound and suddenly it looked 

like CPU simulation was spoiling it, at least periodically. 

At first, I thought that since the problem appeared along with the CPU simulation, it must be 

related to the CPU workload. Perhaps some very intensive computation was kicking in which 

potentially was making the game periodically CPU-bound, or maybe there was some kind of 

CPU work that needed to be in sync with the GPU and was therefore blocking its execution. To 

investigate that I collected a trace with Intel® Vtune™ Amplifier, a free CPU profiler tool. 



 

    

Figure 4. An Intel® Vtune™ Amplifier trace captured on entering Play mode in the game. 

Orange and red boxes represent moments where the framerate was dropping. 

 

It turned out that none of the options I'd considered were the issue. Figure 4 presents the Frame 

Rate in the first row with a blue graph. I’ve marked the slower periods with orange and red 

boxes. In the orange boxes you can see that the dip in performance is strictly correlated with 

extensive CPU activity, but in the red boxes it is not. Moreover, there were only two times where 

the orange boxes appeared—at the beginning, just after entering Play mode. The rest of the 

trace contained elements that were the same as those in the red boxes. 

I presented these results to the Paradox developers. It turns out that the orange boxes 

represent the situation when simulation initialization takes place. The busiest thread is most 

likely a so-called Session Thread, responsible for executing gameplay commands. The orange 

boxes represent the first unpausing in the new game and the Session Thread was doing some 

initial setup during the first update which caused framerate drop. The session thread will halt the 

Render and Main Thread which are responsible for the Graphics User Interface (GUI) because 

the game state is locked when it is updated and when it is locked the GUI can’t query 

information, so it really shouldn’t present anything. 

Interesting—the short-term CPU-bound performance wasn’t causing this permanent hiccup. If it 

were, then in the red boxes we should have seen a big chunk of continuous work on a single 

thread while the GPU was stalled. There was only one more thing left to test – the GPU. Using 

internal tools, I’ve recorded a piece of gameplay in a form of a list of DirectX API calls. This is a 

technique we use to analyze GPU-bound workloads. The technique simply records API calls 

with all the relevant data, meaning this measure the workload as if you had an infinitely fast 



CPU that didn’t impact performance at all. I replayed the stream, collected the data and 

analyzed the results. 

 

Figure 5. Frame time and number of drawcalls from a GPU stream.  

 

It looks like I’ve found the culprit. Every few frames, the GPU had around twice as much work to 

do. This can happen sometimes when there are some additional drawcalls to process for 

example from non-culled objects. I checked that theory and I noticed that the number of 

drawcalls wasn’t related to performance peaks. 

I was getting closer to the root cause. There was some additional work on the GPU every 

couple of frames and it wasn’t many additional draw calls. There might be just a couple of 

additional drawcalls in those frames or some of the drawcalls were much longer than usual. 

Using Intel® Graphics Performance Analyzers (Intel® GPA), I was able to capture one of those 

frames from the stream (figure 6). 

Finally, I found the cause of the stuttering. There were in fact seven additional drawcalls in that 

frame. Their execution took almost 40 ms which would explain this “missing frame” feeling I had 

at the beginning. Rendering this one frame took the same amount of time as rendering two 

regular frames. I reported my findings back to Paradox, and we finally knew what was 

happening—the Border Rendering System was taking excessively long on the GPU. I asked 

one of the Paradox developers, Daniel Eriksson, to explain this system a little bit more. 

 



 

    

Figure 6. A long frame captured with the Intel® GPA tool. Orange boxes show the additional 

drawcalls that are not present in fast frames. Executing them takes almost 40 ms on an 

integrated GPU.   

 

Technical Background 

Before we move forward, I would like to introduce a couple of technical terms and algorithms 

that will be used later in the article. 

Distance Field 

Distance Field is an interesting technique that utilizes a texture as a tool to describe complex 

shapes. You can think of such texture as a grid where, instead of color, each pixel holds the 

distance to the nearest geometry. Imagine borders between countries as the geometry—if we 

knew distances to that geometry for each pixel, we would be able to achieve a nice gradient 

around it, and this is exactly what Paradox did in Imperator: Rome. 



