
 

 

Intro to Motion Estimation Extension 

for OpenCL* 
 

This article introduces Intel’s motion estimation extension for OpenCL*. This extension includes a set of 
host-callable functions for frame-based Video Motion Estimation (VME).  

This extension depends on the OpenCL 1.2 notion of the built-in kernels and on the 

cl_intel_accelerator vendor extension, which provide an abstraction for the specific hardware-

accelerated capabilities. 

This article provides a brief overview of the cl_intel_accelerator and 

cl_intel_motion_estimation extensions. A code example using these extensions is also 

included along with an explanation of its results. 

For more information on extensions, refer to the cl_intel_accelerator and cl_intel_motion_estimation 

extension descriptions at the Khronos API registry. 

Motion Estimation Overview 
Motion estimation is the process of determining motion vectors that describe the transformation from 
one 2D image to another, usually from adjacent frames in a video sequence. The motion estimation 
functions, considered in this article, accept full-frame single-channel (luma) images as input, perform a 
motion search operation, and return a motion vector field as output.  
 
The introduced VME functionality exposes part of the hardware acceleration pipeline for video 
acceleration. This VME extension provides low-level functionality, currently restricted to the single-
channel (luma) input images and block matching methods, so motion vectors are computed for 
rectangular pixel blocks.  Motion vectors are key elements in the video compression algorithms.  
Motion vectors are useful for several applications. For example, when generating “slow motion effects,” 
motion vectors can provide the basis to generate intermediate frames for frame rate (up)conversion. 
Another example is increasing the original frame rate of the digitized film (24 fps) to match the TV rate. 
Motion vectors are also useful for image stabilization: the motion vectors in the entire frame can be 
averaged to produce a “global” motion vector that can serve as an approximation to a real video camera 
motion. 
 
The motion estimation extension consists of the new OpenCL built-in kernel (see section 5.6.1 in the 
OpenCL 1.2 specification) which performs motion estimation, as well as the accelerator object, which 
represents the state of the underlying acceleration engine. The kernel is queued for execution from the 
host using the standard ND-range mechanism. 

Both cl_intel_accelerator and cl_intel_motion_estimation extensions should be 
listed in the CL_DEVICE_EXTENSIONS string (see Table 4.3 in the OpenCL 1.2 specification) for the 
Intel® HD Graphics device in your system. Otherwise you need to update your GPU driver first. 

http://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf


 

 

General Accelerator API 

Creating an accelerator object 

Accelerator objects provide a black-box abstraction of software- and/or hardware-accelerated 
functionality from OpenCL vendors.  Intel cl_intel_accelerator vendor extension 
consists of a unified set of OpenCL runtime APIs to create, query, and manage the lifetime of the 
accelerator objects. The interfaces for this extension are provided in the cl_ext.h header. 
Just as with other vendor extension APIs, the 
clGetExtensionFunctionAddressForPlatform function should be used to get 
pointers to the accelerator APIs: 

static clCreateAcceleratorINTEL_fn pfn_clCreateAcceleratorINTEL = 

(clCreateAcceleratorINTEL_fn) 

clGetExtensionFunctionAddressForPlatform(intel_platform_id, 

"clCreateAcceleratorINTEL"); 

 

clCreateAcceleratorINTEL_fn is defined as an appropriate function pointer in the 
cl_ext.h. 
 
Accelerator object instances are referenced with the generic cl_accelerator_intel type. Notice 
that every accelerator is always associated with a specific acceleration engine type, which is requested 
by the application at accelerator object creation time. In the example below, the accelerator type is 
CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL. Also, descriptors are used to request acceleration 
engine-specific properties: 

cl_motion_estimation_desc_intel desc = { 

CL_ME_MB_TYPE_16x16_INTEL,                                      

CL_ME_SUBPIXEL_MODE_INTEGER_INTEL,               

CL_ME_SAD_ADJUST_MODE_NONE_INTEL,                  

CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL               

}; 

cl_accelerator_intel accelerator = pfn_clCreateAcceleratorINTEL(context, 

CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL, 

        sizeof(cl_motion_estimation_desc_intel), &desc, &err); 

 

Refer to the full motion estimation extension specification for the descriptor details. Make sure to 
handle potential failure of the creation routine when clCreateAcceleratorINTEL returns zero 
for the accelerator handle value. Possible reasons for accelerator creation failure are invalid descriptors 
or an invalid combination of descriptor values. The extension specification lists all possible error codes 
and causes.  

clReleaseAcceleratorINTEL is a complement to the creation API we just discussed. Refer to the 
Full Frame Motion Estimation Code Example section of this article for the example code. 

Using the accelerator object 

An application can run the accelerated motion estimation functions on an OpenCL device by enqueuing 
one of the proposed built-in kernels (below). The kernels are enqueued for execution by the regular 
clEnqueueNDRangeKernel OpenCL routine. In turn, a motion estimation accelerator encapsulates 



 

 

the internal state of the motion estimation engine and serves as the kernel argument to the motion 
estimation built-in kernel. The relationships between the entities are outlined in the following diagram: 

 

  

 

 

Motion Estimation API 

Notion of built-in kernels  

Section 5.6.1 of the OpenCL 1.2 specification introduces the notion of built-in kernels. More specifically, 
clCreateProgramWithBuiltInKernels creates a program object given a context and loads the 
information related to the built-in kernels into the program object. Notice that the developer does not 
provide program source code for built-in kernels. 

cl_program program = 

clCreateProgramWithBuiltInKernels(context,1,device,"block_motion_estimate_intel",&

err);     

 

The specific built-in kernels are created from the resulting program object: 

cl_kernel kernel = clCreateKernel(program, "block_motion_estimate_intel", &err);     

 

The kernels can be enqueued for execution by the OpenCL runtime using 
clEnqueueNDRangeKernel. 

Built-in kernel for the motion estimation  

The cl_intel_motion_estimation extension introduces a new built-in kernel for motion 
estimation with the following signature: 

_kernel void  

block_motion_estimate_intel 

( 

accelerator_intel_t accelerator, 

__read_only  image2d_t src_image, 

__read_only  image2d_t ref_image, 

__global short2 * prediction_motion_vector_buffer, 

__global short2 * motion_vector_buffer, 

__global ushort * residuals 

clCreateAcceleratorINTEL(    ) desc 

clSetKernelArg (           ,0,                    , …); 
… 
clEnqueueNDRange(           ,…); 

cl_motion_estimation_desc_intel 

accelerator 

kernel 

kernel 

cl_accelerator_intel 

 

clCreateKernel(            ) 
cl_kernel 

 

program 

clCreateProgramWithBuiltInKernels(…,“block_motion_estimate_intel”) 

 

cl_program 

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf


 

 

); 

 

This kernel computes motion vectors by comparing a 2D image source with a 2D reference image, 
producing a vector field of motion vectors. The algorithm searches the best match of each pixel block in 
the source image by searching an image region in the reference image, centered on the coordinates of 
that pixel block in the source image (optionally offset by the prediction motion vectors). 

When enqueuing this kernel, global_work_size and global_work_offset determine the 
region of interest of the input frames. The dimension of the output motion vector image is dependent 
on the size of the region of interest and partitioning mode specified by the accelerator. 

accelerator should be a valid accelerator object created by clCreateAcceleratorINTEL, 
where the type of the accelerator must be 
CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL. 

src_image and the ref_image images should represent 8-bit luminance information.  
image_channel_order and the image_data_type of src_image/ref_image are 
restricted as follows: 

Channel Order Src Channel Data Type 

CL_R CL_UNORM_INT8 

 

motion_vector_buffer represents an output vector field of pixel block motion vectors stored 
linearly in row-major order. Each entry of the buffer is a motion vector (packed as two 16-bit integer 
values) for the corresponding pixel block. The buffer needs to be sized appropriately such that it fits the 
results of all pixel blocks of the source image. The number of returned motion vectors per source pixel 

block is determined by the mb_block_type defined at accelerator creation time. Therefore, the 
total number of the motion vectors is the number of source (16x16) pixel blocks times the number of 
returned motion vectors per source block (1, 4, or 16). 

This kernel optionally takes a buffer of motion vector predictors via the 

prediction_motion_vector_buffer kernel argument. In many algorithms the motion 
vectors from the previous frame are used as prediction vectors for the current frame. Prediction vectors 
can also be used to estimate the motion vectors of the downscaled input image to implement 
hierarchical motion estimation algorithms. Essentially, using prediction vectors overcomes the hardware 
limitation on the maximum search radius, as you can offset the neighborhood to be searched, which can 
be coupled with a multi-pass approach to enable searching within arbitrary areas.  

The application can choose not to provide prediction motion vectors by providing NULL as the 
arg_value argument to clSetKernelArg(), in which case the prediction motion vectors are 
implied to be (0,0). 

A buffer of per-pixel-block distortion values (or “residuals”) can optionally be returned as well, which 
provides the sum-of-absolute-differences between best-match source and reference frame pixel blocks 
that produced the corresponding motion vector. The application can choose not to get the residuals by 

providing NULL as the arg_value argument to clSetKernelArg(), in which case this 
information is not returned. 

Refer to the extension specification document for details.  



 

 

The clEnqueueNDRangeKernel()for the built-in kernel returns the usual error codes, augmented 
with a few VME specific error codes, described in the extension specification document. Particularly 
notice that this built-in kernel requires the local size to be NULL to let the work-group size be 
determined at runtime, and it requires 2D ND-range. Otherwise the clEnqueueNDRangeKernel() 
call fails and returns an error as described in the specification. 

Full Frame Motion Estimation Code Example  
The following code snippet demonstrates how to set up and queue a simple full-frame motion 
estimation pass for 16x16 pixel blocks (and a single resulting motion vector per block).  

    cl_platform_id platform; 

    cl_context context; 

    cl_device_id device; 

    cl_command_queue queue; 

 

// Initialize OpenCL via selecting Intel platform, create context with GPU device 

and a queue for the device as usual 

… 

 

// Get the func pointers to the accelerator routines  

static clCreateAcceleratorINTEL_fn pfn_clCreateAcceleratorINTEL = 

(clCreateAcceleratorINTEL_fn) 

clGetExtensionFunctionAddressForPlatform(platform, "clCreateAcceleratorINTEL"); 

 

// Create the program and the built-in kernel for the motion estimation 

cl_program program = 

clCreateProgramWithBuiltInKernels(context,1,device,"block_motion_estimate_intel",N

ULL);     

cl_kernel kernel = clCreateKernel(program, "block_motion_estimate_intel", NULL);     

 

// Create the accelerator for the motion estimation  

    cl_motion_estimation_desc_intel desc = { // VME API configuration knobs 

// Num of motion vectors per source pixel block, here a single vector per block 

       CL_ME_MB_TYPE_16x16_INTEL,                                      

       CL_ME_SUBPIXEL_MODE_INTEGER_INTEL, // Motion vector precision 

// Adjust mode for the residuals, we don't compute them in this tutorial anyway:  

       CL_ME_SAD_ADJUST_MODE_NONE_INTEL,   

       CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL // Search window radius 

    }; 

    cl_accelerator_intel accelerator =  

        pfn_clCreateAcceleratorINTEL(context,  

        CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL,  

        sizeof(cl_motion_estimation_desc_intel), &desc, 0); 

 

    // Input images 

    cl_image_format format = { CL_R, CL_UNORM_INT8 }; // luminance plane 

    cl_mem srcImage = clCreateImage2D(context, CL_MEM_READ_ONLY, &format,  

        width, height, 0, pSrcBuf, &err); 

    cl_mem refImage = clCreateImage2D(context, CL_MEM_READ_ONLY, &format,  

        width, height, 0, pRefBuf, &err); 

 

    // Compute number of output motion vectors  
    const int mbSize = 16; // size of the (input) pixel motion block 

    size_t widthInMB  = (width + mbSize - 1) / mbSize;         

    size_t heightInMB = (height + mbSize - 1) / mbSize; 



 

 

    // Output buffer for MB motion vectors 

    cl_mem outMVBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY,  

 widthInMB * heightInMB * sizeof(cl_short2), 0, 0, &err); 

 

    // Setup params for the built-in kernel  
    clSetKernelArg(kernel, 0, sizeof(cl_accelerator_intel), &accelerator); 

    clSetKernelArg(kernel, 1, sizeof(cl_mem), &srcImage); 

    clSetKernelArg(kernel, 2, sizeof(cl_mem), &refImage); 

    clSetKernelArg(kernel, 3, sizeof(cl_mem), NULL); // disable predictor motion 

vectors 

    clSetKernelArg(kernel, 4, sizeof(cl_mem), &outMVBuffer); 

    clSetKernelArg(kernel, 5, sizeof(cl_mem), NULL); // disable extra motion block 

info output 

 

    // Run the kernel 

    // Notice that it *requires* to let runtime determine the local size, and 

requires 2D ndrange 

    const size_t originROI[2] = { 0, 0 }; 

    const size_t sizeROI[2] = { width, height}; 

    clEnqueueNDRangeKernel(queue, kernel, 2, originROI, sizeROI, NULL, 0, 0, 0); 

 

    // Read resulting motion vectors 

    clEnqueueReadBuffer(queue, outMVBuffer, CL_TRUE, 0, 

widthInMB * heightInMB * sizeof(cl_short2), pMVOut, 0, 0, 0); 

 

    //clReleaseAcceleratorINTEL(accelerator); 

    // Release other resources 

    … 

Example Results 
The pictures below show two frames (reference and source) and computed motion vectors overlaid on 
the second frame. Specifically, the vectors are rendered as the strokes of the appropriate magnitude. So 
they point to the new (actually best-matched) pixel blocks positions. 

Notice the radial pattern of the motion vectors, which is due to the nature of the transformation 
between frames (zoom in addition to the camera movement). 



 

 

 

VME Performance versus Quality Considerations 
You should carefully consider performance versus quality trade-offs when using hardware-assisted VME 
through the cl_intel_motion_estimation extension.   Such trade-offs might be simply a 
function of the input image size, or of the requested density of motion vectors to be computed. The 
VME implementation computes motion vectors on a 16x16 source pixel block.  You can control the 
number of output motion vectors to be computed by defining the number of output sub-blocks on each 
of these 16x16 source pixel blocks.   As one would expect, requesting more output motion vectors 
increases VME computation cost. 

More precisely, the mb_block_type field of the cl_motion_estimation_desc_intel (refer 
to the section on the general accelerator API), which is used during VME accelerator creation, defines 
the number of “sub-blocks” (and hence of motions vectors) within each 16x16 source pixel block: 

 
CL_ME_MB_TYPE_16x16_INTEL, 

a single sub-block per 

input 16x16 pixel block 

CL_ME_MB_TYPE_8x8_INTEL,   

4 sub-blocks per input 

16x16 pixel block 

CL_ME_MB_TYPE_4x4_INTEL,   

16 sub-blocks per input 

16x16 pixel block 



 

 

 

It is important to understand that sub-blocks are independent. Thus, the smaller the sub-block, the 
more likely the VME implementation finds a match. Smaller sub-blocks may be appropriate for 
compression applications that efficiently encode sub-block differences, but less appropriate for feature 
tracking applications. Using smaller sub-blocks not only increases VME computation expense cost, it also 
decreases motion vector field smoothness (motion vector directions seem to look more noisy, see the 
figure below). Feature tracking applications may benefit from a larger sub-block size because they more 
closely match feature sizes and motion prediction smoothness is often desirable in such applications. 
Therefore, using larger sub-blocks decreases VME computation expense and improves application 
performance. 

Below are examples of resulting motion vectors fields with the sub-block size varied: 

 4x4 (16 resulting motion vectors per block), the leftmost image 

 8x8 (4 resulting motion vectors per block), the middle image 

 16x16 (single motion vector per block), the rightmost image 

Sub-block sizes are specified with the mb_block_type field of the 
cl_motion_estimation_desc_intel, a parameter of the VME accelerator routine. Notice the 
noisiness of the motion vector field in the leftmost image; the noisiness decreases in images to the right: 

   

Conclusion 
Computing motions vectors is a key component of many popular video compression and computer 
vision algorithms. As it is a computationally-intensive task, pure software implementations might 
present performance or energy efficiency challenges for some applications. In this article, we introduced 
a Video Motion Estimation (VME) extension for OpenCL* that leverages hardware-assisted motion 
vectors estimation. We showed how to employ the set of VME extension host-callable functions for the 
task of computing motion vectors. Specifically, using this VME extension, one can estimate motion in a 
frame, while trading off the number of resulting motion vectors against computation cost.  
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