Intro to Motion Estimation Extension
for OpenCL*

This article introduces Intel’s motion estimation extension for OpenCL*. This extension includes a set of
host-callable functions for frame-based Video Motion Estimation (VME).

This extension depends on the OpenCL 1.2 notion of the built-in kernels and on the

cl intel accelerator vendor extension, which provide an abstraction for the specific hardware-
accelerated capabilities.

This article provides a brief overview of the c1 intel accelerator and
cl intel motion estimation extensions. A code example using these extensions is also
included along with an explanation of its results.

For more information on extensions, refer to the cl_intel accelerator and cl_intel motion estimation
extension descriptions at the Khronos API registry.

Motion Estimation Overview

Motion estimation is the process of determining motion vectors that describe the transformation from
one 2D image to another, usually from adjacent frames in a video sequence. The motion estimation
functions, considered in this article, accept full-frame single-channel (luma) images as input, perform a
motion search operation, and return a motion vector field as output.

The introduced VME functionality exposes part of the hardware acceleration pipeline for video
acceleration. This VME extension provides low-level functionality, currently restricted to the single-
channel (luma) input images and block matching methods, so motion vectors are computed for
rectangular pixel blocks. Motion vectors are key elements in the video compression algorithms.

Motion vectors are useful for several applications. For example, when generating “slow motion effects,”
motion vectors can provide the basis to generate intermediate frames for frame rate (up)conversion.
Another example is increasing the original frame rate of the digitized film (24 fps) to match the TV rate.
Motion vectors are also useful for image stabilization: the motion vectors in the entire frame can be
averaged to produce a “global” motion vector that can serve as an approximation to a real video camera
motion.

The motion estimation extension consists of the new OpenCL built-in kernel (see section 5.6.1 in the
OpenCL 1.2 specification) which performs motion estimation, as well as the accelerator object, which
represents the state of the underlying acceleration engine. The kernel is queued for execution from the
host using the standard ND-range mechanism.

Bothcl intel acceleratorandcl intel motion estimation extensionsshould be
listed in the CL__ DEVICE EXTENSIONS string (see Table 4.3 in the OpenCL 1.2 specification) for the
Intel® HD Graphics device in your system. Otherwise you need to update your GPU driver first.

http://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

General Accelerator API

Creating an accelerator object

Accelerator objects provide a black-box abstraction of software- and/or hardware-accelerated
functionality from OpenCL vendors. Intelcl intel accelerator vendor extension
consists of a unified set of OpenCL runtime APlIs to create, query, and manage the lifetime of the
accelerator objects. The interfaces for this extension are provided in the c1 _ext.h header.
Just as with other vendor extension APIs, the
clGetExtensionFunctionAddressForPlatform function should be used to get
pointers to the accelerator APIs:

static clCreateAcceleratorINTEL fn pfn clCreateAcceleratorINTEL =
(clCreateAcceleratorINTEL fn)

clGetExtensionFunctionAddressForPlatform(intel platform id,
"clCreateAcceleratorINTEL") ;

clCreateAcceleratorINTEL fnisdefined asan appropriate function pointer in the
cl ext.h.

Accelerator object instances are referenced with the generic c1 _accelerator intel type. Notice
that every accelerator is always associated with a specific acceleration engine type, which is requested
by the application at accelerator object creation time. In the example below, the accelerator type is
CL_ACCELERATOR TYPE MOTION ESTIMATION INTEL. Also, descriptors are used to request acceleration
engine-specific properties:

cl motion estimation desc_intel desc = {

CL ME MB TYPE 16x16 INTEL,

CL ME SUBPIXEL MODE INTEGER INTEL,

CL ME SAD ADJUST MODE NONE INTEL,

CL ME SEARCH PATH RADIUS 16 12 INTEL

ii_accelerator_intel accelerator = pfn clCreateAcceleratorINTEL (context,

CL_ACCELERATOR_TYPE_MOT ION_EST IMAT ION_INTEL P
sizeof (cl motion estimation desc intel), &desc, é&err);

Refer to the full motion estimation extension specification for the descriptor details. Make sure to
handle potential failure of the creation routine when c1CreateAcceleratorINTEL returns zero
for the accelerator handle value. Possible reasons for accelerator creation failure are invalid descriptors
or an invalid combination of descriptor values. The extension specification lists all possible error codes
and causes.

clReleaseAcceleratorINTEL is a complement to the creation APl we just discussed. Refer to the
Full Frame Motion Estimation Code Example section of this article for the example code.

