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Motivation 
Why do developers care about this technology 
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Problem Statement:  

 Vector widths are increasing per core and extensions to languages are 
needed to give best performance on new architectures 

 Solution:  

 Multiple methods are available to developers to program using explicit vector 
programming 

 We will explore the OpenMP* 4.0 SIMD approach 

Goal: Provide language extensions to simplify vector parallelism; 
Enable developers to extract more performance from SIMD 
processors 
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Why explicit vector programming? 



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice 

 

 

 

 

 

 

 

  

 

 

Trend: Vector widths and core counts are both increasing. Intel 
provides developers with explicit methods address these trends 
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Growth trends for vector registers 

Vector Width 

128 bit vector width (XMM) 
4 floats, 4 integers at same time 

64 bit vector width (MMX) 
2 Integers at same time 

256 bit vector width (YMM) 
8 floats at same time 

512 bit vector width (ZMM) 
16 floats at same time 
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Performance Objective - Maximize Use 
of SIMD HW per core 
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Vector Lanes (8 for AVX) 

Use all vector lanes if possible 

Compare 
timing of 8 
loop 
iterations: 
Scalar versus 
SIMD  

Vector Lanes (8 for AVX) 
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Performance Objective: 
Maximize Use of SIMD HW per core 
 

Vector Lanes (8 for AVX) 

Single Lanes are the result 
of function calls within the 
loop which serializes 
computation in the bottom 
portion of the loop in this 
example 

Vector Lanes 
(4 for SSE2) 

Use SIMD-Enabled functions  
to remove these barriers 
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Note: 

Wider vectors allow for higher potential performance gains 

Gains of 4x and 8x within reach using vectorization capability 
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Potential Performance Speedups 

8x potential for MIC 

4x potential for AVX 256 bit 

512 bit 

Double Precision FP vector width vs speedup potential 

128 bit 2x potential for SSE2 
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SIMD Concepts 
Necessary conceptual background 
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Many Ways to Vectorize 

Ease of use Compiler:  
Auto-vectorization (no change of code) 

Programmer control 

Compiler:  
Auto-vectorization hints (#pragma vector, …) 

SIMD intrinsic class 
(e.g.: F32vec, F64vec, …) 

Vector intrinsic 
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …) 

Assembler code 
(e.g.: [v]addps, [v]addss, …) 

Explicit Vector Programming 
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Need Common Programming Models: 
Explicit Vector Programming 
 

Array Notation 

SIMD pragma 

SIMD-Enabled Function 

 

• When auto-vectorization is limited 
we need to explore explicit vector 
programming to enable the 
potential performance in your 
application 

 

OpenMP* Threaded Programming Explicit vector programming 

Auto-Vectorization Auto-Parallelization 
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Ways to Write Vector Code 

for(i = 0; i < N; i++){ 

  A[i] = B[i] + C[i]; 

} 

Serial Code 

A[:] = B[:] + C[:]; 

Array Notation for C/C++ 

#pragma omp simd 

for(i = 0; i < N; i++) { 

  A[i] = B[i] + C[i]; 

} 

 

SIMD Pragma/Directive 

#pragma omp declare simd 

float foo(float B, float C) 

{ 

  return B + C; 

} 

… 

 

A[:] = foo(B[:], C[:]); 

SIMD-Enabled Function 
 with Intel® Cilk™ Plus Array Notation 

Data Level Parallelism with OpenMP* 4.0 Vectorization 
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OpenMP* 4.0 SIMD-Enabled Functions 
Features and use 
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SIMD-enabled functions allow user defined functions to be 
vectorized when: 

 called from within vectorized loops 

 or are called with array notation array arguments. 

The vector declaration and associated modifying clauses specify 
the vector or scalar nature of the function arguments. 