  

    

Figure 7. Examples of a Distance Field texture (sometimes referred to as “map”). The left one 

represents the Unsigned Distance Field, while the right represents the Signed Distance Field. 

Note that values 0.0 (representing the shape) are here for educational purposes only. In the 

actual texture there is no need to be this explicit. 

 

In Figure 7 you can see two very simple 5x5 Distance Field textures. On the left the image 

represents an Unsigned Distance Field while the right image represents a Signed Distance 

Field—the sign tells us if the pixel lies inside or outside the geometry. Since the shapes we are 

trying to describe (the borders) don’t have an “inside” we can never have negative values, 

therefore we will be using Unsigned Distance Fields only. This also means our level of precision 

very close to the edges will be quite low: Paradox asks artists to be careful when tweaking the 

parameters for the mask to avoid artifacts around the edges. 

Distance Fields have several advantages over keeping the map as an ordinary texture. First, the 

map is very big and keeping a single value instead of three (one for each color) significantly 

reduces the cost of sampling as well as the texture size itself. Additionally, Distance Fields help 

to maintain higher quality than an ordinary texture when you are close to the line —you could 

use this 5x5 texture to render into a 1080p render target and get a thin crisp line, whereas if you 

used a traditional texture it would be magnified and blurry. Lastly, the game allows modding 

which means that players and creators must be able to modify the map easily. 

Jump Flooding Algorithm 

The second important term is Jump Flooding Algorithm (JFA). In Imperator: Rome JFA is used 

to construct the Distance Field texture, but it has other applications, for example to construct 

Voronoi diagrams. The input to this algorithm is a texture that contains some arbitrary values 

that mean “no data”, which provide the seed for the JFA. In the case of Imperator: Rome these 

seeds would indicate borders in the game world. The algorithm then traverses this entire texture 

a couple of times and calculates the Distance Field for each pixel. It does so by sampling 8 

neighboring pixels (4 in cardinal and 4 in ordinal direction) that are in a “step” distance offset 

from the given pixel. This “step” changes for each algorithm iteration. With information from all 8 

pixels it determines the temporary closest distance to the nearest border. 



    

 

   

    

Figure 8. Jump Flooding Algorithm, distance calculation for one iteration of a single pixel.  

 

Figure 8 should help with visualizing the algorithm. The red dot is a pixel for which we will be 

calculating the distance. Orange dots represent eight sampling points. The black line is a seed, 

or in other words the geometry, or the edge. This represents the actual border between the 

territories in Imperator: Rome. The dotted line represents a step which changes to a lower value 

for every iteration. Note that for this particular pixel the result would be incorrect since there is a 

closer geometry. However, this would be fixed in the further iterations where each step would be 

significantly lower. 

Gradient Borders 

In Imperator: Rome borders between countries are shown as an overlay of the terrain, with a 

black spline to show the shape of the border and a color gradient to associate each side of the 

border with a country or other data, depending on the map mode. In this article I will only talk 

about the color gradient. Figure 9 is an example of how borders look in the game. The color 

gradient is achieved with two independent steps: a color lookup in a Color Map, and a sample 

from Distance Field texture. 



 

    

Figure 9. A screenshot from the gameplay, showing the application of a Primary and a 

Secondary Color. The border on Nepete territory uses red as primary color indicating that this 

is where the Rome border ends. Purple is the primary color for Pyrgi indicating ownership of 

the territory, and red is a secondary color, indicating that Rome currently occupies it. 

 

Color Lookup 

There are three different colors that a shader can access: 

● Primary: the color you’ll see the most. Used as the primary color value of a map mode, 

for instance to show the owning country’s color in the default map mode (in Figure 9, the 

red color at the borders of Nepete or Carsioli territory) 

   

● Secondary: this color is blended with the diagonal stripe pattern. Used for secondary 

color value of a map mode, for instance to show an invading country’s color as stripes 

over the owning country’s color in the default map mode (in Figure 9, the red stripes over 

Pyrgi) 

   



● Highlight: used to highlight a province or area for the player by blending a color over it 

(rarely used, not shown in the picture) 

 

We hold all this information in a texture called the Color Map. The Color Map is recalculated 

whenever something relevant in the game state changes, like a province changing ownership, 

another country starting to occupy a territory, or when a player changes a map mode (as shown 

in Figure 10). The layout in which the Color Map holds the colors can be seen on Figure 11 on 

the right. The red rectangle indicates where the Primary color is stored, green rectangle 

indicates Secondary color and blue rectangle indicates Highlight color. 