Using the accelerator object

An application can run the accelerated motion estimation functions on an OpenCL device by enqueuing
one of the proposed built-in kernels (below). The kernels are enqueued for execution by the regular
clEnqueueNDRangeKernel OpenCL routine. In turn, a motion estimation accelerator encapsulates

the internal state of the motion estimation engine and serves as the kernel argument to the motion
estimation built-in kernel. The relationships between the entities are outlined in the following diagram:

clCreateProgramWithBuiltInKernels(..,“block_motion_estimate_intel”)

[cl_motion_estimation_desc_intel

clCreateKernel() —}[cl kernel] [¢1_accelerator_intel]q—chr‘eateAcceler'ator'INTEL)

,0, [accelerator], .");

clSetKernelArg (

clEnqueueNDRange(| kernel |s-)3

Motion Estimation API

Notion of built-in kernels

Section 5.6.1 of the OpenCL 1.2 specification introduces the notion of built-in kernels. More specifically,
clCreateProgramWithBuiltInKernels creates a program object given a context and loads the
information related to the built-in kernels into the program object. Notice that the developer does not
provide program source code for built-in kernels.

cl program program =
clCreateProgramWithBuiltInKernels (context,1l,device, "block motion estimate intel", &
err) ;

The specific built-in kernels are created from the resulting program object:

cl kernel kernel = clCreateKernel (program, "block motion estimate intel", &err);

The kernels can be enqueued for execution by the OpenCL runtime using
clEnqueueNDRangeKernel.

Built-in kernel for the motion estimation

Thecl intel motion estimation extension introduces a new built-in kernel for motion
estimation with the following signature:

_kernel void

block motion_estimate_ intel

(

accelerator intel t accelerator,

__read only image2d t src image,

__read only image2d t ref image,

__global short2 * prediction motion vector buffer,
__global short2 * motion vector buffer,

__global ushort * residuals

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

)

This kernel computes motion vectors by comparing a 2D image source with a 2D reference image,
producing a vector field of motion vectors. The algorithm searches the best match of each pixel block in
the source image by searching an image region in the reference image, centered on the coordinates of
that pixel block in the source image (optionally offset by the prediction motion vectors).

When enqueuing this kernel, global work sizeandglobal work offset determine the
region of interest of the input frames. The dimension of the output motion vector image is dependent
on the size of the region of interest and partitioning mode specified by the accelerator.

accelerator should be avalid accelerator object created by c1CreateAcceleratorINTEL,
where the type of the accelerator must be
CL ACCELERATOR TYPE MOTION ESTIMATION INTEL.

src_image andthe ref image images should represent 8-bit luminance information.
image channel order andthe image data type of src image/ref image are
restricted as follows:

Channel Order Src Channel Data Type
CL_R CL_UNORM_INTS8

motion vector buffer representsan outputvector field of pixel block motion vectors stored
linearly in row-major order. Each entry of the buffer is a motion vector (packed as two 16-bit integer
values) for the corresponding pixel block. The buffer needs to be sized appropriately such that it fits the
results of all pixel blocks of the source image. The number of returned motion vectors per source pixel
block is determined by themb block type defined at accelerator creation time. Therefore, the
total number of the motion vectors is the number of source (16x16) pixel blocks times the number of
returned motion vectors per source block (1, 4, or 16).

This kernel optionally takes a buffer of motion vector predictors via the
prediction motion vector buffer kernel argument.In many algorithms the motion
vectors from the previous frame are used as prediction vectors for the current frame. Prediction vectors
can also be used to estimate the motion vectors of the downscaled input image to implement
hierarchical motion estimation algorithms. Essentially, using prediction vectors overcomes the hardware
limitation on the maximum search radius, as you can offset the neighborhood to be searched, which can
be coupled with a multi-pass approach to enable searching within arbitrary areas.

The application can choose not to provide prediction motion vectors by providing NULL as the
arg value argumenttoclSetKernelArg (), in which case the prediction motion vectors are
implied to be (0,0).

A buffer of per-pixel-block distortion values (or “residuals”) can optionally be returned as well, which
provides the sum-of-absolute-differences between best-match source and reference frame pixel blocks
that produced the corresponding motion vector. The application can choose not to get the residuals by
providing NULL as the arg value argumentto clSetKernelArg (), in which case this
information is not returned.

Refer to the extension specification document for details.

The c1EnqueueNDRangeKernel () for the built-in kernel returns the usual error codes, augmented
with a few VME specific error codes, described in the extension specification document. Particularly
notice that this built-in kernel requires the local size to be NULL to let the work-group size be
determined at runtime, and it requires 2D ND-range. Otherwise the c1EnqueueNDRangeKernel ()
call fails and returns an error as described in the specification.

Full Frame Motion Estimation Code Example

The following code snippet demonstrates how to set up and queue a simple full-frame motion
estimation pass for 16x16 pixel blocks (and a single resulting motion vector per block).

cl platform id platform;
cl context context;
cl device id device;
cl command gqueue gueue;

// Initialize OpenCL via selecting Intel platform, create context with GPU device
and a queue for the device as usual

// Get the func pointers to the accelerator routines

static clCreateAcceleratorINTEL fn pfn clCreateAcceleratorINTEL =
(clCreateAcceleratorINTEL fn)
clGetExtensionFunctionAddressForPlatform(platform, "clCreateAcceleratorINTEL");

// Create the program and the built-in kernel for the motion estimation

cl program program =

clCreateProgramWithBuiltInKernels (context,1l,device,"block motion estimate intel",N
ULL) ;

cl kernel kernel = clCreateKernel (program, "block motion estimate intel", NULL);

// Create the accelerator for the motion estimation
cl motion estimation desc intel desc = { // VME API configuration knobs
// Num of motion vectors per source pixel block, here a single vector per block
CL ME MB TYPE 16x16 INTEL,
CL ME SUBPIXEL MODE INTEGER INTEL, // Motion vector precision
// Adjust mode for the residuals, we don't compute them in this tutorial anyway:
CL ME SAD ADJUST MODE NONE INTEL,
CL _ME SEARCH PATH RADIUS 16 12 INTEL // Search window radius
}i
cl accelerator intel accelerator =
pfn clCreateAcceleratorINTEL (context,
CL ACCELERATOR TYPE MOTION ESTIMATION INTEL,
sizeof (cl _motion estimation desc_intel), &desc, 0);

// Input images

cl image format format = { CL R, CL UNORM INT8 }; // luminance plane

cl mem srcImage = clCreatelImage2D (context, CL MEM READ ONLY, &format,
width, height, 0, pSrcBuf, &err);

cl mem refImage = clCreatelImage2D (context, CL MEM READ ONLY, &format,
width, height, 0, pRefBuf, &err);

// Compute number of output motion vectors

const int mbSize = 16; // size of the (input) pixel motion block
size t widthInMB = (width + mbSize - 1) / mbSize;

size t heightInMB = (height + mbSize - 1) / mbSize;

// Output buffer for MB motion vectors
cl mem outMVBuffer = clCreateBuffer (context, CL MEM WRITE ONLY,
widthInMB * heightInMB * sizeof (cl_short2), 0, 0, &err);

// Setup params for the built-in kernel
clSetKernelArg (kernel, 0, sizeof(cl accelerator intel), &accelerator);
clSetKernelArg (kernel, 1, sizeof(cl mem), &srcImage);
clSetKernelArg (kernel, 2, sizeof(cl mem), &reflImage);
(3 (

clSetKernelArg (kernel, 3, sizeof(cl mem), NULL); // disable predictor motion
vectors

clSetKernelArg (kernel, 4, sizeof(cl mem), &outMVBuffer);

clSetKernelArg (kernel, 5, sizeof(cl mem), NULL); // disable extra motion block

info output

// Run the kernel

// Notice that it *requires* to let runtime determine the local size, and
requires 2D ndrange

const size t originROI[2] = { 0, 0 };

const size t sizeROI[2] = { width, height};

clEnqueueNDRangeKernel (queue, kernel, 2, originROI, sizeROI, NULL, 0, 0, O0);

// Read resulting motion vectors
clEnqueueReadBuffer (queue, outMVBuffer, CL TRUE, O,
widthInMB * heightInMB * sizeof (cl short2), pMvOut, 0, 0, 0);

//clReleaseAcceleratorINTEL (accelerator) ;
// Release other resources

Example Results

The pictures below show two frames (reference and source) and computed motion vectors overlaid on
the second frame. Specifically, the vectors are rendered as the strokes of the appropriate magnitude. So
they point to the new (actually best-matched) pixel blocks positions.

Notice the radial pattern of the motion vectors, which is due to the nature of the transformation
between frames (zoom in addition to the camera movement).

S

Y

3

1290

po—
1

T T

VVME Performance versus Quality Considerations

You should carefully consider performance versus quality trade-offs when using hardware-assisted VME
throughthe cl intel motion estimation extension. Such trade-offs might be simply a
function of the input image size, or of the requested density of motion vectors to be computed. The
VME implementation computes motion vectors on a 16x16 source pixel block. You can control the
number of output motion vectors to be computed by defining the number of output sub-blocks on each
of these 16x16 source pixel blocks. As one would expect, requesting more output motion vectors
increases VME computation cost.

More precisely, themb block type fieldofthecl motion estimation desc intel (refer
to the section on the general accelerator API), which is used during VME accelerator creation, defines
the number of “sub-blocks” (and hence of motions vectors) within each 16x16 source pixel block:

\ CL_ME MB TYPE 16x16 INTEL, E@CLMEMBTYPEBXBINTEL, N |CL_ME_MB_TYPE_ 4x4 INTEL,

a single sub-block per 4 sub-blocks per input 16 sub-blocks per input
input 16x16 pixel block 16x16 pixel block FER[E]|16x16 pixel block

It is important to understand that sub-blocks are independent. Thus, the smaller the sub-block, the
more likely the VME implementation finds a match. Smaller sub-blocks may be appropriate for
compression applications that efficiently encode sub-block differences, but less appropriate for feature
tracking applications. Using smaller sub-blocks not only increases VME computation expense cost, it also
decreases motion vector field smoothness (motion vector directions seem to look more noisy, see the
figure below). Feature tracking applications may benefit from a larger sub-block size because they more
closely match feature sizes and motion prediction smoothness is often desirable in such applications.
Therefore, using larger sub-blocks decreases VME computation expense and improves application
performance.

Below are examples of resulting motion vectors fields with the sub-block size varied:

e 4x4 (16 resulting motion vectors per block), the leftmost image
e 8x8 (4 resulting motion vectors per block), the middle image
e 16x16 (single motion vector per block), the rightmost image

Sub-block sizes are specified with themb block type field of the
cl motion estimation desc intel, a parameter of the VME accelerator routine. Notice the
noisiness of the motion vector field in the leftmost image; the noisiness decreases in images to the right:

Conclusion

Computing motions vectors is a key component of many popular video compression and computer
vision algorithms. As it is a computationally-intensive task, pure software implementations might
present performance or energy efficiency challenges for some applications. In this article, we introduced
a Video Motion Estimation (VME) extension for OpenCL* that leverages hardware-assisted motion
vectors estimation. We showed how to employ the set of VME extension host-callable functions for the
task of computing motion vectors. Specifically, using this VME extension, one can estimate motion in a
frame, while trading off the number of resulting motion vectors against computation cost.

About the Author

Maxim Shevtsov is a Software Architect in the OpenCL performance
team at Intel. He received his Masters degree in Computer Science
in 2003. Prior to joining Intel in 2005, he was doing various academia
studies in computer graphics.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR
ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL
INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer
systems, components, software, operations, and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Any software source code reprinted in this document is furnished under a software license and may only be used
or copied in accordance with the terms of that license.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
Copyright © 2013 Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc and are used by permission by Khronos.

http://www.intel.com/design/literature.htm

