

Intro to Motion Estimation Extension

for OpenCL*

This article introduces Intel’s motion estimation extension for OpenCL*. This extension includes a set of
host-callable functions for frame-based Video Motion Estimation (VME).

This extension depends on the OpenCL 1.2 notion of the built-in kernels and on the

cl_intel_accelerator vendor extension, which provide an abstraction for the specific hardware-

accelerated capabilities.

This article provides a brief overview of the cl_intel_accelerator and

cl_intel_motion_estimation extensions. A code example using these extensions is also

included along with an explanation of its results.

For more information on extensions, refer to the cl_intel_accelerator and cl_intel_motion_estimation

extension descriptions at the Khronos API registry.

Motion Estimation Overview
Motion estimation is the process of determining motion vectors that describe the transformation from
one 2D image to another, usually from adjacent frames in a video sequence. The motion estimation
functions, considered in this article, accept full-frame single-channel (luma) images as input, perform a
motion search operation, and return a motion vector field as output.

The introduced VME functionality exposes part of the hardware acceleration pipeline for video
acceleration. This VME extension provides low-level functionality, currently restricted to the single-
channel (luma) input images and block matching methods, so motion vectors are computed for
rectangular pixel blocks. Motion vectors are key elements in the video compression algorithms.
Motion vectors are useful for several applications. For example, when generating “slow motion effects,”
motion vectors can provide the basis to generate intermediate frames for frame rate (up)conversion.
Another example is increasing the original frame rate of the digitized film (24 fps) to match the TV rate.
Motion vectors are also useful for image stabilization: the motion vectors in the entire frame can be
averaged to produce a “global” motion vector that can serve as an approximation to a real video camera
motion.

The motion estimation extension consists of the new OpenCL built-in kernel (see section 5.6.1 in the
OpenCL 1.2 specification) which performs motion estimation, as well as the accelerator object, which
represents the state of the underlying acceleration engine. The kernel is queued for execution from the
host using the standard ND-range mechanism.

Both cl_intel_accelerator and cl_intel_motion_estimation extensions should be
listed in the CL_DEVICE_EXTENSIONS string (see Table 4.3 in the OpenCL 1.2 specification) for the
Intel® HD Graphics device in your system. Otherwise you need to update your GPU driver first.

http://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

General Accelerator API

Creating an accelerator object

Accelerator objects provide a black-box abstraction of software- and/or hardware-accelerated
functionality from OpenCL vendors. Intel cl_intel_accelerator vendor extension
consists of a unified set of OpenCL runtime APIs to create, query, and manage the lifetime of the
accelerator objects. The interfaces for this extension are provided in the cl_ext.h header.
Just as with other vendor extension APIs, the
clGetExtensionFunctionAddressForPlatform function should be used to get
pointers to the accelerator APIs:

static clCreateAcceleratorINTEL_fn pfn_clCreateAcceleratorINTEL =

(clCreateAcceleratorINTEL_fn)

clGetExtensionFunctionAddressForPlatform(intel_platform_id,

"clCreateAcceleratorINTEL");

clCreateAcceleratorINTEL_fn is defined as an appropriate function pointer in the
cl_ext.h.

Accelerator object instances are referenced with the generic cl_accelerator_intel type. Notice
that every accelerator is always associated with a specific acceleration engine type, which is requested
by the application at accelerator object creation time. In the example below, the accelerator type is
CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL. Also, descriptors are used to request acceleration
engine-specific properties:

cl_motion_estimation_desc_intel desc = {

CL_ME_MB_TYPE_16x16_INTEL,

CL_ME_SUBPIXEL_MODE_INTEGER_INTEL,

CL_ME_SAD_ADJUST_MODE_NONE_INTEL,

CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL

};

cl_accelerator_intel accelerator = pfn_clCreateAcceleratorINTEL(context,

CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL,

 sizeof(cl_motion_estimation_desc_intel), &desc, &err);

Refer to the full motion estimation extension specification for the descriptor details. Make sure to
handle potential failure of the creation routine when clCreateAcceleratorINTEL returns zero
for the accelerator handle value. Possible reasons for accelerator creation failure are invalid descriptors
or an invalid combination of descriptor values. The extension specification lists all possible error codes
and causes.

clReleaseAcceleratorINTEL is a complement to the creation API we just discussed. Refer to the
Full Frame Motion Estimation Code Example section of this article for the example code.