  

 

Figure 10: Whenever  map mode changes, the Color Map is filled with new data. 

 

We can obtain the color to use for any point on the map with one level of indirection. First, for 

each object that wants to use it (like terrain or mountains), we normalize the point coordinate 

from world-space to the 0-1 range in a pixel shader. Then we use that to point sample a huge 

lookup texture (8192x4096, R8G8_UNORM, Figure 11 on the left), which will give us UV-

coordinates that we can use to get the primary color value from a much smaller Color Map 

(256x256, R8G8B8A8_UNORM, Figure 11 on the right). We can obtain Secondary and 

Highlight colors by simply offsetting those coordinates. 



  

 

Figure 11. Color Lookup Texture (left) and Color Map (right). The Color Lookup Texture 

contains UV coordinates to use in the Color Map in order to obtain a Primary (red rectangle), 

Secondary (green rectangle) or Highlight (blue rectangle) color. 

 

There is a reason for this indirection—the Lookup Texture needs to be calculated only once 

when the game starts and only needs two channels for the UV coordinates. This texture never 

changes afterwards. We need to calculate this instead of loading from it as predefined asset 

because scripts and mods can change how provinces are laid out. Then, when a color needs to 

be updated, we only need to update this single Color Map instead of what would be 3 

uncompressed 8192x4096 4-channel textures. 

Distance Field Texture 

The second piece of information we need is how much blending of a color to apply, and for that 

we need a Distance Field Texture. 

The Distance Field part is quite simple—as with the color lookup texture, we sample it using a 

normalized world-space coordinate. The coordinate normalization takes place in the pixel 

shader for all terrain, and the Distance Field Texture is sampled multiple times to make 

gradients a bit smoother. Each pixel in the Distance Field Texture contains an approximate 

distance to the “edge”. We use this value, combined with some constants and artist adjustable 

parameters, to calculate how much of the color we want to blend into the terrain. 

 



 

    

Figure 12. Final Distance Field Texture. Each pixel holds the distance to the nearest border. 

 

Drawing Borders 

Once we’ve applied the artist-provided parameters to the distance we’ve sampled from the 

Distance Field we get the Mask Value. This Mask Value can then be used to blend the color we 

get from the color map step into the terrain. Figure 13 shows all the pieces in one picture. 

Distance Fields are effective because a low-resolution image will give almost as accurate 

results as a high-resolution image when sampled with a linear filter. The Gradient Borders 

system uses an Unsigned Distance Field which will have some problems with the precision 

close to the edges. Signed Distance Fields don’t have that problem. If you’re unfamiliar with 

signed distance fields I’d recommend reading Improved Alpha-Tested Magnification for Vector 

Textures and Special Effects by Chris Green of Valve*. 

 



 

    

Figure 13. All the necessary components to calculate gradient for terrains. The Mask is the 

result of the application of artist-adjustable parameters to the Distance Field values. Color 

Map in this case is combined result of sampling both textures from figure 11. The white dotted 

line is a markup of where approximately the border lies. 

 

Calculating Distance Field 

The question that remains is how to create the Distance Field. We want to achieve a result 

where each pixel in the Distance Field texture contains the accurate distance to the closest 

edge. In practice we can’t get the exact results, but we can come pretty close—and quite quickly 

too. 

The Distance Field is calculated on the GPU using a Jump Flooding Algorithm. Basically, what 

this means is that we first need to find the edges, and once we’ve found them, we can run JFA 

and “spread” the knowledge about those edges to neighboring pixels in (O(log(n)) iterations, 

where n is the maximum distance of the spread. 

Running JFA on the GPU typically requires at least two-pixel buffers that are both read from and 

written to in a ping-pong manner – you read from one texture and write to another, then you 



swap the two textures, so that during the next iteration we read the results from the previous 

iteration and write to the input of the next iteration. In our Gradient Borders system these two 

textures use the R8G8_UNORM format. The two channels are used during the JFA to store 

distances to the closest edge in both axes separately, which allows us to use Euclidean 

distance metrics for good precision. We also have an R8_UNORM texture in which we store the 

final normalized distance (figure 12). 

