
Performance essentials using OpenMP
4.0 vectorization with C/C++
Authors: Anoop Madhusoodhanan Prabha, Bob Chesebrough

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation
Why do developers care about this technology

2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Problem Statement:

 Vector widths are increasing per core and extensions to languages are
needed to give best performance on new architectures

 Solution:

 Multiple methods are available to developers to program using explicit vector
programming

 We will explore the OpenMP* 4.0 SIMD approach

Goal: Provide language extensions to simplify vector parallelism;
Enable developers to extract more performance from SIMD
processors

4/29/2014
3

Why explicit vector programming?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Trend: Vector widths and core counts are both increasing. Intel
provides developers with explicit methods address these trends

 4/29/2014
4

Growth trends for vector registers

Vector Width

128 bit vector width (XMM)
4 floats, 4 integers at same time

64 bit vector width (MMX)
2 Integers at same time

256 bit vector width (YMM)
8 floats at same time

512 bit vector width (ZMM)
16 floats at same time

T
im

e

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4/29/2014
5

Performance Objective - Maximize Use
of SIMD HW per core

 S
ca

la
r lo

o
p

Vector Lanes (8 for AVX)

Use all vector lanes if possible

Compare
timing of 8
loop
iterations:
Scalar versus
SIMD

Vector Lanes (8 for AVX)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4/29/2014
6

Performance Objective:
Maximize Use of SIMD HW per core

Vector Lanes (8 for AVX)

Single Lanes are the result
of function calls within the
loop which serializes
computation in the bottom
portion of the loop in this
example

Vector Lanes
(4 for SSE2)

Use SIMD-Enabled functions
to remove these barriers

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Note:

Wider vectors allow for higher potential performance gains

Gains of 4x and 8x within reach using vectorization capability

4/29/2014

7

Potential Performance Speedups

8x potential for MIC

4x potential for AVX 256 bit

512 bit

Double Precision FP vector width vs speedup potential

128 bit 2x potential for SSE2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD Concepts
Necessary conceptual background

8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4/29/2014
9

Many Ways to Vectorize

Ease of use Compiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Explicit Vector Programming

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 4/29/2014

Need Common Programming Models:
Explicit Vector Programming

Array Notation

SIMD pragma

SIMD-Enabled Function

• When auto-vectorization is limited
we need to explore explicit vector
programming to enable the
potential performance in your
application

OpenMP* Threaded Programming Explicit vector programming

Auto-Vectorization Auto-Parallelization

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4/29/2014
11

Ways to Write Vector Code

for(i = 0; i < N; i++){

 A[i] = B[i] + C[i];

}

Serial Code

A[:] = B[:] + C[:];

Array Notation for C/C++

#pragma omp simd

for(i = 0; i < N; i++) {

 A[i] = B[i] + C[i];

}

SIMD Pragma/Directive

#pragma omp declare simd

float foo(float B, float C)

{

 return B + C;

}

…

A[:] = foo(B[:], C[:]);

SIMD-Enabled Function
 with Intel® Cilk™ Plus Array Notation

Data Level Parallelism with OpenMP* 4.0 Vectorization

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP* 4.0 SIMD-Enabled Functions
Features and use

12

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-enabled functions allow user defined functions to be
vectorized when:

 called from within vectorized loops

 or are called with array notation array arguments.

The vector declaration and associated modifying clauses specify
the vector or scalar nature of the function arguments.

It is recommended to add the simd-enabled directive to the
function prototype or header file

Implementations exist for :

 Intel® Cilk™ Plus

 OpenMP* 4.0

4/29/2014
13

Overview: SIMD-enabled functions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Write a function for one element and add pragma as follows

 Call the scalar version:

 Call vector version via SIMD loop:

 Call it with Intel® Cilk™ Plus array notations:

14

SIMD-enabled functions

#pragma omp declare simd

float foo(float a, float b, float c, float d)

{

 return a * b + c * d;

}

#pragma omp simd

for(i = 0; i < n; i++) {

 A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Allows use of scalar syntax to describe an operation on a single
element

The programmer:

 Writes a standard function which operates on scalar values

 Annotates it the function with vector attribute and modifier clauses #pragma
omp declare simd

 Utilize appropriate modifier clause for vector attribute

 Invokes the function to operate on arrays of arguments rather than scalar
arguments

The compiler:

 Generates a scalar and a short vector version(s).

 Can call the vector function from vectorized loop

 Can call the scalar function from a scalar loop (legacy code)

15

Concept of SIMD-enabled functions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why do we need them?

Because unless uniform or linear are specified each parameter to
the function will be treated as a vector

 Reference: http://software.intel.com/en-us/articles/usage-of-linear-and-
uniform-clause-in-elemental-function-simd-enabled-function-clause

 16

SIMD-enabled functions: Linear/
Uniform

#pragma omp declare simd uniform(a) linear(i:1)

void foo(float *a, int i):

a is a pointer

i is a sequence of integers [i, i+1, i+2, …]

a[i] is a unit-stride load/store ([v]movups)

#pragma omp declare simd

void foo(float *a, int i):

a is a vector of pointers

i is a vector of integers

a[i] becomes gather/scatter.

http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

#pragma omp declare simd

float my_simdf (float b) { … }

SIMD-enabled functions: Invocation

Construct Example Semantics

Standard for loop for (j = 0; j < N; j++) {

 a[j] = my_simdf(b[j]);

}

Single thread,
potentially auto-
vectorizable

#pragma omp simd #pragma omp simd

for (j = 0; j < N; j++) {

 a[j] = my_simdf(b[j]);

}

Single thread,
vectorized; use the
appropriate vector
version

Intel® Cilk™ Plus Array
notation

a[:] = my_simdf(b[:]); Single thread,
vectorized; use the
appropriate vector
version

17

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Callee Site

 Call site

 Vectorization report



 Reference: http://software.intel.com/en-us/articles/call-site-dependence-for-
elemental-functions-simd-enabled-functions-in-c

Call site dependence

testmain.cc(5): (col. 13) remark: OpenMP SIMD LOOP WAS VECTORIZED

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED

#pragma omp declare simd uniform(a),linear(i:1),simdlen(4)

void foo(int *a, int i){

 std::cout<<a[i]<<"\n";

}

#pragma omp simd safelen(4)

for(int i = 0; i < n; i++)

 foo(a, i);

18

http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Callee Site

 Call site



 Vectorization report

Call site dependence (cont)

testmain.cc(14): (col. 13) remark: OpenMP SIMD LOOP WAS VECTORIZED

testmain.cc(21): (col. 9) remark: No suitable vector variant of function

'_Z3fooPii' found

testmain.cc(18): (col. 1) remark: OpenMP SIMD LOOP WAS VECTORIZED

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED

#pragma omp declare simd uniform(a),linear(i:1),simdlen(4)

void foo(int *a, int i){

 std::cout<<a[i]<<"\n";

}

#pragma omp simd safelen(4)

for(int i = 0; i < n; i++) foo(a, i);

#pragma omp simd safelen(4)

for(int i = 0; i < n; i++){

 k = b[i]; // k is not linear

 foo(a, k);

}

19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Callee Site



 Call site



 Vectorization report



Reference: http://software.intel.com/en-us/articles/call-site-dependence-for-
elemental-functions-simd-enabled-functions-in-c

SIMD-enabled function
Multiple vector definitions allowed

testmain.cc(14): (col. 13) remark: OpenMP SIMD LOOP WAS VECTORIZED

testmain.cc(18): (col. 1) remark: OpenMP SIMD LOOP WAS VECTORIZED

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED

#pragma omp declare simd uniform(a),linear(i:1),simdlen(4)

#pragma omp declare simd uniform(a),simdlen(4)

void foo(int *a, int i){

 std::cout<<a[i]<<"\n";

}

#pragma omp simd safelen(4)

for(int i = 0; i < n; i++) foo(a, i);

#pragma omp simd safelen(4)

for(int i = 0; i < n; i++){

 k = b[i]; // k is not linear

 foo(a, k);

}

20

http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP* 4.0 SIMD Loops
Features and use

21

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The following example will likely fail to auto vectorize

Without SIMD directive, vectorization will fail since there are too
many pointer references to do a run-time check for overlapping
arrays

22

Pragma omp SIMD Motivation

void add_fl(float *a, float *b, float *c, float *d,

float *e, int n)

{

 #pragma omp simd

 for (int i=0; i<n; i++)

 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compiler checks for:

 Is *p loop invariant?

 Do A[], B[], C[] overlap?

 Is sum aliased with B[] and/or C[]?

 Does the order of math operations matter?

 Vector computation expected to be faster than scalar code? (efficiency
heuristic)

Auto vectorization is limited by the language rules:
you can’t say what you want!

4/29/2014
23

Auto-Vectorization – Serial Constraints

for(i = 0; i < *p; i++) {

 A[i] = B[i] * C[i];

 sum = sum + A[i];

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Programmer asserts:

 *p is loop invariant

 sum not aliased with B[] or C[]

 A[] does not overlap with B[] or C[]

 sum should be treated as a reduction

 Allow compiler to reorder for better vectorization

 Vector code should be generated even if efficiency heuristic does not indicate
a gain in performance

Explicit vector programming lets you express what you mean!

4/29/2014
24

Explicit Vector Programming with SIMD
Pragma/Directive

#pragma omp simd reduction(+:sum)

for(i = 0; i < *p; i++) {

 A[i] = B[i] * C[i];

 sum = sum + A[i];

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The two statements with the += operations have different
meaning from each other

The programmer should be able to express those differently

The compiler has to generate different code

The variables i, p and step have different “meaning” from each
other

25

Data in Vector Loops

float sum = 0.0f;

float *p = a;

int step = 4;

#pragma omp simd

for (int i = 0; i < N; ++i) {

 sum += *p;

 p += step;

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Linear and reduction clauses make this usage explicit.

26

Data in Vector Loops

float sum = 0.0f;

float *p = a;

int step = 4;

#pragma omp simd linear(p:step)reduction(+:sum)

for (int i = 0; i < N; ++i) {

 sum += *p;

 p += step;

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP 4.0: #pragma omp simd [clause [,clause] …]

Targets loops

 Can target inner or outer loops

Developer responsible for results

 Developer asserts loop is suitable for SIMD

 no loop-carried dependencies and iterations can be evaluated in parallel

 Can choose from lexicon of clauses to modify behavior of SIMD directive

 Developer should validate results

27

SIMD Pragma Notation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

.

28

Data in Vector Loops

extern float *a;

float sum = 0.0f;

float *p = a;

int step = 4;

int i,j;

#pragma omp simd collapse(2) reduction(+:sum)

linear(p:step) aligned(p:16) safelen(4)

for(i = 0; i < N; i+=8) {

 for(j = i; j < i+8; j++) {

 sum += *p;

 p += step;

 }

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Increase Performance with
Explicit Vector Programming

29

OpenMP* 4.0 SIMD extensions is supported by:

• Intel® Cluster Studio XE

• MPI hybrid cluster development tools

• Intel® Parallel Studio XE Suites

• C, C++ and Fortran compilers, libraries and analysis tools

• Intel® Composer XE Suites

• Compilers and performance libraries

Try it for free!
intel.ly/perf-tools

http://intel.ly/perf-tools
http://intel.ly/perf-tools
http://intel.ly/perf-tools
http://intel.ly/perf-tools

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

References

30

●http://openmp.org/

●Performance Essentials with
OpenMP 4.0 Vectorization:
https://software.intel.com/articles/per
formance-essentials-with-openmp-
40-vectorization

●Explicit Vector Programming –Best
Known Methods –Article
https://software.intel.com/en-
us/articles/explicit-vector-
programming-best-known-methods

●OpenMP 4.0 Summary Card -
C/C++ (October 2013 PDF)

●OpenMP 4.0 Summary Card -
Fortran (October 2013 PDF)

●OpenMP 4.0.1 Examples (February
2014 PDF)

●Enabling SIMD in program using
OpenMP4.0

https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/articles/performance-essentials-with-openmp-40-vectorization
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org/mp-documents/OpenMP-4.0-Fortran.pdf
http://openmp.org/mp-documents/OpenMP-4.0-Fortran.pdf
http://openmp.org/mp-documents/OpenMP-4.0-Fortran.pdf
http://openmp.org/mp-documents/OpenMP-4.0-Fortran.pdf
http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf
https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40
https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40
https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Q & A

31

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

32

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Performance essentials using OpenMP* 4.0 vectorization with
C/C++ This webinar teaches you about Vectorization, what it is
and why you should care about it as a software developer. It will
cover terms such as SIMD and vectorization, Vector Lanes, Vector
Length and discusses performance expectations per core. It will
also explores the tradeoff between using compiler
autovectorization versus explicit vector programming versus
SIMD intrinsics and assembly. It compares explicit vector
programming as being similar to explicit parallel programming
using OpenMP parallelism constructs, where the developer takes
control and responsibility for vectorizing specified loops. also
gives quick examples of the two big ideas in explicit vector
programming: omp SIMD loops, and SIMD-enabled functions
enabled with the pragma omp declare simd family of constructs.

34

Abstract

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

35

Explicit Vector Programming with
OpenMP 4.0

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

 Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Express/expose vector parallelism

SIMD pragma/directive

Vectorization Hints
(ivdep/vector pragmas)

Fully Automatic
Analysis

simd function

Map vector parallelism to vector ISA

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

SIMD pragma/directive

SIMD function

Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Optimize and
Code Generation
Optimization and
Code Generation

Vectorizer makes
retargeting easy!

/Openmp [/Qx[SSE2|AVX]]

Vector part of OpenMP* 4.0 extension

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Optional modifier clauses:

 uniform(param1[, param2]…):
Shared, scalar parameters are broadcasted to all iterations

 linear(param1:step1[, param2:step2]…):
In serial execution parameters are incremented by steps, examples are
induction variables with constant stride

 simdlen(num): the largest size for a vector that the compiler is free to assume,
usually 2,4,8,16

 aligned(argument-list[:alignment]): all arguments in the argument-list are
aligned on a known boundary not less than the specified alignment.

Refer to OpenMP 4.0 Specification.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

36

#pragma omp declare simd -modifiers

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Each argument can appear in at most one uniform or linear
clause.

In a linear clause the step value must be a constant positive
integer expression.

The function or subroutine body must be a structured block.

No OpenMP constructs allowed inside the declared function.

The execution of the function cannot have any side effects
regarding concurrent iterations of a SIMD chunk.

branching into or out of the function is not allowed.

C/C++: No calls to the longjmp or setjmp

37

Restrictions: SIMD-enabled functions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

reduction(operator:v1, v2, …)

 v1 etc are reduction variables for operation “operator”

 Examples include computing averages or sums of arrays into a single scalar
value : reduction (+:sum)

linear(v1:step1, v2:step2, …)

 declares one or more list items to be private to a SIMD lane and to have a
linear relationship with respect to the iteration space of a loop : linear (i:2)

safelen (length)

 no two iterations executed concurrently with SIMD instructions can have a
greater distance in the logical iteration space than this value

 Typical values are 2, 4, 8, 16

Refer to OpenMP 4.0 Specification.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

38

OMP SIMD Pragma Clauses

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

aligned(v1:alignment, v2:alignment)

 declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned clause.

collapse(number of loops)

 Nested loop iterations are collapsed into one loop with a larger iteration
space.

private(v1, v2, …), lastprivate (v1, v2, …)

 declares one or more list items to be private to an implicit task or to a SIMD
lane, lastprivate causes the corresponding original list item to be updated
after the end of the region..

Refer to OpenMP 4.0 Specification.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

39

OMP SIMD Pragma Clauses cont…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Restrictions applying pragma omp simd (partial list):

 Applied to for loops only

 Induction variables should be signed or unsigned int

 The associated loops must be structured blocks

 A program must not branch into or out of a SIMD region.

 No OpenMP* construct can appear inside a simd region

 No C++ exceptions and Windows* Structured Exception Handling, setjmp(…)
& longjmp(…) in loop body

Refer to OpenMP 4.0 Specification.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

40

OpenMP 4.0 SIMD Pragma