It is recommended to add the simd-enabled directive to the 
function prototype or header file 

Implementations exist for : 

 Intel® Cilk™ Plus 

 OpenMP* 4.0 

4/29/2014 
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Overview: SIMD-enabled functions 
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Write a function for one element and add pragma as follows 

 

 

 

 Call the scalar version: 
 

 Call vector version via SIMD loop: 

 

 
 

 Call it with Intel® Cilk™ Plus array notations: 
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SIMD-enabled functions 

#pragma omp declare simd  

float foo(float a, float b, float c, float d)  

{ 

  return a * b + c * d; 

} 

#pragma omp simd 

for(i = 0; i < n; i++) { 

  A[i] = foo(B[i], C[i], D[i], E[i]); 

} 

A[:] = foo(B[:], C[:], D[:], E[:]); 

e = foo(a, b, c, d); 
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Allows use of scalar syntax to describe an operation on a single 
element 

The programmer:  

 Writes a standard function which operates on scalar values 

 Annotates it the function with vector attribute and modifier clauses #pragma 
omp declare simd  

 Utilize appropriate modifier clause for vector attribute 

 Invokes the function to operate on arrays of arguments rather than scalar 
arguments 

The compiler:  

 Generates a scalar and a short vector version(s). 

 Can call the vector function from vectorized loop 

 Can call the scalar function from a scalar loop (legacy code) 
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Concept of SIMD-enabled functions 
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Why do we need them? 

Because unless uniform or linear are specified each parameter to 
the function will be treated as a vector 

 

 

 

 

 

 

 Reference: http://software.intel.com/en-us/articles/usage-of-linear-and-
uniform-clause-in-elemental-function-simd-enabled-function-clause 
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SIMD-enabled functions: Linear/ 
Uniform 

#pragma omp declare simd uniform(a) linear(i:1)  

void foo(float *a, int i): 

a is a pointer 

i is a sequence of integers [i, i+1, i+2, …] 

a[i] is a unit-stride load/store ([v]movups) 

#pragma omp declare simd  

void foo(float *a, int i): 

a is a vector of pointers 

i is a vector of integers 

a[i] becomes gather/scatter. 
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#pragma omp declare simd  

float my_simdf (float b)   { …  } 

SIMD-enabled functions: Invocation 

Construct  Example Semantics 

Standard for loop for (j = 0; j < N; j++) { 

  a[j] = my_simdf(b[j]); 

} 

Single thread, 
potentially  auto-
vectorizable 

#pragma omp simd #pragma omp simd 

for (j = 0; j < N; j++) { 

  a[j] = my_simdf(b[j]); 

} 

Single thread, 
vectorized; use the 
appropriate vector 
version 

Intel® Cilk™ Plus Array 
notation 

a[:] = my_simdf(b[:]); Single thread, 
vectorized; use the 
appropriate vector 
version 

17 
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 Callee Site 

 

 

 Call site 

 

 

 Vectorization report 

 

  
 

 Reference: http://software.intel.com/en-us/articles/call-site-dependence-for-
elemental-functions-simd-enabled-functions-in-c 

 

 

Call site dependence 

testmain.cc(5): (col. 13) remark: OpenMP SIMD LOOP WAS VECTORIZED 

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED 

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED 

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED 

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED 

#pragma omp declare simd uniform(a),linear(i:1),simdlen(4) 

void foo(int *a, int i){ 

 std::cout<<a[i]<<"\n"; 

} 

 

 

#pragma omp simd safelen(4) 

for(int i = 0; i < n; i++) 

        foo(a, i); 
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 Callee Site 

 

 

 Call site 

 

 

  
 

 Vectorization report 

 

 
 

 

Call site dependence (cont) 

testmain.cc(14): (col. 13) remark: OpenMP SIMD LOOP WAS VECTORIZED 

testmain.cc(21): (col. 9) remark: No suitable vector variant of function 

'_Z3fooPii' found 

testmain.cc(18): (col. 1) remark: OpenMP SIMD LOOP WAS VECTORIZED 

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED 

 

 

#pragma omp declare simd uniform(a),linear(i:1),simdlen(4) 

void foo(int *a, int i){ 

 std::cout<<a[i]<<"\n"; 

} 

 

 

#pragma omp simd safelen(4) 

for(int i = 0; i < n; i++)  foo(a, i); 

#pragma omp simd safelen(4) 

for(int i = 0; i < n; i++){ 

        k = b[i];  // k is not linear 

        foo(a, k); 

} 
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 Callee Site 

  
 
 

 Call site 

  
 
 
 
 

 Vectorization report 

  
 
Reference: http://software.intel.com/en-us/articles/call-site-dependence-for-
elemental-functions-simd-enabled-functions-in-c 

 

SIMD-enabled function  
Multiple vector definitions allowed 

testmain.cc(14): (col. 13) remark: OpenMP SIMD LOOP WAS VECTORIZED 

testmain.cc(18): (col. 1) remark: OpenMP SIMD LOOP WAS VECTORIZED 

header.cc(3): (col. 24) remark: FUNCTION WAS VECTORIZED 

#pragma omp declare simd uniform(a),linear(i:1),simdlen(4) 

#pragma omp declare simd uniform(a),simdlen(4) 

void foo(int *a, int i){ 

 std::cout<<a[i]<<"\n"; 

} 

 

 

#pragma omp simd safelen(4) 

for(int i = 0; i < n; i++) foo(a, i); 

#pragma omp simd safelen(4) 

for(int i = 0; i < n; i++){ 

        k = b[i]; // k is not linear 

        foo(a, k); 

} 
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OpenMP* 4.0 SIMD Loops 
Features and use 
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The following example will likely fail to auto vectorize 

 

 

 

 

 

Without SIMD directive, vectorization will fail since there are too 
many pointer references to do a run-time check for overlapping 
arrays 
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Pragma omp SIMD Motivation 

void add_fl(float *a, float *b, float *c, float *d, 

float *e, int n) 

{  

   #pragma omp simd 

   for (int i=0; i<n; i++) 

      a[i] = a[i] + b[i] + c[i] + d[i] + e[i];  

} 
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Compiler checks for: 

 Is *p loop invariant? 

 Do A[], B[], C[] overlap? 

 Is sum aliased with B[] and/or C[]? 

 Does the order of math operations matter? 

 Vector computation expected to be faster than scalar code? (efficiency 
heuristic) 

Auto vectorization is limited by the language rules:  
you can’t say what you want! 
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Auto-Vectorization – Serial Constraints 

for(i = 0; i < *p; i++) { 

  A[i] = B[i] * C[i]; 

  sum = sum + A[i]; 

} 
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Programmer asserts: 

 *p is loop invariant 

 sum not aliased with B[] or C[] 

 A[] does not overlap with B[] or C[] 

 sum should be treated as a reduction 

 Allow compiler to reorder for better vectorization 

 Vector code should be generated even if efficiency heuristic does not indicate 
a gain in performance 

Explicit vector programming lets you express what you mean! 
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Explicit Vector Programming with SIMD 
Pragma/Directive 

#pragma omp simd reduction(+:sum) 

for(i = 0; i < *p; i++) { 

  A[i] = B[i] * C[i]; 

  sum = sum + A[i]; 

} 
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The two statements with the += operations have different 
meaning from each other 

The programmer should be able to express those differently 

The compiler has to generate different code 

The variables i, p and step have different “meaning” from each 
other 
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Data in Vector Loops 

float sum = 0.0f; 

float *p = a; 

int step = 4; 

 

#pragma omp simd 

for (int i = 0; i < N; ++i) { 

        sum += *p; 

        p += step; 

} 
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Linear and reduction clauses make this usage explicit. 
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Data in Vector Loops 

float sum = 0.0f; 

float *p = a; 

int step = 4; 

 

#pragma omp simd linear(p:step)reduction(+:sum)  

for (int i = 0; i < N; ++i) { 

        sum += *p; 

        p += step; 

} 
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OpenMP 4.0: #pragma omp simd [clause  [,clause] …] 

Targets loops 

   Can target inner or outer loops 

Developer responsible for results 

 Developer asserts loop is suitable for SIMD 

 no loop-carried dependencies and iterations can be evaluated in parallel 

 Can choose from lexicon of clauses to modify behavior of SIMD directive 

 Developer should validate results 
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SIMD Pragma Notation 
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. 
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Data in Vector Loops 

extern float *a; 

float sum = 0.0f; 

float *p = a; 

int step = 4; 

int i,j; 

#pragma omp simd collapse(2) reduction(+:sum) 

linear(p:step) aligned(p:16) safelen(4) 

for(i = 0; i < N; i+=8) { 

        for(j = i; j < i+8; j++) { 

                sum += *p; 

                 p += step; 

        } 

} 
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Increase Performance with  
Explicit Vector Programming 

29 

OpenMP* 4.0 SIMD extensions is supported by: 

• Intel® Cluster Studio XE 

• MPI hybrid cluster development tools 

• Intel® Parallel Studio XE Suites 

• C, C++ and Fortran compilers, libraries and analysis tools 

• Intel® Composer XE Suites 

•  Compilers and performance libraries  

Try it for free! 
intel.ly/perf-tools 

http://intel.ly/perf-tools
http://intel.ly/perf-tools
http://intel.ly/perf-tools
http://intel.ly/perf-tools
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Performance essentials using OpenMP* 4.0 vectorization with 
C/C++ This webinar teaches you about Vectorization, what it is 
and why you should care about it as a software developer.  It will 
cover terms such as SIMD and vectorization, Vector Lanes, Vector 
Length and discusses performance expectations per core. It will 
also explores the tradeoff between using compiler 
autovectorization versus explicit vector programming versus 
SIMD intrinsics and assembly. It compares explicit vector 
programming as being similar to explicit parallel programming 
using OpenMP parallelism constructs, where the developer takes 
control and responsibility for vectorizing specified loops.  also 
gives quick examples of the two big ideas in explicit vector 
programming: omp SIMD loops, and SIMD-enabled functions 
enabled with the pragma omp declare simd family of constructs.  
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Explicit Vector Programming with 
OpenMP 4.0 
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Intel® SSE Intel® AVX Intel® MIC  

Express/expose vector parallelism 

SIMD pragma/directive 

Vectorization Hints 
(ivdep/vector pragmas) 

Fully Automatic 
Analysis 
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Map vector parallelism to vector ISA 
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SIMD pragma/directive 

SIMD function 

Vectorizer 

Intel® SSE Intel® AVX Intel® MIC  

Optimize and  
Code Generation 
Optimization and  
Code Generation 

Vectorizer makes 
retargeting easy! 

/Openmp [/Qx[SSE2|AVX]] 

Vector part of OpenMP* 4.0 extension 
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Optional modifier clauses: 

 uniform(param1[, param2]…): 
Shared, scalar parameters are broadcasted to all iterations 

 linear(param1:step1[, param2:step2]…): 
In serial execution parameters are incremented by steps, examples are 
induction variables with constant stride 

 simdlen(num): the largest size for a vector that the compiler is free to assume, 
usually 2,4,8,16 

 aligned(argument-list[:alignment]): all arguments in the argument-list are 
aligned on a known boundary not less than the specified alignment. 

Refer to OpenMP 4.0 Specification. 

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf 
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#pragma omp declare simd -modifiers 
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Each argument can appear in at most one uniform or linear 
clause. 

In a linear clause the step value must be a constant positive 
integer expression. 

The function or subroutine body must be a structured block. 

No OpenMP constructs allowed inside the declared function. 

The execution of the function cannot have any side effects 
regarding concurrent iterations of a SIMD chunk. 

branching into or out of the function is not allowed. 

C/C++: No calls to the longjmp or setjmp 
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Restrictions: SIMD-enabled functions 
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reduction(operator:v1, v2, …) 

 v1 etc are reduction variables for operation “operator” 

 Examples include computing averages or sums of arrays into a single scalar 
value : reduction (+:sum) 

linear(v1:step1, v2:step2, …) 

 declares one or more list items to be private to a SIMD lane and to have a 
linear relationship with respect to the iteration space of a loop : linear (i:2) 

safelen (length) 

 no two iterations executed concurrently with SIMD instructions can have a 
greater distance in the logical iteration space than this value 

 Typical values are 2, 4, 8, 16 

Refer to OpenMP 4.0 Specification.   
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf 
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OMP SIMD Pragma Clauses  
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aligned(v1:alignment, v2:alignment)  

 declares that the object to which each list item points is aligned to the 
number of bytes expressed in the optional parameter of the aligned clause. 

collapse(number of loops) 

 Nested loop iterations are collapsed into one loop with a larger iteration 
space. 

private(v1, v2, …), lastprivate (v1, v2, …) 

 declares one or more list items to be private to an implicit task or to a SIMD 
lane, lastprivate causes the corresponding original list item to be updated 
after the end of the region.. 

Refer to OpenMP 4.0 Specification.   
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf 
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OMP SIMD Pragma Clauses cont…  
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Restrictions applying pragma omp simd (partial list): 

 Applied to for loops only 

 Induction variables should be signed or unsigned int 

 The associated loops must be structured blocks 

 A program must not branch into or out of a SIMD region.  

 No OpenMP* construct can appear inside a simd region 

 No C++ exceptions and Windows* Structured Exception Handling, setjmp(…) 
& longjmp(…) in loop body  

Refer to OpenMP 4.0 Specification.   
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf 

 

40 

OpenMP 4.0 SIMD Pragma 