To sum it up before we go into detail, the Distance Field calculation executes four different 

steps. 

1. Pre-Pass for Coastal Border, which creates a mask used to suspend the creation of 

coastal borders in ocean provinces. 

   

2. The Init Step, which ensures that each pixel (in the down-sampled texture used to seed 

the JFA) contains either (255, 255) if all of the sampled pixels belong to the same “area-

that-we-want-borders-around” or (distance-x, distance-y) if multiple areas are found 

within the sampled space; during this step we will sample the Color Lookup and Color 

Map a lot.  

   

3. Actual JFA algorithm performed in five iterations. 

   

4. The Distance Field texture creation from the JFA output. 

 

Below is a table with snapshots for each step of that process. Each picture presents a 64x64 

texture. The dot (which consist of four pixels) in the Init phase represents a seed for JFE. In-

game, that dot would be replaced by country borders. 

    

 

   

    

Init. To seed the JFA we need to provide it with some initial data that 

it can expand on. To create this data we run one pass that will both 

detect the edges using the color sampling method mentioned earlier, 

and down-sample from the lookup texture’s size by a factor of 4 (a 

cheaper sample and distance field is a good way to compress 

distances since it can represent data in between 3 pixels). The 4 

center pixels are not black but contain distances in x and y to the 

closest-pixel-of-another-color. The yellow pixels have the value 

(255,255) which means that the closest edge to this pixel is currently 

as far away as it can be.     



    

  
   

   

   

    

JFA 1. In the first iteration each pixel will sample their neighbors with 

an offset of 16 pixels. A pixel will update its own value if the distance 

to the neighbor + the length of the vector stored in that neighbor is 

less than the length of the vector stored in the pixel. If updated the 

pixel’s new value will be the neighbor’s value plus the offset used to 

reach that neighbor.     

    

  
   

   

   

    

JFA 2. Repeat the previous step, but with an offset 8.   

    

    

  
   

   

   

    

JFA 3. Same, but with offset 4. 

     



    

  
   

   

   

    

JFA 4. Same with offset 2. 

    

  

    

  
   

   

   

    

JFA 5. Finally, same with offset 1. It can be hard to see the 

differences between this and the previous step. Note that in the 

center of the Init step there is actually a 2x2 area that is initialized. If 

you look closely at the texture in the previous step, you’ll see that, 

while there are no gaps, every other pixel will “overshoot” and is not 

very precise. Now each pixel  contains two values representing the 

distance to the closest edge in x-axis and y-axis, which can be 

treated as vectors.  

    

  
   

   

   

    

The last step is where we create the gradient texture. 

All we need to do is to calculate the length of those two vectors for 

each pixel and we are done.     

    

 

To make things a bit more complicated, this is of course not enough to satisfy Paradox’s artists. 

The method described above, where we detect edges between provinces of different color, will 

work perfectly fine for most of the map. However, we will also get the gradients blending in on 



Imperator: Rome’s beautiful coastlines, which does not look very good. We tried simply ignoring 

edges towards water in the edge detection pass but that instead caused problems where two 

countries are divided by a large river for instance. 

 

 

Figure 14. In green: Areas where we want gradients. In red: Areas where we don’t. 

 

The solution was a pre-pass that supersamples the colors and creates a mask that tells the 

edge detection which parts of the map to ignore. It searches for specific “wildcard” colors and 

sets the mask to ignore edges for any pixel that is a wildcard and has only 1 or 0 nearby non-

wildcard colors. 

Below is an animated GIF that shows how distance information is populated for each step of the 

JFA for the entire map. And this is what was causing the performance stuttering—a big and 

complex simulation, running on a GPU with a lot of sampling from a very big texture. 



 

Figure 15. Animated process of Distance Field calculation for the entire map. 