Using the accelerator object

An application can run the accelerated motion estimation functions on an OpenCL device by enqueuing
one of the proposed built-in kernels (below). The kernels are enqueued for execution by the regular
clEnqueueNDRangeKernel OpenCL routine. In turn, a motion estimation accelerator encapsulates

the internal state of the motion estimation engine and serves as the kernel argument to the motion
estimation built-in kernel. The relationships between the entities are outlined in the following diagram:

Motion Estimation API

Notion of built-in kernels

Section 5.6.1 of the OpenCL 1.2 specification introduces the notion of built-in kernels. More specifically,
clCreateProgramWithBuiltInKernels creates a program object given a context and loads the
information related to the built-in kernels into the program object. Notice that the developer does not
provide program source code for built-in kernels.

cl_program program =

clCreateProgramWithBuiltInKernels(context,1,device,"block_motion_estimate_intel",&

err);

The specific built-in kernels are created from the resulting program object:

cl_kernel kernel = clCreateKernel(program, "block_motion_estimate_intel", &err);

The kernels can be enqueued for execution by the OpenCL runtime using
clEnqueueNDRangeKernel.

Built-in kernel for the motion estimation

The cl_intel_motion_estimation extension introduces a new built-in kernel for motion
estimation with the following signature:

_kernel void

block_motion_estimate_intel

(

accelerator_intel_t accelerator,

__read_only image2d_t src_image,

__read_only image2d_t ref_image,

__global short2 * prediction_motion_vector_buffer,

__global short2 * motion_vector_buffer,

__global ushort * residuals

clCreateAcceleratorINTEL() desc

clSetKernelArg (,0, , …);
…
clEnqueueNDRange(,…);

cl_motion_estimation_desc_intel

accelerator

kernel

kernel

cl_accelerator_intel

clCreateKernel()
cl_kernel

program

clCreateProgramWithBuiltInKernels(…,“block_motion_estimate_intel”)

cl_program

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

);

This kernel computes motion vectors by comparing a 2D image source with a 2D reference image,
producing a vector field of motion vectors. The algorithm searches the best match of each pixel block in
the source image by searching an image region in the reference image, centered on the coordinates of
that pixel block in the source image (optionally offset by the prediction motion vectors).

When enqueuing this kernel, global_work_size and global_work_offset determine the
region of interest of the input frames. The dimension of the output motion vector image is dependent
on the size of the region of interest and partitioning mode specified by the accelerator.

accelerator should be a valid accelerator object created by clCreateAcceleratorINTEL,
where the type of the accelerator must be
CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL.

src_image and the ref_image images should represent 8-bit luminance information.
image_channel_order and the image_data_type of src_image/ref_image are
restricted as follows:

Channel Order Src Channel Data Type

CL_R CL_UNORM_INT8

motion_vector_buffer represents an output vector field of pixel block motion vectors stored
linearly in row-major order. Each entry of the buffer is a motion vector (packed as two 16-bit integer
values) for the corresponding pixel block. The buffer needs to be sized appropriately such that it fits the
results of all pixel blocks of the source image. The number of returned motion vectors per source pixel

block is determined by the mb_block_type defined at accelerator creation time. Therefore, the
total number of the motion vectors is the number of source (16x16) pixel blocks times the number of
returned motion vectors per source block (1, 4, or 16).

This kernel optionally takes a buffer of motion vector predictors via the

prediction_motion_vector_buffer kernel argument. In many algorithms the motion
vectors from the previous frame are used as prediction vectors for the current frame. Prediction vectors
can also be used to estimate the motion vectors of the downscaled input image to implement
hierarchical motion estimation algorithms. Essentially, using prediction vectors overcomes the hardware
limitation on the maximum search radius, as you can offset the neighborhood to be searched, which can
be coupled with a multi-pass approach to enable searching within arbitrary areas.

The application can choose not to provide prediction motion vectors by providing NULL as the
arg_value argument to clSetKernelArg(), in which case the prediction motion vectors are
implied to be (0,0).

A buffer of per-pixel-block distortion values (or “residuals”) can optionally be returned as well, which
provides the sum-of-absolute-differences between best-match source and reference frame pixel blocks
that produced the corresponding motion vector. The application can choose not to get the residuals by

providing NULL as the arg_value argument to clSetKernelArg(), in which case this
information is not returned.

Refer to the extension specification document for details.

The clEnqueueNDRangeKernel()for the built-in kernel returns the usual error codes, augmented
with a few VME specific error codes, described in the extension specification document. Particularly
notice that this built-in kernel requires the local size to be NULL to let the work-group size be
determined at runtime, and it requires 2D ND-range. Otherwise the clEnqueueNDRangeKernel()
call fails and returns an error as described in the specification.

Full Frame Motion Estimation Code Example
The following code snippet demonstrates how to set up and queue a simple full-frame motion
estimation pass for 16x16 pixel blocks (and a single resulting motion vector per block).

 cl_platform_id platform;

 cl_context context;

 cl_device_id device;

 cl_command_queue queue;

// Initialize OpenCL via selecting Intel platform, create context with GPU device

and a queue for the device as usual

…

// Get the func pointers to the accelerator routines

static clCreateAcceleratorINTEL_fn pfn_clCreateAcceleratorINTEL =

(clCreateAcceleratorINTEL_fn)

clGetExtensionFunctionAddressForPlatform(platform, "clCreateAcceleratorINTEL");

// Create the program and the built-in kernel for the motion estimation

cl_program program =

clCreateProgramWithBuiltInKernels(context,1,device,"block_motion_estimate_intel",N

ULL);

cl_kernel kernel = clCreateKernel(program, "block_motion_estimate_intel", NULL);

// Create the accelerator for the motion estimation

 cl_motion_estimation_desc_intel desc = { // VME API configuration knobs

// Num of motion vectors per source pixel block, here a single vector per block

 CL_ME_MB_TYPE_16x16_INTEL,

 CL_ME_SUBPIXEL_MODE_INTEGER_INTEL, // Motion vector precision

// Adjust mode for the residuals, we don't compute them in this tutorial anyway:

 CL_ME_SAD_ADJUST_MODE_NONE_INTEL,

 CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL // Search window radius

 };

 cl_accelerator_intel accelerator =

 pfn_clCreateAcceleratorINTEL(context,

 CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL,

 sizeof(cl_motion_estimation_desc_intel), &desc, 0);

 // Input images

 cl_image_format format = { CL_R, CL_UNORM_INT8 }; // luminance plane

 cl_mem srcImage = clCreateImage2D(context, CL_MEM_READ_ONLY, &format,

 width, height, 0, pSrcBuf, &err);

 cl_mem refImage = clCreateImage2D(context, CL_MEM_READ_ONLY, &format,

 width, height, 0, pRefBuf, &err);

 // Compute number of output motion vectors
 const int mbSize = 16; // size of the (input) pixel motion block

 size_t widthInMB = (width + mbSize - 1) / mbSize;

 size_t heightInMB = (height + mbSize - 1) / mbSize;

 // Output buffer for MB motion vectors

 cl_mem outMVBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 widthInMB * heightInMB * sizeof(cl_short2), 0, 0, &err);

 // Setup params for the built-in kernel
 clSetKernelArg(kernel, 0, sizeof(cl_accelerator_intel), &accelerator);

 clSetKernelArg(kernel, 1, sizeof(cl_mem), &srcImage);

 clSetKernelArg(kernel, 2, sizeof(cl_mem), &refImage);

 clSetKernelArg(kernel, 3, sizeof(cl_mem), NULL); // disable predictor motion

vectors

 clSetKernelArg(kernel, 4, sizeof(cl_mem), &outMVBuffer);

 clSetKernelArg(kernel, 5, sizeof(cl_mem), NULL); // disable extra motion block

info output

 // Run the kernel

 // Notice that it *requires* to let runtime determine the local size, and

requires 2D ndrange

 const size_t originROI[2] = { 0, 0 };

 const size_t sizeROI[2] = { width, height};

 clEnqueueNDRangeKernel(queue, kernel, 2, originROI, sizeROI, NULL, 0, 0, 0);

 // Read resulting motion vectors

 clEnqueueReadBuffer(queue, outMVBuffer, CL_TRUE, 0,

widthInMB * heightInMB * sizeof(cl_short2), pMVOut, 0, 0, 0);

 //clReleaseAcceleratorINTEL(accelerator);

 // Release other resources

 …

Example Results
The pictures below show two frames (reference and source) and computed motion vectors overlaid on
the second frame. Specifically, the vectors are rendered as the strokes of the appropriate magnitude. So
they point to the new (actually best-matched) pixel blocks positions.

Notice the radial pattern of the motion vectors, which is due to the nature of the transformation
between frames (zoom in addition to the camera movement).

VME Performance versus Quality Considerations
You should carefully consider performance versus quality trade-offs when using hardware-assisted VME
through the cl_intel_motion_estimation extension. Such trade-offs might be simply a
function of the input image size, or of the requested density of motion vectors to be computed. The
VME implementation computes motion vectors on a 16x16 source pixel block. You can control the
number of output motion vectors to be computed by defining the number of output sub-blocks on each
of these 16x16 source pixel blocks. As one would expect, requesting more output motion vectors
increases VME computation cost.

More precisely, the mb_block_type field of the cl_motion_estimation_desc_intel (refer
to the section on the general accelerator API), which is used during VME accelerator creation, defines
the number of “sub-blocks” (and hence of motions vectors) within each 16x16 source pixel block:

CL_ME_MB_TYPE_16x16_INTEL,

a single sub-block per

input 16x16 pixel block

CL_ME_MB_TYPE_8x8_INTEL,

4 sub-blocks per input

16x16 pixel block

CL_ME_MB_TYPE_4x4_INTEL,

16 sub-blocks per input

16x16 pixel block

It is important to understand that sub-blocks are independent. Thus, the smaller the sub-block, the
more likely the VME implementation finds a match. Smaller sub-blocks may be appropriate for
compression applications that efficiently encode sub-block differences, but less appropriate for feature
tracking applications. Using smaller sub-blocks not only increases VME computation expense cost, it also
decreases motion vector field smoothness (motion vector directions seem to look more noisy, see the
figure below). Feature tracking applications may benefit from a larger sub-block size because they more
closely match feature sizes and motion prediction smoothness is often desirable in such applications.
Therefore, using larger sub-blocks decreases VME computation expense and improves application
performance.

Below are examples of resulting motion vectors fields with the sub-block size varied:

 4x4 (16 resulting motion vectors per block), the leftmost image

 8x8 (4 resulting motion vectors per block), the middle image

 16x16 (single motion vector per block), the rightmost image

Sub-block sizes are specified with the mb_block_type field of the
cl_motion_estimation_desc_intel, a parameter of the VME accelerator routine. Notice the
noisiness of the motion vector field in the leftmost image; the noisiness decreases in images to the right:

Conclusion
Computing motions vectors is a key component of many popular video compression and computer
vision algorithms. As it is a computationally-intensive task, pure software implementations might
present performance or energy efficiency challenges for some applications. In this article, we introduced
a Video Motion Estimation (VME) extension for OpenCL* that leverages hardware-assisted motion
vectors estimation. We showed how to employ the set of VME extension host-callable functions for the
task of computing motion vectors. Specifically, using this VME extension, one can estimate motion in a
frame, while trading off the number of resulting motion vectors against computation cost.

About the Author
Maxim Shevtsov is a Software Architect in the OpenCL performance
team at Intel. He received his Masters degree in Computer Science
in 2003. Prior to joining Intel in 2005, he was doing various academia
studies in computer graphics.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR

ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL

INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

The products described in this document may contain design defects or errors known as errata which may cause

the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,

may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer

systems, components, software, operations, and functions. Any change to any of those factors may cause the

results to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.

Any software source code reprinted in this document is furnished under a software license and may only be used

or copied in accordance with the terms of that license.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Copyright © 2013 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc and are used by permission by Khronos.

http://www.intel.com/design/literature.htm