 

System Optimizations 

The performance hit when calculating the gradients wasn’t very noticeable on the discrete 

GPUs. We could see a spike of a few milliseconds whenever the gradients were recalculated, 

but these events were rare and only an immediate result of the player pressing a button. We 

never profiled this feature on an integrated GPU where the spikes became very noticeable and 

irritating. Lesson learned. 

The first thing that showed when we started profiling the issue was that these recalculation 

events weren’t as rare as we initially thought. It turned out that the gradients were being 

updated as soon as one of the three colors for a province was updated, even though the 

gradients only rely on one of those three. In addition, we never checked if anything had actually 

changed before recalculating the gradients. With those two issues fixed, we reduced the 

frequency of the spikes a lot, from one spike almost every in-game day to maybe one spike per 

month or so, if that. 

But each spike is still very noticeable and irritating. After the first two fixes were implemented 

(only triggering for relevant color changes and making sure something actually changed before 

recalculating gradients) we could easily see and measure what parts of the map needed to be 

updated. Most of the time we only want to update a few provinces at once. Logs showed that we 



update either just a few provinces, or almost the entire map. There are some cases in between 

but those are very rare. 

With this in mind, we decided that the most bang-for-buck optimization we could do was to 

optimize for the common case, which is a few provinces updating at a time. The entire gradient 

border update is done much like post effects: A very simple vertex shader for one single triangle 

that covers the entire clip space, and a pixel shader to do the actual work. The optimization we 

implemented switches the geometry from one “full-screen” triangle for the entire map to a list of 

quads where each quad covers an area in the distance field that needs to be updated. Simple, 

elegant, and very efficient. This optimization alone not only reduced the amount of work for the 

GPU but in turn also the number of samples, which was one of the main reasons for poor 

performance in this case. There were a lot of samples from a very big texture which caused 

inefficiency in caching and a necessity to fetch the data from system memory. 

Generating the quads is also pretty straightforward. We already know the axis-aligned bounding 

box for each province, so all we need to do is to convert either the roof or the floor of that to a 

quad, but with some extra width so that the quad covers the maximum area that the gradient 

can affect. In other words, we extrude each side of the quad with the maximum distance of the 

distance field. When there are multiple areas that need to update there is a chance that the 

quads for those areas will overlap, which would mean a pixel could get calculated twice—and 

we don’t want that. To avoid the overlap issue, we let the CPU run the algorithm that cuts and 

merges the overlapping quads on a background thread before it is time to render. There is a 

tipping point where this quad-merging task start to cost more time than it saves (and the tipping 

point is different on different hardware), so keeping in mind that we want to optimize for the 

common case (where only 1-10 provinces are updated) we revert to updating the entire map 

when the number of quads needed gets large enough. 

In Figure 16 you can see the quads that were generated after a country of about 6 provinces 

was annexed by the player. Since we know that nothing outside this area has changed, we can 

run JFA on this small area only instead of the entire map. Pixels near the edges of the quads 

can safely sample the pixels outside of the area and still produce the same result. 

 



 

Figure 16. After the optimization, only a part of the Distance Field texture needs to be 

updated. Quads represents the area that needs to be updated after a country of 6 provinces 

is annexed by the player. 

 

Summary 

As you can see, performance is not always a matter of being either CPU- or GPU-bound—I 

would rather think of it as a measure of player satisfaction. Thanks to the great work of Paradox 

developers, the stuttering issue was addressed and fixed, and now more people can enjoy the 

game without any stuttering. 
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Tools and References 

Windows Assessment and Deployment Kit (Windows ADK) is available here 

PresentMon*, a free tool that helps with performance measurements, is available here 

Intel® Vtune™ AmplifierVTune, a free CPU profiler tool, is available here. 

Improved Alpha-Tested Magnification for Vector Textures and Special Effects by Chris Green of 

Valve* is available here. 

 

https://docs.microsoft.com/pl-pl/windows-hardware/get-started/adk-install
https://docs.microsoft.com/pl-pl/windows-hardware/get-started/adk-install
https://docs.microsoft.com/pl-pl/windows-hardware/get-started/adk-install
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https://github.com/GameTechDev/PresentMon
https://github.com/GameTechDev/PresentMon
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https://github.com/GameTechDev/PresentMon
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://steamcdn-a.akamaihd.net/apps/valve/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf

